
NBER WORKING PAPER SERIES

EFFECTIVE DEMAND FAILURES AND THE LIMITS OF 
MONETARY STABILIZATION POLICY

Michael Woodford

Working Paper 27768
http://www.nber.org/papers/w27768

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2020, Revised September 2021

An earlier version was presented at the 2020 NBER Summer Institute under the title “Pandemic 
Shocks, Effective Demand, and Stabilization Policy.” I would like to thank Aloísio Araújo, Gauti 
Eggertsson, Guido Lorenzoni, Argia Sbordone, Ludwig Straub, Harald Uhlig, and Iván Werning 
for helpful comments, and Yeji Sung for research assistance. The views expressed herein are 
those of the author and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Michael Woodford. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



Effective Demand Failures and the Limits of Monetary Stabilization Policy 
Michael Woodford
NBER Working Paper No. 27768
September 2020, Revised September 2021
JEL No. E12,E52,E63

ABSTRACT

The challenge for stabilization policy presented by the COVID-19 pandemic stems above all from 
disruption of the circular flow of payments, resulting in a failure of what Keynes (1936) calls 
“effective demand.” As a consequence, economic activity in many sectors can be inefficiently 
low, and interest-rate policy cannot eliminate the distortions — not because of a limit on the 
extent to which interest rates can be reduced, but because interest-rate reductions fail to stimulate 
demand of the right sorts. Fiscal transfers are instead well-suited to addressing the fundamental 
problem, and can under certain circumstances achieve a first-best allocation of resources.

Michael Woodford
Department of Economics
Columbia University
420 W. 118th Street
New York, NY 10027
and NBER
mw2230@columbia.edu



The COVID-19 pandemic has presented substantial challenges both to policymakers and
to macroeconomists, and these go beyond the simple fact that the disturbance to economic
life has been unprecedented in both its severity and its suddenness. The nature of the
disturbance has also been different from those typically considered in discussions of business
cycles and stabilization policy, and this has raised important questions about how to think
about an appropriate policy response.

Among the more notable features of the economic crisis resulting from the pandemic
has been the degree to which its effects have been concentrated in particular sectors of the
economy, with some activities having to shut down completely for the sake of public health,
while others continue almost as normal. A consequence of this asymmetry is a significant
disruption of the “circular flow” of payments between sectors of the economy. In a stationary
equilibrium of the kind to which an economy tends in the absence of shocks, each economic
unit’s payment outflows are balanced by its inflows, over any interval of time; this makes
it possible for the necessary outflows to be financed at all times, without requiring the
household or firm to maintain any large liquid asset balances.

Economic disturbances, regardless of whether these are “supply shocks” or “demand
shocks,” do not change this picture, as long as they affect all sectors of the economy in
the same way: whether activity of all types is temporarily higher or lower, as long as the
co-movement of the different sectors is sufficiently close, it continues to be the case that
inflows and outflows should balance, so that financing constraints do not bind, even when
many individual units maintain low liquid asset balances. Under such circumstances, the
market mechanism should do a good job of ensuring an efficient allocation of resources. It is
only necessary for policy to ensure that intertemporal relative prices (i.e., real interest rates)
incentivize economic units to allocate expenditure over time in a way that is in line with
variations in the efficient level of aggregate activity; in an economy where the prices of goods
and services are fixed in advance in monetary units, this requires the central bank to manage
the short-term nominal interest rate in an appropriate way. But it is often supposed that a
reasonably efficient allocation of resources can be assured as long as interest-rate policy is
adjusted in response to aggregate disturbances in a suitable way.

A disturbance like the COVID-19 creates difficulties of a different kind. The efficient
level of some activities is now different, once public health concerns are taken into account.
But in addition, the cessation of payments for the activities that are no longer safe interrupts
the flow of payments that would ordinarily be used to finance other activities, even though
these latter activities are still socially desirable (if one compares the utility that consumers
can get from them to the disutility required to supply them). As a result, many activities
may take place at a lower than efficient level, owing to insufficiency of what Keynes (1936)
calls “effective demand” — the ability of people to signal in the marketplace the usefulness
of goods to them, through their ability to pay for them. While it may well be efficient for
restaurants or theaters to suspend the supply of their services for a period (because their
usual customers cannot safely consume these services while the disease is rampant),the loss
of their normal source of revenue may leave them unable to pay their rent; the loss of rental
income may then require the real-estate management companies to dismiss their maintenance
staff and fail to pay their property taxes; the furloughed maintenance staff may be unable
to buy food or pay their own rent, the municipal government that does not receive a normal
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level of tax revenue may have to lay off city employees, and so on.1 The later steps in this
chain of effects are all suspensions of economic transactions that are in no way required by
the inability to continue supplying in-restaurant meals and theater performances.

An effective demand failure of this kind can result in a reduction in economic activity
that is much greater than would occur in an efficient allocation of resources, even taking
into account the public health constraint. Yet the problem is not simply that aggregate
demand is too low, at existing (predetermined) prices, relative to the economy’s aggregate
productive capacity; in such a case one would expect the problem to be cured by a monetary
policy that sufficiently reduces the real rate of interest. But as Leijonhufvud (1973) stresses,
in a situation of sufficiently generalized effective demand failure, arising because financing
constraints have temporarily become binding for a large number of economic units, the usual
mechanisms of price adjustment in a market economy do not suffice to achieve an efficient
allocation. The market-determined real rate of interest in a flexible-price economy will not
achieve this; and neither, in the more realistic case of an economy with nominal rigidities,
will a central bank that adjusts its policy rate to bring about the real rate of interest that
would be associated with a flexible-price equilibrium, be able to do so.

Here we present a simple (and highly stylized) model to illustrate the nature of the
problem presented by a disturbance like the COVID-19 pandemic. In our model, the fact
that economic activity is much lower than in an optimal allocation of resources, in the absence
of any policy response, does not necessarily imply that interest rates need to be reduced.
While the model is one in which (owing to nominal rigidities) a reduction of the central
bank’s policy rate increases economic activity, the particular ways in which it increases
activity need not correspond at all closely with the particular activities that it would most
enhance welfare to increase. Instead, fiscal transfers directly respond to the fundamental
problem preventing the effective functioning of the market mechanism, and can bring about
a much more efficient equilibrium allocation of resources, even when they are not carefully
targeted. And when fiscal transfers of a sufficient size are made in response to the pandemic
shock, there is no longer any need for interest-rate cuts, which instead will lead to excessive
current demand.

We are not the first to note that a crucial feature of the COVID-19 pandemic has been
the degree to which its effects are sectorally concentrated; in particular, this is emphasized
by both Guerrieri et al. (2020) and Baqaee and Farhi (2020). Indeed, the framework used
here to consider alternative possible responses to a pandemic owes much of its structure to
the pioneering work of Guerrieri et al. The emphases here are somewhat different, however,
than in either of those earlier studies. We abstract altogether from either preference-based
or technological complementarities between sectors, of the kind emphasized in the papers
just cited, in order to focus more clearly on the consequences of the network structure of
payments even in the absence of those other reasons for spillovers between activity in different
sectors of the economy to exist. Because a key issue examined here is the effects of different
possible network structures of payments, we consider a model in which there can be more
than two sectors (and hence more than one sector still active in the case of a pandemic),
unlike the baseline model of Guerrieri et al. And unlike either of these papers, we do not

1See, for example, Goodman and Magder (2020) and Gopal (2020) on the problems created by effective
demand failures of this kind in New York City during the current crisis.
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assume that all consumers choose to consume the same basket of goods; as we show below,
non-uniformity in the way expenditure is allocated across goods by economic units that also
have different sources of income can play an important role in amplifying the magnitude of
the effective demand shortfall resulting from a pandemic.2

The macroeconomics of a shock like COVID-19 is the subject of a rapidly expanding
literature, already too large to easily summarize. Many interesting contributions focus on
different issues than those of concern here. For example, Bigio et al. (2020) do not consider
what can be achieved with conventional interest-rate policy, instead comparing the effects of
lump-sum transfers with those of central-bank credit policies, in a model which emphasizes
the endogeneity of borrowing limits (not analyzed here). Araújo and Costa (2021) similarly
discuss how a modification of bankruptcy law in response to a pandemic shock can substitute
for fiscal transfers. Caballero and Simsek (2020) consider the possible amplification of
the effects of the shock through the effects of income reductions on endogenous financial
constraints, from which we abstract here. Céspedes et al. (2020) primarily emphasize the
longer-run costs of firms having to shed workers during the crisis; here we abstract from such
effects, and show that transfers can be beneficial even when they are not taken into account.
Auerbach et al. (2020) similarly emphasize the increased effects of transfer policies when
there is endogenous exit of firms, and focus on channels through which transfers matter even
in the absence of financing restrictions. None of these papers give much attention to the
effects of conventional interest-rate policy in the case of a pandemic shock.

The paper proceeds as follows. Section 1 explains the structure of the model, and
derives the first-best allocation of resources, both for the case of shocks that affect all sectors
identically, and for asymmetric disturbances such as a pandemic shock. This section also
shows that if there are only aggregate shocks, interest-rate policy suffices to achieve the
first-best allocation as a decentralized equilibrium outcome, while lump-sum transfers are
not only unnecessary, but also ineffective as a tool of aggregate demand management. Section
2 analyzes the effects of an asymmetric disturbance such as a pandemic shock in the absence
of any monetary or fiscal policy response, showing how a collapse of effective demand can
occurs. Section 3 shows how either fiscal transfers or government credit policy can mitigate
the effects of such a disturbance by reducing the degree of effective demand shortfall, even
when interest-rate policy does not respond to the shock at all; and shows that at least under
some circumstances, the first-best allocation can be achieved without any change in interest-
rate policy. Finally, section 4 considers what can be achieved by adjusting the central bank’s
interest-rate target in response to the asymmetric disturbance, if the fiscal policy response is
insufficient. It explains why this is more modest than might be expected, and offers examples
in which ex-ante welfare is not improved by any reduction in interest rates at all, though the
level of economic activity remains inefficiently low. Section 5 concludes.

2Other papers that stress the importance of network structure for the propagation of economic
disturbances include Acemoglu et al., (2012), Bigio and La’O (2020), Elliott et al. (2021), Ghassibe (2021),
La’O and Tahbaz-Salehi (2021), Ozdagli and Weber (2017), Pastén et al. (2020), and Rubbo (2020). These
papers analyze the effects of production linkages between sectors (the input-output structure), which we
abstract from here in order to emphasize the importance of the network structure of payments even in
the absence of production linkages. Somewhat more closely related to our concerns here are the papers of
Acemoglu et al. (2015) and Elliott et al. (2014), emphasizing the consequences of networks of financial
obligations for the fragility of the financial system.
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1 An N-sector Model

Let us consider an N -sector “yeoman farmer” model, in which the economy is made up of
producer-consumers that each supply goods or services for sale (subject to a disutility of
supplying them), and also purchase and consume the goods or services supplied by other
such units. Each such unit belongs to one of N sectors (where N ≥ 2) and specializes in the
supply of the good produced by that sector, but consumes the goods produced by multiple
sectors.3 We assume that there is a continuum of unit length of infinitesimal units in each
of the sectors. We further order the sectors on a circle, and use modulo-N arithmetic when
adding or subtracting numbers from sectoral indices (thus “sector N + 1” is the same as
sector 1, “sector -2” is the same as sector N − 2, and so on).

1.1 Preferences and the network structure of payments

A producer-consumer in sector j seeks to maximize the ex-ante expected value of a discounted
sum of utilities

∞∑
t=0

βtU j(t) (1.1)

where 0 < β < 1 is a common discount factor for all sectors, and the utility flow each period
is given by

U j(t) =
∑

k∈Kj(t)

θjk(t)u(cjk(t)/θjk(t); ξt) − v(yj(t); ξt), (1.2)

where cjk(t) is the quantity consumed in period t of the goods produced by sector k, and yj(t)
is the unit’s production of its own sector’s good. The non-negative coefficients {θjk(t)} allow
a given sector to have asymmetric demands for the goods produced by the other sectors;
Kj(t) is the subset of subset of sectors k for which θjk(t) > 0 (so that j wishes to consume
goods produced in sector k in period t). The vector ξt represents aggregate disturbances
that may shift either the utility from consumption or the disutility of supplying goods (or
both);4 note that these shocks are assumed to affect all goods and all consumers in the same
way, as in standard one-sector New Keynesian models.

For any possible vector of aggregate shocks ξ, the utility functions are assumed to satisfy
the following standard conditions: u(0) = 0, and u′(c) > 0, u′′(c) < 0 for all c > 0;
limc→0 u

′(c) = ∞, and limc→∞ u′(c) = 0; and finally, v(0) = 0, and v′(y) > 0, v′′(y) ≥ 0
for all y > 0. The Inada conditions imply that the socially optimal supply of each good
will be positive but finite (unless θjk(t) = 0 for all j in some period). Moreover, they imply
that limc→∞ u(c)/c = 0, so that θu(c/θ) has a well-defined limiting value (equal to 0 for any
c > 0) as θ → 0. Hence our assumption in (1.2) that we simply omit terms for k /∈ Kj(t)
results in a utility function that varies continuously with the coefficients {θjk(t)}.

3These “sectors” need not be interpreted as separate industries (e.g., travel and hospitality), though the
direct impact of the COVID-19 shock was indeed extremely different across industries. They might equally
well be understood as regions, or other ways in which economic units may be differentiated, that matter
both for (i) the way they are impacted by some important disturbances, and (ii) the way in which other
economic units allocate their spending.

4These may include aggregate productivity shocks, represented here as a shift in the disutility of effort
required to produce a given quantity of output.

4



Furthermore, the additively separable form (1.2) implies that closing down one sector
(preventing either production or consumption of that good) has no effect on either the
utility from consumption or disutility of supplying any of the other goods. Thus we abstract
entirely from complementarities between sectors owing either to preferences or production
technologies, of the kind stressed by Guerrieri et al. (2020), in order to focus more clearly
on the linkages between sectors resulting from the circular flow of payments.

The coefficients {θjk(t)} are important for our analysis, as they determine the network
structure of the flow of payments in the economy; random variation in these coefficients is
also the only kind of asymmetric disturbance that we consider. In this paper, we further
specialize to the case in which θjk(t) = ϕk(t) · αk−j for all j, k, and t. The only kind of
random disturbance that we consider is a shock to the multiplicative factor ϕk(t) that affects
the taste for sector k’s products by everyone in the economy. (This allows us to consider a
disturbance like the COVID-19 pandemic.) The constant coefficients {αh} instead determine
the degree to which the consumption preferences of units in different sectors j are different.
We assume that αh ≥ 0 for each h, and also that α0, α1 > 0 (given an appropriate ordering
of the sectors), to ensure that the network structure of payments is indecomposable.5 We
also assume that in any state of the world in any period t, ϕk(t) ≥ 0 for all k, and there is
at most one sector k for which ϕk(t) = 0.6

We further normalize the {αh} so that
∑N−1

h=0 αh = 1. Then if ϕk(t) = 1 for each sector
k (which we will call the “normal case”), and in addition all goods have the same price in
period t, the optimal intra-temporal allocation of expenditure by any sector j will be given
by

cjk(t) = αk−j · cj(t) (1.3)

for each good k, where cj(t) ≡
∑N

k=1 c
j
k(t) is total real expenditure by the sector in period

t. Thus in this case the coefficients {αh} correspond to expenditure shares. In the more
general case where ϕk(t) ̸= 1 for one or more sectors (but still assuming that all goods have
the same price), the optimal allocation of expenditure will be of the form

cjk(t) = Akj(t) · cj(t) (1.4)

where

Akj(t) ≡ ϕk(t)αk−j

ωj(ϕ(t))
, ωj(ϕ(t)) ≡

∑
k

ϕk(t)αk−j. (1.5)

(Our assumptions above guarantee that for any sector j and any period t, there is at least
one sector k ∈ Kj(t), so that ωj(ϕ(t)) > 0, and the coefficients Akj(t) are well-defined.)

The coefficients {αh} are assumed to be the same for all sectors j; this means that in the
“normal case”, the model has a rotational symmetry: it is invariant under any relabeling of
the sectors in which each sector j is relabeled j + r (mod N), for some integer r. Figure
1 illustrates two of the possible network structures allowed by our notation, for the case

5We exclude, for example, cases in which N is even and even-numbered sectors purchase only from other
even-numbered sectors, while odd-numbered sectors purchase only from odd-numbered sectors.

6Admitting the case in which ϕk(0) = 0 in some single sector k allows us to consider the effects of a
pandemic shock of the kind discussed by Guerrieri et al. (2020). We could also allow ϕk(0) to be zero in
more than one sector, if we impose other restrictions that imply that the coefficients {ωj} defined in (1.5)
are nonetheless all positive.
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Figure 1: Two possible network structures when N = 5. The number on the arrow from
sector j to sector k indicates the value of the coefficient αk−j.

N = 5. Note that in either case, the numbers on the arrows leaving any sector sum to
1; these indicate the share of that sector’s spending allocated to each of the sectors to
which arrows lead, in the “normal case” and when all goods prices are the same. Because
of the rotational symmetry, the numbers on the arrows leading to any sector also sum to
1. If in addition to prices being the same, each sector spends the same amount, then all
sectors’ revenues will be the same, and each sector’s inflows and outflows will be balanced.
This illustrates the balanced “circular flow” of payments in an equilibrium in which only
aggregate shocks occur (discussed further below).

The left panel shows the case of a uniform network, in which αh = 1/N for all h. In this
case, each sector has the same preferences over consumption bundles as any other sector, and
these preferences treat all goods symmetrically; if the prices of all goods are the same, each
individual unit will purchase the same quantity from each sector. The right panel instead
shows the case of a “chain” network, in which α0 = 1 − λ and α1 = λ, for some 0 < λ < 1,
while all other αh are zero. In this case, each sector purchases only from its own sector and
the sector immediately following it on the circle. In the numerical example shown in the
figure, λ = 0.8, so that in both examples the fraction of own-sector purchases (in the case
that prices of all goods are equal) is the same (i.e., 20 percent). But in the left panel, out-
of-sector purchases are uniformly distributed over all of the other sectors, while in the right
panel they are concentrated on one other sector. We show below that the network structure
has important consequences for both the effects of a pandemic shock and the effects of fiscal
transfers in response to the shock.

We further assume that the entire sequences ξ ≡ {ξt} and ϕ ≡ {ϕk(t)} for all periods
t ≥ 0 are revealed at time t = 0; for simplicity, we suppose there is no further uncertainty
about these disturbances to reveal after that. (This greatly simplifies our discussion of the
short-run real effects of monetary policy.) We also assume for simplicity that asymmetric
disturbances occur only in period t = 0; that is, we assume that ϕk(t) = 1 for all k in all
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periods t ≥ 1. (Thus we analyze only the effects of unanticipated asymmetric disturbances.)
Finally, we assume that the ex ante distribution of possible realizations of ϕ(0) exhibits

a rotational symmetry. Let R be the matrix that maps an arbitrary N -vector v to a vector
v′ = Rv, where v′k = vk−1 for each k. Then we assume that any non-negative vector ϕ(0)
has exactly the same ex-ante probability as the rotation Rϕ(0). (In the case of a pandemic
shock that requires one sector to shut down while the others are unaffected, this assumption
means that ex ante it is equally likely that any of the N sectors could be the one impacted
by the pandemic.) This means that despite our allowing for the possibility of asymmetric
disturbances (such as a pandemic shock) in period zero, our model is rotationally symmetric
ex ante. This is convenient both because it simplifies the solution for equilibrium outcomes,
and because it provides us with an unambiguous ex ante welfare ranking of the outcomes
associated with different stabilization policies, despite the differing situations of producer-
consumers in the different sectors ex post.

1.2 The first-best optimal allocation of resources

As a benchmark for discussion of what stabilization policy can achieve, it is useful to define
the first-best allocation that would be chosen by a social planner, given only the constraints
of preferences and technology. For any possible realization of the disturbances (ξ, ϕ), let the
set of N possible rotations

(ξ, ϕ), (ξ, Rϕ), . . . , (ξ, RN−1ϕ) (1.6)

constitute the “rotation family” to which the particular realization (ξ, ϕ) belongs.7 We can
separately consider optimal policy for each possible rotation family.

We further consider only rotationally-invariant allocations of resources, that is, ones under
which the consumption allocation {cjk(t; ξ, ϕ)} associated with given disturbance sequences
(ξ, ϕ) satisfies

cjk(t; ξ, Rϕ) = cj−1
k−1(t; ξ, ϕ)

for all j, k, t and any possible disturbance sequences (ξ, ϕ). Thus we do not allow policies that
favor a particular sector, except to the extent that this results from the asymmetric impact
of the exogenous disturbance ϕ on this sector; it must be the case that if the asymmetric
disturbance were a rotation of the one that has actually occurred, the equilibrium allocation
under the policy would have been correspondingly rotated. In the case of purely aggregate
disturbances (the “normal case”), policies must treat units in all sectors identically. If we
let U j(t; ξ, ϕ) be the flow utility (1.2) in the case of disturbances (ξ, ϕ) under such a policy,
it follows that

U j(t; ξ, Rϕ) = U j−1(t; ξ, ϕ)

for each sector j.
Then considering only the possible outcomes associated with a particular rotation family

(1.6), the terms in the ex ante expected value of (1.1) associated with these outcomes are

7Here for any sequence of N -vectors ϕ, ϕ′ = Rϕ means the alternative sequence such that ϕ′(t) = Rϕ(t)
for each t ≥ 0. Note that in the “normal case” in which ϕk(0) = 1 for all k, so that there is no asymmetric
disturbance, the rotation family of the realization (ξ, ϕ) consists only of (ξ, ϕ) itself.
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proportional to

1

N

N−1∑
h=0

∞∑
t=0

βtU j(t; ξ, Rhϕ) =
1

N

N−1∑
h=0

∞∑
t=0

βtU j−h(t; ξ, ϕ).

This sum is the same for each sector j, in addition to being the same for each of the sequences
(ξ, ϕ) in a given rotation family. This immediately yields the following conclusion.8

Lemma 1. Units in all sectors j agree about the ex ante ranking of alternative feasible
rotationally-invariant allocations of resources. With regard to policy for a particular rotation
family of possible disturbances, they unanimously prefer one allocation to another if in the
case of any of the sequences (ξ, ϕ) of exogenous disturbances (once uncertainty is resolved at
date t = 0) in this family, the first allocation achieves a higher value of

∞∑
t=0

βt

[
N∑
j=1

U j(t)

]
, (1.7)

where U j(t) is defined in (1.2).

Given this, there is an obvious welfare objective to use in comparing alternative policies. We
define the “first-best” optimal allocation in the case of disturbance sequences (ξ, ϕ) as the
one that maximizes (1.7) under the constraints that

∑
j c

j
k(t) = yk(t) for each sector k at

each date t.
The welfare objective (1.7) can be written as a sum of separate terms for each good k at

each date t. We thus obtain a separate problem for each k, t for which ϕk(t) > 0, in which
we must choose yk(t) and the {cjk(t)} for j = 1, . . . , N to maximize∑

h∈H

ϕk(t)αhu(ck−h
k (t)/(αhϕk(t)); ξt) − v(yk(t); ξt),

where H is the set of indices h for which αh > 0, subject to the constraints that
∑

j c
j
k(t) =

yk(t). (If k is a sector such that ϕk(t) = 0, then the problem is trivial, and all quantities
must equal zero.) The solution to this static problem is easily characterized.

Lemma 2. In the case of any disturbance sequences (ξ, ϕ), the unique first-best allocation
of resources involves sectoral output levels yk(t) = y∗(ϕk(t); ξt), where for any aggregate
disturbance vector ξ and any ϕ > 0, y∗(ϕ; ξ) is the unique solution to the equation

u′(y∗/ϕ; ξ) = v′(y∗; ξ). (1.8)

This supply of each good k is then allocated to consumers according to

cjk(t) = αk−j · yk(t) (1.9)

for each sector j.

8Proofs of all numbered lemmas and propositions are given in the online appendix.
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Thus the efficient level of output differs across sectors only as a result of asymmetry
in the vector ϕ(0). In the “normal case” in which ϕk(0) = 1 for all k, and there are only
aggregate shocks, the first-best allocation requires that yk(t) = y∗t for each sector, where y∗t
is defined by the same condition,

u′(y∗t ; ξt) = v′(y∗t ; ξt), (1.10)

as determines the “natural rate of output” in the familiar one-sector model. In addition, in
this case the optimal allocation shares are given by the coefficients {αh}, as in the examples
in Figure 1.

In the case of an asymmetric disturbance to the vector ϕ(0), the optimal output in period
zero differs across sectors. But it is only optimal for output to differ across sectors in the
period in which the vector ϕ(t) is asymmetric (i.e., only in period t = 0), and even in period
t = 0 it is only optimal for yk(0) to differ from y∗0 to the extent that ϕk(0) ̸= 1 in that
sector. Thus if we model a pandemic shock as a situation in which ϕp(0) < 1 in some sector
p only, while we continue to have ϕk(0) = 1 for all k ̸= p, under the first-best resource
allocation, output in sector p should decrease (to a greater extent the greater the reduction
in ϕp(0)), while the efficient level of output in all sectors k ̸= p remains unchanged.9 In this
respect, a pandemic shock can be considered a “negative supply shock,” as in the discussion
by Guerrieri et al. (2020).

1.3 The decentralized economy

Because all uncertainty is resolved at time t = 0, the allocation of resources from period
zero onward (conditional on the shocks revealed at that time) can be modeled as a perfect
foresight equilibrium of a deterministic model. Each period, there are spot markets for the
goods produced by all of the sectors for which ϕk(t) > 0, with pk(t) the money price of good k
in period t. There is also trading in a one-period nominal bond, that pays a nominal interest
rate i(t) between periods t and t + 1.10 The price pk(t) of each sectoral good is assumed to
be predetermined one period in advance, at a level that is expected at that earlier time to
clear the market for good k in period t; this temporary stickiness of prices allows monetary
policy to affect real activity in period zero.

Let aj(t) be the nominal asset position of units in sector j at the beginning of period t
(after any taxes or transfers), and bj(t) the nominal asset position at the end of the period
(after period t payments for goods are settled). Then in any period t ≥ 0, a unit in sector
j chooses expenditures {cjk(t)} (for k ∈ Kj(t)) and end-of-period assets bj(t) subject to the
flow budget constraint ∑

k∈Kj(t)

pk(t)cjk(t) + bj(t) = aj(t) + pj(t)yj(t) (1.11)

and the borrowing constraint
bj(t) ≥ bj(t), (1.12)

9See Figure 2 below for examples.
10Because there is only one possible future path for the economy conditional on the state in period zero,

allowance for more than one financial asset in any period t ≥ 0 would be redundant.
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where yj(t) is the quantity sold by the unit of its product, and bj(t) ≤ 0 is a (possibly
sector-specific) borrowing limit.

