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1 Introduction

“What we know, or should know, from the past is that once inflation becomes anticipated and

ingrained — as it eventually would — then the stimulating effects are lost.” (Paul Volcker,

former Chairman of the Federal Reserve, New York Times, 9/19/11)

Most modern macroeconomic models feature medium- or long-term monetary neutrality or are relatively

close to neutrality. This means, one might suspect, that with sufficiently long time passing, output is pinned

down by the production capacities and labor supply, independently of monetary policy. The monetary

neutrality assumption made its way into the core of economic thought following the seminal contributions

of Friedman (1968) and Phelps (1967) and the stagflation of the 1970s when inflation rose without any

improvement in output and employment.

The point of this paper is that this medium- or long-term monetary neutrality assumption runs into

a direct conflict with the aggregate demand side of modern general equilibrium models under relatively

plausible conditions. The two most important conditions for this conflict to occur are that i) central bank

reaches the effective lower bound (ELB) on interest rates, and ii) policy is set according to a monetary

policy regime under which the central bank is strongly averse to any overshooting of its in inflation target.

More specifically, we consider a policy regime according to which the central bank is unable/unwilling to

increase inflation expectations in response to a shock that brings the economy to the ELB. A policy regime

governed by the popular Taylor rule, for example, satisfies this condition.

The conflict between aggregate supply and demand results in some cases in non-existence of equilibria,

or in output contracting without a bound at the ELB — a phenomenon we term contractionary black

holes. As we argue below, the reason is that any adverse shock that brings the economy to the ELB and

causes a decline in short-run inflation and medium-run inflation expectations induces an increase in the

real interest rate, which in turn reinforces the output contraction and the downward pressures on inflation

and inflation expectations. A key conclusion of this paper is that the closer the aggregate supply side is

to exhibiting medium- or short-term money neutrality, the more likely the model is to exhibit a very large

output contraction at the ELB, or non-existence of the equilibrium. In addition, the case for expansionary

monetary policy at the ELB is even stronger, and the stimulative effects of monetary policy are also larger,

the closer the model is to exhibit money neutrality. This may seem deeply counterintuitive.1 At the ELB,

Volcker’s opening quote of the paper is turned on its head: as expectations become more ingrained the

effect of a stimulus becomes larger, rather than smaller.

We start the paper by showing the problem of non-existence in a microfounded model which nests a

standard Phillips curve with a static inflation output trade-off, and the New Classical Phillips curve where

there is no such trade-off once expectations adjust:

πt = κŶt + λEt−1πt, (1)

1Aside from Volcker who is quoted at the beginning of this paper, many other prominent economists have expressed

skepticism about policies intended to raise inflation expectations at the ELB. For instance Cochrane (2012): ”But it’s a rare

Phillips curve in which raising expected inflation is a good thing. It just gives you more inflation, with if anything less output

and employment.”
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where κ > 0, λ ∈ [0, 1] are coefficients, πt is inflation in deviation from steady state, Ŷt is output in

deviation from its potential, and Et−1 is an expectations operator. Our benchmark is λ = 1, in which

case the model is the standard New Classical Phillips curve with strong monetary neutrality (Lucas, 1972;

Barro and Gordon, 1983). Meanwhile, if λ = 0 the model features a classic static trade-off between inflation

and output. We choose this model, not for its realism, but for clarity. It clearly illustrates the problem of

non-existence when the aggregate supply side incorporates a strong money neutrality. Here, if inflation is

fully anticipated and λ = 1, then πt = Et−1πt and equation (1) implies that Ŷt = 0. Hence, any increase

in inflation once anticipated, seems to loose its expansionary effect, as suggested by Volcker’s quote.

We point out in Section 3 that this particular result is obtained by looking exclusively at the “supply

equation” (1) under the assumption that λ = 1. When we introduce a standard aggregate demand side

to the model, along with a standard monetary policy reaction function, it becomes clear that this result

is only partial and misleading in general equilibrium. A key result is that if shocks are large enough for

the ELB on the short-term nominal interest rate to bind, then, given expectations, output is demand

determined. In that case — assuming monetary policy seeks to bring inflation back to the central bank’s

inflation target without overshooting it — output demanded is always below “potential,” i.e., Ŷt < 0.

Moreover, even if inflation is perfectly anticipated, we show that the solution Ŷt = 0 implied by the supply

side is inconsistent with the demand-side equilibrium conditions of the model. Hence a key result of this

paper is the non-existence of an equilibrium in the model when the ELB binds.

How can this clash between the demand and supply sides of the model be resolved? What is the

interpretation of the non-existence result? We propose an interpretation by analyzing two cases that each

relax an assumption of our baseline model. First, in Section 4, we relax the assumption that λ = 1. We

show that the non-existence result is a knife-edge result for λ = 1, and an equilibrium exists in close

vicinity of it, although it requires a sharp drop in output. Indeed, paradoxically, as the model moves closer

to monetary neutrality, i.e., as λ moves from 0 to 1, the output in the short run contracts more and more

until it collapses without bound. Second, while maintaining the benchmark assumption that λ = 1, we

relax in Section 5 the assumption of perfect foresight. It turns out that non-existence in a perfect foresight

equilibrium is also a fragile knife-edge result. We show that when introducing a little uncertainty, again

an equilibrium exists. In this equilibrium the “clash of the two equations” is again resolved in favor of the

demand side, and the solution features an output collapse and deflation. Once inflation becomes perfectly

anticipated towards the perfect foresight limit, output and inflation collapse completely. We refer to the

situation in which output collapses without a bound as a contractionary black hole.

Interestingly, we show that at the ELB, as long as the equilibrium exists, anticipated inflation is far

from neutral under our specification of the monetary policy regime. In fact, raising inflation expectations

can have extremely large effects on output in this model, with the effects getting larger and larger as the

model approaches the contractionary black hole. This implies that the monetary policy regime plays a key

role in stabilizing output and inflation. In our baseline, we assume that, when possible, the central bank

sets its policy rate according to a simple policy rule that seeks to bring inflation back to its target (from

below) in response to a ELB shock. However, if the policy regime instead implies a temporary overshoot

of the inflation target it can successfully stabilize inflation and output. If properly designed, a new policy

regime can even eliminate the possibility of contractionary black holes altogether.

Our paradoxical conclusion that output contracts more at the ELB the closer the model is to monetary

neutrality is related to, but is conceptually distinct from the price flexibility paradox in New Keynesian
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models.2 According to this paradox, if the central bank has an inflation target that is too low to accommo-

date a negative natural rate of interest, then the more prices become flexible, the more output contracts at

the ELB. This is because higher price flexibility results in more deflationary expectations, which contract

aggregate demand. This is paradoxical, for we know that at full flexibility, output is by definition equal to

the flexible-price output. The resolution of this paradox, we suggest (and show explicitly toward the end

of the paper), is that there is no equilibrium in the flexible-price model.

While most of our analysis is conducted in linear(ized) models, Section 6 shows that our main result on

non-existence of the equilibrium is not an artifact of an approximation. Indeed, the equilibrium displays

similar features in the non-linear version of our baseline model.

Section 7 moves to the more empirically realistic New Keynesian model now popular in the literature.

In that model, the short run is no longer just defined by just one period. The way the non-existence

arises is via a constraint on how long the slump can last without an unbounded collapse in output. For

empirically reasonable values, for example, the bound on how long the slump can last without implosion

is relatively tight. One implication of this result, from a modeling standpoint, is that one has to move

away from assuming monetary neutrality in the medium and short run in order to account for plausibly

persistent slumps. For example, it is difficult to account for the long slump in Japan at the ELB without

deviating away from medium term monetary neutrality.

In Section 8, we connect our results to the literature on secular stagnation, a literature emphasizing

a permanent liquidity trap. This section highlights that a key requirement of this literature is not only

a change to the aggregate demand side of the model — in order to encompass a permanent reduction in

the real interest rate — but also to the aggregate supply side, to allow for a permanent trade-off between

inflation and output. In Section 9, we connect our result to the price-flexibility paradox. Here we highlight

via a simple flexible-price model, that the key to understand the paradox is that there generally is non-

existence of equilibria in response to temporary negative real interest rates if the central bank targets zero

inflation. Section 10 discusses alternative policy rules that generate equilibrium existence, such as policies

seeking to stabilize prices around a price-level target. Section 11 concludes.

2 Medium-Term Neutrality of Money

We start by briefly reviewing a key property of the aggregate supply relationship (1), shared by most

modern specifications of nominal rigidities, namely the medium-run money neutrality when λ = 1. We

label π∗
t the inflation rate that the central bank seeks to achieve in any period t, and call it the inflation

target for short. We assume that we initially start with an inflation target at 0, and that the central bank

raises the inflation target to π∗
S > 0 in the short run, that is at t = S. We also assume that in the short

run, inflation expectations haven’t adjusted, so that ES−1πS = 0. Let us define the medium run as the

period in which expectations have adjusted so that πM = ESπM = π∗. For now, there is no difference

between long and medium run but we will make a distinction between these shortly.

Figure 1 shows the output and inflation rates in the model in the short run, given by the schedule

2This paradox was first shown in the New Keynesian model in Eggertsson (2012). See also discussion in Eggertsson and

Krugman (2012), Werning (2012), Christiano, Eichenbaum and Rebelo (2011) and Bhattarai, Eggertsson Schoenle (2018).

Mathematically, the flexibility paradox is about higher κ leading to lower output at the ELB, while this paper is about λ

moving closer to 1, which leads to a fall in output.
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πS = π∗ = κŶS so that π∗ = κŶS . We see that in the short run the government can achieve higher output

by creating (unexpected) inflation, by increasing its inflation target π∗. The trade-off between inflation and

output is given by κ−1, i.e. a one percentage point increase in inflation increases output by κ−1 percent.

