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1 Introduction

This paper contributes to the rapidly growing literature on generating forecasts related to

the current Covid-19 pandemic. We are adapting forecasting techniques for panel data that

we have recently developed for economic applications such as the prediction of bank profits,

charge-off rates, and the growth (in terms of employment) of young firms; see Liu (2020),

Liu, Moon, and Schorfheide (2020), and Liu, Moon, and Schorfheide (2019). We focus

on the prediction of the smoothed daily number of active Covid-19 infections for a cross-

section of approximately one hundred countries/regions. The data are obtained from the

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. While

we are currently focusing on country-level aggregates, our model could be easily modified to

accommodate, say, state- or county-level data.

In economics, researchers distinguish, broadly speaking, between reduced-form and struc-

tural models. A reduced-form model summarizes spatial and temporal correlation structures

among economic variables and can be used for predictive purposes assuming that the behav-

ior of economic agents and policy makers over the prediction period is similar to the behavior

during the estimation period. A structural model, on the other hand, attempts to identify

causal relationships or parameters that characterize policy-invariant preferences of economic

agents and production technologies. Structural economic models can be used to assess the

effects of counterfactual policies during the estimation period or over the out-of-sample fore-

casting horizon.

The panel data model developed in this paper to generate forecasts of Covid-19 infec-

tions is a reduced-form model. It processes cross-sectional and time-series information about

past infection levels and maps them into predictions of future infections. While the model

specification is motivated by the time-path of infections generated by the workhorse com-

partmental model in the epidemiology literature, the so-called susceptible-infected-recovered

(SIR) model, it is not designed to answer quantitative policy questions, e.g., about the impact

of social-distancing measures on the path of future infection rates.

Building on a long tradition of econometric modeling dating back to Haavelmo (1944),

our model is probabilistic. The growth rates of the infections are decomposed into a deter-

ministic component which approximates the path predicted by a deterministic SIR model

and a stochastic component that could be interpreted as either time-variation in the coef-

ficients of an epidemiological model or deviations from such a model. We report interval

and density forecasts of future infections that reflect two types of uncertainty: uncertainty
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about model parameters and uncertainty about future shocks. We model the growth rate

of active infections as autoregressive fluctuations around a deterministic trend function that

is piecewise linear. The coefficients of this deterministic trend function are allowed to be

heterogeneous across locations. The goal is not curve fitting – our model is distinctly less

flexible in samples than some other models – but rather out-of-sample forecasts, which is

why we prefer to project growth rates based on autoregressive fluctuations around a linear

time trend.

A key feature of the Covid-19 pandemic is that the outbreaks did not take place simulta-

neously in all countries/regions. Thus, we can potentially learn from the speed of the spread

of the disease and subsequent containment in country A, to make forecasts of what is likely

to happen in country B, while simultaneously allowing for some heterogeneity across loca-

tions. In a panel data setting, one captures cross-sectional heterogeneity in the data with

unit-specific parameters. The more precisely these heterogeneous coefficients are estimated,

the more accurate are the forecasts. A natural way of disciplining the model is to assume

that the heterogeneous coefficients are “drawn” from a common probability distribution. If

this distribution has a large variance, then there is a lot of country-level heterogeneity in

the evolution of Covid-19 infections. If instead, the distribution has a small variance, then

the path of infections will be very similar across samples, and we can learn a lot from, say,

China, that is relevant for predicting the path of the disease in South Korea or Germany.

Formally, the cross-sectional distribution of coefficients can be used as a so-called a pri-

ori distribution (prior) when making inference about country-specific coefficients. Using

Bayesian inference, we combine the prior distribution with the unit-specific likelihood func-

tions to compute a posteriori (posterior) distributions. This posterior distribution can then

be used to generate density forecasts of future infections. Unfortunately, the cross-sectional

distribution of heterogeneous coefficients is unknown. The key insight in the literature on

Bayesian estimation of panel data models is that this distribution, which is called random

effects distribution in the panel data model literature, can be extracted through simultaneous

estimation from the cross-sectional dimension of the panel data set. There are several ways

of implementing this basic idea. In this paper we will engage in a full Bayesian analysis by

specifying a hyperprior for the distribution of heterogeneous coefficients and then construct-

ing a joint posterior for the coefficients of this hyperprior as well as the actual unit-specific

coefficients. Based on the posterior distribution, we simulate our panel model forward to

generate density forecasts that reflect parameter uncertainty as well as uncertainty about

shocks that capture deviations from the deterministic component of our forecasting model.
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Our empirical analysis makes the following contributions. First, we present estimates of

the random effects distribution as well as country-specific coefficients. Second, we document

how density forecasts from our model have evolved over time, focusing on the forecasts for

China, South Korea, and Germany for the origins of 2020-04-04 and 2020-04-18. We also

examine the coverage frequencies of interval forecasts. Weekly forecasts are published on the

companion website https://laurayuliu.com/covid19-panel-forecast/.

This paper is connected to several strands of the literature. The panel data forecast-

ing approach is closely related to work by Gu and Koenker (2017a,b) and our own work

in Liu (2020), Liu, Moon, and Schorfheide (2020), Liu, Moon, and Schorfheide (2019). All

five papers focus on the estimation of the heterogeneous coefficients in linear panel data

models. The forecasting model for the Covid-19 infections is very similar to the parametric

benchmark model considered in Liu (2020). The approach has several desirable theoretical

properties. For instance, Liu, Moon, and Schorfheide (2020), building on Brown and Green-

shtein (2009), show that an empirical Bayes implementation of the forecasting approach

based on Tweedie’s formula can asymptotically (as the cross-sectional dimension tends to

infinity) lead to forecasts that are as accurate as the so-called oracle forecasts. Here the

oracle forecast is an infeasible benchmark that assumes that the distribution of the hetero-

geneous coefficients is known to the forecaster. Liu (2020) shows that the density forecast

obtained from the full Bayesian analysis converges strongly to the oracle’s density forecast

as the cross-section gets large.