The borrowing constraint (1.12) is crucial to our analysis, and in particular for the
possibility of a collapse of effective demand, as analyzed in section 2. We treat bj(t) as a
quantity determined by government policy (credit policy). We suppose that units are unable
to credibly promise to repay, except to the extent that the government allows them to issue
debt up to a certain limit, the repayment of which is guaranteed by the government. (We
assume also that the government is able to force borrowers to repay these guaranteed debts,
rather than bearing any losses itself.) Thus we shall refer to the case in which bj(t) = 0 for
all j as the case of “no credit policy.”11

In period zero, aj(0) ≥ 0 is given as an initial condition for each sector; this quantity
reflects not only wealth brought into the period (before shocks are realized), but also any
transfers from the government in response to the shocks realized at time t = 0, and the
payoffs from any private insurance contracts conditional on those shocks. In any subsequent
period, aj(t+ 1) is given by

aj(t+ 1) = (1 + i(t))bj(t) − τ(t+ 1)/N, (1.13)

where τ(t + 1) is total lump-sum nominal tax collections at the beginning of period t + 1,
assumed to equally divided among all sectors. (We consider the possibility of sector-specific
taxes or transfers only in period zero, in response to an asymmetric shock.) A unit in sector
j takes as given the value of aj(0), and the sequences {ξt, pk(t), yj(t), i(t), τ(t + 1)} for all
t ≥ 0, and chooses sequences {cjk(t), bj(t)} consistent with constraints (1.11)–(1.13) for all
t ≥ 0 so as to maximize (1.1).

In equilibrium, the sales by units in each sector are given by

yk(t) =
N∑
j=1

cjk(t). (1.14)

The assumption that prices are set in advance at a level expected to clear markets means
that for each j, the sequence {yj(t)} for t ≥ 1 must be the sequence that a unit in sector
j would choose, if it were also to choose that sequence at time t = 0, taking as given the
values of aj(0) and yj(0) and the sequences {ξt, pk(t), yj(t), i(t), bj(t), τ(t+ 1)} for all t ≥ 0.
The value of yj(0), however, need not be the one that units in sector j would choose, given
the shocks realized at t = 0, because the price pk(0) is determined prior to the realization
of those shocks.12 Because of the ex ante symmetry of our model, the predetermined prices
pk(0) will all be set equal to some common price p̄ > 0. The exact determinants of p̄ are not
relevant to our results below; it is only important that the price is the same for all sectors,
and that it cannot be changed by any policy response to shocks realized at time t = 0.

Conditions (1.11), (1.13) and (1.14) imply that the total supply of liquid assets a(t) must
evolve according to a law of motion

a(t+ 1) = (1 + i(t))a(t) − τ(t+ 1) (1.15)

11It is not essential to our conclusions that the borrowing limit be zero in the absence of government credit
policy; what is important for our discussion below is that borrowing limits are unaffected by the changes in
monetary or fiscal policy that we consider, other than an explicit change in credit policy.

12We suppose that when the pre-determined price pk(0) is set, the suppliers in sector k agree that they
will each supply an equal share of whatever quantity of good k turns out to be demanded at that price.
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for all t ≥ 0, which can be regarded as a flow budget constraint of the government. We shall
consider only cases in which a(t) > 0 for all t ≥ 0, so that there exist public-sector liabilities,
the interest rate on which is controlled by the central bank.13

We can now define an (ex-post) perfect foresight equilibrium given the exogenous disturbance
sequences (ξ, ϕ) that have been realized in period zero, and the specifications of interest-rate
policy, credit policy, and fiscal policy in response to such disturbances. This is a specification
of the path of interest rates {i(t)} for t ≥ 0, prices {pk(t)} for t ≥ 1, the allocation of
resources {cjk(t), yk(t)} in each period t ≥ 0, end-of-period balances {bj(t)} for periods t ≥ 0,
and associated beginning-of-period balances {aj(t)} in periods t ≥ 1, such that (i) for each
sector j, the plan specifying {cjk(t), bj(t)} for each t ≥ 0 and {aj(t), yj(t)} for each t ≥ 1
maximizes (1.1), given aj(0) (determined by fiscal policy), yj(0) (determined by spending
decisions in aggregate), the path of tax obligations {τ(t)} for t ≥ 1 (determined by fiscal
policy), the path of borrowing limits {bj(t)} for t ≥ 0 (determined by credit policy), and
the endogenous paths of interest rates and prices; (ii) for each sector k, the quantity yk(t)
produced satisfies (1.14) in each period t ≥ 0; and (iii) total liquid asset holdings satisfy∑

j a
j(t) = a(t) in each period t ≥ 1, where {a(t)} is the path for the public debt determined

by fiscal policy.

1.4 Optimal policy if only aggregate shocks occur

Let us consider first the “normal case” in which ϕk(0) = 1 for all k, but different sequences
{ξt} for the aggregate disturbances may be revealed in period t = 0. Can the first-best
allocation of resources (characterized above) be supported as an equilibrium, using only
the policy instruments listed in the previous section? It is easily seen that this is possible,
regardless of the predetermined price level p̄ and the particular aggregate shock sequence
{ξt}.

It suffices to consider policy regimes of the following kind. First, the central bank sets
the interest rate in accordance with a Taylor rule of the form

log(1 + i(t)) = log(1 + r∗t ) + π∗(t+ 1) + ϕ · [log(P (t)/P (t− 1)) − π∗(t)], (1.16)

for each t ≥ 0, assuming that the right-hand side of the right-hand side of this formula is
non-negative, and sets i(t) = 0 otherwise.14 Here r∗t is the “natural rate of interest,”

1 + r∗t ≡ 1

β

u′(y∗t ; ξt)

u′(y∗t+1; ξt+1)
, (1.17)

a uniquely defined function of the exogenous disturbances; the price index P (t) is equal to
(1/N)

∑
k pk(t); and {π∗(t)} is a sequence of target inflation rates for t ≥ 0. Second, the fiscal

authority chooses period-zero transfers and a uniform tax obligation τ(t + 1) each period

13See Woodford (2003, chap. 2) for discussion of the conduct of monetary policy by setting the nominal
interest yield on an outside nominal asset of this kind.

14Here we assume that it is only feasible for the central bank to enforce a non-negative riskless nominal
interest rate, though we do not model the institutional reasons for this to be the case (e.g., the possibility of
storing non-interest-earning currency). But neither the assumption that the effective lower bound is exactly
zero, nor even the assumption that there is a lower bound, matters for any of our conclusions below.
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after that so as to make (1.15) consistent with a target path {a(t)} for the nominal public
debt, where a(t) > 0 each period, so that riskless debt exists in positive supply. Finally, there
is no credit policy: bj(t) = 0 each period for each sector j. A regime of this kind supports
the first-best optimal allocation as an equilibrium outcome under the following conditions.

Proposition 1. Suppose that ϕk(0) = 1 for all k, so that only aggregate disturbances exist.
And suppose (i) that interest-rate policy is determined by a Taylor rule (1.16), where the
target inflation rate π∗(0) is chosen to equal the predetermined inflation rate log(p̄/P (−1)),
and subsequent targets are chosen so that

log(1 + r∗t ) + π∗(t+ 1) ≥ 0 (1.18)

for all t ≥ 0; (ii) that there is no credit policy; (iii) that there are no taxes or transfers in
period zero (so that aj(0) = a(0)/N for each j); and (iv) that the target path {a(t)} for the
nominal public debt satisfies a(t) > 0 for all t ≥ 0, and

lim
t→∞

βtu′(y∗t ; ξt)
a(t)

P ∗(t)
= 0, (1.19)

where {P ∗(t)} is the path for the price level implied by the sequence of inflation targets (i.e.,
the requirement that log(P (t + 1)/P (t)) = π∗(t + 1) for all t ≥ 0) and the initial condition
P ∗(0) = p̄. Then there exists an equilibrium in which the price of all goods is the same each
period (pk(t) = P (t) for all k); the central bank’s inflation target is achieved each period
(P (t) = P ∗(t) for all t ≥ 0); and the equilibrium allocation of resources is the first-best
optimal allocation: yk(t) = y∗t , c

j
k(t) = αk−jy

∗
t , for all j, k in each period t ≥ 0.

Note that under this optimal policy regime, neither the borrowing limits {bj(t)}, nor
the initial sector-specific asset positions {aj(0)}, nor the subsequent target path {a(t + 1)}
for the public debt needs to respond to the particular sequence of aggregate disturbances
{ξt} that has been realized. Only the interest-rate reaction function (1.16) responds to the
disturbances, through their effect on the implied path of the natural rate of interest. Thus
all of the work of stabilization of the economy in response to exogenous disturbances is done
by interest-rate policy, while fiscal policy is purely “passive.”

Moreover, the model is one in which lump-sum transfers would not be useful for stabilization
purposes. The equilibrium paths of both prices and quantities in Proposition 1 are the same,
regardless of the exact path of the public debt {a(t)}. Thus making the path of lump-sum
transfers and taxes state-contingent would have no effect, as long as we continue to assume
that under any realization of the exogenous disturbances, (i) each sector j receives the same
transfers and is subject to the same tax liabilities, and (ii) the transversality condition (1.19)
is satisfied. (Sector-specific transfers that redistribute income between sectors would change
the equilibrium allocation of resources, but not in a way that increases the welfare objective
(1.7).)

Credit policy would similarly have no effect. We have written Proposition 1 to emphasize
that the first-best can be achieved without credit policy; but we would obtain the same result
in the case of any other paths {bj(t)} for the borrowing limits, as long as bj(t) ≤ 0 each
period, and the borrowing limits satisfy a transversality condition similar to (1.19), to exclude
the possibility of “Ponzi schemes.” The reason is that as long as there are only aggregate
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disturbances, we have an equilibrium each period in which pk(t) = P (t) for each k, cj(t)
is the same level of total spending for each sector, and each unit’s expenditure allocation
satisfies (1.3). It follows that each period we must have∑

k

pk(t)cjk(t) =
∑
k

pj(t)c
k
j (t) = pj(t)yj(t)

for each sector j, so that there is a balanced circular flow of payments (as in the examples
in Figure 1). This in turn implies that asset balances remain uniformly distributed across
sectors (given that we start from an initial uniform distribution), and that bj(t) = aj(t) =
a(t)/N > 0 each period. Hence the borrowing limit never binds for units in any sector, and
loosening the borrowing limits will not change any units’ desired behavior, assuming that
Ponzi schemes continue to be infeasible.

Thus in the case of only aggregate shocks (and fiscal policies that affect all sectors
uniformly), fiscal transfers and credit policy are irrelevant as tools of stabilization policy,
while monetary policy alone suffices to allow the first-best allocation of resources to be
supported as an equilibrium outcome. As we shall see, our conclusions about the relative
usefulness of these different types of policy are quite different in the case of a severely
asymmetric disturbance, such as a pandemic.

In the case that there are only aggregate shocks, there is also a direct relationship between
the degree to which output is above or below its efficient level and the degree to which
monetary policy sets the interest rate at a level that is too low or too high, given the nature
of the aggregate shock. This is illustrated by the following generalization of Proposition 1.

Proposition 2. Suppose that ϕk(0) = 1 for all k, so that only aggregate disturbances exist.
Suppose also that fiscal policy and credit policy are specified as in Proposition 1, and that
interest-rate policy is the same as is specified in Proposition 1 for all periods t ≥ 1, but that
i(0) need not satisfy (1.16). Then there is again an equilibrium in which pk(t) = P ∗(t) for all
k and all t, and in which the allocation of resources in each period t ≥ 1 is the one specified
in Proposition 1. In period t = 0, the allocation of resources continues to be rotationally
symmetric:

yk(0) = y(0), cjk(0) = αk−jy(0)

for all j, k. However, the common level of sectoral output y(0) will in general not equal y∗0
(the efficient level, given the disturbance ξ0). Instead, the equilibrium involves y(0) < y∗0 if
and only if i(0) is higher than the value specified by (1.16), while y(0) > y∗0 if i(0) is lower
than the right-hand side of (1.16).

This result implies that (under the conditions assumed in the proposition) an observation
that output is inefficiently low in period t = 0 (the period for which prices have been pre-
determined, before realization of the disturbance sequence ξ) implies that the interest rate
is too high in that period, relative to the disturbance sequence that has occurred (which
determines the value of r∗0). This conclusion is independent of the exact specification of fiscal
policy and credit policy, within a wide range of possible specifications of the latter policies.
It suggests that a measure of the aggregate “output gap” might be enough to indicate that
the central bank’s interest-rate target should be reduced in response to a particular type of
real disturbance, regardless of the nature of that disturbance. (The conclusion in Proposition
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2 holds whether ξ0 represents a shock to the degree of impatience to consume, a shock to
the disutility of working, or a shock to labor productivity, among other possibilities.) But
as we shall see, the same is not true in the case of an asymmetric disturbance.

2 Asymmetric Disturbances and Effective Demand Failure

In the case of an asymmetric disturbance, the policy specified in Proposition 1 no longer
suffices to ensure the existence of an equilibrium in which the allocation of resources is the
first-best optimal allocation characterized in Lemma 2. One might suppose that this is
because we have assumed that prices are fixed a period in advance, and the uniform prices
(pk(0) = p̄ for all k) that are chosen ex ante will in general imply the wrong relative prices
ex post, in the case of an asymmetric disturbance. This is indeed generally an obstacle to
attainment of the first-best allocation. But as shown below, there are cases in which the
first-best allocation can be achieved using only the policy instruments specified in section
1.3 above, despite the occurrence of an asymmetric disturbance. Yet in these cases, not only
is the optimal policy not the one specified in Proposition 1, it is not a policy under which
interest-rate policy alone responds to the disturbance. Moreover, it is not necessarily even
the case that a disturbance that results in an inefficiently low level of output implies that
matters would be improved by reducing the interest rate.

2.1 Equilibrium with an asymmetric disturbance

We begin by discussing how equilibrium is different in the case of a disturbance that causes
ϕk(0) to differ across sectors, such as a pandemic (modeled as an exogenous reduction of ϕk(0)
in some, but not all sectors, owing to health concerns that temporarily preclude consumption
of certain goods and services). Since aggregate disturbances create no problems that cannot
be dealt with using monetary policy alone, as shown in Proposition 1, from here on we
abstract from them: we assume that ξt = ξ̄ for all t ≥ 0, and let ȳ = y∗(1; ξ̄) be the natural
rate of output associated with these constant values for the disturbance parameters.15

Our primary interest is in the effects of alternative possible policy responses in period
t = 0 to asymmetric shock to the vector ϕ(0). Hence we shall simplify our discussion by
assuming that policy from period t = 1 onward is of a particular sort.

Assumption 1. In all periods t ≥ 1, monetary and fiscal policy are assumed to satisfy
conditions (i) and (iv) of Proposition 1 in all periods. The borrowing limits satisfy bj(t) ≤ 0
for all j and all t ≤ 1, together with the requirement that

lim
t→∞

βt bjt
P ∗(t)

= 0 (2.20)

for each sector j. In addition, let

ãj(1) ≡ (1 + i(0))
bj(0)

P ∗(1)
(2.21)

15It would be straightforward to generalize our results below to the case on non-zero aggregate shocks, at
the cost of more complex formulas, but without changing our conclusions about the effects of shocks to ϕ(0).
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denote the real pre-tax wealth carried into period 1 by each of the units in sector j, if the
period-1 inflation rate conforms to the central bank’s target. Then the paths {a(t), bj(t)}
satisfy

(1/N)a(t) − bj(t)

P ∗(t)
≥ β

[
(1/N)

N∑
ℓ=1

ãℓ(1) − ãj(1)

]
(2.22)

for each j and all t ≥ 1.

Condition (2.20) implies that even if credit policy relaxes borrowing constraints for some
or all sectors, the level of allowable borrowing does not grow so fast as to make a Ponzi scheme
feasible: debt must eventually be repaid. On the other hand, condition (2.22) implies that
borrowing limits will also not be contracted too quickly. While the condition is stated in
Assumption 1 purely as a constraint on variables in periods t ≥ 1, a sufficient condition for
(2.22) to hold is that[

(1/N)a(t) − bj(t)

P ∗(t)

]
≥ β(1 + i(0))

P ∗(0)

P ∗(1)

[
(1/N)a(0) − bj(0)

P ∗(0)

]
for all t ≥ 1. That is, the condition holds if we assume that in the case of any increase of
aggregate liquidity a(0) through fiscal transfers, or relaxation of the borrowing limit bj(0) of
any sector in period 0 will be permanent (in real terms). This implies that the government
does not create liquidity difficulties for any sector in periods t ≥ 1 by insisting that either
public or private borrowing must be rapidly repaid.

Because we assume that economic fundamentals are the same in all periods t ≥ 1, despite
the occurrence of an asymmetric disturbance in period zero, it is natural to expect a perfect
foresight equilibrium in which quantities and relative prices are constant for all t ≥ 1. And
because the equilibrium in periods t ≥ 1 must be the same as if all goods prices were
fully flexible, the resource allocation and relative prices in each of the periods t ≥ 1 should
correspond to those of a static (one-period) competitive equilibrium. Let f be a vector of
net transfers to the units in the different sectors (where the element f j is the net transfer
to sector j), measured in units of a composite good consisting of one unit of each of the
N goods, and such that

∑
j f

j = 0. For any such vector, consider a one-period competitive

equilibrium model in which units in each sector j choose quantities {cjk} and yj to maximize
(1.2), subject to the budget constraint∑

h∈H

qj+hc
j
j+h = qjyj + f j, (2.23)

where qk ≡ pk/P is the relative price of good k. Competitive equilibrium requires that the
relative prices be such that markets clear, i.e., such that (1.14) holds for each k.

Standard methods16 allow one to show that the collection of endowment vectors f and
corresponding equilibrium relative prices q form a smooth manifold of dimension N − 1.
Because of the rotational symmetry of the static model, one point on this manifold must
be (0, q̄), where q̄k = 1/N for all k, the equilibrium in which cjk = αk−j ȳ, yk = ȳ for all

16See, for example, Balasko (2009).
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j, k.17 It follows that for some neighborhood U of the vector 0, we can define a continuously
differentiable function q∗(f) such that q∗(0) = q̄, and such that for any f ∈ U, the
pair (f , q∗(f)) also belongs to the equilibrium manifold — that is, such that q∗(f) is an
equilibrium vector of relative prices in the case of an endowment vector f . In this way, for
any endowment vector close enough to 0, we select a competitive equilibrium price vector
that is correspondingly close to the uniform vector of relative prices q̄. Corresponding to
any such equilibrium price vector there is also a uniquely defined competitive equilibrium
allocation, given by the solution to the problem of maximizing (1.2) subject to the static
budget constraint (2.23), for each sector j.

We can then use this solution for competitive equilibrium in the static model to define a
perfect foresight equilibrium for periods t ≥ 1, as a function of the net asset position of units
in each of the sectors at the beginning of period t = 1. Let ã(1) be the vector specifying the
net asset position of each of the sectors at the beginning of period 1. Then as long as the
vector ã(1) indicates a wealth distribution at the beginning of period t = 1 that is not too
non-uniform, we can compute a perfect foresight equilibrium for periods t ≥ 1 that depends
only on the vector ã(1).

Lemma 3. Let pre-tax net asset positions at the beginning of period t = 1 be specified by a
vector ã(1), and suppose that the implied vector of sectoral net incomes

f j = (1 − β)[ãj(1) − (1/N)
N∑
ℓ=1

ãℓ(1)] (2.24)

satisfies f ∈ U, where U is the neighborhood on which the static equilibrium selection is
defined. Suppose furthermore that policy satisfies Assumption 1 in all periods t ≥ 1.

Then there exists a flexible-price perfect-foresight equilibrium for periods t ≥ 1, consistent
with the assumed pre-tax net asset positions, of the following kind. Relative prices each period
are given by q∗(f), and the allocation of resources each period is the stationary allocation
that, for each sector j, solves the problem of maximizing (1.2) subject to the constraint (2.23),
given these relative prices and the transfer f j specified in (2.24). The price index each period
is given by the central bank’s inflation target, P (t) = P ∗(t), and the real interest rate each
period is given by

(1 + i(t))
P (t)

P (t+ 1)
= 1 + r∗ =

1

β
> 1. (2.25)

In this equilibrium, the borrowing constraint (1.12) never binds for units in any sector, in
any period t ≥ 1.

Finally, we can use this solution for the perfect foresight equilibrium for all periods t ≥ 1,
conditional on the assets carried into period 1, to characterize equilibrium behavior in period
t = 0 as well, as a function of the asymmetric disturbance. Suppose that the real pre-tax
assets carried into period 1 by units in general are described by a vector ã(1), but that an
individual unit in sector j contemplates carrying some other level of real pre-tax assets ã into
period 1. We can define the optimization plan for this individual unit from t = 1 onward, if

17Note that this point corresponds to the stationary equilibrium in each period t ≥ 1 in the intertemporal
equilibria characterized in Propositions 1 and 2.
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its initial assets are ã and it faces the relative prices and real interest rates implied by the
aggregate decisions ã(1) (as characterized in Lemma 3).

Let V j(ã; ã(1)) be the discounted utility flow for this individual unit in periods t ≥ 1
(discounted back to period 1). The unit’s optimization problem in period zero (after the
realization of the disturbances and any policy response) can then be written as a choice of an
expenditure plan {cjk(0)} for all k ∈ Kj(0) and end-of-period asset balance bj(0) consistent
with (1.11)–(1.12), so as to maximize the objective

U j(0) + βV j(ã; ã(1)), (2.26)

where U j(0) is given by (1.2) and ã = (1 + i(0))bj(0)/P ∗(1). This defines an optimization
problem for units in any sector j that depends on the period-zero policy variables aj(0)
(reflecting possible transfers in response to the disturbance), bj(0), and i(0).

Given policy choices {aj(0), bj(0), i(0)}, an equilibrium is then a plan {cjk(0), bj(0)} for
units in each sector j, and a vector ã(1), such that (i) for each j, the plan {cjk(0), bj(0)}
solves the optimization problem for an individual unit (just stated), given the policy variables
and the vector ã(1) of aggregate decisions; and (ii) ã(1) is the vector of sectoral net asset
positions at the beginning of period 1 implied by these plans, using (2.21).

Moreover, the optimal plan for each sector j is easily characterized. Since pk(0) = p̄ for
each of the goods with ϕk(0) > 0, an optimal consumption plan must be of the form (1.4),
for some level of total expenditure cj(0). The optimal level of total expenditure must satisfy
the Euler condition

u′
(

cj(0)

ωj(ϕ(0))

)
≥ β(1 + i(0))

p̄

P ∗(1)
Λj(ãj(1); ã(1)), (2.27)

where

Λj(ã; ã(1)) ≡ ∂V j(ã; ã(1))

∂ã
measures the marginal utility of additional real wealth at the beginning of period 1, for units
in sector j. An optimal plan must satisfy both inequalities (1.12) and (2.27), and at least
one of these must hold with equality for each sector j.

The following characterization of the function Λj(ãj(1); ã(1)) is useful for constructing
examples of possible equilibria.

Lemma 4. Let the utility functions u(c; ξ̄), v(y; ξ̄) be given, as well as the coefficients {αk−j}.
Then we can define a vector function Λ∗(f) for all f ∈ U, such that for each sector j, and
any vector ã(1) consistent with the hypothesis of Lemma 3,

Λj(ãj(1); ã(1)) = Λ∗j(f),

where f is the vector of transfers defined by (2.24). The function Λ∗(f) is independent of
the value of β, which matters only through the way in which it enters (2.24). Furthermore,

lim
f→0

Λ∗(f) = Λ∗(0) = u′(ȳ; ξ̄) · e,

where e is a vector of ones.

This means that the Euler condition (2.27) takes an especially simple form when the vector
f defined by (2.24) is small in all of its elements. The next two sections discuss two special
cases in which this approximation can be used.
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2.2 Effective demand failure when liquidity is scarce

We now consider the equilibrium allocation of resources in the case of an asymmetric
disturbance such as a pandemic, under the assumption that policy continues to be of the
kind assumed in Proposition 1. While monetary policy responds to shocks under such a
regime, it is assumed to respond only to aggregate shocks (determinants of the “natural rate
of output” y∗t ). Thus (for now) we assume that there is no response of macroeconomic policy
to the asymmetric disturbance.

The resulting impairment of effective demand is most dramatic when liquid asset balances
are low. In this section, we simplify the analysis by considering the limiting case in which
a(0) → 0. We also continue to assume that bj(0) = 0 for all sectors: there is no credit policy.
Note that even in this limiting case, no inefficiency would result as long as only aggregate
shocks occur (Proposition 1); thus we can imagine an economy choosing to operate with
a very low level of liquid assets, if the ex-ante probability assigned to the occurrence of a
pandemic shock has been quite small.

As explained in section 1.1, the fact that pk(0) = p̄ for all sectors implies that each
sector’s spending will be allocated in accordance with (1.4), where however the factors {ωj}
will differ from 1 in the case of an asymmetric disturbance.18 It follows that the total demand
for the product of any sector k will be given by

yk(0) =
N∑
j=1

cjk(0) =
N∑
j=1

Akj · cj(0).

In vector notation, we can write
y(0) = Ac(0), (2.28)

where y(0) is the N -vector indicating the output of each of the N sectors, c(0) is the N -
vector indicating the total real spending of each of the sectors, and A is the N ×N matrix
with element Akj in row k and column j.

Clearing of the asset market in period zero requires that in equilibrium,
∑N

j=1 bj(0) =
a(0). It follows that if a(0) → 0, the only way in which constraint (1.12) can be satisfied for
all j, with bj(0) = 0 for all sectors, is if bj(0) → 0 for each sector. Thus in equilibrium, each
sector must spend exactly its income, so that cj(0) = yj(0) for each j. It then follows from
(2.28) that c(0) = Ac(0). Thus c(0) must be a right eigenvector of A, with an associated
eigenvalue of 1.

Such an eigenvector must exist. Using the properties of stochastic matrices discussed in
Gantmacher (1959, sec. XIII.6),19 we can further establish that 1 is the maximal eigenvalue of
A (all of its N−1 other eigenvalues have modulus less than 1), and that the right eigenvector
π associated with this maximal eigenvalue is non-negative in all elements.20 If we normalize
the eigenvector so that e′π = 1, then π corresponds to the stationary probability distribution
of an N -state Markov chain for which A defines the transition probabilities.

18From here onward, we simply write ωj and Akj for the coefficients defined in (1.5). We omit the argument
ϕ(0), since we only consider the alternative possible equilibria associated with different policies in the case
of a particular asymmetric disturbance ϕ(0).

