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Abstract

We study the effects of testing policy on voluntary social distancing and the spread of an
infection. Agents decide their social activity level, which determines a social network over
which the virus spreads. Testing enables the isolation of infected individuals, slowing down
the infection. But greater testing also reduces voluntary social distancing or increases social
activity, exacerbating the spread of the virus. We show that the effect of testing on infections is
non-monotone. This non-monotonicity also implies that the optimal testing policy may leave
some of the testing capacity of society unused.

1 Introduction

The COVID-19 pandemic has reignited interest in models of epidemics and their control. A point
of broad agreement among different approaches is that ramping up testing capacity is one of the
most effective ways of combating the pandemic (see e.g. Searchinger et al. [2020], Brumfiel [2020],
and BruSoe-Lin and Hecht|[2020]). One issue that has not received much attention, however, is
whether and how different testing strategies will impact voluntary social distancing decisions of
individuals.

In this paper, we develop a simple model to investigate the effects of testing on infections and
provide insights on optimal testing strategies. We model social activity and voluntary distancing
as a network formation problem and use a simple percolation process to represent the spread of a
virus over the endogenous social network. Our choice for a model of percolation rather than the
SIR (susceptible, infected and recovered) model more commonly used in the analysis of COVID-19
is motivated by two considerations. First, our percolation model enables a fairly tractable, albeit
general, analysis of the spread of the virus and how it depends on the endogenous social network.

Second, to the extent that the optimal social policy is to minimize infections until a vaccine and
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a cure arrive (rather than reaching herd immunity), a percolation model, even though it does not
have the recovered individuals, will provide a good approximation to the outcomes under an SIR
model.

Our main results confirm the major benefit society can reap from testing and isolating infected
individuals, but also leads to two new insights. First, greater testing can lead to more social ac-
tivity (less social distancing) and thus a denser social network, because when infected individuals
are more likely to be identified and isolated, agents feel more secure to initiate contacts. We show
that, for a nontrivial set of parameters, greater testing can increase infections. This happens, in
particular, when the equilibrium involves some groups choosing an intermediate level of social
activity because of their fear of infection. Second, we demonstrate that when the testing capacity
of society is limited, optimal policy may involve leaving some of this capacity unused in order to
avoid adverse effects on social distancing. This also implies that testing should be combined with
mandatory social distancing measures to avoid these adverse behavioral effects.

More formally, our model consists of n individuals of two types, high-type agents with greater
value from social activities and low-type agents with lower values (more than two types are con-
sidered as an extension). Each individual ¢ chooses a social activity level z; € [0, 1], and the vector
of social activities defines a contact (social) network among individuals. Specifically, we assume
that there will be contact between agents ¢ and j with probability nz;z;, where n < 1 captures
the probability of a match conditional on activities. The utility of each individual is her utility
gain from social activities minus her infection probability. The virus spreads over the social net-
work following a cascade process, whereby each infected and non-isolated individual transmits
the infection to each one of its neighbors with probability # € (0,1]. An infected individual does
not transmit the virus after isolation, but we assume that transmission still occurs before testing
detects and isolates an infected agent. More specifically, we assume that an infected individual
who is detected transmits the virus with a smaller probability Sp, where p € [0,1).

Our analysis relies on a key lemma which establishes that the stochastic process for the spread
of the virus satisfies natural monotonicity and concavity (submodularity) properties: more social
activity leads to more infections but an individual’s probability of infection increases less in her
own social activity when she already has a high activity level.

We first prove that, as often maintained in prior analyses, more testing reduces infections when
we take activity levels (and thus the social network) as given. Our key results concern the case
in which the social activity levels are endogenous. First, we show that when testing probabilities
are large, both types of individuals choose maximal social activity (which can be interpreted as
the same level of activity as the pre-pandemic period). In this region, the equilibrium behaves in
an identical fashion to the exogenous social network case and testing always reduces infections.
More interestingly, however, for lower testing probabilities, either high-value or low-value indi-
viduals choose intermediate levels of social activity and greater testing increases their infection
probability.

We next turn to an analysis of optimal testing (where the objective is to maximize the value of



social activity minus the cost of infections). We assume that there is a fixed supply of tests and then
investigate how these should be allocated. Because high-value agents are socially more active,
they are more likely to be infected and thus they should be tested first. If there is sufficient testing
capacity, it is optimal to test all agents. But most interestingly, we prove that for intermediate or
low values of testing capacity, it is socially optimal not to use all available tests. The social planner
should either test all high-value agents, but not the low-value agents, so as to discourage them
from high levels of social activity. Or she should have no testing, even though there is capacity to
test some of the high-value agents. The intuition is again via the impact of testing on voluntary
social distancing: additional testing over this range would reduce voluntary social distancing so
much that it would have no benefit in terms of containing the infection.

As already emphasized, these non-monotonicity results are due to the impact of testing on
equilibrium social activity (social distancing). If the social planner can mandate social distancing,
then it is straightforward to show that there is no non-monotonicity and it is always optimal to
use all of the available testing capacity.

We also show that uniform testing policies, where tests are allocated without reference to the
type of agents, are worse than targeted testing policies.

In our baseline model, high-value agents should be tested first because they are more active
and thus more likely to transmit the virus. In an extension where we allow individuals to choose
type-specific social activity levels (e.g.,, how much to socialize with high-value and low-value
agents), we show that not testing high-value agents may have an additional strategic benefit—it
discourages low-value agents from socializing with high-value agents, slowing down the spread

of the virus.

Related Literature

Our paper is related to three distinct literatures. First, ours is a model of endogenous social net-
work formation. Seminal papers in this area include Jackson and Wolinsky [1996], Bala and Goyal
[2000], and |Currarini et al.| [2009] (see Jackson [2008] and Vega-Redondo [2007] for book-length
treatments of issues of network formation and contagion in networks). Differently from the most
common approach in this literature, which is to look at pairwise or coalition-wise stable outcomes,
we adopt a non-cooperative approach to network formation (see also/Bollobas and Béla [2001] and
Newman et al. [2001]). In particular, we adopt a very simple (and to the best of our knowledge,
novel) modeling strategy, where the probability of connection between two agents is proportional
to the product of their levels of social activity. This leads to a tractable but rich set of interactions,
in part because this structure makes activity levels both strategic substitutes and complements.
Goyal [1993], Bala and Goyal [2000], and |Acemoglu et al. [2017a] assume agents can unilaterally
create directed links to others. In contrast, in our model the probability of a link between two
agents depends on the action of both of them.

Second, there is a large literature spanning various areas of economics where precautionary
tools increase risk-taking (Peltzman [1975])). For example, hydraulic breaks increase driving speed



and may have much lower effects on accidents than they would have done had driving behav-
ior not responded (see e.g., |[Lindgren and Stuart [1980], Crandall and Graham [1984], and Keeler
[1994]). Differently from other works in this vein, we show that in our setting with social net-
work interactions, the countervailing effects can outweigh the direct impacts and lead to higher
infections from more testing.

Third, our paper is related to the recent literature on the effects of pandemics and especially of
COVID-19. See, for example, Kruse and Strack [2020], |Atkeson [2020], Jones et al. [2020], Glover
et al. [2020], Berger et al. [2020], and Birge et al. [2020]. More closely related are several papers en-
dogenizing behavior and social distancing in the context of SIR models, such as|Leung et al. [2018],
Toxvaerd| [2020], [Eichenbaum et al. [2020], [Farboodi et al.| [2020], and Maloney and Taskin [2020].
In particular, [Eichenbaum et al. [2020] extend the canonical SIR model to study the interaction
between economic decisions and pandemics, while Leung et al. [2018], Toxvaerd| [2020], [Farboodi
et al. [2020], and Maloney and Taskin/ [2020] incorporate simple social distancing behavior in an
otherwise standard SIR model[!

Also closely related within this recent literature are a few recent papers studying the effects
of lockdown and testing strategies. For example, Alvarez et al. [2020], /Acemoglu et al.| [2020],
Piguillem and Shi| [2020], Brotherhood et al. [2020], and [Eshragh et al. [2020] look at the effects
of different testing and isolation policies on the dynamics of infections and optimal lockdowns.
More closely related are Drakopoulos and Randhawa [2020] and [Ely et al. [2020] who both study
optimal testing policy when tests are inaccurate (and Kasy et al./[2020] who investigate the impli-
cations of false quarantine). None of these papers analyze the impact of testing on voluntary social
distancing and behavior. In addition, to the best of our knowledge, no other paper has provided
a full characterization of social activity and how it depends on infection probabilities and testing
strategies.

Various other issues such as estimation, testing, and control related to COVID-19 and more
broadly pandemics have also been studied. |Kaplan| [2020] considers a statistical model for esti-
mating the effectiveness of isolation and quarantine, Drakopoulos et al.| [2017] study the open-
loop control of epidemics on a network and shows how the network structure affects the amount
of resources required to contain the spread of infection, Wang et al. [2009] study the strategic
interaction among states in allocating their resources, and Sun et al. [2009] study the strategic
considerations in allocating drugs during a pandemic. Nor has pointed out the non-monotonic
impacts of testing on infections.

The rest of the paper is organized as follows. In Section [2| we present our model, describing
the formation of contact network and the stochastic process governing the spread of infection. We
also show that for a given (exogenous) network, as expected, increasing the testing capability de-

creases the infection probability. In Section [3|we characterize the equilibrium outcome and show

!Other related work includes /Acemoglu et al.[[2016], who introduce precautionary behavior in the context of a virus
spreading over a network, Morris|[2000], Tardos and Wexler|[2007], Blume et al.|[(2011],|/Acemoglu et al.|[2017a], [Elliott
et al.| [2014], Capponi [2016], |Acemoglu et al.| [2017b], and [Bernard et al. [2017] who study contagion over financial
networks, and Manshadi et al.|[2020] who study diffusion in random networks.



that increasing testing probabilities may adversely increase the (equilibrium) infection probability.
In Section 4 we characterize the optimal testing policy and show it may be optimal to have under-
utilized testing capacity. Section [5|considers two extensions: multiple groups of agents and social
activity differentially targeted towards different groups. Section [6|concludes, while the Appendix
contains all the proofs and additional results.

2 The Environment

We study the spread of an infection among n individuals (also referred to as agents) represented
by the set V = {1,...,n}. Each agent ¢ € V decides about her level of social activity denoted by
x; € [0,1]. Higher social activity provides greater utility to agents but also leads to faster spread of
the infection. Agents are heterogeneous in terms of their value of social interaction. In our main
model, we assume that the agent’s type (value of interaction) is either vy € [0, 1] or vy, € [0,1],
where vy, < vg. We also use H and £ to denote individuals with high and low values, respectively,
and 7 and 71, to denote the population fractions of high- and low-value agents. Section [5|extends
our results to a setting with m > 2 types of agents.

A virus infects a random individual and then spreads to others through a stochastic process
described in subsection|2.2] We analyze the implications of infection testing, represented by testing
probabilities for two types of agents, o, ay € [0, 1], and study the optimal festing policy, (o, ap),
of a (benevolent) social planner. Each infected individual that is tested positive will be isolated
from the rest of society. If an individual is infected and not isolated, she will expose her neighbors
to the infection. If she is isolated, the individual still has a (smaller) chance to infect her neighbors
and expose them to the infection.

We let x = (x1,...,2,) denote the social activity profile of all individuals. We also let x_;
represent the social activity profile of all individuals except agent i. In what follows, for any
vector x € R™ and set S C V, xg denotes the elements of x for the indices in S and x_g denotes
the elements of x for the indices outside set S.

We next describe how social activity levels determine the (endogenous) social network in this

community and how the infection spreads over this social network.

2.1 Network of Contacts

The social activity profile x = (z1, ..., z,) of agents generates a social (contact) network in which
agents 7 and j are connected with a probability that depends on z; and z;. Let G = (V,E) be a
random network where E € {0, 1}"*" denotes the random edges (thus, E;; = E;;), where E;; for

i,7 € V are independent binary random variables with

P[E;; = 1] = nx;zj,



for some 7 € (0, 1]. This 1) captures the probability of match between two individuals conditional
on activity levels. We denote a realized network by G = (V, E), where Ej; is a realization of E;;, and
thus F;; = 1 means that there is a link between agents i and ;.

We next describe the stochastic process governing the spread of infection and define the infec-
tion probability of agents.

