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ABSTRACT

The Index of Coincident Economic Indicators, currenrly compiled by rhe U.S.

Deparrmenr of Commerce, is designed to measure the srate of overall economic

activity. The index is constructed as a weighted average of four key

macroeconomic time series, where the weights are obtained using rules that

dare to the early days of business cycle analysis. This paper presents an

explicit rime series model (formally, a dynamic factor analysis or "single-

index" model) rhar implicitly defines a variable that can be thought of as the

overall state of the economy. Upon estimating this model using data from

1959-1987, the estimate of this unobserved variable is found to be highly

correlated with the official Commerce Department series, particularly over

business cycle horizons. Thus this model provides a formal rationalization

for the traditional methodology used to develop the Coincident Index. Initial

exploratory exercises indicate that traditional leading variables can prove

useful in forecasting the short-run growth in this series.
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1. Introduction

Since their initial development in 1938 by Wesley Mitchell, Arthur Burns,

and their colleagues at the Nntional Bureau of Economic Research, the

Composite Indexes of Coincident and Leading Economic Indicators have played an

important role in summarizing the state of macroeconomic activity. This

paper reconsiders the problem of constructing an index of coincident

indicators. We will use the techniques of modern time series analysis to

develop an explicit probability model of the four coincident variables that

comprise the Index of Coincident Economic Indicators (CEI) currently compiled

by the Department of Commerce (DOC). This probability model provides a

framework for computing sn alternative coincident index. As it turns out,

this alternative index is quantitatively similar to the DOC index. Thus this

probability model provides a formal statistical rationalization for, and

interpretation of, the construction of the DOC CEI. This alternative

interpretation complements that provided by the methodology developed by

Mitchell and Burns (1938) and applied by, for example, Zarnowitz and Boachan

(1975).

The model adopted in this paper is based on the notion that the comovements

in aany macroeconomic variables have a common element that can be captured by

a single underlying, unobserved variable. In the abatract, this variable

represents the general "state of the economy." The problem is to estimate the

current atate of the economy, i.e. this common element in the fluctuations of

key aggregate time series variables. This unobserved variable - - the "atate

of the economy" - - must be defined before any attempt can be made to estimate
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it. In technical terms, this requires formulating a probability model that

provides a mathematical definition of the unobserved state of the economy. In

nontechnical tens, this problem can be phrased as a question: What do the

leading indicators lead?

Our proposed answer to this question is given in Section 2. This section

presents a parametric "single-index" model in which the state of the economy

-- referred to as G -- is an unobserved variable common to multiple aggregate

time series. Because this model is linear in the unobserved variables, the

Kalman Filter can be used to construct the Gaussian likelihood function and

thereby to estimate the unknown parameters of the model by maximum likelihood.

As a side benefit, the Kalman Filter automatically computes the minimum mean

square error estimate of G using data through period t. This estimate,

is the alternative index of coincident indicators computed using the single-

index model.

The single-index model ia estimated using data on industrial production,

real personal income, real manufacturing and trade aales, and employment in

nonagricultural eatabliahments from 1959 to 1987. The results are reported in

Section 3. Also in this section, the estimated alternative index is

compared with the DOG series. The similarity between the two is striking,

particularly over business-cycle horizons.

Section 4 presents an initial investigation into forecasting the growth of

uaing a variety of leading or predictive macroeconomic variables. The

main conclusion is that a paraimoniously parameterized time aeriea model with

and aix leading variablea can forecast approximately two-thirds of the

variance of the growth in over the next aix months.

A conceptually diatinct forecasting problem is explored in Section 5. A

traditional focus of business cycle analysis baa of course been identifying
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expansions and contractions. Seversl recent forecasting exercises have

focused on forecasting turning points; see, for example, Hymans (1973), Wecker

(1979), Zsrnowitz and Moore (1982), Kling (1987), and Zellner, Hong and Gulati

(1987). Rather thsn focusing on turning points, the approach taken in Section

5 is to forecast directly the binary variable representing whether the economy

is in s recession or expansion six months hence. The main conclusion is that,

among the binary-response models considered, expansions can be forecasted

fairly reliably, recessions less so. Section 6 concludes.

2. The Coincident Indicator Model: Specification end Estimation

One approach to studying aggregate fluctuations is to pick an important

econosic time series -- aay employment or GNP -- as the object of interest for

subsequent anslysis and foretasting. This decided, life becomes relatively

easy, since economists have decades of experience constructing models to

analyze and to forecsst observable time series variables. From the

perspective of business cycle snslysis, however, this approach is rather

limited. Individual series measure more or less well-defined concepts, such

ss the value of all goods and services produced in a quarter or the total

number of individuals working for pay. But these series measure only various

facets of the overall state of economic activity; none messure the state of

the economy (in Burns and Mitchell's (1946) terminology, the "reference

cycle") directly. Moreover, even the concepts that the series purport to

measure are measured with error.1

The formulstion developed here is based instead on the assumption that

there is a single unobserved variable common to many macroeconomic time
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series. This places Burns and Mitchell's (1946) reference cycle in a fully

specified probability model. The proposed model is a parsinetric version of

the "single-index" models discussed by Sargent and Sims (1977), in which the

single unobserved index is common to multiple macroeconomic variables.

Estimates of this unobserved index, constructed using vsriables that move

contemporaneously with this index, provide an alternative index of coincident

indicators. This index can then be forecasted using leading variables.

A. The Single-Index Model

Let denote a nxl vector of macroeconomic time series variables that are

hypothesized to move contemporaneously with overall economic conditions. In

the single-index model, X consists of two stochastic components: the common

unobserved scalar time series variable, or "index", C, and a n-dimensional

component that represents idiosyncratic movements in the series and

measurement error, v. Both the unobserved index and the idiosyncratic

component are modeled as having linear stochastic structures. In addition, C

is assumed to enter each of the Variables contemporaneously. This suggests

the formulation:

(1)

(2) (L)C — & +

(3) (L)v —
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where L denotes the lag operstor, (L) is a acalar lag polynomials, and (L)

is a lag polynomial matrix. According to (1), Ct enters each of the n

equations in (1), although with varying lags and weights.