Hence in the short run the government has a menu of choices of inflation output pairs on the solid line

dotted by A and B, but this trade-off will generally depend on the extent to which the higher inflation

targets is ”ingrained” in expectations. For large enough inflation the government can even achieve the first

best output Ŷ ∗ that may be different from the steady state due, e.g., to monopoly distortions.
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Figure 1: The tradeoff between inflation and output when inflation expectations are fixed.

The key lesson of models with forward-looking price setters is that this trade-off is an illusion once

expectations adjust. Let us consider the baseline specification in which λ = 1. Once the new inflation

target π∗ becomes fully anticipated, as happens in the medium run, then πt = Et−1πt = π∗ and the AS

equation (1) becomes πM = π∗ = κŶM + π∗, which implies that ŶM = 0. Once an inflation policy is

anticipated, the government can only choose between different inflation rates on dashed curve from A to C

in Figure 2 without any improvement in output. In particular, suppose the private sector anticipated that

the government would try to achieve point B (where output is at potential). In this case ESπM = πM and

the AS curve shifts as shown in the figure so that once the government chooses πM there are no gains in

output, only higher inflation. This is at core the Volcker’s remark “What we know, or should know, from

the past is that once inflation becomes anticipated and ingrained — as it eventually would — then the

stimulating effects are lost.”

The same property holds in most modern models of dynamic price setting in absence of ad-hoc assump-

tions. We will review in detail in Section 7 the popular New Keynesian model. A leading alternative is

the sticky information model of Mankiw and Reis (2002). According to their model, the aggregate supply
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Figure 2: If inflation expectations adjust fully they eliminate any output gains from inflation.

curve takes the form

πt =
ην

1− ν
Ŷt + ν

∞
∑

j=0

(1− ν)jEt−1−j

[

πt + η(Ŷt − Ŷt−1)
]

(2)

where η > 0 is a coefficient and 0 < ν < 1. This model can be seen as a generalization of the baseline

specification just discussed (1): once again we see that once higher inflation is anticipated, the second term

on the right-hand side of (2) reduces to π∗. In this model, however, it takes a longer time to obtain money

neutrality than in the simple example that serves as our benchmark.

3 Introducing Demand: The Problem of Non-Existence

In the last section we reviewed the simple New Classical model that features no trade-off between inflation

and output in the medium run (when λ = 1), where the medium run is defined by the fact that expectations

have adjusted. Missing in this picture, however, is a demand side. Here we introduce the demand side,

and formulate, in the process, microfoundations for the Phillips Curve.

3.1 Microfoundations

A representative household maximizes

Et

∞
∑

T=t

βT−t [u(CT )− v(lT )] ξT , (3)
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where β ∈ (0, 1) is a discount factor, Ct ≡
[

∫ 1

0
ct(j)

θ−1

θ dj
]

θ
θ−1

a Dixit-Stiglitz aggregate with θ > 1,

Pt ≡
[

∫ 1

0
pt(j)

1−θdj
]

1

1−θ

a price index, lt labor and ξt a shock. u(.) is an increasing concave function while

v(.) is increasing and convex. The period budget constraint is

PtCt +Bt = (1 + it−1)Bt−1 +

∫ 1

0

Zt(j)dj + PtWtlt − Tt, (4)

where Bt is a riskless bond, it the nominal interest rate, Zt(i) firms profits and Wt the wage. The household

satisfies a borrowing limit to preclude Ponzi schemes:3

(1 + it)Bt ≥ −
∞
∑

T=t+1

Et+1

[

Qt+1,T

(
∫ 1

0

ZT (j)dj + PTWT lT − TT

)]

> −∞, (5)

where Qt,T denotes the stochastic discount factor.

The household’s optimal plan satisfies

uc(Ct)ξt = (1 + it)βEt

[

uc(Ct+1)ξt+1Π
−1
t+1

]

(6)

where Πt ≡ Pt/Pt−1 and

Wt =
vl(lt)

uc(Ct)
, (7)

and the nominal interest rate satisfies an effective lower bound4

it ≥ 0. (8)

There is a continuum of measure 1 of firms. A fraction γfix of firms set prices one period in advance,

a fraction γind sets prices equal to last period’s aggregate price index Pt−1, and the remaining fraction

(1− γfix − γind) sets prices freely. A unit of labor produces one unit of output (Yt = lt). The preferences

of households imply a demand for good i of the form yt(j) = Yt(
pt(j)
Pt

)−θ, where Yt = Ct is aggregate

output. Firms maximize profits Zt(j) = pt(j)Yt(pt(j)/Pt)
−θ − WtPtYt(pt(j)/Pt)

−θ, where j indexes the

firm.

The prices chosen by the flexible price setters, the ones who sets prices one period in advance price,

and those who index their price are respectively

pflext

Pt

=
θ

θ − 1
Wt, (9)

Et−1



uc (Yt)Yt

(

pfixt

Pt

)−θ (

pfixt

Pt

−
θ

θ − 1
Wt

)



 = 0, (10)

pindt = Pt−1. (11)

The aggregate price index implies

1 = (1− γfix − γind)

(

pflext

Pt

)1−θ

+ γfix

(

pfixt

Pt

)1−θ

+ γind

(

Pt−1

Pt

)1−θ

. (12)

An equilibrium is a set of stochastic processes {
p
flex
t

Pt
,
p
fix
t

Pt
,Πt, Yt,Wt, it} that satisfy equations (6)–(10),

(12), and the equilibrium condition Yt = lt = Ct, for a given shock process {ξt} and for given fiscal and

monetary policies that satisfy (5).

3See Woodford (2003, Chap 2.) for discussion.
4This constraint can be interpreted as a consequence of the household maximization problem if there exists money in the

economy as a nominal store of value.
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3.2 Approximated model

A log-linear approximation of optimal pricing conditions (9)-(12) yields the Phillips Curve (1) repeated

here

πt = κŶt + λEt−1πt, (13)

where κ > 0 and 0 ≤ λ ≤ 1, as shown in Appendix A.5 The benchmark New Classical Phillips Curve

obtains when λ = 1, that is if γind = 0. The traditional Phillips Curve with static trade-offs (λ = 0)

obtains if γfix = 0 and γind > 0.

A log-linear approximation of the household’s consumption Euler equation (6) yields the so-called IS

equation

Ŷt = EtŶt+1 − σ(it − Etπt+1 − ret ), (14)

where Ŷt ≡ log
(

Yt/Ȳ
)

, πt ≡ log (Pt/Pt−1) , it refers to log(1 + it), and σ > 0. The “natural” rate of

interest ret ≡ r̄ + Et log (ξt/ξt+1) is an exogenous variable that depends on r̄ ≡ log β−1 > 0 and ξt. The

interest rate bound can once again be expressed as

it ≥ 0.

Reviewing the aggregate supply relationship characterized above, it should be clear why previous au-

thors have often abstracted from the demand side. To the extent that the nominal interest rate does not

appear in equation (1), or in the government’s assumed objective function, there is no loss of generality

in assuming that instead of choosing the nominal interest rate, it, the government chooses directly either

πt or Ŷt that satisfy the restriction (1). The nominal interest rate consistent with these levels of inflation

and output can then just be backed out of (14).6 However, nothing in this way of proceeding guarantees

that the implied interest rate must be non-negative. Therefore, when one explicitly accounts for the ELB,

aggregate demand needs to be incorporated.

Introducing aggregate demand requires a more complete specification of monetary policy. We assume

that policy satisfies:

it = max{0, ret + π∗
t + φπ(πt − π∗

t )} (15)

where π∗
t is the government’s inflation target, and φπ > 1 so that the so-called “Taylor principle” applies,

whereby the nominal interest rate is raised more than one-for-one with inflation around the inflation target.

There are several reasons to focus on policy (15). One is that it implements the optimal monetary

policy under discretion if the central bank minimizes7

Lt = Et

∞
∑

T=t

βT−t{(πT − π∗
T )

2 + ωyŶ
2
T }.

A second is that this policy specification implies that at the ELB, the central bank does not try to commit

to generating above-target inflation. Arguably, this is a reasonable characterization of the policy of major

5The coefficients are κ ≡
(1−γfix−γind)

1−γind
γfix

(

1+(1−γfix−γind)
γind
γfix

)

(

ω + σ−1
)

> 0, λ ≡
(

1 + (1− γfix − γind)
γind
γfix

)−1
, where ω ≡

vlll

vl
> 0

and σ−1 ≡ −uccC
uc

> 0.
6A similar argument can also be made for the money supply. We can add money in the utility function into our framework,

so that the government’s choice of the nominal interest rate is then modeled via its choice for the money supply. We omit

this detail here.
7See Eggertsson (2006).
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Figure 3: Time protocol according to Assumption 1.

central banks following the crisis of 2008, as no major central bank committed explicitly to generating

above-target inflation, even if this would be optimal in the model, under commitment.8 In Section 10, we

discuss how the existence results reported below are affected by alternative policy rules.

Let us revisit the example discussed in Section 2, where we explored the effect of increasing the inflation

target. How does aggregate demand complement the picture? As inflation becomes anticipated, the

equilibrium moves from point B to C: Higher inflation leads to no output gains once fully anticipated.

Consistently with equation (14), the increase in inflation is reflected in a higher nominal interest rate, i.e.,

iS = πM . This is arguably — in broad terms — what happened during the “great inflation” of the 1970s:

as inflation expectations rose, nominal rates rose as well, with no gains in output. It would seem, then, at

least when studying the 1970s, that the demand side is only relevant to “back out” the nominal interest

rate.

However, when the ELB becomes binding, the demand side no longer just backs out the interest rate

consistent with that equilibrium. Instead, with the interest rate fixed, equation (14) plays a key role in

determining the overall number of good demanded. This is the case that we now turn to.