The piecewise linear conditional mean function for the infection growth rate resembles

a spline; see de Boor (1990) for an introduction to spline approximation. Unlike a typical

spline approximation in which the knot locations are free parameters and some continuity

of smoothness restrictions are imposed, the knot placement in our setting is closely tied

to the first component of the spline, and we do not impose continuity. However, going

forward, it might become desirable to introduce additional knots in the deterministic trend

component of infection growth rates and consider continuity restrictions. Smith and Kohn

(1996) and Denison, Mallick, and Smith (1998) developed Bayesian approaches to automated

knot selection. Alternatively, one could adopt a multiple-change-point approach as in Chib

(1998), Giordani and Kohn (2008), and Koop and Potter (2009).

A growing number of researchers with backgrounds in epidemiology, biostatistics, ma-

chine learning, economics, and econometrics are engaged in modeling and forecasting aspects

of the Covid-19 pandemic. Because this is a rapidly expanding and diverse field, we do not

attempt to provide a meaningful survey at this moment. Instead, we simply provide a few

https://laurayuliu.com/covid19-panel-forecast/
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pointers. The paper by Avery, Bossert, Clark, Ellison, and Fisher Ellison (2020) cites a

compilation of publicly available simulation models in footnote 15. The Center for Disease

Control (CDC)1 publishes forecasts from several different models and Nicholas Reich cre-

ated a website2 that combines Covid-19 forecasts from a variety of models. Murray (2020)

and his team from the Institute for Health Metrics and Evaluation (IHME)3 publish fore-

casts for Covid-19 related hospital demands and deaths. Fernandez-Villaverde and Jones

(2020) generate forecasts from a variant of the SIR model.4 Other forecasts are published by

the Georgia State University School of Public Health5 and independent data analysts, e.g.,

Youyang Gu.6.

The remainder of this paper is organized as follows. Section 2 provides a brief survey

of epidemiological models with a particular emphasis on the SIR model. The specification

of our panel data model is presented in Section 3. The empirical analysis is conducted in

Section 4. Finally, Section 5 concludes.

2 Modeling Epidemics

There is a long history of modeling epidemics. A recent survey of modeling approaches is

provided by Bertozzi, Franco, Mohler, Short, and Sledge (2020). The authors distinguish

three types of macroscopic models:7 (i) the exponential growth model; (ii) self-exciting point

processes / branching processes; (iii) compartmental models, most notably the SIR model

that divides a population into susceptible (St), infected (It), and resistant (Rt) individu-

als. Our subsequent discussion will focus on the exponential growth model and the SIR

model. While epidemiological models are often specified in continuous time, we will con-

sider a discrete-time specification in this paper because it is more convenient for econometric

inference.

The exponential model takes the form It = I0 exp(γ0t). The number of infected indi-

viduals will grow exponentially at the constant rate γ0. This is a reasonable assumption to

describe the outbreak of a disease, but not the subsequent dynamics because the growth rate

1https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
2https://reichlab.io/covid19-forecast-hub/
3http://covid19.healthdata.org/
4https://web.stanford.edu/~chadj/Covid/Dashboard.html
5https://publichealth.gsu.edu/research/coronavirus/
6https://covid19-projections.com/
7As opposed to micro-simulation or agent-based models.

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://reichlab.io/covid19-forecast-hub/
http://covid19.healthdata.org/
https://web.stanford.edu/~chadj/Covid/Dashboard.html
https://publichealth.gsu.edu/research/coronavirus/
https://covid19-projections.com/
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will typically fall over time and eventually turn negative as more and more people become

resistant to the disease. The SIR model dates back to Kermack and McKendrick (1927). In

its most elementary version it can be written in discrete-time as follows:

St = St−1 − βSt−1(It−1/N) (1)

It = It−1 + βSt−1(It−1/N)− γIt−1

Rt = Rt−1 + γIt−1,

where N is the (fixed) size of the population, β is the average number of contacts per person

per time, and γ is the rate of recovery or mortality. The model could be made stochastic by

assuming that β and γ vary over time, e.g.,

ln βt = (1− ρβ) ln β + ρβ ln βt−1 + εβ,t, ln γt = (1− ργ) ln γ + ργ ln γt−1 + εγ,t.

In response to the recent Covid-19 pandemic, several introductory treatments of SIR mod-

els have been written for economists, e.g., Avery, Bossert, Clark, Ellison, and Fisher Ellison

(2020) and Stock (2020). Moreover, there is a growing literature that combines compart-

mental models with economic components. In these models, economic agents account for the

possibility of contracting a disease when making their decisions about market participation.

This creates a link between infection rates and economic activity through the frequency of

interactions. Examples of this work in macroeconomics include Eichenbaum, Rebelo, and

Trabandt (2020), Glover, Heathcote, Krueger, and Rios-Rull (2020), and Krueger, Uhlig,

and Xie (2020). The advantage of models that link health status to economic activity is that

they can be used to assess the economic impact of, say, social distancing measures.

We now simulate the constant-coefficient SIR model in (1) under two different parame-

terizations for (β, γ) that are unrelated to the current Covid-19 pandemic. The top panels

of Figure 1 depict hypothetical time paths of St, It, and Rt. The size of the population is

normalized to N = 100 and the outbreak of the disease is triggered by the initial condition

[S0, I0, R0] = [97, 3, 0].

