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ABSTRACT

Recent dramatic and deadly increases in global wildfire activity have increased attention on the 
causes of wildfires, their consequences, and how risk from fire might be mitigated. Here we bring 
together data on the changing risk and societal burden of wildfire in the US. We estimate that 
nearly 50 million homes are currently in the wildland-urban interface in the US, a number 
increasing by 1 million houses every 3 years. Using a statistical model that links satellite-based 
fire and smoke data to pollution monitoring stations, we estimate that wildfires have accounted 
for up to 25% of PM2.5 in recent years across the US, and up to half in some Western regions. 
We then show that ambient exposure to smoke-based PM2.5 does not follow traditional 
socioeconomic exposure gradients.  Finally, using stylized scenarios, we show that fuels 
management interventions have large but uncertain impacts on health outcomes, and that future 
health impacts from climate-change-induced wildfire smoke could approach projected overall 
increases in temperature-related mortality from climate change. We draw lessons for research and 
policy.
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Over the past four decades, burned area from wildfires has roughly quadrupled in the US (Fig

1a).1 This rapid growth has been driven by a number of factors, including the accumulation of

fuels due to a legacy of fire suppression over the last century,2 and a more recent increase in fuel

aridity (Fig 1b, shown for the western US), a trend which is expected to continue as the climate

warms.3,4 These increases have happened parallel to a substantial rise in the number of houses

in the wildland-urban interface (WUI). Using data on the universe of home locations across the

US and updated national land cover maps, we update earlier studies5,6 and estimate that there

are now ∼49 million residential homes in the WUI, a number that has been increasing by roughly

350k houses per year over the last two decades (Fig 1c; see Supplement). As firefighting effort

focuses substantially on the protection of private homes,7 these factors have contributed to a

steady rise in spending on wildfire suppression by the US government (Fig 1d), which in recent

years has totaled ∼$3 billion per year in federal expenditure.1 Total prescribed burn acreage has

increased in the southeastern US but has remained largely flat elsewhere (Fig 1e), suggesting to

many that there is under-investment in this risk-mitigation strategy, given the massive overall

growth in wildfire risk.8

What are the consequences of this change in fire activity for overall air quality and for health

outcomes, and how should policy respond? Large increases in wildfire activity have been accom-

panied by substantial increases in the number of days with any smoke in the air across the US

(Fig 1f), as estimated from satellite data.9 Such increases have been observed throughout the

continental US, not just in the West, and threaten to undo the substantial improvements in air

quality observed across the US over the last two decades (Fig 1g). The fingerprints of wildfire are

already visible in upward-trending spring- and summertime organic carbon concentrations ob-

served in rural areas in the US south and west (Fig S1), respectively, and studies find that hav-

ing any smoke in the air can increase morbidity and mortality among exposed populations.10,11

A challenge in understanding the broader contribution of changing wildfire activity to air qual-

ity is the difficulty in accurately linking fire activity to related pollutant exposures in often-
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distant population centers. Satellite-based measures of smoke exposure are increasingly available

and are appealing because plume monitoring intuitively links source and receptor regions. Such

data, however, cannot yet be used to precisely measure smoke density or to separate surface-level

smoke from smoke higher in the atmospheric column, and thus are difficult to link to existing

exposure-health response relationships.12,13 Chemical transport models (CTMs), which can di-

rectly model the movement and evolution of wildfire emissions, offer an alternate approach for

linking local pollution concentrations to specific fire activity. However, generating accurate ex-

posure estimates from CTMs requires surmounting several major uncertainties in the pathway

between source and receptor. First, large uncertainties in wildfire emissions inventories have been

shown to lead to many-fold differences in wildfire-attributed PM2.5 concentrations across the US

(and >20x regional differences in high fire years) when different inventories are used as input

to the same CTM,14,15 and integration of satellite observations only slightly improves perfor-

mance.16 Second, the detailed conditions surrounding emissions – such as the height of emissions

injections and very localized meteorology – and their transport may not be captured by models,

and can dramatically impact downstream exposure estimates.17,18 Finally, CTM representations

of atmospheric chemistry may not accurately capture the evolution of wildfire smoke.19–23 In ad-

dition to model-related uncertainty, the computational expense of running CTMs over large spa-

tial and temporal scales means that models are rarely validated against the long time series of

concentration measurements available from hundreds of ground stations across the US.

To further understand the changing contribution of wildfire to particulate matter exposure across

the US, we train and validate a simple statistical model that relates changes in satellite-estimated

smoke plume exposure and fire activity to ground-measured PM2.5 concentrations across regions

in the US (Supplemental Information; Fig S2). Our approach does not rely on uncertain emis-

sions inventories and alleviates difficulties in modeling plume dispersion, and results can easily be

validated against over a decade of ground data on which the model was not trained. Model esti-

mates are robust to alternate ways of incorporating fire and plume data (Fig S3, and Tables S1-
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S3) and performance in predicting variation in overall PM2.5 is on par with benchmark remote-

sensing based approaches (Fig S4) and exceeds reported performance of CTMs (see Supplemental

Information). We compare estimates from this reduced-form approach to other region-specific

estimates of smoke concentrations in the literature, finding that our approach provides similar

estimates of the share of overall PM2.5 from smoke as recent studies covering smaller regions or

periods (Fig S5).

