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1 Introduction

This paper presents a procedure for estimating and forecasting disease scenarios for

COVID-19 using a simple structural SIR model of the pandemic. An SIR model

is a Markov model of the spread of a pandemic in a population in which the total

population is divided into categories of being susceptible to the disease (S), actively

infected with the disease (I), recovered and no longer contagious (R), or dead (D).

How a pandemic plays out over time is determined by the transition rates at which

people move between these states.

Our procedure for estimating this SIR model and constructing forecasts combines

the flexibility of noteworthy reduced-form approaches for estimating the progres-

sion of the COVID-19 pandemic with the benefits of a simple structural model for

interpreting these estimates and constructing scenarios for the development of the

pandemic going forward. We implement our method to estimate the model using data

on deaths for large states and Census regions of the United States and for a number

of additional countries. We then use the estimated model to conduct counterfactuals

studying how the pandemic would have progressed under alternative scenarios for

mitigating the transmission of the disease and to construct forecasts under various

scenarios for the transmission of the disease going forward.

Our procedure for estimating the SIR model and using it for counterfactuals and

forecasting has three steps.

In step 1, for each geographic region that we consider, we estimate an empirical

specification for cumulative deaths due to COVID-19 observed between an initial

date t0 at which cumulative deaths reaches a threshold of 50 and the present. The

specific empirical specification we consider models the data on daily deaths in the

region as derived from a mixture of Weibull functions. This specification allows for a

very flexible model of the observed data on cumulative deaths, daily deaths, and the

change in daily deaths over time (corresponding to the first and second derivatives

of cumulative deaths with respect to time).
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Conceptually, the estimation conducted in this first step is similar to the widely

cited empirical model for cumulative deaths developed by researchers at the Institute

for Health Metrics and Evaluation (IHME) at the University of Washington.1 See

also Linton (2020)2 for a similar reduced-form approach to modeling the evolution of

cases and deaths over time. Where we differ from these reduced-form approaches to

estimation and forecasting is in how we then use a structural SIR model to interpret

this empirical model of observed deaths due to COVID and to develop counterfactual

scenarios and scenarios for forecasting the progression of the disease in the next two

steps.

In step 2, we use the best available information to choose parameters for the fatality

rate (the fraction of active infections that end in death) and the recovery rate (the

rate per unit time at which people who are actively infected stop being infectious)

of COVID-19, or a range for these parameters to be considered. Given these fatality

and recovery rates, we then use the equations of the SIR model to recover the time

paths of the distribution of the population across states S(t), I(t), R(t), D(t) and the

time path of the effective reproduction number of the disease (the ratio of the rate

at which actively infected people spread the infection to the recovery rate) between

the initial date t0 and the present for which the model fits exactly the empirical

specification for deaths from the initial date t0 to the present estimated in step 1.

Note that our estimates in this step of the evolution of the transmission rate of the

disease over time in different geographies do not use any additional ex-ante structural

assumptions beyond those imposed in our empirical estimates in step 1 and by the

basic assumptions of the SIR model.

In this way, in step 2, we use the SIR model to give a structural interpretation of

the empirical specification for the data on deaths estimated in step 1 in terms of a

full model of the progression of the pandemic. Not only do we uncover an estimate

of the current distribution of the population across states S, I, R and D, but also we

1See the working paper discussion of the IMHE forecasting model here https://www.medrxiv.
org/content/10.1101/2020.04.21.20074732v1

2See updated forecasts at http://covid.econ.cam.ac.uk/linton-uk-covid-cases-predicted-peak
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can use the model to decompose the evolution over time of the effective reproduction

number of the disease in each geographic region into a component due to changes

in the transmission rate of the disease (due to changes in behavior or mitigation

efforts) and a component due to changes in the population of agents that continue

to be susceptible to the disease.

In step 3, we use our structural model to address questions about future scenarios

for the evolution of the pandemic and to conduct counterfactual exercises regarding

how the pandemic would have progressed in a region if the transmission rate of

the disease in that region had followed a different path due to different timing and

severity of disease mitigation efforts. We construct forecast scenarios for the evolution

of the pandemic going forward from the present date by positing alternative paths

for the evolution of the transmission rate of the disease going forward from the

present date and solving the SIR model starting from the current distribution of

the population across states S, I, R and D estimated in step 2. We construct

counterfactual scenarios for the evolution of the pandemic by considering alternative

paths for the transmission rate of the disease both historically (corresponding to

alternative initial timing of mitigation efforts) and going forward and solving the

SIR model starting from the initial distribution of the population across states at

date t0. In this regard, our forecast and counterfactual scenarios are based on a

structural disease model as is done by some leading epidemiological models.3 We see

the transparency of our model estimation approach as one of its key advantages in

helping the reader interpret our forecast and counterfactual results.

We apply this procedure to estimate our SIR model and to construct forecast and

counterfactual scenarios for ten large U.S. states and nine U.S. Census Regions as

well as a number of other countries.

We model the patterns of daily deaths with a mixture of Weibull functions. We

3See, for example https://www.medrxiv.org/content/10.1101/2020.03.21.20040303v2.full.pdf
for a description of the forecasting project at Columbia’s Mailman School of Public Health us-
ing a structural SEIR model that estimates the impact of mitigation measures on the normalized
transmission rate.
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use the Bayesian procedure to fit these functions to daily deaths for each state or

Census region or country. The residual term in this nonlinear regression follows a

Markov-switching process with multiple regimes to capture large spikes of deaths as

random events in one regime and small death fluctuations in another regime. The

number of Weibull functions needed to fit death data is determined by the marginal

data density (the marginal likelihood).

The Bayesian procedure allows us to characterize the uncertainty about the pa-

rameters of Weibull functions by simulating random draws of all the parameters in an

estimated mixture of Weibull functions from the posterior distribution. We feed each

posterior draw of these parameters into our SIR model and solve for paths of all the

SIR model variables such as the transmission rate and the fraction still susceptible

within the sample as well as out of the sample. We then generate the posterior distri-

butions of these model variables, which are used to produce probability (uncertainty)

bands of various variables both in and out of sample.

As of the end of May, 2020, our key findings can be summarized as follows.

First, across almost all regions and countries that we consider, the growth of the

pandemic as measured by its effective reproduction number has fallen dramatically

from the initial date at which cumulative deaths reached 50 and the present. In many

cases, we see declines of the effective reproduction number from levels well above 3

to levels well below 1. This rapid decline in the effective reproduction number of

the disease seen in the regions that we consider accounts for the observation that

infections and deaths have not reached the levels that were forecast by some in mid

March. At the same time, we find that the estimated fraction of the population

that remains susceptible to the disease is very high in almost all regions and the

fraction of the population that is actively infected, while not extraordinarily high, is

substantially larger than it was in early March.

Second, we find that in most regions and countries that we consider, the current

levels of susceptible and infected agents are both sufficiently large to trigger the

rapid emergence of a very large second wave of the pandemic if the relaxation of
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mitigation measures leads to transmission rate of the disease to return to levels seen

in early April (consistent with an effective reproduction number close to 2). Under

this scenario, the pandemic would progress very quickly through the population and

would extinguish itself in 90-100 days. Under this scenario, daily deaths would rise

to very high levels over the next few months — much higher levels than have been

seen in the United States to date, even in New York City. This scenario corresponds

to a devastating but short pandemic.

In contrast, if disease mitigation efforts going forward are successful in constraining

the transmission of the disease to levels similar to those seen in late April (consistent

with an effective reproduction number close to 1.3), then the number of infections

and daily deaths would remain roughly constant or grow only slowly across most

regions for many months going forward. In many regions, under this second scenario,

the cumulative burden of the disease in terms of infections and deaths would be

substantially reduced, but the pandemic would drag on for a long time.

Third, in our counterfactual exercises, we find no consistent pattern across regions

regarding the answer to the question of whether earlier or later mitigation efforts

would have reduced the cumulative death toll from the disease. The answer to this

question regarding the impact of changes in the timing of mitigation on cumulative

deaths depends on the data for each region and on the assumed scenario for the

transmission of the disease going forward from the present date. We illustrate this

finding with a focus on our estimates for Pennsylvania. We consider counterfactual

scenarios under which the decline in the transmission rate of the disease estimated in

these locations started seven days later than is estimated. We show that under one

scenario, this counterfactual timing of the mitigation of the disease leads to a large

increase in long-run cumulative deaths and in another scenario to a large decrease in

long-run cumulative deaths. We give an intuitive explanation for this finding in terms

of the key role played by the fraction of the infected population at the moment when

the population reaches herd immunity in shaping the long-run cumulative deaths

from the disease in an SIR model as noted in Toda (2020) and Rachel (2020).
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To implement our estimation procedure, we have to obtain estimates of the fatality

and recovery rates for COVID-19 from outside sources. In particular, the first two

steps of our estimation procedure highlight the problem of identifying the fatality and

recovery rates of the disease from time series data on deaths alone discussed in Atke-

son (2020), Stock (2020), Korolev (2020), and Lourenco et al. (2020). Specifically,

we obtain the following lack-of-identification result: given any empirical specifica-

tion for data on cumulative deaths that is strictly increasing and twice differentiable,

then, for a large set of parameters for the fatality and recovery rates of the disease,

there exists a path for the transmission rate of the disease over time and an initial

distribution of the population across states (at the initial date t0) for which the SIR

model with these parameters reproduces this specification for the data on deaths

exactly. The only restrictions on the set of fatality and recovery rates implied by the

death data are that the fractions of recovered and infected agents cannot exceed one

and that the effective reproduction number can never be negative.4

Our procedure in step 2 for recovering an estimate of the evolution of the effective

reproduction number over time from the empirical specification for deaths estimated

in step 1 is related to widely cited methods for using data on the evolution of the

number of active infections or deaths over time to estimate the effective reproduction

number of a disease developed in Wallinga and Teunis (2004), Wallinga and Lipsitch