3.3 Short, medium, long run, and equilibrium non-existence in the New Clas-

sical benchmark

We proceed with the New Classical benchmark (λ = 1) to show how strong medium-term money neutrality

generates equilibrium non-existence, in the face of the ELB. Consider an unexpected negative shock ret < r̄

in period zero called the “short run.” The short run is defined by the fact that expectations have not

adjusted; they remain at “steady state” so that E−1πS = π∗
L. The shock stays at its negative level in the

next period (called the medium run) and reverts back to normal in the third period called the “long run.”

Expectations fully adjust in the medium and the long run so that the only difference between the medium

and the long run is the absence of the shock in the long run. The only difference between the medium and

the short run is that expectations have adjusted in the medium run, not in the short run. To summarize:

8One interpretation of that behavior is that central banks did not commit to generate above-target inflation because a

commitment of that kind is not dynamically consistent, i.e., it is not ”credible” if the public believes that the central bank

sets policy under discretion.
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A1 Consider the three periods t = S,M,L. In period t = S there is an unexpected shock ret = reS < r̄.

In period t = M the shock is still ret = reS . In periods t ≥ L the shock is back at steady state

ret = rL = r̄. While the shock is unexpected in period t = S, so that ES−1πS = π∗, there is perfect

foresight between S, M, and L. Periods t > L are identical to L: there are no shocks and agents have

perfect foresight.

We proceed by analyzing the long run, before showing non-existence of equilibria in the medium run.

The proposition below establishes that in the long run, t ≥ L, policy rule (15) implies a unique bounded

solution at positive interest rates in which πt = π∗
L = π∗. We assume that ELB is not binding in the

long run, thus excluding the possibility of self-fulfilling liquidity traps, a subject of another branch of the

literature.9 This restriction is relaxed in Section 6 below.

Proposition 1 Suppose A1, that r̄ > −π∗
L, φπ > 1 and that the nominal interest rate is always positive

in the long run t ≥ L. Then the model (1), (14)–(15) implies a unique bounded long-run equilibrium

{πL, ŶL, iL, ELπL+1, ELŶL+1} given by πL = ELπL+1 = π∗
L, iL = r̄ + π∗

L and ŶL = ELŶL+1 = 0.

Proof. Given Assumption A1, perfect foresight between periods M and L implies that EL−1πL =

EMπL = πL. It follows from equation (1) that for all t ≥ L

πt = κŶt + πt

or simply that that Ŷt = 0 for t ≥ L. This implies that for any t ≥ L (14) simplifies to

it = Etπt+1 + r̄. (16)

It follows from (15) and (16) that

Etπt+1 + r̄ = r̄ + π∗
L + φπ(πt − π∗

L)

or equivalently that

πt = φ−1
π Etπt+1 + (1− φ−1

π )π∗
L.

Iterating this forward yields

πt = φ−j
π Etπt+j + (1− φ−1

π )π∗
L

j
∑

s=1

φ−(s−1)
π = π∗

L

for any bounded {πt}t≥L since φπ > 1 and limj→∞ φ−j
π Etπt+j = 0.

Consider the medium run. The aggregate supply (AS) equation (1) implies

ŶM = κ−1(πM − ESπM ) = κ−1(πM − πM ) = 0

where the last equation follows from perfect foresight between the short and medium run in A1.

The aggregate demand (AD) equation is obtained by combining (15) with (14) to yield

ŶM =

{

−σφπ(πM − π∗
M ) + σ(π∗

L − π∗
M ) if reM + π∗

M + φπ(πM − π∗
M ) > 0

σreM + σπ∗
L if reM + π∗

M + φπ(πM − π∗
M ) ≤ 0

. (17)

9Eggertsson and Woodford (2003), for instance, suggest some policies which can exclude these type of equilibria.
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Figure 4: Equilibrium at positive interest rate.

The two curves are plotted in Figure 4 for a realization of the shock reM satisfying reM +π∗
M +φπ(πM −

π∗
M ) > 0. Since inflation is perfectly anticipated the AS curve is vertical. Meanwhile, the AD curve is

downward sloping in inflation. This is due to the fact that φπ > 1 so that the central bank reduces the

policy rate more than one-to-one with the fall in inflation (and vice versa), thus stimulating spending as

inflation drops, as shown in the first row of (17). Yet, there is a limit to how much the central bank can

stimulate spending by rate cuts. If medium term inflation, πM , is low enough so that the ELB is binding,

then ŶM is given by the second row of (17), i.e. ŶM = σreM +σπ∗
L. Now output demanded does not depend

upon realized inflation (the ratio of prices today relative to yesterday). Instead demand only depends upon

expected inflation, EMπL (= π∗
L) , which determines the price of goods tomorrow relative to the price today.

An equilibrium is determined by the intersection of the AS and AD equation. For a positive interest

rate, we see that this equilibrium determination happens at πM = π∗
M and ŶM = 0. Figure 5 shows the

effect of the shock reM being more negative. This shifts the AD curve leftward. If this shock is small

enough, the nominal interest rate is reduced but inflation stays at π∗
M and output at potential.

There is nothing in the model, however, that prevents the AD curve from shifting even further than in

Figure 5. Consider reM < −π∗
M . This shifts the AD curve to the left of the AS curve, a situation shown in

6. Clearly the two curves do not intersect. In other words there is no equilibrium. To summarize:

Proposition 2 Suppose A1 and λ = 1, reM < −π∗
L, r̄ > −π∗

L, φπ > 1, and that the nominal interest rate is

always positive in the long run. Then there exists no bounded equilibrium in the medium run that satisfies

equations (1) and (14)–(15).

Proof. See Appendix.

How should this proposition be interpreted? The aggregate supply equation and the aggregate demand

equation in Figure 5 are pointing to different directions. On the one hand, the aggregate supply equation
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Figure 5: A shock to reS has no effect on output or inflation as long as the zero bound is not binding.

imposes that ŶM = 0 : If everybody perfectly anticipates the future, then prices act as if they are perfectly

flexible and output is thus at potential. Meanwhile, the aggregate demand equation imposes that demand

must be below its steady state, i.e., ŶM < 0. For households to be willing to buy all supplied goods, the

real interest rate must be sufficiently negative. Yet, this is not possible if expected inflation is below π∗
t

without a negative nominal interest rate. Evidently demand and supply clash — no level of output and

inflation satisfy both equations at the same time. What is particularly curious is that some of the policy

discussion reviewed in the introduction seems to be driven by an intuition which is derived exactly when

this clash occurs but only using the AS equation. The interpretation we propose is that the non-existence

result is suggestive of a severe output contraction that becomes visible once the equilibrium existence is

restored. We do so in the next two sections, by relaxing the strong assumption of either i) full monetary

neutrality as in the New Classical benchmark (λ = 1), or ii) perfect foresight.

Before proceeding further, it is worth pointing out another fundamental driving force of the non-

existence result, namely monetary policy. To see this, note the requirement for non-existence of the

equilibrium: reM < −π∗
L. This means that the government can always guarantee the existence of an equilib-

rium or mitigate a very severe output contraction caused by the ELB, by choosing a high enough inflation

target. While a higher long-run inflation target is one way of getting there, we also discuss more broadly

other types of monetary policies in Section 10.

4 Restoring the Equilibrium via Monetary Non-Neutrality

The simplest way to restore an equilibrium is by departing from our New Classical benchmark, that is, by

assuming that 0 ≤ λ < 1, so that (1) implies a trade-off between inflation and output in the medium run

11
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Figure 6: Aggregate demand and aggregate supply clash: No equilibrium.

given by

πM =
κ

1− λ
ŶM .

That trade-off restores equilibrium existence as can be inferred from Figure 6 where the dashed AS curve

denotes the case when λ < 1: Once the AS curve is upward sloping it must intersect the aggregate demand

curve. The equilibrium is one in which medium-term output is completely determined by the AD equation

(17)

ŶM = σreM + σπ∗
L, (18)

while the AS equation pins down inflation

πM =
κ

1− λ
ŶM =

κ

1− λ
σreM +

κ

1− λ
σπ∗

L. (19)

Equation (19) reveals that as the model moves closer to monetary neutrality, then medium-term inflation

drops more and more, so that πM → −∞ as λ → 1.

Taking the medium-run solution for πM and ŶM as given, output and inflation in the short run must

satisfy the IS and AS equations

ŶS = ŶM + σπM + σreS

πS = κŶS .

While a low natural rate of interest reS contributes to an output contraction, the latter is reinforced by

declining inflation in the medium run. In particular, as the Phillips Curve approaches the New Classical

benchmark, the output contraction in the short run can be very large, given the large contraction in

medium-run inflation. Substituting (18) and (19) into the IS curve in the short run, we obtain

ŶS = ŶM + σπM + σreS = σ

(

2 +
σκ

1− λ

)

reS + σ

(

1 +
σκ

1− λ

)

π∗
L. (20)

12



This expression leads directly to a central proposition of the paper.

Proposition 3 Assume A1, reS + π∗
L < 0, φπ > 1, and λ < 1. The higher λ, the lower output in the

short run. As the model approaches the New Classical benchmark that features no medium-term monetary

neutrality (λ → 1), then output and inflation in the short run contracts without a bound, ŶS → −∞ and

πS → −∞.

This suggests that, as mentioned in the introduction, the equilibrium non-existence obtained as λ → 1

is associated with a collapse in output and inflation, a so-called contractionary black hole. Thus as the

model converges towards monetary neutrality, the fall in output intensifies without a bound.

A key policy implication of the above analysis is that the benefits of anticipated inflation become

arbitrarily large, when the model approaches money neutrality. The following proposition follows directly

from (20).

