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1 Introduction

The workhorse model for the modelling of epidemics is the SIR (Susceptible-Infected-Removed)

model of Kermack and McKendrick (1927). It has been adopted to inform policy-makers in

the management of the COVID-19 pandemic. The model is mechanistic in that people in

the model do not make decisions that are reactive to current and predicted prevalence of an

infectious disease in the population. As a key parameter, the basic reproduction number,

R0, (a measure of the expected number of infections generated by a single infected person)

is driven by people’s choices regarding physical interactions. For this reason, the lack of

behavioural elements has been a persistent source of criticism of such models.

This paper argues that, while a full behavioural model of pandemics is difficult to analyse

as there is an element of non-stationarity in dynamic outcomes, there is value to be gained by

analysing models that generate predictions that, for considerable lengths of time, the equi-

librium reproduction number, R̂ is equal to 1 implying that the prevalence of an infectious

disease/virus is constant over time with the number of those newly infected approximately

equaling the number of those newly recovered in a given time period. For COVID-19, such

outcomes have been observed empirically beyond the initial stages of outbreaks across many

regions (see Figure 1).1

Models that can generate an R̂ = 1 equilibrium exist in the literature. For the SIR

model whereby infectious individuals who recover are removed from the susceptible pool,

I show that an R̂ = 1 outcome requires a special set of assumptions that are unlikely to

generally hold. This is because individuals may base their behaviour on prevalence (i.e., the

number of infected people they are likely to encounter) rather than on the ever falling set

of susceptibles. That set, however, does impact on the reproduction number. Nonetheless,

for the SIS model, whereby infectious individuals who recover remain susceptible to future

infections, the R̂ = 1 outcome is a natural equilibrium. This suggests that, when prevalence

is relatively low, even for the SIR model, the number of susceptibles will not change at a

rapid pace and thus, an R̂ = 1 outcome provides an approximate outcome that may explain

observed behaviour.

In what follows, I first present the standard (non-behavioural) SIR model. I then review

various behavioural models that have been utilised in the literature deriving. I provide a

graphical approach to describe the resulting equilibrium outcomes. A final section offers

some predictions from this approach.

1Moreover, there is plenty of evidence that people act to mitigate their own infection risk apart from
those mandated by governments. See Farboodi et al. (2020) and Goolsbee and Syverson (2020)).
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Figure 1: Estimated Rt for US States (COVID-19) from epiforecasts.io

2 The Standard SIR Model

Let {S(t), I(t), R(t)} denote the shares (and levels) of the population (normalised to be of

size 1 over a continuum of agents) who are either susceptible to the virus, infected with the

virus or removed (i.e., recovered or dead) from the virus at time t ≥ 0. It is assumed that

time is discrete. In the SIR model, these variables are assumed to evolve according to the

following dynamic equations:

S(t+ 1)− S(t) = −βS(t)I(t)

I(t+ 1)− I(t) = (βS(t)− γ)I(t)

R(t+ 1)−R(t) = γI(t)

Here γ is the probability that an infected person will be removed in any given period while

β is the probability that a susceptible person will become infected by an infected person in

a given period. Observe that the number of infections in the population will be falling (i.e.,

3



I(t+1) < I(t)) if β
γ
S(t) < 1 and will be rising (i.e., I(t+1) > I(t)) if β

γ
S(t) > 1. The LHS of

these inequalities is the effective reproduction number, Rt. Since S(0) ≈ 1, then R0 = β
γ
. R0

is the basic reproduction number which has the interpretation as the total expected number

of infections one infectious person will create over the life of their infection.

A few remarks about this model. First, there are two relevant state variables {I(t), S(t)}
and they co-evolve according to:

I(t) = 1− S(t) +
1

R0

log(S(t))

.

where it is assumed that {I(0), S(0)} = {0, 1}. Second, the share of the population that is

eventually infected, i ≡ 1− S(∞), is given by:

R0 = − log(1− i)
i

.

Third, temporary changes to β can influence the eventual share of infected people, i, although

regardless i ≥ 1
R0

, the ‘herd immunity’ threshold. Fourth, the peak prevalence arises when

S̄ = 1
R0

and involves, at that point:

Ī ≡ 1− 1 + log(R0)

R0

This all implies that, for R0 > 1, (a) an equilibrium with S = 1 is locally unstable and (b)

with temporary interventions that decrease β or increase γ, the absorbing states for i are

characterised by S(∞) = [S, 1
R0

] where S is defined by R0 = − log(S)
1−S ; that is, either infections

are kept at zero or they evolve to a point beyond the ‘herd immunity’ threshold.2

The standard SIR model is useful in that it relates the evolution of a pandemic according

to R0 and how the underlying parameters associated with it may be impacted upon over

the life of the pandemic. This can be useful for analysing the impact of non-pharmaceutical

interventions that impact those underlying parameters. However, if, as is likely, those un-

derlying parameters are not fixed but vary according in ways that relate to the underlying

state variables, the standard SIR model will face challenges in being of predictive value.

2See Rachel (2020) for details.
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3 The Behavioural SIR Model

The fact that the standard SIR model lacked behavioural elements has not been lost on

epidemiologists. In particular, it has been recognised that people might observe current

prevalence (that is, I(t)) and modify their own behaviour so as to reduce infection risk.