19See the proof of Proposition 3 in the appendix.
20Of course, the left eigenvector associated with the maximal eigenvalue is e′, the vector of 1s.
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Since this is the unique right eigenvector with an associated eigenvalue of 1, equilibrium
requires that c(0) = Ωπ for some scalar coefficient Ω ≥ 0. In order to determine the value
of Ω, we recall that intertemporal optimization requires that the Euler condition (2.27) must
hold for each sector j, and must hold with equality for any sector with bj(0) > 0. In the
limiting case considered in this section, f → 0, so that Lemma 3 implies that the Euler
condition reduces to

u′(cj(0)/ωj; ξ̄) ≥ u′(ȳ; ξ̄). (2.29)

Because of the strict concavity of u(c), condition (2.29) can equivalently be written as

cj(0) ≤ c∗j ≡ ωj ȳ. (2.30)

The value of Ω must be small enough for each element of c(0) to be consistent with this
upper bound; but at the same time it must be large enough for the inequality to hold with
equality for at least one sector. Thus we must have

1

Ω
= max

j

πj
ωj

· 1

ȳ
> 0. (2.31)

Note that here the quantities {πj, ωj} depend on the disturbance vector ϕ(0); thus we obtain
a solution Ω = Ω(ϕ(0)). We can summarize our results as follows.

Proposition 3. Suppose that, despite the occurrence of an asymmetric disturbance ϕ(0) in
period t = 0, all policies remain as specified in Proposition 1. And suppose further that,
for a given specification of the disturbance vector, we let a(0) → 0. Then in this limit, the
equilibrium level of spending in each sector in period t = 0 is given by c(0) = Ωπ, where π
is the maximal right eigenvector of the matrix A and Ω is given by (2.31). The equilibrium
level of production by each sector is given by y(0) = c(0), and the allocation of each sector’s
spending across the different goods is given by (1.4).

In all periods t ≥ 1, the equilibrium allocation of resources continues to be the one specified
in Proposition 1. And all equilibrium prices (including the interest rate i(0)) remain those
specified in Proposition 1.

In this solution, there will necessarily be at least one sector (the sector or sectors j for
which the maximum value is achieved in the problem on the right-hand side of (2.31)) for
which the borrowing constraint does not bind, and as a consequence period zero expenditure
cj(0) is at the level c∗j. But at the same time, in the case of an asymmetric disturbance,
there will generally be some sectors that are borrowing-constrained, and hence consume less
than this amount. This provides a further reason for the consumption and production of
some goods to be inefficiently low — not just lower than in the “normal case”, but lower than
would be the case in the first-best optimal allocation, taking into account the disturbance
— if the shock reduces ϕk(0) in some sectors.

Corollary 1. Suppose that 0 ≤ ϕk(0) ≤ 1 for all sectors, and that policy (and the initial level
of liquid assets) are as assumed in Proposition 3. Then the quantity cjk(0) of goods of type k
consumed in sector j is necessarily no greater than the quantity associated with the first-best
optimal resource allocation given the disturbance (characterized in Lemma 2). Furthermore,
it will be strictly less than the first-best level (meaning also that the production yk(0) of good
k will be inefficiently low), if either (i) sector j is borrowing-constrained, and αk−j > 0, or
(ii) 0 < ϕk(0) < 1, and the function v(y; ξ̄) is strictly convex.
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The corollary follows directly from (2.30), which together with (1.4) implies that in the
absence of a binding borrowing constraint for sector j,

cjk(0) = αk−jϕk(0)ȳ. (2.32)

In the case that v(y; ξ̄) is strictly convex, (1.8) implies that ϕȳ < y∗(ϕ) for all 0 < ϕ < 1,
so that this will be an inefficiently low level of consumption of good k, if k is a good for
which 0 < ϕk(0) < 1. (Non-borrowing-constrained consumers fail to take into account that
the social cost of consuming more of good k is proportional to v′(yk(0); ξ̄), which is lower
than the value v′(ȳ; ξ̄) in the “normal case” if v is strictly convex.) Moreover, even if v is
linear in y (or ϕ is exactly 0 or 1), ϕȳ is never larger than y∗(ϕ). Hence the non-borrowing-
constrained level of consumption is less than or equal to the first-best level for each good k.
At the same time, (2.30) implies that a borrowing constraint can only lower spending relative
to the non-borrowing-constrained level. Hence there can be no good for which consumption
is too high, under the assumptions of the corollary, and it will be inefficiently low if either
the borrowing constraint binds for sector j or ϕk(0)ȳ < y∗(ϕk(0)) for sector k.

One source of inefficiency in the general case is the fact that prices in period zero are
pre-determined at a level that was expected to clear markets in the “normal case,” but that
no longer correctly reflect supply costs given the disturbance. This is not, however, the only
reason why equilibrium is generally inefficient in the case of an asymmetric disturbance. We
can set aside the issue of distortions owing to the fact that prices are pre-determined by
considering the case of a pandemic shock in which it becomes impossible to safely consume
the product of one sector, while the value of consuming other goods is unchanged. We shall
(without loss of generality) suppose that sector 1 is the one impacted by the pandemic, and
consider a disturbance in which ϕ1(0) = 0, while ϕk(0) = 1 for all k ̸= 1. In this special case,
the first-best level of production continues to be ȳ in all sectors k ̸= 1, while it falls to zero
in sector 1; thus (2.32) coincides with the first-best level of consumption of each good.

Nonetheless, consumption will be inefficiently low in the case of any sector j for which
the borrowing constraint binds; and there will necessarily be at least one such sector (sector
1, which necessarily has no income). And in this case the inefficiency cannot be attributed
to the fact that prices are not flexible. The pre-determined prices still imply relative prices
for all of the goods that anyone purchases (goods k ̸= 1) that correspond to the marginal
rates of substitution in the first-best allocation (and as discussed below, it is possible in
this case to achieve the first-best outcome despite the fact that prices are pre-determined,
without having to use taxes or subsidies that can effectively change the prices of goods).
Nonetheless, equilibrium will be inefficient, under the policies assumed in Proposition 3.

The severity of the inefficiency depends not only on the the disturbance vector ϕ(0), but
also (crucially) on the network structure of payments. The two cases shown in Figure 1
provide contrasting examples. Figure 2 shows the equilibrium consumption vector c(0) for
each of these numerical examples, in the case of the pandemic shock just discussed. In each
panel of the figure, the five columns represent total expenditure by units in each of the five
sectors. The height of the dashed black border indicates the “normal” level of expenditure
(equal to ȳ for each sector) — the equilibrium level of expenditure if no pandemic shock
occurs, which is also the optimal allocation in that case. The height of the solid red outline
for each sector indicates the level c∗j that would be optimal given the occurrence of the
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Figure 2: Equilibrium and first-best optimal sectoral expenditure levels in the case of a
pandemic shock that requires sector 1 to be shut down, in the case of the two network
structures shown in Figure 1.

pandemic shock. (This is necessarily no higher than the normal level and smaller for at least
some sectors; thus it is optimal for expenditure and production to decline if a pandemic
shock occurs.) The height of the filled blue bar instead indicates the equilibrium level of
expenditure cj(0). This is necessarily no higher than the optimal level for any sector, in
accordance with Corollary 1.21

In the case of a uniform network structure, expenditure collapses completely in sector 1
(which no longer receives any income), but it is reduced in sectors j ̸= 1 only to the extent
that it is efficient for these sectors to reduce their spending (given that they no longer can
or should buy sector-1 goods). The collapse of effective demand is much more severe (and
the inefficiency much greater) in the case of a “chain” network. Once again, sector 1 cannot
spend at all, because it receives no income. But in the case of the “chain” network, this
means that sector 2 receives no income other than its own within-sector spending, and the
only consistent result is one with zero spending by sector 2 as well. Continuing iteratively
in this way, one can show that every sector but sector N must have zero expenditure.

These two cases illustrate two extremes with regard to the degree of collapse of aggregate
expenditure and output in the limiting case in which a(0) → 0. Clearly the network structure
makes an important difference. But even in the most benign case (the uniform network of
payments), aggregate spending and output are inefficiently low, because spending by sector
1 is inefficiently low.22

21See the appendix, section B.5, for the algebraic calculations used in the figure.
22It is also clear that the empirically relevant network structure is not completely uniform, so that sector 1

will almost certainly not be the only borrowing-constrained sector in the limits as a(0) → 0. See, for example,
Danieli and Olmstead-Rumsey (2020), who document for the US economy that the sectoral composition of
the reduction of demand in the COVID-19 crisis was non-uniform in ways that go beyond the simple fact
that people in contact-intensive occupations were no longer able to work.
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2.3 Effective demand failure when discounting is minimal

Another case in which we can use Lemma 4 to simplify the form of the Euler condition,
even when there is a severely asymmetric disturbance in period t = 0, is when β is very
close to 1. This might be understood to represent a case in which our discrete “periods”
are short in terms of calendar time, so that the asymmetric disturbance with which we are
concerned is quite transitory in its effects (though possibly severe while it lasts, as in the
case of the disruption of normal patterns of economic activity by COVID-19). Here we fix
the single-period utility functions u and v, the coefficients {αh} describing the within-period
network structure, and the vector ϕ(0) specifying the nature of the asymmetric disturbance,
but consider the limiting equilibrium as β → 1.23

Regardless of the values {bj(0)} chosen by units in the various sectors, in the limit as
β → 1 we must have f → 0. Hence by Lemma 4, the equilibrium allocation and relative
prices in periods t ≥ 1 will involve yj = ȳ, q∗j = 1 for all sectors, and the Euler condition
will again reduce to the simpler form (2.29). Because in this case we need not have bj(0)
near zero for all sectors in order for this simplification to be possible, we can now consider
equilibria in which the quantity of liquid assets in period zero need not be negligible, and in
which borrowing may be possible as well. This allows us to consider the effects of policies
that include transfers in period zero in response to the asymmetric disturbance, or credit
policy that relaxes borrowing limits.

Let units in each sector j have initial liquid assets aj(0) ≥ 0 in period zero (including
any fiscal transfers, which may make the asset balances of different sectors unequal), and a
borrowing limit bj(0) ≤ 0 (possibly modified by credit policy). In this case, the allocation
of each unit’s spending across different goods continues to be given by (1.4), so that (2.28)
still holds. Because the Euler condition again reduces to (2.29), the upper bound on sectoral
expenditure for each sector (i.e., the level of spending if the borrowing limit does not bind)
continues to be given by (2.30). However, the level of total spending by any sector j allowed
by its borrowing limit is now given by

cj(0) ≤ yj(0) +
aj(0) − bj(0)

p̄
=
∑
k

Ajkc
k(0) +

aj(0) − bj(0)

p̄
. (2.33)

where the second term in each of these expressions can now differ from zero, either because
aj(0) is a non-negligible amount or because borrowing is possible.

At least one of the inequalities (2.30) and (2.33) must hold with equality for each sector;
this implies a consumption function

cj(0) = min

{
aj(0) − bj(0)

p̄
+
∑
k

Ajkc
k(0), c∗j

}
(2.34)

for each sector j. The collection of these conditions, one for each j, can be written in vector

23It doesn’t matter whether we assume that the numerical value of the inflation target changes as “periods
are made shorter.” The numerical path of {π∗(t)} has no consequences for the equilibrium allocation of
resources, as long as we continue to assume that i(0) is determined by a policy rule (1.16) that involves that
involves the value of P ∗(1) implied by the target.
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form as

c(0) = min

{
1

p̄
δ + Ac(0), c∗

}
, (2.35)

where min is the operator that maps two N -vectors to an N -vector, each element of which
is the minimum of the corresponding elements of its arguments,24 δ is the N -vector with
elements δj ≡ aj(0)− bj(0), and c∗ is the vector of optimal expenditure levels {c∗j}. For any
vector δ measuring the tightness of liquidity constraints, equilibrium requires that c(0) be
a fixed point of (2.35). This is a multidimensional generalization of the “Keynesian cross”
diagram commonly used to explain the derivation of the fiscal multipliers in Keynes (1936,
chap. 3).25

For any vector δ >> 0, the right-hand side of (2.35) defines a positive concave mapping of
the kind for which the results summarized in Cavalcante et al. (2016) allow one to establish
that there is a unique fixed point.26 Thus equation (2.35) has a unique solution c(0) = c̄(δ).
In fact, the piecewise linearity of the mapping allows us to give a closed-form solution to the
fixed-point problem, which can also be extended to all vectors δ ≥ 0.

Let C be any conjecture about the subset of sectors that are borrowing-constrained (in
the sense that cj(0) < c∗j) in the solution to (2.35); this includes the possibility that no
sectors are borrowing-constrained (C = ∅). We can restrict the set of conjectures that we
need to consider by observing that for vectors δ near enough to 0, the set of unconstrained
sectors U0 is the set of j for which the maximum value is achieved in the problem on the
right-hand side of (2.31). Hence at such points the set of constrained sectors will be C0, the
complement of U0. We can further show that increasing any element of δ can only reduce the
set of sectors that are borrowing-constrained; hence for any a(0) ≥ 0, the set of constrained
sectors C is necessarily an element of C, the set of all subsets of C0 (including the empty
set).

Now for any conjecture about the subset C, we can replace each of the equations in (2.35)
by either an equation that states that (2.33) holds with equality (if j ∈ C), or an equation
that states that (2.30) holds with equality (if j ̸= C). We then obtain a system of linear
equations to solve for c(0), that can be written in the form

Φc(0) = Ψ1δ + Ψ2c
∗, (2.36)

where the coefficients of the matrices depend on the choice of C. We can further show the
following.

Proposition 4. For any C ∈ C, the matrix Φ is invertible, so that the system of equations
(2.36) has a unique linear solution,

cloc(δ; C) = Mδ + Nc∗, (2.37)

where all elements of the matrices M and N are non-negative. Moreover, the fixed-point
problem (2.35) has a unique solution, which is just the lower envelope of the finite collection

24That is, it is the meet of the two vectors, if Rn is treated as a lattice with the partial order ≤.
25Auclert et al. (2018) similarly propose a multidimensional generalization of the Keynesian cross, but for

the allocation of spending across time, rather than across sectors at a given point in time.
26See the proof of Proposition 4 in the appendix for details.
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of these candidate local solutions:

c̄(δ) = minC∈Cc
loc(δ;C). (2.38)

And associated with this unique solution for c(0) is a unique solution for the vector of sectoral
output levels y(0), given by (2.28).

We can now consider again the consequences of an asymmetric disturbance in period zero,
under the assumption that policy remains as specified in Proposition 1, but now allowing
for a non-trivial initial level of liquid assets a(0) > 0, again divided equally across the N
sectors. One conclusion from the previous section that remains unchanged is Corollary 1.

Corollary 2. Suppose again that 0 ≤ ϕk(0) ≤ 1 for all sectors, and that all policies remain
as specified in Proposition 1, though the initial asset holdings {aj(0)} need not be negligible
in size. And for a fixed specification of the intra-period utility functions, the aggregate
disturbance vector ξ̄, and the asymmetric disturbance vector ϕ(0), consider equilibrium in
the limit as β → 1. In this limit, the quantity cjk(0) of goods of type k consumed in sector
j is necessarily no greater than the quantity associated with the first-best optimal resource
allocation given the disturbance (characterized in Lemma 2). Furthermore, it will be strictly
less than the first-best level (meaning also that the production yk(0) of good k will be inefficiently
low), if either (i) sector j is borrowing-constrained, and αk−j > 0, or (ii) 0 < ϕk(0) < 1, and
the function v(y; ξ̄) is strictly convex.

Thus we conclude again that an asymmetric disturbance will generally result in inefficiently
low production and consumption of at least some goods, and once again the inefficiency will
be greater, the larger the number of sectors that are borrowing-constrained. The existence
of a higher level of initial assets a(0) makes no difference (in the β → 1 limit) to the
consumption of sectors that are not borrowing-constrained; the only difference is that,
for given borrowing limits, a higher level of initial assets makes it less likely that sectors
are borrowing-constrained. If the level of initial assets is high enough, no sector will be
borrowing-constrained, and in this case, the equilibrium allocation of resources will be the
first-best optimal one. How large the required level of initial assets is depends on the degree
to which ϕk(0) is reduced in the impacted sectors. (We have shown in Proposition 1 that
negligible liquid assets suffice in the case that ϕk(0) = 1 for all sectors.)

But when a(0) is positive but not extremely large, there can still be inefficiently low
production and consumption in period zero in the event of a sufficiently severe asymmetric
disturbance. Here we consider again the example of a pandemic shock that requires suspension
of all consumption of the product of sector 1, in the case of the two network structures
illustrated in Figures 1 and 2. Figure 3 shows how the equilibrium solution for total
expenditure cj(0) for each of the sectors varies with the level of total initial liquid assets
a(0), under the assumption that initial liquid assets are equally distributed across sectors
(aj(0) = a(0)/N for each j). The two panels present the results for the two different network
structures in shown in the corresponding panels of Figure 1. In each panel, the upper
envelope plots cagg(0) ≡

∑
j c

j(0) as a function of a(0), and the differently shaded regions
decompose aggregate expenditure into the contributions from expenditure by each of the
sectors.
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Figure 3: Equilibrium expenditure as a function of total liquid assets a(0) after any transfers
in response to the shock, in the case of the two network structures shown in Figure 1. Here
liquid assets are assumed to be equally divided among the 5 sectors.

We observe that there is a finite level of initial liquid assets (the level denoted â4 in
both panels), such that a(0) ≥ â4 is a sufficient condition for no sector to be borrowing-
constrained. In the case of the kind of asymmetric disturbance considered here, this in turn
implies that the equilibrium allocation of resources will coincide with the first-best optimal
allocation.27 This critical level of initial assets is characterized in the following result.

Corollary 3. Under the assumptions of Corollary 2, the unique equilibrium discussed in
Proposition 4 involves no binding borrowing constraint in any sector if and only if

δj ≥ [
∑
k

αk−jϕk(0) − ϕj(0)] · p̄ȳ (2.39)

for every sector j. In this case, the equilibrium allocation of resources in period t = 0 is
given by

cjk(0) = αk−jϕk(0)ȳ, yk(0) = ϕk(0)ȳ (2.40)

for all j, k. In the special case that bj(0) = 0 for all j (no credit policy) and aj(0) = a(0)/N
for all j (no sectorally-targeted transfers), condition (2.39) holds if and only if the level of
initial liquid assets satisfies

a(0) ≥ Np̄ȳ · max
j

{
∑
k

αk−jϕk(0) − ϕj(0)}. (2.41)

27It is actually not exactly exactly equal to the first-best allocation, but approaches the first-best allocation
in the limit as β → 1. Fully achieving the first-best allocation when β < 1 would require fiscal transfers that
redistribute income between the sectors; see Proposition 5. But when β → 1, the effect of this redistribution
on spending in any individual period becomes negligible.
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Corollary 3 shows that the degree of asymmetry of the disturbance in period zero is critical
for generating an effective demand failure — that is, a situation in which the inefficiency of
the allocation of resources is increased by the consequences of binding borrowing constraints,
which reduce the spending both of the constrained sectors themselves and and also of any
borrowing-constrained sectors that would otherwise sell more to those sectors. Proposition
1 had already indicated that this is not a problem in the case of disturbances that affect all
sectors identically. But we now see that borrowing constraints will also not bind in the case
of a sufficiently mild asymmetry in the effects of the disturbance (assuming a non-negligible
value for a(0), or at least some possibility of borrowing), since the bounds in (2.39) and
(2.41) difference between the value of ϕj(0) for an individual sector and the average value of
ϕk(0) for the sectors from which it purchases (weighted by their importance as suppliers for
sector j); this required level of liquidity becomes larger the greater the degree of asymmetry
in the elements of the vector ϕ(0).

Figure 3 illustrates how the level of initial liquid assets determines which sectors are
borrowing-constrained in the event of a pandemic shock. For values of a(0) near zero, the
pattern is the one already illustrated in Figure 2, determined by the maximal eigenvector
of the matrix A. Since a larger quantity of initial liquid assets can only result in fewer
borrowing constraints binding, in the case of the uniform network structure (where we have
already seen that only sector 1 is constrained, even when a(0) → 0), only sector 1 has a
binding borrowing constraint for any 0 < a(0) < â4, as shown in the left panel of the figure.
In the case of the chain network, instead, for any 0 < a(0) < â1, every sector but sector
5 is borrowing-constrained; for any a1 ≤ a(0) < â2, all sectors but 4 and 5 are borrowing-
constrained; and so on, with progressively more sectors ceasing to be borrowing-constrained
as the initial level of liquid assets is increased.

While the inefficiency of the allocation of resources is not as severe as those shown in
Figure 2 except in the limiting case of liquid assets near zero, we see that even when liquid
assets exist, effective demand failure can result in significant distortions in the event of a
sufficiently severe asymmetric disturbance, as in the case of a pandemic. The outcomes
shown in Figure 3, however, are still for the case of no policy response to the disturbance.
We turn now to the question of how stabilization policies can mitigate the effects of such a
shock.

3 Fiscal Transfers and Effective Demand

We first consider what can be achieved using lump-sum taxes and transfers that are adjusted
in response to the occurrence of an asymmetric disturbance. In the case that there are only
aggregate disturbances, we have seen (Proposition 1) not only that an optimal allocation
of resources can be achieved without any adjustment of fiscal policy in response to shocks,
but that (assuming that certain bounds on the path of the public debt are respected) fiscal
transfers have no effect on equilibrium prices or quantities. But neither result continues to
be true in the case of an asymmetric disturbance that disrupts the circular flow of payments,
to a sufficient extent to cause borrowing constraints to bind for some sectors. We now
reconsider the role of fiscal transfers as a tool of stabilization policy in this context.

We begin by assuming, as in Proposition 4, that there is no monetary policy response
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to the asymmetric disturbance, meaning that i(0) = ı̄, and that the central-bank reaction
function (1.16) for periods t ≥ 1 continues to be the one appropriate to an environment in
which no such shocks occur. The possible role of interest-rate policy (with or without fiscal
transfers or credit policy as well) is deferred until the following section.

3.1 Fiscal policy as “retrospective insurance”

We first consider whether it is possible to achieve the first-best optimal allocation resources,
even in the case of an asymmetric disturbance, through an appropriate policy response. In
general, this is not possible, if the instruments of policy are restricted to the ones specified
in section 1.3.

Lemma 5. Suppose that v(y; ξ) is a strictly convex function of y. Then the first-best
optimal allocation of resources (characterized in Lemma 2) is not achievable as an equilibrium
outcome, under any specification of interest-rate policy, credit policy, or fiscal transfers,
except if there is a quantity ϕ̄ > 0 such that for every sector k, either ϕk(0) = 0 or
ϕk(0) = ϕ̄.28

The reason is that prices are pre-determined at the values pk(0) = p̄. This requires a
consumption allocation in period zero consistent with (1.4), regardless of the specification
of policy; but this is inconsistent with the first-best allocation in Lemma 2, except in two
special cases: either v′′ = 0 over the range of values of y in which the sectoral output levels
{yk(0)} all fall (so that Lemma 5 does not apply), or there is only one value of ϕk(0) for all
of the sectors with ϕk(0) > 0.

We can however achieve a first-best outcome in either of these special cases listed in the
lemma. In the case that v(y; ξ0) is strictly convex, so that Lemma 5 applies, we shall treat
the disturbance as a composition of two types of disturbance: an aggregate disturbance that
determines a common value of ϕ̄ for all sectors, and an asymmetric disturbance (a “pandemic
shock”) that sets ϕk(0) equal to zero (rather than the common level ϕ̄) for one or more sectors
k (but not for all of them). When we assume that interest-rate policy in period zero is the one
that would be optimal in the absence of an asymmetric disturbance, we allow it to respond
to any change that may have occurred in the value of ϕ̄. The effects of a change in ϕ̄ for
all sectors can furthermore be incorporated into the effects of the aggregate state vector ξ0.
Thus in treating optimal policy for this case, we can without loss of generality assume (as
we have above) that in the case of a pandemic shock, the “normal” value ϕk(0) = 1 prevails
in all sectors except the sector or sectors that are shut down during the pandemic.

Here we also continue, for simplicity, to write our results only for the case in which there
are no aggregate disturbances (ξt = ξ̄ for all t ≥ 0).29 Optimal policy in the case of an
asymmetric disturbance can then be characterized fairly simply.

28We may allow cases in which ϕk(0) = 0 for more than one sector, if we assume weights {αh} such that
ωj > 0 for every sector j despite this. In this paper, we ensure that ωj > 0 by assuming that ϕk(0) can be
zero in at most one sector.

29Allowing for an aggregate disturbance in period zero, such as a change in the level of ϕ̄, would require a
change in the specification of optimal monetary policy in period zero, of the kind described in Proposition
1, but would not change the optimal response to an asymmetric disturbance.
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Proposition 5. Suppose that there are no aggregate disturbances (ξt = ξ̄ for all t ≥ 0),
but that there is an asymmetric disturbance ϕ(0) in period zero. Suppose also that either (i)
v(y; ξ0) is a linear function of y, v = ν(ξ0) · y; or (ii) for every sector k, either ϕk(0) = 0
or ϕk(0) = 1. Finally, suppose that policy in periods t ≥ 1 is consistent with Assumption 1.
Then there exists an equilibrium in which the allocation of resources is the first-best optimal
allocation defined in Lemma 2, if and only if policy in period t = 0 is of the following kind:
(a) i(0) is determined in the way specified in Proposition 1); and (b) sector-specific lump-sum
transfers and taxes are used to ensure that the initial (post-transfer) assets of each sector j
are equal to

aj(0) =
a(0)

N
+ [
∑
k

αk−jϕk(0) − ϕj(0)] · p̄ȳ (3.1)

for some a(0) > 0. (Credit policy is irrelevant: the result holds for any borrowing limits
satisfying bj(0) ≤ 0 for all j.) In the equilibrium associated with this policy, end-of-period
balances are the same for all sectors: bj(0) = a(0)/N for all j. As a consequence, borrowing
constraints do not bind in any sector, and the allocation of resources in period zero is given by
(2.40). Equilibrium prices and quantities in all periods t ≥ 1 are as specified in Proposition
1.

Among the cases to which this result applies is the kind of pandemic shock considered in
Figures 2 and 3.

Note that achievement of the first-best optimum requires no response of monetary policy
to the disturbance (in the cases where it can be achieved at all); the optimal interest-rate
policy in period zero is unchanged in the absence of an aggregate shock. Nor does it require
any use of credit policy; given monetary and fiscal policies of the kind described, credit policy
is irrelevant, as borrowing constraints are in any event not binding for any sector. But it
is essential that sector-specific fiscal transfers respond appropriately to the realized vector
ϕ(0), as indicated in (3.1).

It is also noteworthy that condition (3.1) leaves the total quantity of liquid assets a(0)
(and hence the size of any government deficit) indeterminate; under an optimal policy, the
path of the public debt {a(t)} need not respond to the asymmetric disturbance. What the
condition does require is redistribution between sectors, depending on the way in which they
are impacted by the realization of the asymmetric disturbance.