Our results show that the contribution of wildfire smoke to PM2.5 concentrations in the US has

grown substantially since the mid 2000s, and in recent years has accounted for up to half of the

overall PM2.5 exposure in western regions as compared to <20% a decade ago (Fig 1h). While

increases in contribution of smoke to PM2.5 are concentrated in the Western US, they can also

be seen in other regions (Fig 2a-b), a result of long-distance transport of smoke from large fires.

Indeed, in midwestern and eastern regions of the US, a growing share of smoke is estimated to

originate from fires in the western US or from outside the US12 (Fig 2c-d), mirroring recent find-

ings on the substantial transboundary movement of overall PM2.5 within the US.24 Exposure

patterns are also pertinent to environmental justice debates: we find that while counties with

higher proportions of non-Hispanic whites in the population are less exposed to total PM2.5, as

has long been recognized in the environmental justice community, they are actually more exposed

on average to ambient PM2.5 from wildfire smoke (Fig 2e-f). How these differences in ambient

smoke-based PM2.5 exposure translate to actual individual exposures will depend on a variety of

individual factors, including disparities in time spent outdoors and home characteristics, many of

which could correlate with socioeconomic factors.

These trends and patterns highlight important points of tension between existing air quality reg-

ulation and the growing threat from wildfire smoke, and raise important unanswered research

questions that will be critical to informing policy choice. Current approaches to regulation in the

US treat air quality primarily as a local problem, wherein counties are penalized if pollutant con-

centrations exceed designated short- or long-term thresholds. Current regulation under the Clear
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Air Act also potentially exempts wildfire smoke – but not smoke from prescribed burns – from

attainment designation. These approaches appear at odds with the transboundary nature and

growing contribution of wildfire smoke to air quality.

To better guide policy, a first key scientific contribution will be a better quantification of smoke

exposures and agreed upon methods for validating these exposures. Both statistical and transport-

based approaches to exposure assessment have their strengths and shortcomings, and the perfor-

mance of both should be evaluated based on metrics relevant to the measurement of downstream

health responses. In particular, to isolate smoke exposure from potential confounds, most sta-

tistical approaches in recent health impact studies use variation over time in pollution exposure

to estimate health effects. This implies that smoke models used for estimating health impacts

should be evaluated in their ability to predict temporal variation in PM2.5 at relevant locations,

not just spatial patterns in PM2.5 levels; most existing validation efforts focus on the latter. To

guard against overfitting, these evaluations must be done on ground data not used in model

training.

A second key scientific question is the nature of health responses to wildfire smoke. Growing

evidence indicates a range of negative health consequence associated with wildfire smoke expo-

sure,10,25 consistent with a vast literature on the broader health consequences of polluted air.

Most recent evidence suggests that there is no “safe” level of exposure to key pollutants such as

PM2.5,
26,27 but differences in the shape of the pollution-health response function at low levels of

exposure can have large implications for the benefits of pollution reduction.

To illustrate this sensitivity, we use three such recently-published response functions26,28,29 and

simulate changes in elderly mortality predicted by various changes in PM2.5 exposure induced

by mitigating wildfire smoke. Guided by existing estimates of how prescribed burning reduces

subsequent wildfire activity30 (see Supplemental Information), we combine these three response

functions with our statistical PM2.5 model to evaluate stylized scenarios in which the use of pre-
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scribed burning changes the interannual distribution and overall amount of PM2.5 from smoke.

Estimates of the annual number of elderly lives saved for a given change in smoke differ by a fac-

tor of three across published response functions, implying large average differences in the benefits

of smoke mitigation (Fig 3). Evidence on whether certain populations are more susceptible to

smoke exposure is also lacking.10,25

The large potential health benefits of smoke mitigation also raise key questions about wildfire

management strategies. For instance, existing evidence does not provide a comprehensive un-

derstanding of how a given prescribed burning intervention will change the timing, amount, and

spatial distribution of smoke, and we find that alternate estimates of the efficacy of prescribed

burning in reducing the subsequent size of wildfires30 can lead to more than two-fold differences

in estimated health benefits of prescribed burns (Fig 3). Similarly, current fire suppression efforts

understandably focus on protecting homes and structures, but the overall population health im-

pact of a heavily polluting wildfire that does not threaten structures could be much worse than

that of a smaller fire that does threaten structures. In addition, fuels management activities are

targeted at local community protection and ecosystem benefits and do not consider likely down-

stream impacts of wildfire on large populations. Additional quantitative work is needed to help

navigate these difficult trade-offs.

A third key question is whether source-agnostic PM2.5-health response functions are appropriate

for estimating wildfire-smoke-specific health impacts. Although it is commonly hypothesized,

existing literature is mixed on whether exposure to wildfire smoke has different health impacts

than exposure to other sources of PM2.5.
31 Improved science on this topic – including necessary

investments in speciated monitoring to distinguish wildfire-specific pollutants – will be critical for

understanding wildfire impacts.

Fourth, how might the interaction of climate change and wildfire risk shape policy priorities? A

warming climate is responsible for roughly half of the increase in burned area in the US,4 and
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future climate change could lead to up to an additional doubling of wildfire related particulate

emissions in fire-prone areas32 or a many-fold increase in burned area.33,34 Costs from these in-

creases include both the downstream economic and health costs of smoke exposure, as well as

the cost of suppression activities, direct loss of life and property, and other adaptive measure

(e.g. power shutoffs) that have widespread economic consequences. Whether accounting for these

wildfire-related costs meaningfully increases the estimated overall economic damages from cli-

mate change is unknown, but stylized calculations suggest that increased mortality from climate-

change-induced wildfire smoke is roughly on par with projected overall increases in temperature-

related mortality – itself the largest estimated contributor to economic damages in the US35 (see

Supplemental Information). A key policy question will be whether and to what degree to mod-

ify current exceptions to the Clean Air Act granted to states for pollution impacts from wildfire

smoke, as these erode gains from efforts aimed at reducing other PM2.5 pollution sources.