However, the mathematical epidemiologists have typically taken what economists would call

a ‘reduced-form’ approach to this. For instance, they might posit a variable, x ∈ [0, 1], that

is a filter reducing the impact of β on new infections. That variable is then assumed to be a

decreasing function of I(t); e.g., x(I(t)).3 A similar approach was used by Cochrane (2020).4

3.1 Literature Review

Work in economics to include behavioural elements in models of epidemics started in earnest

with the study of the spread of AIDS. Following Philipson and Posner (1993), Geoffard

and Philipson (1996) examined an SI model, whereby people can transition from susceptible

to infected but cannot recover or become non-infectious, and examined the way in which

increased prevalence would change the behaviour of a forward-looking rational agent. They

showed that the incentives of infected agents – e.g., whether they altruistic or not – played

an important role.5 This line of research has continued with a mapping to empirical models

by Greenwood et al. (2019).

The pioneering treatment that first introduced forward-looking, rational economic agents

into epidemiological models that could provide insights on COVID-19 was provided by Gerso-

vitz and Hammer (2004). They examined SIR (in addition to SIS and SID models) to explore

the different effects that prevention versus a treatment might have on the dynamics of epi-

demics. In doing this, they were able to clarify the externalities that may be present and

the efficacy of various forms of interventions (including taxes and subsidies) to improve so-

cial welfare.6 This approach inspired other analyses developing variants of their behavioural

model including Reluga (2010) who showed that agents will socially distance more when R0

is high (as they fear becoming infected) and Fenichel (2013) who showed that non-targeted

lockdown policies may be worse than a decentralised behavioural outcome in terms of overall

3See for example, Eksin et al. (2019) who also explore assumptions where x(I(t), R(t)) is decreasing in
both variables, that they argue is a model of ‘long-term awareness’ in contrast to ‘short-term awareness’
where x is a function of I(t) alone.

4This might be termed an ‘old-timey’ macro approach.
5Kremer (1996) also included behavioural elements in an SI model but his focus was on equilibrium

outcomes in a broader matching game.
6Chen (2012) uses an SIR model where agents can reduce their physical interactions and infected agents

may be debilitated and so interact less. He focuses on myopic agents and analyses the impact of different
matching functions on the resulting equilibrium outcomes.
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utility.7.,8,9

A recent literature on COVID-19 has similarly built on these behavioural foundations

with forward-looking rational agents including Eichenbaum et al. (2020) (and by extension

Krueger et al. (2020)) who provide a model of endogenous social distancing in a macroeco-

nomic model; Farboodi et al. (2020) who examine how altruistic preferences (that capture

the degree to which individuals choose to self-isolate if they know they are infected) impact

on behaviour; Jones et al. (2020) use a macro-model and highlight a ‘fatalism’ effect whereby,

when prevalence is high, people do not socially distance as they are likely to become infected

anyway; Bethune and Korinek (2020) who look at what optimal policies look like when the

planner has a high degree of information regarding who is infected and who has recovered;

Bisin and Moro (2020) examine behavioural elements combined with frictions in spatial diffu-

sion something also done by Aguirregabiria et al. (2020) using a structural model; McAdams

(2020) provides a finite time model but focuses on the case where agent value from economic

activity depends on the activity of others introducing a complementarity and the possibility

of multiple equilibria; Di Guilmi et al. (2020) who look at the impact of limited information

provided to agents and Brotherhood et al. (2020) do a variety of policy experiments.10 The

most careful analyses in this regard of the microeconomic foundations of the SIR model

come from Toxvaerd (2020) and Rachel (2020) who provide analyses that show the condi-

tions under which endogenous social distancing will be too little, and potentially, too much

compared with what might be socially optimal.

3.2 Model Setup

At the core of each of these models is a conception of a behavioural agent. An agent, n,

chooses their level of activity, xn ∈ [0, 1], which can be interpreted as their risk of interacting

with another agent or preventative measures (such as wearing a mask). That activity gives

them value in utility terms of un(xn) in each period where un(.) is increasing, concave and

7There is a literature that has examined behavioural SIS models with rational agents including Chen
(2009) looks at how the provision of information impacts on agent’s incentives to minimise risks of infection
in an SIS model. When prevalence is low, agents may take more risks and make eradication impossible.
Toxvaerd (2019) uses an SIS model where agents bear costs of reducing interactions. Agents are forward
looking and understand the SIS dynamics. He examines the impact on a treatment that reduces transmission
rates on social welfare and finds potential for a welfare-reducing rebound effect. Rowthorn and Toxvaerd
(2020) examines the appropriate mix of prevention and treatment while Goodkin-Gold et al. (2020) looks at
vaccine pricing where epidemiological effects are anticipated and influenced

8There is also a literature that focuses on incentives to be vaccinated using behavioural foundations.
Francis (1997) uses an SIR model to consider an agent’s choice of when to vaccine and finds that the market
is efficient. Gersovitz (2003) and Chen and Toxvaerd (2014) relaxes those conditions and finds inefficiency
especially if individuals can independently acquire immunity

9See Philipson (2000) and Gersovitz (2011) for reviews.
10See Gans (2020) for further discussion of this literature.
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independent across time periods. Agents have a common discount factor of δ < 1. If an

agent becomes infected, they incur an additional loss, L, in utility unless they die in which

case they can incur no utility thereafter. An infected agent has a probability, γ of becoming

no longer infectious in each period they are infected. At that point, with probability ρ, they

survive and become immune. Otherwise, they die. Either way they are part of R, the set of

removed agents.

An agent’s activity choices at t are determined by the condition, {S, I, R}, they are in at

that time. If they are part of R and have not died, they are no longer infectious or at risk.