There is furthermore a simple interpretation for equation (3.1). In the equilibrium that
would occur in the absence of any asymmetric disturbance (i.e., if ϕ(k) = 1 for all k),
consumption would be given by cjk(0) = αk−j ȳ for all j, k. Then if units in each sector would
begin period zero with assets a(0)/N in the absence of a disturbance, (3.1) specifies that as
a result of the disturbance, each unit receives a transfer in the amount by which spending
on its product is reduced after the disturbance,

p̄ȳ −
∑
ℓ

ϕjαj−ℓp̄ȳ = (1 − ϕj)p̄ȳ,

and pays a lump-sum tax equal to the amount by which it reduces its spending after the
disturbance,

p̄ȳ −
∑
k

ϕkαk−j p̄ȳ =

(
1 −

∑
k

αk−jϕk

)
p̄ȳ.
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These taxes and transfers balance (so that no change in the size of the public debt is required).
They exactly compensate for the disruption to the circular flow of payments that the new
pattern of spending would otherwise involve, so that all units end period zero with equal asset
balances, and a balanced circular flow of payments continues to be possible in all subsequent
periods, as in the equilibrium in Proposition 1, without any further need for sector-specific
taxes or transfers.30

The optimal fiscal policy in this case amounts to “retrospective insurance” of the kind
called for by Milne (2020);31 fiscal policy implements the state-contingent transfers that
would have been privately agreed upon in (counter-factual) ideal ex-ante contracting.32 Note
that the case for retrospective insurance made here is independent of the central argument
of Milne (2020) or Saez and Zucman (2020), that it is important to prevent business failures,
because of the costs involved in re-establishing such businesses once they have failed. While
we do not deny that this should also be an important concern, it is not the only reason
why a retrospective insurance policy would be efficient (at least if we abstract from the cost
of administration of such a policy). Even abstracting from any cost of restarting economic
activities in period 1 that did not take place in period zero, as in the present model, the
retrospective insurance transfers increase ex-ante welfare.

Note also that while we have referred to implementation of the policy by levying state-
contingent lump-sum taxes on the sectors that spend less in the event of a pandemic (because
many goods that they normally enjoy are temporarily unavailable) while their incomes are
not greatly impacted, the first-best outcome can also be achieved without levying sectorally-
targeted taxes on anyone (if one supposes that such taxes are politically unacceptable,
while sectorally-targeted transfers are acceptable). Because the value of a(0) in (3.1) is
indeterminate (except for the lower bound), it is possible to choose a(0) higher than the
quantity of liquid assets that people held prior to the realization of the disturbance, meaning
that the government makes net transfers to the private sector (running a deficit in period
zero) in response to the disturbance. By choosing a high enough value of a(0), it is possible
to ensure that all sectors receive non-negative transfers in period zero. The larger public
debt will require correspondingly larger tax collections in later periods; and even though
we assume that tax obligations must be the same for all sectors in periods t ≥ 1, some
sectors will end up receiving transfers in period zero greater than the present value of their
increased future taxes, while other sectors receive less than that amount. Thus the policy
still amounts to a redistribution between sectors, according to how their budgets have been
impacted by the asymmetric disturbance, though there need not be sectorally-targeted taxes
in any period.

30Of course, the fact that such taxes and transfers are not needed after t = 0 depends on our assumption
that there are no asymmetric disturbances after t = 0. In a more general model, similar sectorally-targeted
taxes and transfers would be needed each period to compensate for asymmetric disturbances, when they
occur.

31See also Saez and Zucman (2020) for a similar proposal.
32See Woodford (2020) for an explicit analysis of the equilibrium with ex-ante contingent claims contracts,

in a generalization of the model presented here. State-contingent transfers as specified in (3.1) would be
voluntarily chosen ex ante by all units, owing to the ex-ante rotational symmetry of their situations.
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3.2 The matrix of fiscal transfer multipliers

Let us now consider more generally what can be achieved by fiscal transfers, that are not
necessarily of the precise form specified in (3.1). When β < 1, we will in general have f ̸= 0,
in which case analytical solutions are difficult. We can again obtain simpler conclusions by
considering the limit as β → 1, as in section 2.3.

Rather than there being a single “transfer multiplier,” in our model there is an N × N
matrix M of multipliers, the elements of which are

Mjk ≡ p̄ · ∂c
j(0)

∂δk
,

understood to be right derivatives.33 The matrix of multipliers is the same as the matrix M
in (2.37),34 which we now write more explicitly. For any vector δ, there is a set C of sectors
that are borrowing-constrained, in the sense that cj(0) < c∗j in the solution (2.38), and a
complementary set U (containing at least one sector) that is unconstrained. (Note that C
may be the empty set.) If we order the sectors so that all of the sectors in C (if any) come
first, then the matrices A and M can be partitioned as

A =

[
ACC ACU

AUC AUU

]
, M =

[
MCC MCU

MUC MUU

]
, (3.2)

where submatrix ACC measures the share of spending by each of the constrained sectors on
the products of other constrained sectors, and so on.35 We can then use this notation to
write an explicit expression for the local linear solution (2.37).

Lemma 6. For any specification C ∈ C of the set of borrowing-constrained sectors, let
the matrix A be partitioned as in (3.2). Then I − ACC is an invertible matrix, and [I −
ACC ]−1 >> 0. It follows that the local linear solution to the system (2.35) can be written in
the form (2.37), with matrices of coefficients

M =

[
(I − ACC)−1 0

0 0

]
, N =

[
0 (I − ACC)−1ACU

0 I

]
,

and all elements of the matrices M and N are non-negative. Moreover, we can equivalently
write the non-zero block of M in the form

MCC =
∞∑
r=0

(ACC)r. (3.3)

33These right derivatives everywhere well-defined, even though the right derivatives can differ from the
corresponding left derivatives at values of δ where the borrowing constraint just ceases to bind for some
sector.

34Under our definition of C, the set C must remain the same in the case of small increases in any of the
elements of δ. Hence the solution (2.37) continues to apply, and the matrix M in this solution is the matrix
of right derivatives.

35Note that the ordering of sectors required for this notation, as well as the partitioning of the rows and
columns, depends on the set C. Thus ACC has a different meaning for different vectors δ, in the notation
used here, even though the matrix A can be given a representation that is independent of δ.
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Our model implies that the multiplier effects of fiscal transfers can be quite different,
depending both on the sectors receiving the transfer and which sectors’ expenditure we are
concerned with. One reason why it matters which sectors receive the transfers is that the
marginal propensity to consume out of additional income is different for units in different
sectors, owing to differences in the degree to which sectors are borrowing-constrained, as
stressed by Oh and Reis (2012). But it also generally matters how transfers are allocated
among the different borrowing-constrained sectors, as the size of “higher-round effects” are
generally different for different sectors.

Lemma 6 implies that the multipliers are all zero, except those in the block MCC ,
indicating the effects of transfers to borrowing-constrained sectors on the spending by other
borrowing-constrained sectors. The solution (3.3) for this sub-matrix expresses the total
“multiplier effect” of fiscal transfers as the sum of a “first-round” effect (a unit effect on
spending by the sector receiving the transfer), a “second-round” effect (additional spending
resulting from the increases in income due to the “first-round” effects), and so on. Note,
however, that in our model even the “first-round” effects exist only in the case of transfers
to borrowing-constrained units; “second-round” effects exist only to the extent that “first-
round” spending increases involve purchases from borrowing-constrained units, and so on.36

This implies that in the event of a pandemic shock that suspends consumption of one sector’s
products, multiplier effects beyond the “first-round” effect can exist only if N > 2;37 hence
Guerrieri et al. (2020) find no such effects in their baseline model.

It is possible, in principle, for fiscal transfer multipliers to be sizeable. For example, in the
case of the numerical example shown in the right panel of Figure 3, the aggregate expenditure
multiplier for a uniformly distributed lump-sum transfer, when pre-transfer asset balances
are small enough,38 is equal to 2.45, while the aggregate expenditure multiplier for transfers
targeted to units in sector 1 only would equal 4.75. But the multipliers depend not only on
how the transfers are targeted, but on the network structure of payments. In the case of the
uniform network structure shown in the left panel of Figure 1, the aggregate expenditure
multiplier for a uniformly distributed lump-sum transfer is only 0.20, even when initial asset
balances are extremely small.

Figure 3 illustrates a general principle: transfer multipliers are largest when existing liquid
asset balances are low (and borrowing constraints are tight). As the size of the transfers
is increased, the multiplier effect of further transfers will generally decline, as additional
sectors cease to be borrowing-constrained. The following observation is a direct consequence
of Proposition 4.

Corollary 4. Suppose that all policies remain as specified in Proposition 1, except that

36The conclusion that the multiplier is zero in the case of transfers to sectors that are not borrowing-
constrained depends on the simplification of considering the limiting case in which β → 1. When β < 1,
there is instead a small effect on the current spending of unconstrained units of receiving greater-than-
average transfers, so that their intertemporal budget increases despite the anticipation of higher future
taxes. Nonetheless, the effects on current spending by such units remain small, under realistic assumptions
about the discount factor, because of their desire to smooth expenditure over a long horizon.

37If N = 2, the set of constrained sectors C must consist only of sector 1, as there must be at least one
unconstrained sector. And A11 = 0, since no one can purchase sector-1 goods during the pandemic. Hence
ACC = 0, and all terms corresponding to r ≥ 1 in (3.3) vanish.

38The calculations are explained in the appendix, section C.4.
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(possibly sector-specific) lump-sum transfers occur at the beginning of period zero, in response
to the asymmetric disturbance. Let post-transfer initial asset holdings be

aj(0) = αj + γj · s (3.4)

for each sector j, where the quantities αj ≥ 0, with
∑

j α
j > 0, denote each sector’s pre-

transfer asset holdings; the coefficients γj ≥ 0, with
∑

j γ
j = 1, indicate the share of transfers

going to units in each sector j; and s ≥ 0 indicates the total size of the transfer. For this
one-parameter family of possible transfer policies, let

mj(s) ≡ p̄ · ∂c
j(0)

∂s

(where again we mean a right derivative) measure the multiplier effect of additional transfers
on spending by sector j, for any possible scale of transfers s. Then for each sector j, mj(s)
is a piecewise constant, non-increasing function of s, that falls to zero for all s ≥ s̄, where s̄
is finite.

Given a matrix M of multiplier effects on sectoral expenditure levels, the matrix MY ≡
AM then indicates the multiplier effects of transfers to each of the sectors on economic
activity (output) of each of the sectors. Since the elements of M are all non-negative, the
output multipliers MY are all non-negative as well. And it follows from Corollary 4 that
the output multipliers must decrease as the size of transfers is increased, falling to zero in
the case of large enough transfers.

3.3 Transfer policy and welfare

We have shown that the multiplier effect of lump-sum transfers on economic activity in each
of the different sectors is necessarily non-negative. But a more reasonable goal of policy, of
course, should be not to increase economic activity as an end in itself, but rather to increase
welfare. Here we consider the effect of lump-sum transfers on the ex-ante welfare measure
derived in Lemma 1.

We first note that the ex-ante welfare measure can equivalently be chosen to be

n∑
j=1

U j(0) +
β

1 − β

N∑
j=1

[Ū j − U∗], (3.5)

where Ū j is the stationary level of the utility flow (1.2) associated with the stationary
allocation for all t ≥ 1 characterized in Lemma 3, and U∗ is the value of that stationary
utility flow (the same for all j) in the first-best allocation of resources for periods t ≥ 1. For
a given specification of preferences, this differs from (1.7) only by a constant, which does
not affect the welfare ranking of alternative possible allocations of resources; but it has the
advantage over (1.7) of being a measure with a well-behaved limit as β → 1.

Lemma 7. Suppose that policy in all periods t ≥ 1 is consistent with Assumption 1, and that
we specify policy in period zero by values aj(0) ≥ 0 such that

∑
j a

j(0) > 0, values bj(0) ≤ 0,
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and a parameter ψ ≡ β(1 + i(0))p̄/P ∗(1) > 0 which measures the discrepancy between the
real rate of interest and the “natural rate” defined in (1.17). Let us consider different values
for the discount factor β, while holding fixed all other aspects of preferences, and the policy
parameters just listed; and for all values of β close enough to 1, let the equilibrium for periods
t ≥ 1 be the stationary equilibrium characterized in Lemma 3. Then as β approaches 1, we
have

lim
β→1

β

1 − β

N∑
j=1

[Ū j − U∗] = 0 (3.6)

for any policy. Hence one policy implies a higher value for (3.5) in the limit as β → 1 if and
only if it implies a higher value for

W0 ≡
N∑
j=1

U j(0). (3.7)

It follows that in evaluating welfare under alternative policies in the limiting case in which
β → 1, we need consider only the effects on the policy on W0, which involves only the
allocation of resources in period zero.

We can then use our conclusions about the multiplier effects of lump-sum transfers to
calculate effects of such transfers on the welfare measure W0. For each sector j, let wj ≡
p̄ · ∂W0/∂a

j(0) be the effect on welfare per unit transfer to sector j, for fixed values of
the other policy parameters (in the limit as β → 1); and let w be the vector with these
components (i.e., the welfare gradient). Then differentiation of (3.7) implies that

w′ = [g′ + h′A]M , (3.8)

where g and h are the vectors with elements

gj ≡ u′(cj(0)/ωj; ξ̄) − u′(ȳ; ξ̄), hj ≡ v′(ȳ; ξ̄) − v′(yj(0); ξ̄).

We further observe that gj > 0 whenever cj(0) < c∗j ≡ ωj ȳ, and that hj ≥ 0 whenever
yj(0) < ȳ. This allows us to sign the elements of the welfare gradient under fairly general
conditions.

Proposition 6. Suppose that 0 ≤ ϕk(0) ≤ 1 for all sectors, and consider the effects of small
additional lump-sum transfers, starting from a situation in which policy is specified as in
Lemma 7, with ψ = 1 (i.e., monetary policy as in Proposition 1). Then w ≥ 0, so that
a lump-sum transfer cannot reduce welfare (in the β → 1 limit), no matter how large the
transfer may be, and no matter how it is distributed across sectors. Moreover, wj > 0 (so that
a transfer to sector j increases welfare) if and only if sector j is borrowing-constrained in the
absence of the additional transfer (i.e., if j ∈ C), while wj = 0 if the sector is unconstrained.

Thus not only is it possible for lump-sum transfers to increase welfare; in the β → 1
limit, they necessarily increase welfare, as long as at least some of the transfers go to sectors
that would be borrowing-constrained in the absence of the transfers. Thus careful targeting
of transfers is not necessary in order for them to increase welfare. Moreover, in the case that
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it is possible to achieve the first-best optimal allocation with some combination of policies
(i.e., when this is not precluded by Lemma 5), in the β → 1 limit this no longer requires
the carefully targeted transfers specified in Proposition 5. Instead, the first-best outcome
can be achieved by large enough lump-sum transfers, almost independently of how they are
distributed.

Proposition 7. Suppose again that the assumptions of Proposition 5 are satisfied. Then in
the limit as β → 1, the equilibrium allocation of resources approaches the first-best optimal
allocation defined in Lemma 2, if policy in period t = 0 is of the following kind: (a) i(0)
is determined in the way specified in Proposition 1; and (b) lump-sum transfers ensure that
(2.39) holds for every sector j. In this limiting equilibrium, borrowing constraints do not bind
in any sector, and the allocation of resources in period zero is given by (2.40). Equilibrium
prices and quantities in all periods t ≥ 1 are as specified in Proposition 1.

Note that condition (2.39) is satisfied by almost any distribution of lump-sum transfers,
as long as they are large enough. In the case of a transfer policy of the form (3.4), the
condition is satisfied for all large enough values of s, as long as γj > 0 for each of the sectors
with ϕj(0) <

∑
k αk−jϕk(0).39 Thus transfers need not be sectorally-targeted at all; in the

case of uniform transfers (so that aj(0) = a(0)/N for all j), the condition is satisfied, and
the first-best optimal allocation will be achieved, as long as a(0) is large enough.40

When β < 1, a more specific pattern of transfers is required in order to achieve the
first-best outcome, as indicated in Proposition 5, because the transfers must adjust sectoral
budgets so that (i) borrowing constraints no longer bind in period zero for any sector, and (ii)
all sectors end period zero with identical end-of-period balances. But in the limit as β → 1,
condition (ii) ceases to matter, as differences in the assets carried into period one by different
sectors have only a negligible effect on per-period spending in each of the periods t ≥ 1; the
marginal utility of income remains essentially the same for all sectors, as indicated by Lemma
4. In this case, it is important that transfers be large enough to prevent borrowing constraints
from binding in any sector, but no significant distortions result from “unnecessary” transfers
to some sectors.

Note also that Proposition 7 implies that if v(y; ξ̄) is a linear function of y, it is possible
to obtain the first-best allocation of resources despite the occurrence of an asymmetric
disturbance, even when policy is of the kind specified in Proposition 1, so that policy does
not respond to the asymmetric disturbance at all. This result obtains if the initial level of
liquid assets a(0) satisfies (2.41) even in the absence of any fiscal transfers in response to
the shock. For a given level a(0) > 0, the condition is satisfied as long as the sectoral non-
uniformity of the disturbance ϕ(0) is not too great. Our result here recalls Leijonhufvud’s
(1973) concept of a “corridor” within which market mechanisms can be relied upon to be
self-stabilizing, so that Keynesian policies are needed to restore proper functioning only in
the case of disturbances large enough to move the economy outside the “corridor.” Our
account of the nature of effective demand failures is in many ways similar to Leijonhufvud’s,
but it implies that “the corridor” should be defined not as a state in which shocks to the

39In the case of a pandemic shock that shuts down one sector without affecting the others, this condition
requires only that some of the transfers go to the sector directly impacted by the shock.

40In the case of no credit policy (bj(0) = 0 for all j), the required level of a(0) is given by (2.41).
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economy are sufficiently small, but rather as one in which they are sufficiently symmetric in
their effects on the income and spending of different parts of the economy.

3.4 Credit policy as stabilization policy

Credit policy can also be a useful response to disruption of the circular flow of payments by
an asymmetric disturbance. Indeed, in our model, relaxation of sectoral borrowing limits
(by allowing government-guaranteed borrowing up to a certain amount) has effects that are
similar to the effects of transfers to units in that sector.41

In particular, in our model a uniform relaxation of the period-zero borrowing limit in
each sector by a common amount ∆ (reducing bj(0) by ∆ for each j) has an identical effect
as a uniform lump-sum transfer of ∆ (increasing aj(0) by ∆ for each j). In either case, the
amount that each unit can spend in period zero without violating their borrowing constraint
is increased by ∆; and the present value of their future obligations (future lump-sum taxes
in the case of the transfer policy, debt repayments in the case of credit policy) is increased by
exactly ∆ as well. Since we have shown that sufficiently large uniform transfers can achieve
the first-best outcome in the β → 1 limit (Proposition 7), it follows that a sufficiently large
uniform relaxation of borrowing limits can achieve the first-best outcome in this limiting
case as well.

In the case that the degree of relaxation of borrowing limits differs across sectors, the
effects of credit policy are no longer identical to those of similarly distributed transfers,
because the additional borrowing allowed owing to credit policy must be repaid by the units
that increase their borrowing, while transfers increase the future tax obligations of all units
uniformly even when the transfers are not uniformly distributed. However, in the limit as
β → 1, this difference in the distribution of repayment obligations in periods t ≥ 1 has only
a negligible effect on the allocation of resources. Hence in this limit, the effects of a policy
that reduces bj(0) by an amount ∆j (that may differ across sectors) are identical to those of
a lump-sum transfer of ∆j to units in sector j at the beginning of period zero. This can be
seen from the fact that equations (2.35) and the solution (2.38) involve only the vector δ,
which is affected in the same way by sectorally-targeted transfers and sector-specific credit
policy. Thus the matrix of multipliers characterized in Lemma 6 applies equally to the effects
of sector-specific credit policy on expenditure in the different sectors.

There are nonetheless respects in which credit policy and transfer policy should not be
regarded as perfect substitutes for one another. First, when β < 1, the differing effects on
repayment obligations in periods t ≥ 1 do matter. Hence in Proposition 5, we are able
to specify sectorally-targeted transfers that are necessary in order to achieve the first-best
outcome, regardless of what is assumed about credit policy; it would not be possible to
achieve the first-best outcome (except in the limit as β → 1) using credit policy alone.
This is an advantage of fiscal transfers over credit policy as a tool of stabilization policy.
At the same time, there is an advantage of credit policy as well. Our model assumes that
government debt can be repaid through revenues raised by lump-sum taxes, but in practice,

41Bigio et al. (2020) also compare credit policy with fiscal transfers, in a more developed model of how
borrowing constraints are determined. Araújo and Costa (2021) similarly discuss how a modification of
bankruptcy law in response to a pandemic shock, or endogenous renegotiation of private loan contracts, can
substitute for fiscal transfers in improving stabilization.
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distorting taxes may be the only source of revenue. If so, credit policy has the advantage of
not creating the distortions that would result from an increase in future taxation of labor
income (for example) in order to finance the transfers. This is an advantage of using credit
policy, at least to some extent, if the associated administrative costs are not too great.

4 The Role of Interest-Rate Policy

In the previous section, we have considered the effects of fiscal transfers and credit policy,
under the assumption that interest-rate policy does not respond at all to the asymmetric
disturbance. We now consider what can be achieved by a response of interest-rate policy to
such a disturbance. Propositions 5 and 7 have shown that under certain conditions, fiscal
transfers can achieve the first-best allocation of resources without any need for a change in
monetary policy. But what if fiscal policy does not respond, or does not respond ideally,
owing to political or administrative constraints? To what extent can monetary policy be
used instead?

In the equilibria shown in Figure 3 for cases in which the initial level of liquid assets
satisfies a(0) < â4, equilibrium output is below the efficient level (given the disturbance to
fundamentals) in some or all of the sectors not directly affected by the pandemic shock. It
is not inefficiently low in the impacted sector, sector 1, since it is optimal for production to
cease temporarily in that sector; but there are no sectors in which activity is inefficiently
high, in the absence of a policy response.

Given Proposition 2, it might seem natural to suppose that the central bank’s interest-
rate target should be cut in response to such a real disturbance. And our model is one
in which equilibrium activity in period zero can be increased or decreased by interest-rate
policy; thus to the extent that one thinks about stabilization policy in terms of an aggregate
output gap, it should be possible to eliminate the gap entirely by a sufficiently large cut in
interest rates, assuming that the effective interest-rate lower bound does not preclude this.
Thus it is often supposed that if counter-cyclical fiscal policy is also needed, this is only
because the lower bound may not allow interest rates to be reduced to the degree needed in
the case of a severe disturbance. And in fact our model is one in which the zero lower bound
never constrains how much it should be possible to reduce the real interest rate (which is
what matters for aggregate demand), if the central bank is willing to commit itself to more
inflationary policy in the future.

Nonetheless, monetary policy remains a decidedly second-best policy instrument for
dealing with the inefficiencies created by an effective demand failure resulting from a pandemic
shock. The problem is not that interest-rate policy cannot increase economic activity in these
circumstances — the elasticity of aggregate output with respect to changes in the real interest
rate is determined by the intertemporal elasticity of substitution, in the same way as in the
case of the response to aggregate disturbances considered in Proposition 2. It is rather that
the composition of the added expenditure that can be stimulated by interest-rate cuts will
necessarily be inefficient, and (depending on the network structure of payments) may be
severely so.
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4.1 Interest-rate policy when liquidity is negligible

Let us first consider how the analysis in section 2.2 is changed if we suppose that the central
bank cuts i(0) in response to the asymmetric disturbance. It continues to be the case that
if a(0) is small and bj(0) = 0 for all j, the equilibrium from period t = 1 onward must be
one with f near 0. However, (2.29) now takes the more general form

u′
(
cj(0)/ωj; ξ̄

)
≥ ψu′(ȳ; ξ̄), (4.1)

where ψ > 0 is the coefficient defined in Lemma 7, measuring the degree to which i(0) differs
from the “normal” policy assumed in Proposition 1. (A value ψ < 1 means that the interest-
rate target is reduced in response to the asymmetric disturbance.) This in turn implies that
(2.30) takes the more general form

cj(0) ≤ ĉj(ψ) ≡ ωj ŷ(ψ), (4.2)

generalizing (2.30), where ŷ(ψ) is the quantity implicitly defined by

u′(ŷ(ψ); ξ̄) = ψu′(ȳ; ξ̄). (4.3)

Because u(c; ξ̄) is strictly concave, ŷ(ψ) is a monotonically decreasing function.
We then obtain the following generalization of Proposition 3.

Proposition 8. Suppose that, despite the occurrence of an asymmetric disturbance ϕ(0) in
period t = 0, all policies remain as specified in Proposition 1, except that i(0) responds to the
shock. And suppose further that, for a given specification of the disturbance vector and the
policy response ψ, we let a(0) → 0. Then in this limit, the equilibrium level of spending in
each sector in period t = 0 is given by c(0) = Ωπ, where π is the maximal right eigenvector
of the matrix A and Ω is given by

1

Ω
= max

j

πj
ωj

· 1

ŷ(ψ)
> 0, (4.4)

where ŷ(ψ) is defined in (4.3). The equilibrium level of production by each sector is given by
y(0) = c(0), and the allocation of each sector’s spending across the different goods is given
by (1.4).

In all periods t ≥ 1, the equilibrium allocation of resources continues to be the one specified
in Proposition 1. And all equilibrium prices (except the interest rate i(0)) remain those
specified in Proposition 1.

Note that (4.4) reduces to (2.31) under our previous assumption that ψ = 1.
It follows that our model implies that cagg(0), and correspondingly aggregate output

yagg(0), increases in proportion to ŷ(ψ) if the interest-rate target is changed. This is the
same interest-rate elasticity of aggregate output as exists in the case that only aggregate
disturbances exist: in that case, cj(0) = yj(0) = ŷ(ψ) for every sector, so that also in that
case yagg(0) grows in proportion to ŷ(ψ). Thus the fact that borrowing constraints may bind
for many sectors need not imply any lower interest-elasticity of output in the case of an
effective demand failure. And the Inada conditions assumed for the function u(c; ξ̄) imply
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that ŷ can be driven arbitrarily close to zero by raising the real interest rate enough, and
made arbitrarily large by lowering the real interest rate enough;42 thus the model implies
that a very great degree of control over aggregate output (in the short run) is possible using
monetary policy, even during the crisis created by a pandemic shock.

Nonetheless, monetary policy is not well-suited to correct the distortions created by a
pandemic shock. While lowering interest rates should increase spending and hence output,
the sectoral composition of the spending and output that are stimulated need not correspond
to the kinds are most needed in order to increase welfare. In fact, an interest-rate cut need
not increase welfare at all, as shown by the following (admittedly special) example.