As an empirical matter, many macroeconomic time series are well

characterized as containing atochaatic trends; see, for example, Nelson and

Plosser (1982) . A theoretical possibility is that these stochastic trends

would enter through Ct; in this caae, each element of X,. would contain a

stochastic trend, but this trend would be common to each element. Thus X

would be cointegrated of order k-l as defined by Engle and Cranger (1987).

Looking ahead to the empirical results, however, this turns out not to be the

case: while we cannot reject the hypothesis that the coincident aeriea we

consider individually contain a stochastic trend, neither can we reject the

hypothesis that there is no cointegration among these variables.2 The ayatem

(l)-(3) is therefore reformulated in terms of the changes (or, more precisely,

the growth rates) of the variables. Specifically, aaaume that (L) and tHL)

can be factored so that (L)-*(L)a and 5(L)—D(L)a, where a—l-L. Let

and so that (1)-(3) become:

— $ + YACt + Ut

— 5 +

D(L)u —

In practice, X will be a vector of the logarithms of time series variables,

so that is a vector of their growth ratea. The lag polynomials (L) and

D(L) are assumed to have finite orders p and k, respectively.
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The main identifying assumption in the model expresses the tore notion of

the single-index model that the comovements of the multiple time series arise

from the single source C. This is made precise by assuming that

(u1 untACt) are mutually uncorrelated at all leads and lags. (When

there are four or more variables this imposes testable overidentifying

restrictions, which will be examined empirically below.) This is achieved by

assuming that D(L) is diagonal and that the n+l disturbances are mutually

untorrelated:

D(L) diag(d1(L) dn(L))

and

22 2
E E] — E =

Diag(u1,a
ft

In addition, the scale of ACt is identified by setting var(?7)_l. (This is a

normalization with no substantive implications.)

A final identifying assumption is required to estimate the mean growth rate

for This mean is calculated here as a weighted average of the growth

rates of the constituent series. The weights are those implicitly used to

construct ACtv from the original data series. That is, in this model ACtit

can be written,

(7) 5 — W(L)Yt

where W(L) is a lxn lag polynomial vector. The mean of ACtit equals W(l)',

where W(l)—oW and denotes the mean of Y. This implies,
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& —

Taken together, these assumptions provide sufficient identifying

restrictions to estimate the unknown parsmeters of the model snd to extract

estimates of C.

B. State Space Representation

The first step towards estimating the model (4)-(6) is to cast it into a

state space form so that the Kalman Filter can be used to evsluste the

likelihood function. This formulstion has two parts, the state equation and

the measurement equation. The state equation describes the evolution of the

unobserved state vector, which consists of Act, and their lags. The

measurement equation relates the observed variables to the elements of the

state vector.

The transition equation obtains by combining (5) and (6). Because one

objective is to estimate the level of ct using information up to time t, it is

convenient to augment these equations at this point by the identity ctl

The transition equation for the state ia thus given by:

C a a c1 Zc 0

u — 0 D* 0 ul 0 Z

c1 Z 0 1 ct2 0 0

where:

— [Ace Ac1
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u — [Ut' Ut.i' Ut k+l

p-ip
0

* Dl D1 DkD —

1n(k-i) 0

— [1. °lx(p-l)1

n 0nxn(k-l)

and where denotes the nxn identity matrix, °nxk denotes a nxk matrix of

zeros, and D — diag (d11 dni)i where dj(L)_iXf_ldjiLi.

The measurement equation is obtained by writing (4) as a linear combination

of the state vector:

(9) Yt — fi + [lZc Z 0] u

ct-i

The system (8) and (9) can be rewritten more compactly in the standard form,

(10) — + Rç

(11) Y_$+Za+Et

where
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* *— (st' u' Ct1)'

—

and where the matrices Tt, R and Z respectively denote the transition matrix

matrix in (8), the selection matrix in (8), and the selection matrix in (9).

The covariance matrix of is 8çç'— S. For generality, a measurement error

term (assumed uncorrelated with ç) has been added to the measurement

equation (11), and the transition matrix T is allowed to vary over time. In

the empirical work below, however, the measurement noise is set to zero and

the time invariant transition matrix in (8) is used.3

C. Eatimation

The Kalman Filter is a well-known way to compute the Gaussian likelihood

function for a trial set of parameters; for a discussion, see Harvey (1981).

The filter recursively constructs minimum mean square error (MMSE) estimates

of the unobserved state vector, given observations on The filter consists

of two sets of equations, the prediction and updating equations. Let °tTr
-

denote the estimate of based on (y1 y) let E[EEL]—H and recall

that E[cc}—E. Also, let Pi7E[(ati7-at)(ot,-at)'l. With this notation,

the prediction equations of the Kalman filter are:

(12) °tItl —

(13) 9tIt-l — TtPt 1i lTt + RER'
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The forecast of at time t-i. is and the forecast error is

vt—Y-fl-Zmitl. The updating equations of the filter are:

(14) mi — mtltl + Ptit1Z'Fwt

(15) — - Ptit1Z'F1ZPtiti

where Ft — E[vv] — ZP11Z' + H

The Kalman filter equations (l2)-(l5) permit recursive calculation of the

predicted state vector, °tltl' and of the covariance matrix of this estimate,

given the assumed parameters in Tt, R, E, H, and Z, and given initial

values for a1 and For exact maximum likelihood estimation, these

initial values are taken to be the unconditional expectation of m and its

covariance matrix, E[(mt-Emt)(mt-Emt)']; that is, m010—O and

P010—'oT3z4'. Alternatively, one could set P010 to an arbitrary

constant matrix. In this case, the estimates are asymptotically equivalent to

maximum likelihood.