Proposition 4 Suppose A1, reS < −π∗
M , r̄ > −π∗

L, φπ > 1, λ ≤ 1, and that the nominal interest rate is

always positive in the long run. Then the ELB is binding and the effect of anticipated long-run inflation on

output in the short run, dŶS

dπL
, is σ2κ

1−λ
. The output effect of anticipated inflation increases without a bound

as λ → 1.

This proposition represents another fundamental result. As the model moves closer to the New Classical

benchmark featuring medium-run monetary neutrality, then the benefits of increasing anticipated inflation

increases without a bound as λ → 1, when the interest rate is constrained by the ELB.

5 Restoring the Equilibrium via Uncertainty

Our analysis has so far abstracted from uncertainty. As shown in Section 3, the New Classical benchmark

(λ = 1) features money neutrality in the medium run. However, monetary neutrality relies on the fact

that people can perfectly forecast inflation. Realistically, however, there is always some uncertainty. The

presence of uncertainty also implies a trade-off between output and inflation in the medium run, just as in

the case that λ < 1. To illustrate this, we return to our New Classical benchmark with λ = 1, but deviate

from perfect foresight, while maintaining rational expectations.

Instead of the shock staying “on” in the medium run with certainty before reverting back to steady

state there is a probability α that the shock reverts back to steady state in the medium run. The structure

of uncertainty is shown in Figure 7. As we now show, this seemingly minor extension generates existence.

A2 Consider three periods t = S,M,L. In period t = S there is an unexpected shock ret = reS < r̄. In

period t = M the shock is still ret = reS with probability (1− α) and ret = reL > 0 with probability α.

In periods t ≥ L the shock is back at steady state ret = reL = r̄. The shock is unexpected in period

t = S but people form rational expectations about the shock in period t = M using the correct

probability distribution of the model (α) .

The long run in the New Classical model (λ = 1) is as before ŶL = 0, πL = π∗
L and iL = reL + π∗

L. In

the medium run, there are two possible states, i) that the shock reverts back to steady state reM = reL > 0

13
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Figure 7: Introducing uncertainty. With probability α, the natural rate reM in the medium run reaches its

long run value reL > 0. With probability 1− α it remains at reS < −π∗.

(which we call “high”) or ii) that the shock remains at reM = reS < −π∗
M , in which case the nominal interest

rate is constrained by the ELB. The model then solves the following six equations in the medium run

πj
M = κŶ j

M + απhigh
M + (1− α)πlow

M , for j = low or high (21)

Ŷ low
M = ŶL − σ(ilowM − π∗

L − reS) (22)

Ŷ high
M = ŶL − σ(ihighM − π∗

L − reL) (23)

ilowM = 0 and ihighM = reL + π∗
M + φπ(π

high
M − π∗

M ), (24)

while in the short run it solves

ŶS = αŶ high
M + (1− α)Ŷ low

M + σαπhigh
M + σ(1− α)πlow

M + σreS (25)

πS = κŶS . (26)

The model’s equilibrium is characterized in the following proposition.

Proposition 5 Suppose A2, that reS < −π∗
M , r̄ > −π∗

L, φπ > 1 and that the nominal interest rate is

always positive in the long run t ≥ L. Then with α > 0 there exists a unique bounded solution to (21)–(26)

given by

Ŷ high
M = −

1− α

α
σ (reS + π∗

L)

πhigh
M =

1− α

φπα
reS +

1

αφπ

π∗
L +

φπ − 1

φπ

π∗
M

Ŷ low
M = σ (reS + π∗

L)

πlow
M =

1− α+ φπκσ

φπα
reS +

1 + φπκσ

φπα
π∗
L +

φπ − 1

φπ

π∗
M

ŶS = σ

(

1− α

α

1 + φπκσ

φπ

+ 1

)

reS + σ
(1− α)φπκσ + 1

φπα
π∗
L + σ

φπ − 1

φπ

π∗
M

πS = κŶS .

14
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Figure 8: The clash between aggregate demand and aggregate supply resolved: Demand wins.

Proof. The solution is obtained by solving (21)–(26) (see Appendix for details).

The model equilibrium exists in the medium run, now that there is no longer perfect foresight. For

instance, if the shock is in the low state, then the AS equation is given by

πlow
M = κŶ low

M + απhigh
M + (1− α)πlow

M

or

πlow
M =

κ

α
Ŷ low
M + πhigh

M .

We can now use our solution for πhigh
M to show that inflation and output are related in the medium run

according to

πlow
M =

1− α+ φπκσ

φπα
σ−1Ŷ low

M + φ−1
π π∗

L +
(

1− φ−1
π

)

π∗
M . (27)

Equation (27) reveals that the AS curve is no longer vertical, but that it is upward sloping in the

output-inflation space as shown in Figure 8. What generates existence is the fact that inflation is no longer

perfectly anticipated, as there is more than one state of the world in the medium run. Thus the presence of

uncertainty generates equilibrium existence similarly to hard wiring a permanent trade-off between inflation

and output, as we did in last section. Observe that as the uncertainty shrinks near the low state, then the

amount of deflation in the medium term increases. Indeed, as the model approaches perfect foresight, i.e.,

α → 0 then πM → −∞, just as in the case when λ → 1.

Again, we will see that the limiting case in which uncertainty disappears features money neutrality in

the medium run and very large contractions in economic activity and inflation, in the short run, when the

interest rate is constrained by the ELB. Taking the medium-run solution for πM and ŶM as given, output
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Figure 9: Deflation in the medium run reduces short run output since expected deflation increases the real

interest rate and thus contracts demand.

and inflation in the short-run must satisfy the IS and AS equations

ŶS = ES ŶM + σESπM + σreS

πS = κŶS ,

which are are plotted in Figure 9.

This figure looks similar to Figure 8. There is an important new element, however, lurking in the

background. The AD curve shifts back not only due to the shock reS , but also due to expected deflation

— given by ESπM . The expected deflation in the model with uncertainty is given by

ESπM =
(1− α) (κσφπ + 1)

αφπ

reS +
φπ − 1

φπ

π∗
M +

(1− α)κσφπ + 1

αφπ

π∗
L. (28)

Again, medium term inflation expectation are declining as the model approaches monetary neutrality,

which occurs here as it approaches perfect foresight α → 0 — ultimately dropping without a bound, as can

be seen in expression (28). The next proposition summarizes this result for the New Classical benchmark

(λ = 1), once we deviate from perfect foresight.

Proposition 6 Assume A2, reS + π∗
L < 0, φπ > 1, and λ = 1. As the probability of the medium-run

recession increases, i.e., α → 0, then the output in the short run contracts without a bound ŶS → −∞.

Proof. The expression for ŶS in proposition 5 can be rewritten as ŶS = σ
(

(1−α)φπκσ+1
φπα

)

(reS + π∗
L) +

σ
(

1− φ−1
π

)

(reS + π∗
M ) . Since reS + π∗

L < 0 by assumption, limα→0 ŶS = −∞.

The last proposition is illustrated in Figure 10. We see that as the probability α converges to zero, output

collapses. Meanwhile as this probability approaches 1, output converges to σ(reS +φ−1
π π∗

L+
(

1− φ−1
π

)

π∗
M ).

We could equivalently draw a similar figure for λ → 1.

16



Note the parallel between the two departures from money neutrality considered in this and the previous

section. Whether we let the model approach full neutrality via the fraction of price-setters who index their

prices to lagged prices (λ → 1) or by converging to the perfect foresight case (α → 0), output and inflation

in the short run collapse without bound when the interest rate is constrained by the ELB.

Similarly to the previous section, the benefits of anticipated inflation become arbitrarily large, when

the model approaches money neutrality:

! "

!"#

$%&#
' ( )*+

,

Figure 10: Output in the short run collapses as α → 0.

Proposition 7 Suppose A2, reS < −π∗
M , r̄ > −π∗

L, φπ > 1, λ = 1, and that the nominal interest rate is

always positive in the long run. Then the ELB is binding and the effect of anticipated long-run inflation

on output in the short run, dŶS

dESπL
, is σ (1−α)κσφπ+1

αφπ
. This effect becomes arbitrarily large as α → 0.

Proof. See Appendix.

As the New Classical model converges to perfect foresight, i.e., expected inflation becomes ”ingrained”,

then the benefits of increasing long-run inflation expectations on short-term output become arbitrarily

large.

6 Equilibrium Non-Existence in a Non-Linear Version of the

Model

While our analysis has been conducted in the context of a linearized model the results are not an artifact of

an approximation. To illustrate this we briefly mention a few results, and in particular the equilibrium non-

existence when the ELB binds, in the New Classical benchmark, that is when γind = 0 in the microfounded

model (corresponding to λ = 1).
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Figure 11: The output effect of inflation goes to infinity as α → 0.

The following proposition, which relates to Benhabib, Schmitt-Grohé and Uribe (2001), establishes the

existence of multiple long-run steady states.

Proposition 8 Consider the model given by (5)–(12) for all t ≥ t0. Suppose that monetary policy is given

by an interest-rate reaction function

it = φ (Πt,Π
∗
t , ξt) (29)

where Πt ≡ Pt/Pt−1 denotes inflation, Π∗
t is the inflation target, and that the policy rule φ () is non-negative

for all values of its arguments, is increasing in its first argument, and that ∂φ (Π∗
t ,Π

∗
t , ξt) /∂Πt > 1, so

that the “Taylor principle” applies around the inflation target. Suppose furthermore that agents know at

some date t1 ≥ t0, that the inflation target Π∗
t will remain constant at Π∗

t = Π∗ > β for all t ≥ t1.

Then the model (5)–(12), (29) admits at least two possible steady states characterized by constant values

ȲL, C̄L, l̄L, ı̄L, Π̄L, W̄L as well as paths for the price levels p̄flext , p̄fixt , P̄t in all periods t ≥ t1.