Corollary 5. Let the assumptions of Proposition 8 be satisfied. In addition, suppose that
v(y; ξ̄) = ν · y for some ν > 0 (that may depend on ξ̄), and that the disturbance ϕ(0) is such
that the sectors that are borrowing-constrained in period zero are unable to consume at all.
Then W0 is maximized when ψ = 1; that is, if there is no response of monetary policy to the
disturbance.

The cases shown in Figure 2 provide two examples in which the assumption in the corollary
about the equilibrium pattern of consumption (which depends on the eigenvector π) is
satisfied. In such a case, there is no spending by borrowing-constrained sectors, and no
production by those sectors either. A reduction of i(0) increases spending only in the
unconstrained sectors, and only increases production in those same sectors. Hence only
types of consumption cjk(0) increase that are already at the efficient level when ψ = 1; further
increases in this kind of spending increases ex ante utility by an amount less than the increase
in the disutility of supplying the goods, and ex-ante welfare is necessarily decreased. Thus
while the allocations of resources depicted in Figure 2 are far from the first-best optimal
allocation (especially in the case shown in the right panel), welfare cannot be improved in
either of these cases by cutting interest rates.

4.2 Interest-rate policy when discounting is minimal

Let us next consider how the analysis in section 2.3 is modified if interest-rate policy responds
to the asymmetric disturbance. In the limit as β → 1, we again must have f → 0, regardless
of the policy chosen in period zero. The Euler condition again reduces to (4.1), which again
implies (4.2). The derivation of the consumption function (2.34) then proceeds as before,
except that we must replace the constant c∗j by the upper bound in (4.2), that depends on
ψ. The system of equations that determine the sectoral expenditure levels then takes the
form

c(0) = min

{
1

p̄
δ + Ac(0), ω · ŷ(ψ)

}
, (4.5)

generalizing (2.35), where ω is the vector with jth element equal to ωj.
For a given specification of policy (δ, ψ), we can show that the “multivariate Keynesian

cross” system (4.5) has a unique fixed point. This allows the following characterization of
equilibrium under an arbitrary monetary policy.

42Because of the zero lower bound on the nominal interest rate, of course, very low real interest rates can
be achieved only by creating an expectation of high inflation.
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Proposition 9. Suppose that policy in all periods is consistent with Assumption 1, and that
policy in period zero is specified as in Lemma 7. Then in the limit as β → 1, there is a unique
equilibrium in which both prices and the allocation of resources in all periods t ≥ 1 are the
ones specified in Proposition 1. In period zero, the vector of sectoral expenditure levels is

c(0) = c(δ;ψ) =
ŷ(ψ)

ȳ
· c̄
(

ȳ

ŷ(ψ)
δ

)
, (4.6)

where c̄(δ) is the solution to (2.35) given in (2.38). The pattern of spending on individual
goods is then given by (1.4), and the sectoral levels of production are given by (1.14).

Given this solution, it is straightforward to compute the effects of an interest-rate reduction
on the allocation of resources in period zero, given a fixed specification of both lump-sum
transfers and credit policy. Aggregate output is necessarily increased, but not all types of
consumption are increased equally, and the additional increases in spending become more
narrowly concentrated as the degree to which the real interest rate is cut is made deeper.

Corollary 6. Consider how the period zero allocation in Proposition 9 varies with ψ, for fixed
policy parameters δ ≥ 0. As ψ is decreased, yagg(0) increases; moreover, yagg(0) is a piecewise
linear, concave function of ŷ(ψ). Similarly, each of the components of this aggregate, cjk(0)
for each j, k, and yk(0) for each k, is a non-decreasing, piecewise linear, concave function
of ŷ(ψ). As ψ is reduced (and ŷ(ψ) increases), the set C of borrowing-constrained sectors is
non-decreasing. And there exists a ψ > 0 such that for any ψ < ψ, the set of borrowing-
constrained sectors is equal to C0, the set of constrained sectors in the case of negligible
liquidity, identified in Proposition 3 (and the maximal element of C). For any ψ in this
range, the equilibrium vector of sectoral expenditure levels will be

c(0) =

[
MCC

0

]
δC
p̄

+
π

maxℓ(πℓ/ωℓ)
ŷ(ψ), (4.7)

where π is again the eigenvector referred to in Proposition 3, and we partition both M and
δ according to the sectors belonging to C0 and U0 respectively.

Thus for all low enough real interest rates, the solution for c(0) (and hence the solutions
for consumption and production of all goods) is the sum of two terms: a term that is
proportional to ŷ(ψ), identical to the solution in Proposition 8 for the case of negligible
liquidity, plus a term proportional to the elements of δC , that is independent of interest-
rate policy. In this low-interest-rate case, the only marginal effects of further interest-rate
cuts will be increases in expenditure (and similarly production) by the different sectors in
proportion to the elements of the eigenvector π, just as in Proposition 8.

The conclusion that progressively larger increases in ŷ(ψ) have diminishing marginal
effects might seem parallel to our conclusion in Corollary 4 that the multiplier effects of
fiscal transfers diminish as the scale of the transfers is increased. However, the reason for
the diminishing effects on economic activity of larger interventions is quite different in the
two cases. In the case of fiscal transfers, larger transfers progressively reduce the number of
sectors that continue to be borrowing-constrained; additional transfers then have less effect,
because there is less of a problem of effective demand failure for them to solve. In the case
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of interest-rate cuts, instead, larger reductions in the real interest rate progressively increase
the number of sectors that are borrowing-constrained, so that interest-rate policy has fewer
and fewer channels through which it can increase spending. The difference is important: in
the case of large transfers, while the effect on aggregate spending diminishes, the remaining
effects are concentrated on the few remaining sectors that are still financially constrained;
but in the case of large interest-rate cuts, the remaining effects are concentrated on the few
sectors that are not financially constrained.

This matters for the welfare effects of policy. In the case of fiscal transfers, we have shown
that (at least under the conditions assumed in Proposition 6) additional fiscal transfers can
only increase ex-ante welfare, no matter how large they are, and now matter how they
are targeted; and under nearly any possible distribution of the transfers, sufficiently large
transfers will achieve the first-best allocation (Proposition 7). Instead, even in cases where
a moderate reduction of the real interest rate will increase welfare, further interest-rate cuts
will instead begin to reduce welfare. And the point at which interest-rate cuts become
counterproductive will generally be one in which economic activity remains inefficiently low
in some sectors; the continued existence of under-employed resources need not imply that
further interest-rate reductions are desirable.

Indeed, it need not be desirable to cut interest rates at all, in response to an asymmetric
disturbance, and despite a fiscal response that is inadequate to fully counteract the shock.

Corollary 7. Let the assumptions of Proposition 9 be satisfied, and consider alternative
specifications of monetary policy ψ for a given vector δ. In addition, suppose that v(y; ξ̄) =
ν · y for some ν > 0 (that may depend on ξ̄), and that the disturbance ϕ(0) is such that the
sectors that are borrowing-constrained in period zero when ψ = 1 (for the given specification
of δ) imply a partition of the A matrix in which ACU = 0. Then W0 is maximized when
ψ = 1; that is, if there is no response of monetary policy to the disturbance.

Note that the hypothesis about ACU is satisfied by the examples shown in Figure 3, for any
value of a(0) > 0. Thus these are examples in which a reduction of i(0) would reduce welfare,
even when a(0) < â4, so that fiscal transfers are insufficient to achieve the optimal allocation
of resources.

5 Conclusion

Our results imply that common views about the relative importance of interest-rate policy
and fiscal transfers as tools of macroeconomic stabilization require revision in the case of
an economic crisis resulting from a severely asymmetric disturbance, such as the COVID-19
pandemic. It is often thought that the existence of “Keynesian unemployment” provides
a prima facie case for the desirability of interest-rate cuts to increase aggregate demand.
Instead, we have seen that it is possible for a disturbance to result in inefficiently low activity
in at least some parts of the economy (and inefficient over-consumption nowhere), in the
absence of a policy response, and yet for the situation to be one in which the level of real
interest rates required to support an efficient allocation of resources (assuming a suitable
distribution of income) has not fallen as a result of the disturbance.
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The contraction of economic activity relative to the efficient pattern may result not from
real interest rates being too high, but rather from an effective demand failure, owing to
a disruption of the circular flow of payments between different parts of the economy. In
such a situation, the policy response that can achieve the ex-ante optimal outcome is one
that arranges for appropriately targeted lump-sum transfers in response to the disturbance,
without any reduction of interest rates necessarily being needed at all (Proposition 5).

Of course, our model does not incorporate all of the channels through which monetary
policy might be beneficial in response to a pandemic shock.43 But some of the ways in which
lower interest rates could be beneficial involve effects that could also be achieved through
other means, and that might better be achieved without also changing intertemporal relative
prices. For example, in a more elaborate model, cutting the real interest rate should raise
a variety of asset prices, and increased asset values might relax the financing constraints of
the households or firms that own these assets. Borrowing constraints are at the heart of
the problem of effective demand failure emphasized in this paper, and so one might argue
that increased asset valuations should be helpful. Yet there are also other ways in which
policy can increase the availability of credit to borrowing-constrained parts of the economy;
and an advantage of direct credit policy (in addition to the fact that one does not distort
intertemporal relative prices for parts of the economy that are not borrowing-constrained)
is that it can be better targeted to the parts of the economy that are most impacted by the
disruption of the usual circular flow of payments.

We should also stress that our analysis here concerns the role of interest-rate policy as
a tool for regulating aggregate demand. Nothing in this paper should be taken to challenge
the role of central banks as a lender of last resort, in the case of threats to financial stability.
Threats to financial stability are likely to arise in the case of severe recessions, regardless
of the nature of the disturbance that causes economic activity to contract. The model here
abstracts from such issues, but is not intended to minimize them. We are concerned here only
with the use of monetary policy to address an aggregate demand shortfall, in circumstances
where financial institutions remain largely sound.44

Nor does our model imply that interest-rate reductions are never appropriate in response
to a pandemic shock. Under certain relatively special circumstances (e.g., the cases described
in Propositions 5 and Corollaries 5 and 7), we have seen that it is not ex-ante desirable for
interest rates to be reduced at all; but more generally, a modest reduction in interest rates
can increase ex-ante welfare, in the absence of a sufficiently aggressive (or sufficiently well-
targeted) fiscal policy response. The more important point is that whereas a real interest-rate
reduction of the right size should be able to completely solve the problems created by purely
aggregate disturbances (Proposition 1), what one can hope to achieve with interest-rate
policy alone is more limited in the case of a shock with significantly asymmetric effects.

43For example, Guerrieri et al. (2020) discuss a number of channels through which an interest-rate
reduction might be helpful as a response to a pandemic, that are not present in the deliberately simplified
model presented here.

44For example, we do not mean to question the appropriateness of the Federal Reserve’s market
interventions in March-April 2020, to address the disappearance of liquidity in the U.S. Treasury market
at the onset of the COVID-19 pandemic (Fleming, 2020). But Treasury market liquidity had returned to
2019 levels within a few weeks; the Fed’s aggressive monetary accommodation since then has instead been
motivated by a concern to maintain aggregate demand.
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In particular, it will be a mistake to assume that if a modest interest-rate reduction does
not eliminate all under-employment of productive resources, this means that even deeper
real interest-rate reductions (perhaps through unconventional policies) are called for. Our
examples show that the ex-ante optimal degree of interest-rate reduction can be reached
long before inefficient under-production and under-consumption have been eliminated in all
sectors. Instead, there is an important role for fiscal transfers as a response to significantly
asymmetric disturbances, for which interest-rate policy does not provide a close substitute.

And we should be clear that in our analysis there remains an important role for interest-
rate policy as a tool of economic stabilization. Of course, all economic disturbances are
at least somewhat asymmetric in their effects on different parts of the economy; “purely
aggregate” disturbances of the kind assumed in Proposition 1 do not actually occur.45

However, actual disturbances can be decomposed into an aggregate component (that by itself
would create no imbalance in the circular flow of payments) and an asymmetric component;
and interest-rate policy should be the tool of choice to respond to the aggregate component,
as in the situation described in Proposition 1. If this is the more important part of how a
given disturbance affects the economy, interest-rate policy may correspondingly be the main
policy response that is needed.

Indeed, in the case of sufficiently small asymmetric disturbances, there may be no need
for any fiscal transfers in response to the shock in order for the ex-ante optimal allocation of
resources to be achieved, at least in the β → 1 limit, as noted in our discussion of Proposition
7. We could add aggregate disturbances to the situation assumed in the discussion following
Proposition 7, and conclude that the first-best outcome can be achieved with an appropriate
monetary policy response, but with no response of either fiscal policy or credit policy. Thus
there is a range of possible circumstances in which the conventional view of stabilization
policy, according to which interest-rate policy alone should be used, will not be off-base.
But there are other situations, vividly illustrated by the COVID-19 crisis, in which this view
is quite inadequate. A more complete theory of stabilization policy, that also allows for the
possibility of effective demand failures, is badly needed.

One consequence should be a greater willingness to use fiscal transfers as a tool of
stabilization policy, at least under some circumstances. But this is not the only way in which
policy can be adjusted in order to minimize the distortions created by periodic failures of
effective demand. Our model implies that the size of the asymmetric disturbances required
to create a situation in which fiscal transfers and/or credit policy will be needed in order to
prevent borrowing constraints from distorting spending patterns depends on the quantity of
liquid assets held by the various economic units, that can serve to buffer transitory variations
in the flow of payments. And while the equilibrium distribution of those liquid assets depends
on the choices made by the various individual economic units in the economy, in our model
the aggregate supply of them depends on the size of the public debt.

Thus maintaining a larger real public debt has the virtue of reducing the extent to which
financing constraints distort the equilibrium allocation of resources, as argued in Woodford
(1990). Of course, a higher real public debt also has costs, when the revenues required to

45It should also be noted that when we refer to “asymmetric disturbances,” the differential effects need
not only be differences across sectors or industries; they might be asymmetric effects on different regions, or
on different occupational categories within an industry.
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service it can only be raised using distorting taxes; thus a balance must be struck between
these costs and the benefits resulting from a higher average level of liquid balances. But it
may be an important mistake to consider the optimal level of public debt without taking
into account the advantages for macroeconomic stability of making it possible for people to
maintain a higher level of liquid asset balances.
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Properties of Positive Concave Mappings with Applications to Network Planning and
Optimization,” IEEE Transactions on Signal Processing 64: 1774-1783 (2016).
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APPENDIX

“Effective Demand Failures and the
Limits of Monetary Stabilization Policy”

Michael Woodford, Columbia University

Here we present additional details of the arguments in the main text, and proofs of the
stated lemmas and propositions.

A Welfare Analysis: Preliminary Results

This section provides proofs of the main results in section 1.

A.1 Proof of Lemma 1

As explained in the main text, in the case of any rotationally-invariant allocation of resources,
if we let U j(t; ξ, ϕ) be the flow utility (1.2) in the case of disturbances (ξ, ϕ), we must have

U j(t; ξ, Rϕ) = U j−1(t; ξ, ϕ) (A.1)

for each sector j. Then consider the contribution to the ex-ante expected value of (1.1) from
the terms corresponding to the different possible outcomes in a particular rotation family
(1.6). Because the N different outcomes must each have the same ex-ante probability, the
contribution from these terms must be proportional to their equally-weighted average,

Ū j ≡ 1

N

N−1∑
h=0

∞∑
t=0

βtU j(t; ξ, Rhϕ).

But it follows from (A.1) that

U j(t; ξ, Rhϕ) = U j−1(t; ξ, Rh−1ϕ) = U j−2(t; ξ, Rh−2ϕ) = U j−h(t; ξ, ϕ)

for any integer h. Hence we can alternatively write

Ū j =
1

N

N−1∑
h=0

∞∑
t=0

βtU j−h(t; ξ, ϕ) =
1

N

∞∑
t=0

βt

N∑
i=1

U i(t; ξ, ϕ). (A.2)

The final expression on the right in (A.2) is independent of the sector j for which we
compute ex-ante expected utility. Hence units in all sectors agree about the ex-ante ranking
of alternative feasible rotationally-invariant allocations of resources, as stated in the lemma.
The welfare criterion stated in the lemma is just N times the final expression on the right
in (A.2).
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A.2 Proof of Lemma 2

For given disturbance sequences (ξ, ϕ), we wish to find the consumption allocation {cjk(t)}
and production plan {yk(t)} for all t ≥ 0 that maximizes (1.7), subject to the constraints
that ∑

j

cjk(t) = yk(t) (A.3)

for each sector k at each date t. Note that the welfare measure (1.7) consists of a sum of
separate terms for each good k at each date t. Since the constraints (A.3) each also involve
only the production and consumption of a single good k at a single date t, we can separate
the optimization problem into a set of independent problems, one for each good k and each
date t.

If k is a good for which ϕk(t) = 0, then the static optimization is simply the choice of
yk(t) to minimize the disutility of supply v(yk(t); ξt). The solution is obviously yk(t) = 0,
which then implies that the only feasible consumption allocation involves cjk(t) = 0 for all
j as well. (Thus in the example of a “pandemic shock” discussed in the main text, where
ϕ1(0) = 0, it is optimal for there to be no production or consumption of good 1 in period 0.)

If instead ϕk(t) > 0, the static optimization problem requires that we choose yk(t) and
the {cjk(t)} for j = 1, . . . , N to maximize∑

h∈H

ϕk(t)αhu(ck−h
k (t)/(αhϕk(t)); ξt) − v(yk(t); ξt), (A.4)

subject to the constraint (A.3). Substituting the left-hand side of (A.3) for yk(t) in (A.4),
we obtain an objective that is purely a function of the consumption allocation. We further
note that this function is monotonically decreasing in ck−h

k (t), for any h /∈ H (if such sectors
exist). Hence the optimum must involve ck−h

k (t) = 0 for any h /∈ H. With this substitution,
we are left with an objective that is a function of the quantities {ck−h

k (t)} for h ∈ H,∑
h∈H

ϕk(t)αhu(ck−h
k (t)/(αhϕk(t)); ξt) − v(

∑
h∈H

ck−h
k (t); ξt).

Because this last objective is a strictly concave function of its arguments, it has a unique
optimum characterized by the first-order conditions. Moreover, the Inada conditions on the
functions u, v imply that there cannot be a corner solution; hence we need consider only the
first-order conditions for an interior maximum. These require that u′(ck−h(t)/αhϕk(t)); ξt)
be the same quantity for each h ∈ H. Since u′(c; ξt) is a monotonically decreasing function of
c, this in turn implies that ck−h(t)/αhϕk(t) must be the same for each h ∈ H. This in turn is
only consistent with (A.3) if ck−h

k (t) = αk−hyk(t) for each h ∈ H. Since the same expression
holds for h /∈ H as well (where it simply states that ck−h

k (t) = 0), the optimal consumption
allocation must satisfy (1.9) for all j, as stated in the lemma.

Finally, using this result, we can rewrite the objective (A.4) as a function of yk(t) alone,
obtaining

ϕk(t)u(yk(t)/ϕk(t); ξt) − v(yk(t); ξt). (A.5)

The optimal output level is the yk(t) that maximizes (A.5). Since the objective involves
only ϕk(t) and the disturbances ξt, the solution is of the form yk(t) = y∗(ϕk(t); ξt), where
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the function y∗(ϕ; ξ) is the same for any sector k. Moreover (A.5) is again a strictly concave
function, and the Inada conditions imply that we must have an interior optimum. There is
thus a unique solution y∗(ϕ; ξ), implicitly defined by the first-order condition (1.8) stated in
the lemma.

This establishes Lemma 2. In addition, differentiation of (1.8) implies that

∂y∗

∂ϕ
=

y∗

ϕ

−u′′/ϕ
v′′ − u′′/ϕ

> 0,

so that y∗ is a monotonically increasing function of ϕ, as stated in the main text. In the limit
as ϕ → 0, the first term in (A.5) approaches zero regardless of the value of yk(t); hence the
objective approaches a monotonically decreasing function of yk(t) for all yk(t) > 0, which is
maximized when yk(t) = 0. Hence y∗ → 0 as ϕ→ 0, for any disturbances ξ.

A.3 Proof of Proposition 1

The first-best optimal allocation of resources in this case has already been established in
Lemma 2:

yk(t) = y∗t , cjk(t) = αk−j · yk(t) (A.6)

for all j, k, and all t ≥ 0. We wish to prove that this resource allocation, together with prices

pk(t) = P ∗(t), 1 + i(t) = (1 + r∗t )
P ∗(t+ 1)

P ∗(t)
(A.7)

for all k and all t ≥ 0, represents an equilibrium.
We first observe the prices and quantities specified in (A.6)–(A.7) imply that sector j’s

end-of-period asset position each period will satisfy bj(t) = aj(t), as a consequence of (1.11).
Substitution of this conclusion into (1.13) implies that

aj(t+ 1) = (1 + i(t))aj(t) − τ(t+ 1)

for each t ≥ 0. Then under the hypothesis that aj(0) = a(0)/N and that τ(t+1) each period
is consistent with the fiscal authority’s target path for the public debt, the assumed behavior
implies that aj(t) = a(t)/N for all t ≥ 0. This in turn implies that bj(t) = a(t)/N > 0 each
period, so that the hypothesized spending plan is consistent with the borrowing constraint
(1.12) each period. Hence the hypothesized spending plan represents a feasible plan for units
in sector j. We next show that it is their optimal plan, i.e., that it is the feasible plan with
the highest value for the objective (1.1).

Conditions (1.11) and (1.13) imply a law of motion for the nominal asset position of the
form

aj(t+ 1)

P (t+ 1)
= (1 + i(t))

P (t)

P (t+ 1)

[
aj(t)

P (t)
+
pj(t)yj(t) −

∑
k pk(t)cjk(t)

P (t)

]
− τ(t+ 1)

P (t+ 1)

for each t ≥ 0. The prices and interest rates assumed in (A.7) imply that in the conjectured
equilibrium, this can be written in the form

βρt+1

[
aj(t+ 1)

P ∗(t+ 1)
+

τ(t+ 1)

P ∗(t+ 1)

]
= ρt

[
aj(t)

P ∗(t)
+ yj(t) −

∑
k

cjk(t)

]
,
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where
ρt ≡ u′(y∗t ; ξt), (A.8)

using the definition of the natural rate of interest in (1.17). Multiplying both sides of this
equation by βt and summing for values of t from 0 to T − 1 yields the condition

βTρT
aj(T )

P ∗(T )
+

T∑
t=1

βtρt
τ(t)

P ∗(t)
= ρ0

aj(0)

p̄
+

T−1∑
t=0

βtρt[yj(t) −
∑
k

cjk(t)], (A.9)

which any feasible spending plan must satisfy for any T ≥ 1.
We further note that because bj(T − 1) = 0, (1.12) and (1.13) imply that aj(T ) ≥

−τ(T )/N under any feasible plan. In addition, (1.15) together with (1.19) implies that
under any policy of the kind hypothesized, we must have

lim
T→∞

βTρT
τ(T )

P ∗(T )
= 0, (A.10)

so that any feasible plan must satisfy

lim
T→∞

βTρT
aj(T )

P ∗(T )
≥ 0. (A.11)

Together with the fact that (A.9) must hold for arbitrary T , this implies that any feasible
spending plan must satisfy the integrated intertemporal budget constraint

∞∑
t=0

βtρt
∑
k

cjk(t) ≤ ρ0
aj(0)

p̄
+

∞∑
t=0

βtρtyj(t) −
∞∑
t=1

βtρt
τ(t)

P ∗(t)
. (A.12)

Moreover, under the hypothesized spending plan, aj(t) = a(t)/N each period; (1.19) then
implies that under this plan, condition (A.11) holds with equality, and hence (A.12) is
satisfied with equality.

We next show that the hypothesized spending plan is the optimal one for a unit in sector
j, among all plans consistent with the constraint (A.12). This is a problem of maximizing
a concave objective (1.1) subject to a single linear inequality constraint. Moreover, the fact
that goods k /∈ Kj(t) have positive prices, but have no effect on the objective (1.1) makes it
obvious that the optimal solution requires that cjk(t) = 0 for any k /∈ Kj(t), as is true of the
hypothesized spending plan (A.6). It then remains only to show that the hypothesized plan
is optimal among all those satisfying the constraint that cjk(t) = 0 for all k /∈ Kj(t).

We then seek to maximize a function that is increasing in each of its arguments cjk(t)
(for k ∈ Kj(t)), and strictly concave. The fact that the objective is increasing requires
that the optimal plan must satisfy the constraint (A.12) with equality, but this is true of
the hypothesized plan for each sector j, as just shown. In addition, the strict concavity
of the objective implies that there must be a unique optimum, characterized by the first-
order conditions. The Inada conditions on the utility function u(c; ξ) further imply that
the optimal plan must involve positive consumption of each of the goods k ∈ Kj(t) in each
period t ≥ 0. It follows that a consumption plan {cjk(t)} is optimal if and only if, in addition
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to satisfying the budget constraint (A.12) with equality, the marginal rate of substitution
between any two goods is equal to their relative price.

The conjectured prices and quantities (A.6)–(A.7) imply that for any two goods k, k′ ∈
Kj(t) in some period t, we have

u′(cjk(t)/αk−j; ξt)

u′(cjk′(t)/αk′−j); ξt)
=

ρt
ρt

= 1 =
P ∗(t)

P ∗(t)
=

pk(t)

pk′(t)
,

so that the intra-temporal optimality condition is satisfied. The marginal utility of an
additional unit of expenditure in period t is then equal to u′(y∗t ; ξt)/P

∗(t), regardless of
which good k ∈ Kj(t) it is spent on. Furthermore, the conjectured prices and quantities
(A.6)–(A.7) imply that for any two successive periods t, t+ 1,

β
ρt+1

ρt
=

1

1 + r∗t
=

1

1 + i(t)

P (t+ 1)

P (t)
,

so that the inter-temporal optimality condition is satisfied as well.
Thus all necessary and sufficient conditions are satisfied to establish that given the

conjectured prices, the hypothesized spending plan is optimal among all plans consistent
with the budget (A.12). Of course, this last constraint is a weaker condition than the full set
of requirements for a spending plan to be feasible (in particular, it neglects the borrowing
constraints), so the set of feasible plans is a proper subset of the set of plans consistent with
(A.12). However, we have already verified that the hypothesized spending plan satisfies all
of the conditions for feasibility (in particular, it also satisfies the borrowing constraint (1.12)
each period); hence optimality among all plans in the larger set is a sufficient condition
to establish optimality among those plans in the smaller set of feasible plans. We have
therefore established that the hypothesized spending plan for each sector j is optimal, given
the conjectured prices.