Under the first parameterization (left panels), the transmission rate β = 0.15 is very high

and the recovery rate γ = 0.02 is relatively small. This leads to a fast rise in the number of

infected individuals, which peaks at It∗ ≈ 60 in period t∗ ≈ 50. After the peak, the number

of infections decreases, but more slowly than it increased during the initial outbreak. The

bottom left panel shows the growth rate of the infections 100 · ln(It/It−1) implied by the SIR
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Figure 1: SIR Model Simulations

β = 0.15 and γ = 0.02 β = 0.06 and γ = 0.04

Levels of St (black dotted), It (orange solid), and Rt (teal dashed)

Growth rate 100 · ln(It/It−1), actual (black dashed) and Fitted (colored solid)

Notes: We normalize the size of the population to N = 100 and set the initial conditions to S0 = 97, I0 = 3,
and R0 = 0.

model. It is a monotonically decreasing function of time that we approximate by fitting a

piecewise linear least-squares regression line with a break point at t∗ which is the point in

time when the infections peak and the growth rate transitions from being positive to being

negative. Under the second parameterization the transmission rate β = 0.06 is much lower

and the recovery rate is slightly faster. This leads to an almost bell-curve shaped path of
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infections. While the resulting growth rate of the infections is not exactly a linear function

of time t, the break at t∗ is much less pronounced. While the piecewise-linear regression

functions do not fit perfectly, they capture the general time-dependence of the growth-rate

path implied by the SIR model. In particular, they allow for a potentially much slower

change in the growth rate of infections after the peak.

We use these simulations as a motivation for the subsequent specification of our empirical

model.8 This model assumes that the growth rate of infections is a decreasing piecewise-

linear function of time with a break when the growth rates cross zero and the infections

peak. This deterministic component is augmented by a stochastic component that follows a

first-order autoregressive, AR(1), process.

3 A Bayesian Panel Data Model

We now describe our empirical model in more detail. We begin with the specification of

a regression model for the growth rate of infections in Section 3.1. Our model features

location-specific regression coefficients and heteroskedasticity. The prior distribution for the

Bayesian analysis is summarized in Section 3.2. Posterior inference is implemented through

a Gibbs sampler that is outlined in Section 3.3. The algorithm to obtain simulated infection

paths from the posterior predictive distribution is outlined in Section 3.4.

3.1 Panel Regression Specification

We specify a panel data model for infection growth rates yit = ∆ ln Iit, i = 1, . . . , N and

t = 1, . . . , T . We assume that

yit = γ′ixt + δ′ixtI{t > t∗i }+ uit, uit = ρuit−1 + εit, εit ∼ N(0, σ2
i ), (2)

where γi = [γ0i, γ1i]
′ is a 2× 1 vector of heterogeneous coefficients and xt = [1, t]′. I{t > t∗}

is the indicator function that is equal to one if t > t∗i and zero if t ≤ t∗i . The 2 × 1 vector

δi = [δ0i, δ1i]
′ captures the size of the break in the regression coefficients at t = t∗i . The

deterministic part of yit corresponds to the piecewise-linear regression functions fitted to the

infection growth paths simulated from the SIR in Figure 1.

8For forecasts generated directly from an enriched version of the SIR model see, for instance, Fernandez-
Villaverde and Jones (2020).
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The serially-correlated process uit generates stochastic deviations from the deterministic

path γ′ixt of the infection growth rate. The uit shocks may capture time variation in the

(β, γ) parameters of the SIR model or, alternatively, model misspecification. In Section 2

the break point t∗i was given by the peak of the infection path. Abstracting from a potential

discontinuity at the kink, we define t∗i as

t∗i = −γ0i/γ1i, (3)

which implies that E[yit|t = t∗i ] = 0. Because of the AR(1) process uit, t
∗
i is not the peak of

the observed sample path, nor is it an unbiased or consistent estimate of the period in which

the infections peak. For δi = 0, the model reduces to

yit = γ′ixt + uit, (4)

Note that the break date t∗i is identified in this model even if δi = 0, because we assume the

break occurs when the deterministic component of the growth rate falls below zero.

To construct a likelihood function we define the quasi-difference operator ∆ρ = 1 − ρL
such that ∆ρuit = εit. Thus, we can rewrite (2) as follows

yit = ρyit−1 + γ′i∆ρxt + δ′i∆ρxtI{t > t∗i }+ εit. (5)

Now let λi = [γ′i, δi]
′ and nλ be the dimension of λ. The parameters of the panel data model

are (ρ, λ1:N , σ
2
1:N). Here, we use the notation Z1:L to denote the sequence z1, . . . , zL. Using

this notation, we denote the panel observations by Y1:N,1:T . We will subsequently condition

on Y1:N,0 to initialize conditional likelihood function. Finally, from the growth-rates yit we

can easily recover the level of active infections as

Iit = Ii0 exp

[
t∑

τ=1

yiτ

]
. (6)

3.2 Prior Distribution

To conduct Bayesian inference, we need to specify a prior distribution for (ρ, λ1:N , σ
2
1:N). We

do so conditional on a vector of hyperparameters ξ that do not enter the likelihood function.
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Our prior distribution has the following factorization:

p
(
ρ, λ1:N , σ

2
1:N , ξ

)
∝ p(ρ)

(
N∏
i=1

p(λi|ξ)f(λi)

)(
N∏
i=1

p(σ2
i |ξ)

)
p(ξ), (7)

where ∝ denotes proportionality and f(·) is an indicator function that we will use to impose

the following sign restrictions on the elements of λi:

f(λi) = I{γ1i < 0} · I{δ0i < 0} · I{δ1i > 0} · I{γ1i + δ1i < 0}.