The Gaussian log likelihood is then computed (up to an addicive constant)

as:

(16) .t — -½_1vLFut -

The Gaussian maximum likelihood estimates of the parameters are found by

maximizing .f over the parameter apace.
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D. Construction of the Leading Index and Weights (Wi)

The alternative index of coincident indicators from the single-index model

is the MMSE estimator of constructed using data on the coincident variables

available through time t. This is denoted by The Kalman Filter

produces the MMSE estimator of the state vector given (Y1 "• In

the notation of (8) , the alternative index of coincident indicators is

Ctit(Zc 0 0 l)mti. The weights implicitly used by the Kalman Filter to

construct from the coincident variables can be calcula'ted by computing

the response of to unit impulses in each of the obaerved coincident

variables. The variance of is (Zc 0 0 l)Ptit(Z 0 0 1)'

It is worth noting that this framework also permits the calculation of

retrospective estimates of the state of the economy, Ct[T. and more generally

Estimates of based on the entire sample are computed using the

Kalman smoother (see Harvey [1981]).

The weighting polynomial W(L) in (7) can be obtained directly from the

Kalman filter matricea. Because ExCtitejatit, where e1—U 0 0)', the

problem of finding the weights implicitly used to construct ACtit is a special

case of the problem of finding the corresponding weights for The

estimate computed by the Kalman filter is linear in current and past

observstions on Y. By substituting the relationship vt_Yt($+Zatjti) into

(14) and then using (12), one obtains:

(1]) at[t — (I-CZ)Ttct1it1 + -

where GPtit iZ'F1 is the Kalman gain. When the data are expressed as

deviations from their means (as is done in the empirical estimation below),
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is "concentrated out" of the likelihood. In addition, when Tt is time

invariant (so that Tt_T*), C converges nonstochastically to the steady-state

Kalman gain, G*. Under these conditions, (17) can be rewritten,

(18) (I-KL)mtit — G*Yt

where K_(IC*Z)T*. The weights W(L) are obtained by inverting (I-KL) in (18)

and selecting the first row of the resulting infinite order moving average:

(19) — ei_oKJC*Ytj

3. Empirical Results for the Coincident Model

This section presents estimates of the single-index model using four

monthly time series for the United States from 1959:2 to 1987:12. The series

are those used to construct the DOC coincident series: industrial production

(IP), total personal income less transfer payments in 1982 dollars (CMYXP8),

total manufacturing and trade sales in 1982 dollars (MT82), and employees on

nonagricultural payrolls (LPNAG). The data were obtained from the August,

1988 release of Citibase. Throughout, we adopt the Citihase mnemonics for the

variables when applicable.

A. Preliminary Data Analysis

The first step in specifying the model is to test for whether the series

are integrated and, if they are, whether they are cointegrated. For each of
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the coincident indicators, Dickey and Fuller's (1979) test for a unit root

(against the alternative that the series are stationary, perhaps around a

linear time trend) was unable to reject (at the 10% level) the hypothesis that

the series are integrated. The subsequent application of the Stock-Watson

(1986) test of the null hypothesis that the four series are not cointegraced

against the alternative of cointegration failed to reject at the 66%

significance level. Thus these tests provided no evidence against the

hypothesis that each series is integrated but they are not cointegrated. We

therefore estimated the model (-(6) using for the first difference of the

logarithm of each of the coincident series, standardized to have zero mean and

unit variance.

The single-index model imposes the restriction that all the comovements in

the series arise from a single source. Tests of this restriction, against the

hypothesis that the coincident indicators have s spectral density matrix that

is finite and nonsingular but otherwise unrestricted, were implemented by

Sargent and Sims (1977). Their test examines the implication that the

spectral density matrix of Y, averaged over any frequency bands, will have a

factor structure in the sense of conventional factor analysis; thus the

dynamic aingle-index restrictions may be tested by testing the "single factor"

restrictions for a set of these bands and then aggregating the results.

Specifically, since and Au are by assumption uncorrelated at all leads

and lags, (4) implies that S(w) _7Sac(W)1'+ u'4' where S(w) denotes the

spectral density matrix of Y at frequency w, etc. Because SAC(u) is a scalar

and is diagonal, this implies a testable restriction on S(w).

Performing this test for the coincident indicator model over six equally-

spaced bands constructed using Y (where the averaged matrix periodogram

- 13 -



provides the unconstrained estimate of the spectrum) provides little evidence

against the dynamic single-index structure: the test statistic is 19.8,

having a p-value of 92%.

B. Maximum Likelihood Estimates

The parameters of two single-index models were estimated using IF, GMYXP8,

MT82, and LPNAG over the period 1959:2-1987:12. In both models, a second

order autoregressive specification was adopted for AC, so that p'-2. In the

first, the errors u are modeled as an AR(l) (k—l); in the second, they are

modeled as an P1(2) (k—2). The log likelihood for the P1(l) model is 327.77,

and for the AR(2) model is 341.38. A likelihood ratio teat easily rejects the

hypothesis that the additional four autoregressive parameters are zero. We

therefore adopt the P1(2) specification henceforth.

The maximum likelihood estimates of the parameters of the single-index

model are presented in Table 1. The negative estimates of d1 for IF and MT82

indicate that the idiosyncratic component of these series exhibits negative

serial correlation, although the idiosyncratic component of LFNAG exhibits

substantial positive aerial correlation. The estimated model for the

unobserved component exhibits substantial first order - - but limited second-

order -- dependence, with roots of (.60,-OS).