The conjectured paths {yk(t)} for the production levels also satisfy (1.14) for each sector
k at each date t ≥ 0. We must further show that the conjectured goods prices for dates t ≥ 1
are market-clearing prices. This follows from (1.14), if for each sector k, yk(t) is the quantity
that units in sector k wish to supply, taking the price at which they can sell as given. Since
we have already shown that the marginal utility of additional nominal income in period t
is u′(y∗t ; ξt)/P

∗(t) in any sector, the first-order condition for optimal supply in period t is
satisfied if and only if

v′(yk(t); ξt)

pk(t)
=

u′(y∗t ; ξt)

P ∗(t)
. (A.13)

But for any sector k, the conjectured values for yk(t) and pk(t) satisfy (A.13), because of
(1.10).

We must also show that the conjectured path of interest rates {i(t)} clears the market for
liquid assets in each period t ≥ 0. But we have already shown above that the hypothesized
plan for units in any sector j implies that bj(t) = aj(t) = a(t)/N in each period, from which
it follows that

∑
j b

j(t) = a(t), and the asset market clears.
It thus remains only to verify that the conjectured paths are consistent with the government

policies specified in the proposition. We have already discussed the consistency of these paths
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with the specified target path for the public debt and the specified borrowing limits. The
conjectured prices (A.7) imply that in any period t ≥ 0, the right-hand side of (1.16) is equal
to

log(1 + r∗) + π∗(t+ 1) ≥ 0,

where the sign is guaranteed by (1.18). Hence the specified monetary policy rule requires
that log(1 + i(t)) equal the above expression, or alternatively, that

1 + i(t) = (1 + r∗t )
P ∗(t+ 1)

P ∗(t)
.

But this is exactly the path of interest rates specified in (A.7). Hence the prices and
quantities specified in (A.6)–(A.7) constitute an equilibrium, under the policies specified
in the proposition.

Note that the proposition asserts only that an equilibrium of this kind exists under these
policies, and does not address the question whether this is the only possible equilibrium
consistent with the policies. We could go further, and establish local determinacy of the
proposed equilibrium, using the methods discussed in Woodford (2003) for the case of a
single-sector model. We do not pursue such issues here, noting only that the issues connected
to uniqueness of equilibrium in this model are similar to those that arise in the single-sector
model.

A.4 Proof of Proposition 2

In this case, equilibrium prices are the same as in the one described in Proposition 1, and
equilibrium interest rates are the same, except for i(0). Equilibrium quantities are the same
for all t ≥ 1. In period t = 0, quantities are instead given by

yk(0) = y(0), cjk(0) = αk−jy(0), (A.14)

where y(0) is the quantity implicitly defined by

u′(y(0); ξ0) = β(1 + i(0))
p̄

P ∗(1)
u′(y∗1; ξ1), (A.15)

given the interest rate i(0).
The proof that these prices and quantities represent a perfect foresight equilibrium under

the assumed policy follows the same lines as in the proof of Proposition 1. First, we show
that the proposed plan for each unit is feasible, given the assumed prices. The plans (A.14)
imply that the circular flow of payments is again perfectly balanced in period zero, so that
bj(0) = aj(0) = a(0)/N for each j, just as in the case considered in Proposition 1. This
implies that the borrowing constraint (1.12) is satisfied in period zero. And because bj(0)
is the same for all j, one must have aj(1) = a(1)/N for each j, which are the same initial
asset positions at the beginning of period 1 as in Proposition 1. It then follows that the
proposed plan satisfies the feasibility constraints in all periods t ≥ 1, just as in the proof of
Proposition 1.
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Next, we show that a feasible plan for each unit must satisfy an integrated intertemporal
budget constraint of the form (A.12), where ρt continues to be defined by (A.8) for all t ≥ 1,
but in period t = 0 we instead define

ρ0 = β(1 + i(0))
p̄

P ∗(1)
u′(y∗1; ξ1),

which is only equal to the value defined in (A.8) if the interest rate is chosen so as to ensure
that y0 = y∗0. With this modification, the demonstration that a feasible plan satisfies the
intertemporal budget constraint proceeds as in the proof of Proposition 1. Moreover, we can
again show that the hypothesized plan for each unit satisfies this constraint with equality.

After this, in order to show that the proposed plan for each unit is the optimal plan
among those consistent with the budget constraint (A.12), we need only to show that the
marginal rates of substitution are all equal to the corresponding relative prices. In the case
of marginal rates of substitution between goods in periods t ≥ 1, all quantities and prices
are the same as in Proposition 1, so that the equality of marginal rates of substitution and
relative prices has already been shown. Condition (A.14) implies that the marginal rate of
substitution between any two goods that units in sector j consume in period zero is equal
to their relative price (which is 1); and condition (A.15) implies that the marginal rate of
substitution between real expenditure in period zero and real expenditure in period one is
equal to the real interest rate between those two periods. Hence all of the necessary and
sufficient conditions for optimality are satisfied. Then the fact that the plan is optimal among
those consistent with the weaker constraint (A.12), while it also satisfies all of the additional
conditions required for feasibility, together with the fact that all feasible plans must satisfy
(A.12), implies that the proposed plan for each unit is optimal among all feasible plans.

Next, we have already shown in the proof of Proposition 1 that the conjectured paths
{yk(t)} for the production levels also satisfy (1.14) for each sector k at each date t ≥ 1.
Condition (A.14) implies that this is true in period t = 0 as well. We have also already
shown in the proof of Proposition 1 that the prices in all periods t ≥ 1 are market-clearing
prices. And once again, the hypothesized plan for units in any sector j implies that bj(t) =
aj(t) = a(t)/N in each period, from which it follows that

∑
j b

j(t) = a(t), and the asset
market clears in every period t ≥ 0.

Finally, we have already shown in the proof of Proposition 1 that the conjectured prices
and quantities in all periods t ≥ 1 are consistent with the specification of monetary and
fiscal policy in those periods. The prices and quantities assumed here for period t = 0 are
also consistent with our alternative specification of policy in period t = 0. Hence all of the
conditions for a perfect foresight equilibrium, under the assumed policy, have been shown to
be satisfied.

In this equilibrium, the level of output y0 is determined by (A.15). Since all quantities in
this formula are taken as given, except the values of y(0) and i(0), the equation establishes
a structural relationship between these two quantities. The left-hand side of (A.15) is a
decreasing function of y0, while the right-hand side is an increasing function of i(0); it follows
that y(0) is a decreasing function of i(0). When i(0) takes the value specified by (1.16), the
equation implies that y0 = y∗0. Hence y0 is less than or greater than y∗0 according to whether
i(0) is greater or less than the value specified by (1.16), as asserted in the proposition.
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B Equilibrium with Asymmetric Disturbances

Here we present proofs of the main results in section 2 of the main text.

B.1 Proof of Lemma 3

The proof that the prices and quantities described in the proposition constitute a flexible-
price perfect foresight equilibrium for all periods t ≥ 1, taking as given the real financial
wealth of each sector at the beginning of period 1, follows the same kind of reasoning as in
the proof of Proposition 1.

First we verify that given the conjectured prices, the quantities described in the proposition
represent a feasible plan for each sector j. The vector ã(1), together with the target a(1)
for the public debt after taxes are collected at the beginning of period 1, implies that

aj(1) =
a(1)

N
+ [ãj(1) − (1/N)

∑
ℓ

ãℓ(1)]P ∗(1) =
a(1)

N
+

f j

1 − β
P ∗(1).

Then the fact that the stationary quantities {cjk} and yj satisfy (2.23) implies that (1.11) is
satisfied each period, if we further specify that

aj(t) =
a(t)

N
+

f j

1 − β
P ∗(t), bj(t) =

a(t)

N
+

β

1 − β
f jP ∗(t) (B.1)

for all t ≥ 1. This path for {bj(t)} must also satisfy the borrowing constraint (1.12) each
period, if the borrowing limit satisfies (2.22). Hence the hypothesized plan for sector j is
feasible, given the conjectured prices and the specified policy.

Next we show that any feasible plan for periods t ≥ 1 must satisfy an integrated
intertemporal budget constraint. We can proceed as in the proof of Proposition 1 to show
that under any feasible plan for a unit in sector j, we must have

βT−1 a
j(T )

P ∗(T )
+

T∑
t=1

βt−1 τ(t)

NP ∗(t)
= ãj(1) +

T−1∑
t=1

βt−1[q∗j yj(t) −
∑
k

q∗kc
j
k(t)], (B.2)

for any T ≥ 2. (The factors {ρt} are now omitted, because the absence of aggregate
disturbances implies that now ρt = ρ1 for all t ≥ 1; but we must now take account of
intra-period relative prices, assumed to equal 1 in (A.9).)

The argument after this step is slightly more complicated than in the proof of Proposition
1, because we no longer assume that bj(t) = 0 each period. However, (1.12) and (1.13) in
the more general case imply that

aj(T )

P ∗(T )
≥ (1 + i(T − 1))bj(T − 1)

P ∗(T )
− τ(T )

NP ∗(T )
= β−1 b

j(T − 1)

P ∗(T − 1)
.

Then the assumption (2.20) together with (A.10) guarantees that any feasible plan must
satisfy (A.11), even under our more general assumption about the borrowing limits.46 This

46Because of this, the result in Proposition 1 could easily be generalized to allow the more flexible kind of
borrowing limits assumed here.
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together with (B.2) then implies that any feasible plan must satisfy the integrated intertemporal
budget constraint

∞∑
t=1

βt−1
∑
k

q∗kc
j
k(t) ≤ ãj(1) +

∞∑
t=1

βt−1

[
q∗j yj(t) −

τ(t)

NP ∗(t)

]
. (B.3)

In addition, (1.15) and (1.19) imply that

∞∑
t=1

βt−1 τ(t)

P ∗(t)
=

(1 + i(0))a(0)

P ∗(1)
=

N∑
ℓ=1

ãℓ(1).

Substituting this into the right-hand side of (B.3) and using the definition (2.24), the
intertemporal budget constraint can alternatively be written

∞∑
t=1

βt−1
∑
k

q∗kc
j
k(t) ≤

∞∑
t=1

βt−1q∗j yj(t) +
f j

1 − β
. (B.4)

Thus under the assumptions of the proposition, any feasible plan for units in sector j must
satisfy (B.4). Moreover, it follows from (2.23) that the hypothesized stationary plan satisfies
(B.4) with equality.

Next we show that the hypothesized plan for units in sector j maximizes the terms in
(1.1) for periods t ≥ 1, among all plans consistent with (B.4). We have already shown
that the hypothesized plan satisfies (B.4) with equality, so it remains only to show that all
marginal rates of substitution are equal to the corresponding relative prices. The fact that
the stationary allocation is a competitive equilibrium of the static model requires that

u′(cjj+h/αh; ξ̄)

q∗j+h

=
v′(yj; ξ̄)

q∗j
(B.5)

for each h ∈ H (i.e., for each of the goods that units in sector j consume in periods t ≥
1). This implies that all intra-temporal marginal rates of substitution are equal to the
corresponding relative prices. We also note that the marginal utility of additional expenditure
on the composite good in any period, for units in sector j, is given by (any of) the expressions
in (B.5). Thus under the hypothesized plan, this marginal utility is constant over time, and
the marginal rate of substitution between expenditure on the composite good in periods t
and t + 1 (for any t ≥ 1) is equal to β−1. This is exactly the real interest rate between
these periods, under the hypothesized prices, because of (2.25). Thus we verify all of the
necessary and sufficient conditions for the hypothesized plan to maximize (1.1) among all
plans consistent with (B.4). Since we have also shown that all feasible plans must satisfy
(B.4), and that the hypothesized plan is feasible, it follows that the hypothesized plan
maximizes (1.1) among all feasible plans.

Next we show that markets clear under the hypothesized plans for all sectors. The
fact that goods markets clear each period follows from the fact that the intra-temporal
resource allocation each period corresponds to a Walrasian competitive equilibrium of the
static model. And condition (B.1) implies that

N∑
j=1

aj(t) = a(t) +

∑N
j=1 f

j

1 − β
P ∗(t) = a(t)
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each period, so that the asset market clears as well.
Finally, we show that the conjectured paths are consistent with the specification of policy.

The only non-trivial condition to check is consistency with the Taylor rule (1.16) for interest-
rate policy. Because the inflation is consistent with the central bank’s target in each of the
periods t ≥ 1 under the conjectured paths, the right-hand side of (1.16) corresponds simply
to P ∗(t + 1)/(βP ∗(t)), which is greater than 1 under the assumption (1.18). Hence the
assumed monetary policy rule requires that 1 + i(t) equal this quantity each period, which is
precisely what (2.25) assumes. Hence the conjectured paths are consistent with policy, and
constitute a perfect foresight equilibrium under the assumed policy.

Moreover, in this equilibrium, the borrowing constraint (1.12) is not a binding constraint
in any period t ≥ 1, as we have shown that each unit’s intertemporal plan would also be
optimal if the unit were subject to only an integrated intertemporal budget constraint. Note
also that our analysis implies that it would be possible to relax the borrowing limit bj(t)
in any period t ≥ 1 without this implying any change in the equilibrium paths of prices or
quantities.

B.2 Proof of Lemma 4

The function V j(ã; ã(1)) is the maximum achievable value of the discounted utility in periods
t ≥ 1 for a unit in sector j that carries real pre-tax wealth ã into period t = 1, if the prices
and interest rates are the ones associated with the stationary equilibrium determined by the
aggregate vector of pre-tax wealths ã(1). The envelope theorem then implies that the partial
derivative of V j with respect to ã, evaluated at ã = ãj(1), will equal the marginal utility of
real expenditure in period 1 in the stationary equilibrium. Thus we must have

Λj(ãj(1); ã(1)) =
u′(cjk/αk−j; ξ̄)

q∗k
=

v′(yj; ξ̄)

q∗j
, (B.6)

where we note that in the stationary equilibrium, the middle expression must have the same
value for each k such that αk−j > 0, and the final expression must also have this same value,
as a consequence of the first-order conditions for optimization by units in sector j.

Moreover, it follows from Lemma 3 that the allocation of resources in the stationary
equilibrium depends only on the value of the vector f implied by the vector ã(1). Thus both
the second and third expressions in (B.6) are functions of f that are independent of the
value of β, and we can define

Λ∗j(f) ≡ v′(yj(f); ξ̄)

q∗j (f)
.

Here yj(f) means the output supply by sector j in the static competitive equilibrium
associated with the vector of net transfers f , and q∗j (f) is the relative price of the sector j
good in that same equilibrium. Note that we have assumed that ã(1) is such that f ∈ U,
so that we have a uniquely defined static competitive equilibrium with the vector f . It then
follows not only that Λ∗j(f) is uniquely defined, but that it varies continuously with variation
in the elements of f .
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Our definition of the equilibrium selection has also assumed that when f = 0, the static
competitive equilibrium is the one in which yj = ȳ, q∗j = 1 for each sector. Thus we have

Λ∗j(0) = v′(ȳ; ξ̄) = u′(ȳ; ξ̄).

And since Λ∗j(f) must be a continuous function near f = 0, we must have

lim
f→0

Λ∗j(f) = u′(ȳ; ξ̄)

for each j, as asserted in the lemma.

B.3 Proof of Proposition 3

Here we consider equilibrium determination when a(0) is arbitrarily close to zero (though
we assume that a(0) > 0), and bj(0) = 0 for all j. In this case, satisfaction of the borrowing
constraint (1.12) by all sectors requires that 0 ≤ bj(0) ≤ a(0) for each sector, and hence that
each element of f must satisfy the bounds

− 1

N
(1 − β)

(1 + i(0))

P ∗(1)
a(0) ≤ f j ≤ N − 1

N
(1 − β)

(1 + i(0))

P ∗(1)
a(0). (B.7)

As a(0) → 0, for fixed values of the other model parameters, both the upper and lower
bounds converge to 0. Hence we can assure that in equilibrium, all elements of f must be
as close as may be desired to zero, by fixing a sufficiently small value for a(0).

Lemma 4 then implies that the value of Λj(ãj(1); ã(1)) must approach u′(ȳ; ξ̄), so that
under the assumption about i(0) maintained in the proposition, the Euler condition (2.27)
takes the simpler form (2.29).

In addition, given that β < 1, the bounds (B.7) can alternatively be written

− 1

N
a(0) ≤ bj(0) ≤ N − 1

N
a(0).

Thus we observe that in the limit as a(0) → 0, the equilibrium value of each of the {bj(0)}
must approach zero. We thus calculate the equilibrium in period zero for the limiting case
in which we must have bj(0) = 0 for all j. It then follows, as discussed in the main text,
that the vector c(0) of sectoral expenditure levels must satisfy c(0) = Ac(0).

We now show that under our assumptions, the matrix A must have a unique right
eigenvector π with an associated eigenvalue of 1. We first note that the definition of the
matrix A in (1.5) implies that Akj ≥ 0 for all k, j, and that

∑N
k=1Akj = 1 for every j, or in

vector notation, that
e′A = e′.

This indicates that 1 must be an eigenvalue of the matrix A, with e′ the associated left
eigenvector. Any eigenvalue must also have at least one associated right eigenvector; thus it
remains only to establish that the right eigenvector π is unique (up to normalization).

We observe from the properties noted in the previous paragraph that A is a non-negative
matrix (Gantmacher, 1959, chap. XIII, Definition 1) that is furthermore a stochastic matrix
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(Definition 4).47 Any non-negative matrix necessarily has a maximal (Frobenius-Perron)
eigenvalue λ̄ with the properties that (i) λ̄ is a non-negative real number, and (ii) |λ| ≤ λ̄
for all eigenvalues λ of the matrix (where |λ| denotes the modulus of an eigenvalue that
may be complex); moreover, (iii) the left and right eigenvectors associated with the maximal
eigenvalue are real-valued and non-negative in all elements (Gantmacher, Theorem 3). In
the more specific case of a stochastic matrix, the maximal eigenvalue is 1 (Gantmacher, p.
83). The associated left eigenvector is e′, which is obviously non-negative in all elements;
but there must be a (non-zero) right eigenvector π that is also non-negative in all of its
elements. Because π ≥ 0, we can normalize the right eigenvector to satisfy e′π = 1.

To go further it is useful to write the matrix A in the normal form defined in Gantmacher
(sec. XIII.4).48 This involves partitioning the N sectors (the rows and columns of the
matrix) into disjoint subsystems {S1, . . . , Ss}, each of which is irreducible, in the sense that
any two sectors j ̸= z within the same subsystem can be linked by a sequence of sectors
(j, k, l, . . . , y, z) all within the same subsystem, with the property that j buys goods produced
in k, k buys goods produced in l, . . . , and y buys goods produced in z. We further define
a subsystem as “isolated” if each of the sectors j ∈ Si spend only on products of sectors in
subset Si. Then Gantmacher shows that one can order the subsystems so that the first g ≥ 1
of them are the (only) isolated subsystems; and the subsystems Si for g+1 ≤ i ≤ s each have
the property that each of the sectors j ∈ Si spends only on products produced in subsystems
Sk with k ≤ i. Thus if one re-orders the sectors in accordance with this ordering of the
subsystems, the matrix A has a normal form representation that is upper block-triangular,
with all off-diagonal blocks being blocks of zeroes in the first g block columns.

In the case that ϕk(0) > 0 for all k, our assumption that α1 > 0 implies that there is only
one isolated subsystem, which is the complete system of all N sectors (1 buys from 2, which
buys from 3, . . . , which buys from N , which buys from 1). Hence in this case, we must have
g = 1, s = 1. The situation is only slightly more complicated if there exists a sector for which
ϕk(0) = 0. We have assumed that there can be at most one such sector; let it be sector 1
(as in the numerical examples shown in Figure 2). In this case, we must have g = 1, s ≥ 2.
The only isolated subsystem must be the one that contains sector N ; the assumption that
α1 > 0 implies that 1 buys from 2 which buys from . . . which buys from N − 1 which buys
from N , so that any isolated subsystem must contain sector N . In addition, subsystem Ss

must consist solely of sector 1, since no other sector buys anything from sector 1 (as a result
of the pandemic); thus there must be at least two subsystems.

Gantmacher (Theorem 12) shows that a stochastic matrix A has a unique right eigenvector
π with an associated eigenvalue of 1 if and only if g = 1 in the normal form representation
(i.e., there is a unique isolated subsystem). In this case the Frobenius-Perron eigenvector
π corresponds to the uniquely defined stationary long-run probabilities of occupying the
N different states, if A is interpreted as the matrix of transition probabilities defining a
homogeneous N -state Markov chain. The elements of this eigenvector satisfy πj > 0 for all
j ∈ S1, and πj = 0 for all other j. We have shown that this result necessarily applies to our
model.

47More precisely, the transpose A′ is a stochastic matrix as defined in Gantmacher. Below we translate
the properties of stochastic matrices established in Gantmacher into statements about the matrix A.

48More precisely, we put A′ in the form shown in Gantmacher (p. 75).
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This unique solution for π allows us then to solve uniquely for the vector c(0) = Ωπ,
where the value of Ω > 0 is given by (2.31), as explained in the main text, in order to satisfy
(2.29). This establishes the proposition.

Because c(0) is a multiple of π, it has the property that cj(0) > 0 for all j in S1, while
cj(0) = 0 for all other sectors. For example, in the case of the uniform network structure
shown in the left panel of Figure 1, S1 consists of sectors {2, 3, 4, 5}, while S2 consists
of {1}. In the case of the chain structure shown in the right panel of Figure 1, instead
(and regardless of the value of the parameter λ), the irreducible subsystems are S1 = {5},
S2 = {4}, S3 = {3}, S4 = {2}, and S5 = {1}, among which only S1 is an isolated subsystem.
This explains why, in Figure 2, we have cj(0) = 0 only for j = 1 in the left panel, while
instead cj(0) = 0 for all j ≤ 4 in the right panel.

B.4 Proof of Corollary 1

We know from Lemma 2 that the first-best consumption level cjk(0) of any good k that is
consumed by sector j in period zero is given by (1.9), where yk(0) = y∗(ϕk(0); ξ̄), and the
function y∗(ϕ; ξ) is implicitly defined by (1.8). We have also shown in section A.2 above
that y∗(ϕ; ξ) is an increasing function of ϕ, for a given disturbance vector ξ. Because we
have assumed that v is at least weakly convex in y, v′(y∗; ξ̄) must be non-decreasing when
ϕ increases. Thus the right-hand side of (1.8) must be non-decreasing, and so the left-hand
side cannot decrease either. Because u′(c; ξ̄) is a decreasing function of c, it follows that y∗/ϕ
must be non-increasing when ϕ increases.

Then since the optimal level of production for sector k satisfies y∗/ϕ = ȳ when ϕk(0) = 1,
we must have y∗/ϕ ≥ ȳ for all 0 < ϕk(0) ≤ 1. Thus the optimal level of production in sector
k is necessarily no smaller than ϕk(0)ȳ. Combining (1.9) with this result, we conclude that
the optimal consumption of good k by sector j must satisfy

cj,optk (0) ≥ αk−jϕk(0)ȳ. (B.8)

But the quantity on the right-hand side here is the equilibrium consumption if the borrowing
constraint does not bind for units in sector j, from (2.32). This in turn is an upper bound
on equilibrium consumption, since a binding borrowing constraint can only reduce cj(0) and
hence (because of (1.4) reduce sector j consumption of all goods of which there is positive
consumption. Thus we must have

cjk(0) = Akjc
j(0) ≤ αk−jϕk(0)ȳ ≤ cj,optk (0) (B.9)

for each good k. Thus no good can be consumed in an amount greater than the amount
required for the first-best optimal allocation, as stated in the corollary.

Furthermore, if sector j is borrowing-constrained in period zero, the first inequality in
(B.9) must be a strict inequality. Thus in this case we must have cjk(0) < cj,optk (0), as stated
in the corollary (condition (i)). Finally, if v is a strictly convex function of y, the function
v′(y∗; ξ̄) must strictly increasing (and not just non-decreasing) when ϕ increases. From
this we can conclude (by an argument parallel to the one made above, under the weaker
assumption of weak convexity) that y∗/ϕ must be a decreasing function of ϕ (not just non-
increasing). This implies that y∗/ϕ ≥ ȳ for all 0 < ϕk(0) < 1, from which we conclude that
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(B.8 must be a strict inequality for any 0 < ϕk(0) < 1.49 This then implies that the last
inequality in (B.9) must be a strict inequality, so that again we must have cjk(0) < cj,optk (0),
as stated in the corollary (condition (ii)).

B.5 Algebra of the examples in Figure 2

In the case of a uniform network structure (the left panel of Figure 2), Akj = 1/(N − 1) for
all j and any k ̸= 1; the Frobenius-Perron maximal right eigenvector is then easily seen to
be

π = (0 1/(N − 1) . . . 1/(N − 1))′.

(Because every sector spends the same amount in each sector k ̸= 1, but nothing in sector
1, the eigenvector must have this property as well.) Furthermore, ωj = (N − 1)/N for all j.
Hence the maximal value in the problem on the right-hand side of (2.31) is achieved by all
sectors j ̸= 1, and the equilibrium expenditure vector is given by

c(0) = (0 (N − 1)/N . . . (N − 1)/N)′ · ȳ,

as shown in the left panel of Figure 2 for the case N = 5. In this example, expenditure
collapses completely in sector 1 (which no longer receives any income), but it is reduced in
sectors j ̸= 1 only to the extent that it is efficient for these sectors to reduce their spending
(given that they no longer can or should buy sector-1 goods).

The collapse of effective demand is much more severe (and the inefficiency much greater)
in the case of a “chain” network. In this case, one can show that the Frobenius-Perron
maximal right eigenvector is given by

π = (0 . . . 0 1)′.

Sector 1 cannot spend at all, because it receives no income. Given that sector 1 cannot
spend, sector 2 receives no income other than its own within-sector spending. But because
sector 2 does not spend all of its income within-sector, an eigenvalue with eigenvector 1 must
involve zero spending by this sector as well. Continuing iteratively in this way, one can show
that every sector but sector N must have zero expenditure.

The argument no longer goes through in the case of sector N , because — given that they
can no longer buy sector 1 goods — units in sector N spend all of their income within-sector.
Hence all elements of π but the final one must equal zero. In the problem on the right-hand
side of (2.31), sector N achieves the maximum. Then given that c∗N = (1−α1)ȳ = (1−λ)ȳ,
the equilibrium expenditure vector is given by

c(0) = (0 . . . 0 1 − λ)′ · ȳ,

as shown in the right panel of Figure 2 for the case N = 5, λ = 0.8.

49Note that (B.8) still holds with equality if ϕk(0) is equal to either 0 or 1. In the former case, both sides
are equal to zero; in the latter case, both sides are equal to αk−j ȳ. Note also that (B.8) also holds with
equality for any good k such that αk−j = 0, so that sector j does not wish to consume it, regardless of the
value of ϕk(0).
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These two cases illustrate the two extremes with regard to the degree of collapse of
aggregate expenditure and output in the limiting case in which a(0) → 0. For a general
network structure with a fraction α0 = 1/N of within-sector spending by all sectors (as in
these examples), we can show that aggregate spending cagg(0) ≡

∑N
j=1 c

j(0) must fall within
the bounds

(1/N)ȳ ≤ cagg(0) ≤ (N − 2 + (1/N))ȳ < (N − 1)ȳ = y∗ ≡
N∑
j=1

c∗j.