Hence, they will set their activity, xn,R = 1 and will earn an expected present discounted

payoff of un(1)
1−δ . In this, there is an implicit assumption that a recovery means a full recovery

to the utility they would earn had the epidemic not emerged.

3.3 Infected Agent Activity

For an infected agent (a member of I), they are infectious and sick. Their instantaneous

utility is un(xn,I)− L and their expected discounted payoff is:

Vn,I(t) = un(xn,I(t))− L+ δ(γVn,R + (1− γ)Vn,I(t+ 1))

where here Vn,R = ρun(1)
1−δ . Note that, being self-interested, infected agents set xn,I(t) = 1 in

each period and, thus, their expected discounted payoff becomes:

Vn,I =
un(1)− L+ δ(1− γ)ρun(1)

1−δ

1− δγ
This captures, in a stark way, a key externality that arises for infectious diseases when an

infected person does not perceive a personal risk from social interactions. Of course, various

factors could alter this stark result including that infected people may not be capable of or

desire the same level of activity if they were healthy and that such activity may not be as

valuable because others may avoid them if they knew they were infectious. For COVID-19,

this was complicated by the fact that many of the infected were asymptomatic or pre-

symptomatic and did not know they were infectious. In this situation, an agent may act as

if they were still susceptible.

3.4 Susceptible Agent Activity

For both the infected and recovered, their choice of economic activity is not impacted upon by

the state variables, {I(t), S(t)}. Thus, the key to the behavioural approach to epidemiology
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are the choices of the susceptible. Their instantaneous utility is un(x(n, S)(t)) and their

expected discounted payoff is:

Vn,S(t) = un(xn,S(t)) + δ(p(xn,S(t), I(t))Vn,I(t+ 1) + (1− p(xn,S(t), I(t)))Vn,S(t+ 1)

where p(xn,S(t), I(t)) is probability that n becomes infected at time t (the consequences of

which are felt at time t + 1). p(.) is generally increasing in both of its arguments; i.e., a

higher rate of infection in the population as well as a higher rate of activity by n raises the

probability that n becomes infected. If Vn,I(t + 1) < Vn,S(t + 1) this is not something that

n wants and, thus, the increased risk of becoming infected will constrain the agent’s choice

of activity.

The structure of p(xn,S(t), I(t)) depends upon how activity translates into an individ-

ual’s risk of infection. The standard SIR model assumes that susceptible individuals face a

probability, β, of becoming infected if they interact with an infected individual. What an ‘in-

teraction’ precisely is, however, is potentially rich. For instance, if an agent visits a location

where a number of other people are present, then β would be interpreted as the probability

that at least one those people are infected. If a virus lingers or is spread on surfaces, then

the probability that an agent becomes infected relates to the number of infected people who

may be at a place in the past.11

Typically, the standard epidemiological models consider simpler environments. The sim-

plest case assumes that an individual agent encounters one other member of the population

at random in each period. In this situation, xn,S(t), is interpreted as the probability that n

is matched with another person in period t who is infected with probability I(t). Thus, the

probability that n becomes infected is:

p(xn,S(t), I(t)) = xn,S(t)βI(t)

Of course, it is possible to imagine a slightly richer model whereby a susceptible understands

that β might differ between alternative activities or that they can choose different populations

with different I(t) probabilities to interact with.12 This structure presumes that xm,I(t) = 1

for infected agents, m ∈ I(t). If, for reasons of altruism or regulation, xm,I(t) < 1, then the

probability that n encounters an infected agent is 1
I(t)

∫ I(t)
0

xm,I(t)dm so that p(xn,S(t), I(t)) =

xn,S(t)β
∫ I(t)
0

xm,I(t)dm.

11Acemoglu et al. (2020a) explore these issues by considering a variety of matching functions between
susceptible agents and infecteds in an SIR model.

12See Ellison (2020) for a review of these richer environments.
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3.5 First-Order Effects

A susceptible individual, n, will choose xn,S(t) to maximise Vn,S(t) holding the state variables

and their future path as given. This gives rise to the marginal condition for the optimal choice

x̂n,S(t):

u′n(x̂n,S(t)) = βI(t)δ(Vn,S(t+ 1)− Vn,I) (OPT)

This leads to a myriad of insights.

• (Greater prevalence reduces susceptible activity) Holding Vn,S(t + 1) fixed, as

I(t) increases x̂n,S(t) falls. That is, the first-order effect of greater prevalence reduces

an agent’s activity as they forgo utility to reduce the risk of becoming infected.

• (A more infectious virus reduces susceptible activity) Holding Vn,S(t+1) fixed,

if the infectiousness of the virus (β) rises then x̂n,S(t) falls. As will be noted below,

this can reduce the rate of growth of the epidemic which stands in contrast to the

clear prediction of the standard SIR model that a higher β will lead to faster epidemic

spread and higher long term infections (Toxvaerd (2020)).

• (Greater activity from infecteds reduces susceptible activity) If, for some

infecteds, xm,I(t) < 1, it can be seen that x̂n,S(t) may be higher. Thus, there is

a strategic substitute between the activity choices of infected agents and susceptible

agents (as noted by Keppo et al. (2020)).

• (Activity is slower to return to normal as pandemic eases) The future path of

the epidemic is captured in the term, Vn,S(t + 1) − Vn,I . Note, in particular, that if

I(t+ 1) > I(t), then x̂n,S(t) ≤ x̂n,S(t− 1) while the opposite is true if I(t+ 1) < I(t).