(2006), Cori et al. (2013), and Chowell et al. (2007). Under these methodologies,

the effective reproduction number of a disease at a point in time is obtained from

an estimate of the growth rate of active infections at that point in time and of the

recovery rate of the disease.5 Under the assumption of a constant fatality rate, our

SIR model implies that one can infer the growth rate of active infections from the

growth rate of new deaths. Our empirical specification of daily deaths as following

a mixture of Weibull functions with regime-switching errors allows us a very flexible

4These restrictions put lower bounds on the fatality rate and on the recovery rate.
5Our simple SIR model imposes an exponential distribution of recovery times. More generally,

the length of time over which an infected person is contagious may follow some other distribution
and then one must also estimate the distribution of serial intervals of the disease. See https:
//staff.math.su.se/hoehle/blog/2020/04/15/effectiveR0.html for a discussion.
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model for modeling both the first and second derivatives of cumulative deaths while

also allowing us to deal econometrically with the fact that the observed data on

daily deaths is subject to a great deal of noise. We see the fact that we can construct

Bayesian uncertainty bands for our estimates as one of the primary advantages of

our specific empirical specification.

Our work is related to Fernandez-Villaverde and Jones (2020), who also use the

death data to estimate a similar structural model. Both papers address some common

identification issues related to the fatality and recovery rates. Our paper, however,

differs from their work in several important respects. First, we use the full Bayesian

procedure to characterize the uncertainty of death patterns. This approach enables

us to provide probability bands of all the SIR model variables in and out of the

sample. Second, we focus on the issue of how earlier or later mitigation measures

would have impacted the total death toll from the disease.6 Our estimation shows

a considerable degree of heterogeneity in death impacts across geographic regions.

Third, we provide a critical analysis of how such heterogeneous results are related

to what we call “the IS curve,” which is the phase diagram showing the relationship

between the fractions of the population actively infected and still susceptible as

implied by the structural model. Our estimation reveals rich model dynamics as well

as complex IS relationships across geographic regions as well as forecast scenarios,

an empirical finding that is absent in the literature.

This paper is organized as follows. In section 2, we present the equations of a basic

SIR model and discuss the sources of data used to choose the disease parameters

governing the recovery rate and fatality rate of the disease. In section 3, we present

our procedure for matching the SIR model to empirical estimates of cumulative

deaths outlined as step 2 of our procedure. This presentation is kept general as it can

be applied to any strictly increasing and twice differentiable empirical specification

for cumulative deaths. We contrast our specification to that used by the IHME

6For how this important issue bears on the public debate, see https://www.nytimes.
com/2020/05/20/us/coronavirus-distancing-deaths.html and https://www.medrxiv.org/content/
10.1101/2020.05.15.20103655v2.
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modeling team. In section 4, we present our procedure for estimating our empirical

specification for the deaths data. In section 5, we report our main findings. In section

6, we conclude.

2 A Basic SIR Model:

The SIR model we use is as follows.

The population is set to N . At each moment of time, the population is divided into

four categories (states) that sum to the total population. These states are susceptible

S, infected I, resistant R , and dead D. Agents that are susceptible are at risk of

getting the disease. Agents that are infected are contagious and may pass it on to

others through some form of interaction with susceptible agents. Agents that are

resistant are not at risk of getting the disease, either because they have immunity

built up from a vaccine or from previous experience with this or similar diseases.

Likewise, those who have died from the disease are no longer at risk of getting the

disease. In this specification of the model, we assume that immunity is permanent

so that being resistant R or dead D is an absorbing state. We normalize the total

population N = 1, so all results regarding S, I, R and D should be interpreted as

fractions of the relevant population.

The initial distribution of the population across these states at time t = 0 is given

by S(0) > 0, I(0) > 0, R(0) ≥ 0 and D(0) ≥ 0. For a new disease such as COVID-19,

we assume that all agents are at risk of getting the disease, so that R(0) = D(0) = 0,

S(0) is very close to one, and I(0) is a small number corresponding either to the

initial cases of the disease transmitted to humans from some animal source (as in

Wuhan) or introduced into a country or other local geography through travel.

These fractions of the population evolve over time as follows

dS(t)/dt = −β(t)
S(t)

1−D(t)
I(t)
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dI(t)/dt = β(t)
S(t)

1−D(t)
I(t)− γI(t)

dR(t)/dt = (1− ν)γI(t)

dD(t)/dt = νγI(t)

Since all of the parameters in these equations are positive, agents flow only in one

direction, from the state S to the state I and then to state R or D.

We treat the evolution of the population as deterministic. This may be appropriate

once the disease has infected a large number of individuals, but at the early stage

of a pandemic with a small number of infected agents, it is more appropriate to

think of the evolution of the number of infected agents as stochastic because of

the small number of these agents. We abstract from that issue here, but it is of

substantive importance if one wishes to model the dynamics of the pandemic early

on or contemplates the possibility of completely eliminating the disease (driving

I(t) from a positive number to zero). In light of our use of a deterministic model,

we focus our estimation on relatively large geographic regions and we model the

pandemic starting from an initial date t0 at which point a threshold number of 50

cumulative deaths have occurred. We then apply the model under the presumption

that the Law of Large Numbers allows this deterministic model to be an accurate

representation of the underlying stochastic evolution of the disease and we treat the

errors in our empirical specification of deaths as reporting or measurement errors.

The parameters of the model can be interpreted as follows.

The parameter γ governs the rate at which agents who are infected stop being

infectious and hence stop transmitting the disease. Here we model this as a transition

from the state I to the state R or D. We refer to this parameter as the recovery

rate. Because there is no cure for a viral disease such as COVID-19, this parameter

is considered a fixed parameter determined by the biology of the disease. There is a

range of estimates of this parameter γ taken from clinical observations of data such
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as the length of time agents known to be infected shed the virus7 as well as data

from contact tracing determining who got sick from contact with whom.8 Estimates

for COVID-19 continue to be updated as new data comes in.9. Values of γ between

1/4 and 1/14 are considered in the literature, corresponding to an infectious period

of 4 to 14 days on average. In this paper, we use γ = 1/5. We discuss sensitivity of

our results to this parameter below.

We denote the fatality rate from the disease by ν. That is, ν is the fraction of

infected agents who stop transmitting the disease because they died.10 Measurement

of the fatality rate of the disease is difficult because of incomplete measurement of the

number of infected people and of the number of deaths from COVID-19. There is a

wide range of estimates of this parameter. Early estimates of the fatality rate among

infected people from the Diamond Princess cruise ship in which both infections and

fatalities were well measured are in the range of 1.2%.11 Recent estimates of the

infection fatality rate obtained from trends in the case fatality rate and testing data

worldwide and in the United States lie in the range of 1.0% and 1.3% respectively.12.

The website Worldometer combines data on antibody testing and fatalities for New

York City to estimate and infection fatality rate of 1.4%.13 A number of estimates

based on antibody testing (serology studies) elsewhere imply a much lower infection

fatality rate in the range of 0.2%.14 We consider values of ν = 0.5% as our baseline

value and 1% as an alternative value.

7See, for example He et al. (2020)
8See, for example, Zhao et al. (2020) at https://www.medrxiv.org/content/10.1101/2020.02.21.

20026559v1 and Sanche S (2020) at https://wwwnc.cdc.gov/eid/article/26/7/20-0282 article
9See, for example, this pre-print in Nature https://www.nature.com/articles/s41586-020-2196-x

10For the purposes of this paper, we assume that this death rate is constant and thus independent
of the stress placed on the health care system at points of peak infection. That assumption is clearly
incorrect. Evidence from Wuhan, Italy, and New York City all suggest that case fatality rate from
COVID-19 and the overall mortality rate is much higher in periods of peak infection.

11See https://www.medrxiv.org/content/10.1101/2020.03.05.20031773v2
12See https://www.medrxiv.org/content/10.1101/2020.05.11.20098780v1.full.pdf and https://

www.healthaffairs.org/doi/full/10.1377/hlthaff.2020.00455
13See https://www.worldometers.info/coronavirus/coronavirus-death-rate/
14See https://www.medrxiv.org/content/10.1101/2020.05.13.20101253v1.full.pdf for a recent

summary of such studies.
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The parameter β(t) is the rate at which infected agents spread the virus to (or

“shed” the virus onto) others that they encounter at date t. We refer to this param-

eter as the transmission rate. This parameter is a reduced-form parameter that is

impacted by the biological disease transmission mechanism, the rate at which agents

bump into each other in the course of their daily activities, and the extent to which

agents use prophylactics in their meetings. This parameter can thus be impacted by

mitigation measures such as social distancing, hand washing, and the use of masks,

etc. This parameter is also subject to natural, or apparently random, fluctuations

over time and across space due to changes in the biological disease transmission

mechanism.15

Note in the first two equations governing the flow of agents from the state S to the

state I over time, we assume that the transmission of the disease from infected to

susceptible agents is mitigated through random and uniform matching of agents in

the population as indicated by the term S(t)/(1−D(t)) in those two equations. That

is, we interpret β(t) as capturing the rate at which an infected agent interacts with

and sheds virus onto agents of any kind in the population.16 Under the assumption

that the interaction of infected agents with other agents is random and uniform,

then the the rate at which an infected agent meets a susceptible agent and sheds

virus onto that agent is given by β(t)S(t)/(1 − D(t)). This assumption that the

transmission of the disease is mitigated by random and uniform matching is a very

15Seasonal influenza is an example of a disease whose transmission rate fluctuates regularly
with the weather. The Spanish Flu of 1918-19 came and went in three big waves in the Spring
and Fall of 1918 and the Spring of 1919. It is not fully understood what drove the changes over
time in the transmission rate of that disease. The available data on COVID-19 indicates that
the transmission rate varies tremendously across different geographies. See https://www.cidrap.
umn.edu/sites/default/files/public/downloads/cidrap-covid19-viewpoint-part1 0.pdf for a careful
discussion of natural fluctuation in transmission of similar diseases. See https://www.nytimes.com/
2020/05/03/world/asia/coronavirus-spread-where-why.html for a discussion of geographic variation
in transmission of COVID-19.