Finally, wildfires could interact with the COVID-19 pandemic in important but unknown ways.

COVID-19 is likely to impede the ability of government at all scales to respond to wildfire risk,

both before and after fires occur. This could present specific challenges in many parts of the

West, where record drought in the 2019/20 rainy season followed an accumulation of fuels dur-

ing a relatively wet 2018/19 season. Wildland firefighter trainings have been delayed or cancelled,

government agencies acknowledge that COVID-19 could degrade their firefighting capabilities,

and traditional approaches to wildfire evacuation are likely to prove far more challenging due to

lack of social distancing at evacuation centers. If large fires do occur and burn uncontained in

2020, this might in turn worsen COVID-related health outcomes, as early evidence suggests that

exposure to air pollution increases both COVID cases and deaths in the US36,37 (a finding con-

sistent with the relationship between pollution and other viral respiratory illness38,39). A better

causal understanding of the impact of air pollution on COVID outcomes, including that from

wildfires, is a critically urgent research priority and could be important in guiding labor- and

finance-constrained firefighting effort.
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Figure 1: Trends in the drivers and consequences of wildfire. a Increases in burned
area in public and private US lands1 have been driven in part by rising fuel aridity, shown
here over the western US4 (b). The number of homes in the Wildland Urban Interface
(WUI) has also risen quickly (c, our calculations, see Supplemental Information), which
has contributed to rising suppression costs (d) incurred by the federal government. e Pre-
scribed burn area has increased substantially in the South but is flat in all other regions.1

f Smoke days have increased throughout the US, perhaps undermining decadal improve-
ments in air quality across the US (g). h We calculate an increasing proportion of overall
PM2.5 attributable to wildfire smoke, particularly in the West. Red and blue lines in each
plot indicate linear fits to the historical data, with slopes reported in the upper left of each
panel; all are significantly different from zero (p < 0.01 for each), except for prescribed
burn in regions outside the South. Red lines indicate underlying data are from published
studies or government data, blue lines indicate novel estimates from this paper.
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Figure 2: The quantity, source, and incidence of wildfire smoke. a-b Average pre-
dicted ug/m3 of PM2.5 attributable to wildfire smoke in 2006-08 and 2016-28, as calculated
from a statistical model fitting satellite-derived smoke plume data. c Share of smoke orig-
inating outside US June-Sept 2007-2014, (calculated from12), with a substantial amount
of smoke the northeast and midwest originating from Canadian fires, and about 60% of
smoke in the north east originating outside the country; nationally, ∼11% of smoke is es-
timated to originate outside the country. d The share of smoke originating in the western
US June-Sept 2007-2014. Smoke originating in the western US accounts for 54% of the
smoke experienced in the rest of the US. e-f Racial exposure gradients are opposite for
particulate matter from smoke as compared to total particulate matter: across the coter-
minous US, counties with higher population proportion of non-Hispanic whites have lower
average particulate matter exposure but higher average ambient exposure to particulate
matter from smoke (p < 0.01 for both relationships).
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Figure 3: Health consequences of changes in smoke exposure depend on the
assumed dose-response function and on the magnitude of management- or
climate-driven changes in smoke. a Distributions of PM2.5 for all grid-cell years in
the contiguous US 2006-2018 under several stylized wildfire management strategies and
climate change scenarios (see Supplemental Information for details). The baseline distribu-
tion of total predicted PM2.5 from all sources is in black. Grey distributions show alterna-
tive scenarios in which the timing and/or amount of overall smoke-related PM2.5 is altered
through management interventions or increased due to climate, including the (hypotheti-
cal) full elimination of smoke PM2.5. b Annual number of avoided premature deaths in the
US population age 65+ for each management strategy, calculated by combining the PM2.5

distributions in (a) with published long-run PM2.5 exposure-response functions depicted in
c.26,28,29
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Supplemental Information

Estimating houses in WUI

The wildland urban interface (WUI) is the area where houses and other man-made structures

are near or overlap wildland vegetation. The U.S. Federal Register defines two types of WUI.40

Intermix WUI is defined as an area with more than one structure per 40 acres (6.17 houses/km2)

and with over 50% wildland vegetation. Interface WUI is defined as an area with less than 50%

vegetation but that lies within 1.5 miles (2.4km) of a 5km2 or larger area that is at least 75%

wildland vegetation.

To map WUI in the conterminous U.S., we use an approach similar to Bar-Masada et al,5 where

we create two rasters: 1) a household density map of the conterminous U.S.; and 2) a wildland

vegetation density map identifying areas with high levels of vegetation. The household density

raster was created using CoreLogic household data,, which proprietary dataset which includes de-

tailed information on all existing housing structures (including the year the structure was built,

longitude and latitude, household value, and so on). We convert the dataset into a spatial points

layer, and filter for residential houses only. For households without a recorded year built we as-

sume that the household was built on or before the year 2000 and code the missing year as 2000.

The vegetation density raster was computed using the National Land Cover Dataset, a 30m reso-

lution raster of land type across the U.S. We use the same vegetation classification as Radeloff et

al.41,6 where we classify forests (classes 41-43), shrublands (classes 51 and 52), grasslands (class

71), and woody wetlands (class 90) as wildland vegetation.