2.2 The Spread of the Infection

Let us denote the neighbors of node i by N(i) = {j € V : E;; = 1}. For a given network
G = (V, E), there is a stochastic process that governs the spread of infection as follows. One of the
individuals uniformly at random becomes infected, and the infection then spreads to others via a
percolation process over the social network that is a generalization of the independent cascades
model (see Kempe et al. [2015] for more details).

We can describe the dynamics of infection as follows: At time 0, one of the agents (chosen
(t)

uniformly at random) s € V gets infected. At any round ¢ > 0 for any agent i € V we let d;
denote the number of neighbors of agent ¢ that are infected and tested at time ¢ and cif.“ denote
the number of neighbors of agent i that are infected at time ¢ but not tested. For each agent 1,
these two variables are initially 0 and then evolve over time as described next. At time 0 node s
will be tested with probability «; in which case at time 1 for all neighbors of agent s such as j we
have d;l) = 1. Here o is either ay or a, depending on whether agent s belongs to H or £. With
probability 1 — «;, however, agent s will not be tested in which case at time 1 for all neighbors of
agent s such as j we have Jél) = 1. If an infected node is not tested (and therefore not isolated),
she will be active for one round and transmits infection to its neighbors with transmission probability
B € (0,1]. If an infected node is tested, she can be isolated and prevented from transmitting the
virus. However, before isolation takes place, some social contacts will occur and lead to the spread
of the infection. We represent this possibility with a smaller probability of infection, 3p, where

€ [0,1). From active agents, the infection simultaneously and independently transmits to each
of their uninfected neighbors. If an uninfected agent is a neighbor to multiple infected individuals
(i.e., there exists at least two ¢ and ¢’ such that j € N(i) and j € N(i')), then the infection is
transmitted to agent j in an order-independent fashion. This implies, for example, that if j is
uninfected and a neighbor to two active agents that are not tested, then j becomes infected with
probability 1 — (1 — )% If a neighbor of an active node does not become infected at time ¢, then it
will never again become infected via that node. Given this process, for each node i, the probability
of getting infected at time ¢ + 1 becomes

1—(1-B)%(1 - Bp)%,

where, we recall that (if is the number of i’s neighbors that are infected and not tested at time ¢

and d! is the number of i’s neighbors that are infected and tested at time ¢.



Definition 1. For any agent i € V, network G = (V, E), and testing policy (ar,an) we let
P (G, o, ay) denote the probability of infection reaching agent i. This probability is over the
randomness in the source of infection, the randomness in testing, and the randomness in the

stochastic process described above.
We next illustrate the stochastic process and the infection probability by means of an example.
Example 1.

We consider a setting with three agents {1, 2,3} who are fully connected to each other with
testing probabilities oy = a7, = « and find the infection probability of agent 3. We list the three

cases for the source of infection and find this probability:
e With probability 1/3, the infection hits agent 3: In this case, agent 3 gets infected.

e With probability 1/3, the infection hits agent 1: In this case, there are two possibilities:

(i) Node 1 will get tested whose probability is a. Here there are two cases. In the first,
the infection reaches node 3 directly through the edge between nodes 1 and 3 with
probability Sp (i.e., through the red solid path in Figure[l). In the second case, this
edge is not active and the infection reaches node 3 through node 2 whose probability
is (1 — a)B%p + af?p? (i.e., through the blue dashed path in Figure lll) The first term
is the probability of node 2 not being tested in which case the infection reaches node 3
with probability Sp x  and the second term is the probability of node 2 being tested in
which case the infection reaches node 3 with probability Sp x Bp.

(ii) Node 1 will not get tested whose probability is (1 — «). Similarly, we can find the

infection probability.
Therefore, the overall infection probability of node 3, if the infection hits agent 1, is
a(Bp+ (1= Pp) (1—a)B’p+aB’p®)) + (L—a) (B+ (1-B)((1-a)8®+aB’p)).
e With probability 1/3, the infection hits agent 1: This case is identical to the previous one by

swapping the role of nodes 1 and 2.

Putting these three cases together, the infection probability of agent 3, PP (G, ay, = a,ap = «),
is

2

é + 3 (a(Bp+ (1= Bp) (1= )8+ afp?)) + (1= @) (B + (1= ) (1 - )5” + af’p))) .

Definition 2. For a given social activity profile x and testing policy (ar,ay), we denote the
infection probability of individual 4 in the random network of contacts by P (x, ay,, ap), i.e.,

inf inf
I[Di (Xa ar, OCH) = IE’G:(V,E): E;j~Bernoulli(nz;z;) Pz (G7 ar, aH) .

7



Figure 1: From agent 1 the infection can reach agent 3 from two paths: (i) directly via the edge
between them whose probability depends on whether agent 1 will be tested or not and (ii) through
agent 2 which, again, depends on whether agents 1 and 2 will be tested or not.

This probability is over the randomness in the formed network, the randomness over the source
of infection, the random in testing, and the randomness in the stochastic process governing the
spread of infection.

2.3 Utility of Agents and Solution Concept

The utility function of agent 7 is given by
wi(x, o, ag) = vir; — PP (x ap, ap) — ¢ (apl{i € L} + agl{i € H}), (1)

where v; € {vr, v} and ¢ > 0is a (possibly small) cost of testing for an agent. The first term, v;z;,
represents the utility gain from social activity, the second term, —P*(x, ar,, ap), is the loss from
getting infected, and the last term is the expected cost of getting tested.

As a solution concept, we use symmetric pure-strategy or mixed-strategy (Nash) equilibrium.

Definition 3. A pure-strategy social activity profile x° is a (pure-strategy) Nash equilibrium if
wi(x% ap, ag) > ui((z;,x%,),an, ay), foralli eV, ,x; € [0,1].

A mixed-strategy social activity profile is of the form p¢ = [[;, uf where pf is a probability
distribution over [0, 1]. A mixed-strategy social activity profile is an equilibrium if

Exenpe [0i(X%, ap, am)] > Bxe ~pe [wi((2i,x2;), ar, ag)],  forallieV,z; €[0,1].

A symmetric pure (mixed) strategy equilibrium is a pure (mixed) strategy equilibrium in which the
decision of each agent i only depends on its value v; and its infection probability and not on her
identity.



2.4 Monotonicity and Concavity of Infection Probability

As illustrated in Example 1} the infection probability depends on the graph structure and testing
policy in a complex way. Nevertheless, the next lemma shows that the stochastic process of the
spread of the infection satisfies natural monotonicity and concavity properties. In what follows

for two vectors a,b € R™, we write a > b to denote a; > b; fori =1,...,m.

Lemma 1.
(a) For any agent i € V, we have

]P)inf (X, aL,ag) > Pinf(xﬂ o, am), fOT all X > x. (2)

(b) For any agent i € V, and any social activity profile x_; € [0,1]"71, P ((z;,x_;), ar, ay) is

concave in x;.

Part (a) of Lemma lyis straightforward. It shows that the infection probability for an individual
is increasing in the social activity levels of all agents in society, because higher social activity leads
to a denser social network over which the virus spreads. Part (b), on the other hand, shows that
this probability is concave in the individual’s own social activity level, because additional social
activity brings the virus to the individual only if her existing links did not do so already.

2.5 Exogenous Activities: Impact of Testing Policy on Infection Probability

We first analyze the case in which social activity levels are fixed and thus the social (contact)
network G is given. The next proposition shows that more testing always reduces the spread of

the infection in this case.

Proposition 1. For any network G = (V, E), the infection probability of each agent is decreasing in
(ar, apr). In particular, we have

PG, o, o) < PG ap, ag),  foralli € V, (o, o) > (ap, an).

The testing policy changes the dynamics of the independent cascade process, and hence affects
the infection probability of agents in a non-trivial way. To show Proposition|l, we first reformulate
the independent cascade process governing the spread of infection in terms of a sequence of i.i.d
random variables and then use a coupling argument to relate the infection probability of agents
with testing policy (ar,a) to infection probability of agents with testing policy (a;, o). This
proposition establishes that when agents do not choose their social activity levels, greater testing
probabilities (o, ap) reduce the infection probability of all agents. This is intuitive: greater test-
ing enables the detection and isolation of infected individuals, slowing down the spread of the

virus.



We conclude this section by noting that all the results that will follow hold for any contagion
process that satisfies the properties stated in Lemma|l|and Proposition|1} Put differently, provided
that forany i € V, IP’;“f(x7 ar, o) is increasing in x, concave in x;, and decreasing in (o, ap), the
equilibrium characterization and the non-monotonicity of infection probability in testing policy,
presented in the next section, hold.

3 Endogenous Activities

With endogenous networks each individual has a strategic decision to make: the social activity
level (or conversely, her social distancing), which determines the expected number of neighbors
she will have. Lemma [1/shows that the utility of each agent i is convex in her social activity ;.
This implies that agents do not choose an intermediate level of activity because the convexity of
utility makes mixing between 0 and 1 (strictly) preferable. This observation is formally stated in
the next lemma.

Lemma 2. Given an agent i € V and action profile x_;, let «§ denote the best response social activity of
agent i, i.e.,

x{ € arg max u; (T, X_;, o, pr ).
z€(0,1]

Then, we have x§ € {0, 1}.

3.1 Equilibrium Characterization

We first introduce some additional notation that will be used in the rest of the paper. We let 1 and
0 denote the vectors of all 1s and all 0Os, respectively where their dimension will be clear from the

context. We also let [ and h be a low- and high-value agent and define the following sets:

: 1
A = {(aL,aH) e [0, 1]2 : P}nf(XH =1,x,=1,ap,ay) <vp+ o

. 1
P;?f(X’H = 17XL‘, = laaLvaH) S vy + E}

; 1

.AQ = {(aL,aH) S [O, 1]2 . P}nf(X"H = l,Xg = l,aL,aH) Z VL + E’
i 1
P}nf(X’H =1,z = 17X£\{l} = O,CYL7CYH) <wr + o

i 1
Prf(xy =1,%xz =0,ar,an) < vg + ﬁ}
; 1
Az = {(aL,aH) €[0,1)%: ]P’}nf(XH =1,x,=1ar,ay) > v, + -
i 1
PP (xp = 1,2 = 1,xp\(p = 0,0z, ap) > v + -

. 1
P;?f(xf]'[ = 17XL‘, = OaalnaH) g vy + ﬁ}

10



Equilibrium actions
(High-values, Low-values)

_A’{ (1a 1)
o)
H
o A; (L')’L(O‘L?aH))
o *
-A3 (1a O)
(3)
O Aj (va(arL,am),0)
00 1
ay,

Figure 2: This graph depicts the regions A1, A, A3, and A4 (as n — oo) that determine the equi-
librium in Proposition @

: 1
Ay = {(aL,aH) € [0, 1]2 : ]P’}nf(x;v.[ =1,xc=1ar,ag) >vp + -

. 1
P}'Lnf(x’}‘l = 1’X£ = 0,0[L,OZH) 2 VH + ﬁ}

We recall that H denotes the set of agents with a high value vy for social activity and £ denotes
the set of agents with a low value vy, for social activity.

Proposition 2. There exist M € N and functions vy, : [0,1]? — [0,1] and vy : [0,1]* — [0, 1] such that
forn > M, depending on the testing policy, («r,, arr) there are four possibilities for the equilibrium:

(a) For (ar,am) € Ay, there exists a unique symmetric equilibrium where x§ = 1 for all i € V.

(b) For (ar,am) € Ag, there exists a unique symmetric equilibrium where x¢ = 1 for all i € H and a
mixed-strategy pi for all j € L that puts probability v (o, ) on 1 and probability 1—~r(ar, o)
on 0.

(c) For (ar,an) € As, there exists a unique symmetric equilibrium where z{ = 1 for all i € H and
z;=0foral j €L

(d) For (ar,am) € Au, there exists a unique symmetric equilibrium where x5 = 0 for all j € L
and a mixed-strategy u$ for all i € H that puts probability v (o, ap) on 1 and probability 1 —
vi (ap, apr) on 0.

Proposition 2|characterizes the equilibrium outcome for different testing policies (ar, ag). For
the case in which the number of agents in society is greater than a threshold, it divides testing poli-

cies into four regions, which lead to different types of equilibrium behavior. For example, when

11



testing policy is in the set A;, the infected are sufficiently likely to be identified and isolated that
all individuals choose full social activity—as if social contacts did not increase their probability
of infection. Outside of this region, individuals take precautionary action by reducing their social
activityEJ In the region Ay, high-value agents (who receive greater utility from social activity) still
choose full activity, but now low-value agents mix between no activity and full activity. The other
regions are defined similarly. In the proof of Proposition |2J we show that the four sets A4, As, A3,
and A, will cover all possible testing policies (ay, ay) € [0, 1]* (for sufficiently large n).