16Note that in this simple model, we do not differentiate between infected agents with mild and
severe cases of the disease in terms of their role in spreading the disease. Clearly, the severity of
the disease may impact the spread, particularly since the very sick are likely to stay at home or
go to the hospital. Research is ongoing into the question of the extent to which those who are
infected but asymptomatic spread the disease. See, for example this research in Science https:
//science.sciencemag.org/content/early/2020/03/24/science.abb3221
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stark assumption maintained here for simplicity.

The following notation is useful in presenting our results.

We define the ratio β(t)/γ to be the normalized transmission rate. It is standard

to refer to the value of the normalized transmission rate at the start of the pandemic

before any mitigation measures and use of prophylactics are undertaken as the basic

reproduction number of the disease. We denote this basic reproduction number by

R0 ≡ β(0)/γ. This parameter corresponds to the parameter cited in many news and

academic studies.17

We refer to the term R(t) as the effective reproduction number of the disease

at date t. This effective reproduction number is the ratio of the rate at which

infected agents infect susceptible agents to the recovery rate of infected agents from

the disease at date t when the the pandemic has progressed for some time. In the

model, we assume that the effective reproduction number of the disease is given

by the product of the normalized transmission rate and the fraction of agents who

remain susceptible to the disease, R(t) = (β(t)/γ)S(t)/(1 − D(t)). Thus, in the

model, the effective reproduction number of the disease can differ from the basic

reproduction number for two reasons. First, as discussed above, the normalized

transmission rate β(t)/γ may vary over time with changes in the transmission rate

β(t), either due to steps undertaken to mitigate the transmission rate of the disease

or through naturally occurring changes in the transmission of the disease. Second,

the effective reproduction number falls as the fraction of agents remaining susceptible

to the disease S(t)/(1−D(t)) falls.

With this notation, we can restate the equations of the model in terms of the

effective reproduction number as

dS(t)/dt = −R(t)γI(t) (1)

17The use of the notation R0 to denote the basic reproduction number and the letter R to denote
the fraction of agents who are resistant is an unfortunate choice of notation, but it is standard. See
for example https://mathworld.wolfram.com/Kermack-McKendrickModel.html
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dI(t)/dt = (R(t)− 1) γI(t) (2)

dR(t)/dt = (1− ν)γI(t) (3)

dD(t)/dt = νγI (4)

3 Model Estimation and Identification Strategy

In this section we provide an overview of our strategy for estimating our SIR model

given an empirical specification for the data on cumulative deaths and we discuss

which model parameters are identified in our procedure.

To understand our procedure for estimating our SIR model, consider the following

thought experiment. Assume that we have complete data on cumulative deaths D(t)

in some region from dates t = t0 to T , where t0 is the calendar date on which

cumulative deaths Dt0 are equal to some threshold (we use 50) and T represents the

current period. Assume that we also have data on the first and second derivatives

of cumulative deaths during this time period. These derivatives are continuous time

versions of data on daily deaths and the change in daily deaths. Assume that we do

not have data on the number of agents with active infections or who are resistant.

Consider the following thought experiment based on these assumptions. Imagine

that we fix parameters ν and γ governing the fatality rate and recovery rate of the

disease. What state of the population at date t0, S(t0), I(t0), R(t0) and D(t0) and

course of the time-varying normalized transmission rate β(t)/γ from dates t0 to T

would allow the model to match exactly the data on deaths from t0 to T?

We have the following equations to work with in estimating these additional pa-

rameters of the model. Note that we assume that these equations apply for all t > 0

13



but we only have data on the level and derivatives of cumulative deaths from t ≥ t0.

From (4), we have

I(t) =
1

νγ
dD(t)/dt

Using (3) and (4) together and the assumption that R(0) = D(0) = 0, we have that

R(t) =
1− ν
ν

D(t)

Using that the states must sum to one, we have

S(t) = 1− 1

ν
D(t)− 1

νγ

dD(t)

dt
.

These equations then give the full path of the state of the population from dates t0 to

T . Note that the intuition behind these equations is straightforward. To determine

the number of resistant agents at time t, we simply use the observation that level

of cumulative deaths together with an estimate of the fatality rate of the disease

tells us how many agents are resistant to the disease. To determine the number of

actively infected agents at time t, we use the observation that the level of daily deaths

(the derivative of cumulative deaths) together with an estimate of the fatality and

recovery rates of the disease tells us the number of active infections. The number of

susceptible agents at time t is then one minus these two quantities.

One can measure the effective reproduction number from the growth rate of deaths

as follows. From equation (2), the evolution of the true number of infected agents is

given by

I(t) = I(0) exp(γ

∫ t

0

(R(s)− 1)ds)

From equation (4), we then have that

dD(t)

dt
= νγI(0) exp(γ

∫ t

0

(R(s)− 1)ds)

where this time derivative of deaths is approximated in the data by the daily number
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of new deaths. If we differentiate this expression again, we get

d2D(t)

dt2
= νγ2I(0) exp(γ

∫ t

0

(R(s)− 1)ds)(R(t)− 1)

Thus, we can get an estimate of the effective reproduction number of the disease at

time t from18

R(t) = 1 +
1

γ

d2D(t)
dt2

dD(t)
dt

(5)

To recover the implied path of the normalized transmission rate, note that equation

(5) together with the death data gives the following estimate for the path of the

product of the effective reproduction between dates t0 and T . This estimate together

with the estimate of S(t) above imply that the normalized transmission rate β(t)/γ =

R(t)(1−D(t))/S(t) needed to match the deaths data exactly for t ∈ [t0, T ] is given

by

β(t)

γ
=

1 + 1
γ

d2D(t)

dt2

dD(t)
dt

1− 1
ν
D(t)− 1

νγ
dD(t)/dt

(1−D(t))

This estimation procedure makes clear the identification problem in pinning down

the parameters ν and γ from deaths data alone. In particular, if we start with a prior

for ν and γ, we should not be able to update this prior based on deaths data alone

unless the estimates above result in inadmissable values of implied I(t), R(t) or S(t)

(above 1 or negative) or some implausible path for the normalized transmission rate

β(t)/γ (negative).

To implement this estimation of the SIR model, one must construct an empirical

estimate of the data on cumulative deaths and the first and second derivatives of

cumulative deaths. It is here that our method makes contact with widely noted

reduced-form approaches to estimating the progression of the COVID-19 pandemic.

To illustrate this connection, we discuss the reduced form approach developed by

researchers at the Institute for Health Metrics and Evaluation (IHME) at the Uni-

18Thanks to James Stock for pointing out this calculation.
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versity of Washington.19

We focus on the estimation of the IHME model using data on cumulative deaths.

The simplest version of this model assumes that the path of cumulative daily deaths

from some initial calendar date t0 on is given by

D(t) =
p

2

(
1 +

2√
π

∫ a(t−t0−b)

0

exp(−τ 2)dτ

)

where the parameter p denotes the limiting number of deaths D∞, a is a growth

parameter, and b is an inflection point. This specification produces an implication

for daily deaths (approximated by the derivative of cumulative deaths) given by

dD(t)

dt
=

pa√
π

exp(−a2(t− t0 − b)2)

that peaks at time t = b+ t0 and then falls thereafter. Note that the implied growth

rate of the logarithm of daily deaths is given by

d2D(t)
dt2

dD(t)
dt

= 2a2(b+ t0 − t).

The model is fit to the available data on deaths between the initial date t0 and the

current date, and then the assumed parametric form is used to project daily deaths

beyond the current date. This projection is based on the claim that this parametric

form fits the data for locations that are further along in disease progression. One

can incorporate measures of the extent and timing of mitigation in the estimation as

covariates for the parameters p and b based on experience across locations.

If, as our model implies with a constant fatality rate ν, observed deaths are related

19See the working paper discussion of the IMHE forecasting model here http://www.healthdata.
org/sites/default/files/files/Projects/COVID/RA COVID-forecasting-USA-EEA 042120.pdf
See also a similar model developed at the University of Texas-Austin at https:
//covid-19.tacc.utexas.edu/media/filer public/87/63/87635a46-b060-4b5b-a3a5-1b31ab8e0bc6/
ut covid-19 mortality forecasting model latest.pdf
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to active infections by equation (4), then equation (5) implies that the path of the

effective reproduction number over time implied by the parameters of this empirical

specification for cumulative deaths is given by

R(t) = 1− 2a2

γ
(t− t0 − b)

That is, for our SIR model to replicate this pattern of cumulative deaths, the normal-

ized transmission rate β(t)/γ would have to vary over time so as to produce the path

for the effective reproduction number R(t) = (β(t)/γ)S(t)/(1−D(t) given above.