Here the lower bound is established by the fact that at least one sector must not be borrowing-
constrained, and since that sector cannot be sector 1, its first-best level of spending c∗j must
at least equal α0ȳ = ȳ/N. The upper bound is established by the fact that spending by
sector 1 must be zero, and that spending in every other sector must be bounded above by
c∗j, which cannot exceed ȳ for any sector. Both of these bounds are achievable, since (as
just shown) the chain network achieves the lower bound while the uniform network achieves
the upper bound.

B.6 Proof of Proposition 4

We derive the solution to (2.35) and demonstrate its uniqueness in several steps. We begin
by observing that there must be a unique solution, before deriving a closed-form expression
for that solution.

B.6.1 Existence of a unique solution to the “Keynesian cross”

Let δ >> 0 be fixed, and consider the set of vectors c(0) that satisfy (2.35). We can show
that there must be a unique solution using properties of positive concave mappings that are
reviewed in Cavalcante et al. (2016). For any vector c(0), let F (c(0)) be the vector defined
by the right-hand side of (2.35); thus F (·) maps N -vectors into N -vectors. If δ(0) >> 0,
we can further show that F (·) is a positive mapping, in the sense that for any c(0) ≥ 0,
we have F (c(0)) >> 0. Let Fj(·) be the jth element of F (·), that is, the implied value for
cj(0). Then for each j, we need to show that for any c(0) ≥ 0, Fj(c(0)) > 0. Since A ≥ 0,
c(0) ≥ 0 implies that Ac(0) ≥ 0. Then under the hypothesis that δ(0) >> 0, we must have

1

p̄
δ(0) + Ac(0) >> 0.

Thus the jth element of this vector must be positive, for any j. Since c∗j > 0 as well, the
minimum of the two quantities must be positive. Thus Fj(c(0)) is necessarily positive, as
required.

We can further show that each of the functions Fj(·) is concave. This requires that for
any vectors c1, c2, and any scalar 0 ≤ α ≤ 1,

Fj(αc1 + (1 − α)c2) ≥ αFj(c1) + (1 − α)Fj(c2). (B.10)
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Given the definition of Fk(·) in (2.35) as the minimum of two functions, this holds if and
only if both of the inequalities

δj

p̄
+
∑
k

Ajk[αck1 + (1 − α)ck2] ≥ αFj(c1) + (1 − α)Fj(c2), (B.11)

c∗j ≥ αFj(c1) + (1 − α)Fj(c2) (B.12)

are necessarily satisfied. But inequality (B.11) follows from the fact that

Fj(ci) ≤ δj

p̄
+
∑
k

Ajkc
k
i

for each of the cases i = 1, 2; and inequality (B.12) follows from the fact that

Fj(ci) ≤ c∗j

for each of the cases i = 1, 2. Hence (B.10) is satisfied, and Fj(·) is a concave function for
each j. This in turn means that F (·) is a concave mapping.

Thus F (·) is a positive concave mapping. Moreover, there exists a finite upper bound c̄
with the property that F (c(0)) ≤ c̄ for all c(0) ≤ c̄; this is the bound c̄ = c∗, where the
elements of the vector c∗ are defined in (2.30). It then follows from Cavalcante et al. (2016,
Proposition 1 and Facts 4.1 and 4.2) that the mapping F (·) has a unique fixed point. This
means that the system of equations (2.35) has a unique solution c(0).

B.6.2 Properties of the solution: monotonicity

For any vector δ >> 0, let this unique fixed point be denoted c̄(δ). (Note that the mapping
F (·) depends on the vector δ.) One can easily establish several features of the functional
dependence of the fixed point on δ. In addition to being useful in the proof of Proposition
4, these will be used in our later analysis of the effects of fiscal policy and credit policy.

First, because 0 << F (c) ≤ c∗ for all c, it is clear that the fixed point must satisfy
0 << c̄(δ) ≤ c∗ for all δ ≥ 0.

We can also show that each of the component functions c̄j(δ) must be at least weakly
increasing in each of the elements of δ. Consider any two vectors δ1, δ2 such that δ2 ≥ δ1 >>
0. Then we can show that we must have c̄(δ2) ≥ c̄(δ1) for each j. Let Fi(·) be the mapping
defined by the right-hand side of (2.35) when δ = δi, for i = 1, 2, and further define the
mapping

F̃ (ζ) ≡ F2(c̄(δ1) + ζ) − c̄(δ1),

defined for an arbitrary vector ζ ≥ 0. Then c will be a fixed point of F2 if and only if
ζ = c− c̄(δ1) is a fixed point of F̃ .

It is evident that F̃ (·) is a continuous mapping, with the upper bound F̃ (ζ) ≤ c∗− c̄(δ1)
for all ζ. Moreover, for any ζ ≥ 0, we must have

F̃ (ζ) ≥ F2(c̄(δ1)) − c̄(δ1)

≥ F1(c̄(δ1)) − c̄(δ1) = 0.
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Thus F̃ (·) maps the set of vectors satisfying the bounds

0 ≤ ζ ≤ c∗ − c̄(δ1)

into itself. These bounds define a compact, convex subset of RN . Hence by Brouwer’s fixed-
point theorem, there must be a vector ζ∗ in this set that is a fixed point of the mapping
F̃ (·). It follows that c = c̄(δ1) + ζ∗ is a fixed point of F2(·), and since (as shown above) the
latter mapping must have a unique fixed point, it follows that we must have

c̄(δ2) = c̄(δ1) + ζ∗ ≥ c̄(δ1).

Hence each of the functions c̄j(δ) must be weakly increasing in each of the elements of δ, as
asserted.

This means that along any continuous expansion path δ(s) for the vector δ specifying
period-zero liquidity, where the real variable s indexes distance along the expansion path [not
time], if each element of δ(s) is at least weakly increasing in s, then each element of c̄(δ(s))
will be weakly increasing in s as well. Among other things, this means that along any such
expansion path (representing situations that can be reached through progressively larger
lump-sum transfers in period zero), if the borrowing constraint no longer constrains some
sector j for the level of transfers parameterized by s, then sector j will not be borrowing-
constrained for any vector of transfers corresponding to a point s′ > s along the expansion
path.

Thus for each sector, there will be a single point along the expansion path at which that
sector shifts from being borrowing-constrained (for all levels of transfers below that point) to
being unconstrained (for all levels of transfers beyond that point). This is illustrated for two
different network structures in Figure 3 (where the labeled points {âi} on the horizontal axis
are levels of initial liquid assets at which another sector ceases to be borrowing-constrained).
If we let C be the subset of the sectors that are borrowing-constrained in the case of
a particular vector of initial asset positions, then as one proceeds along any monotonic
expansion path, the set C remains the same except at a finite number of points, and at any
point where C changes, increasing s can only result in the subtraction of elements from C.

The set of possible vectors δ can thus be partitioned into regions corresponding to
different subsets C of borrowing-constrained sectors. We have already shown (in the proof
of Proposition 3) that for all δ(0) close enough to 0, the set of unconstrained sectors will
be U0, the set of sectors j for which the maximum value is achieved in the problem on the
right-hand side of (2.31); hence at such points the set of constrained sectors will be C0, the
complement of U0. Because the set of constrained sectors can only shrink as a result of
additional initial transfers (or further relaxations of borrowing constraints), it follows that
for all δ(0) >> 0, C must be an element of C, the set of all subsets of C0 (including the
empty set ∅ as well as C0 itself).
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B.6.3 The local solution for a given subset C of borrowing-constrained sectors

If we know what the set C is for a given vector δ, it is straightforward to compute the
equilibrium expenditure vector c̄(δ) at that point.50 The solution vector c(0) must satisfy

cj(0) =
δj

p̄
+
∑
k

Ajkc
k(0)

for all j ∈ C, and
cj(0) = c∗j

for all j /∈ C. This is a system of linear equations to solve for c(0).
The first of these sets of equations can be written in vector form as

ĉ = δ̂ + ACC ĉ + ACU č
∗,

where ĉ is the vector of elements of the solution c(0) corresponding to sectors j ∈ C,; δ̂ is
the vector collecting the values of δj/p̄ for the sectors j ∈ C; č∗ is the vector of elements of
c∗ corresponding to sectors k /∈ C; and the matrix A has been partitioned as in (3.2) in the
main text. This system of linear equations has a unique solution (and hence the complete
system has a unique solution) if and only if the matrix I −ACC is non-singular.

This is necessarily the case for any C ∈ C. Note that in order for I−ACC to be singular,
there would have to exist a vector u ̸= 0 such that ACCu = u. This would require that
the set of sectors C be an isolated subsystem (that is, sectors j ∈ C spend only on the
products of sectors k ∈ C). But we have shown in the proof of Proposition 3 that under
our assumptions, the only isolated subsystem can be S1, the one containing sector N . We
have further shown that the eigenvector π has non-zero elements only for sectors j ∈ S1.
Hence the elements of U0 (of which there must be at least one) belong to S1; it follows that
not all of S1 can belong to C0, and thus that not all of S1 can belong to any C ∈ C. We
can therefore conclude that C cannot be an isolated subsystem, from which it follows that
I −ACC must be non-singular.

We can show something stronger, which is that all eigenvalues of ACC must be inside
the unit circle (i.e., have modulus less than 1). We note that ACC is a non-negative matrix,
though no longer a stochastic matrix (because the set C cannot be an isolated subsystem,
as just discussed). It follows from Gantmacher (1959, chap. XIII, Theorem 3) that ACC

has a non-negative real eigenvalue r, such that |λ| ≤ r for all of the other eigenvalues of the
matrix. This maximal eigenvalue is bounded above by

r ≤ max
j∈C

∑
k∈C

Akj ≤ 1.

50Note that it may be ambiguous whether to include a particular sector j in the set C or not, as in
equilibrium the sector’s income may be just enough to allow it to spend the optimal quantity c∗j , with
end-of-period assets bj(0) = 0. In this case, it does not matter whether we consider the set C to include the
sector j or not; the solution obtained for c̄(δ) will be the same in either case. In such a case, the value of
δ lies on the boundary between two regions corresponding to different sets of constrained sectors; but since
the function c̄(δ) is continuous at such boundaries, it does not matter to which region the boundary case is
assigned. Note that if instead we wish to compute the effect of a change in δ, it will matter how we define
the set of constrained sectors C; but in that case, the right answer will depend on the direction in which δ
is to be changed.
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Here the first inequality follows from Gantmacher (p. 68), and the second from the definition
of the matrix A.

However, we have just shown that 1 cannot be an eigenvector of ACC . Thus the maximal
eigenvalue must satisfy r < 1, from which it follows that |λ| < 1 for every eigenvalue of ACC .
This allows us to write

(I −ACC)−1 = I + ACC + (ACC)2 + (ACC)3 + . . .

where the infinite sum must converge because the eigenvalues of ACC have modulus less
than 1. Since each of the terms on the right-hand side is a non-negative matrix, it follows
that

(I −ACC)−1 ≥ 0. (B.13)

The system of linear local equations therefore has a unique solution

cloc(δ;C) =

[
(I −ACC)−1(δ̂ + ACU č

∗)
č∗

]
,

where the solution is partitioned as in (3.2); this is the solution (2.37 referred to in the
proposition. (See the proof of Lemma 6, below, for further details.) Here we have written
the set C as an argument of the function, because there is a separate function of this kind
for each possible choice of C ∈ C. We further see that for any C, the solution is a linear
function of δ and c∗, and that the matrices of coefficients denoted M and N in (2.37)
contain only non-negative elements, because of (B.13) and the fact that all elements of A
are non-negative.

B.6.4 The unique global solution

We see then that if we can determine which set of sectors C is the borrowing-constrained
set in the case of any given vector of initial asset balances, we can determine the value of
c̄(δ) at that point. We next show how to do this. Fixing the vector δ, let C̄ be the set of
constrained sectors in the solution to the “Keynesian cross” system (2.35), and let C instead
be any other element of C. Then let

ζ ≡ cloc(δ; C̄) − cloc(δ;C)

measure the difference between the linear solution under the assumption that sectors C̄
are constrained and the linear solution under the assumption instead that C is the set of
constrained sectors. (Also, in what follows, let us write cloc(δ;C) simply as c, and cloc(δ; C̄)
as c̄.)

In the case of any sector j ∈ C, we must have

cj = δ̂j +
∑
k

Ajkc
k,

c̄j ≤ δ̂j +
∑
k

Ajkc̄
k,
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where the second condition holds for all j given that c̄ is a solution to (2.35). Subtracting
the first equation from the second yields the implication

ζj ≤
∑
k

Ajkζ
k

for all j ∈ C. Instead, in the case of any sector j /∈ C, we must have

cj = c∗j,

c̄j ≤ c∗j,

where again the second condition holds for all j given that c̄ is a solution to (2.35). Subtracting
the first equation from the second yields the implication

ζj ≤ 0

for all j /∈ C.
Then if we let ζ̂ be the vector of elements of ζ corresponding to sectors j ∈ C, and ζ̌ the

vector of elements corresponding to sectors j /∈ C, we must have

ζ̂ ≤ ACC ζ̂ + ACU ζ̌, ζ̌ ≤ 0.

If we let u ≡ (I −ACC)ζ̂, then the first inequality implies that u ≤ 0, and hence that

ζ̂ = (I −ACC)−1u ≤ 0,

using (B.13). This together with the second inequality implies that ζ ≤ 0, and hence that

cloc(δ; C̄) ≤ cloc(δ;C). (B.14)

The fact that (B.14) must hold for any C ∈ C then implies that C̄ must be the selection
of borrowing-constrained sectors that implies that

c̄(δ) = min
C∈C

cloc(δ;C). (B.15)

That is, for any δ >> 0, C̄ must be one of the elements of C that solve the minimization
problem on the right-hand side of (B.15). Since (B.15) must hold for arbitrary δ, this gives
us a closed-form solution for the function c̄(δ) for all δ >> 0.

If for values of δ on the boundary of the positive orthant we select as the relevant solution
to (2.35) the vector c(0) that can be reached as the limit of a sequence of solutions cn → c(0)
corresponding to a non-increasing sequence of vectors δn → δ with δn >> 0 for each n, then
also for these values of δ the solution for c(0) will be the one given by (B.15). (This follows
immediately from the fact that the functions defined in (B.15) are all continuous functions
of δ.) Hence (B.15) is the desired solution for all δ ≥ 0, as stated in equation (2.38) of the
proposition.
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B.7 Proof of Corollary 2

The proof follows exactly the same lines as in the proof of Corollary 1 above. Even when we
allow non-negligible values for the {aj(0)}, in the limit as β → 1, the Euler condition again
reduces to the form (2.29), which implies the upper bound (2.30) on spending by each sector.
This was the crucial result needed to establish Corollary 1. In the case that the {aj(0)} are
non-negligible, the equation for the level of spending if a sector is borrowing-constrained
changes, but the equation for its level of spending if it is not borrowing-constrained is
unchanged, and the previous conclusions continue to hold.

B.8 Proof of Corollary 3

The solution to the system (2.35) involves no binding borrowing constraint for any sector if
and only if cj(0) = c∗j for each j is a solution to this system. Since we have established that
the solution must be unique, if this is a solution it must be the unique solution; so it suffices
that we check whether this vector of expenditure levels satisfies all of the equations in the
system (2.35).

Substituting the candidate solution for c(0) into (2.34), we see that this equation holds
if and only if

δj

p̄
+
∑
k

Ajkc
∗k ≥ c∗j.

Using (2.30) to substitute for the elements of c∗ in this inequality, and recalling the definition
(1.5), we obtain the requirement

δj

p̄
+ ϕj(0)ȳ ≥ ωj ȳ.

This implies a lower bound for δj that is equivalent to condition (2.39). Hence the candidate
solution satisfies (2.34) for all j if and only if δj satisfies the lower bound (2.39) for all j.
Hence (2.39) holding for all j is necessary and sufficient for the solution to the system (2.35)
to involve no binding borrowing constraints, as asserted in the corollary.

We have already noted that if borrowing constraints do not bind, consumption demands
must be given by (2.32) for each sector. Then (2.28) implies that equilibrium production in
each sector k must equal

yk(0) =
∑
j

cjk(0)
∑
j

αk−jϕk(0)ȳ = ϕk(0) · ȳ.

This establishes that the resource allocation must be (2.40).
Finally, in the special case that aj(0) = a(0)/N and bj(0) = 0 for all j, we have δj =

a(0)/N for all j. In this case, (2.39) reduces to

a(0) ≥ Np̄ȳ · [
∑
k

αk−jϕk(0) − ϕj(0)].

This condition holds for all j if and only if a(0) satisfies the lower bound (2.41), as stated in
the corollary.
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C Equilibrium with Fiscal Transfers

Here we present proofs of the main results in section 3 of the main text.

C.1 Proof of Lemma 5

In any equilibrium, regardless of the nature of policy, the consumption allocation in period
zero must satisfy (1.4). We wish to consider the conditions under which this can be consistent
with achievement of the first-best allocation of resources, characterized in Lemma 2.

Consistency of (1.4) with (1.9) requires that for each pair of sectors j, k such that
αk−jϕk(0) > 0 (so that j wishes to consume good k in period zero), one must have

cj(0)

ωj

=
yk(0)

ϕk(0)
. (C.1)

(Note that cjk(0)/(αk−jϕk(0)) must equal both of these quantities, so that they must be
equal.) This means that for each of the goods k consumed by sector j, the value of yk(0)/ϕk(0)
must be the same (and positive). But condition (1.8) implies that for each sector k,

u′(yk(0)/ϕk(0); ξ0) = v′(yk(0); ξ0). (C.2)

Hence v′(yk(0); ξ0) must be the same positive quantity for each of the sectors k consumed
by sector j.

Since this conclusion is independent of the identity of sector j, we can show more generally
that v′(yk(0); ξ0) must be the same positive quantity for any two sectors that both sell
a positive amount to some single sector. Our assumptions about the network structure
further imply that the sector of sectors with ϕk(0) > 0 (and that are therefore consumed
by someone) form an indecomposable system. It follows that v′(yk(0); ξ0) must be the same
positive quantity for all k such that ϕk(0) > 0.51

If v(y; ξ) is strictly convex, as assumed in the lemma, then v′(y; ξ0) is an increasing
function of y, and the conclusion of the previous paragraph is only possible if yk(0) is the
same quantity for all k such that ϕk(0) > 0. Moreover, the Inada condition on the function
u(c; ξ0) implies that (C.2) cannot have yk(0) = 0 as a solution, for any ϕk(0) > 0. Hence the
common value for yk(0) for all of the sectors that produce must be positive.

Condition (C.2) further implies that if yk(0) is the same for every sector that produces,
yk(0)/ϕk(0) must also be the same for each of these sectors. And since the common value
of yk(0) is positive, this is only possible if ϕk(0) is the same for each of the sectors with
ϕk(0) > 0. This establishes the lemma.

Note that if instead v(y; ξ0) is a linear function of y (one of the cases considered in
Proposition 5), v′(y; ξ0) will be the same for all y > 0. Hence in this case, the conclusion
reached above does not follow: it is possible to have different levels of production yk(0) in
different sectors that all produce in period zero, and still achieve the first-best allocation
of resources. In this case, we do not need to assume that ϕk(0) is the same for each of

51Note however that the value of v′(yk(0); ξ0) can be different for a sector with ϕk(0) = 0, if one exists,
since in that case the ratio cjk(0)/(αk−jϕk(0)) is undefined, and (C.1) need not be satisfied for this value of
k.
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the sectors with ϕk(0) > 0 in order for the first-best allocation to be achievable under an
appropriate policy, as Proposition 5 shows.

C.2 Proof of Proposition 5

We shall show that the equilibrium allocation of resources under this policy is given by

cjk(t) = αk−jϕk(t)ȳ, yk(t) = ϕk(0)ȳ

for any j, k, and any period t ≥ 0. The associated equilibrium prices are pk(t) = P ∗(t) for
each k in any period t ≥ 0, and the nominal interest rate i(t) is given by (2.25) in each
period t ≥ 0. The associated path of beginning-of-period nominal asset balances is given by
aj(t) = a(t)/N for each sector j in any period t ≥ 1, while end-of-period asset balances are
given by bj(t) = a(t)/N for each sector in any period t ≥ 0.

Note that if this is indeed an equilibrium under the proposed policy, (2.40) holds in period
zero, as asserted in the proposition; equilibrium prices and quantities in all periods t ≥ 1
are as specified in Proposition 1; and borrowing constraints do not bind in any sector in any
period, since

bj(t) = a(t)/N > 0 ≥ bj(t)

for any sector j in any period t ≥ 0.
Thus if the conjectured allocation is indeed an equilibrium, it remains only to show that

this allocation of resources is the first-best optimal allocation defined in Lemma 2. It is
easily verified that the proposed allocation satisfies (1.9) for all j, k, and t. In addition, the
proposed output levels in any period t ≥ 1 are yk(t) = ȳ for all k, and these satisfy (1.8)
for each k and any t ≥ 1. When t = 0, the proposed allocation specifies that yk(0) = 0 for
any sector with ϕk(0) = 0, as is required by Lemma 2. Thus we need only verify that the
proposed output levels in each of the sectors with ϕk(0) > 0 also satisfy (1.8) in period t = 0.

Under case (i) of the hypothesis, this condition becomes

u′(yk(0)/ϕk(0); ξ̄) = ν,

which is satisfied by the proposed allocation for each k such that ϕk(0) > 0, since in the case
of these preferences, u′(ȳ; ξ̄) = ν. Under case (ii) of the hypothesis, the condition becomes

u′(ȳ; ξ̄) = v′(ȳ; ξ̄)

for every sector k with ϕk(0) = 1, and this condition is satisfied by the definition of ξ̄. Thus
the proposed allocation satisfies all of the conditions stated in Lemma 2 for the first-best
optimal allocation.

We then need only to show that the quantities and prices proposed in the first paragraph
above do indeed constitute a perfect foresight equilibrium, under the policy specified in the
proposition. This can be established using the same method as in the proof of Proposition 1.
Because the proof is straightforward (following the proof strategy already illustrated in the
earlier proof), we omit the details. We confine ourselves here to a sketch of the intuition for
the result. First, the proposed end-of-period balances {bj(0)} imply that ãj(1) is the same
for each sector j, so that (2.24) implies that f = 0 under the conjectured paths. And we have

69



already shown in Lemma 3 that if f = 0, the prices and quantities specified above represent
a perfect foresight equilibrium from period t = 1 onward. Second, an equilibrium in which
f = 0 going into period t = 1 must have the equilibrium allocations described in Proposition
4, even if β < 1; the assumption that β → 1 was only used in the proof of that proposition to
guarantee that f = 0. Third, the initial asset balances {aj(0)} specified in (3.1) imply that
conditions (2.39) are satisfied for all sectors, in the case of any borrowing limits bj(0) ≤ 0.
Hence the same argument as is used in the proof of Corollary 3 can again be used to show
that no sectors are borrowing-constrained in period zero, and that the equilibrium allocation
of resources in period zero must be given by (2.32). And finally, the initial balances together
with this pattern of spending and production in period zero imply the specified end-of-period
balances {bj(0)}, and hence that f = 0. Thus we obtain an equilibrium of the conjectured
form.

C.3 Proof of Lemma 6

Let C ∈ C be the set of constrained sectors in the case of initial liquidity δ. (Because our
definition specifies that cj(0) is strictly less than c∗j for each of the constrained sectors,
these will continue to be the constrained sectors in the case of any small enough increase
in the vector of initial assets.) Then we know, for each sector j, which of the two terms
on the right-hand side of (2.34) cj(0) is equal to; this allows us to replace the nonlinear
equation system (2.35) by a system of linear equations, that must hold locally at δ and for
any alternative vector δ′ ≥ δ close enough to it.

If we order the sectors so that all of the sectors in C (if any) come first, and partition
the matrix A as in (3.2), then the local version of (2.35) can be written as[

ĉ
č

]
=

[
δ̂

δ̌

]
+

[
ACC ACU

0 0

] [
ĉ
č

]
+

[
0 0
0 I

] [
ĉ∗

č∗

]
.

Here ĉ is the vector of expenditures cj(0) for the sectors j ∈ C, č is the vector of expenditures
for sectors j /∈ C; the vectors δ̂ and δ̌ similarly collect the values of δj/p̄ for the two groups
of sectors; and the vectors ĉ∗ and č∗ collect the values of c∗j for the two groups of sectors.

For any C ∈ C, we have already shown in the proof of Proposition 4 that ACC has all
of its eigenvalues inside the unit circle. It then follows that the matrix I −ACC must be
invertible, and that its inverse can be expressed as the infinite sum on the right-hand side
of (3.3). Hence the linear local system of equations has a unique solution of the form (2.37),
where the matrices M and N are the ones given in the statement of the lemma. Moreover,
the sub-matrix MCC can alternatively be written as in (3.3).

Since ACC ≥ 0, it follows from (3.3) that MCC ≥ 0 as well. This together with the fact
that ACU ≥ 0 implies that all elements of the matrices M and N must be non-negative.

C.4 Fiscal transfer multipliers: An example

Our model implies that the multiplier effects of fiscal transfers can be quite different,
depending both on the sectors receiving the transfer and which sectors’ expenditure we
are concerned with. As an example, consider again the chain network with fraction λ of
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out-of-sector purchases (right panel of Figure 1), and consider the case of a pandemic shock
which makes it impossible to consume the output of sector 1, while other sectors’ products
are unaffected. Suppose that we compute the multipliers for small additional transfers,
starting from liquid asset balances that satisfy the inequality∑

j ̸=N

aj(0) < λp̄ȳ. (C.3)

When this inequality is satisfied, sector N is the only unconstrained sector (as already
established in section xx, for the limiting case in which a(0) → 0), so that the set C consists
of sectors {1, 2, . . . , N − 1}. The matrix of transfer multipliers is in this case equal to

M =


1 0 0 . . . 0 0
λ−1 λ−1 0 . . . 0 0
λ−1 λ−1 λ−1 . . . 0 0
. . . . . . . . . . . . . . . . . .
λ−1 λ−1 λ−1 . . . λ−1 0
0 0 0 . . . 0 0

 .