The restriction γ1i < 0 ensures that the growth rates are falling over time. After the break

point the rate of decline decreases (δ1i > 0), but stays negative (γ1i + δ1i < 0). In addition

we assume that the decrease in the rate of decline is associated with a downward shift, i.e.,

δ0i < 0, of the intercept as shown in the SIR simulation.

Because of the presence of the indicator function f(·) the right-hand side of (7) is not

a properly normalized density. In view of the indicator function f(·) we define the random

effects distribution of λi given ξ as

π(λi|ξ) =
1

C(ξ)
p(λi|ξ)f(λi), C(ξ) =

∫
p(λi|ξ)f(λi)λi. (8)

In turn, the marginal prior distribution of the hyperparameters is given by

π(ξ) = p(ξ)[C(ξ)]N . (9)

Building on Liu (2020), we use the following densities p(·) in (7) for ρ, λi, and σ2
i :

ρ ∼ N(0.5, 1)I{0 ≤ ρ ≤ 0.99}, λi ∼ N(µ,Σ), σ2
i ∼ IG(a, b). (10)

Thus, the vector of hyperparameters is ξ = (µ,Σ, a, b). We decompose p(ξ) = p(µ,Σ)p(a, b).

The density p(µ,Σ) is constructed as follows:

µ|Σ ∼ N(0,Σ), Σ ∼ IW (W0, ν). (11)

The degrees of freedom for the Inverse Wishart distribution is set to

ν = (2nλ + 1)(nλ − 1) + 1 = 28.
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The shape matrix W0 is diagonal with elements

W0,kk =
(ν − nλ − 1)V̂i

(
Êti[yit]

)
nλ(Ê[xk,it])2

, k = 1, . . . , nλ.

Here, Êti[zit] is the sample mean of the time series zit, t = 0, . . . , T , V̂[zi] is the cross-sectional

sample variance of zi, i = 1, . . . , N , and Ê[zit] is a sample average of zit, i = 1, . . . , N and

t = 1, . . . , T . The matrix W0 is constructed to align the scale of the variance of µi with the

cross-sectional variance of the data, adjusting for the average magnitudes of the regressors

that multiply the λi elements.

To obtain the density p(a, b), we follow Llera and Beckmann (2016) and let

b ∼ G(αb, βb), p(a|b) ∝ α
−(1+a)
a baγa

Γ(a)βa

. (12)

The parameters (αa, βa, γa, αb, βb) need to be chosen by the researcher. We use αa = 1, β
a

=

γ
a

= αb = β
b

= 0.01, which specifies relatively uninformative priors for hyperparameters a

and b.

3.3 (Approximate) Posterior Inference

Posterior inference is based on an application of Bayes Theorem. Let p(Y1:N,1:T |λ1:N , σ
2
1:N)

denote the likelihood function (for notational convenience we dropped Y1:N,0 from the con-

ditioning set). Then the posterior density is proportional to

p(ρ, λ1:N , σ
2
1:N , ξ|Y1:N,0:T ) ∝ p(Y1:N,1:T |λ1:N , σ

2
1:N)p(ρ)p

(
ρ, λ1:N , σ

2
1:N , ξ

)
, (13)

where the prior was given in (7). To generate draws from the posterior distribution we use

a Gibbs sampler that iterates over the conditional posterior distributions

λ1:N |(Y1:N,0:T , ρ, σ
2
1:N , ξ), ρ|(Y1:N,0:T , λ1:N , σ

2
1:N , ξ), (14)

σ2
1:N |(Y1:N,0:T , λ1:N , ρ, ξ), ξ|(Y1:N,0:T , λ1:N , σ

2
1:N , ξ).

The Gibbs sampler generates a sequence of draws
(
ρs, λs1:N , (σ

2
1:N)s, ξs

)
, s = 1, . . . , Nsim,

from the posterior distribution. The implementation of the Gibbs sampler closely follows

Liu (2020).
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For the Gibbs sampler to be efficient, it is desirable to have a model specification in

which it is possible to directly sample from the conditional posterior distributions in (14).

Unfortunately, the exact likelihood function leads to a non-standard conditional posterior dis-

tribution for λ1:N |(Y1:N,0:T , ρ, σ
2
1:N , ξ) because γi enters the indicator function in (2) through

the definition of t∗i . Thus, rather than using the exact likelihood function, we will use a

limited-information likelihood function of the form

pl(Y1:N,1:T |λ1:N , σ
2
1:N) =

N∏
i=1

pl(Yi,1:T |λi, σ2
i ). (15)

The densities pl(Yi,1:T |λi, σ2
i ) are constructed as follows. Let ∆ be some positive number,

e.g., three or five time periods. Given a sample (Yi,1:T , ln Ii,1:T ) we define

ti,max = argmax1≤t≤T ln Ii,1:T .

If ti,max = T , then it is likely that t∗i ≥ T . On the other hand, if ti,max < T , then it is likely

that t∗ = ti,max. Thus, we distinguish two cases:

Case 1: Suppose ti,max = T : we drop observations Yi,T−∆+1:T and define

pl(Yi,1:T |γi, δi, σ2
i ) = p(Yi,1:T−∆|γi, ρ, σ2

i ).

Because δi does not enter the likelihood function, its posterior is p(δi|Yi,1:T−∆, γi, ρ) = p(δi|γi).