(i) In the first (regular) steady state, the nominal interest rate ı̄L reaches a positive value ı̄L = φ(Π∗
L,Π

∗
L, ξ̄L) =

Π∗
Lβ

−1 − 1 > 0, inflation is equal to the target rate Π̄L = Π∗
L, the price indices p̄flext , p̄fixt , P̄t grow at rate

Π∗
L, and ȲL = l̄L = C̄L and W̄L are given by

vl(ȲL)

uc(ȲL)
=

θ − 1

θ
= W̄L. (30)

(ii) In the second (Friedman) steady state, the nominal interest rate is at the ELB, ı̄L = 0, the steady-state

value Π̄L shows perpetual deflation at the rate of time preference, Π̄L = β, the price indices (in log) fall at

rate Π̄L, and ȲL = l̄L = C̄L and W̄L are again given by (30).
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Proof. See Appendix.

As stated, at least two long-run steady states are possible in this model: one with constant inflation

at the central bank’s target level and a positive nominal interest rate, and one with zero nominal interest

rate (as in the Friedman rule) and perpetual deflation. Our earlier analysis took the first steady state as

given. Importantly, however, the lack of existence of a medium run equilibrium does not depend on this

assumption. As established in the next proposition, if the preference shock takes a low enough value in the

medium run, then no medium run equilibrium exists in the non-linear version of the model under perfect

foresight. We modify slightly Assumption A1 as follows:

A1’ Consider the three periods t = S,M,L. In period t = S there is an unexpected shock ξS < βΠ̄−1
L ξ̄L,

where ξ̄L is the steady-state value of the preference shock and Π̄L is the steady state inflation rate.

In period t = M the shock is still ξM = ξS . In periods t ≥ L, the shock is back at its steady state

ξ̄L. While the shock is unexpected in period t = S, there is perfect foresight between S, M, and L.

Periods t > L are identical to L: there are no shocks and agents have perfect foresight.

Proposition 9 Under Assumption A1’, for any given long-run equilibrium ȲL, C̄L, l̄L, ı̄L, Π̄L, W̄L satisfy-

ing (5)–(29), there exists no medium-term equilibrium for small enough value of the exogenous disturbance

ξM , i.e., if

ξM < βΠ̄−1
L ξ̄L. (31)

Proof. See Appendix.

The condition (31) causing the absence of any medium-term equilibrium is analogous to the requirement

that the natural rate of interest be low enough for the nominal rate to be constrained by the ELB, as seen

in our analysis above. It requires ξM to be low enough, so that the representative consumer finds it

preferable to consume less in the present (i.e., in the medium term) than in the future (i.e., the long run).

Equivalently, the household prefers to save in the medium term. Doing so, reduces aggregate demand in

the medium run, leading firms to lower their prices. This lowers inflation and increases the real interest

rate. That increase in the medium-term real rate discourages households further from consuming, thereby

leading to a collapse of the economy.

Note that if we are in the regular steady state with Π̄L = Π∗
L, (and βΠ̄∗−1

L < 1) then the higher the

long-run inflation target Π∗
L, the easier it is for the medium-term equilibrium to exist. Indeed, the higher

the long-run inflation target, the more difficult it is for the condition (31) to be satisfied, as ξM needs to

fall possibly much below ξ̄L for the medium run equilibrium to cease to exist. Instead, if we are in the

“Friedman” steady state, where Π̄L = β, then the medium-run equilibrium ceases to exist and the economy

collapses as soon as ξM falls below the long-run value of ξ̄L, regardless of the inflation target.

7 Non-Existence and Output Explosions in the New Keynesian

Model

So far we limited our attention to a simple Phillips curve that nests a static Phillips Curve with the New

Classical one to clearly illustrate the implications of money neutrality in the face of the ELB. In the last

few decades, however, the New Keynesian Phillips curve has become more popular, both in quantitative
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monetary models and in discussions of monetary policy (see, e.g., Woodford (2003), Christiano et al. (2005),

Smets and Wouters (2007)). The New Keynesian Phillips curve is derived from the same microfoundations

as in Section 3.1, but under the assumption that constant fraction of randomly chosen firms reset their

prices in every period. It is given by

πt = κŶt + βEtπt+1. (32)

The IS equation, the policy rule and the ELB remain the same as before. This section confirms the basic

insights from the previous analysis. The way non-existence appears in this model, is that if the shock that

gives rise to the ELB has long enough duration, inflation and output drop without a bound. We establish

this result considering two alternative shock processes common in the literature, first a deterministic one,

and then a two-state Markov process with an absorbing state.

A3 There is an unexpected shock at time 0 that lasts until period T, so that ret = r < r̄ for all t = 0, 1, ..., T,

and ret = r̄ for all t > T.

A4 There is an unexpected shock at time 0 so that re0 = r < r̄. Conditional on ret−1 = r, then, in every

period t > 0 there is a fixed probability 1−µ that the shock reverts back to steady state rt = r̄. The

steady state is an absorbing state. τ denotes the period in which the steady state is reached.

The next proposition summarizes the behavior of the model under A3.

Proposition 10 Suppose A3 and that the inflation target is constant π∗
t = π̄∗ for all t > T . We assume

r̄ > −π̄∗, φπ > 1. Moreover, we assume that r is sufficiently low for the lower bound to bind, that is

r + π̄∗ < 0, so that it = 0 for all t = 0, 1, ...T, and that the nominal interest rate is positive in all periods

t > T. Then the model (14)–(15) and (32) implies a unique bounded equilibrium given by

πt =

{

−r + c1 (βe1)
T−t

+ c2 (βe2)
T−t

for t = 0, 1, ...T

π̄∗ for t > T

Ŷt =

{

c0 +
σc1

βe1−1 (βe1)
T−t

+ σc2
βe2−1 (βe2)

T−t
for t = 0, 1, ...T

1−β
κ

π̄∗ for t > T

where c0, c1, c2, e1, e2 are constants satisfying c2 < 0 and 0 < e1 < 1 < β−1 < e2. In this equilibrium,

output and inflation initially drop and then revert to the long-run steady state after date T . The magnitude

of the initial drop in inflation and output grows exponentially with T, the duration of the natural rate of

interest in its low state r.

Proof. See Appendix.

While the equilibrium continues to exist under A3, longer durations of the ELB imply ever larger drops

in output and inflation, given the dominant terms c2 (βe2)
T−t

, so that these drops eventually become

unboundedly large as T − t becomes very large. Hence, the model imposes a limit on the duration of the

recession to prevent it from exploding. Our proposition is closely related to the finding by Carlstrom,

Fuerst and Paustian (2012), who show that an interest rate peg has a larger impact on inflation the longer

the duration of the peg. It also relates to the literature on the “forward guidance puzzle” (Del Negro,

Giannoni, Patterson, 2015; McKay, Nakamura and Steinsson, 2016) according to which expectations of

future interest-rate changes have implausibly large effects on short-term output.
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Assumption A4 allows for a useful graphical representation of the conditions for equilibrium existence

in the New Keynesian model, which also connect to our earlier exposition. Let us call the stochastic period

in which the shock recovers to its steady-state long-run value T . It is easy to confirm that the unique

bounded solution for t ≥ T is πt = π̄∗ and Ŷt = 0, when the ELB is not binding in the long run. For

periods t < T , however, r+ π̄∗ < 0 so that the ELB is binding, and setting for simplicity π̄∗ = 0, the model

solves the following two equations:

Ŷt = µẼtŶt+1 + σµẼtπt+1 + σr (33)

πt = κŶt + µβẼtπt+1, (34)

where we have used the solution for inflation and output in the long run to substitute out for conditional

expectations; for example EtŶt+1 = µẼtYt+1 + (1− µ) ∗ 0. The notation ẼtYt+1 represents the conditional

expectation of output conditional on the natural rate of interest being r. The next proposition follows

directly.

Proposition 11 Suppose A4 and that the inflation target is constant at π∗ = 0. Then πt = 0 and Ŷt = 0

once the steady state is reached (for all t ≥ τ). If (1 − µ)(1 − µβ) − κσµ > 0, there is a unique bounded

solution in the short run, t < τ, given by

ŶS =
σ(1− βµ)

(1− µ)(1− µβ)− σκµ
reS

πS =
σκ

(1− µ)(1− βµ)− σκµ
reS .

The proof of this proposition is similar to that of Proposition 3 in Eggertsson (2010). It establishes that

a necessary and sufficient condition for obtaining a unique bounded solution is (1− µ)(1− µβ)− κσµ > 0.

We provide below an intuitive explanation for this condition using a graphical analysis closely resembling

what we have done so far in the paper.

Conditional on there being a unique bounded solution to the system, the solution is a pair of numbers

(ŶS , πS) that solve (33) and (34), which can be expressed as

Ŷ AD
S =

σµ

1− µ
πS +

σ

1− µ
r (35)

πS =
κ

1− µβ
Ŷ AS
S . (36)

These equations represent the AD and the AS relationships which are plotted in Figure 12. At the

intersection point A, µ = 0, i.e., the shock is expected to revert back to steady state with probability 1

next period. Output is completely demand determined and is equal to σr. The AD is vertical in that case,

as it doesn’t depend on inflation. The Phillips curve (or upward-sloping AS) then determines the inflation

rate associated with the given level of output. At this point, the trade-off between inflation and output is

given by κ. Consider now an increase in µ, which has the effect of increasing the expected duration of the

ELB. This shifts the AD curve so that inflation becomes positively related to output. This is because a

fall in inflation in the short run will be reflected in lower inflation expectations, thus increasing the real

interest rate and suppressing demand. In addition, the higher µ also results in a shift in the AS curve

towards a steeper curve, which is closer monetary neutrality. As a result, the higher µ leads to a larger
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Figure 12: Aggregate supply and demand equations in the New Keynesian model with the shock specified

in Assumption 4.

output contraction and inflation decline, at point B. In all, the shift of the Phillips curve towards a steeper

AS curve featuring more monetary neutrality intensifies the economic contraction at the ELB.