Note then that this empirical specification implies that the effective reproduction

number falls linearly over time, not only in the period of estimation, but also going

forward beyond the current period.20 Thus, in the context of a structural model,

unless one assumes that the current value of S(t)/(1 − D(t) is substantially below

one, this is equivalent to assuming that the impact of mitigation measures on disease

transmission will continue to lower the transmission rate over time rather than keep

it stable at current levels or even allow it to rise. It is not clear that this is a natural

assumption regarding the impact of lockdowns or other disease mitigation measures

— that their impact on disease transmission would grow over time.

The empirical specification for the deaths data that we use is considerably more

flexible than that used in the IHME model in that it is based on Weibull functions. In

the simplest version of our specification (with one regime), the data on daily deaths

is modeled as

dD(t)

dt
= d

[
b

a

(
t− t0 − c

a

)b−1
exp

(
−
(
t− t0 − c

a

)b)]

where the parameter a > 0 is the scale parameter, b > 0 is the slope parameter, and

c is the location parameter of a Weibull density, while d > 0 allows us to scale this

20Clearly, at some point, this implied effective reproduction number becomes negative, which is
inadmissable. This observation implies that this functional form for cumulative deaths cannot be
reproduced by our SIR model with any set of parameters and time varying transmission rate β(t).
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density function up or down to integrate to d. The implied effective reproduction

number is

R(t) = 1 +
1

γ

[
b− 1

t− t0 − c
− b

a

(
t− t0 − c

a

)b−1]
This prediction for the effective reproduction number given our empirical specifica-

tion for daily deaths can take on various shapes parameterized by a, b, and c. In

particular, with b = 1, the Weibull function implies a constant path for the effective

reproduction number. With b < 1, the implied effective reproduction number rises

over time. With b > 1 it falls over time. This critical dependence on the parameter

b corresponds to the properties of the density of the Weibull distribution here rep-

resenting the pattern of daily deaths itself. With b = 1, daily deaths start at t = t0

at a constant value and decline monotonically as t increases. With b > 1 and c = 0,

daily deaths approach zero as t approaches t0, but the implied effective reproduction

number approaches infinity. With a large enough value of b (say 4), this function

produces a hump-shaped pattern of daily deaths. Setting c > 0 with b > 1 allows

for a finite implied effective reproduction number at t = t0.

4 Empirical Implementation of the Model for Daily

Deaths

In this section we describe and estimate the empirical model that we use for daily

deaths.

Consider a mixture of Weibull functions:

dDt

dt
=

I∑
i=1

wi(t)

{
di
bi
ai

(
t− t0 − ci

ai

)bi−1
exp

[
−
(
t− t0 − ci

ai

)bi]}
, (6)

where ai > 0 is the scale parameter, bi > 0 is the slope parameter, ci < t − t0

is the location parameter, di > 0 is the height parameter, the weight parameter
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wi(t) is positive for all i and t, I is a positive integer indicating the number of

mixtures, and
∑I

i=1wi(t) = 1. The term in the curly bracket on the right-hand side

of equation (6) is the three-parameter Weibull distribution density function scaled

by di. In the I = 2 case, we set, w1(t) = e−s(t−m)/(1 + e−s(t−m)), where s is the

steepness parameter and the parameter m represents the sigmoid’s midpoint.

Let ∆DData
t be the measured object for dDt/dt and denote

∆Dt,Data ≡
{

∆DData
t , ∆DData

t−1 , ∆DData
t−2 , . . .

}
, ∆DData ≡

{
∆DData

t0
, · · · , DData

T

}
.

Given the discrete-time data, we approximate continuous-time equation (6) by first

estimating the non-linear regime-switching equation

∆DData
t =

2∑
i=1

wi(t)

{
di
bi
ai

(
t− t0 − ci

ai

)bi−1
exp

[
−
(
t− t0 − ci

ai

)bi]}
+ σktεt, (7)

where εt is a state-dependent standard normal random residual. The switching state

kt ∈ {1, . . . ,K} can accommodate both an expectedly large surge in daily deaths

and a low death volatility typically associated with a low number of deaths. Since

the first term on the right-hand side of equation (7) can be very large for some

t, moreover, negative values of εt allow for actual daily deaths substantially lower

than the value implied by the first term on the right-hand side of equation (7). The

transition matrix Qk = [qki,j] for kt is unrestricted except that each column of Qk

sums to one. For our deterministic SIR model to offer an accurate account of health

consequences of the pandemic, we set t0 at the time when the number of deaths

accumulates to 50.

Denote a collection of the parameters by

θ =
{
s,m, a1, b1, c1, d1, a2, b2, c2, d2, σ1, · · · , σK, qki,j

}
.

From equation (7) one can derive the (log) conditional likelihood function for ∆Dt,Data
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as

logL
(
∆DData

t | ∆Dt−1,Data, kt, θ
)

=

logL
(
∆DData

t | kt, θ
)

= −T − t0
2

log(2π)−
T∑
t=t0

log(σkt)

−
T∑
t=t0

[
∆DData

t −
∑I

i=1wi(t)

{
di

bi
ai

(
t−t0−ci

ai

)bi−1
exp

[
−
(
t−t0−ci

ai

)bi]}]2
2σ2

kt

. (8)

It follows that the likelihood function for ∆DData is

L
(
∆DData | θ

)
=

T∏
t=t0

K∑
kt=1

[
L
(
∆DData

t | ∆Dt−1,Data, kt, θ
)
p
(
kt | ∆Dt−1,Data, θ

)]
. (9)

Given the initial condition p
(
kt0−1 = 1 | ∆Dt0−1,Data, θ

)
= 1/K, the predictive prob-

ability of regime, p
(
kt | ∆Dt−1,Data, θ

)
, can be updated recursively through Hamilton

(1989)’s filter as

p
(
kt | ∆Dt−1,Data, θ

)
=

K∑
kt−1=1

qkt,kt−1 p
(
kt−1 | ∆Dt−1,Data, θ

)
(10)

and

p
(
kt | ∆Dt,Data, θ

)
=

L
(
∆DData

t | ∆Dt−1,Data, kt, θ
)
p
(
kt | ∆Dt−1,Data, θ

)∑K

kt=1 [L (∆DData
t | ∆Dt−1,Data, kt, θ) p (kt | ∆Dt−1,Data, θ)]

. (11)

Let p(θ) be the prior pdf. Specifically, we take p(θ) to be the Gamma distribution

for ai, bi, di, s, and m, the uniform distribution for ci and σkt ,
21 and the Dirichlet

21The linear regression literature only uses the inverse Gamma distribution for σkt as conjugate
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distribution for the elements of Qk. It follows that the log posterior density function

of θ is

log p
(
θ | ∆DData

)
= logL

(
∆DData | θ

)
+ log p(θ)− log p

(
∆DData

)
, (12)

where p
(
∆DData

)
is the marginal data density (MDD). For each case (i.e., state,

Census region, or country), we use the MDD to select the number of mixtures, I.

5 Findings

The data sources for daily deaths are New York Times for U.S. states and regions

and Johns Hopkins University for other countries. We do not smooth the data with

a preset filter but rather estimate the death pattern using the Bayesian procedure

presented in Section 4. The estimation enables us to incorporate the uncertainty

about deaths into our structural model.

We present estimates, forecasts, and counterfactual exercises for ten large U.S.

states, nine U.S. Census Regions, and a number of additional countries. The ten

states we consider are New York, New Jersey, Massachusetts, Michigan, Pennsyva-

nia, Illinois, California, Connecticut, Louisiana and Maryland. The Census Regions

are South Atlantic, East North Central, Mountain, West North Central, West South

Central, Pacific, and New England. The additional countries that we consider are

the United Kingdom, Italy, France, Spain, Brazil, Belgium, Germany, Iran, Mexico,

Canada, Netherlands, Sweden India, Peru, Russia, and Switzerland. The presenta-

tion is ordered from most deaths to least deaths on May 21, 2020 first for states,

then for Census regions, and finally for countries.

For each region, we start the estimation at a region specific date t0 at which

prior. For our nonlinear regression here, the inverse Gamma prior is no longer conjugate. Moreover,
since the death data implies that the values of σkt

are far less than one, the inverse Gamma prior
only with no moments can cover such small values. This makes the inverse Gamma prior not only
undesirable but also unpractical.
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cumulative deaths first reach 50 and let T denote the number of days in the estimation

period. We then present forecast and counterfactual scenarios for an additional time

period equal to twice the number of days in the estimation period (2T ).

We consider two forecast scenarios for each state, region, or country. In the first

forecast scenario, we set the normalized transmission rate to βt/γ = 2 from the end

of the estimation period to the end of the forecast period. In the second forecast

scenario, we set the normalized transmission rate to βt/γ = 1.3 from the end of the

estimation period to the end of the forecast period.