Case 2: Suppose ti,max < T : we drop observations Yi,ti,max−∆+1:ti,max+∆−1 and define

pl(Yi,1:T |γi, δi, σ2
i ) = p(Yi,1:ti,max−∆, Yi,ti,max+∆:T |γi, δi, ρ, σ2

i ).

Now δi does enter the likelihood function and its prior gets updated in view of the data.

3.4 Forecasting Infection Rates

Bayesian forecasts reflect parameter and shock uncertainty. We simulate trajectories of

infection growth rates from the posterior predictive distribution using the Algorithm 1. The

simulated growth rates can be converted into simulated trajectories for active infections using

(6).
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Algorithm 1 (Simulating from the Posterior Predictive Distribution)

1. For s = 1, . . . , Nsim

(a) Use parameter draw s from the posterior distribution:
(
ρs, λs1:N , (σ

2
1:N)s

)
.

(b) For i = 1, . . . , N :

i. Compute t∗si = −γsi0/γsi1.

ii. Generate a sequence of draws εit ∼ N
(
0, (σ2

i )
s
)
, t = T + 1, . . . , T +H.

iii. Iterate (5) forward for t = T + 1, . . . , T +H to obtain Y s
i,T+1:T+H .

iv. Compute IsiT+h = IiT exp
[∑h

l=1 y
s
iT+l

]
, h = 1, . . . , H.

2. Based on the simulated paths Is1:N,T+1:T+H , s = 1, . . . , Nsim, compute point, interval,

and density forecasts for each period t = T + 1, . . . , T +H.

4 Empirical Analysis

The data set used in the empirical analysis is described in Section 4.1. We discuss the

posterior estimates in Section 4.2. Finally, we present density and interval forecasts in

Section 4.3.

4.1 Data

The data set is obtained from CSSE at Johns Hopkins University.9 We define the total

number of active infections in location i and period t as the number of confirmed cases minus

the number of recovered cases and deaths. We understand that infections are measured

with error because there is evidence that a significant number of infected individuals are

asymptomatic and hence not captured in the official statistics. Moreover, determining the

precise number of Covid-19 related deaths is non-trivial (dying with versus dying of Covid-

19). The goal of our modeling effort is to predict the number of active infections as recorded

in the CSSE data set.

Throughout our study we use country-level aggregates. The time period t corresponds

to a day and we fit our model to one-sided three-day rolling averages to smooth out noise

9https://github.com/CSSEGISandData/COVID-19

https://github.com/CSSEGISandData/COVID-19
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generate by the timing of the reporting. In a slight abuse of notation, the time subscript t

in (2) is meant to be event time and hence is specific on the location i. The event time is

initialized once the number of confirmed cases in a location reaches 100.10 For each location,

we let the time series of infections end at the same calendar time. As a result, the panel is

unbalanced.

Our empirical analysis is based on a cross-section of approximately 100 countries/regions.

We start out from 185 locations and eliminate a subset of locations according to the following

rules: (i) we eliminate locations that have not reached 100 active infections. (ii) We eliminate

locations for which ti,max − ∆ < 0. This guarantees that we have at least one observation

in the limited-information likelihood function to extract information about γi. (iii) For each

location i we regress the growth rates from period t = 0 to t = T on a time trend and

an intercept and eliminate locations where the OLS estimate of the time-trend coefficient

is positive because the SIR model implies a decreasing growth rate. The resulting cross-

sectional dimension of our panel is N = 110.

4.2 Parameter Estimates

Before discussing the forecasts, we will examine the parameter estimates. Throughout this

subsection we focus on two estimation samples. For each location i, the first observation

included in both samples is determined by the point in time in which the number of infections

reaches 100. The last observation for each location is determined by calendar time. The first

estimation sample ends on 2020-04-04. At this point only seven countries/regions in our

panel have reached the peak level of infections. The second estimation sample ends two

weeks later on 2020-04-18 when 36 locations have moved beyond the peak in terms of the

number of active infections.

Our Gibbs sampler generates draws from the joint posterior of (ρ, λ1:N , σ
2
1:N , ξ)|Y1:N,0:T .

We begin with a discussion of the estimates of γ1i and δ1i, which affect the speed at which the

growth rates is expected to change on a daily basis. γ1i measures the average daily decline

in the growth rate of active infections. For instance, suppose the at the beginning of the

outbreak, in event time t = 0, the growth rate ln(It/It−1) = 0.2, i.e., approximately 20%. A

value of γ1i = −0.02 implies that, on average, the growth rate declines by 0.02, meaning that

10In calendar time, let τ0 = minτ s.t. Iτ > 100. Using Iτ0 , Iτ0+1, . . ., we take log differences to compute
growth rates ln(Iτ0+1/Iτ0), ln(Iτ0+2/Iτ0+1), . . .. In the estimation we need one growth rate observation to
initialize lags. Thus, in event time, period τ0 corresponds to t = −1.
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Figure 2: Heterogeneous Coefficients Estimates and Random Effects Distributions

Distr of λ̂j,i Posterior of π(λj,i|ξ) Prior of π(λj,i|ξ)
Parameter γ1i
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Notes: Point estimator λ̂j,i is posterior mean of γ1i or δ1i, respectively.

after 10 days it is expected to reach zero and turn negative subsequently. A positive value

of δ1i = 0.01 implies that after the growth rate becomes negative, its decline is reduced (in

absolute value) to γ1i + δ1i = −0.01.