This, as Rachel (2020) shows, implies that a susceptible agent is going to engage in a

smaller reduction in activity at the beginning of an epidemic than at the end for the

same level of prevalence.13 That is, for, T < T̄ where I(T ) > I(T −1), I(T̄ ) < I(T̄ −1)

and I(T ) = I(T̄ ), x̂n,S(T ) > x̂n,S(T̄ ). Individuals will be more cautious at the end of

a pandemic as the relative on-going value of being susceptible is higher.

• (Complementarity between activity of susceptibles) The interaction between a

susceptible agent’s decision on their own activity and the activity of other susceptible

agents is potentially subtle. As will be described below, if susceptible agents reduce

their activity at t, then this will reduce the share of the population infected at t+1. For

13The notion that at the onset of a pandemic, agents who expect a higher growth in infections tend to
increase their activity and risk of infection is called the fatalism effect by Jones et al. (2020).
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an individual agent, therefore, a reduction in expected activity by other susceptibles

increases Vn,S(t + 1) and hence, decreases their own choice of activity at time t as

there is a greater value to not being infected. Thus, for susceptibles, their activity are

strategic complements while at the same time constituting a negative externality on

one another.

• (Prospects for a vaccine or treatment have opposite effects on susceptible

activity) If a vaccine is expected at a future time, this increases Vn,S(t+1) and hence,

causes susceptible agents to reduce their activity; becoming more cautious so as to

obtain the vaccine and not become infected. By contrast, if a treatment is expected

at a future time, this, by either increasing ρ or decreasing L, causes Vn,I to be higher

and, thus, susceptibles to be less cautious of becoming infected and so increase their

activity.

These insights are all implications of the first-order effects of changes in the environment on

the behaviour of susceptible individuals. However, the full equilibrium effects can be harder

to derive.

3.6 Equilibrium Analysis

To see this, we need to explore the evolution of the state variables under the behavioural

assumptions that individual agents can influence their individual infection risk. Fortunately,

the simple specification for p(.) used above provides a natural way of aggregating into the

expected path for the state variables, {I(t), S(t)}.
Let XS(t) ≡

∫ S(t)
0

xn,S(t)dn. The expected number of new infecteds is equal to βXS(t)I(t)

while each period γI(t) infecteds are removed. Thus,

I(t+ 1)− I(t) = (βXS(t)− γ)I(t)

By construction, this also means the total number of susceptibles declines by:

S(t+ 1)− S(t) = −βXS(t)I(t)

Note that if xn,S(t) = 1 for all n ∈ S(t), then XS(t) = S(t) and the above two equations

become the same as the standard SIR model.

It can be seen here that the time path of {XS(t), ....} determines the net presented

expected value of continuing to be susceptible and, thus, the incentives to undertake activity

at time t. Thus, the equilibrium outcome would require solving for a multi-dimensional
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fixed even with commonly used simplifying assumptions such as all agents being symmetric

in preferences. Moreover, the set of susceptibles is being reduced in size over time at a

rate that is endogenous to the activity choices of susceptibles themselves. This means that

there is unlikely to be stationary equilibrium outcome that we usually look for in order to

conduct comparative statics. For this reason, most studies of behavioural SIR models have

used simulations to demonstrate potential outcomes rather than analytical solutions. For

this reason, I propose here, instead, taking a shortcut that will permit an analytical solution

albiet at the expense of not (usually) satisfying our usual equilibrium requirements.

4 An Analytical Shortcut

The analytical shortcut I propose here is to establish conditions under which I(t+ 1) = I(t)

for an interval of time. The condition is a simple one: S(t + 1) = S(t) = S for all t. It is

immediately is apparent that this condition violates the laws of motion of the SIR model

whenever γ > 0. As an accounting measure, it simply cannot be the case that some infected

individuals are recovered (or strictly speaking) removed and S(t) is not falling over time.

Of course, this state of affairs is possible for the SIS model which is perhaps why much

of the initial work integrating behavioural assumptions into epidemiology examined that

environment. However, because we want the incentives of agents to reflect the possibility

that they can be removed following an infection, I cannot simply follow the SIS model here.

Instead, I have just been inspired by it.

4.1 Equilibrium Solution

The focus is on the equations governing the relationship between XS(t) and I(t). The first

equation is behavioural.

X̂n,S(I(t)) =

∫ S

0

x̂n,S(I(t))dn (BEH)

This equation is how the aggregate activity of susceptible agents (now fixed at size S) is

a function of I(t) when individual agents are optimising. Note that X̂n,S(I(t)) is a non-

decreasing function of I(t) as discussed earlier.

The second equation comes from the SIR laws of motion.

I(t+ 1) = I(t) + (βXS(t)− γ)I(t)

The number of infected agents is an increasing function of the aggregate activity, XS(t), of
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those agents.

Essentially, these two equations describe a dynamic aggregate game involving choices of

susceptible agents but under an assumption that the set of those agents is now fixed. The

goal will be to characterise stationary Markov perfect equilibria of this game using a dynamic

programming approach.

From the law of motion, we have:

XS(t) =

I(t+1)−I(t)
I(t)

+ γ

β
(EPI)

Setting this equal to X̂S(I(t)) equilibria in which I(t + 1) = I(t) for all t can be explored.