We use the vegetation and housing density rasters to compute intermix WUI. To speed up com-

putation time, instead of calculating household and vegetation density using a cell-level moving

window approach,5 we aggregate the 30m resolution NLCD dataset up to 1km cells. To obtain

vegetation density, we sum the area that is wildland vegetation within each 1km cell and code
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“1” for each cell where wildland vegetation is over 50% and “0” otherwise. To obtain housing

density, we compute the number of houses per 1km cell and code “1” for each cell where there

are more than 6.17 houses, and “0” otherwise. Intermix WUI is then calculated by multiplying

the household density and vegetation density rasters. The resulting intermix raster has a cell

value of “1” if household density is over 6.17 houses and wildland vegetation is over 50% and “0”

otherwise.

To calculate interface WUI, we first identify continuous patches of wildland vegetation by con-

verting the vegetation density raster into spatial polygons. We keep polygons that are over 5km2,

and create a buffer of 2.4km around each polygon. The polygons are then converted into a veg-

etation buffer raster, where cells that fall within the 2.4km buffer around each polygon are la-

belled “1”, and “0” otherwise. Interface WUI is then calculated by multiplying the household

density raster and the vegetation buffer raster. The resulting interface raster has a value of “1” if

household density is over 6.17 and if cells fall within the buffered area.

Finally, we calculate the number of households that fall within either the interface or the inter-

mix WUI by using the CoreLogic spatial points layer which contains the individual household

locations. For each household, we identify whether the household falls into either WUI category

by extracting the intermix and interface raster cell values. For each year the NLCD is available,

we create new household density and vegetation rasters and classify WUI status for all house-

holds. Finally, we count the number of households inside the interface and intermix WUI areas

for each year. Annual estimates are plotted in Fig. 1c.

Estimating PM2.5 attributable to wildfire smoke

To quantify the variation in PM2.5 attributable to wildfire smoke, we estimate a statistical model

that relates satellite-derived data on wildfire smoke and fire activity along to PM2.5 data col-

lected by ground monitors. Our goal is to provide a tractable way to measure the contribution of

15



smoke to overall PM2.5 at a local level and across time in the US using a model that can be di-

rectly and easily validated across wide geographies against ground data on which the model was

not trained.

The advantage of this “reduced-form” statistical approach, relative to chemical transport model

(CTM) based approaches, is that it does not rely directly on uncertain emissions inventories or

on an ability to correctly model atmospheric chemistry or plume dispersion, both of which have

been shown to challenge CTM-based approaches. Furthermore, the model can easily be run at

large spatial and temporal scale, and estimates of overall PM2.5 can be readily validated against

ground data on which the model was not trained using cross-validation. Generating temporal

data across many locations is important, as such variation is what is typically exploited in recent

studies to estimate the impacts of air pollution on health outcomes.11,27 The disadvantage of the

statistical approach is an inability to easily constrain where the smoke is in the atmospheric col-

umn or a way to directly measure smoke density in each plume, and the lack of foolproof way

of linking particular smoke plumes to source fires, although methods for the latter are being ex-

plored.12 We describe and validate our approach to indirectly constraining these factors below.

We train a statistical model that relates variation in nearby emissions sources and both near and

distant fires to ground-measured concentrations of PM2.5 at 100km grid cells throughout the US:

PMirt = f(plumesirt) + Zirt + αr + δt (1)

where PMirt is annual average PM2.5 concentration at grid cell i in region r in year t, calculated

as the average of any EPA monitoring stations reporting in that grid cell. The variable plumesirt

includes the count, size, and source of wildfire plumes that overlay the grid cell in a given year,

as derived from remotely-sensed smoke and fire variables, and Zirt is a vector of time-varying

sources of particulate emissions (direct or precursor) derived from a range of data sources. Any

other sources of average difference in PM2.5 between regions (e.g. unmodeled sources of stable
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regional emissions) is picked up by the vector of regional intercepts αr, and any additional time-

varying sources of PM2.5 that are common across all grid cells are accounted for by the vector of

year intercepts δt.

Regions are defined starting from the USGS physiographic divisions but are adapted to ensure

that they are similarly sized and contain at least two reporting EPA monitors. We initially define

our regions following USGS’s second level divisions (“provinces”). However, for the five largest

provinces (each of which covers 11-25% of the lower 48) we use the next level USGS division re-

ferred to as “sections”. The 9 sections that did not have the required two EPA stations are man-

ually merged with their smallest neighbor, leaving a final count of 42 regions (Fig S2).

Our plumes measure includes both fire and smoke variables constructed from satellite-based esti-

mates of smoke plumes and of fire activity compiled as part of NOAA’s Hazard Mapping System

(HMS) Fire and Smoke Product.9 Both sources are generated by trained analysts who analyze

sub-daily animated imagery primarily from the geostationary operational environmental satellite

system (GOES). The system has provided a measure of smoke and fire activity every few hours

throughout the daytime across the entire US for more than a decade, and we utilize the daily

lists of active fires and smoke plumes. Our plumes measure is constructed as follows:

1. Beginning with HMS daily fire location data, which is provided as active fire points on a

given day, we group contiguous fire points into a single fire by creating a buffer of 2.9 km

around each point and merging points whose buffers overlap. We use 2.9km as each cell is

4km across, so from the centroid to the edge of the cell is
√

(22 + 22) = 2.83 ∼ 2.9km.

In order to capture large fires that are burning over several days, and have produced large

plumes over that time, we use fire points from the day in question as well as the three days

prior.