To construct counterfactual scenarios, we shift the estimated/forecast path for the

normalized transmission rate β(t)/γ back by seven days and fill in the first seven days

of this counterfactual path for the transmission rate of the disease with its initial

value β(0)/γ. That is, the counterfactual path for the normalized transmission rate

is given by β̃(t + 7)/γ = β(t)/γ for t ≥ 0 and β̃(s)/γ = β(0)/γ for 0 ≤ s < 7. Note

that this shift is for both the estimation and forecast period. Thus, there are two

counterfactual scenarios for each state, region, or country, corresponding to the two

forecast scenarios outlined above. We interpret this shift as corresponding to a one-

week delay in the imposition and relaxation of mitigation measures. Mechanically,

given our estimation of a rapidly declining effective reproduction number early on in

the estimation period in nearly all regions, this counterfactual corresponds to adding

a week of rapid transmission of the disease after the region reaches 50 cumulative

deaths beyond what actually occurred.

We present our results in a collection of tables and figures below.

5.1 Organization of the figures and tables

For each state, census region, and country considered, we present our estimation,

forecast, and counterfactual results in a collection of four figures.

In each case, the first figure, with two panels, shows the data on daily and cumu-

22



lative deaths over the estimation period with the estimated Weibull specification for

daily and cumulative deaths.

The second figure, also with two panels, shows our estimated and forecast paths

for daily and cumulative deaths under the two forecast scenarios that we consider.

The normalized transmission rate after the estimation period is set to 1.3 for the

first forecast scenario (blue curve) and 2 for the second forecast scenario (red curve),

except for West South Central where the normalized transmission rate is set to 1.9

for the second forecast scenario.

The third figure has six panels that shows other model outcomes for the estima-

tion and forecast period under the two forecast scenarios. These are the effective

reproduction number, the normalized transmission rate, the fraction of the popu-

lation remaining susceptible, the fraction actively infected, the fraction resistant,

and the change in daily deaths (the second derivative of our empirical specification

for cumulative deaths). Outcomes under the forecast scenario with the normalized

transmission rate set to 1.3 after the estimation period are shown in blue and with

the normalized transmission rate set to 2 after the estimation period are shown in

red.

The fourth figure also has six panels. These panels show six model outcomes for

the estimation and forecast periods under our counterfactual scenarios. These are

the effective reproduction number, the fraction remaining susceptible, daily deaths,

cumulative deaths, the normalized transmission rate (the counterfactual), and the

fraction of the population actively infected.

In tables 1 and 2, we summarize the results of our counterfactual experiments

across states and census regions (table 1) and countries (table 2) by showing the

number of cumulative deaths at the end of the forecast period for the two baseline

and counterfactual scenarios (normalized transmission rates for the forecast period

equal to 1.3 and 2 respectively).

In tables 3 and 4 we show how the change in the effective reproduction number
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over the estimation period for New York and the United Kingdom is decomposed

into a change in the normalized transmission rate and a change in the fraction of

agents still susceptible to the disease.

5.2 Key Findings

Consider our key findings.

5.2.1 Decline in the transmission of the disease in the estimation period

Across almost all regions and countries that we consider, the growth of the pandemic,

as measured by its effective reproduction number, has fallen dramatically from the

initial date at which cumulative deaths reached 50 to the present (the end of the

estimation period marked by a vertical line in the figures). In many cases, we see

declines of the effective reproduction number from levels well above 3 to levels well

below 1.

In almost all regions, we see that the decline in the effective reproduction number

has occurred primarily through a reduction in the normalized transmission rate rather

than through a decline in the fraction of the population remaining susceptible to the

disease. We illustrate this point in greater detail in Tables 3 and 4.

This rapid decline in the effective reproduction number of the disease seen in the

regions that we consider accounts for the observation that infections and deaths have

not reached the levels that were forecast by some in mid March. In fact, across the

regions that we study, we see within the estimation period a clear first wave in terms

of daily deaths — these have peaked and begun to decline rather than continue to

grow to very high levels.

Our estimation also indicates that in almost all states, Census regions, and coun-

tries, the fraction of the population that remains susceptible to the disease is still

quite high and the fraction of the population with active infections, while not ex-
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traordinarily high, is considerably higher than it was in mid-March. These findings

regarding the current distribution of the population across the states S, I, R, and

D then play an important role in shaping our forecast scenarios.

5.2.2 Forecast scenarios

Our two forecast scenarios for the normalized transmission rate of the disease go-

ing forward (1.3 in blue and 2 in red) correspond to normalized transmission rates

seen in many states, regions, and countries late and early in the estimation period

respectively. We see in our forecast scenarios in red with a normalized transmission

rate of 2, the threat of a severe second wave of infections and daily deaths that in

many cases is much larger than the first wave (in New York these are of roughly

equal size). In this second forecast scenario, this large second wave would be over

in about 100 days from the end of the estimation period. In most cases, under our

forecast scenario with the normalized transmission rate set to 1.3, we also have a

second wave of daily deaths and infections, but this second wave is milder and lasts

longer. These forecast scenarios of a second wave are driven by our estimates that

the fraction of the population that remains susceptible to the disease is very high in

almost all regions and the fraction of the population that is actively infected, while

not extraordinarily high, is substantially larger than it was in early March.

In terms of the cumulative burden of the disease, we see that these two forecast

scenarios have dramatically different implications for cumulative deaths at the end of

the forecast period. In each case, the forecast scenario with the normalized transmis-

sion rate at 2 results in substantially more daily deaths than that with the normalized

transmission rate at 1.3. To see this point, compare the cumulative deaths reported

in tables 1 and 2 under the columns labeled baseline scenario 1 (with normalized

transmission rate 1.3) and baseline scenario 2 (with normalized transmission rate 2).

It remains to be seen whether it will be possible to keep the normalized transmis-

sion rate as low as considered in our blue scenario for the next 100 days or so. Note

that the fraction of agents still susceptible under this milder scenario remains high
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at the end of the forecast period in many regions. This observation implies that,

under this scenario, regions that did succeed in keeping the normalized transmission

rate low for the next 100 days or more would still be vulnerable to a large increase

in daily deaths and infections were the transmission rate to rise substantially above

1.3 after the end of the forecast period.

5.3 Counterfactuals

Perhaps most interesting are our counterfactual results regarding the implications

for changes in the timing of mitigation of disease transmission on the cumulative

number of deaths from the disease over the long run. Recall that we consider a

counterfactual scenario under which the path of the normalized transmission rate

through time is pushed back seven days in both the estimation and forecast period.

Because we have two forecast scenarios, we thus have two counterfactual scenarios

as well, corresponding to the assumed path of the normalized transmission rate after

the estimation period. Results on counterfactual model outcomes including active

infections and daily deaths for both the estimation and forecast periods are shown in

the fourth figure for each state, Census region, and country. Recall that the vertical

lines in these figures mark the end of the estimation period. Results on cumulative

deaths at the end of the forecast period under these two counterfactual scenarios are

reported in tables 1 and 2 for each state, Census region, and country.

One can see in the lower left panel (first panel of the third row) of the fourth

figure for each state, Census region, and country, the counterfactual normalized

transmission rate considered, with that in the scenario corresponding to a normal-

ized transmission rate in the forecast period of 1.3 shown in blue and that with a

normalized transmission rate of 2 in the forecast period shown in red. In each of

these figures, one can see the small flat portion at the start of the estimation period

which is where we are assuming that rapid transmission of the disease would have

continued for seven days after the region first reached the threshold of 50 deaths.
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We report on the counterfactual paths of daily deaths in the first panel of the

second row and on active infections in the second panel of the third row of this

figure of counterfactual outcomes. In many regions, the counterfactual paths for the

normalized transmission rate result in a significantly larger first peak of daily deaths

and infections in the estimation period. This finding confirms the common wisdom

that delayed mitigation of the disease in this early phase of the pandemic would have

resulted in a more severe first wave than actually occurred. Corresponding to this

observation, this counterfactual also typically results in a significantly larger number

of cumulative deaths (shown in the second panel of the second row) at the end of

the estimation period than actually occurred.

But what do these counterfactual scenarios imply for the cumulative number of

deaths in the longer run at the end of the forecast period? Here the results can

go either way — a seven day delay in the reduction (and subsequent increase) in

the normalized transmission rate can result in either an increase or a decline in the

number of cumulative deaths at the end of the forecast period.

This finding can be seen most clearly in tables 1 and 2. For New York, we see that

the counterfactual number of cumulative deaths at the end of the forecast period

is either substantially or mildly larger than that under the baseline paths for the

normalized transmission rate. For California, we see that the counterfactual out-

comes for cumulative deaths at the end of the forecast period hardly differ from the

baseline.

But this is not always the case. For Pennsylvania, and for the aggregate for the

United States, we see that the counterfactual number of cumulative deaths at the

end of the forecast period under the scenario with a normalized transmission rate

equal to 2 during the forecast period is actually lower than the baseline number, and

for Pennsylvania in particular this difference is quite large. We see the same result

that the counterfactual cumulative deaths at the end of the forecast period are lower

than the baseline cumulative deaths under scenario 2 for Italy, Brazil, Iran, Canada,

and Switzerland.
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How should one understand this result? Here, as suggested by Rachel (2020),

examination of the phase diagram of the model is quite useful for building intuition

for this result. We show such a phase diagram for our two baseline and counterfactual

scenarios in the case of Pennsylvania in figure 24. Each of the two panels of this figure

show the model outcomes for S(t) on the x-axis and I(t) on the y-axis in the first

scenario (with the normalized transmission rate after the estimation period set to

1.3) on the left and in the second scenario (with the normalized transmission rate

set to 2) on the right. There is a vertical line in each figure marking the point of

herd immunity once the normalized transmission rate reaches it long run value. For

the first scenario, this is at S = 1/1.3. For the second scenario, this is at S = 1/2.