Note finally that the sets A; to A4 are functions of the model primitives, but depend on the in-
fection probability in the stochastic process governing the spread of infection which is a complex
quantity. Nonetheless, the next lemma shows that as n — oo, these sets have a simple characteri-
zation. For this lemma, recall that rf and r;, denote the fractions of the two types of individuals.

This characterization will be used in Section |4/ in studying the optimal testing policy.

Lemma 3. There exist ag) > ag) > ag) such that as n — oo the sets A1, Az, Az, A4 converge toH

Af = {(aL,aH) €[0,1*: apryp + agrg > ag)TH},

1 2
A5 =< (ap,am) 11?: aprp 4+ agry < ag{)rH,ozH > ag{)} ,

1) (3)

1% aprp +apryg < a% TH,QH < Qp }7

{ e [0,
Az = { (ar,ag) €[0,1]*: aprp + agrg < agq)rH a( ) <ag < ag)}, and
{ ar,ap) €0,

Ay =
respectively.

These four sets are depicted in Figure 2| which also shows the equilibrium action profiles of
high- and low-value agents as a function of the pair (ar, ag).

To obtain the intuition of the proof of Lemma [3} let us consider set .4; for which both type
of agents are playing 1 and therefore their testing probability affects the infection probabilities of
other agents. The convergence of the sets to these asymptotic objects follows from the fact that for
large enough n, the number of tests will be concentrated around its mean which is arry + agry
and the infection probability is decreasing in the number of tests. The proof does not readily
follow from law of large numbers because the infection probability is a non-linear function of the
number of tests. To establish this result, we develop a “peeling argument” that uses the properties
of the infection probability (such as submodularity) together with a concentration bound. More
precisely, consider a society with n agents and let Q(n, k) denote the infection probability of agents

when x = 1 and £ out of n agents are tested. We show that

Il)m PR (x =1, a7, ay) — Q (n, [(apry + agrg)n])| =0, foralli.

’In particular, in this region n must be large enough such that, when all agents are playing 1, a change in one agent’s
testing probability does not change the infection probability of other agents by more than vy — vr.

*We say a sequence of sets { A}22; converges to set A if for any e > 0, there exists M € N such that for n > M, we
have A, C A and A C A'Y, where for any set B, B() denotes Upesiz @ [z —bl]2 < €}

12



A

Infection probability of high-values

Infection probability of low-values

Figure 3: The schematic view of the infection probability of high- and low value agents, in the
limit as n — oo, for uniform policy (i.e., oy = a, = @) as « increases.

To establish this result, we first use Chernoff-Hoeffding inequality, showing with a high probabil-
ity the number of tested individuals is around [n(arrr + apryg)]. We then use the submodularity
of the infection probability combined with a “peeling argument” to show that for any small e > 0

and k € (|n(apry + agrg —€)], [n(apry + agryg + €)]), we have

€
1—(apry +agry)’

1Q(n, k) — Q(n, [n(arry +agry —€)])| <e+

In our baseline analysis we adopt symmetric equilibrium solution concept to simplify the notation
(i.e., the strategy of an agent depends on the infection probability from her perspective and not her
identity). In Appendix|7.2 we show that the equilibrium characterization given in Proposition|2|is
essentially unique. In particular, we show that the pure-strategy equilibrium in parts (a) and (c)
are unique. We then characterize the asymmetric pure-strategy equilibrium (for parts (b) and (d))
and show that, for large n, the expected number of infected individuals in any asymmetric pure-
strategy equilibrium is the same as the expected number of infected individuals in the symmetric
equilibrium characterized in Proposition [2|

3.2 Impact of Testing Policy on Infection Probability

The next theorem presents one of our main results in this paper. It shows the non-monotonic

impact of greater testing on infections.
Theorem 1. There exists M € Ny such that for n > M, in the unique symmetric equilibrium we have:

(a) Higher (o, aupr) in the interior of Ay decreases the infection probabilities of both types of agents.

(b) Higher (o, ar) in the interior of Ay increases the infection probability of low-value agents and does
not change the infection probability of high-value agents.
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(c) Higher (ar, aupr) in the interior of As decreases the infection probabilities of both types of agents.

(d) Higher (ar, o) in the interior of Ay increases the infection probability of high-value agents and
does not change the infection probability of low-value agents.

Moreover, infection probabilities are continuous in («r,, oy ) at the boundaries of the above sets.

Theorem [l establishes that whenever we have a mixed-strategy equilibrium, as in regions A,
and Ay, the effects of greater testing on infections are non-monotonic. Intuitively, this is because
greater testing and isolation makes agents that are mixing wish to go to full activity. But when
we are (and remain) in the interior of the sets 4> and A4, the pure-strategy full activity level
is not an equilibrium (either for the low-value or the high-value agents). Hence, equilibrium is
restored by some more of the relevant agents choosing high activity at the margin, which increases
contacts and thus restores the incentives for mixing by increasing infection probabilities. In both
cases, as Proposition[1/highlighted, with given activity levels, greater testing would have reduced
the spread of the infection. The reason why the infection spreads more is because greater social
activity levels make the social network denser. To see that the infection probability is increasing in
the testing policy, let us consider (ar, ap) € A4. As we showed in Proposition@ in this region low-
value agents play 0 and high-value agents play a mixed strategy that puts probability vr (ar, an)
on activity level 1 and probability 1 — vy (ar,an) on activity level 0. Therefore, in this region
the infection probability of high-value agents is P}, (xy = yu(ar, am)l, %z, ar, ag). Changing the
testing policy (ar, apr) affects this probability in two ways: (i) it changes the testing probability
of agents in the governing stochastic process of the infection and (ii) it changes the equilibrium
social activity of high-value agents. Using the fact that mixing with probability v (ar, ap) is
equilibrium for high-value agents, we show that this infection probability can be written in closed-
form as vy (ar, afg)vyg + % The proof then completes by showing g (o, ap) is increasing in the
testing policy (ar, am).

In practice, it may not be possible to test different types of agents at different rates. If so,
we would have to impose a;, = ay = « for some o € [0,1]. Figure 3| depicts the infection
probability of both types as a function of «, confirming that infection probabilities continue to be
non-monotonic in testing probabilities (in this case «).

Theorem 1] again highlights the importance of the sets Aj,..., A4 in our analysis. We next
provide a comparative statics for these sets as 1 (the probability of match conditional on activi-
ties), B (the transmission rate of the infection) , and p (where [p is the transmission rate of tested

individuals) vary.

Lemma 4. Let A;(n, 5, p) and Ai(n, B, p) denote the sets Ay and A4 as a function of the parameters n, [3,
and p. We have

(a) Higher n shrinks the set Ay and expands the set A4. That is,
-/41(77/7 ﬁap) g Al(n’ B)p) and “44(77’ ﬁap) g A4(77,a ﬁ’p)’ fOT‘ all 77/ 2 m, ﬁvp
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(b) Higher (3 shrinks the set A, and expands the set A4. That is,
Ai(n, B',p) € Ai(n, B, p) and As(n, B,p) € As(n, 8',p),  forall 3> B,n,p.
(c) Higher p shrinks the set Ay and expands the set A4. That is,

Al(nvﬁap/) - Al(naﬁap) and A4(77753p) - -/44(77’ ﬁ’p,)a fOT ﬂllp, > pra’r/'

This lemma directly follows from the definition of the sets A; and A4 and the fact that the
infection probabilities are increasing in 7, 3, and p. The boundary between sets .4, and A3 (for
large enough n) also shift up as we increase either 7, 5, or p. The sets Az and A3, however, can

either shrink or expand.

4 Optimal Testing Policy

We now discuss the design of optimal testing policy (o, afr) to maximize social welfare. Through-
out we assume that there is a limited testing capacity represented by #n where 6 € [0, 1] and n is
the number of individuals. We refer to ¢ as testing capacity. Social welfare is

n
W(x,ar, o) = Z wi(x, o, ).
i=1

The game among the planner and the agents is a two-stage game with the following timing;:

1. The social planner chooses the testing policy (ayz,, apr).

2. Given the testing policy, the unique symmetric equilibrium from Proposition [2/is played.
With this timing and notation, the social planner’s problem becomes

max  W(x% ar,an)
(ar,om)€[0,1]2

s.t. x° is the unique (symmetric) equilibrium ,
ag|H|+ arlL] < 6n.

Our main result of this section, stated next, characterizes the optimal testing policy.

Theorem 2. There exist M € N, ¢ € Ry, and 1) > 0 > 0©) such that for ¢ < ¢and n > M we
have:

(@) If 0 > 0, then the optimal testing policy is to test all individuals with probability 6 and in the
corresponding equilibrium all agents are fully active, i.e., z§ = 1 forall i € V.
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Equilibrium with
optimal policy: 0,0) (1,0) (1,0) (1,1)
(high-value, low-value)

\

Testing capacity Underutilized Fully-utilized Underutilized Fully-utilized

in the optimal policy"

Figure 4: Depending on 0, the fraction of society that can be tested, there are four possibilities for
the optimal testing policy and the corresponding social activity profile in equilibrium.

(b) If 0 < 0 < 0, then the optimal testing policy is to test only high-value individuals with probabil-
ity 9% and in the corresponding equilibrium high-value agents are fully active and low-value agents
TH

are inactive, i.e., x{ = 1 forall i € H and xj =0forall j € L.

(c) If0B) < 0 < 02, then the optimal testing policy is to test only high-value individuals with probabil-
ity -2 and in the corresponding equilibrium high-value agents are fully active and low-value agents
TH

are inactive, i.e., x{ = 1 for all i € H and z5 = Oforall j € L.

(d) If0 < 0©), then the optimal testing policy is to have zero tests and in the corresponding equilibrium
all agents are inactive, i.e., x§ = 0 forall i € V

The most important result in Theorem [2/is that the optimal policy does not necessarily use all
available tests. In particular, when there are enough tests that all agents can be fully active with the
appropriate testing in isolation, the social planner is (obviously) happy to deploy all testing and
allow all agents to be fully active. This is the case when ¢ > (1), However, when 02 <9 < 6(1),
the social planner prefers not to use all available tests. The intuition for this result is related to the
non-monotonicity of the comparative statics derived in Theorem |1} greater testing will encourage
more social activity, in this case from low-value agents. The social planner, on the other hand,
prefers zero activity from low-value agents so as to slow down the spread of the virus. Therefore,
she opts for a policy that does not test low-value agents, discouraging their social activity and
keeps the social network less dense. When 6 < ), the optimal policy is even more extreme. It
does not test any agents. This is because just testing high-value agents would encourage sufficient
social activity to lead to faster spread of the virus, which the social planner prefers to avoid.

One implication of our model, highlighted in Theorem [2, is that testing high-value agents
ahead of low-value agents is optimal. In Section [5| we show that this is a consequence of indi-
viduals choosing a general social activity level. If, instead, they can target their social activity to
low-value and high-value agents separately, then the social planner may want to test low-value

*The thresholds on @ relate to the ones found in Lemmaand in particular we have §(") = rHag), 0 = aﬁ)m,

and ) = ag)rH. These thresholds are such that 2= ¢ [0,1] and for 8 € [#®®,6?)), we have % € [0,1].

TH
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agents and refrain from testing high-value agents in order to discourage everybody from interact-

ing with these “super spreaders” (who are socially very active).

4.1 Optimal Uniform Testing Policy

It may be impossible for authorities to discriminate between or identify high-value and low-value
agents, in which case testing policy would have to be uniform, a; = ag = a. With uniform

testing policy, the social planner’s problem becomes

max W(x% ar, = a,ag = «)
a€(0,1]

s.t. x° is the unique (symmetric) equilibrium,

a<46.

The following corollary readily follows from Proposition Q and characterizes the optimal uniform
policy.

Corollary 1. Let 01 > 02 > 93) pe thresholds found in Theorem There exist ¢ € Ry and M € Ny
such that for ¢ < ¢ and n > M we have:

(a) If 0 > 01, then the optimal testing policy is to test all individuals with probability 6 and in the

corresponding equilibrium both agent types have full social activities, i.e., x{ = 1 for all i € V.

(b) If min{"— 9< . ,0W} < 0 < 0W), then the optimal testing policy is to test all individuals with probability
min{°— 9( ) 0} and in the corresponding equilibrium high-value agents have full social activities

while low value agents have zero social activities, i.e., xf = 1 forall i € H and x5 = 0 for all j € L.