When this condition is satisfied then x̂n,S(t + 1) = x̂n,S(t) for all t which carries over to,

X̂n,S(I(t)). Importantly, this means that:

I(t+ 1)− I(t) = 0 = (βX̂S(I(t))− γ)I(t) =⇒ X̂S(I∗) =
1

R0

(EQM)

Importantly, this implies that the equilibrium effective reproduction number,

R̂ = X̂S(I∗)R0 = 1

Thus, prevalence will neither rise nor decline in equilibrium and this pins down that equi-

librium steady state of infected agents.14

4.2 Graphical Analysis

The analytical shortcut has the advantage that it permits a (familiar to economists) graphical

analysis. Figure 2 shows the EPI and BEH lines in (XS, I) space. BEH shows how the

aggregate choice of activity level is determined by the prevailing share of infected agents

and, as shown, earlier is typically downward sloping as agent’s reduce activity more when

there is a greater chance of encountering an infected agent. EPI shows how the number of

infected agents relates to the aggregate choice of activity level by susceptibles. It is upward

sloping as a higher XS directly increases I(t+1) in a linear fashion in the SIR model. Where

the two curves intersect is the equilibrium outcome under the assumption that S is held

fixed.

14It can readily be seen that this equilibrium exists if R0 > 1. When I(t) = 0, all agents set x̂n,S = 1

so that X̂S(0) = 1. At this point XS(0) = 1
R0

which is less than 1. On the other hand, if I(t) = 1,

XS(1) =
1−I(t−1)
I(t−1)

+γ

β > 0 while X̂S(I(t))→ 0. As all of the relevant functions are continuous, there is a fixed

point where I(t) = I∗.
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Figure 2: Equilibrium

This graphical approach also shows why the equilibrium is stable. Suppose that I(t) < I∗.

Then X̂S(t) > 1
SR0

and I(t + 1) > I(t). By contrast, if I(t) > I∗, X̂S(t) < 1
SR0

and

I(t+ 1) < I(t). These processes only stop as I(t) = I∗.

This approach allows for intuitive comparative static analysis. Figure 3 shows what

happens if there is an increase in baseline infectiousness, β. Firstly, as is well known in

epidemiology, an increase in β means that more activity translates into higher infections at

a faster rate; shifting the EPI line to the right. Second, from the analysis of behavioural

responses, an increase in β causes susceptible agents to choose to be more careful and reduce

their activity. Thus, the BEH curve shifts to the left. An increase in β has a negative

equilibrium impact on aggregate activity from susceptibles but an ambiguous impact on

the equilibrium number of infected agents. Figure 3 is drawn to show the case where an

increase in β leads to a lower rate of infection in contrast to the standard epidemiological

prediction. However, if the behavioural response is weaker, then the opposite comparative

static is possible.

Interestingly, there are some unambiguous monotone comparative static results that can

be derived. For instance, a change that impacts on Vn,I only without changing anything
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Figure 3: Increase in Infectiousness

else – e.g., a treatment that increases ρ or a measure that makes being infected less costly

(i.e., reduces L) only impacts on BEH; shifting it up and to the right. Thus, the availability

of a treatment causes both a higher equilibrium activity and a higher equilibrium level of

infection.

4.3 Impact of Testing/Isolation

One policy that has received attention in COVID-19 is the increased use of testing (and

contact tracing) to identify infected individuals earlier and isolate them to prevent them

spreading the virus. This approach was adopted as a standard practice by many countries

and appeared to be successful in reducing the scale of the COVID-19 pandemic. (See Gans

(2020), Chapter 7 for more details). However, some recent work in economics has raised the

possibility of unintended behavioural consequences from increased testing including testing

giving infected people confidence to engage in activity because they can’t get more infected

(Taylor (2020) and Deb et al. (2020)), a reluctance to be tested for fear of being quarantined

(Eichenbaum et al. (2020) to the potential for a rebound effect that increases activity choices
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(Acemoglu et al. (2020b)). The model presented here permits the examination of these

consequences.

The focus here is on the situation where tests immediately trigger isolation (say, because

they are done by a public authority with enforcement power or have subsidies that induce

isolation).15 The first impact of testing (along with isolation) is one that is intended: it

reduces the probability that a susceptible encounters an infected agent. This impacts on

both the EPI and EPI equations. The epidemiological response is to shift the EPI curve to

left as it directly reduces the probability that a susceptible agent will encounter and infected

agent. However, this also leads to a shift outwards of the BEH curve. The reduction in the

probability of encountering an infected agent, increases the incentives of susceptible agents

to engage in activity for given level of prevalence. This is the effect identified by Acemoglu

et al. (2020b).16 Thus, examining this impact alone, we would find a similar ambiguous

comparative static as that for infectious but in the opposite direction to the movements

depicted in Figure 3.

There is, however, a second impact of testing – and specifically, isolation – that has

not been examined in the literature. Testing followed by isolation reduces the utility from

becoming infected as an agent would not expect to be able to freely choose their activity

level in that event. Formally, their utility becomes un(0) rather than un(1) in that case.

While Eichenbaum et al. (2020) focused on how agents may avoid tests altogether, if agents

are tested, those tests themselves will cause the impact identified here. Specifically, with a

reduction in the utility of becoming infected, agents will become more cautious. This will

shift the BEH curve to the left countering the impact of increased testing on the likelihood

of encountering an infected person.

Putting the two impact mechanisms together, we can explore further whether the am-

biguity may be removed if BEH, on net, shifted to the left. To explore this, let α be the

probability that an infected agent is isolated as a result of testing regime. Given this, we

have:

p(xn,S(t), I(t)) = xn,S(t)β(1− α)I(t)

Vn,I =
(1− α)un(1) + αun(0)− L+ δ(1− γ)ρun(1)

1−δ

1− δγ
15The situation where people may keep test outcomes private or not obtain tests is captured by the α

below but the analysis does not inform on the issue created by that possibility as to whether it is desirable
to have a testing regime relative to leaving individuals uninformed as to their infectiousness. The approach
here could be used to analyse such cases but that is left to future work.