2. For each plume, we identify the largest intersecting fire active on that day and associate

the plume with that “origin fire”.
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3. We then find the distance from each grid cell the plume overlaps to the origin fire, also

noting the size of the origin fire.

4. Finally, for each grid-cell-year we generate counts of plumes overlapping that grid cell in

each of nine classes, where the classes are a combination of origin fire size tercile (small =

<140 acres, medium == 140-800 acres, large == >800 acres) and distance to origin fire

tercile (close = <280km, med = 280-1000km, far>1000km). In our baseline model, these

nine covariates are used as regressors in Equation 1.

The goal of our binning approach is to provide the model information that can proxy for the

density of smoke and where it is in the atmospheric column: fires further away are likely to be

higher in the column,12 and larger and more nearby fires are likely to generate more smoke near

the ground. Even though our method of matching to origin fire is likely imperfect, our binning

approach does appear to improve on alternative specifications that do not use this information:

models that simply count overhead plumes and do not use information on distance or size of ori-

gin fire perform less well and over-attribute high smoke PM2.5 to the Midwest, which experiences

many plumes from distant fires (Fig S3 and Table S3). Our binned model attributes less smoke

PM2.5 to the Midwest, and overall attributes a somewhat smaller share of overall PM2.5 to wild-

fire smoke (Fig S3) – although the temporal and spatial patterns are largely similar.

Non-wildfire-related time-varying sources of PM2.5 are collected from various sources and in-

formed by the EPA’s National Emissions Inventory (NEI), which identifies key sources of par-

ticulate emissions across US counties. We assemble annual information on activity related to in-

dustrial processes, aircraft traffic, natural gas production, mining, power plants, transportation,

and agriculture. In particular, we assemble county-year-level data on population, construction

payroll, mining payroll, airport locations and taxi times, natural gas production, and cattle head

count. In addition, we assemble zip code-year-level data on power plant emissions as well as 1km

grid cell-year-level data on traffic. Each covariate is harmonized to our 100km grid by overlaying
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the relevant administrative boundary at which the data are available with our grid. For missing

data in grid cells that have 2 or more non-missings, we linearly interpolate between years. For

grid cells that are entirely missing a variable, we impute using all other variables. We chose not

to include weather and climate variables as they are likely to capture some of the variation in

PM2.5 that is attributable to smoke, i.e. locations or years that are especially arid are likely to

have higher PM2.5 concentrations given the role of fuel aridity in fire risk.

The last important components of Equation 1 are the region and year fixed effects which account

for average differences between regions and common changes over time in both smoke exposure

and overall PM2.5. The fixed effects offer a parsimonious way of dealing with remaining uncer-

tainties in non-smoke sources of PM2.5. For instance, they help ensure that the model learns that

the co-occurance of lower average smoke exposure and higher average PM2.5 (e.g. in the Cen-

tral and Northeast regions) does not indicate that reducing smoke exposure will increase average

PM2.5. Similarly, the year fixed effects help the model learn that the overall increase in smoke

exposure over our study period and the average decline in overall PM2.5 again does not imply

that increasing smoke exposure decreases average PM2.5. The fixed effects will be particularly

important in this task if our time-varying data on non-smoke sources of PM2.5 are either poorly

measured or missing key contributors to PM2.5.

Once we have built the model with these variables, we use it to predict PM2.5 across the nation

at observed smoke levels, then to predict the counterfactual by setting smoke exposure to 0. Pre-

dictions are bottom coded at 0, and the amount of PM2.5 attributed to smoke is the difference

between the two predictions.

To train and validate the model, we focus on grid cells with at least one EPA station reporting

at any point during our sample. We then partition these cells into disjoint sets for 10-fold cross

validation, where all years in a given cell are in one fold. To be able to estimate the region and

year fixed effects, all folds contain cells with PM2.5 observations in all regions and all years, and

19



no cell (and thus no monitoring station) contributes information to more than one fold.

Model validation and robustness Our model validates well against data on which it was

not trained, explaining 60% of the variation in overall PM2.5 at these held out locations (Fig

S4a). This performance is very close to performance of benchmark satellite-based PM2.5 data

generated by van Donkelaar et al42 in the US, which we aggregate to our 100km grids for com-

parison (Fig S4b). The van Donkelaar data have been used widely for US and global pollution-

health studies, although we emphasize that van Donkelaar are using satellite information from

multiple sensors to predict overall PM2.5 variation, and are not attempting to estimate the wild-

fire component explicitly. Our temporal and spatial predictive performance in the continental US

also mirrors that of van Donkelaar et al (Fig S4c-d).

Our performance appears to exceed that of many CTM-based studies in predicting overall varia-

tion in PM2.5, although many smoke-based CTM studies do not report validation performance or

are not directly validated on the same monitoring stations or over time, hampering comparison.

To our knowledge the most comprehensive comparison of CTM and ground-based PM observa-

tions reports an r2 = 0.16 for GEOS-Chem (a leading CTM) over western North America.43

Comparatively (and excluding the part of Canada in their estimates) our model has an R2 = 0.44

over that region.

Our baseline model that uses binned counts of plumes by fire size and distance outperforms other

ways of using the smoke and fire data (Table S3), but both temporal and spatial patterns of

wildfire-attributed PM2.5 are generally consistent using these alternate approaches (Fig S3).