9( ) 1 - 02 1 . . . . e
(c) Ifmin{Z=,0M} <0 < min{ 7, 01}, then the optimal testing policy is to test all with probability
0 and in the corresponding equilibrium high-value agents have full social activities while low-value
agents have zero social activities, i.e., xf = 1 forall i € H and 2§ = 0 forall j € L.

(d) If < min{7 - o9 ,0WY, then the optimal testing policy is to have zero tests in the corresponding
equilibrium and all agents have zero social activities, i.e., x§ = 0 forall i € V.

Comparing Corollary [I| with Theorem [2, we see that the top region in which all agents are
fully active, does not change. The second region shrinks (because S 0®?) and involves greater
spread of the virus, because uniform policies are less effective at 1dent1fy1ng and isolating the
“super spreader” agents that are more likely to be infected and more likely to spread the virus
(because of their greater social activity). The third region may expand, but in this region individu-
als continue to have the same infection probability as they did under targeted policies. Finally, the
fourth region expands, and in this region individuals have the same infection probability as under
targeted testing policy. Overall, uniform policies make testing less effective, but do not change

our qualitative conclusions.
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4.2 Optimal Testing Policy with Mandatory Social Distancing

The non-monotonicity in our comparative statics and the unwillingness of the social planner to
always use all testing capacity are related to the fact that greater testing reduces voluntary so-
cial distancing. This naturally suggests that testing should be combined with mandatory social
distancing. The next proposition shows that when this is the case, the social planner would al-
ways like to use all available testing capacity and would then deploy mandatory social distancing
measures to limit the adverse behavioral effects of testing.

Formally, we suppose the social planner, in addition to the testing policy (o, ap), can choose
Z1, and 7 which indicates the maximum social activity levels that low- and high-value agents can
have. We refer to such a policy, denoted by (o, am, Zr, ZxH), a testing policy with mandatory social
distancing. With this notation, the social planner’s problem becomes

(aLﬂH@lg}?I){():E[OJPW(Xe’ oL an)
s.t. x° is the unique (symmetric) equilibrium ,
x; <zgforic H,xz; <zpforjecL,
ag|H|+ ar|L] <0 n.

For a given testing capacity ¢, we denote the first best by (afB(0), atP(0), 2F'B(0), 2EB(9)) which

is the solution of
max W ((xy = xzpl,xe = x11), a1, ap)
(CYL,&H,$Z,$}L)€[O,1}4

st ag|H|+ aplL] < 6 n.
Proposition 3. For any testing capacity 0, a testing policy with mandatory social distancing with
(an, am, @, 7)) = (07,2 (0), af (0), 217°(9), 2,7(9))
achieves the social welfare of the first best. Moreover, with this policy the social planner uses all the testings
capacity.
5 Extensions

In this section, we consider two extensions. First, we show that all of our results extend to an
environment with multiple types and non-monotonicities become more likely in this case. Second,
we allow for social activity levels directed to different types of agents (for example, individuals
choosing how much to interact with more active/popular agents and how much to interact with
other agents). We show that with such directed social activity behavior, optimal policy can try
to discourage individuals from interacting with high-social value agents what are more likely to
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spread the virus.

5.1 Multiple Types

In our baseline model, we considered two types of individuals with different values from social
activity. Here, we show that our main results and therefore the insights will carry over to a more
general setting with m different values for individuals. In particular, we let v; < v2 < --- < v,
denote the social activity value of different individual types and also let Vi, for k = 1,..., m denote
the set of individuals of type k (therefore, | J,-, Vi = V). We also denote the testing probability
of type k individuals by oy for k = 1,...,mand let &« = (a1, ..., o) € [0,1]™ denote the testing
policy.

To characterize the equilibrium, we first introduce a few notations. Again, we let 1 and 0
denote the vectors of all 1 and all 0, respectively where their dimension will be clear from the
context. We also define the following sets:

. 1
Alz{ae [0,1]™ : P}ff(x:l,a)gvk—i——, forkzl,...,m}
n

; 1
Ay ={a €[0,1]™: Pf(x =1,a) > vy + o
1

PP (xp, =1,....%xp, = 1La1 = Lxyy = 0,0) <oy + n’
P (xy, = 1,...,%xy, = 1,xy, = 0,a) gvk-F%fork:Q,...,m}
and similarly for j = 2,...,m we let
Agjo1={ae0,1]™: PP(xy, =1,...,%xy, =1,xy, =0,...,xp,_, = 0,24 = 1, ) ka‘f‘%:
fork=1,...,5—1,
IPiknf(xvj =1,...,xy, =Lxy =0,...,xp,_, =0,7, = 1,) Svk"‘%v
fork=1j,...,m,
Pri(xy, =1,...,xp, =Lxy =0,...,xy,_, =0,7,=1,0) ka+%’
fork=1,...,5—1}and
Agj={a e [0,1]": Pif(xy, = 1,...,xp, = Lxy, =0,...,xy, , = 0,24 = L) 2”’“+%’
fork=1,...,7,
[P;iknf(ij =1,...,xy, =L,xy =0,...,xy,_, =0,7, =1, ) évk—i—%’
fork=13,...,m,
IP’iknf(ka =1,...,xy, =Lxy =0,...,xy,_ , =02, =1, ) ka+%’

fork=1,...,5—1}.
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The following proposition is the analogue of Proposition 2/ and characterizes equilibrium in this
setting.

Proposition 4. There exists M € N, and functions ~y;, : [0,1]™ — [0,1] for k = 1,...,m such that for
n > M, depending on the testing policy o there are 2m possibilities for the equilibrium. Fork =1,...,m,
we have:

o If a € Ay, there exists a unique symmetric equilibrium where x§{ = 0 for all i € Uf;ll V; and
af = 1foralli € UL, V.

o If a € Ay, there exists a unique symmetric equilibrium where x{ = 0 for all i € U;‘:i Vi, xi =1
foralli € ULy, Vj, and a mixed-strategy ug, for all i € Vy, that puts probability ~y.(cx) on 1 and
probability 1 — ~y () on 0.

This proposition shows that for any % if o € Ay, then individual types 1, ...,k —1have zero
social activities and individual types k, . .., m have full social activity. If a € Ay, then individual
types 1,...,k — 1 still have zero social activities and individual types k + 1,...,m still have full
social activity. Individual type k, however, plays according to a mixed-strategy.

Using Proposition |4, we next show how the infection probability of agents in equilibrium
changes as the testing policy a varies, which is the analogue of Theorem [1|and establishes the
counterfactual non-monotonicity of infection probability in testing policy.

Theorem 3. There exists M € N such that for n > M, in the unique symmetric equilibrium for k =
1,...,m we have:

e Higher o in the interior of Ay decreases the infection probability of agent types j =k, ..., mand
does not change the infection probability of agent types j = 1,... k — 1.

e Higher o in the interior of Ay, increases the infection probability of agent type k and does not change
the infection probability of agent types j = 1,...,k—1,k+1,...,m.

Moreover, infection probabilities are continuous in o at the boundaries of the above sets.

Similar to Theorem [1} this theorem states that if one of the individuals is playing a mixed-
strategy (i.e., for the sets with even indices), increasing the testing probabilities, adversely, in-
creases the infection probability of individuals. Figure [5 depicts the infection probabilities for
m = 3 for a uniform policy that tests each individual type with probability . It illustrates that the
infection probability of all three types feature non-monotonicity as we increase c.

Finally, note that by having more types of individuals there are more regions in which increas-
ing the testing policy increases the infection probability of individuals. More precisely, suppose

we have a society with V = {1,...,n} individuals and m individual types with values

v < e < U
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Infection probability of type 3
Infection probability of type 2

Infection probability of type 1

Figure 5: Illustration of Theorem for m = 3 types with v3 > vy > v;. The schematic view of the
infection probability of types 1, 2, and 3 agents, in the limit as n — oo, for uniform policy (i.e.,
a1 = as = ag = «) as a function of a.

As shown in Theorem [3|in regions Ay for £ = 1,...,m infection probability of individuals in-
crease when there is more testing. Now suppose we add some individuals with value vg which is
smaller than v;. We let V) denote the set of individuals with this new value and consider a society

with V UV, agents whose values are
/o /I / _
U] =V <V = U1 < < Uppgp = Umd

Since individuals with value v} = vy are the last ones who start having non-zero social activities

(because they have the lowest value), for this new society we have
Adp = Ag(e—1), Adp—1 = Agh—1)-1,, fork=2,....m+1,

and the infection probability of all individuals with types with values v are equal to the infection
probability of type k — 1 individuals in the smaller society for k = 2,...,m + 1. We will have
two new sets: Set A5 in which, as we increase testing, the infection probability of all previous
individual types remains equal to vj = vy and the infection probability of individuals with value
v} = vy increases from 1 and at the boundary between A} and A}, in the limit, becomes v} = vy.
Set A} in which the infection probability of all individuals , in the limit, are equal and decreases
as we increases the testing policy. Therefore, there will now be more regions where greater testing
increases the spread of the infection.
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5.2 Directed Social Activities

Here, we show that if agents choose two levels of activities, one directed to low-value and the
other to high-value agents, then the optimal policy may involve testing low-value agents with a
higher probability than high-value agents. In particular, we let the social activity of each agent
i be a pair ; = (zF,2/1), where z* denotes agent i’s social activity directed to low-value agents
and x!T denotes her social activity directed to high-value agents. In the network of contacts, the

probability of an edge between agents i and j is therefore:

/

nxf{xf, i, € H,
nmf{xf, 1e€H,jEL,
PE;; =1] = L . .
nr;Ts, 1€ L,j €EH,
na:iLx]L, i,5 € L.

The utility of agent i is similar to our baseline model and is given by
wi (X, X—j, ap, o) = Uz(le + :UZH) - P;nf(xi,x,i,aL,aH) —c (apl{ie L} +agl{ie H}).

The next proposition provides conditions under which it is optimal to test only low-value

agents.

Proposition 5. If ry > max{ﬁ, %H, l—vp}tand 0 < rg— %H, then there exist ¢ and M € N such that
forn > M and ¢ < ¢ the optimal policy is to only test low-value agents and in the corresponding symmetric
unique equilibrium all low-value agents play x; = (1,0) and all high-value agents play a mixed-strategy
between (1,0) and (1,1).

Proposition [5| proves that, for sufficiently small testing capacity 6 and sufficiently large pop-
ulation fraction of high-value agents rg, it is optimal to only test low-value agents and in the
corresponding equilibrium low-value agents will not interact with high-value agents. The intu-
ition is that high-value agents, who are socially more active, act as “super spreaders”, and the
social planner would like to reduce their interactions with low-value agents. This was not pos-
sible in our baseline model because agents could not direct their social activity towards different
groups. When such directed behavior is introduced, this encourages the social planner to reduce
the testing of high-value agents so as to discourage low-value agents from interacting with them

too much.

6 Concluding Remarks

This paper studied the effects of testing on social activity and voluntary social distancing in the
context of an epidemic. Social activity levels determine the (endogenous) social network over
which contacts take place and an infection spreads. Testing enables authorities to identify and
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isolate infected individuals who spread the virus, and has been identified by the recent literature
on COVID-19 and policymakers as a key tool for combating epidemics. Our analysis, however,
shows that the impact of testing on the spread of an epidemic may be more complex because,
knowing that tests will lead to the isolation of infected individuals, agents can increase their social
activity levels and refrain from voluntary social distancing. As a result, our analysis established
that the effects of testing on the spread of the infection can be non-monotonic—greater testing can
lead to higher infection probabilities.

Our analysis also characterized the optimal testing policies. The same forces that lead to non-
monotonic comparative statics also imply that a benevolent social planner may prefer to leave
her testing capacity partially or fully unused—because increasing testing can make the spread of
the virus more likely. This implies that testing should often be combined with mandatory social
distancing measures—which ensure that the adverse behavioral effects of testing can be countered
by preventing excessively high social activity levels.

Our paper is part of a growing literature on the interaction between economic incentives and
epidemiological dynamics. Two high-level contributions of our approach are to conceptualize the
problem of endogenous behavior as one of social network formation and to use the percolation
model rather than the SIR dynamic model. Both of these contributions can be useful beyond the
confines of our specific question, but the robustness of our conclusions to relaxing both assump-
tions and adopting different modeling strategies need to be investigated. Other interesting areas
for research include the analysis of optimal testing and tracing when tests lead to type I and type
I errors and policy is constrained by privacy considerations and non-obedience (both in acquiesc-
ing to testing and following mandatory social distancing guidelines). Another interesting avenue
is to enrich the setup to incorporate more heterogeneity and richer economic, social and epidemi-

ological interactions so as to enable quantitative policy analysis.