One can use this figure to understand the model dynamics as follows. The model

outcomes start at S(t0) very close to one and I(t0) very small at the extreme lower

right part of the panel. The long run outcome for S(t) as t gets very large must

occur at a point to the left of the vertical line in the panel — in the long-run, active

infections do not decline unless the population has herd immunity relative to the

long-run value of the normalized transmission rate marked by the vertical line in the

figure.

But exactly how far to the left of the vertical line marking herd immunity the

fraction of the population that is susceptible at the end of the pandemic lands when

infections shrink to zero depends on what fraction of agents are actively infected at

the moment in the forecast period that the population reaches that point of herd

immunity. If that fraction is high, then it will take a long time for the number of

active infections to decline to zero and many more susceptible agents will be infected

in the long run. If that fraction is low, then, the remaining active infections will die

out quickly and the fraction of agents remaining susceptible in the long run will end

up close to the line marking herd immunity. Counterfactual changes in the timing

of mitigation as represented by a delay in the decline of the normalized transmission

rate can thus raise or lower the long run burden of the disease, measured as one minus

the fraction of susceptible agents left in the long run, depending on the impact of

these changes on the fraction of agents actively infected when the population reaches
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herd immunity in the forecast period.

Consider first the left panel in figure 24 showing the evolution of S(t) and I(t) for

Pennsylvania in our baseline and counterfactual scenarios in which the normalized

transmission rate is 1.3 during the forecast period. In this case, in the baseline

scenario, the early decline in the effective reproduction number as estimated implied

that the fraction of agents still susceptible at the end of the estimation period is

above that needed to achieve herd immunity in the forecast period (1/1.3). Thus, in

the forecast period, we see a second wave in the solid black line, as infections rise,

reach herd immunity, and then fall. In contrast, under the counterfactual for this

scenario, the seven-day delay in initial decline in the transmission of the disease leads

to a very large first wave of infections — so large that infections are very high at

the point at which they start to decline in the forecast period due to herd immunity.

Thus, in this counterfactual scenario as shown by the dotted pink line, the long run

fraction of the population that is still susceptible is quite a bit smaller than under

the baseline scenario, resulting in a substantial increase in the long-run number of

deaths.

But now consider the right panel in figure 24. This panel shows the evolution of

S(t) and I(t) for Pennsylvania in our baseline and counterfactual scenarios in which

the normalized transmission rate is 2 during the forecast period. In this case, the

ordering for cumulative long-run deaths is reversed. Under the baseline scenario

shown in the solid black line, the first wave of the pandemic is very small. Thus,

when the second wave builds during the forecast period, it builds to a high level of

active infections at the point at which the population hits herd immunity, and the

fraction of the population that remains susceptible in the long run is very low. In

contrast, under the counterfactual scenario in this case, because the first wave of the

pandemic is larger, the population actually reaches herd immunity before the end of

the estimation period and active infections at the start of the forecast period are so

low that the pandemic dies out very quickly once that period starts. Thus, in this

case, a delay in mitigation leading to a larger first wave of infections leads, in the

long run, to a smaller cumulative death toll.
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One can see how these rich model dynamics make it very difficult to draw firm

conclusions about the impact of changes in the timing of mitigation measures on the

long run cumulative death toll by considering alternative counterfactual scenarios

with a shorter delay of mitigation of 5 days (shown in figure 25) and a longer delay

of mitigation of 14 days (shown in figure 27). In the left panel of figure 25, we see

that a five day delay of mitigation would have had no impact on cumulative deaths

if the normalized transmission rate was 1.3 in the forecast period, while in the right

panel of that figure, we see that the five day delay would again have been helpful in

reducing the cumulative death toll. In contrast, in figure 27, we see that a 14 day

delay in mitigation would have resulted in an increase in the cumulative death toll

under both scenarios for the normalized transmission rate during the forecast period.

5.4 Uncertainty bands

We simulate 100, 000 random draws from the posterior probability distribution p
(
θ | ∆DData

)
and use these draws to generate 68% probability bands of various SIR model vari-

ables as they provide an informative description of the posterior shape (Sims and

Zha, 1999).22 Using Pennsylvania as an example, we report these uncertainty bands

in figures 21, 22, and 23. As one can see from the left panel of figure 21, the posterior

distribution is skewed. During April 22-28, for instance, the posterior mode (the solid

line) is outside and above the 68% probability bands, indicating that the posterior

distribution is skewed downward to reflect the sudden drops in daily deaths. During

May 6-10, the posterior mode is below the 68% probability bands, indicating that

the posterior distribution is skewed upward to reflect a large rise in daily deaths. For

cumulative deaths, the 68% probability bands contain the actual observations (right

panel of figure 21).

The left panel of figure 22 displays 68% probability bands of daily deaths under

our two scenarios of the normalized transmission rate. After cumulating these daily

22On our standard modern desktop, this whole computation process takes about 192 minutes.
The program is coded up in a combination of C++ and Matlab.
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deaths, the right panel of the figure shows a large degree of uncertainty about the

total death toll. This uncertainty can be explained by figure 23, which shows that

the posterior distribution for the normalized transmission rate is skewed downward

during the 25-day period around the end of the sample because the mode estimate

is above the 68% probability bands for both forecast scenarios. As a result, the

68% probability bands for the effective reproduction number stay below the mode

estimate during the same period, even though there is more probability assigned

to larger values of S(t)/N(t) than the mode estimate. A majority of the posterior

probability of Rt below the mode estimate explains a large probability of daily and

cumulative deaths that stay below the mode estimate at the beginning of the forecast

period.

6 Conclusion

In this paper, we have presented a method for estimating a structural SIR model

of the COVID-19 pandemic that shares the flexibility of reduced-form models of the

evolution of this pandemic with a structural model for forecasting and counterfactual

exercises. Our Bayesian approach allows us to not only quantify the uncertainty in

our estimates, but also to model the impact of that uncertainty on our forecasts and

counterfactual exercises.

We have estimated the model and used it to construct forecast and counterfactual

scenarios for ten large states, nine Census regions, and a number of other countries.

In further work, we plan to update, on a regular basis, our estimates and forecast

and counterfactual scenarios along with uncertainty bands.
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Table 1: Cumulative deaths at the end of the forecast period in the U.S.

Forecast scenario 1 Forecast scenario 2
Baseline Counterfactual Baseline Counterfactual

New York 30445 69813 65121 69820
New Jersey 13330 31665 30515 31670
Massachusetts 11012 29687 24943 29687
Michigan 12913 29253 37919 29298
Pennsylvania 24091 32129 49266 34976
Illinois 22053 34844 48792 35216
California 65520 64554 156294 153612
Connecticut 5943 11227 12652 11250
Louisiana 6500 6247 17476 16445
Maryland 9618 9282 23304 21790
South Atlantic 26493 26624 75837 75014
East North Central 33264 33430 84574 83210
Mountain 21224 19395 53254 51699
West North Central 97385 87613 235799 206431
West South Central 43001 41894 94255 92832
East South Central 46055 51710 137284 135278
Pacific 602546 1129696 1223241 1129868
New England 5644 5750 17200 15943
United States 1046592 1645000 2322605 2154219

Notes : The forecast period is twice the length of the sample. United States is the
sum of all the states and Census regions in the table, which excludes Guam, Virgin
Islands, and Puerto Rico.
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Table 2: Cumulative deaths at the end of the forecast period in other countries

Forecast scenario 1 Forecast scenario 2
Baseline Counterfactual Baseline Counterfactual

U.K. 115956 286394 254075 286395
Italy 92459 148948 229217 150001
France 89300 319872 249636 319872
Spain 52443 216733 175925 216733
Brazil 405437 459211 833790 650367
Belgium 9496 57065 42731 57065
Germany 19365 376174 330263 376174
Iran 151722 255019 328282 255027
Mexico 197887 228343 505847 490486
Canada 55320 137496 146871 137513
Netherlands 20236 76655 66105 76655
Sweden 16119 36687 39429 36690
India 438907 695507 5431452 5424026
Peru 54424 74823 128451 95568
Russia 101381 207897 577874 567162
Switzerland 4404 10059 33603 29165

Notes : The forecast period is twice the length of the sample.
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Table 3: Decomposition of changes in effective reproduction number Rt: New York

Day ∆10 logRt ∆10 log βt ∆10 log S(t)
N(t)

βt (%) S(t)
N(t)

(%)

10 -0.547 -0.515 -0.0316 94.23 5.77
20 -0.576 -0.461 -0.1149 80.07 19.93
30 -0.286 -0.205 -0.0813 71.63 28.37
40 -0.104 -0.048 -0.0562 45.88 54.12
50 -0.098 -0.067 -0.0316 67.86 32.14
60 -0.099 -0.084 -0.0151 84.83 15.17

Notes : The symbol ∆10 denotes a change every 10 days (i.e., in a 10-day time
interval). In the row for Day 30, for instance, the change is from Day 20 to Day 30.

The last two columns report the percentage contributions of log βt and log S(t)
N(t)

with
a 10-day interval. If the signs are opposite in the last two columns, the percentage
contribution can be over 100%.