16They use a network rather than SIR model and so implicitly adopt the analytical shortcut proposed
here.
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Note that:

Vn,S − Vn,I =
(1− δγ)u(xn,S)− (1− δ)((1− α)un(1) + αun(0)− L)− δ(1− γ)ρun(1)

(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

(OPT) becomes:

u′n(x̂n,S)− β(1− α)I∗δ (Vn,S − Vn,I) = 0

Taking the derivative of the LHS of (OPT) with respect to α we have:

βI∗δ (Vn,S − Vn,I)− β(1− α)I∗δ
∂(Vn,S − Vn,I)

∂α

The first term is the marginal benefit to more risk as a result of testing while the second

term is the marginal benefit to more caution. Note that:

∂(Vn,S − Vn,I)
∂α

=
δxn,sβI

∗(1− δγ)(Vn,S − Vn,I) + (1− δ)(un(1)− un(0))

(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

which is positive for Vn,S ≥ Vn,I . Putting the two effects together, the impact of α on the

marginal return to activity is positive if:

Vn,S − Vn,I ≥ (1− α)
δxn,sβI

∗(1− δγ)(Vn,S − Vn,I) + (1− δ)(un(1)− un(0))

(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

Notice that as α→ 1, this always holds. By contrast for α→ 0, this becomes:

(1− δγ)(Vn,S − Vn,I)α=0 ≥ un(1)− un(0)

which may not hold. Thus, while it is possible, for low α, that there may be an unambiguous

comparative static that testing will reduce equilibrium infections, for high α, ambiguity

remains. In this case, an increase in α (i.e., the effectiveness of testing and isolating) leads

to a shift upwards in the BEH curve. In this model, therefore, as testing increases the

relative safety of interactions this causes activity to rise by more than the effect driven by

the decrease in the utility of the infected. Hence, the ambiguity remains for this comparative

static.

4.4 Mandated masks

Encouraging the use of masks has been a strategy increasingly deployed and even mandated

for dealing with COVID-19. In some medical circles there is debate regarding whether
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mandated masks would encourage less social distancing and potentially have a immiseration

effect on infection rates (Mantzari et al. (2020)). As was the case with testing, the analytical

approach here can be used to provide insight on that potential.

Suppose that, if all but recovered agents wear masks, the probability that the virus infects

a susceptible person in an interaction with an infected one is 1−α; that is, a higher α means

that a susceptible has more protection. Mask wearing is costly to individuals and, thus, it

is assumed that all susceptible and infected agents, n, bear a cost, cn, for each period they

wear a mask. In this situation, the only difference between the impact of masks is this cost

as well as the fact that infected people are not restricted in their activity and thus earn un(1)

while infected.

Thus, as was the case with testing, more effective masks (i.e., a higher α) leads to an

increase in the returns to risky activity as well as a cautionary effect. The overall effect of

masks is the impact of both. Note that, the impact of more effective masks on activity is

positive if:

Vn,S − Vn,I ≥ (1− α)
δxn,sβI

∗(1− δγ)(Vn,S − Vn,I)
(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

=⇒ 1 ≥ δ

where the last implication assumes that Vn,S ≥ Vn,I . Thus, masks will always move the BEH

curve to the right meaning that, given that they move the EPI curve to the left, there is no

unambiguous comparative static result with respect to masks. Compared with testing and

isolation, the returns to being infected are higher with mask wearing and so this reduces one

driver of caution.

5 The R̂ = 1 Prediction

The analytical shortcut, whereby an equilibrium is analysed based on an assumption that

S is fixed, gives rise to a prediction that R̂ = 1. As noted earlier, this comports with the

trends associated with the first few months of COVID-19 in a variety of countries that failed

to suppress the pandemic. The question is: given that it is obtained using an analytical

short-cut, how seriously should we take this prediction?

The potential error that arises from the short-cut can be seen by examining Figure 2.

Note that rather than being constant, the share of susceptibles, S, will fall overtime. Indeed,

if the level of infected persisted at I∗, S would fall by γI∗ in each period. This means that

the realised aggregate level of activity by susceptibles, XS, would be expected to fall. This

would not change the EPI curve as this change would be a movement along that curve.

However, it would have an impact on the BEH curve. This is because the maximum value
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of XS that can be generated by that relationship is S. Thus, a reduction in S may cause the

feasibility constraint to bind. Without modelling how agents take into account the change

in S in their own decisions – through expectations of a lower I in the immediate future –

this curve, as derived, is only an approximation of what might occur.

That said, there is one special case for which a full equilibrium of the environment (sans

the analytical shortcut) coincides with the limited equilibrium outcome examined thusfar.

Toxvaerd (2020) assumes that all agents are identical and that their activity choice x ∈ 0, 1.

This gives rise to BEH as depicted in Figure 4. When I(t) < I∗, all agents choose x̂ = 1

and when I(t) > I∗, they choose x̂ = 0. He shows that I∗ is independent of the share of

susceptibles. The equilibrium arises when I(t) = I∗ and agents pursue a mixed strategy

between {0, 1}. The total choosing x̂ = 0 averages 1
SR0

. Thus, R̂t = SR0 = 1.