In the panels in the first column of Figure 2 we plot the cross-sectional distributions of

posterior mean estimates γ̂1i and δ̂1i. Between 2020-04-04 and 2020-04-18 the distribution

of the estimates γ̂1i shifts to the right. While in the early sample the growth rate of the
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infections appears to fall quickly over time (γ̂1i ≈ −0.032), two weeks later the estimate has

fallen (in absolute value) to approximately -0.005. The estimates δ̂1i show a similar shift

from approximately 0.02 to below 0.005. The additional two weeks of data have led to a

more concentrated cross-sectional distribution of estimates, indicating that the deterministic

component of the infection growth rates is becoming more similar as countries/regions move

beyond the early stages of the infections.

An important component of our model is the random effects distribution π(λi|ξ) defined

in (8). Prior and posterior uncertainty with respect to the hyperparameters ξ generate

uncertainty about the random effects distribution. In the remaining panels of Figure 2

we plot draw from the posterior (center column) and prior (right column) distribution of

the random effects density π(λi|ξ). Each draw is represented by a hairline. Because the

normalization constant C(ξ) of π(λi|ξ) is difficult to compute due to the truncation of a joint

Normal distribution, we show kernel density estimates obtained from draws from π(λi|ξ).

The random effects densities drawn from the posterior approximately peak around values

of γ1i and δ1i for which the histograms on the left are peaking. Thus, the estimates of the

densities cohere with the estimates of the heterogeneous coefficients. The histograms also

show the increase in information between the 2020-04-04 and 2020-04-18 samples. The

precise relationship between the hairlines that represent draws from the distribution of the

random effects densities and the posterior point estimates are discussed in more detail in

Liu, Moon, and Schorfheide (2019). The random effects densities are generally more diffuse

than the distributions of the point estimates represented by the histograms because the

random effects densities can be viewed as priors of λi whereas the point estimates combine

information from these priors and the time series Yi,1:T .

The random effects densities drawn from the prior distribution of ξ are fairly flat. Because

of the truncation, the means implied by the RE densities for γ1i are negative, whereas the

means implied by the densities for δ1i are positive. The priors for the random effects densities

are dependent on the sample because the overall prior is indexed by data-dependent tuning

parameters; see Section 3.2.

Our posterior sampler also generates estimates for the homogeneous autoregressive co-

efficient ρ. The estimates are ρ̂ = 0.9898 for the 2020-04-04 sample and ρ̂ = 0.7849 for

the 2020-04-18 sample. In Figure 3 we show histograms of the cross-sectional distribution

of σ̂i. Overall, the fit of the panel data model appears to improve as time progresses: the
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Figure 3: Cross-sectional Dispersion of Innovation Variances

2020-04-04 Sample 2020-04-18 Sample

Notes: Histogram of posterior mean estimates σ̂i.

Figure 4: Fitted Regression Lines for Daily Infection Growth Rates

Notes: Estimation sample ends in 2020-04-18.

autocorrelation ρ of the shock process uit falls and the distribution of σ̂i shifts to the left

and becomes a bit more concentrated.

After examining the cross-sectional distribution of the γ̂1i and δ̂1i estimates, we will now

examine the implied regression functions that capture the deterministic component of the

infection growth rates for three specific countries: China, South Korea, and Germany. These

three countries experienced the outbreak at different points in time. The posterior median

estimates from which the regression lines depicted in Figure 4 are constructed, reflect the

prior information from the random effects distributions depicted in Figure 2 and the time

series information for each country. By construction, the regression lines are piecewise linear,

and the break occurs at the point in time when the deterministic component implies a zero

growth rate. The fitted regression line for South Korea reflects a fair amount of shrinkage

induced by the prior distribution, because the initial rapid decline in the growth rate is

unusual according to the estimated cross-sectional random effects distribution.

Because the coefficients γi and δi cannot be directly interpreted in terms of the speed and
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Figure 5: Parameter Transformations t∗, ln(It/I∗), and t∗∗

Time to Peak vs. Height Time to Peak vs. Recovery

Notes: The results are based on the 2020-04-18 sample. Results are in event time. t0 is the period in which
the number of infections exceeds 100 for the first time.

the severity of the outbreak, we are transforming the λis as follows (omitting the i subscripts):

First, we use the definition of t∗ = −γ0/γ1 from (3). Note that t∗ is not restricted to be an

integer. Second, according to the deterministic part of the growth rate model, the log level

of infections at the peak, relative to the starting point is approximately

ln(It∗/I0) =

∫ t∗

0

(γ0 + γ1t)dt = − γ2
0

2γ1

. (16)

Third, after the break at t = t∗ the growth rate continues to decline according to (γ0 + δ0) +

(γ1 + δ1)t. We define the time t∗∗, i.e., the time it takes to return to the initial level I0, as

the solution to ∫ t∗∗

0

[γ0 + δ0 + (γ1 + δ1)t]dt− γ2
0

2γ1

= 0 (17)

Note that (t∗, ln(It∗/I0), t∗∗) is a nonlinear transformation of (γ0, γ1, δ0, δ1). The triplet does

not measure the actual or expected time to peak, height of the peak, time to recover.

Pairwise scatter plots of
(
t∗, ln(It∗/I0), t∗∗

)
are depicted in the two panels of Figure 5.

Each dot is generated as follows: for each MCMC draw s = 1, . . . , Nsim we transform (γi, δi)
s

into
(
t∗i , ln(Ii,t∗i /Ii0), t∗∗i

)s
. We then compute medians of the transformed objects. We indicate
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the values for China, South Korea, Germany, and the U.S. According to the first panel, there

is a strong positive correlation between time to peak t∗ and height of peak ln(It∗/I0). The

relationship is remarkably linear across locations. The second panel shows that the time to

recovery t∗∗ is (a lot) larger than the time to peak t∗. Here China is an outlier. The actual

time to recover from the epidemic was a lot shorter, which is due to favorable shocks uit in

the model.