7 Appendix

This appendix includes the omitted proofs from the text and additional results.

7.1 Proofs
Proof of Lemmall

First note that for any agent i we have

n
. 1 .
P;nf(x,aL,ozH) = E —P%nf(x, ar,op| source = s),
n

s=1

where P (x, af, | source = s) is the infection probability of agent i conditional on s being
the source of infection. We next establish that P (x, ar, a | source = s) is increasing in x and
concave in z;. To this end, we generalize this claim and then use induction on the number of
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nodes to prove it. In particular, we prove that for any set of nodes S C V that are infected at time
0, the probability of infection reaching node ¢ is increasing in x and concave in x;. We denote this
probability by

P (x, o, apg| source = ).
We also use an auxiliary infection probability in this lemma. In particular for any set of nodes S,
we let

I@’;nf(x, ar,ap| source = S)
denote the probability of infection reaching node i in one round (i.e., only through the nodes in
S).

Claim 1: For any set S and i € V), the probability Pi"(x, oz, agr| source = §) is increasing in x
and concave in x;.

Proof of Claim 1: We prove this claim by induction on the size of S. If |S| = 1 and contains only
node j (i.e, S = {j}), then this probability is nz;z; (o;5p + (1 — a;) 8) which is increasing in x and
concave in x;. Now suppose S| > 1 and let j € S. We can write

I?’;nf(x, ar, aplsource = S)

= naiw; (B(1 — o) + Bpay) + (1 = naia; (B(1 — o) + Bpay)) B (x, ar, ap| source = S\ {j}).

Taking derivative of this expression results in

axllﬁ’iinf(x, ar, ap|source = 9)
7

= nz; (B(1 = o) + Bpar) — naj (B(1 = ay) + Bpay) B (x, ar, ar|source = S\ {j})

0
+ (1= niz; (B(1 = o) + Bpey)) 5

=nz;j (B(1 — ;) + Bpe;) (1 — ]f”ii“f(x, ar,aplsource = S\ {j}))

Pt (x, ap, ap|source = S\ {j})

. (a)
IP’;“f(x, ar,am|source = S\ {j}) > 0,

0

+ (1 = nwiz; (B(1 = aj) + Bpay)) 5

where (a) follows from the induction hypothesis. This establishes monotonicity in x;. Similarly,

we can establish monotonicity in z;. Finally, note that monotonicity in x_y; ;, follows by induction
hypothesis which says P (x, oz, ap| source = S\ {j}) is increasing in X_{ij}-

We next prove concavity in z;. Taking a second order derivative of the above expression results

in
0% -
8zxA]P’?f(x, ar,ap| source = S)
0 =, .
= —nz; (B(1 — a) + fpa) m,Pi-nf(X, ar,ap|source = S\ {j})
o -
~ 3 (B(1 — a) + Bpa) 5 B (x, ] source = §\ {j})
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2 ( )
+ (1 —nziz; (B(1 — o) + Bpav)) 8(3 " (x, ar, am| source = S\ {j}) <

where (a) follows from the monotonicity of Pi*(x, o, ay|source = S\ {j}) and the induction
hypothesis. B

We now proceed with the proof of Lemma [1] by induction on the number of nodes in the
network. The lemma evidently holds for n = 2. We can write
P (x, ap, ag| source = S) = P (x, ap, ay| source = S) + (1 — P (x, ap, o] source = S))

x Y PSSP (x, ap, ap| source = S™V).
Snewgv\s

Taking derivative of this expression leads to

0 inf 0 =inf
8%1[”;-“ (x, ap,, apr| source = S) = 8%1@? (x, ar, ap| source = S5)
o - .
- 8—P§nf(x, ar, ap| source = S) Z P(S"%| )P (x, v, | source S™eV)
T
Snew

+ (1 — P(x, o, apy| source = S)) Z (Snew|5) IP’mf(x ar,ap| source = S"Y)

Snew
o -. .
=3 P (x, o, apy| source = 9) <1 - Z P(S™%|S)PiM (x, ap,, ovgy| source S“ew)>
€T
Snew

. 0 (@)

+ (1 — P(x, o, apy| source = S)) Z (Snew|5) IP’mf(x ar,oap| source = S"Y) >0

Snew

where (a) follows from Claim 1 and the induction hypothesis. This establishes monotonicity in ;.
Similarly, the derivative with respect to z; for j € S is non-negative, showing monotonicity in x;
for j € S. Finally, the monotonicity in x_(g.y;}) follows by induction hypothesis.

We next take the second order derivative and show it is non-positive. We can write

62

821'2'

]P’;“f(x, ar,ap| source = S)

0? - .
= P (x, ap, apr| source = S) (1 - Z P(S"%| )Pt (x, arp,, gy | source Snew)>
Ly

Snew

o ~. 0
- %]P’;nf(x,ab ay| source = 5) Z (SneW|S) me(x ar, ap| source S*Y)
) Snew
9 pi (x, o, ap| source = S) Z P(S™v|9) 0 pi (x, o, ag| source = S°V)
3%1' i sy, XH - = 8.171 i y L, -

~ . 2
+ (1 — P(x, ar, ay| source = S)) Z P(S"7|S) 32

Snew

i (a)
nf(x, ar, ag| source = S"V) < 0,
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where (a) follows from Claim 1 and the induction hypothesis. This completes the proof B

Proof of Proposition

We let {Ui}icq1,...n} >0 be a sequence of ii.d. random variables with uniform distribution over
[0,1]. We use a coupling argument together with stochastic dominance to relate the stochastic
processes unfolding with (ar,ap) to the stochastic process unfolding with (o, /). Consider
the process with (az,ay) and suppose at round ¢ agent i is infected and consider the testing
probability of this agent. The probability of agent i getting tested is «; (Where i € {L, H}) and
the probability of agent i not getting tested is 1 — «;. Alternatively, if we let Z;; € {0,1} denote
whether agents i gets tested at time ¢ or not then we can write this random variable by using the

sequence of sequence of i.i.d. random variables {U; t }icq1,....n} 10 @S

1, ifU; s < o
Zit: 2,0 %

)

0, if Ui,t > 0.

We now define a coupled independent cascade process by using the same draws of the sequence
of i.i.d. random variables {U; 1 }ic(1.....n} 40 @S

Given o) > «; for i = 1,2 we have }P’(Z;’t > Ziy, foralli =1,...,n,t > 0) = 1. WealsoletV];,
be the probability of infection reaching from agent i to agent j which can be formulated by using

a sequence of i.i.d. random variables {U; j:}; je{1,...n},t>0 @S

1, itU; e < Bp, Ziy =1
0, ifUise>Bp Zig=1
1, itUjie < B,Ziy =0

0,  ifUijy> B Zis=0.

Yijt=

We again define a coupled independent cascade process by using the same draws of the sequence

of sequence of i.i.d. random variables {U; j+}; je(1,....n},¢>0 @S

/

L, if Uije < Bp, Z}, = 1
0, if Uije > Bp, Z}, = 1
1, iU, <B,ZL, =0

0,  ifUse> 8,2, =0.

1,5t T

\
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Given IP’(ZZQt > Zy, foralli = 1,...,n,t > 0) = 1, we obtain P(Y;‘/,j,t < Y4, foralli,j =
1,...,n,t > 0) = 1. Note that node i gets infected ifand only if > 0, >, 2; Vi, > 1. Therefore, the
probability of node ¢ getting infected with the original process is smaller than the auxiliary pro-
cess. Finally, note that the probability of getting infected in the auxiliary process is P (G, o/}, o/t),

completing the proof. B

Proof of Lemma|2

The utility of agent ¢ is v;x; — Pi-nf(x“ X_j,ar,ag) — ca; . Using Part (b) of Lemma [1] this utility

function is convex in z; and therefore its maximum is either at O or at 1. B

Proof of Proposition

We first prove that the best response decision of each individual is either 1 or 0 (i.e., the best
response social activity of each agent is at the boundaries of [0, 1]).

Lemma|2 also shows that in any mixed-strategy equilibrium each agent i must be mixing between
playing 1 and playing 0. In what follows we let x = v for some v € [0, 1] to denote a mixed
strategy that puts probability v on 1 and puts probability 1 — v on 0. We also let «; denote the
testing probability of agent ¢ which is equal to o, if ¢ € £ and is equal to oy if i € H.

We now proceed with the proof of proposition.

Proof of part (a): We first establish that z; = 1 for all € V is an equilibrium and then show that it

is the unique symmetric equilibrium. Consider ¢ € H. The utility of ¢ with action profile x = 1 is
vy — P;nf(xi =1l,x_; =1,ag,ar) — cay.

If agent ¢ deviates and plays z; = 0 (using Lemma [2| this is the only candidate for a profitable

deviation), then her utility becomes

—P%nf(xi =0,z_;=1,ag,ar) —cayg = gl cogy,

where we used the fact that if z; = 0, then the only way for agent i to get infected is be the
source of infection. Therefore, given (am, o) € A; we have u;(x; = 1,x_;, ar, ap) > ui(z; =
0,x_;,ar, o). Similarly, any j € £ does not have a profitable deviation.

We next prove that this is the unique symmetric equilibrium. First note that for a high-value
agent ¢ € H no matter what the strategy of other agents are, the dominant strategy is to play
x; = 1. This is because for any x_; we can write

ul(xl = 1,X71',CYL,04H)
inf
=vg — P (x; = 1,x_,arn,apg) — cag

(a) .
> vy — Pfinf(:vi =1,x;=1ap,ay)—cag
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® 1
> —con = wi(z; = 0,X_4, ap, )

where (a) follows from Part (a) of Lemma [I| and (b) follows from (ar,apy) € A; and vy > vr.
Therefore, there are two other candidates for a symmetric equilibrium: (i) the action profile z; = 1
foralli € Hand z; = Oforall j € £ and (ii) x; = 1 forall © € H and x; = ~, for all j € £ and
some 77, € (0,1). We next show that none of these can be an equilibrium because an agent j € £

has a profitable deviation to 1:

uj(zj = 1, %\ (51, X1 = 1, ag, ar)
=y — P}nf(mj =1L xp\ X = Lag,ar) —cay,

(@) :
> op — p;nf(xj =1,xp () = Lxy = 1,am,ar) —car

(Zb) %1 —cap = uj(r; = 0,xp\(j3 = 0,x3y = 1,ap,ap),

where (a) follows from Part (a) of Lemmalyand the fact that we have either x\ (;; = 1 orxp\(;; =
711 which are both below x,\(;; = 1 and (b) follows from (ar,ay) € A;. This completes the
proof of part (a).

Proof of part (b): Before proceeding with the proof of this part, note that as we decrease (., ap),
one of the constraints of .A; will be violated because the infection probability increases (by using
Proposition EJ) For any € > 0, there exists M/ € N, such that for n > M, we have

PPy = 1,xc = 1L, ap, o) — P (xy = 1,xz = 1,ap, ar)| < €,

In what follows we let e < “#5~L. Therefore, the constraint P}“f(xH =1,xc=1ay,ar) <vp+ %
will be violated first, resulting in (o, ap) that belongs to the set As.

We now proceed with the proof of part (b). Consider any symmetric mixed strategy for agents
i € H. Using Lemma [2| this mixed strategy must have only two atoms {0,1}. We let 5 (and
similarly v7) denote the probability of being 1 for high-value agents (and similarly for low-value
agents). With the abuse of notation whenever we write z; = vy this means expectation over z;
which is 1 with probability vy and 0 with probability 1 — vg.

We define 77, : [0,1]? — [0, 1] such that for any pair (ay,, ay), we have

i 1
P}nf(X’H = 1733l = 17X£\{l} = 'YL(aLaaH),aL,aH) = E +vy,.