The aggregate expenditure multiplier for transfers to sector k can be obtained by summing
column k of the matrix M ; this is largest (equal to 1 + (N − 2)/λ) for transfers to sector
1, and smallest (zero) for transfers to sector N . In the numerical example discussed in the
paper, N = 5 and λ = 4/5. In this case, the aggregate expenditure multiplier for a transfer
to sector 1 is

1 + λ−1 + λ−1 + λ−1 + 0 = 4.75,

as reported in the main text. The multiplier effect of uniformly distributed transfers on
sector j spending can be obtained by averaging the elements of row j of the matrix; these
are largest (equal to (N − 1)/(λN)) for sector N − 1, and smallest (again zero) for sector
N . In the numerical example discussed in the paper, the aggregate expenditure multiplier
for uniformly distributed transfers is the average over the five columns of the sums of all five
rows, or

1

5
[4.75 + 3.75 + 2.50 + 1.25 + 0.00] = 2.45, (C.4)

as reported in the main text.
In the event that fewer sectors are borrowing-constrained, additional rows and columns

of M must be set to zero. We continue to have a matrix of the form

M =


1 0 0 . . . 0 0
λ−1 λ−1 0 . . . 0 0
λ−1 λ−1 λ−1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0

 ,
but if âi−1 ≤ a(0) < âi, for any i ≥ 1, the last i rows of the matrix are all zeroes. Thus when
i = 1, as assumed above, the aggregate expenditure multiplier for uniformly distributed
transfers is given by (C.4). But if i = 2, it is instead equal to only

1

5
[3.50 + 2.50 + 1.25 + 0.00 + 0.00] = 1.45;
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if i = 3, it is equal to only

1

5
[2.25 + 1.25 + 0.00 + 0.00 + 0.00] = 0.70;

and if i = 4, it is equal to only

1

5
[1.00 + 0.00 + 0.00 + 0.00 + 0.00] = 0.20.

And of course, once a(0) ≥ â4, the entire matrix of multipliers is equal to zero.
The differentiation of alternative multipliers according to the sector affected (the separate

rows of M) is relevant for calculation of the welfare effects of transfer policies, since the
marginal utility of additional spending varies across sectors. For example, when (C.3) holds,
the marginal utility of additional real expenditure by any sector j ̸= N is given by

µj ≡ u′(cj(0)/(1 − α1−j) = u′(λ−1

j∑
k=1

ak(0)),

while for sector N it is
µN ≡ u′(cN(0)/(1 − α1)) = u′(ȳ).

It follows that in the case of any a(0) >> 0 satisfying (C.3),

µ1 > µ2 . . . µN−1 > µN .

The welfare effect of transfers to each of the different sectors is then given not by e′M (the
vector of column sums), but by µ′M , where µ is the N -vector with jth element equal to µj.

C.5 Proof of Corollary 4

Given a one-parameter family of transfer policies (3.4), let cj(s) be the solution for cj(0) in
the case of the transfer policy indexed by s. It follows from (2.38) that

cj(s) = min
C∈C

cj,loc(α + γ · s; C).

It follows from Lemma 6 that each of the functions cj,loc(α + γ · s; C) is a non-increasing
linear function of s. Since cj(s) is the minimum of a finite collection of such functions, it
must be a non-increasing, piecewise-linear, concave function. This then implies that its right
derivative, mj(s), must a piecewise constant function, non-increasing in s, and everywhere
non-negative in value.

It remains only to show that mj(s) is eventually equal to zero for all s above some finite
bound. But since cj(s) can have only a finite number of segments with different slopes,
there must be some finite s̄ such that mj(s) is constant for all s ≥ s̄. Suppose that this
terminal value is positive. It would follow that cj(s) would be an increasing linear function
of s for all s ≥ s̄. But it follows from (2.30) that cj(s) must be bounded. Hence we obtain a
contradiction, and can conclude that instead mj(s) must equal zero for all s ≥ s̄, as asserted
in the corollary.
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C.6 Proof of Lemma 7

For any choice of the parameters specifying policy in period 1, and any value of β close
enough to 1, there must be an equilibrium of the following kind. First, the equilibrium for
all t ≥ 1 is a stationary equilibrium of the kind characterized in Lemma 3, for some vector
f ∈ U. (The stipulation that β be close enough to 1 is in order to ensure that f ∈ U.)
Second, for each sector j, the consumption plan in period t = 0 must be of the form (1.4) for
some choice of cj(0). This allows us to compute end-of-period balances bj(0) as a function of
cj(0), so that constraint (1.12) implies an upper bound for cj(0), that depends on the policy
specification (both on aj(0) and on bj(0)). Total expenditure cj(0) must also satisfy

u′(cj(0)/ωj; ξ̄) ≥ ψΛ∗j(f), (C.5)

as a consequence of (2.27). This also implies an upper bound for cj(0) that depends on
policy (in particular, that depends on the monetary policy parameter ψ). Since at least one
of the constraints (1.12) and (C.5) must hold with equality, the optimal choice of cj(0) must
be the minimum of these two upper bounds, for each sector j. Third, the vector f must
satisfy (2.24), where

ãj(1) = ψ
bj(0)

p̄

for each sector j, and we can compute bj(0) from the sector’s choice of cj(0), as just indicated.
This gives us a fixed-point relationship, f = Ψ(f), that the vector f must satisfy. The
mapping Ψ is defined for any f ∈ U.

In the limiting case β = 1, this fixed-point relationship becomes a mapping Ψ(f) = 0
for all f , and there exists a unique fixed point, f ∗ = 0. For any values of β close enough
to 1, the mapping will still be a contraction, and will have a unique fixed point f ∗ near 0.
Hence there is a perfect foresight equilibrium of the kind proposed above. Moreover, in the
limit as β → 1, the fixed point f ∗ → 0. Lemma 4 then implies that the stationary allocation
in periods t ≥ 1 approaches the one characterized in Proposition 1 (for the case in which
ξt = ξ̄ each period), which is to say, the stationary allocation that represents the first-best
optimum when ξt = ξ̄.

It then follows that Ū j → U∗ in this limit, so that (3.6) must hold, as asserted in the
lemma. This in turn implies that (3.7) provides an equivalent welfare ranking of alternative
policies in this limit.

We also note that Lemma 4 implies that Λ∗j(f) → u′(ȳ; ξ̄) in the limit as β → 1, so that
the upper bound implied by (C.5) approaches

cj(0) ≤ c∗j(ψ) ≡ ψωj ȳ, (C.6)

a generalization of (2.30). The vector c(0) of equilibrium spending levels in period zero is
then the solution to the fixed-point system (2.35), given by (2.38), in which we now substitute
the more general definition of c∗j given in (C.6). This result is useful for characterizing the
effects of interest-rate policy, discussed further below.

C.7 Proof of Proposition 6

Substitution of (1.2) into the welfare measure (3.7), and simplification using the fact that in
any equilibrium the consumption plan for each sector must be of the form (1.4), allows us
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to write the welfare measure in the form

W0 =
N∑
j=1

ωjG(cj(0)/ωj) +
N∑
k=1

H(yk(0)), (C.7)

where
G(c) ≡ u(c; ξ̄)) − u′(ȳ; ξ̄) · c, H(y) ≡ v′(ȳ; ξ̄) · y − v(y; ξ̄).

We can then use our solutions for the effects of transfers on cj(0) and yk(0) to calculate the
welfare gradient.

Differentiating (C.7) with respect to each element of the vector of transfers, we obtain
equation (3.8) given in the main text, where g is the vector with elements

gj = G′(cj(0)/ωj)

for each j, and h is the vector with elements

hk = H ′(yk(0))

for each k. (We use that M is the matrix of expenditure multipliers and MY = AM is
the matrix of output multipliers.) Differentiating the functions G and H, we obtain the
expressions for gj and hk given in the main text.

We further observe that G(c) is a strictly concave function, that reaches its (unique)
maximum at c = ȳ, and that H(y) is another (at least weakly) concave function, which
achieves its maximum value at y = ȳ (though the maximum need not be unique). It follows
that gj must be positive for all cj(0)/ωj < ȳ (or for all cj(0) < c∗j ≡ ωj ȳ, as stated in the
text), and similarly that hk must be non-negative for all yk(0) ≤ ȳ. Since the elements of M
and MY are all non-negative, we obtain the result that the elements of the welfare gradient
must all be non-negative if we consider additional transfers at a point where cj(0) ≤ c∗j for
all j and yk(0) ≤ ȳ for all k.

When ψ = 1, the Euler condition (2.29) must hold. Then because of (2.30), we must
have cj(0) ≤ c∗j for all j in all cases. This in turn implies that cjk(0) ≤ αk−jϕk(0)ȳ for
all j, k, using (1.4), and hence that yk(0) ≤ ϕk(0)ȳ for all k, as a consequence of (1.14).
(The reasoning is the same as in the derivation of (B.9). Under the further assumption that
0 ≤ ϕk(0) ≤ 1 for all sectors, we must have yk(0) ≤ ȳ for all k, and all elements of the welfare
gradient must be non-negative.

Now consider the effects of a transfer to sector j only, meaning that the vector of transfers
is proportional to ej, the vector with 1 as its jth element, and all other elements equal to 0.
If j /∈ C (sector j is not borrowing-constrained), it follows from Lemma 6 that Mej = 0, as
a consequence of which wj ≡ w′ej = 0. If instead j ∈ C, it follows from (3.3) that Mjj > 0,
and hence that

wj ≡ w′ej ≥ g′Mej ≥ gjMjj > 0.

C.8 Proof of Proposition 7

The proof proceeds in the same way as in the proof of Proposition 5. In the earlier proof,
the key to establishing existence of an equilibrium with the first-best optimal allocation of
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resources was demonstrating that the assumed policies were consistent with (i) an equilibrium
for periods t ≥ 1 of the kind characterized in Lemma 3 with f = 0; and (ii) an equilibrium in
period t = 0 in which no sectors are borrowing-constrained, so that the equilibrium allocation
of resources is given by (2.40). In the limit as β → 1, we must have f → 0 regardless of the
nature of equilibrium in period t = 0, so that condition (i) is now more easily established.

Given an equilibrium for periods t ≥ 1 with f = 0, the Euler condition takes the form
(2.29), which implies that the equilibrium in period zero must satisfy (2.30). It then follows,
as in the proof of Corollary 3, that (2.39) is a sufficient condition for the existence of an
equilibrium in period zero in which borrowing constraints do not bind in any sector. One can
then establish that the equilibrium must involve the first-best optimal allocation of resources
using the same argument as in the proof of Proposition 5.

D Equilibrium with Interest-Rate Policy

Here we present proofs of the main results in section 4 of the main text.

D.1 Proof of Proposition 8

The proof follows exactly the same lines as the proof of Proposition 3, but taking into account
the fact that (2.29) now takes the more general form (C.5). As before, the assumption
that initial asset balances are negligible and that borrowing is impossible implies that the
equilibrium for periods t ≥ 1 must be of the kind characterized in Lemma 3, for the case
in which f = 0. The equilibrium in period t = 0 must be one in which bj(0) → 0 for each
sector j, with the consequence that c(0) must be a multiple of the maximal eigenvector π,
as in Proposition 3. The fact that the inequality (4.2) must hold for each sector, and with
equality for at least one sector, then implies that the multiplicative factor Ω must be given
by (4.4).

D.2 Proof of Corollary 5

It follows from Proposition 8 that the allocation of resources in periods t ≥ 1 is independent
of the choice of ψ; hence (1.7) is maximized by the policy that maximizes the single-period
welfare criterion (3.7). Using (1.2) and (1.4), we can write (3.7) in the form

W0 =
∑
j

[
ωju

(
cj(0)

ωj

; ξ̄

)
− v(yj(0); ξ̄)

]
. (D.1)

Here both the quantities {cj(0)} and {yj(0)} depend on ψ purely through the effect of ψ on
the value of ŷ(ψ). Hence we can reduce the problem of choosing ψ to maximize (1.7) to the
problem of choosing ŷ to maximize (D.1). (The optimal ψ will then be whatever value is
required in order for ŷ(ψ) to equal the optimal value of ŷ.)

Proposition 8 implies that each of the quantities {cj(0)} and {yj(0)} is a non-negative
multiple of ŷ(ψ); in addition, at least one of the {cj(0)} and at least one of the {yj(0)}
are positive, and hence strictly increasing function of ŷ. It then follows from (D.1) that W0
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must be a strictly concave function of ψ, with a continuous derivative. Hence W0(ψ) must
have a unique maximum, which must furthermore be the unique point consistent with the
first-order condition that ∂W0/∂ŷ be equal to zero.

Differentiating (D.1) with respect to ŷ, we obtain

∂W0

∂ŷ
=

∑
j

[
u′
(
cj(0)

ωj

; ξ̄

)
∂cj(0)

∂ŷ
− v′(yj(0); ξ̄)

∂yj(0)

∂ŷ

]
=

∑
j

[
u′
(
cj(0)

ωj

; ξ̄

)
∂cj(0)

∂ŷ

]
− ν(ξ̄) ·

∑
k

∂yk(0)

∂ŷ

=
∑
j

{[
u′
(
cj(0)

ωj

; ξ̄

)
− ν(ξ̄) ·

∑
k

Akj

]
∂cj(0)

∂ŷ

}

=
∑
j

{[
u′
(
cj(0)

ωj

; ξ̄

)
− ν(ξ̄)

]
∂cj(0)

∂ŷ

}
, (D.2)

using the assumed form for v(y; ξ).
The corollary assumes that each sector j will belong either to a set of borrowing-

constrained sectors C with cj(0) = 0 (which requires that πj = 0), or to the complementary
set of sectors U , for which (4.2) holds with equality. (Note that under the assumptions of
this corollary, the set of borrowing-constrained sectors is the same for all values of ψ.) For
any j ∈ C, the fact that πj = 0 means that ∂cj(0)/∂ŷ = 0, using the solution for cj(0) in
Proposition 8. Hence these terms contribute nothing to the sum in (D.2). Moreover, the
fact that (4.2) holds with equality for every sector j ∈ U allows us to write the remaining
terms in the form

∂W0

∂ŷ
=
[
u′
(
ŷ; ξ̄

)
− ν(ξ̄)

]∑
j∈U

∂cj(0)

∂ŷ
. (D.3)

The solution in Proposition 8 implies that cj(0) is a linearly increasing function of ŷ for
each of the sectors j ∈ U (and there must be at least one such sector); hence the sum of the
∂cj(0)/∂ŷ terms must be positive. Moreover, the fact that u(c; ξ̄) is strictly concave implies
that u′

(
ŷ; ξ̄

)
must be a decreasing function of ŷ. Therefore the expression in square brackets

is positive if ŷ < ȳ and negative if ŷ > ȳ. It follows that ∂W0∂ŷ is positive for all ŷ < ȳ and
negative for all ŷ > ȳ.

From this we can conclude that W0 is (uniquely) maximized when ψ is chosen so that
ŷ(ψ) = ȳ, which holds if and only if ψ = 1 (the policy assumed in Proposition 3).

D.3 Proof of Proposition 9

The result that the equilibrium for periods t ≥ 1 is the same as in Proposition 1 can be
established in the same way as in the proof of Proposition 4, since it is once again the case
that in the limit as β → 1, we must have f → 0, regardless of the nature of the equilibrium
allocation in period t = 0.

The demonstration that the system of equations (4.5) has a unique solution for c(0) also
proceeds in the same way as in the proof of Proposition 4. In fact, for any given specification
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of policy, the equations (and hence their solution) are exactly the same, except that the
vector of parameters c∗ >> 0 in the previous discussion is now replaced by the vector
ω · ŷ(ψ), which indicates how the elements of the vector depend on the choice of ψ. (The
more specific assumption that c∗ = ω · ȳ was never used in the derivation of (2.38), only the
fact that the elements of the vector were all positive.) Hence we obtain a unique solution
c(δ;ψ), given by our previous solution (2.38), but with the above substitution for the vector
c∗.

Finally, the fact that the right-hand side of (4.5) is homogeneous of degree one in
(c(0), δ, ŷ) implies that if some values (c(0), δ, ŷ) satisfy the equation, the values (λc(0), λδ, λŷ)
must satisfy it as well, for any multiplicative factor λ > 0. This means that if c(0) = c is a
solution to (4.5) in the case of a policy that implies parameters (δ, ŷ), then c(0) = λc will be
a solution in the case of a policy that implies parameters (λδ, λŷ). Thus the function c(δ;ψ)
must be a homogeneous degree one function of (δ, ŷ(ψ)).

From this it follows that the function can be written in the form

c(δ;ψ) =
ŷ(ψ)

ȳ
· c̄
(

ȳ

ŷ(ψ)
δ

)
,

where
c̄(δ) ≡ c(δ; 1).

Moreover, when ψ = 1, the system (4.5) reduces to (2.35), the system for which we have
already determined the solution. Hence the function c̄(δ) must be the one defined in (2.38).

Given this solution for the sectoral expenditure levels, the fact that prices are predetermined
the level pk(0) = p̄ for all k implies that the complete allocation of resources in period zero
is given by (1.4) and (1.14).

D.4 Proof of Corollary 6

It follows from the form of the solution for c(0) in Proposition 9, together with (2.38), that
we can write

c(0) =
ŷ(ψ)

ȳ
· min
C∈C

cloc
(

ȳ

ŷ(ψ)
δ; C

)
=

ŷ(ψ)

ȳ
· min
C∈C

{ ȳ

ŷ(ψ)
M (C)δ + N (C)c∗

}
= min

C∈C

{
M(C)δ + N (C)ω · ŷ(ψ)

}
, (D.4)

where the notation M(C),N (C) indicates that the matrices M and N in (2.37) depend on
the choice of the set C. The expression on the final line indicates that each of the solutions
cj(0) is the minimum of a finite collection of non-decreasing linear functions of ŷ(ψ). It
follows that cj(0) must be a non-decreasing, piecewise linear, concave function of ŷ(ψ).

Since yagg(0) ≡
∑

k yk(0) =
∑

j c
j(0), aggregate output is the sum of a finite collection of

non-decreasing, piecewise linear, concave functions of ŷ(ψ), and hence must itself be a non-
decreasing, piecewise linear, concave function of ŷ(ψ). Moreover, for every partition C ∈ C,
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the sectors j ∈ U0 (which must include at least one sector) are among the unconstrained
sectors. It then follows from Lemma 6 that for any j ∈ U0, the coefficient

e′
jN (C)ω = ωj > 0

for any C ∈ C, so that cj(0) must be increasing as ŷ increases, no matter how large ŷ may be.
Since at least one such sector exists, the sum yagg(0) =

∑
j c

j(0) must be strictly increasing
as well. Thus yagg(0) is an increasing, piecewise linear, concave function of ŷ(ψ), as asserted
in the corollary.

Each of the quantities cjk(0), yk(0), for arbitrary j, k, is similarly a linear combination
of the different elements of c(0) with non-negative weights; and so by the same kind of
argument, we can show that each of these quantities is a non-decreasing, piecewise linear,
concave function of ŷ(ψ), as asserted in the corollary.

Let us next consider how the set C of borrowing-constrained sectors changes as we lower
ψ, increasing ŷ(ψ). The system (4.5) implies that for each sector j,

cj(0) = min{Lj(ŷ(ψ); C(ψ)), ωj ŷ(ψ)}

where C(ψ) is the set of borrowing-constrained sectors in the case of interest-rate policy ψ,
and for each possible choice of C, Lj(ŷ;C) is the function

Lj(ŷ;C) =
δj

p̄
+ e′

jAcloc(ŷ;C), (D.5)

where we use the notation

cloc(ŷ;C) ≡ M(C)δ + N (C)ω · ŷ(ψ)

for the functions of ŷ on the right-hand side of (D.4) associated with the different possible
choices of C.

Consider a value of ψ at which a particular set of sectors C(ψ) = C1 are borrowing-
constrained. This means that for sectors j ∈ C1, L

j(ŷ(ψ);C1) < ωj ŷ(ψ), while for the
unconstrained sectors, Lj ≥ ωj ŷ. And now consider whether the set C(ψ) remains equal to
C1 if ψ is reduced relative to this initial value. In order for this to be the case, it must
continue to be true that Lj(ŷ(ψ);C1) < ωj ŷ(ψ) for sectors j ∈ C1, while Lj ≥ ωj ŷ(ψ)
continues to hold for all of the other sectors.

We see from (D.5) that for each j, Lj(ŷ(ψ);C1) is the sum of a non-negative constant
plus a non-negative term proportional to ŷ(ψ); it follows that Lj(ŷ(ψ);C1 either grows in
proportion to the growth of ŷ(ψ) (in the case that δj = 0), or less than proportionally to the
growth of ŷ(ψ) (in the case that δj > 0), when ψ is reduced. In either case, the fact that
Lj(ŷ(ψ);C1) < ωj ŷ(ψ) initially for sectors j ∈ C1 means that this inequality must continue
to hold for any smaller value of ψ, given that ωj ŷ(ψ) grows in proportion to ŷ(ψ). Hence
it cannot be the case that any of the borrowing-constrained sectors ceases to be borrowing-
constrained as a result of a reduction in ψ.

On the other hand, it is possible that a reduction in ψ will eventually increase ŷ(ψ)
sufficiently for one of the initially unconstrained sectors to cease to be unconstrained. If so,
at that point the set C(ψ) must change; but the change must always be an increase in the
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set of borrowing-constrained sectors. The sectors j ∈ C1 that were previously borrowing-
constrained must continue to be constrained. Thus as ψ is reduced, the set C(ψ) can only
be increasing, as asserted in the corollary.

Finally, we consider the behavior of the solution to the system (4.5) when the real interest
rate is very low. We begin by noting that one of the functions cloc(ŷ;C) on the right-hand
side of (D.4) is the one associated with the partition C = C0. In the case of this choice of
the set of constrained sectors, the definition of the eigenvector π implies that

(I −ACC)πC = ACUπU ,

and hence that

π =

[
NCU

NUU

]
πU . (D.6)

Moreover, for each of the sectors j ∈ U0, it follows from (2.31) that

πj = [max
ℓ

(πℓ/ωℓ)] · ωj;

hence we have
πU = [max

ℓ
(πℓ/ωℓ)] · ωU .

Substitution of this into (D.6) yields

π = [max
ℓ

(πℓ/ωℓ)] ·
[
NCU

NUU

]
ωU . (D.7)

Hence

N (C0)ω =

[
NCU

NUU

]
ωU =

π

maxℓ(πℓ/ωℓ)
,

and the local solution cloc(ŷ(ψ); C0) is given by the formula on the right-hand side of (4.7). It
remains to show that this choice of C is the one that yields the lowest values for all elements
of c(0), in the case of any large enough value of ŷ(ψ).

But we know from Proposition 4 that the solution c̄(δ) is a continuous function of δ;
thus there must exist a neighborhood N of 0 such that for any δ ∈ N , the solution c̄(δ)
has the same set of constrained sectors as the solution for δ = 0. And when δ = 0, the
solution to (2.35) is the expenditure vector characterized in Proposition 3, for which the set
of constrained sectors is C0. Thus for any δ ∈ N , the choice of C that results in the lowest
value for all of the elements of c(0) must be C0.

It follows that in the solution (4.6), c(0) must be given by the local solution corresponding
to the choice C = C0 (i.e., by the right-hand side of (4.7)) for all values of ψ such that
(ȳ/ŷ(ψ))δ ∈ N . We have already shown that ŷ(ψ) can be made arbitrarily large by choosing
a small enough value of ψ. Hence we can choose a ψ > 0 such that ψ < ψ implies that
(ȳ/ŷ(ψ))δ ∈ N . This is then a bound such that the solution for c(0) must be the one given
in (4.7) for any ψ < ψ, as asserted in the corollary.

79



D.5 Proof of Corollary 7

The proof follows the same lines as the proof of Corollary 5. It follows from Proposition 9
that the allocation of resources in periods t ≥ 1 is independent of the choice of ψ. Hence
(1.7) is again maximized by the policy that maximizes the single-period welfare criterion
(D.1), and we can again reduce the problem of choosing ψ to maximize (1.7) to the problem
of choosing ŷ to maximize (D.1). The main new complication that arises here comes from
the fact that now the set of borrowing-constrained sectors can change as we vary ψ, for a
given specification of δ.

Corollary 6 implies that each of the quantities {cj(0)} and {yj(0)} is a non-decreasing,
concave function of ŷ; and whenever ψ increases, at least one of the {cj(0)} and at least one
of the {yj(0)} must increase. It then follows from (D.1) that W0 must be a strictly concave
function of ψ. It is no longer the case that the derivative ∂W0/∂ŷ must be continuous at
all points; but W0 must have well-defined left and right derivatives at all points, and these
must be equal at all but some finite number of values of ψ (the ones at which the set of
borrowing-constrained sectors changes). The strict concavity of W0(ψ) continues to imply
that the function must have a unique maximum. This must furthermore be the unique point
consistent with the first-order condition: W0 is maximized at ψ if (a) either the left or right
derivative ∂W0/∂ŷ is equal to zero at ψ, or (b) the left derivative is greater than zero at ψ
while the right derivative is less than zero.

Differentiating (D.1) with respect to ŷ, we again obtain (D.2). This expression is correct
for either the left or right derivative of W0, as long as one understands each of the to be
correspondingly left or right derivatives. We wish to evaluate the sign of both the left and
right derivative at the value ψ = 1.

Let C and U be the sets of constrained and unconstrained sectors respectively, in the
solution (2.38) when ψ = 1 and δ has the specified value. For any j ∈ C, we must have

cj(0) =
δj

p̄
+
∑
k

Ajkc
k(0) < ωj ŷ(ψ)

when ψ = 1, and since the solution is continuous in ψ, this will continue to be true for all ψ
in a neighborhood of 1. Under the hypothesis that ACU = 0, the equality reduces to

cj(0) =
δj

p̄
+
∑
k∈C

Ajkc
k(0)

for each j ∈ C. As discussed in the proof of Lemma 6, this system of equations can be
uniquely solved for values

cj(0) =
1

p̄
e′
jMCC δ̂.

This will be the solution for all values of ψ in the neighborhood of 1 where these sectors
continue to be borrowing-constrained.

Hence we have ∂cj(0)/∂ŷ = 0 for all j ∈ C, as both the left and right derivative at any
ψ in the neighborhood of 1. It follows that near 1 we can express (D.2) more simply as

∂W0

∂ŷ
=
∑
j∈U

{[
u′
(
cj(0)

ωj

; ξ̄

)
− ν(ξ̄)

]
∂cj(0)

∂ŷ

}
.
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Again, the fact that (4.2) holds with equality for every sector j ∈ U allows us to write this
in the simpler form (D.3).

The derivatives ∂cj(0)/∂ŷ are all non-negative, and there must be at least one sector j ∈ U
for which both the left and right derivative are positive; hence the sum of the ∂cj(0)/∂ŷ terms
must be positive, whether a left or right derivative is considered. Thus regardless of whether
we consider the left or right derivative, the sign of ∂W0/∂ŷ must be the same as the sign of
u′
(
ŷ; ξ̄

)
− ν(ξ̄). This is positive if ŷ < ȳ, negative if ŷ > ȳ, and exactly equal to zero if and

only if ŷ = ȳ exactly.
From this we again conclude that W0 is (uniquely) maximized when ψ is chosen so that

ŷ(ψ) = ȳ, which holds if and only if ψ = 1 (the policy assumed in Proposition 4).
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