A remaining concern with our attributable smoke share estimates is that our simplified statistical

model could be missing key non-smoke sources of PM2.5, which would lead us to underestimate

total PM2.5 (the denominator in the shares calculation) and thus perhaps lead to upward-biased

estimates of attributable smoke share reported in Figs 1-3. However, for reasons stated above,
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non-smoke sources of PM2.5 tend to have opposite temporal and spatial relationships with overall

PM2.5 as compared to smoke: overall PM2.5 has been trending down while smoke has trended up,

and regions with fewer fires have historically had higher average PM2.5. This means that exclu-

sion of key non-smoke sources of PM2.5 could bias estimates of the impact of smoke in Equation

1 downward, resulting in smaller attributable shares.

To understand the direction of bias in attributable shares, we systematically dropped key non-

smoke sources of PM2.5 in our data individually and jointly re-calculated the attributable shares.

Dropping individual sources appeared to have minimal effect on overall estimated smoke shares

(Table S1), but dropping them jointly or dropping the fixed effects as well substantially reduced

the estimated smoke shares – again consistent with expected downward bias in coefficients in

Equation 1 if spatial and temporal patterns in non-smoke PM2.5 are not accounted for. This ex-

ercise suggests that our overall estimates of attributable smoke shares are, if anything, conserva-

tive.

Comparison to other estimates We compare our results to three studies that provided

temporal estimates of wildfire-attributable PM2.5 at either regional or national scale.

Fann et al44 run a CTM with and without wildfire smoke to estimate the contribution of wildfire

smoke to total PM2.5 across the continental US between the years 2008-2012. They do not pro-

vide validation of model runs against ground data. We compare spatial and temporal patterns

in smoke-attributed PM2.5 finding general agreement in overall spatial patterns, and similarity in

the level and trend in mean smoke-attributed PM2.5 (Fig S5). Overall, we have higher estimates

in the midwest, which is partially attributable to the fact that we also include international fires,

which contribute significantly to the midwest.

O’Dell et al13 use both a statistical approach and a CTM to estimate the contribution of wildfire

smoke to PM2.5 in the Pacific Northwest. They do not provide validation of CTM results against
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ground data. They report percent of PM2.5 attributable to smoke during the summer months

(July, August, and September) from 2006-2016. As our estimates are annual, we calculate a com-

parable version of their estimates by assuming there is no PM2.5 from smoke in other months (as

summer is the main fire season - see sinusoidal seasonal pattern across IMPROVE sites in Figure

S1) and the PM2.5 in other months is equivalent to the summer non-smoke PM2.5.

Comparable yearly O’Dell estimate =
summer smoke PM2.5

total summer PM2.5 + (summer non-smoke PM2.5) ∗ 3

These assumptions are likely to cause an underestimate of O’Dell’s full year estimate of the per-

cent of PM2.5 from smoke, as the assumption that there is no PM2.5 from smoke in other months

is typically incorrect; 33% of smoke days in our data are outside that period. Nonetheless the

trend in our estimates matches those of O’Dell , and our estimates are only slightly higher than

theirs, as approximated from their figure data (Fig S5d).

Jaffe et al.45 estimate statistical models that relate station-measured PM2.5 to nearby burned

area, and use these models to estimate the contribution of wildfire smoke to overall PM2.5 across

five regions in the Western US for the years 1988-2004. Jaffe et al use data from the IMPROVE

network, which are mainly located in rural environments in which the share of anthropogenic

PM2.5 will likely be lower than the EPA stations that are the focus of our analysis. The differ-

ence in time periods between their analysis and ours (1988-2004 versus 2006-2018) also makes

comparison difficult, but we proceed as it is one of the few other papers that provides compa-

rable estimates. We aggregate our gridded data to the five regions used in Jaffe et al and com-

pare regional PM2.5 smoke shares (Fig S5e). Despite the differences in time periods, we see sim-

ilar overall regional patterns, with our estimates smaller than Jaffe et al in Rockies and larger in

coastal western states (Jaffe et al regions 4 and 5).

Finally, we compare our results to estimates of wildfire PM2.5 contributions from EPA National

Emissions Inventory (NEI) data in 2008, 2011, 2014 and 2017. To estimate wildfire emissions,
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EPA uses data on burned area collected by national and local agencies with information on fuel

type and fuel-specific emissions factors to convert burned area to local emissions. Importantly,

these estimates will represent the smoke emitted from a given location, not the overall contri-

bution of smoke to PM2.5 in that location (as much of this smoke will originate from fires else-

where), and so differences between NEI and our estimates could in large part reflect the impor-

tance of non-local smoke to local PM2.5 concentrations. For comparison, we aggregate both our

and NEI results to the state-year level, comparing estimates of wildfire-attributed PM2.5, where

NEI estimates are calculated as emissions per acre to make them comparable. Estimates are pos-

itively related (Fig S5f) but the differences in some years are large, again likely reflecting the

importance of non-local sources of smoke.

Estimating health impacts of changes in smoke exposure We use three published

exposure-response curves that relate changes in overall PM2.5 to elderly (65+) mortality to inves-

tigate how changing forest management strategies and climate scenarios might change the overall

health impacts of wildfire smoke.26,28,29 This exercise requires a number of assumptions. First,

we assume that changes in exposure to wildfire-derived PM2.5 have the same effect on mortality

as changes in overall exposure to PM2.5. Existing work has clearly shown that smoke exposure

increases mortality risk,10,11 but does not yet conclude whether these impacts are different from

other sources of PM2.5 exposure. A second key assumption is that these response curves reflect

the causal effect of changes in PM2.5 on mortality. This is also an area where further research

could improve estimates, as the studies we use (which are also those used in current policymak-

ing and research on air quality impacts) use cohort-based or cross-sectional study designs that

likely cannot fully isolate variation in PM2.5 from other factors that affect mortality risk. More

recent quasi-experimental research designs (e.g.11,27) will likely prove useful in this regard. Fi-

nally, our scenario analyses are highly stylized, and are meant to explore the rough magnitude

of changes in smoke and health impacts and the sensitivity of overall estimates to input parame-

ters. Our approach could be expanded to incorporate a more detailed assessment of how specific
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management interventions would shape pollution exposures and downstream health outcomes.