Statistics that examine the fit of the single-index model are presented in

Table 2. The teats assess whether the disturbances in the obaerved variables

are predictable: if the estimated model is correctly specified, they should be

serially uncorrelated. The results suggest satisfactory specifications for

the IF, GMYXF8, and MT82 equations. However, the disturbance in LFNAG is

forecastable by each lagged disturbance and variable in the model, indicating
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Table 1

Estimated Single-Index (odel of Coincident Variables

Coincident Variable -

Parameter IP GMXP8 MTB2 LPNAG

0.717 0.521 0.470 0.602

(0.03]) (0.044) (0.030) (0.041)

d11
-0.040 -0.087 -0.414 0.108

(0.091) (0.042) (0.052) (0.050)

-0.137 0.154 -0.206 0.448

(0.083) (0.049) (0.059) (0.068)

o (x102) 0.488 0.769 0.735 0.540

(0.035) (0.026) (0.030) (0.030)

0.545AC1 ÷ 0.03ThC2 +

(0.062) (0.065)

L 341.38

Notes: The estimation period is 1959:2-1983:12. The parameters were

estimated by Gaussian maximum likelihood as described in the text. The

parameters are -i—(i -y4), D(L)—diag(d1(L) d4(L)) with d(L)—l-d1L-

d2L and Z—diag(ci1 c4). Asymptotic standard errors (computed

numerically) appear in parentheses.



Table 2

Marginal Significance Levels of

Diagnostic Tests for Single-Index Model

p-values

Dependent Variable

Regressor e1p eQccPB eMT82 eLPNAG

e1p .625 .445 .063 .014

e0wf2cP8
.320 .986 .786 .034

eMT82 .198 .952 .810 .004

eLPNAG .359 .790 .163 .000

Exln(IF) .593 .464 .196 .002

dln(GMNXP8) .366 .986 .905 .008

tln(MT82) .219 .875 .628 .000

tln(LPNAG) .241 .556 .189 .000

Notes: The entries in the table are p-values from the regression of ey

against a constant and six lags of the indicated regressor; the p-values

correspond to the usual F-test of the hypothesis that the coefficients on

these six lags are zero. No attempt was made to correct the test statistic or

the distribution for degrees of freedom, other than the ususl correction for

the number of regressors. The series ey denotes the one-step ahead forecast

errors from the single-index model. Thst is, ey is where is

computed using the Kalman filter applied to the estimated model reported in

Table 1.



misspecification of the LPNAG equation. A possible source of this

aisspecification is that LPNAG is not an exactly coincident variable, but

slightly lags the unobserved factor. This could be investigated by including

lags of C in the equation for LPNAG in (4). Alternatively, one might change

the dynamic specification for U4c. We do not, however, pursue these options

for two reasons. First, with the exception of the LPNAC equation, the overall

fit of the model appears to be good. Second, and more importantly, our

primary objective is to see whether a purely coincident single-index model can

rationalize the DOG coincident index; adopting a mixed coincident/lagging

single-index specification would defeat this purpose. We therefore proceed

with the coincident single-index model of Table I, but raise the apparent

misapecification of the LPNAG equation as an issue for future research.

C. Comparison Between Ctit and the DOC Series

We now examine the relation between the contemporaneous estimate C1 of C

obtained using the coincident single-index model and the Index of Coincident

Indicatora published by the Department of Commerce, henceforth referred to as

COC. The summary statistics reported in Table 3 indicate that these series

are highly correlated, but that the standard deviation of the growth rate of

COC exceeds that of Ctit by 80%. This is a consequence of how COC is

constructed: the weights on the deviations of the constituent series from

their means aum to 1.8, while the weights implicitly used to construct ACtit

sum to 1. This difference affects the graphical presentation of the series in

levels, but of course not the correlations or other functions of centered

momenta estimated using their growth rates.

To facilitate a graphical comparison, we calculated a series CIt by

DOG
scaling ACtit to have the same variance as the growth in C and to have
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Table 3

Comparison of Growth Rates of CtIt and

Summary Statistics

Growth Rates (on an Sample Sample

annual basis) of: Mean Standard Deviation

Commerce Series 3.53% 8.98%

2.96% 4.80%

DOGContemporaneous correlation between C and Ctit: 0.936
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the same mean as txCtit. This modified growth rates series was then used to

construct the levels series indexed to equal 100 in January, 1967.

The series C° and CIt, are plotted in Figure 1. Although the mean

growth rates differ, the two series exhibit a striking similarly. One of the

few noticeable differences between the two series is the somewhat slower

average growth of from 1984 to 1987.

A comparison of the weights used in the construction of the growth rates of

OOc * . . . . .
and C1 provides an additional indication of their similarity.

These weights, normalized to add to one, are presented in Table 4. The two

sets of weights are generally similar. For example, contemporaneous values

receive most of the weight in (and 100% in co'). The major exception

is that a second lag of LPNAG receives a substantial negative weight.

A final measure of the relation between C1 and C30 is the coherence

between their growth rates; this is plotted in Figure 2. The very high

estimated coherence at low frequencies (in excess of 95% for periods over two

years) indicates that the two series are very similar at horizons associated

with the business cycle.

In summary, these measures all suggest that the coincident index

estimated using single-index model agrees closely with the current DOC GET,

especially at business cycle frequencies.

4. Forecasts of the Coincident Index Using Leading Variables

This section explores one approach to forecasting the coincident series

Rather than considering directly, we focus on forecasting the
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Table 4

Weights on coincident variables used in constructing C° and C.

DOCA. C

Lag IP GMYXP8 MT82 LPNAG

0 .156 .227 .138 .479

1 .000 .000 .000 .000

2 .000 .000 .000 .000

3 .000 .000 .000 .000

4 .000 .000 .000 .000

B.