In Figure 4, it can be seen that as S falls, this reduces the maximum of BEH but otherwise

leaves the line, and hence, equilibrium outcome in terms of infections and reproduction

rate unchanged. This, of course, does not continue indefinitely. As Toxvaerd (2020) shows

eventually SR0 < 1 in which case, the equilibrium moves down the EPI line until the

pandemic eventually ends. Thus, compared with the standard SIR model, in this model,

the pandemic emerges and hits a ceiling of infecteds at I(t) = I∗ and stays that way until

S < 1
R0

. Thus, the curve is not so much flattened as ‘pancaked’ at I∗.

This at least provides comfort that the R̂ = 1 prediction is the outcome of a possible

full equilibrium model. It also gives insight as to why the simulations of Cochrane (2020)

and Keppo et al. (2020) were able to generate outcomes whereby a Rt = 1 outcome was

observed for considerable periods of time when calibrated with parameters based on COVID-

19. Put simply, during the early months of the pandemic S was so large compared to I that

it would not be expected to change very much meaning that Rt appeared to be relatively

constant over time and close to 1 especially relative to SIR simulations that did not include

a behavioural element.

6 Conclusions

Standard epidemiological models of pandemics often do not consider how susceptible, in-

fected and recovered people will change their behaviour over the life cycle of the pandemic.

Economists have made progress in building behavioural elements into these models but the

non-stationarity that is a key part of viral epidemics such as COVID-19 has prevented an easy

characterisation of equilibrium paths of pandemics and the potential impact of interventions.

This paper argues that some analytical progress can be made on behavioural SIR models

by taking inspiration for epidemiological models that do have stationary characteristics. In
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Figure 4: Binary Choice and Symmetric Agent Equilibrium

so doing, an equilibrium outcome is derived that allows intuitive comparative static outcomes

on key variables such as infection rates and aggregate activity choices while at the same time

generating a prediction that during much of a pandemic, without intervention, the effective

reproduction number,Rt will tend towards 1. At this point, the infection rate is neither rising

nor falling. This is consistent with the outcomes in many regions with respect to COVID-

19. Nonetheless, the model here falls short of the usual requirements for a full equilibrium

outcome. It does, however, have the benefit of being upfront about this limitation and what

precisely we are getting in return in terms of tractibility and potential insight.

In doing this, this paper makes the case for treating R̂t = 1 to be an expected outcome

that can be used to evaluate, for both policy analysis and empirical predictions regarding

pandemics. While being upfront regarding its ‘cargo cultish’ logic (i.e., based on observa-

tions of effective reproduction numbers hovering around 1 rather than fully from primitive

assumptions), as a shortcut it can provide some insight that might inform debates. For

instance, Budish (2020) has argued that R being just below 1 should be a constraint that

is met by policies that impose lockdowns and other behaviour during pandemics. However,

if the expectation is that, absent interventions, that goal would be mostly achieved anyway,
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that target is arguably of limited use compared, say, to a target of achieving I = 0 prior to

what would otherwise be the natural course of pandemics. Moreover, with regard to lock-

downs, the expectation that non-targeted lockdown activities may be adjusted to generate

R̂t = 1 requires us to not simply look at the epidemiological consequences of interventions

(as Acemoglu et al. (2020a) do) but also to whether the non-targeted activities are such that

they would be unable to adjust so that R̂t = 1 was feasible. In other words, the criteria for

lockdowns is not simply about spread but about the scope for behavioural adjustment.

Nonetheless, this analysis here remains purely normative. While it is tempting to con-

clude that if testing or mask use led to more infections this would be welfare-reducing, we

must also remember the purpose of those interventions is precisely to allow activity to be

safer and hence, allow for more of these at the margin. Thus, even though it is possible to

draw some possible welfare conclusions from the fact that the BEH curve does not take into

account external effects and so likely lies above a suitably derived social curve, the reality is

more nuanced and requires an embrace of dynamic impacts. In particular, as Rachel (2020)

has shown the cumulative nature of pandemic impacts suggest that a focus on instantaneous

external effects is unlikely to provide the correct insight into optimal policy-making.

20



References

Acemoglu, D., Chernozhukov, V., Werning, I., and Whinston, M. D. (2020a). A multi-risk sir

model with optimally targeted lockdown. Technical report, National Bureau of Economic

Research.

Acemoglu, D., Makhdoumi, A., Malekian, A., and Ozdaglar, A. (2020b). Testing, voluntary

social distancing and the spread of an infection. Technical report, National Bureau of

Economic Research.

Aguirregabiria, V., Gu, J., Luo, Y., and Mira, P. (2020). A dynamic structural model of

virus diffusion and network production: A first report.

Bethune, Z. and Korinek, A. (2020). Covid-19 infection externalities: Pursuing herd immu-

nity or containment? Technical report, University of Virginia.

Bisin, A. and Moro, A. (2020). Learning epidemiology by doing: The empirical implications

of a spatial sir model with behavioral responses. Available at SSRN 3625361.

Brotherhood, L., Kircher, P., Santos, C., and Tertilt, M. (2020). An economic model of the

covid-19 epidemic: The importance of testing and age-specific policies.

Budish, E. B. (2020). R < 1 as an economic constraint: Can we ’expand the frontier’ in the

fight against covid-19? University of Chicago, Becker Friedman Institute for Economics

Working Paper, (2020-31).

Chen, F. H. (2009). Modeling the effect of information quality on risk behavior change and

the transmission of infectious diseases. Mathematical biosciences, 217(2):125–133.