We create several different stylized scenarios for changes in smoke-related PM2.5 exposure under

different management regimes or changes in climate. These scenarios use our statistical model to

predict grid-level changes in total PM2.5 as smoke variables are perturbed. The changing overall

distribution of PM2.5 across grid cells are shown in Fig 3. The specific scenarios are as follows:

• Original Model/Baseline. Use the total modeled PM2.5 for each grid-cell year.

• Redistribute PM2.5 from smoke equally across years. For each grid cell, sum up all

PM2.5 from smoke over the 13 year study period, divide it equally and add it to the pre-

dicted PM2.5 with no smoke for each year. This results in a slight shrinkage of the distribu-

tion, years with high smoke have reduced PM2.5, and years with low PM2.5 from smoke

have increased PM2.5. This scenario is meant to mimic a scenario in which prescribed

burning increases smoke in low-wildfire years and decreases it in otherwise high-wildfire

years, but the total amount of smoke-derived PM2.5 does not change.

• Redistribute PM2.5 from smoke and reduce the total amount of PM2.5 from

smoke. Here we assume that fuels management strategies are able to reduce the overall

amount of wildfire smoke by 25%, and that these strategies redistribute the smoke evenly

across years. This stylized scenario is roughly consistent with a tripling of prescribed burn

area, given existing research that suggests that each hectare burned under a prescribed

burn leads to an average of 1.8 fewer hectares burned in wildfires,30 and that an acre of

prescribed burn produces half the PM2.5 as an acre of wildfire burned46 (as wildfires are

estimated in recent work to have higher particulate emissions factors and consume more

fuel). In historical data, prescribed burned acreage is roughly 5% of total wildfire acreage

in western US states (this ratio is higher in the Southern US, see Fig 1e). In a scenario

with A acres of total burned area (wildfire + prescribed burn), A ∗ 0.05 of those would be

from prescribed burn and the remaining A ∗ 0.95 from wildfire.
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original abstracted total emissions = 0.95A+ (0.05A) ∗ 0.5 = 0.975A

burned area w/ X extra Rx burning = A+X − (1.8X) = A− 0.8X

emissions w/ X extra Rx burning =
new wildfire acreage + (new prescribed acreage ∗ 0.5)

original total acreage

=
(0.95A− 1.8X) + (0.05A+X) ∗ 0.5

0.95A+ (0.05A) ∗ 0.5

=
0.975A− 1.3X

0.975A

=
1, 702, 144 − 249, 648

1, 702, 144
= 0.85

Using A equal to the average total burned area in the western US states and assuming that

prescribed burn area triples (X = A ∗ 0.11; A = 1, 745, 789) leads to a reduction in smoke

of about 15%. We reduce our predicted smoke (as summed over all 13 years and spread

equally within each grid cell) by 15%. We note that prescribed burn area in the Southeast-

ern US has more than tripled in the last decade, suggesting such increases are in principle

possible.

• Redistribute all PM2.5 from smoke and dramatically reduce the total amount

of PM2.5 from smoke. Similarly, research shows in area where prescribed burning is suc-

cessful each hectare burned under a prescribed burn leads to 4.9 fewer hectares burned in

wildfires.30 Using the same method as above, we substitute this improved efficacy of pre-

scribed burning, leading to a reduction in smoke of about 50%.

emissions w/ X extra Rx burning =
(0.95A− 4.9X) + (0.05A+X) ∗ 0.5

0.95A+ (0.05A) ∗ 0.5

=
0.975A− 4.5X

0.975A

=
1, 702, 144 − 864, 165

1, 702, 144
= 0.49
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• Remove all PM2.5 from smoke. Use the predictions for each grid-cell year when smoke

is set to 0. This functions as an estimate of the overall mortality attributable to PM2.5

from smoke.

• Climate change increases smoke PM2.5 by 25%. Climate change is likely to sub-

stantially increase wildfire burned area, with estimates ranging from a 25% increase in

burned area in parts of the US to many-fold increases.32–34 Here we simulate the impact of

the lower range of those estimate – a 25% increase in burned area – assuming that smoke

PM2.5 increases linearly with burned area and that all portions of the US experience this

25% increase.

• Climate change increases smoke PM2.5 by 50%. This estimate is near the median

estimate for changes in wildfire emissions in California,32 but remains lower than other

estimates.33,34

Changes in the cell-level distribution of smoke are shown in Fig 3a. These changes are then ap-

plied to the three exposure-response functions in Fig 3c, with changes in the mortality rate calcu-

lated as the response-function-specific difference in mortality rate between a given scenario s and

base scenario b, i.e. fr(PMs) − fr(PMb). Changes in mortality rate are calculated at each grid

cell, applied to grid-level population estimates, and then summed across grids to get the change

in elderly premature deaths shown in Fig 3b. For simplicity, we assume that changes in PM2.5

exposure are applied to the current population of elderly, and thus do not account for future pop-

ulation growth in this demographic or changes in the underlying elderly mortality rate.