Las IP GM'P8 MT82 LPNAG

0 .271 .163 .072 .668

1 .031 .026 .036 - .029

2 .052 .016 .021 - .271

3 .005 - .000 .003 - .019

4 .003 - .001 .001 - .014

>4 .000 .000 .000 - .002

Total: .361 .173 .134 .332

Notes: The weights are normalized so that they add to one. The weights

implicitly used to construct the C° computed by regressing the growth rate
of the Commerce series on contemporaneous values of the growth rates of the
four series used in its construction: industrial production (IP), real
personal income (GMYXP8), real manufacturing and trade sales (MT82), and
employment at nonagricultural establishments (LPNAG). Thus the weights for
all lgs other than the contemporaneous variables are zero by construction.
The R2 of this regression, estimated from 61:1 to 87:12, is .937. Reasons why
the R would be less than one include rounding error and minor differences
between our series and those used by the DOC to construct the index. The
weights implicitly used to construct CtIt were obtained by computing the
responses of to unit impulses to each of the four series using the Kalman
filter.



growth of over six months, denoted by ft(6). The strategy is to

construct a parsimoniously parsmeterized system of autoregressive equations,

where the parameterization is suggested by the data. The resulting Thase"

model is then used to assess the marginal predictive content of additional

candidate leading variables.

A. Autoregressive Systems to Forecast ft(6)

Summary statistics for several autoregressive systems are presented in

Table 5. In addition to each system includes five key leading

variables: manufscturing and trade inventories (IVMT82), manufacturers'

unfilled orders (MDU82) housing starts (HSBP) , the yield on a constant-

maturity portfolio of 10-year treasury bonds, and the spread between the 10

year bond yield and the interest rate on 90 day T-bills. Note that not

enters the autoregressions. The aix-month forecast of fft(6), ia

computed from the estimated systems.

The classical VAR(12), while delivering the highest between and

has many parameters and thus might be expected to be unstable. The

Bayesian VAR's reported in Table 5 impose "smoothness priors", in effect

imposing restrictions that might mitigate this problem. Unfortunately, the

predictive performance of the Bayesian VAR's deteriorates substantially when

the tightness of the prior is increased. As an alternative, Panel 0 reporta

results for a set of models that are relatively parsimoniously parameterized,

but that do not result in a marked deterioration of six-step ahead forecasting

performance. In these, the equations for IVMTS2, MDUR2, HSBP, FYGT1O, and

FYGT1O-FYGM3 each include one lag of each of the six variables, while the

ACtit equation includes the indicated number of lags (p19 of the six
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Table 5

Performance of Various Systems for Forecasting

Variables: IVMT82, MDTJ82, HSBP, FYGT1O, FYGT1O-FYGM3

a2 between (6) and

Model 61:1-87:6 61:1-79:9 79:10-87:6

A. Classical VAR'S

1. VAR(6) .578 .585 .565

2. VAR(12) .654 .633 .673

B. Bayesian VAR's

3. BVAR(12), -y—.2 .620 .614 .626

4. BVAR(12), y—.l .577 .585 .567

C. VAR's with AFYGT1O

5. VAR(12) .538 .534 .632

6. BVAR(12), -y—.l .473 .475 .542

D. Mixed systems:

7. (1,1,12,12,12) .633 .630 .636

8. (1,1,4,12,12) .615 .601 .634

9. (1,1,4,12,8) .607 .590 .634

10. (1,1,4,8,8) .587 .597 .573

Notes: ft(6)C+6it+6Ctit, where C1 is estimated from the single-index

model reported in Table 1; t(6) denotes the six-month ahead forecast of

computed using the relevant estimated system, i.e. All

systems were estimated in RATS using the six variables listed. The -y
parameter in the Bayesian VAR's represent different degrees of tightness in
the Bayesian prior, with the lower value corresponding to a more tight prior.
The estimation period was 1961:1-1987:12; the R measures were computed for
different subsamples using the E(6) generated by the autoregressive model
estimated over the entire period. The mixed systems impose many zero
restrictions; the pj notation in the specification of the mixed systems
refers to the number of lags of the j-th variable in the i-th equation in the

autoregressive system. IVMT82, and MDU82 appear in growth rates and
HSBP and FYGT1O-FYGM3 appeAr in levels. In panels A, B, and D, FYOT1O appears
in levels, while in panel C it appears in first differences.



variables. Of these, model 9 was selected as the "base" model for subsequent

analysis.

B. An Examination of Additional Variables

This base model provides a framework for assessing the marginal predictive

content of alternative leading variables. This is done by including trial

variables, one at a time, as additional leading variables in the mixed

autoregressive system. The results for selected variables are reported in

Table 6. (The variable definitions are provided in Appendix A.)

The strongest evidence of additional predictive content comes from yields

on various financial instruments. Theory suggests that bond and stock prices

will incorporate expectations of various aspects of future economic

performance and so should be useful leading indicators. Yet it is perhaps

surprising that these variables provide additional useful information, because

the base model already includes two interest rates (FYOT1O and FYGM3) and an

2interest-sensitive series, HSBP. These high R values should be interpreted

cautiously, however. For the interest rates, at least, the two largest R2's

drop in the 1980's, indicating potential instability of these series as useful

leading indicators. It is also interesting to note that stock prices help to

forecast not by predicting ACtit directly, but rather by helping to

forecast the other variables in the system which in turn are useful in

forecasting ACt it

Among selected BCD leading indicators (panel A), only IVPAC makes a

statistically strong contribution to the ACtR equation; but including IVPAC

actually reduces the six-step ahead forecasting performance. Measures of

productivity, prices, exchange rates, and services make only modest
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Table 6