Note that for any (o, an) € A; there exists vy (ar, ap) in [0, 1] that satisfies the above equality.
This is because by using Part (a) of Lemmall|the function f : [0, 1] — [0, 1] where

Fy) =P (xy = 1,2 = Lxg\ gy = yl, op, o)
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is increasing in y. For y = 0, we have

—

a

F0) =P (xy = 1,2y = L, xp\ gy = 0,0, ap7) <

=

SN

+ vr,

where (a) follows from (ar, ap) € As. For y = 1 we have

i (@1
f(l):]P)}nf(XH:17xl:17X£\{l}:17aL7aH) Z ﬁ""vL;
where (a) follows from (o, ap) € Asz. Using, mean-value Theorem shows that vz (ar, ap) € [0, 1]

exists.
We first prove that x; = 1 forall i € % and z; = vy (o, ) for all j € £ is an equilibrium. For

1 € H, we have

ui(w; = 1, x99\ 15y = 1, X = 1yp(ag, o), an, ar)
= vy — PP (s = 1, x5y = 1, x¢ = yp(ar, an), om, o) — cop

(@) ‘
> o — PP (g = 1,%x5 = Lxp\y = 1vo(ar, an),an,ar) — € — cay

(b) 1 @ 1
Zog—(vp+=)—€e—cag > —— —cay
n n

=ui(z; = 0, x5y = 1, %x¢ = yp(ag, am), am, ar),

where (a) follows from n > M, (b) follows from the definition of v, («ar, o), and (c) follows from
€ < “457L. This shows that high-value agents do not have a profitable deviation. For j € £, we

have

U,j<1'j = 1,X£\{j} = 1"}/L(CKL,04H),XH = 1,aH,aL)
=y, — Pinf(xj =Lxp\ gy = Melan, an), xy = 1,an,ar) — cag,

(
i 7 — Ccoy, = u]‘(l‘j = vaﬁ\{j} = lfyL(aL,aH),xH = l,aH,aL),

=

where (a) follows from the definition of 7 (ar,am). This proves that each low-value agent is
indifferent between playing 0 and 1 given the action profile of others in this equilibrium.
We next prove that there exists no other symmetric equilibrium by listing all possibilities:

1. (z; = 0,z = 0): This is not an equilibrium because any agent ¢ can deviate and receive
1-— % — cao; instead of _71 — coy.
2. (z; = 0,z = 1): This is not an equilibrium because any agent j € £ has a profitable devia-

tion:

uj(2j = Lxe\() = 0,xu = 1,0, an)

=V — Pi]-nf($j = l,Xc\{j} = O,X'H = 1,04L,04H) — CQj,
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(@) —1
> 7 —coy, = Uj(Ij = O,XL\{J'} =0,xy = 1aaLaO‘H)7

where (a) follows from (o, ar) € As.

3. (x; = 0,2, = ym): This is not an equilibrium because any agent j € £ can deviate with a
similar reason to case 2.

4. (z; = 1,z = 0): This is not an equilibrium because any agent i € # has a profitable
deviation for a similar reason as :

ui(z; = 1, %35y = 0,xc = 1, o, apy)

= vy — PP (z), = Lxmqny = 0,xc = 1L, ar,ay) — cay

(a) .
> vy — Pz =1,%xy =0,xpp = Laz,an) — € — cay

(b)
> Vg —€— V[ — — — COf
n

() —1
Z 7 — cog = uz(:rz = vaH\{i} = O,Xg = l,aL,aH),

where (a) follows from n being large, (b) follows from z; = 1 being equilibrium, and (c)
follows from vy > vy and € < vy — vf.

5. (x; = 1,2 = 1): This is not an equilibrium because any agent j € £ has a profitable devia-
tion:

uj(zj = 0,xp\(5y = Lixy = 1,ar, ap)
-1

= — —cap,
n

(a) .
> o =P (2 = Lxp\gy = Lxy = Loy, an) = coy

=wuj(z; = L, xp\q5) = Lixy = L, ar, an),
where (a) follows from (ay, o) € As.

6. (x; = 1,2z, = 7yy): This is not an equilibrium because any agent j € £ has a profitable
deviation for a similar reason as case 5.

Proof of part (c): By further decreasing the pair (v, apr), using Proposition|[l|the infection proba-
bilities increase and therefore one of the following constraints
Pinf(tzlxlzlx :OozLozH)<vL—f—l
l ) ) ﬁ\{l} ) ) = n )
; 1
Pt (g, = 1 =1,x,=0 < -
h(zh = Lxyp gy = L, xc = 0,ar,ay) <vg + -
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will be violated first. For n > M, the first constraint that will be violated is P}“f(x;,g =1,z =
Lxpy =0,ar, ag) <vp+ %, resulting in the set As.

In region A3, we next list all the candidate symmetric equilibria and conclude that z; = 1 for
i € Hand z; = 0 for all j € £ is the only symmetric equilibrium.

1. (z; = 7r,xp = 1): This is not equilibrium because if this was equilibrium we would have
been in region A, more precisely this is not equilibrium because PI* (xy = 1,2, = 1,xz\ [y =

1
0,ar,ap) > v + .

2. (z; = v, on = ym): This cannot be equilibrium for large enough n. This is because if it is
equilibrium then we must have

i 1
P}nf(xl = 1>X£\{l} = 1vp,xy = 1yg,ap,ag) =vp + -

and
i 1
PRt (2 = Lxypqny = Wym, X = 1y, ap, ap) = vy + -

for large enough n the difference between the left-hand of the above equations becomes
smaller than vy — vy, which is a contradiction.

3. (x; = vr,zr, = 0): This cannot be equilibrium for large enough n. This is because if it is
equilibrium then we must have

i 1
P}nf(l’l = 17XL\{Z} =1vr,xy = 0,0zL,OéH) =L, + E
and
i 1
]P);?f('rh = 17x7—[\{h} = O,X[, = 1/}/L7aL7aH) Z Vg + ﬁ

for large enough n the difference between the left-hand of the above equations becomes

smaller than vy — vy, which again is a contradiction.

4. (z; =0,z = 1): This is a symmetric equilibrium because a low-value agent has no profitable
deviation:

u(zp = 0, X\ 1y, X3, AL, Qg
1 (@) inf
=~ —cap 2 vp =B (@ = 1, xp\ gy, X, ar, am) — car

=w(z = 1,%Xp\ (1), X0, oL, @H),
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where (a) follows from (o, ap) € As. Also, a high-value agent has no profitable deviation:

up(rn = L, x\ny = 1, X2 = 0,1, ap)
= VH — ]P’if?f(xh = 17X'H\{h} = 1,XL = 0704L704H> — COH

(@) —1
> T caH = up(rp = 1, %\ (ny = 1, x2 = 0,1, ),

where (a) follows from (o, ap) € As

5. (x; = 0,2, = ym): This cannot be equilibrium for large enough n. This is because if it is
equilibrium then we must have

; 1
P (2 = 1,%x0\0y = 0,x3 = Lyy, o, ap) > v + -

and

i 1
Pt (), = Lxy\qny = 1vm, %2 = 0,ar, ) = vy + e

for large enough n the difference between the left-hand of the above equations becomes

smaller than vy — vy, which again is a contradiction.

6. (x; = 0,2, = 0): This cannot be equilibrium because any agent i can deviate and increase its

utility from _71 — coy; to v; — % — coy.

7. (x; = 1,z = 1): This cannot be equilibrium because if it was equilibrium we would have
been in region Aj;.

8. (z; = 1,zp = ym): This cannot be equilibrium because if it is equilibrium we must have

i 1
P;lnf(xh = 1’XH\{h} = 1’YH’X£ = 1705L704H) = E + vy

and

]P’}nf(xH =1vg,xc =1,ap,ag) < — 4 vr.

3|

For large enough n, the difference between the left-hand side of the above inequalities is
below € which is a contradiction.

9. (x; =1,z = 0): This cannot be equilibrium because if it is equilibrium we must have

i 1
Pt (z, = Lxppqny = 1yu,xc = Lag, an) > - + oy
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and

]P’}nf(xH =1vy,xc =1,ap,ag) < — 4+ vur.

1
n
Again, for large enough n, the difference between the left-hand side of the above inequalities

is below € which is a contradiction.

Proof of part (d): By further decreasing the pair (o, a), the infection probabilities increase
and therefore the constraint ]P’i,ff(xh = 1Lxynqn = Lixe = 0,ar,ap) < vy + % will be violated
and we get to region Ay.

We define vy : [0, 1]? — [0, 1] such that for any pair (ar,, o), we have

| 1
Pt (zn = 1, %30\ (ny = ya (o, o)1, a0 = 0,x0 1y = 0,0, ap) = n U

Note that for any (ay, ay) € A4 there exists vy (o, ap) in [0, 1] that satisfies the above equality.

This is because by using Part (a) of Lemmathe function f : [0,1] — [0, 1] where f(y) = P (z), =
Lixypqny =yl,xc =0, 0p, ayp) is increasing in y. For y = 0, we have

£0) =Pz = 1,x90\(ny = 0,x2 = 0,0, 00p) =

For y = 1 we have

) (@) 1
f(]-) = Pl]?f(xh = 17x7-[\{h} = 1,X£ = 0,0[L,OéH) Z E + VH,

where (a) follows from (o, ) € Ajy. Using, mean-value Theorem shows that v (ar, am) € [0, 1]
exist.

We first establish that «; = 0 for all j € £ and z; = vy (o, an) for all i € H is an equilibrium.
For j € £, we have

uj(z; = 1,%x3 = 1y (ar, an),xp\jy = 0,am, ar)

= v — ]P)ijnf(X% = 1'yH(aL7aH),:Ej = 1,X£\{j} = 0,0JH,OzL) — CQgp,

(a) )
< v — PP (2, = 1, x5y = Dy (ap, an), xe = 0,ay, ar) + € — cay,

(b) 1
= — — —vg+€—cap
n

() —1
< gl carp, =uj(x; =0,xy = lyg(ar, o), xz =0, a8, ar),

where (a) follows from n > M, (b) follows from the definition of g («r, o), and (c) follows from
€ < PH-PL This shows that low-value agents do not have a profitable deviation. For i € H, we

33



have

ui(zi = 1, x990\ (iy = Yyu(ap, an), xc = 0,ap, ar)

= VH — ]P’inf(l'i = laXH\{i} = 17H(04L7QH)7X£ = 0,0éH,OéL) — COoH

(@) —1
& - cag = ui(z; = 0, X3\ {5y = 1vg(ap,ap),xz = 0,an,ar),

showing that high-value agents are indifferent between playing 1 and 0 with this activity profile,
where (a) follows from the definition of vz (o, aur). Similar to the proof of previous parts, listing
all possible symmetric equilibria shows this is the unique symmetric equilibrium. l

Proof of Lemmal/3|

We first define a few notations that we use ion the proof. Consider a society of n individuals and

suppose that all agents are fully active, i.e., x = 1. For any (ar, ar) we let
Q(n,a, an) = PP (x,ar, an)

be the infection probability of any agent when the testing probability of high-value agents is ax
and the testing probability of low-value agents is a,. In the next lemma we establish that for large
enough n the quantities Q(n, ar, ag) and Q(n, rgag +rrar, reag+rrar) are close to each other:
Claim 1: We have

nh—>r20 |Q(n,ar,an) — Q(n,rgay +rrap, rpag +rrag)| = 0.

Proof of Claim 1: We define another quantity Q(n, ) that denotes the infection probability of any
agent in a society of n agents where na agents are tested (we drop the ceiling and assume this
number is integer, to simplify the notation). To prove Claim 1, it suffices to show

Jim Q(n,ar,an) — Q(n,a =rrar, +ryay)| =0, 3)

showing that only the expected number of tests determines the limit of the infection probability.
We next establish (3). We let S,, denote the number of tested agents. Note that the distribution of
Sy, is Binomial(n, o). We also let f(k, n) denote the infection probability when k agents are being
tested and the rest of them are not tested. With these notations, the statement of (3) becomes

lim \f(om, n) - IESaninomial(n,oz) [f(Sna n)] ‘ =0.

n—oo

The above inequality holds because S,, concentrates around an. We next formally prove this. We

can write

—

a) 9
ESaninomial(n,a) [f(STH n)] = (1 - 6_2n6 )f((a + 6)71, n)
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(b) —2ne? €
Y- ><f<cm,n>—e— ) @

l—«

where (a) follows from Chernoff-Hoeffding inequality P(S, < (a + €)n) > 1 — e~27* and (b)
follows from the following argument. We let S = {1,...,an} be the set of nodes that are being
tested in finding f(na,n) and S = {1,...,(a + €)n} be the set of nodes that are being tested in
finding f(n(a-+e€),n). With probability ¢, the source of infection is in set S\ S. In this case we bound
f(an,n) by e. With probability 1 — ¢ the source is not in the set S \ S. Without loss of generality
we assume it is agent 0 and find the relationship between f(n«o,n) and f(n(a + €),n) given the
event that the source is agent 0. We let h(k, n) be the infection probability of agent » when we do
not test agents n, ..., n — k and test the rest of the agents. Note that h(k, n) is increasing in k. With

this new notation, we have

f(n(a+¢€),n) =h((1 - (a+e)n,n),
f(na,n) = h(n(l —a),n).