Why does an increase in the duration of ELB move the models closer to monetary neutrality? If β = 1,

then in the limit when µ = 1 there is full monetary neutrality. The intuition is that the new Keynesian

Phillips curve has forward looking expectations, so that the longer the ELB is expected to bind, the closer

the AS approaches the AS that would obtain in steady state, as can be seen in (36).

Figure 12 reveals another important observation, which is closely related to the previous proposition.

As µ increases, then the two curves become closer and closer to parallel, leading to lower and lower

levels of output and inflation. Both drop without bound when the AD and AS lines are parallel, and no

equilibrium exists, similarly to the our earlier cases discussed. The condition in the last proposition for

a unique bounded solution is equivalent to the requirement that the aggregate demand curve be steeper

than aggregate supply, i.e. σµ
1−µ

> 1−µβ
κ

.10

A final observation, although we do not show the explicit formulas, is that in this model as in the

preceding discussion, when the output collapses, the benefit of inflation becomes unbounded.

10Observe that if this condition holds, the log-linear model exhibits indeterminacy. As shown by Eggertsson and Singh

(2019), this region of the parameter space does not represent a valid solution in the non-linear version of the model. Intuitively,

as explained in the text, as the duration of the crisis increases, the drop in output ultimately becomes unbounded, which

results in the linear approximation to be no longer valid.
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8 Equilibrium Non-Existence in a Secular Stagnation

There is a recent literature on long-lasting monetary slumps, often identified with secular stagnation. Here

we stress that this literature needs to assume monetary non-neutrality to establish existence of equilibria

for the same reason as we have documented, i.e. that the aggregate demand side will otherwise clash with

the supply side of the model, yielding no equilibria. This literature on long demand slumps highlights that

the aggregate demand side of the model needs to be extended to consider long-lasting drops in the interest

rate. Common modeling devices are overlapping generations models (Eggertsson, Mehrotra, Robbins,

2019), wealth in utility (Michaillat and Saez, 2019) or incomplete asset markets. These extensions can

often be summarized by the linearized version of the IS curve with discounting

Ŷt = δEtŶt+1 − σ(it − Etπt+1 − ret ) (37)

where 0 < δ < 1. A key property of this equation, is that in steady state

ŶL = −
1

1− δ
σ(iL − πL − reL), (38)

that is, the steady-state long-run demand is decreasing in the real interest rate. A key to obtaining a

downward sloping relationship between long-run demand and the interest rate is δ < 1.

Related to this extension, many authors have pointed out that assuming δ = 1 is responsible for

the contractionary explosive behavior of output the New Keynesian model, which has some unattractive

properties such as, for example, giving rise to the forward guidance puzzle (see Del Negro, Giannoni and

Patterson, 2012; McKay, Nakamura and Steinsson, 2016). A key resolution of this literature has been to

include discounting in the IS equation as in shown in (37).

What has not been emphasized as much, however, is the role of monetary neutrality emphasized in

this paper. If the AS equation has too strong a monetary neutrality, then the model exhibits explosive

behavior as well, or gives rise to equilibrium non-existence. The easiest way to see this is to complement

the equation (38) with an aggregate supply. It is easy to see that if we assume the New Classical Phillips

Curve (1) with λ = 1, then once again we have equilibrium non-existence, exactly as we have documented

in this paper, regardless of the value of δ. Meanwhile, in the NK model, the consider the long-run trade-off

is given by

ŶL =
1− β

κ
πL. (39)

As β approaches 1, then the model approaches money neutrality. Assuming reL < 0 so that the ELB is

binding, we obtain the following solution for long run output

ŶL =
σ

1− δ − σκ
1−β

reL.

The condition for equilibrium existence in the linearized model is: 1 − δ > σκ
1−β

.11 We see that as β

approaches 1, and the model moves closer and closer to monetary neutrality, the term σκ
1−β

increases, and

output becomes more and more negative until its contraction becomes unbounded and the equilibrium

ceases to exist.
11See Eggertsson and Singh (2019) for a discussion in a closely related context for why this is required for equilibrium

existence. Essentially what happens is that the model ”explodes” as 1−δ− σκ
1−β

approaches zero, and the linear approximation

is no longer valid when 1− δ − σκ
1−β

takes on negative values. In the non-linear counterpart of the model, there is no longer

an intersection between aggregate supply and demand in this case.
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In calibrations of the New Keynesian model, the parameter β is typically assumed to be very close

to 1, e.g. 0.99 when calibrated in quarterly frequencies. It is for this reason that authors studying

questions related to secular stagnation typically adopt a Phillips Curve specification with a permanent

trade-off between inflation and output, for example due to wages being rigid downward. Examples in this

vein include Eggertsson, Mehrotra and Robbins (2019) and Schmitt-Grohé and Uribe (2017). A notable

exception is Michaillat and Saez (2019), who study long-run equilibria in a New Keynesian setting. They

obtain long-run trade-offs by assuming a low value of β; appealing to field and laboratory evidence they

argue for a annual discount rate as low as β = 0.9 at quarterly frequencies.

9 Flexible Prices and Equilibrium Non-Existence

In the introduction we noted a connection to the price flexibility paradox and suggested that a key obser-

vation is that there is no equilibrium if prices are flexible and the central bank targets zero inflation. We

now develop this argument further. Consider a flexible price economy, given by a Fisher Equation and the

ELB

rt = it − Etπt+1

it ≥ 0.

Because this economy has flexible prices the real interest rate rt is exogenous, while the nominal

interest rate it is controlled by the central bank. This economy is for example derived in Woodford (2003),

corresponding to a classic endowment economy. Consider a shock to the real interest rate so that it is

negative in period 0, r0 < 0, and rt = β−1 − 1 > 0 for all t > 0. As the ELB is no longer binding

from period 1 on, the central bank can generate any inflation rate it chooses. How does it implement this

inflation rate? For concreteness, one can for example imagine a reduced-form money demand function as

in Krugman (1998)
Mt

Pt

≥ Yt

which is slack when the ELB is binding. Since the interest rate is positive in period t ≥ 1, nothing prevents

the central bank from meeting its assumed objective and choosing a money supply such that the price level

in period 1 and onward is the same as in period 0, i.e., Pt = P0 for all t > 0, so that πt = 0 for all t > 0.

This implies however that the equilibrium cannot exist in period 0

r0 = i0 − π1 = i0 ≥ 0,

which contradicts our initial assumption that r0 < 0. The flexible-price economy needs to generate negative

real interest rates in period 0, and the only way it can do so is via expected inflation. Yet π1 is ultimately

determined by the central bank in the next period. There is no guarantee that the central bank will deliver

the required inflation given that it is assumed to target zero inflation. There is also no reason for it not to

pin down the price level at that time, for example via money supply, since the interest rate is then again

positive.
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10 Non-Existence and Alternative Monetary Policy Specifica-

tions

In this paper we have focused on the equilibrium non-existence under the assumption that the central bank

targets some inflation target π∗
t whenever it can, with the only reason preventing it from doing so being

the effective lower bound. This does not mean, however, that non-existence of equilibria arises under all

policy specifications. Indeed, the equilibrium can be restored and the ELB can be made irrelevant if the

central bank chooses for example a sufficiently high inflation target. Alternatively, the equilibrium could

be restored even with a low inflation target, if the central bank seeks to stabilize the price level. To see

this, consider again the example discussed in the previous section of a flexible-price economy where the

central bank targets zero inflation, but suppose now that the central bank targets a price level p̄. In this

case

r0 = i0 − π1 = −p1 + p0 = −p̄+ p0

or p0 = r0 + p̄. In period 0, the price level falls sufficiently so as to generate enough expected inflation.

More generally, price-level targeting regimes tend to be more robust for generating a stable equilibrium,

and are similarly less prone to generating equilibrium non-existence. The optimal commitment policy is a

policy regime that is relatively close to a price-level targeting regime, as shown in Eggertsson and Woodford

(2003), Giannoni and Woodford (2005), and Giannoni (2014). The same can be said about certain inertial

Taylor-type interest-rate rules that assign enough weight to lagged interest rates.

11 Conclusion

Conventional wisdom suggests that medium-term money neutrality imposes strong limitations on the effects

of monetary policy. In particular, as expectations become more ingrained it is commonly believed that

a monetary stimulus tends to have smaller output effects and results in higher inflation. As we have

shown in this paper, this medium-term monetary neutrality assumption runs into a direct conflict with

the aggregate demand side of modern general equilibrium models once the effective lower bound on the

nominal interest rate is taken into account. This results in some cases in non-existence of equilibria, or

in output contracting without a bound at the ELB — a phenomenon we term contractionary black holes.