Tests of the marginal predictive value of alternative leading variables

F-tests: p-values - P7 between (6) and

eries Transfoiiition lazs 1-12 lazs 7-12 61:1-87:12 61:1-79:9 79:10-87:1.2

Base model .607 .590 .634

A. Selected Leading Indicators
bus d].n(x) .093 .699 .624 .622 .628

lhuS 51n(K) .091 .389 .624 .609 .643

condo9 tln(x) .642 .406 .618 .603 .641

hsfr tln(x) .719 .502 .617 .612 .626

ipi 81n(x) .384 .569 .621 .604 .650

ipmfg .Sln(x) .345 .279 .626 .623 .640

tpcd 41n(x) .204 .648 .642 .642 .636

gmcd82 E1n(x) .612 .430 .615 .592 .655

jvm28 1n(x) .693 .945 .645 .648 .634

mocm82 1n(x) .868 .876 .615 .594 .649

mpcon8 dln(x) .831 .544 .603 .602 .606

ivpac 1n(x) .001 .212 .579 .568 .596

rcar6d din(x) .949 .667 .610 .594 .634

3. Productivity
loutbm ln(x) .192 .367 .599 .558 .633

iboutum 1n(x) .945 .722 .604 .591 .631

C. Prices
pw 5ln(x) .689 .904 .629 .628 .619

pwfc 1n(x) .712 .637 .611 .595 .636

ppsmc none .216 .057 .632 .632 .637

punew E1n(x) .104 .136 .605 .600 .624

pzunew 2.ln(x) .180 .344 .610 .607 .620

D. Exchange Rates and trade
exrwtl dln(x) .746 .575 .613 .598 .636

exrwt2 ln(x) .639 .426 .616 .599 .642

exnwtl tln(x) .694 .461 .616 .605 .640

exnwt2 ln(x) .656 .359 .618 .604 .643

tbl none .459 .207 .624 .599 .662

D. Services

gmws ln(x) .371 .192 .619 .607 .657

lpsp tdn(x) .398 .647 .611 .613 .621

lpgov LJ.n(x) .166 .119 .621 .615 .641

lpspng dJ.n(x) .884 .934 .612 .608 .627



Table 6 (continued)

F-tests: p-values - R2 between and -

Series Transformation laps 1-12 laes 7-12 61:1-87:12 61:1-79:9 79:10-87:12

F. Money and Credit
fmld82 t1n(x) 1.000 .997 .607 .593 .632

fm2d82 t1n(x) .873 .977 .624 .613 .629

fmbase 1ln(x) .110 .045 .641 .637 .687

fcln82 41n(x) .203 .815 .608 .575 .674

fcbcuc dln(x) .701. .963 .648 .650 .622

fclbmc 1n(x) .125 .037 .633 .772 .238

cci30m 1n(x) .567 .537 .642 .640 .641

G. Stock prices and volume

fspcom 1n(x) .317 .393 .673 .649 .696

fsdj t1n(x) .420 .384 .645 .630 .659

fspin Aln(x) .300 .308 .672 .647 .697

fsvol 1n(x) .171 .112 .639 .614 .671

H. Nominal and ex-post real interest rates

fyff none .077 .986 .680 .703 .616

fygtl none .436 .668 .636 .594 .699

fycp none .007 .756 .739 .751 .691

fyffr none .037 .982 .614 .595 .644

fygm3r none .188 .923 .623 .618 .626

fygtlr none .086 .972 .615 .599 .639

fygtl0r none .571 .641 .612 .585 .664

Notes: The base model in the first line of this table is the mixed VAR, model

9 in Table 5. For each of the variables, the base model was augmented by the

trial variable, with 12 lags of the trial variable in the equation and 1

lag of the trial variable entering each of the remaining six equations. The

p-values reported in the third and fourth columns refer to the F-tests of the

hypothesis that the coefficients on the indicated lags of the trial variable

in the equation are zero. The measures in the final two columns are

described in the notes to Table 5.



contributions. Two of the measures of money and credit - - FMBASE and FCBCTJC

-- made substantial improvements in the R2. However, money and credit

variables must be viewed with suspicion as stable leading indicators because

of recent changes in financial markets (see Friedman [19881 for a discussion).

This is highlighted by the very poor performance of the six-month ahead

forecasts based on FCLBMC in the 1980's.

In summary, the leading variables in the base model, along with some of the

variables in Table 6, indicate that approximately two-thirds of the variance

of the six-month ahead growth in can be forecasted using restricted

autoregressive systems. The next step, left for further research, is to

assess the stability of these systems.

5. Forecasts of Recessions Using Leading Variables

This section presents an initial exploration of the possibility of

predicting whether six months hence the economy will be in a NBER-dated

recession. The approach taken here is to estimate several binary logit

models. The dependent variable is Rt÷6, where Rt.d. if the economy is in a

NBER-dated recession in month t, and Rt0 if not. The predictive variables

are the forecasts ft(l) calculated from an eight-variable mixed

tutoregressive system with IVMT82, MDU82, HSBP, FYGT1O, FYGT1O-FYGM3,

FYCP, and IPCD. In addition, individual leading variables were included, both

singly and as a group.

The logit models were estimated by maximum likelihood, It is important to

recognize that this likelihood is misspecified: because the dependent variable
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refers to an event six months hence, the errors in the latent variable

equation (and che six-step ahead prediction errors) will in general have a

moving average structure. Thus this procedure should be viewed simply as

providing a convenient functional form for exploring the predictability of

The results are reported in Table 7. The first noteworthy result is that

the one- through six-step ahead forecasts of produced by the eight-

variable mixed autoregression, by themselves produce a subatantial reduction

in the unexplained variance of Rt. In addition, these results suggest that

expansions can be forecasted accurately, but that the probability of correctl:

forecasting a receasion six months hence is the range of two thirds.

Considerable gains can be made by incorporating variables in addition to

£t(l) t(6) ; financial variables seem particularly useful in this

regard.