We can write a telescopic summations

n(l—a)
h(n(1—a),n) =h(0,n) + > (h(k,n) = h(k —1,n)), (5)
k=1
and
n(1—(a+e)
h(n(1 = (a+€),n) =h(0,n)+ > (h(k,n) = h(k—1,n)), (6)
k=1

In Claim 2, proved next, we establish that (h(k,n) — h(k — 1,n)) is decreasing in k. Together with
and (6), this implies that

n(l—a)
f(na,n) =h(n(l —a),n) =h(n(l — (a+e¢€)),n) + Z (h(k,n) — h(k —1,n))
k=n(1—(a+e))+1
(@) € €

< h(n(l—(a+e€),n)+ T = f(n(a+e€),n)+

1—a’

where (a) follows from the fact that h(n(1 — «),n) given in (5) is less than or equal to 1 and
(h(k,n) — h(k — 1,n)) is decreasing in k. Therefore, combining the two events for the source of

infection, we obtain

flan,n) <e+ f((a+€e)n,n) + ¢

1—a’

which is used in part (b) of 4).

Similarly, we get

Es, ~Binomial(n.) L/ (Sn: )] < (1 — e 2 f((a — €)n, n)
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<(1-e ) <f<an,n> et ) . ?)

l—«

Combining the inequalities (4) and (7) for e = k’% shows that

lim |f(om, n) - IESn~Binomial(n,a) [f(Snv n)] ‘ =0,

n—oo

completing the proof of Claim 1. B
Claim 2: For the function h(k,n) defined above, we have

h(k+1,n) — h(k,n) < (h(k,n) — h(k — 1,n), forall k,n. (8)
Proof of Claim 2: Let us fix whether we test all agents in V \ {4, j}. This claim is equivalent to

P (0 ~ nl|i not tested , j not tested ) — P (0 ~ n|i tested , j not tested )
> P (0 ~ n|i not tested , j tested ) — P (0 ~ n|i tested , j tested ),

where s ~ n denotes the event that infection reaches agent n starting from agent 0. The difference
between the left-hand side and right-hand side of the above inequality is non-zero only when the
infection reaches node n through a path that uses agents i and j which we denote by 0 ~ ¢ ~
j ~ n. We also denote the probability of this event excluding the transmissions from ¢ and j,
by P (0~ i ~ j ~ n). In this case, the left-hand side becomes P (0 ~» i ~ j ~» n) (5 — p), which
is larger than the right-hand side that is P (0 ~ i ~ j ~ n) (5 — 8p)(8 — Bp). This completes the
proof of Claim 2. W

We now proceed with the proof of Lemma @ We recall that set .A; must satisfy

) 1
P}nf(x?'[ = 17X,C = 1705L705H) <wp + )

_ S

]P’i,?f(xH =1,x,=1,ar,ay) <vyg+ o

For large enough n the difference between the left-hand side of the above inequalities become
smaller than vy — vy, showing that the constraints of the set .4; will be satisfied if and only if we
have

. 1
P (xy = 1,x2 = 1,ar, o) < vp, + —.

Using Claim 1, as n — oo, the above inequality becomes equivalent to

Q(agrg + arrp,agrg + apry) < vg,

where Q(a) = lim,, o @Q(n, ). Noting that Q(«) is decreasing in o (which follows from Proposi-
tionlgb establishes the existence of a threshold which we denote by r o) such that (ap,am) € A}
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if and only if we have agry + arry > THOZS)E‘ The constraint ]P’}nf(x% =1,xc = 1l,ap,ag) >

vr, + % in the other sets also becomes agry +arry, <r Hag) as n — oo. The two other constraints

of set A, are

i 1
]P);nf(xq_[ =1,z = 17X£\{l} = O’QL’O(H) <wr + o
i 1
P (xy = 1,%x2 = 0,0z, an) < vy + —.

The left-hand side of these constraints in the limit converge to each other and therefore, using

vy > vy, these two constraints can be written as lim,, IP’}nf(xH =1,xr=0,ar,ag) =Q(ag) <

(112,) such that these two constraints of set A5 in the

limit as n — oo hold if and only if we have ay > ag). A similar argument shows the existence of

a threshold ag) that defines the sets A3 and A}. B

vr. This shows the existence of a threshold «

Proof of Theorem[1]

Proof of part(a): Using Proposition 2| the unique symmetric equilibrium for (az,ay) € A; is

x; = 1 for all ¢ € V and therefore the infection probability of agent i becomes
P (x = 1,07, ap),

which is decreasing in (cvz,, gy ) as shown in Proposition 1]
Proof of part (b): Using Proposition [2| the unique symmetric equilibrium for (az,an) € A is
xz; = 1 for all i € H and mixed action for all j € £ where z; = 1 with probability v (o, an)
and z; = 0 with probability 1 — vz (ar, an). Here, vr(or, o) is such that low-value agent are
indifferent between playing = 1 and x = 0 which implies

; 1
]P’}nf(l'l = 1,X£\{l} =1yr(ap,ag),xy =1,ap,ay) = - + vy, 9)

The infection probability of low value agents is

volop, om)PM (2 = 1,xp0y = yo(ar, an), xy = 1, ap, )

+ (L= yr(ar,am)P™ (@ = 0,x0 gy = 1yo(on, an),xy = 1,ar, ap)

1 1 1
=vr(ar, o) <n + vL> + (1 —=vyr(or,am)) o= vo(ar, am)vr — —

We next prove that the v, (o, a ) which is the solution of (9) is increasing in (ar,, ar). We prove

this by assuming the contrary and reaching a contradiction. In particular, suppose that (¢}, o) >

°The multiplier r# in this threshold is included to have a better geometric interpretation of the limiting set A}. In
particular, with this notation ag) becomes the intersection of the boundary between A7 and A3 with the avg-axis.

37



(o, o) and v (o, o) < vr(ar, o). We can write
1 (i) inf _ _ _
vr + ﬁ = Pl (xl = 17XL\{Z} = 1’yL(aL,ozH),X7.¢ = 1,aL,aH)

®
> ]P)}nf(xl = ].,XL\{I} = 17[/(0/1,’05}{)’)(% = 17aL,OZH)

(c) (d) 1

> P (=1, %1y = Dyz(o, o), xa = 1,0, ) = vp +

which is a contradiction. In the above derivation (a) and (d) follow by invoking (9), (b) follow
from the assumption that vz, (a; , o) < vr(ar, an) and part (a) of Lemma and (c) follows from
(o), aly) > (ar, ag) and Proposition |1, The infection probability of high-value agents is given in
(9) which remains equal to £ + vy,.

Proof of part (c): Using Proposition 2, the unique symmetric equilibrium for (oz, ap) € As is
xzj = 0forall j € £Land z; = 1 for all i € H and therefore the infection probability of an agent &
becomes

P (xy = 1,x2 = 0,01, apy),

which is decreasing in (cvz,, gy ) as shown in Proposition 1]
Proof of part (d): Using Proposition [2 the unique symmetric equilibrium for (az,an) € Asis
xzj = 0 for all j € £ and mixed action for all i € H where z; = 1 with probability vg(ar, am)
and z; = 0 with probability 1 — vy (ar, an). Here, vy (ar, an) is such that high-value agents are
indifferent between playing x = 1 and # = 0 which implies

. 1
Pyt (zn = 1, %30\ (ny = Wy (ar, an), xe = 0,ar, ay) = L (10)

The infection probability of high value agents is

vir(ar, am)PP (zn = 1, %9y = vi(ar, an), xc = 0,ar, ay)

+ (1= vu(ap, an)PRi(z, = 0%\ ny = Ly (ar, an), xz = 0, a1, ay)

1 1 1
=vu(ar, am) (n + UH> + (1 —yu(ar,am)) = yu (oL, ag)ve — —

We next prove that the vy (ar, o) which is the solution of is increasing in (o, ap). We
establish this by assuming the contrary and reaching a contradiction. In particular, suppose that
(o, o) > (ap, ap) and yg (o), o) < vu(ar, ag). We can write
1 (ﬂ) inf _ _ _
VH + E = ]Ph (a:h = 17X7-L\{h} = 17H(aL,aH),x£ = O,QL,QH)

®)
> Pt (e = Lxpqny = Lym(al, o), xe = 0,0, o)

©) pin (&) 1
> ]P)hf('rh = 1>X’H\{h} = ]-’YH(O‘,LaO/H)aXE = 0704,L>a}{) = Vg + E?
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which is a contradiction. In the above derivation (a) and (d) follow by invoking (10), (b) follow
from the assumption that vz (), o) < v (o, o) and part (a) of Lemmall}, and (c) follows from
(o, o) > (o, am) and Proposition IH The infection probability of low-value agents remains 1,
completing the proof. B

Proof of Lemma 4/

All parts follows from the fact that the infection probability is increasing in 7, 3, and p. The fact
that the infection probability is increasing in 7 follows from a similar argument to the proof of
Part (a) of Lemmal|l| The fact that the infection probability is increasing in 3 and p follows from a
similar argument to the proof of Proposition|1, B

Proof of Theorem [2|

We first prove the theorem for the limit when n — oo with o) = rHag), 62 — ag)r 1, and

63 = ag)r H Where ag), ag), and a(HS) are the thresholds found in Lemma |3|and then use Lemma
to show it holds for sufficiently large n. Similar to the proof of Lemma |3, we let Q(«) be the
limiting infection probability of agents in a society of n individuals when each agent is tested with
probability c.

Proof of Part (a): For 6 > 1), the number of tests is such that the equilibrium can be in region A*

with normalized social welfare equal to

varg +vprp — Qo) — cay,

where « is the expected number of tests. Since 7(a, §, p) is decreasing in « for

d
< max {Cla@(a)ya:x} ,

it is optimal to let o = 6.
Proof of Part (b): For #?) < ¢ < #(1), the number of tests is such that the is in region A} with
normalized social welfare equal to

vary +vprpyn — roveP (kg = 1 = 1,xp gy = 721, o, an)
— PP (xy = 1,xz = y11, %y = 1,ar,an) — clagry + arry)

=rg(vg —vp) — clagrg + aprr).

Therefore, for any point (ay,, azr) in this region the social welfare is equal to 7 (vg —vr) —c(anrg+
arrr). Therefore, the optimal testing policy (o, o) has the minimum number of tests which
brings the social activity of low-value agents to 0 (i.e., the boundary between A3 and A%) and we
test high-value agents with probability i(—: so that on average we are testing the minimum fraction
of agents that belongs to [#(2), (1)].
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Proof of Part (c): For ) < 6 < 02, the number of tests is such that the equilibrium can be in
region A3 with normalized social welfare equal to

0
vETrH — THQ (7“H> —clagrg + aprr),

where we test each high-value agent with probability % which makes the average number of tests
equal to a. Since @ (%) is decreasing in % and ¢ < max,¢[g 1 {%Q(aﬂa:x}, it is optimal to let
a=0.

Proof of Part (d): For < §©®), the number of tests is such that the equilibrium can only be in

region A} with normalized social welfare equal to

varayg — ravaPR (Th = 1, X0y = 17, %2 = 0,ar, an) — clagry + arry)
= —clagry +arry).
Therefore, for any point (ay,, ap) in this region the social welfare is equal to —c(agry +arry) and

the optimal testing policy is 0. Finally, note that the theorem holds for large enough n with strict
inequalities by invoking Lemma 3| W

Proof of Corollary/l]

The following lemma readily follow from Proposition @ and characterizes equilibrium with uni-

form policies.

Lemma 5. With uniform policy a;, = apg = «, there exists M € N, functions ~yr, : [0,1] — [0, 1] and
vir 2 [0,1] = [0,1) and oM > o > a®) such that for n > M, depending on the testing policy o there
are four possibilities for the equilibrium:

(a) For a > o\, there exists a unique symmetric equilibrium given by x$ = 1 forall i € V.

(b) For a'?) < a < oY), there exists a unique symmetric equilibrium given by pure-strategy x§ = 1 for
all i € H and mixed-strategy S for all j € L where p$ puts vy () probability on 1 and 1 — v ()
probability on 0.