Table 4: Decomposition of changes in effective reproduction number Rt: United Kingdom

Day ∆10 logRt ∆10 log βt ∆10 log S(t)
N(t)

βt (%) S(t)
N(t)

(%)

10 -1.194 -1.188 -0.0060 99.50 0.50
20 -0.257 -0.237 -0.0195 92.40 7.60
30 -0.340 -0.306 -0.0331 90.25 9.75
40 0.028 0.049 -0.0205 172.28 -72.28
50 -0.054 -0.032 -0.0223 58.90 41.10
60 -0.048 -0.029 -0.0194 59.52 40.48

Notes : The symbol ∆10 denotes a change every 10 days (i.e., in a 10-day time
interval). In the row for Day 30, for instance, the change is from Day 20 to Day 30.

The last two columns report the percentage contributions of log βt and log S(t)
N(t)

with
a 10-day interval. If the signs are opposite in the last two columns, the percentage
contribution can be over 100%.
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Figure 1: Data and fitted paths of deaths in New York. The death pattern is fitted with one
Weibull function.
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Figure 2: Estimated and forecast deaths for New York. The vertical line marks the end of the
sample.
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Figure 3: Estimated and forecast paths for New York. The vertical line marks the end of the
sample.
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Figure 4: Counterfactual paths for New York. The vertical line marks the end of the sample.
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Figure 5: Data and fitted paths of deaths in New Jersey. The death pattern is fitted with one
Weibull function.
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Figure 6: Estimated and forecast deaths for New Jersey. The vertical line marks the end of the
sample.
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Figure 7: Estimated and forecast paths for New Jersey. The vertical line marks the end of the
sample.
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Figure 8: Counterfactual paths for New Jersey. The vertical line marks the end of the sample.
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Figure 9: Data and fitted paths of deaths in Massachusetts. The death pattern is fitted with one
Weibull function.

0 50 100 150

0

100

200

300

400

500

600

0 50 100 150

0

5

10

15

20

25

Massachusetts

Figure 10: Estimated and forecast deaths for Massachusetts. The vertical line marks the end of
the sample.
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Figure 11: Estimated and forecast paths for Massachusetts. The vertical line marks the end of
the sample.
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Figure 12: Counterfactual paths for Massachusetts. The vertical line marks the end of the sample.
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Figure 13: Data and fitted paths of deaths in Michigan. The death pattern is fitted with one
Weibull function.
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Figure 14: Estimated and forecast deaths for Michigan. The vertical line marks the end of the
sample.

46



0 50 100 150
0

1

2

3

4

0 50 100 150
0

1

2

3

4

0 50 100 150
0.2

0.4

0.6

0.8

1

0 50 100 150
0

2

4

6

8

10

12

0 50 100 150
0

20

40

60

80

0 50 100 150
-60

-40

-20

0

20

40

60

Michigan

Figure 15: Estimated and forecast paths for Michigan. The vertical line marks the end of the
sample.
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Figure 16: Counterfactual paths for Michigan. The vertical line marks the end of the sample.
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Figure 17: Data and fitted paths of deaths in Pennsylvania. The death pattern is fitted with two
Weibull functions.
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Figure 18: Estimated and forecast deaths for Pennsylvania. The vertical line marks the end of
the sample.
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Figure 19: Estimated and forecast paths for Pennsylvania. The vertical line marks the end of the
sample.
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Figure 20: Counterfactual paths for Pennsylvania. The vertical line marks the end of the sample.
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Figure 21: Data and fitted paths of deaths in Pennsylvania. The death pattern is fitted with two
Weibull functions. The solid curve represents the estimated path at the posterior peak. The 68%
probability bands are represented by the dashed curve (the 16% percentile) and the dash-dotted
curve (the 84% percentile)
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Figure 22: Death paths with uncertainty bands under the two scenarios for the normalized trans-
mission rate during the forecast period. The vertical line marks the end of the sample. The star
or diamond curve represents the path estimated at the posterior peak. The 68% probability bands
are represented by the dashed curve (the 16% percentile) and the dash-dotted curve (the 84%
percentile)
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Figure 23: Estimated and forecast paths with uncertainty bands under the two scenarios for the
normalized transmission rate during the forecast period. The vertical line marks the end of the
sample. The star or diamond curve represents the path estimated at the posterior peak. The 68%
probability bands are represented by the dashed curve (the 16% percentile) and the dash-dotted
curve (the 84% percentile)
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Figure 24: The IS curves under the two forecast scenarios with an initial delay of 7 days.

55



0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

Pennsylvania

Figure 25: The IS curves under the two forecast scenarios with an initial delay of 5 days.
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Figure 26: The counterfactual death paths under two forecast scenarios with an initial delay of 5
days. The vertical line marks the end of the sample.
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Figure 27: The IS curves under the two forecast scenarios with an initial delay of 14 days.
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Figure 28: The counterfactual death paths under two forecast scenarios with an initial delay of
14 days. The vertical line marks the end of the sample. The red and blue curves are on top of each
other so that it is almost indistinguishable by eye.
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Figure 29: Data and fitted paths of deaths in Illinois. The death pattern is fitted with one Weibull
function.
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Figure 30: Estimated and forecast deaths for Illinois. The vertical line marks the end of the
sample.
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Figure 31: Estimated and forecast paths for Illinois. The vertical line marks the end of the sample.
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Figure 32: Counterfactual paths for Illinois. The vertical line marks the end of the sample.
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Figure 33: Data and fitted paths of deaths in California. The death pattern is fitted with one
Weibull function.
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Figure 34: Estimated and forecast deaths for California. The vertical line marks the end of the
sample.
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Figure 35: Estimated and forecast paths for California. The vertical line marks the end of the
sample.
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Figure 36: Counterfactual paths for California. The vertical line marks the end of the sample.
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Figure 37: Data and fitted paths of deaths in Connecticut. The death pattern is fitted with one
Weibull function.
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Figure 38: Estimated and forecast deaths for Connecticut. The vertical line marks the end of the
sample.
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Figure 39: Estimated and forecast paths for Connecticut. The vertical line marks the end of the
sample.
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Figure 40: Counterfactual paths for Connecticut. The vertical line marks the end of the sample.
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Figure 41: Data and fitted paths of deaths in Louisiana. The death pattern is fitted with one
Weibull function.
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Figure 42: Estimated and forecast deaths for Louisiana. The vertical line marks the end of the
sample.
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Figure 43: Estimated and forecast paths for Louisiana. The vertical line marks the end of the
sample.
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Figure 44: Counterfactual paths for Louisiana. The vertical line marks the end of the sample.
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Figure 45: Data and fitted paths of deaths in Maryland. The death pattern is fitted with one
Weibull function.
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Figure 46: Estimated and forecast deaths for Maryland. The vertical line marks the end of the
sample.
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Figure 47: Estimated and forecast paths for Maryland. The vertical line marks the end of the
sample.
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Figure 48: Counterfactual paths for Maryland. The vertical line marks the end of the sample.
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Figure 49: Data and fitted paths of deaths in Maryland. The death pattern is fitted with one
Weibull function.
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Figure 50: Estimated and forecast deaths for Maryland. The vertical line marks the end of the
sample.
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Figure 51: Estimated and forecast paths for Maryland. The vertical line marks the end of the
sample.
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Figure 52: Counterfactual paths for Maryland. The vertical line marks the end of the sample.
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Figure 53: Data and fitted paths of deaths in the South Atlantic region. The death pattern is
fitted with one Weibull function.
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Figure 54: Estimated and forecast deaths for the South Atlantic region. The vertical line marks
the end of the sample.
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Figure 55: Estimated and forecast paths for the South Atlantic region. The vertical line marks
the end of the sample.
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Figure 56: Counterfactual paths for the South Atlantic region. The vertical line marks the end
of the sample.
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Figure 57: Data and fitted paths of deaths in the East North Central region. The death pattern
is fitted with one Weibull function.
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Figure 58: Estimated and forecast deaths for the East North Central region. The vertical line
marks the end of the sample.
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Figure 59: Estimated and forecast paths for the East North Central region. The vertical line
marks the end of the sample.
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Figure 60: Counterfactual paths for the East North Central region. The vertical line marks the
end of the sample.
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Figure 61: Data and fitted paths of deaths in the Mountain region. The death pattern is fitted
with one Weibull function.
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Figure 62: Estimated and forecast deaths for the Mountain region. The vertical line marks the
end of the sample.
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Figure 63: Estimated and forecast paths for the Mountain region. The vertical line marks the
end of the sample.
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Figure 64: Counterfactual paths for the Mountain region. The vertical line marks the end of the
sample.
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Figure 65: Data and fitted paths of deaths in the West North Central region. The death pattern
is fitted with one Weibull function.
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Figure 66: Estimated and forecast deaths for the West North Central region. The vertical line
marks the end of the sample.
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Figure 67: Estimated and forecast paths for the West North Central region. The vertical line
marks the end of the sample.
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Figure 68: Counterfactual paths for the West North Central region. The vertical line marks the
end of the sample.
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Figure 69: Data and fitted paths of deaths in the West South Central region. The death pattern
is fitted with one Weibull function.
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Figure 70: Estimated and forecast deaths for the West South Central region. The vertical line
marks the end of the sample.