Our analysis first discussed the New Classical Phillips curve as it features full monetary neutrality in

the medium run, and considered deviations from this benchmark, which produce a medium-run trade-off

between inflation and output. A key conclusion is that the closer the aggregate supply is to exhibiting

medium-term money neutrality, the more likely the model is to produce equilibrium non-existence or a

very large output contraction in the short run, at the ELB. This is because an adverse shock at the ELB

causes a decline in short-run inflation and in medium-term inflation expectations, which increases the real

interest rate and reinforces the output contraction. The closer we are to money neutrality, the larger is

the decline in medium-run inflation expectations, the higher the increase the real interest rate and thus

the sharper the output contraction in the short run. Our analysis then proceeded with the New Keynesian

Phillips curve. In that case, while the result manifests itself via the duration at the ELB, we found again

that the closer the Phillips curve is to producing medium-term monetary neutrality, the sharper is the

short-run output contraction at the ELB.
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Paradoxically, the case for expansionary monetary policy at the ELB is even stronger in models that

feature near money neutrality. It is in this case that a monetary stimulus most effectively raises medium-

term inflation expectations and lowers real interest rates, so as to bring output closer to its potential. Our

analysis reveals that in the face of the ELB, output and inflation can be stabilized by raising inflation

expectations in a relatively short period after the shock which brought the economy to the ELB has

subsided. However, as in conventional analyses, once the economy has exited from the ELB, there is no

meaningful gain from raising the long-run inflation target.
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and Jobless Recoveries,” American Economic Journal: Macroeconomics 9 (1): 165-204. DOI:

10.1257/mac.20150220.

[26] Smets, F., and R. Wouters (2007), “Shocks and Frictions in US Business Cycles: A Bayesian DSGE

Approach,” American Economic Review 97(3): 586-606.

[27] Werning, I. (2012), “Managing a Liquidity Trap: Monetary and Fiscal Policy,” Working Paper, MIT.

[28] Woodford, M. (2003), Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton

University Press.

27



A Appendix: Linearization of the Optimal Pricing Conditions

This sections shows how a linearization of the optimal pricing conditions (9)-(12) results in the Phillips

curve (1) or equivalently (13). Using (7) to replace Wt in (9)-(10), and linearizing the resulting expressions

yields

p̂flext = P̂t + (ω + σ−1)Ŷt (40)

p̂fixt = Et−1

[

P̂t + (ω + σ−1)Ŷt

]

= Et−1p̂
flex
t ,

where ω ≡ vlll
vl

> 0 and σ−1 ≡ −uccC
uc

> 0. Linearizing in turn (12) yields

P̂t = (1− γfix − γind)p̂
flex
t + γfixp̂

fix
t + γindP̂t−1. (41)

It follows that

Et−1P̂t = (1− γfix − γind)p̂
fix
t + γfixp̂

fix
t + γindP̂t−1 = (1− γind)p̂

fix
t + γindP̂t−1,

and thus that

P̂t − Et−1P̂t = πt − Et−1πt = (1− γfix − γind)
(

p̂flext − p̂fixt

)

.

Using (41) to solve for p̂fixt , we can rewrite the previous equation as

πt − Et−1πt = (1− γfix − γind)

(

p̂flext −
1

γfix
P̂t + (

1− γfix − γind
γfix

)p̂flext +
γind
γfix

P̂t−1

)

= (1− γfix − γind)
1− γind
γfix

(p̂flext − P̂t)− (1− γfix − γind)
γind
γfix

πt−1.

Using (40) to eliminate p̂flext yields finally the Phillips curve (1), with κ ≡
(1−γfix−γind)

1−γind
γfix

(

1+(1−γfix−γind)
γind
γfix

)

(

ω + σ−1
)

>

0, λ ≡
(

1 + (1− γfix − γind)
γind

γfix

)−1

∈ [0, 1] .

B Appendix: Proof of Propositions for the New Classical Model

B.1 Proof of Proposition 2

Proof. Under the assumptions A1, r̄ > −π∗
L, φπ > 1 and that the nominal interest rate is always positive

in the long run, it follows from Proposition 1 that a long-run equilibrium is well defined with ŶL = 0,

and EMπL = π∗
L. Next, suppose, as a way of contradiction, that a medium run equilibrium

{

πM , ŶM , iM

}

satisfying (1) and (14)–(15) exists. Perfect foresight between periods S and M implies ESπM = πM , so

that the aggregate supply equation (1) in period M implies ŶM = 0. On the demand side, consider two

alternative cases. First, if reM + π∗
M + φπ(πM − π∗

M ) ≤ 0, then iM = 0 by (15). Since reM + π∗
L < 0 by

assumption, it follows from (14) that ŶM = σ (π∗
L + reM ) < 0. Alternatively, if reM+π∗

M+φπ(πM−π∗
M ) > 0,

then iM > 0 by (15). In this case, (14) implies

ŶM = −σ (iM − π∗
L − reM ) = −σiM + σ (π∗

L + reM ) < 0.

So in both cases (14)–(15) imply that ŶM < 0. This leads to a contradiction with the implication of (1)

according to which ŶM = 0. Hence no medium-run equilibrium
{

πM , ŶM , iM

}

satisfying (1) and (14)–(15)

exists.
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B.2 Proof of Proposition 5

Proof. Under the assumptions A2, r̄ > −π∗
L, φπ > 1 and that the nominal interest rate is always positive

in the long run, it follows from Proposition 1 that ŶL = 0. Using this, equations (21)–(26) can be written

in matrix form as

































α −α −κ 0 0 0 0 0

− (1− α) 1− α 0 −κ 0 0 0 0

0 0 1 0 σ 0 0 0

0 0 0 1 0 σ 0 0

0 0 0 0 1 0 0 0

0 −φπ 0 0 0 1 0 0

0 0 0 0 0 0 1 −κ

−σ(1− α) −σα −(1− α) −α 0 0 0 1
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We note that the determinant of the matrix on the left is ακσφπ. So, provided that α > 0 and that

κσφπ > 0, we can invert the matrix to obtain the solution expressed in the proposition.

C Appendix: Nonlinear Model

C.1 Model

The nonlinear model described in the text is repeated here for convenience using Yt = lt = Ct to eliminate

Ct and lt. The household’s optimal conditions for consumption and leisure are given by

uc(Yt)ξt = (1 + it)βEt

[

uc(Yt+1)ξt+1Π
−1
t+1

]

(42)

Wt =
vl(Yt)

uc(Yt)
(43)

where

Πt ≡
Pt

Pt−1
(44)

and the nominal interest rate satisfies the ELB constraint

it ≥ 0. (45)

The firms’ optimal conditions for pricing, in the case that γind = 0 (corresponding to the New Classical

benchmark), are given by

pflext

Pt

=
θ

θ − 1
Wt (46)

and

Et−1



uc (Yt)Yt

(

pfixt

Pt

)−θ (

pfixt

Pt

−
θ

θ − 1
Wt

)



 = 0, (47)

and the aggregate price level satisfies

1 = (1− γfix)

(

pflext

Pt

)1−θ

+ γfix

(

pfixt

Pt

)1−θ

. (48)
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Finally government policy is given by an interest rate reaction function

it = φ(Πt,Π
∗
t , ξt) (49)

where we assume that the function φ () is non-negative for all values of its arguments (otherwise policy would

not be feasible given the ELB) and increasing in Πt. In addition, fiscal policy is assumed to be such that (5)

is satisfied. An equilibrium can now be defined as a set of stochastic processes {
p
flex
t

Pt
,
p
fix
t

Pt
,Πt, Yt,Wt, it}

and a fiscal policy that satisfy equations (5), (42)–(49) in all periods t ≥ t0, for given {ξt,Π
∗
t }.

C.2 Long-run steady state: Proof of Proposition 8

Proof. Consider the long-run steady states given by constant values ȲL, ı̄L, Π̄L, W̄L, as well as paths for

the price levels p̄flext , p̄fixt , P̄t for given exogenous variables ξ̄L, Π̄
∗
L that satisfy the above equations in all

periods t ≥ t1. Optimal pricing conditions for all t ≥ t1 are given by

p̄flext

P̄t

=
θ

θ − 1
W̄L

and
p̄fixt

P̄t

=
θ

θ − 1
W̄L

given that uc

(

ȲL

)

ȲL

(

p̄fixt /P̄t

)−θ

> 0 by assumption. The two optimal pricing equations combined with

the aggregate price level equation (48)

1 = (1− γfix)

(

p̄flext

P̄t

)1−θ

+ γfix

(

p̄fixt

P̄t

)1−θ

imply

P̄t = p̄flext = p̄fixt

and

W̄L =
θ − 1

θ
.

Next, combining this with (43) determines implicitly steady-state output using

vl(ȲL)

uc(ȲL)
=

θ − 1

θ
. (50)

To determine steady-state inflation, we use the consumption Euler equation (42) at the steady state

uc(ȲL)ξ̄L = (1 + ı̄t)βuc(ȲL)ξ̄LΠ̄
−1
t+1

for any t ≥ t1. This simplifies to

β−1 = (1 + ı̄t)Π̄
−1
t+1. (51)

Combining this with the government’s interest-rate reaction function

ı̄t = φ(Π̄t, Π̄
∗
t , ξ̄t)

we get

Π̄t+1 = β(1 + φ(Π̄t, Π̄
∗
t , ξ̄t)), (52)
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for any t ≥ t1. As analyzed in Benhabib, Schmitt-Grohé and Uribe (2001), this equation admits at least

two constant solutions. One solution Π̄t = Π̄∗
t , and ı̄t = φ(Π̄∗

t , Π̄
∗
t , ξ̄t) = β−1Π̄∗

t − 1 > 0, for all t ≥ t1. The

other constant solution is Π̄t = β < 1 and ı̄t = φ
(

β, Π̄∗
t , ξ̄t

)

= 0, for all t ≥ t1. As shown in Woodford (2003,

chap. 2), for any initial inflation Π0 ∈
(

0, Π̄∗
L

)

, one of these steady states will eventually be reached. In

contrast, for any Π0 > Π̄∗
L, inflation will increase forever and get unboundedly large. Such an equilibrium

is not consistent with a constant steady state inflation.

C.3 Non-existence of medium term equilibrium: Proof of Proposition 9

Proof. Given Assumption 1’, there is perfect foresight between periods M and L, so that the optimal

pricing conditions (46)–(47) simplify to

pflexM

PM

=
θ

θ − 1
WM

and
pfixM

PM

=
θ

θ − 1
WM ,

given that uc (YM )YM

(

pfixM /PM

)−θ

> 0 by assumption. Combining this with (48) yields

PM = pflexM = pfixM

WM =
θ − 1

θ
.