(c) For a'® < a < a'?), there exists a unique symmetric equilibrium given by x$ = 1 for all i € H and
z=0forall j € L.

(d) For a < a3, there exists a unique symmetric equilibrium given by pure-strategy z§ = 0 for all
J € L and mixed-strateqy pS for all i € H where p§ puts v («) probability on 1 and 1 — vi ()
probability on 0.

Corollary follows from this lemma and Theorem[2, B
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Proof of Proposition 3|

Consider the testing policy with mandatory social distancing, the social planner uses all the testing
capacity. This is becasue

(O‘Lﬂ aH,TL, jH) = (O‘EB(Q)7 aPI:IB(H)v x}:B(e)’ ng(Q))

We prove that each agent i € H plays z; = 5P in equilibrium. Similarly, we can establish that
each agent j € £ plays z; = 2FP in equilibrium. Since the utility function of each agent i € H is

concave in z;, the equilibrium action of agent i (similar to Lemma , is either z; = 0 or z; = 2.

We next show that playing %P is preferable for agent i:

FB FB FB
ul(l‘l =Ty 7XH\{1,} - 1xH y XL = 1$L ,aL,O[H)

(a)
> ui(w; = 0,%3\ iy = 0,%x2 = 121>, ap, apr)

Q)
FB FB
Zui(wi:()’XH:le 7X£:1$L ,CYL,OCH),

where (a) follows from the fact that social welfare with z; = 25 fori € H and ; = 2¥B fori € £
is larger than social welfare with z; = 0 for i € H and z; = 2B for i € £ and (b) follows from the
fact that the infection probability is increasing in the social activities (i.e., Part (a) of Lemmal|l).

We next prove that with this testing policy with mandatory social distancing, the social planner
uses all the testing capacity. This is because the infection probability decreasing by increasing the
testing probabilities (by using Proposition [1) and therefore the first best solution improves by
using all the testing capacity. B

Proof of Proposition [4]

The proof is similar to the proof of Proposition 2| B

Proof of Theorem 3]

The proof is similar to the proof of Theorem |1, B

Proof of Proposition

First, note that a similar argument to Lemma [2 shows that the best response of each agent is to
play one of the fours actions (0, 0), (1,0), (0,1), and (1, 1).

Claim 1: Under the assumptions of the proposition, high-value agents will have full social activi-
ties toward low-value agents, i.e., mf =1forall: ¢ H.

The maximum increase in the infection probability of a high-value agent from fully connecting
with low-value agents is 7. This is because this is the probability with which the infection hits
low-value agents. Given rg > %’, we have vy > rp, showing that high-value agents will fully
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connect to low-value agents.

Claim 2: Under the assumptions of the proposition, low-value agents will have zero social activi-
ties toward high-value agents, i.e., xf =0forallj € L.

The minimum infection probability of a low-value j agent if she connects to high-value agents is
rafB (1 - %) This is because with probability 75 the infection hits one of the agents in % and
we do not test each of those with minimum probability 1 — % in which case the infection reaches
agent j. Using the assumptions of the proposition, we have 73 (1 - %) > vg > vr, showing
that low-value agents will not connect to high-value agents.

Claim 3: Under the assumptions of the proposition, low-value agents will have full social activi-
ties toward low-value agents, i.e., :ch =1forallj € L.

This is because the maximum infection probability of a low-value agent j if she connects to other
low-value agents is 71,(1 — 1) which is below v/, given the assumption ry > 1 — vy, and for large
enough n.

Claim 4: Under the assumptions of the proposition, high-value agents will have a mixed-strategy
activity toward high-value agents.

They will not have zero activity, because in that case one of them has a profitable deviation to con-
nect to others. They will not have full social activity because in that case their infection probability
is atleast ry(1— %) which is above vy. We let vy denote the mixed strategy of high-value agents

toward other high-value agents. This ~ satisfies

v — Pp(xz = (1,0)1, 2 = (1,0), x99\ (n) = (L,vm) 1, ar, am)

=2vg — Pp(xe = (1,0)1, 2, = (1, 1), %3\ (ny = (L, vm)1, ap, o). (11)

The normalized social welfare in this unique symmetric equilibrium is

ra(yave +vg) +rpvn — riPi(xe = (1,0)1,xy = (1,70)1, o, apy)
—ruyaPp(xc = (1,0)1, 25 = (1, 1)7XH\{h} = (Lyu)l,ar, an)
—ra(1 —ym)Pr(xe = (1,0)1, 2, = (1,0), x3\(ny = (L,ym) L, an, o) — c(rgag +roar)

@ ravyg +rpvp — rilPi(xe = (1,0)1, xy = (1,vg)1, o, an)

—ruPn(xc = (1,0)1, 25, = (1,0), x50 (ny = (L,vm) 1, ar, am) — c(rpan + rrag),

where (a) follows from (11). By decreasing oy, the term P (xz = (1,0)1, 25 = (1,0),Xp\ 5} =
(1,v#)1,ar, ay) remains equal to 1, the term Py(xz = (1,0)1,xy = (1,vg)1,ar, an) does not
change as well because low-value agents are not connected to high-value agents. Therefore, in the

optimal policy we have oy = 0. Finally, by letting

d
¢ < max {dPl(Xﬁ =(1,0)1,xy¢ = (1,0)1,ar, = o,y = 0)|a:x} )
x a
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the optimal testing policy will have maximum ay. Given the constraint on testing capacity, the

e = (minf1.2}.0).

optimal testing policy becomes

completing the proof. B

7.2 Additional Results
Characterization of Asymmetric Equilibrium

Theorem 4. For any € > 0, there exists M € N such that for n > M, depending on o« = (ap,, apr) € Ay
there are four possibilities for the equilibrium:

(a) For o € Ay, there exists a unique (symmetric or asymmetric) pure-strategy equilibrium given by
xf =1, forallie V.

(b) For v € Ay, there exists a unique (symmetric or asymmetric) pure-strategy equilibrium given by
xf =1, foralli € H, 2§ = 1 for [yr(ar,an)|L]] of low-value agents and x; = 0 for the rest
of them. Moreover, the difference between the expected number of infected individuals in this pure-
strategy equilibrium and the the expected number of infected individuals in the unique symmetric
mixed equilibrium is at most en.

(c) For o« € As, there exists a unique (symmetric or asymmetric) pure-strategy equilibrium given by
xf =1, foralli € Hand x5 =0, forall j € L.

(d) For o € Ay, there exists a unique (symmetric or asymmetric) pure-strategy equilibrium given by
a; =1, forall j € L, zf = 1 for [Yy(ar, an)|L|] of high-value agents and x§ = 0 for the rest
of them. Moreover, the difference between the expected number of infected individuals in this pure-
strategy equilibrium and the the expected number of infected individuals in the unique symmetric
mixed equilibrium is at most en .

Before proceeding with the proof of this theorem, we highlight that this theorem implies that
the social welfare of the unique symmetric equilibrium we studied in the main text is close to
the unique pure-strategy equilibrium. This establishes that all the results regarding the non-
monotonicity of infection probability in testing policy as well as the optimal testing hold true
for asymmetric equilibrium as well.

Proof of Theorem [4; Throughout this proof we use Lemma [2, showing that in any pure-strategy
equilibrium the social activity of agents is either 1 or 0.

Proof of Part (a): Part (a) follows from the fact that for any action profile of other agents x_;, it is
optimal for agent ¢ to have x; = 1. This is because

UZ(IE@ — 1,X77J,OLL,OZH) =V; — P}Lnf(xz — 17X*iaaL7aH) - C(OZL]_{'L' € ‘C} + OZH].{Z € H})
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(@) 1
> Vi — (UL + n) —clagl{i € L} + agl{i € H})

1
z - clapl{i € L} + apgl{i € H}) = ui(z; = 0,x_4, ar, an),

where (a) follow from the definition of set Aj.

In the rest of the proof we use the following two lemmas.

Lemma 6. There exists M € N such that for n > M, in any pure-strategy equilibrium we cannot have
xj =1 for some j € L and x; = 0 for some i € H.

Proof of Lemmal} To arrive at a contradiction suppose the contrary holds, i.e., z; = 1 for some
j € Land z; = 0 for some i € H. We prove that agent ¢ has a profitable deviation to 2; = 1. This

is because we can write

wi(z; = 1,% 4, ar, ag) =vg —PM(z; = 1,x 4, ar, ay) — cag

(@) .
f
> vy — P}n (xj =1,%x_j,ar, ) — € — coy

(b) ( 1)
>vg —\vp+— ) —€e—cayg
n

() —1
> 7 — g = ul(x’b = O,X_i,OéL,aH)

where (a) follows by having sufficiently large n which guarantees that the impact of one agent in
the infection probability of is smaller than ¢, (b) follows from the fact that agent j is playing z; = 1
in equilibrium, and (c) follows by choosing ¢ < vy — vr. This completes the proof of Lemma |6, B

Lemmal6|shows that high-value agents are always the first ones who connect with others.

Lemma 7. Consider a society of n individuals and let x be an action profile in which ~y fraction of high-
value agents are playing 1 and the rest of them are playing 0. For any € > 0, there exists M € N such that
forn > M we have

P (x,ap, o) — P (x = 1y, o, an) | < e forall j such that x; = 1.

Proof of Lemma|7; The proof of this lemma is similar to the proof of Lemma [3, hence omitted.
We now proceed with the proof of Theorem 4|
Proof of Part (b): Using Lemmal6, in any equilibrium all high-value agents must have z; = 1. This

is because otherwise a high-value agent i € H with z; = 0 has a profitable deviation:

wi(zi = 1,%x_4, ar, ag) = vy — PM(z; = 1,x_4, ar, ag) — cay

(a) .
> v — P (2 = 1, %91, X2 = 0,00, apr) — cay

b —1
> —— —can > ui(z; = 0,x—4, ar, ),
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where (a) follows from Lemma [p|and (b) follow from (ar,ar) € Az. Now suppose a fraction v
of low-value agents also play 1 and the rest of them play 0. We next establish that we must have
v =~r(ar, o). Letting j, j' € £ be such that 2; = 1 and x5 = 0, this holds because we have

. 1
P;nf(wj = 1,X_j,OéL,OéH) <wvp + E and

. 1
P}Iflf(%j/ =1L,x_j,ar,ag) > v+ o

For large enough n the difference between the left-hand sides of the above inequalities is less than
e. This shows that 7 is such that with x3y = 1 and [v|L]|] of low-values playing 1 the infection
probability of a low-value agent who plays 1 is § away from vz, + 1. Finally, note that using
Lemmathis infection probability is § away from Pj(z; = 1,xp\ gy = 71, xp = 1) = v + +.

Therefore, «y is such that

. 1
P (x, o, ) — (UL + n> |<e forallie?,

, 1
P (x, ap, o) — (UL + > | <€ forallje L z;=1,
n

and

: 1
]P’;-nf(x,aL,aH) == forallj € £,z; = 0.

Therefore, the difference between the expected number of infected individuals in the pure-strategy
equilibrium and the unique symmetric mixed-strategy equilibrium is at most en.

Proof of Part (c): Again, using Lemmal6, in equilibrium either all high-value agents together with
some of low-value agents are playing 1 or a subset of high-value agents are playing 1 or only high
value agents play 1. The former cannot be equilibrium because a low value agent j € £ has a
profitable deviation:

uj(r; =0,X_j,ar,ag) = - —cor

(@) .
> vr, — ]P)l-nf(l'j = 1’X’H\{j} =1,x, = O,QL,aH) — cay,

J
®) inf
> v, — P} (xj =1,%x_j,ar, ) — cay,

where (a) follow from (o, ag) € Az and (b) follows from the assumption that in the equilibrium
we started from all high-value agent play 1. Therefore, none of the low-value agents will play 1
in any equilibrium. Moreover, all the high-value agents must play 1 because otherwise if i € H is
playing 0, then she has a profitable deviation:

inf
ui(zi = 1L, x_j,ap,ag) =vyg — P (2 = 1,x_,ar,ag) — cag

(@) .
> v — P () = 1,390y = 1,xc = 0,0, ap) — can
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® 1
> - cag = ui(x; = 0,X_;, ar, an),

where (a) follows from (o, an) € As and (b) follows from the assumption that in the equilibrium
we started from a subset of high-value agents play 1. This shows that the unique equilibrium is to
have all high-value agents play 1 and all low-value agents play 0.

Proof of Part (d): The proof of this part follows from a similar argument to part (b).
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