4.3 Predictive Densities

We now turn to density forecasts generated from the estimated panel data model. We

use Algorithm 1 to simulate trajectories of infection growth rates which, conditional on

observations of the initial levels IiT , we convert into stocks of active infections. For each

forecast horizon h we use the values ysiT+h and IsiT+h, s = 1, . . . , Nsim to approximate the

predictive density. Strictly speaking, we are not reporting complete predictive densities.

Instead, we plot medians and construct equal-tail-probability bands that capture the range

between the 20-80% and 10-90% quantiles. The wider the bands, the greater the uncertainty.

As in the estimation section, we consider two samples: one ends on 2020-04-04 and the other

one on 2020-04-18. The end of the estimation sample is the origin of our forecasts.

Figure 6 shows density forecasts over 60 days for the growth rate, the level of active

infections, and the recovery date in China, South Korea, and Germany based on 2020-04-18

data. The forecast origin is indicated by the vertical dashed line. At the forecast origin,

the three countries are at different stages of the epidemic. In China the number of active

infections has fallen from 58,000 to 1,600. In South Korea, the level of infections is 67

percent below its peak value. Finally, Germany has barely moved beyond the peak. Prior

to the forecast origin we show the actual values and in-sample fitted values.11 Additional

density forecasts for more than 100 countries/regions are provided on the companion website

https://laurayuliu.com/covid19-panel-forecast/.

The panels in the first row of Figure 6 show forecasts for the growth rate of active

infections. At the forecast origin, the actual growth rates for all three countries are negative.

The median forecast is driven by the deterministic trend component in our model for yit; see

(2) and Figure 4. The bands reflect both parameter uncertainty and stochastic fluctuations

11The fitted values are generated as follows: for each draw from the posterior distribution, we generate
a one-step-ahead in-sample prediction for each country/region. Then we compute the median across these
in-sample predictions for each location.

https://laurayuliu.com/covid19-panel-forecast/
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Figure 6: Forecasts for China, South Korea, and Germany, Origin is 2020-04-18

Daily Growth Rates of Active Infections ln(It/It−1)

Daily Number of Active Infections It – Parameter Uncertainty Only

Daily Number of Active Infections It – Parameter and Shock Uncertainty

Cumulative Density Function for Date of Recovery

Notes: Rows 1 to 3: The vertical lines indicate the forecast origin. The circles indicate actual infections. The
solid lines prior to the forecast origin represent in-sample one-step-ahead forecasts. The solid lines after the
forecast origin represent medians of the posterior predictive distribution. The grey shaded bands indicate the
20%-80% (dark) and 10%-90% (light) interquantile ranges of the posterior predictive distribution. Bottom
row: cumulative density function (associated with posterior predictive distribution) of of date of recovery
defined as τ such that Iτ = I0.
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around the trend component generated by the autoregressive process uit. The width of the

bands is the smallest for China and the largest for Germany. Two factors contribute to the

wider bands for Germany. First, the estimated innovation standard deviation σ̂i is larger for

Germany than for China and South Korea. Second, recall that at the peak, the parameters

of the deterministic component of our model shift by δi. The less time has passed since the

peak, the fewer observations are available to estimate δi, which increases the contribution of

parameter uncertainty to the predictive distribution.

The second and third rows of Figure 6 depict predictions for the daily level of active

infections. The path of active infections broadly resembles the paths simulated with the SIR

model in Section 2. The rise of infections during the outbreak tends to be faster than the

subsequent decline, which is a feature that is captured by the break in the conditional mean

function of our model for the infection growth rate yit in (2). The difference between the

bands depicted in the second and third rows is that the former reflects parameter uncertainty

only (we set future shocks equal to zero), whereas the latter reflects parameter and shock

uncertainty. In the case of Germany, shock uncertainty increases the width of the bands by

approximately 50%. Due to the exponential transformation that is used to recover the levels,

the predictive densities are highly skewed and exhibit a large upside risk. This is particularly

evident for Germany. The growth rate prediction in the first row indicates that there is an

approximately 20% probability of a positive infection growth rate. Converted into levels,

temporarily positive growth rates of infections generate a “second wave” of infections in our

model.

In the bottom row of Figure 6 we plot cumulative density function for the date of recovery,

which we define as the first date when the infections fall below the initial level Ii0. The density

function is calculated by examining each of the future trajectories IsiT+h for h = 1, . . . , 60

generated by Algorithm 1. For China the probability that the infection rate will fall below

Ii0 over the two month period is greater than 90%, whereas for Germany the probability is

slightly less than 50%.

In Figure 7 we overlay two weeks of actual infections onto density forecasts generated

from the 2020-04-04 (top panels) and 2020-04-18 (bottom panels). On 2020-04-04 the model

forecasts a fairly quick recovery from the pandemic. This “optimism” is consistent with

Figure 2 which indicates that |γ̂1i + δ̂1i| is larger in the earlier sample. Comparing the

predictive density to the actuals, indicate that while the actual realizations are still within

the 10-90% bands, the longer horizon the further they are in the tails. Thus, the model

overestimates the speed of recovery. Two weeks later, on 2020-04-18, the estimates have
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Figure 7: Interval Forecasts and Actuals

Forecast Origin is 2020-04-04, Horizon ends 2020-04-18

Forecast Origin is 2020-04-18, Horizon ends 2020-05-02

Notes: The vertical lines indicate the forecast origins. The circles indicate actual infections. The solid
lines prior to the forecast origin represent in-sample one-step-ahead forecasts. The solid lines after the
forecast origin represent medians of the posterior predictive distribution. The grey shaded bands indicate
the 20%-80% (dark) and 10%-90% (light) interquantile ranges of the posterior predictive distribution.

caught on to the slower decline, which translates into a more drawn-out recovery. While

for South Korea the width of the bands associated with the short-run forecasts is smaller

for the 2020-04-18 sample, the width for Germany increases. The 2020-04-18 predictions

are remarkably accurate: between 2020-04-18 and 2020-05-02 the median forecasts are very

close to the actuals for all three countries.