Using (43), we can determine medium-term output supplied

vl(YM )

uc(YM )
=

θ − 1

θ
,

so that

YM = ȲL. (53)

On the demand side, however, equilibrium output must satisfy (42) or

uc(YM )ξM = (1 + iM )βuc(ȲL)ξ̄LΠ̄
−1
L .

Using (53), this simplifies to

ξM = (1 + iM )βξ̄LΠ̄
−1
L

so that iM < 0, if condition (31) holds. It follows that the ELB condition (45) is violated and hence that

there is no medium-term equilibrium if (31) holds.

D Appendix: Proof of Propositions for the New Keynesian Model

D.1 Proof of Proposition 10

We start by characterizing the long-run steady state. We next describe the equilibrium after period T and

finish with a description of the equilibrium for dates t = 0, 1, ...T.
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Long-run steady state. The model given by equations (14)–(15) and (32) admits a long-run steady

state π̄, Ȳ , ı̄, r̄e that satisfies

ı̄ = π̄ + r̄.

ı̄ = max{0, r̄ + π̄∗ + φπ(π̄ − π̄∗)}

(1− β) π̄ = κȲ

Combining the first two equations and using the assumption ı̄ > 0, we obtain

π̄ + r̄ = r̄ + π̄∗ + φπ(π̄ − π̄∗)

which simplifies to (φπ − 1) (π̄− π̄∗) = 0, and hence to π̄ = π̄∗, since φπ > 1. It follows that the steady-state

level of output (Ŷt) is given by Ȳ = 1−β
κ

π̄∗.

Equilibrium after period T. After period T , the equations (14)–(15) and (32) reduce to

πt = κŶt + βEtπt+1

Ŷt = EtŶt+1 − σ(it − Etπt+1 − r̄)

it = r̄ + π̄∗ + φπ(πt − π̄∗),

using the assumption it ≥ 0 for all t > T. Combining the last two equations to eliminate it, we can rewrite

the system in matrix form as
[

1 0

σ 1

]

Et

[

πt+1

Ŷt+1

]

=

[

β−1 −β−1κ

σφπ 1

][

πt

Ŷt

]

+

[

0

σ (1− φπ) π̄
∗

]

or

Etzt+1 = Azt + δ (54)

where

zt ≡

[

πt

Ŷt

]

, δ ≡

[

1 0

σ 1

]−1 [

0

σ (1− φπ)π
∗
t

]

=

[

0

σ (1− φπ) π̄
∗

]

and

A =

[

1 0

σ 1

]−1 [

β−1 −β−1κ

σφπ 1

]

=

[

β−1 −β−1κ

σ
(

φπ − β−1
)

1 + β−1κσ

]

.

Note that with φπ > 1, we have det (A) = β−1 (κσφπ + 1) > 1, and tr (A) = β−1+β−1κσ+1. This implies:

det (A)− tr (A) = −1 + β−1κσ (φπ − 1) > −1, and det (A) + tr (A) = 1
β
(β + κσ (φπ + 1) + 2) > 1. It then

follows from Proposition C.1. in Woodford (2003, p. 670) that the matrix A has both eigenvalues outside

the unit circle, so that A−1 exists and has both eigenvalues inside the unit circle.

Iterating forward equation (54), we have

zt = −A−1δt + EtA
−1zt+1

= Et

(

−A−1δ −A−2δ...−A−nδ +A−nzt+n

)

.

Since limn→∞ EtA
−nzt+n = 0 for any bounded process {zt} , we obtain the unique bounded solution

zt = −

∞
∑

T=t

A−(T−t+1)δ = −A−1
(

I −A−1
)−1

δ = (I −A)
−1

δ =

[

π̄∗

1−β
κ

π̄∗

]

,

so that inflation and output are at their long-run steady state at all dates t > T.
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Equilibrium in periods t = 0, 1, ..., T. With the ELB assumed binding in periods t = 0, 1, ..., T, the

model reduces to

πt = κŶt + βEtπt+1

Ŷt = EtŶt+1 + σ(Etπt+1 + r). (55)

Combining the last two equations yields

Et [πt − (1 + β + κσ)πt+1 + βπt+2] = κσr. (56)

Let π be the “steady state” value of πt, in periods t = 0, ...T. It satisfies π − (1 + β + κσ)π + βπ = κσr,

or π = −r. We can then rewrite (56) as the homogenous equation

Et [B (L) π̃t+2] = 0 (57)

where π̃t ≡ πt − π, the lag polynomial B (L) is given by

B (L) ≡ L2 − (1 + β + κσ)L+ β

= β (1− e1L) (1− e2L) (58)

and e1, e2 are the two roots of the characteristic polynomial P (x) = βx2 − (1 + β + κσ)x + 1. Note that

P (x) is convex, and P (0) = 1 > 0, P (1) = −κσ < 0, P
(

β−1
)

= −κσβ−1 < 0, so that P (x) = 0 admits

two real solutions 0 < e1 < 1 < β−1 < e2. Expanding (58) and comparing it to B (L) reveals that

e1e2 = β−1. Using this, we can rewrite (57) as

0 = Et [(1− e1L) (1− e2L) π̃t+2]

Defining zt ≡ (1− e1L) π̃t, this can be expressed as

0 = Et

[

−e−1
2 L−1L (1− e2L) zt+2

]

= Et

[(

1− e−1
2 L−1

)

zt+1

]

or

Etzt+1 = Et

[

e−1
2 zt+2

]

= Et

[

e
−(T−t−1)
2 zT

]

,

where the last equality is obtained after iterating forward. Using again the definition of zt, we can then

write

Et [(1− e1L) π̃t+1] = Et

[

e
−(T−t−1)
2 (π̃T − e1π̃T−1)

]

or

Et [π̃t+1 − e1π̃t] = Et

[

e
−(T−t−1)
2 (π̃T − e1π̃T−1)

]

.

This expression can be iterated forward to yield

π̃t = Et

[

−e−1
1 e

−(T−t−1)
2 (π̃T − e1π̃T−1) + e−1

1 π̃t+1

]

= Et

[

−e
−(T−t)
1

(

eT−t−1
1 e

−(T−t−1)
2 + eT−t−2

1 e
−(T−t−2)
2 + eT−t−3

1 e
−(T−t−3)
2 + ...+ e01e

0
2

)

(π̃T − e1π̃T−1) + e
−(T−t)
1 π̃T

]

= e
−(T−t)
1 Et

[

−
1−

(

e1e
−1
2

)T−t

1−
(

e1e
−1
2

) (π̃T − e1π̃T−1) + π̃T

]

.
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Note that (56) implies

πT = (1 + κσ) π̄∗ + κσr

π̃T = πT − π = (1 + κσ) (π̄∗ + r)

and

πT−1 = (1 + β + κσ)πT − βπ̄∗ + κσr =
(

(1 + κσ)
2
+ βκσ

)

π̄∗ + (2 + β + κσ)κσr

π̃T−1 = πT−1 − π =
(

(1 + κσ)
2
+ βκσ

)

(π̄∗ + r)

It follows, using βe1e2 = 1, that

π̃t = e
−(T−t)
1

[

−
1−

(

e1e
−1
2

)T−t

1−
(

e1e
−1
2

)

(

(1 + κσ)− e1

(

(1 + κσ)
2
+ βκσ

))

+ (1 + κσ)

]

(π̄∗ + r)

=

[

(βe1)
T−t

− (βe2)
T−t

1−
(

e1e
−1
2

)

(

(1 + κσ)− e1

(

(1 + κσ)
2
+ βκσ

))

+ (βe2)
T−t

(1 + κσ)

]

(π̄∗ + r)

or

πt =

{

−r + c1 (βe1)
T−t

+ c2 (βe2)
T−t

for t = 0, 1, ...T

π̄∗ for t > T

where

c1 =
(

1− e1e
−1
2

)−1
(

(1 + κσ)− e1

(

(1 + κσ)
2
+ βκσ

))

(π̄∗ + r)

c2 =

(

(1 + κσ)−
1

1− e1e
−1
2

(

(1 + κσ)− e1

(

(1 + κσ)
2
+ βκσ

))

)

(π̄∗ + r)

=
(

1− e1e
−1
2

)−1 ((
1 + κσ − e−1

2

)

(1 + κσ) + βκσ
)

e1 (π̄
∗ + r) .

Given that r + π̄∗ < 0, we have c2 < 0. In addition, c1 + c2 = (1 + κσ) (π̄∗ + r) < 0, so that in period T,

πT = −r + c1 + c2 < −r.

To solve for output, we iterate forward (55) to obtain

Ŷt = Et

T−t
∑

j=1

σ(πt+j + r) + EtŶT =

T−t
∑

j=1

σ(c1 (βe1)
T−t−j

+ c2 (βe2)
T−t−j

) + Ȳ + σ(π̄∗ + r)

= Ȳ + σ

[

π̄∗ + r + c1
1− (βe1)

T−t

1− βe1
+ c2

1− (βe2)
T−t

1− βe2

]

= Ȳ + σ

[

π̄∗ + r +
c1

1− βe1
+

c2
1− βe2

− c1
(βe1)

T−t

1− βe1
− c2

(βe2)
T−t

1− βe2

]

= c0 − σc1
(βe1)

T−t

1− βe1
− σc2

(βe2)
T−t

1− βe2
,

where c0 ≡ Ȳ + σ
(

π̄∗ + r + c1
1−βe1

+ c2
1−βe2

)

, and the second equality is obtained by noting that (55)

implies ŶT = Ȳ + σ(π̄∗ + r).
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