Comparison of temperature versus smoke mortality impacts under climate

change Existing studies on the impact of climate change in the US find that the impacts of

future temperature change on mortality are by far the largest component of total monetized im-

pacts of climate change.35
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We calculate that a 50% increase in smoke would lead to an average 0.35 µg/m3 change in PM2.5,

which existing dose/response functions indicate would lead to an increase in elderly deaths of be-

tween 9-20 per 100,000 people. Estimates in Hsiang et al35 suggest that each additional degree C

increase in temperature leads to roughly 24 additional deaths per 100,000 elderly people (using

linear function reported in Hsiang et al Table S12).
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Figure S1: Regional trends in organic carbon (OC) particulate concentrations.
a Locations of IMPROVE stations measuring organic carbon and total PM2.5. b. Top
right panels show seasonal trends by region show increasing OC in the Southeast in the
spring, and in the West in the summer, consistent with observed fire activity. c Bottom
plots show time series of OC and total PM2.5 by region; spikes in OC are coincident with
large fire events in most regions.
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Figure S2: The adapted USGS physiographic sections used in the statistical
smoke model.
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Figure S3: Statistical model is robust to alternate approaches to incorporating
fire and smoke data. Our baseline model associates each plume with its likely source
fire, and allows the impact of that plume on station PM2.5 to differ as a function of the
size of the source fire and the distance of the source fire from the location of interest.
Estimates from this baseline model are similar but slightly more conservative than esti-
mates from simpler models that model smoke simply as a function of the count of over-
head plumes (purple line) or the counts of overhead plumes by size (red line), and more
conservative than a model that uses plume size and allows distance to fire to enter non-
linearly (blue line). Spatial patterns across models are also similar, although our baseline
model attributes less smoke to the US midwest (despite that region having a high number
of overhead plumes), consistent with these plumes being from distant fires and their smoke
being higher in the column.12
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Figure S4: Comparison of model performance in predicting overall PM2.5 to
existing benchmarks. Our statistical model shows similar predictive performance to
benchmark remote-sensing/statistical approaches (“van Donkelaar”,42) in predicting vari-
ation in PM2.5 from remote data. a Comparison of predicted versus observed PM2.5 from
our model, evaluated on US monitoring stations on which model was not trained; each dot
is a station-month. a Comparison of observed versus predicted PM2.5 from van Donkelaar,
evaluated on US monitoring stations; these stations contributed to model development in
van Donkelaar.42 c-d Predictive performance of our model and the van Donkelaar model
across years and regions in the US show very similar patterns of performance.
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Figure S5: Comparison of our estimates of attributable PM2.5 from smoke to
other estimates. a-b Comparison with estimates in ref44 for 2008-2012 show similari-
ties in both spatial and temporal patterns of wildfire-attributed annual mean PM2.5. Our
estimates for the Midwest appear higher, perhaps because we include plumes originating
from fires outside the US, which is important in the upper Midwest which is estimated to
receive between 30 and 60 percent of smoke from outside the US.12 c Comparison with es-
timates in ref13 for the Pacific Northwest. O’Dell reports percentages for the July, August,
September season, while our estimates are annual. To create a comparable number we as-
sume that there is 0 smoke PM2.5 in other seasons, and calculate (smoke PM)/(total sum-
mer PM + 3*summer non-smoke pm). e Comparison with ref,45 who generate estimates
of 5 regions in the Western US over the years 1988-2004. Comparison is imperfect as our
estimates are for 2006-2018, but estimates follow a similar regional pattern. Even though
burned area has grown substantially, our estimates are more conservative than Jaffe et al’s
estimates in three regions; our estimates are higher in Regions 4 and 5 (California, Oregon,
Washington) where burned area has grown most rapidly . f Comparison with National
Emissions Inventory estimates of primary PM2.5 emitted from wildfires, aggregated to the
state-year level for 2014 and 2017.
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Table S1: Sensitivity of mean estimated % PM2.5 from wildland fire smoke upon
removal of different covariates from statistical model. Overall estimates are not
sensitive to removal of individual co-variates, but change when all co-variates are removed
and change substantially when fixed effects are also removed, as expected.

None Coal Cattle Mining Traffic All All+FE

13.5% 13.7% 13.3% 13.4% 13.5% 10.1% 2.1%

Table S2: Sensitivity of mean estimated % PM2.5 from wildland fire smoke us-
ing observed total PM2.5 instead of predicted total PM2.5 in denominator. “Ob-
served” total PM2.5 is the average computed from monitoring data each monitoring sta-
tion. The sample is thus limited in this comparison to the subset of locations in our data
that have monitoring stations

Share using modeled PM2.5 Share using observed PM2.5

10.2% 8.5%

Table S3: Model performance across different methods of quantifying PM2.5

from smoke. We compare overall model performance (as measured by r2 between ob-
served PM2.5 and predicted PM2.5) between a model with no smoke or fire variables but
all other inputs, and a model that includes those inputs plus the smoke and fire vari-
ables, coded in different ways. Performance is evaluated on held-out stations on which the
model was not trained. Our baseline model that uses counts of plumes by fire size and dis-
tance explains an additional 6% of variation in observed PM2.5 relative to a model with no
smoke variables. Alternate models that also use fire distance variables perform nearly as
well, and simpler models that use only counts of plumes perform less well.

Binned by fire & distance Weighted by log distance to fire Binned by size of plume Raw count

7.1% 7.0% 5.7% 5.5%
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