Chen, F. H. (2012). A mathematical analysis of public avoidance behavior during epidemics

using game theory. Journal of theoretical biology, 302:18–28.

Chen, F. H. and Toxvaerd, F. (2014). The economics of vaccination. Journal of theoretical

biology, 363:105–117.

Cochrane, J. C. (2020). An sir model with behavior. https://johnhcochrane.blogspot.

com/2020/05/an-sir-model-with-behavior.html.

Deb, R., Pai, M., Vohra, A., and Vohra, R. (2020). Testing alone is insufficient. Available

at SSRN 3593974.

21

https://johnhcochrane.blogspot.com/2020/05/an-sir-model-with-behavior.html
https://johnhcochrane.blogspot.com/2020/05/an-sir-model-with-behavior.html


Di Guilmi, C., Galanis, G., and Baskozos, G. (2020). A behavioural sir model and its

implications for physical distancing.

Eichenbaum, M. S., Rebelo, S., and Trabandt, M. (2020). The macroeconomics of epidemics.

Technical report, National Bureau of Economic Research.

Eksin, C., Paarporn, K., and Weitz, J. S. (2019). Systematic biases in disease forecasting–the

role of behavior change. Epidemics, 27:96–105.

Ellison, G. (2020). Implications of heterogeneous sir models for analyses of covid-19. Tech-

nical report, National Bureau of Economic Research.

Farboodi, M., Jarosch, G., and Shimer, R. (2020). Internal and external effects of social

distancing in a pandemic. Technical report, National Bureau of Economic Research.

Fenichel, E. P. (2013). Economic considerations for social distancing and behavioral based

policies during an epidemic. Journal of health economics, 32(2):440–451.

Francis, P. J. (1997). Dynamic epidemiology and the market for vaccinations. Journal of

Public Economics, 63(3):383–406.

Gans, J. S. (2020). Economics in the Age of COVID-19. MIT Press.

Geoffard, P.-Y. and Philipson, T. (1996). Rational epidemics and their public control. In-

ternational economic review, pages 603–624.

Gersovitz, M. (2003). 25 births, recoveries, vaccinations, and externalities. Economics for

an imperfect world: Essays in honor of Joseph E. Stiglitz, page 469.

Gersovitz, M. (2011). The economics of infection control. Annu. Rev. Resour. Econ.,

3(1):277–296.

Gersovitz, M. and Hammer, J. S. (2004). The economical control of infectious diseases. The

Economic Journal, 114(492):1–27.

Goodkin-Gold, M., Kremer, M., Snyder, C., and Williams, H. (2020). Vaccination policy in

the short and long run. mimeo., Harvard.

Goolsbee, A. and Syverson, C. (2020). Fear, lockdown, and diversion: Comparing drivers of

pandemic economic decline 2020. Technical report, National Bureau of Economic Research.

Greenwood, J., Kircher, P., Santos, C., and Tertilt, M. (2019). An equilibrium model of the

african hiv/aids epidemic. Econometrica, 87(4):1081–1113.

22



Jones, C. J., Philippon, T., and Venkateswaran, V. (2020). Optimal mitigation policies in a

pandemic: Social distancing and working from home. Technical report, National Bureau

of Economic Research.

Keppo, J., Quercioli, E., Kudlyak, M., Wilson, A., and Smith, L. (2020). The behavioral sir

model, with applications to the swine flu and covid-19 pandemics. mimeo., Wisconsin.

Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory

of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a

mathematical and physical character, 115(772):700–721.

Kremer, M. (1996). Integrating behavioral choice into epidemiological models of aids. The

Quarterly Journal of Economics, 111(2):549–573.

Krueger, D., Uhlig, H., and Xie, T. (2020). Macroeconomic dynamics and reallocation in an

epidemic. Technical report, National Bureau of Economic Research.

Mantzari, E., Rubin, G. J., and Marteau, T. M. (2020). Is risk compensation threatening

public health in the covid-19 pandemic? BMJ, 370.

McAdams, D. (2020). Nash sir: An economic-epidemiological model of strategic behavior

during a viral epidemic. arXiv preprint arXiv:2006.10109.

Philipson, T. J. (2000). Economic epidemiology and infectious diseases. Handbook of Health

Economics, 1:1761–1799.

Philipson, T. J. and Posner, R. A. (1993). Private Choices and Public Health. Cambridge,

Mass.: Harvard University Press.

Rachel, L. (2020). An analytical model of covid-19 lockdowns. mimeo, London School of

Economics.

Reluga, T. C. (2010). Game theory of social distancing in response to an epidemic. PLoS

Comput Biol, 6(5):e1000793.

Rowthorn, B. R. and Toxvaerd, F. (2020). The optimal control of infectious diseases via

prevention and treatment. Technical report.

Taylor, C. (2020). Information and risky behavior: Model and policy implications for covid-

19. mimeo, Stanford.

Toxvaerd, F. (2019). Rational disinhibition and externalities in prevention. International

Economic Review, 60(4):1737–1755.

23



Toxvaerd, F. (2020). Equilibrium social distancing. mimeo, University of Cambridge.

24


	Introduction
	The Standard SIR Model
	The Behavioural SIR Model
	Literature Review
	Model Setup
	Infected Agent Activity
	Susceptible Agent Activity
	First-Order Effects
	Equilibrium Analysis

	An Analytical Shortcut
	Equilibrium Solution
	Graphical Analysis
	Impact of Testing/Isolation
	Mandated masks

	The =1 Prediction
	Conclusions