The predictiona Rt+61t of the aix-month ahead NBER forecaata, computed

using model 15 in Table 7, are plotted in Figure 3. The dating convention in

thia figure ia that RtIt6 is plotted; for example, in the figure the July,

1982 probability is the forecast of the binary July, 1982 receaaion/expanaion

variable, made using data through January 1982. The actual NEER-dated

recessions are indicated by vertical lines. This plot bears out the falae

positive and false negative rates presented in the final two columna of Table

7. On the one hand, false recession forecaats occur relatively rarely, with

the largest false receaaion forecasts occurring during 1967 and throughout

1979. On the other hand, the aix-month-ahead receaaion probabilities rarely

approach one when in fact a recession does occur. For example, the aix-month

ahead probability of a receaaion incorrectly drops below 50% during the middi

of the 1970 contraction.
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Table 7

Logit models to predict NBER-dated recessions at a six month horizon

Variables in Base Model: constant, (l), £(2),...,

- Additional Predictive Variables - False Falae

Series no. lags R2 Positive Rate Negative Rate

- .448 .090 .452

M0U82 5 .456 .089 .447

IVMT82 5 .491 .084 423

HSBP 5 .513 .080 .403

FYGT1O 5 .486 .084 .423

FSPRD 5 .551 .074 .372

FYCP 5 .479 .084 .420

3. IPCD 5 .530 .076 .380

EXNWT2 5 .453 .089 .448

10. LHU5 5 .482 .084 .422

11. LBOUTU 5 .469 .087 .436

k2. FSPCOM 5 .497 .083 .416

L3. MDU82, IVMT82, NSBP, FYGT1O, 1 .597 .067 .334

FSPRD, FYCP, IPCD

14. FYGT1O, FSPRD, FYCP, FSPCOM 1 .551 .073 .366

15. FYGT1O, FSPRD, FYCP, FSPCOM 3 .613 .062 .309

Jotes: The estimation period is 1961:1-1987:12. The dependent variable in
he logit regressions has s value of I if there is a NBER-dated recession six
nonths in the future, and has a value of 0 if six months hence there is a
NBER-dated expansion. The mean value of this variable over the estimation
rieriod is .167. Model 1 is the "base model", with only

l(l),t (2) ft(6)) as regressors. Contemporaneous value (and the
number of Lgs indicated in the second column) of the addiciona predictive
sriab].es were included as well in the remaining models. The R is computed
using the actual (0/1) recession probabilities and their six-month ahead
forecast computed by the logit model. The second-to-last column ("false
positive rate") presents the average fraction of times that a recession is
forecast when in fact no recession occurs, and the final column ("false
negative rate") presents the average fraction of times that no recession is
forecasted when in fact a recession occurs.



1
.
0
 

.
8
 

.
6
 

.
9
 

.
2
 

0
.
0
 

6
3
 

6
5
 

6
7
 

6
S
 

7
1
 

7
3
 

7
5
 

7
7
 

7
S
 

8
1
 

8
3
 

8
5
 

8
7
 

F
i
g
u
r
e
 
3
.
 

N
B
E
R
-
d
a
t
e
d
 
r
e
c
e
s
s
i
o
n
s
 
a
n
d
 
f
o
r
e
c
a
s
t
s
 o
f
 
t
h
e
i
r
 
p
r
o
b
a
b
i
l
i
t
y
 
o
f
 

o
c
c
u
r
i
n
g
,
 i

i
a
d
e
 
s
i
x
 m
o
n
t
h
s
 
p
r
i
o
r
 u
s
i
n
g
 
m
o
d
e
l
 
1
5
 
o
f
 
T
a
b
l
e
 
7
.
 



6. Conclusions

The single-index model provides an explicit probability model for the

definition and estimation of an alternative index of coincident indicators.

The empirical model produces a coincident index that is strikingly similar to

the index currently computed by the Department of Commerce, particularly at

the low frequencies associated with business cycles. The main evidence of

misspecification in the empirical model appears in the equation for the

employment series, LPNAG. One possible explanation, to be explored in future

research, is that employment is a lagging rather than an exactly coincident

series.

The forecasting exercises of Sections 4 and S indicate that time series

models which incorporate leading variables can provide useful forecasts of the

growth of the coincident index, and of a variable that indicates whether the

economy is in a recession or expansion six months hence. This is unsurprising

in the sense that these leading variables are so categorized because of their

tendency to move in advance of the coincident index. The main contribution of

these empirical investigations is rather to provide some specific models with

which to make these forecasts, and some statistical measures of the within-

sample forecast quality. A noteworthy finding from this investigation is thst

financial prices and yields appear to have greater predictive value than do

measures of real output, real inputs, or prices of foreign or domestic goods.
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Footnotes

I. Most modern research on the forecasting potential of the index of leading

indicators has focused on its ability to forecast not the reference cycle, but

some observable series such as industrial production or unemployment (e.g.

Stekler and Schepsman (1973), Vaccara and Zarnowitz [1978], Sargent [1979],

Auerbach [1982], and Koch and Raasche [1988]). Our perspective is closer to

that underlying the work of Diebold and Rudebusch (1987) and Hamilton (1987).

For a historical review of the development of the leading indicators, see

Moore (1979).

2. A different way to make this point is that we are examining comovements

among the first differences of the coincident variables at frequencies other

than zero. Were the common factor the only source of power at frequency

zero in the spectra of the first differences, the spectral density matrix of

the first differences would be singular at frequency zero and the series would

be cointegrated. Harvey, Fernandez-Macho, and Stock (1987) discuss modeling

strategies for unobserved- component models with cointegrated variables.

3. The state space representation (8) and (9) is not unique. In practice, it

is computationally more efficient to work with a lower-dimensional state

vector. This can be achieved by filtering Y, and u in (4) by 0(L) and

treating e as a measurement error. The resulting state vector has dimension

p+l.
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Appendix A

Variable Definitions

Unless otherwise noted, the data were obtained from the August, 1988

release of CITIBASE. The variable definitions are those in CITIBASE.