We now turn to a more systematic evaluation of the forecasts, focusing on the coverage

probability of interval forecasts represented by the bands in Figures 6 and 7. Denote the

interval forecasts represented by the bands by Ci,T+h|T (Y1:N,0:T ). In addition to the 20%-80%

and 10%-90% intervals, we will also consider 25%-75% and 5%-95% intervals. Table 1 reports

the cross-sectional empirical coverage frequency, defined as

1

N

N∑
i=1

I{yiT+h ∈ Ci,T+h|T (Y1:N,0:T )},

for different forecast origins and targets. The empirical coverage frequencies can be compared
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Table 1: Interval Forecast Performance

Forecast Quantile Range & Coverage of Interval Forecasts
Origin Target 0.25 to 0.75 0.20 to 0.80 0.10 to 0.90 0.05 to 0.95

Cov. 0.50 Cov. 0.60 Cov. 0.80 Cov. 0.90
One Week Ahead

Apr-25 May-02 0.41 0.57 0.85 0.92
Apr-18 Apr-25 0.36 0.48 0.83 0.90
Apr-11 Apr-18 0.41 0.55 0.82 0.93
Apr-04 Apr-11 0.05 0.14 0.47 0.76

Two Weeks Ahead
Apr-18 May-02 0.28 0.41 0.69 0.86
Apr-11 Apr-25 0.16 0.30 0.69 0.87
Apr-04 Apr-18 0.00 0.00 0.25 0.52

Three Weeks Ahead
Apr-11 May-02 0.09 0.10 0.50 0.77
Apr-04 Apr-25 0.00 0.00 0.09 0.40

Four Weeks Ahead
Apr-04 May-02 0.00 0.00 0.02 0.22

Notes: We report empirical coverage frequencies.

to the nominal credible level of the interval forecasts. However, this comparison is delicate.

While in finite samples the two objects tend to differ, one can show that if the posterior

distribution of (ρ, ξ) concentrates around a limit point as N −→ ∞, then under suitable

regularity conditions, the discrepancy between the empirical coverage frequency and the

credible level will vanish.12

The results in Table 1. Over a one-week horizon, and starting with the 2020-04-11

forecasts, the empirical coverage frequency is fairly close to the nominal credible level. For

the 2020-04-04 origin there is a larger discrepancy. At the two-week horizon, again starting

with the 2020-04-11 forecast, the empirical coverage frequency is somewhat smaller than the

nominal coverage level, but still relatively close.

For forecast horizons of more than two weeks, the empirical coverage frequency is un-

fortunately very low. A look at the full set of forecasts generated based on 2020-04-18 and

plotted on the companion website https://laurayuliu.com/covid19-panel-forecast/

provides some insights into the prediction errors. Large forecast errors occur for many

countries/regions that have not yet reached the peak of the infections, e.g., Afghanistan or

12See Liu, Moon, and Schorfheide (2019) for a more detailed discussion.

https://laurayuliu.com/covid19-panel-forecast/
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Algeria. While the model predicts a likely downturn over the next two weeks, the actual

number of infections in these countries steadily rises and eventually moves outside of the

forecast bands. This problem was more severe in early April, because in very few locations

the infections had peaked, resulting in the low coverage rate for the 2020-04-04 forecasts.

We will publish forecasts online at https://laurayuliu.com/covid19-panel-forecast/

on a weekly basis and continue to monitor the empirical coverage frequencies.

5 Conclusion

We adopted a panel forecasting model initially developed for applications in economics to

forecast active Covid-19 infections. A key feature of our model is that it exploits the experi-

ence of countries/regions in which the epidemic occurred early on, to sharpen forecasts and

parameter estimates for locations in which the outbreak took place later in time. At the

core of our model is a specification that assumes that the growth rate of active infections

can be represented by autoregressive fluctuations around a downward sloping deterministic

trend function with a break. Our specification is inspired by infection dynamics generated

from a simple SIR model.

According to our model, there is a lot of uncertainty about the evolution of infection

rates, due to parameter uncertainty and the realization of future shocks. Moreover, due to

the inherent nonlinearities, predictive densities for the level of infections are highly skewed

and exhibit substantial upside risk. Consequently, it is important to report density or interval

forecasts, rather than point forecasts. We find that over a one-week horizon the empirical

coverage frequency of our interval forecasts is close to the nominal credible level.

A natural extension of our model is to allow for additional, data-determined breaks in

the deterministic trend function as the pandemic unfolds and countries/regions are adopting

new policies that accelerate or decelerate the spread of the virus and as more and more

people become resistant to the infection. It is also worthwhile to link the heterogeneous

coefficient estimates (or transformations thereof) to country-specific variables that measure

social norms and policies to fight the pandemic. This could be done in a second step through

ex-post regressions with the heterogeneous coefficient estimates as left-hand-side variables

or, more elegantly, in a correlated random effects framework.

https://laurayuliu.com/covid19-panel-forecast/
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