88



0 50 100 150

0.5

1

1.5

2

0 50 100 150

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150

0.2

0.4

0.6

0.8

1

0 50 100 150

0

5

10

15

0 50 100 150

0

20

40

60

80

0 50 100 150

-300

-200

-100

0

100

200

300

West South Central

Figure 71: Estimated and forecast paths for the West South Central region. The vertical line
marks the end of the sample.
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Figure 72: Counterfactual paths for the West South Central region. The vertical line marks the
end of the sample.

90



03/30 04/06 04/13 04/20 04/27 05/04 05/11 05/18
0

10

20

30

40

50

60

70

80

Data

Estimation

03/30 04/06 04/13 04/20 04/27 05/04 05/11 05/18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
u
m

b
e
r 

p
e
r 

th
o

u
s
a
n
d

Data

Estimation

Figure 73: Data and fitted paths of deaths in the East South Central region. The death pattern
is fitted with one Weibull function.
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Figure 74: Estimated and forecast deaths for the East South Central region. The vertical line
marks the end of the sample.
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Figure 75: Estimated and forecast paths for the East South Central region. The vertical line
marks the end of the sample.
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Figure 76: Counterfactual paths for the East South Central region. The vertical line marks the
end of the sample.
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Figure 77: Data and fitted paths of deaths in the Pacific region. The death pattern is fitted with
one Weibull function.
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Figure 78: Estimated and forecast deaths for the Pacific region. The vertical line marks the end
of the sample.
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Figure 79: Estimated and forecast paths for the Pacific region. The vertical line marks the end
of the sample.
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Figure 80: Counterfactual paths for the Pacific region. The vertical line marks the end of the
sample.
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Figure 81: Data and fitted paths of deaths in the New England region. The death pattern is
fitted with one Weibull function.
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Figure 82: Estimated and forecast deaths for the New England region. The vertical line marks
the end of the sample.
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Figure 83: Estimated and forecast paths for the New England region. The vertical line marks the
end of the sample.
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Figure 84: Counterfactual paths for the New England region. The vertical line marks the end of
the sample.
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A Empirical results for other countries

For all the countries reported below, γ = 0.2 except for France and Mexico where γ

is set to 0.5 to keep βt positive during the sample period.
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Figure A.1: Data and fitted paths of deaths in United Kingdom. The death pattern is fitted with
a mixture of two Weibull functions.
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Figure A.2: Estimated and forecast deaths for United Kingdom. The vertical line marks the end
of the sample.
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Figure A.3: Estimated and forecast paths for United Kingdom. The vertical line marks the end
of the sample.
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Figure A.4: Counterfactual paths for United Kingdom. The vertical line marks the end of the
sample.
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Figure A.5: Data and fitted paths of deaths in Italy. The death pattern is fitted with a mixture
of two Weibull functions.
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Figure A.6: Estimated and forecast deaths for Italy. The vertical line marks the end of the
sample.
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Figure A.7: Estimated and forecast paths for Italy. The vertical line marks the end of the sample.
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Figure A.8: Counterfactual paths for Italy. The vertical line marks the end of the sample.
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Figure A.9: Data and fitted paths of deaths in France. The death pattern is fitted with a mixture
of two Weibull functions.
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Figure A.10: Estimated and forecast deaths for France. The vertical line marks the end of the
sample.
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Figure A.11: Estimated and forecast paths for France. The vertical line marks the end of the
sample.
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Figure A.12: Counterfactual paths for France. The vertical line marks the end of the sample.
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Figure A.13: Data and fitted paths of deaths in Spain. The death pattern is fitted with a mixture
of two Weibull functions.
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Figure A.14: Estimated and forecast deaths for Spain. The vertical line marks the end of the
sample.
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Figure A.15: Estimated and forecast paths for Spain. The vertical line marks the end of the
sample.

111



Figure A.16: Counterfactual paths for Spain. The vertical line marks the end of the sample.
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Figure A.17: Data and fitted paths of deaths in Brazil. The death pattern is fitted with a mixture
of two Weibull functions.
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Figure A.18: Estimated and forecast deaths for Brazil. The vertical line marks the end of the
sample.
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Figure A.19: Estimated and forecast paths for Brazil. The vertical line marks the end of the
sample.
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Figure A.20: Counterfactual paths for Brazil. The vertical line marks the end of the sample.
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Figure A.21: Data and fitted paths of deaths in Sweden. The death pattern is fitted with a
mixture of two Weibull functions.
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Figure A.22: Estimated and forecast deaths for Sweden. The vertical line marks the end of the
sample.
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Figure A.23: Estimated and forecast paths for Sweden. The vertical line marks the end of the
sample.
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Figure A.24: Counterfactual paths for Sweden. The vertical line marks the end of the sample.
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Figure A.25: Data and fitted paths of deaths in Belgium. The death pattern is fitted with a
mixture of two Weibull functions.
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Figure A.26: Estimated and forecast deaths for Belgium. The vertical line marks the end of the
sample.
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Figure A.27: Estimated and forecast paths for Belgium. The vertical line marks the end of the
sample.

120



0 50 100 150
0

2

4

6

8

10

0 50 100 150
0

0.2

0.4

0.6

0.8

1

0 50 100 150
0

2000

4000

6000

8000

0 50 100 150
0

10

20

30

40

50

60

0 50 100 150
0

2

4

6

8

10

0 50 100 150
0

10

20

30

40

50

60

Belgium (counterfactual)

Figure A.28: Counterfactual paths for Belgium. The vertical line marks the end of the sample.
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Figure A.29: Data and fitted paths of deaths in Germany. The death pattern is fitted with a
mixture of two Weibull functions.
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Figure A.30: Estimated and forecast deaths for Germany. The vertical line marks the end of the
sample.
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Figure A.31: Estimated and forecast paths for Germany. The vertical line marks the end of the
sample.
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Figure A.32: Counterfactual paths for Germany. The vertical line marks the end of the sample.
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Figure A.33: Data and fitted paths of deaths in Iran. The death pattern is fitted with a mixture
of two Weibull functions.
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Figure A.34: Estimated and forecast deaths for Iran. The vertical line marks the end of the
sample.

125



0 50 100 150 200

0

1

2

3

4

5

6

0 50 100 150 200

0

1

2

3

4

5

6

0 50 100 150 200

0.2

0.4

0.6

0.8

1

0 50 100 150 200

0

5

10

15

0 50 100 150 200

0

20

40

60

80

0 50 100 150 200

-500

0

500

1000

Iran

Figure A.35: Estimated and forecast paths for Iran. The vertical line marks the end of the
sample.
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Figure A.36: Counterfactual paths for Iran. The vertical line marks the end of the sample.
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Figure A.37: Data and fitted paths of deaths in Mexico. The death pattern is fitted with a
mixture of two Weibull functions.
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Figure A.38: Estimated and forecast deaths for Mexico. The vertical line marks the end of the
sample.
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Figure A.39: Estimated and forecast paths for Mexico. The vertical line marks the end of the
sample.
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Figure A.40: Counterfactual paths for Mexico. The vertical line marks the end of the sample.
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Figure A.41: Data and fitted paths of deaths in Canada. The death pattern is fitted with a
mixture of two Weibull functions.
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Figure A.42: Estimated and forecast deaths for Canada. The vertical line marks the end of the
sample.
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Figure A.43: Estimated and forecast paths for Canada. The vertical line marks the end of the
sample.
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Figure A.44: Counterfactual paths for Canada. The vertical line marks the end of the sample.
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Figure A.45: Data and fitted paths of deaths in Netherlands. The death pattern is fitted with a
mixture of two Weibull functions.
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Figure A.46: Estimated and forecast deaths for Netherlands. The vertical line marks the end of
the sample.
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Figure A.47: Estimated and forecast paths for Netherlands. The vertical line marks the end of
the sample.
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Figure A.48: Counterfactual paths for Netherlands. The vertical line marks the end of the sample.
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Figure A.49: Data and fitted paths of deaths in India. The death pattern is fitted with a mixture
of two Weibull functions.
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Figure A.50: Estimated and forecast deaths for India. The vertical line marks the end of the
sample.
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Figure A.51: Estimated and forecast paths for India. The vertical line marks the end of the
sample.
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Figure A.52: Counterfactual paths for India. The vertical line marks the end of the sample.
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Figure A.53: Data and fitted paths of deaths in Peru. The death pattern is fitted with a mixture
of two Weibull functions.
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Figure A.54: Estimated and forecast deaths for Peru. The vertical line marks the end of the
sample.
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Figure A.55: Estimated and forecast paths for Peru. The vertical line marks the end of the
sample.
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Figure A.56: Counterfactual paths for Peru. The vertical line marks the end of the sample.
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Figure A.57: Data and fitted paths of deaths in Russia. The death pattern is fitted with a mixture
of two Weibull functions.

0 50 100

0

0.5

1

1.5

2

2.5
10

4

0 50 100

0

100

200

300

400

500

600

Russia

Figure A.58: Estimated and forecast deaths for Russia. The vertical line marks the end of the
sample.
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Figure A.59: Estimated and forecast paths for Russia. The vertical line marks the end of the
sample.
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Figure A.60: Counterfactual paths for Russia. The vertical line marks the end of the sample.
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Figure A.61: Data and fitted paths of deaths in Switzerland. The death pattern is fitted with a
mixture of two Weibull functions.
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Figure A.62: Estimated and forecast deaths for Switzerland. The vertical line marks the end of
the sample.
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Figure A.63: Estimated and forecast paths for Switzerland. The vertical line marks the end of
the sample.
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Figure A.64: Counterfactual paths for Switzerland. The vertical line marks the end of the sample.
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