Coincident Variables

IP INDUSTRIAL PRODUCTION: TOTAL INDEX (l977—100,SA)

GMYXP8 PERSONAL INCOME:TOTAL LESS TRANSFER PAYMENTS,82$(BIL$,SAAR)

MT82 MFG & TRADE SALES: TOTAL, l982$(MIL$,SA)(BCDS7)! 2 3

LPNAG EMPLOYEES ON NONAG. PAYROLLS: TOTAL (THOUS. ,SA)

Additional Variables (in alohabetical order)

BUS INOEX OF NET BUSINESS FORMATION, (1967—lOO;SA)

CCI3OM CONSUMER INSTAL.LOANS: DELINQUENCY RATE,30 DAYS & OVER, (%,SA)

CONDO9 CONSTRUCT.CONTRACTS: COMM'L & INDUS.BLDCS(MIL.SQ.F7.FLOOR SP. ;SA)

EXNWT1 Trade-weighted nominal exchange rate, U.S. vs Canada, France, Italy

Japan, U.K. , W. Germany (authors' calculation)

EXNWT2 Trade-weighted nominal exchange rate, U.S. vs France, Italy, Japan,

U.K. , W. Germany (authors' calculation)

EXRWT1 Trade-weighted real exchange rate, U.S. vs Canada, France, Italy,

Japan, U.K. , W. Germany; real rates based on CPI's (authors'

calculation)

EXRWT2 Trade-weighted real exchange rate, U.S. vs France, Italy, Japan,

U.K. , W. Germany; real rates based on CPI's (authors' calculation)

FCBCUC CHANGE IN BUS AND CONSUMER CREDIT OUTSTAND.(PERCENT,SAAR)(BCD11I)

FCLBMC WKLY RP LG COM'L BANKS:NET CHANGE COM'L & INDUS LOANS(BIL$,SAAR)

FCLN82 CO?NERCIAL & INDUSTRIAL LOANS: OUTSTANDING,82$(MIL$,SA)! 2 3

FM1D82 MONEY STOCK: M-1 IN 1982$ (BIL$,SA)(BCD 105)

FM2D82 MONEY STOCK: M-2 IN 1982$(BIL$,SA)(BCD 106)

FMBASE MONETARY BASE, ADJ FOR RESERVE REQ CHGS(FRB OF ST.LOUIS)(BIL$,SA)

FSDJ COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE

FSPCOM S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43—10)

FSPIN S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43—10)

- 26 -



FSVOL STOCK MRKT: NYSE REPORTED SHARE VOLUME (MIL.OF SHARES;NSA)

FYCP INTEREST RATE: COMMERCIAL PAPER, 6-MONTh (% PER ANNUM,NSA)

FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)

FYFFR FYFF less 12-month CPI inflation rate (authors' calculation)

FYGM3R FYGM3 less 12-month CPI inflation rate (authors' calculation)

FYGT1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)

ZYGT1OR FYGT1O less 12-month CPI inflation rate (authors' calculation)

FYGT1R FYGT1 less 12-month CPI inflation rate (authors' calculation)

MCD82 PERSONAL CONSUMPTION EXPENDITURES:DURABLE GOODS,82$

MWS PERSONAL INCOME: WAGE & SALARY, SERVICE INDUSTRIES (BIL$,SAAR)

HSFR HOUSING STARTS:NONFARM(l947-58);TOTAL FARM&NONFARM(l959-)(THOUS. ,SA

IPCD INDUSTRIAL PRODUCTION: DURABLE CONSUMER GDS (1977—lOOSA)

IPI INDUSTRIAL PRODUCTION: INTERMEDIATE PROD (1977-100,SA)

IPMFG INDUSTRIAL PRODUCTION: MANUFACTURING (1977—100,SA)

IVM2B MFG INVENTORIES: CHEMICALS & ALLIED PRODUCTS (MIL$,SA)

1VPAC VENDOR PERFORMANCE: % OF CO'S REPORTING SLOWER DELIVERIES(%,NSA)

LBOUTUM Quarterly output per hour of all persons, business sector,

distributed evenly across months in quarter, lagged two months

(authors' calculation, based on CITIBASE series LEOUTU).

LHUS UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN S WKS (THOUS. ,SA)

LOUTBM Quarterly output per hour of all persons, nonfinancial corporate

sector, distributed evenly across months in quarter, lagged two

months (authors' calculation, based on CITIBASE series LOUTB).

LPGOV EMPLOYEES ON NONAG. PAYROLLS: GOVERNMENT (THOUS. ,SA)

LPSP EMPLOYEES ON NONAG. PAYROLLS: SERVICE-PRODUCING (THOUS. ,SA)

LPSPNG LPSP less LPGOV (authors' calculation)

MOCM82 2 MFG NEW ORDERS: CONSUMER GOODS & MATERIAL,82$(BIL$,SA)! 2 3

MPCON8 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT IN 82$(BIL$,SA)! 2 3

PPSMC CHANGE IN SENSITTVE CRUDE AND INTERM PRODUCERS' PRICES(%)BGD98

PUNEW CPI-U: ALL ITEMS (SA)

PW PRODUCER PRICE INDEX: ALL COMMODITIES (NSA)

PWFC PRODUCER PRICE INDEX: FINISHED CONSUMER GOODS (NSA)

PEUNEW CPI-U: ALL ITEMS (NSA)

RCAR6D RETAIL SALES: NEW PASSENGER CARS, DOMESTIC (NO.IN THOUS. ;NSA)
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TB1 Trade Balance as percent of personal income: total merchandise and

trade exports less imports (current dollars), divided by current

dollars personal income (authors' calculation, based on CITIBASE

series FTM, flE, F6TED, F6TMD, and CMPY)
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