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1 Introduction

One of the constitutive tenets of standard neoclassical economics is that individuals pursue con-

strained utility maximization. In models where agents take decisions over time, it is usually assumed

that individuals maximize expected future utility flows under an intertemporal budget constraint.

Such models have provided invaluable insights in understanding economic decisions such as savings,

asset allocation or investment in health and education. However, a number of studies have proposed

alternative models to explain behavior that is hard to reconcile with standard models of individual

optimization. Examples of such behavior are addiction and under-investment in activities with

low costs and high expected returns (Frederick et al. 2002, DellaVigna 2009, Sprenger 2015, Er-

icson and Laibson 2019). Insights from psychology and behavioral economics have suggested that

such behavior may be better explained by models where individuals exhibit self-control or time

inconsistency problems.

These theories have played an increasing role in explaining “sub-optimal” choices among poor

individuals in developing countries, a context where such choices may have particularly dire con-

sequences (Bernheim et al., 2015; Mullainathan, 2004; Carvalho et al., 2016). Non-standard pref-

erences displaying bias towards the present have been proposed to explain poverty traps (Banerjee

and Mullainathan, 2010; Ubfal, 2016), the existence of demand for commitment devices in savings

or health-protecting technologies (Ashraf et al., 2006; Tarozzi et al., 2009, 2014; Schilbach, 2019),

productivity (Kaur et al., 2014) and low demand for immunization and fertilizer (Banerjee et al.,

2010; Duflo et al., 2011).

Present bias is typically modeled assuming that preferences are characterized by “hyperbolic

discounting” (Laibson, 1997), so that, at each time t, future utility at any time s (> t) is discounted

not by the usual exponential discount factor δs−t but by a factor βδs−t. As a consequence, while δ

is the only discount factor entering the intertemporal rate of substitution between any two future

periods, the rate of substitution between current time t and any future period also depends on

β. This model generates a declining rate of time preference and has been used to explain the

“preference reversal” that is commonly observed in laboratory experiments: individuals choose a

reward at current date t over a larger one at date t + k, but instead choose the larger reward if

both payoff dates are shifted forward by the same length of time s (i.e. to t + s and t + s + k).1

Such choices are not consistent with standard models of inter-temporal choice.

A consequence of hyperbolic preferences is that an individual who maximizes intertemporal

utility at time t will have an incentive to deviate from this solution at time t+1, when present-bias

will induce an increase in consumption relative to what was previously decided. In addition, behav-

ior typically differs between ‘sophisticated’ agents who are aware of having such time-inconsistent

preferences and ‘näıve’ ones who are not. While such models promise to help in explaining the

often observed inability of the poor to save or invest even when the budget constraint would allow

it, the formal identification and credible estimation of the key parameters β and δ is non-trivial. In

1See Andreoni and Sprenger (2012) for an alternative explanation for these findings and Augenblick et al. (2015)
for a similar finding when choices are over effort rather than money.
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fact, the time preference parameter δ is generically not identified even in standard dynamic choice

models (Rust, 1994; Magnac and Thesmar, 2002). This non-identification result applies afortiori

to both β and δ in the hyperbolic “β–δ” formulations of time-inconsistent preferences which dom-

inate empirical work on time-inconsistency. In addition, it seems desirable and important to allow

for heterogeneity in time preferences, especially in applied work—for instance allowing for both

time-consistent and inconsistent agents. However, it is rare for agent type to be directly observed

by the researcher so that a model with unobserved types seems more appropriate.

We make two contributions to the literature. First, we provide identification results for dy-

namic discrete choice models with time-inconsistent agents and unobserved types allowing for rich

heterogeneity in per-period utility as well as time preferences. We also identify the population

distribution of types, an object of direct policy interest. Second, we estimate a parametric version

of the model to study the importance of present bias in explaining investment in a health preven-

tive technology in a developing country. Specifically, we study demand for insecticide-treated nets

(henceforth ITNs, a key product for the reduction of malaria risk), as well as for their recommended

periodic re-treatment using specially collected data from malarious areas of rural Odisha, India.

In the general model we overcome the previous non-identification results by adding information

in the form of two key exclusion restrictions. The first is the existence of variables z that only affect

current utility via the perceived value of future states. The second is the presence of variables r

that act as (imperfect) signals of agent type but which, conditional on agent type and observables,

provide no additional information about agent choices. In the empirical application, the role of z is

played by elicited beliefs about the evolution of state variables, while r comprises elicited indicators

of time preferences.

In the general version of the model we allow for an unknown (but finite) number of types

with possibly time-inconsistent preferences. We first identify the total number of types in the

population and the nature of the time-preferences for each type, classifying each as either time-

consistent, time-inconsistent “sophisticated” (if the agent is aware of the time-inconsistency implied

by the preference structure) or time-inconsistent “näıve” (if the agent lacks such awareness). We

allow for the existence of multiple sub-types within each broad class of type of agent (i.e. that

there are multiple types of time-consistent or sophisticated or näıve agents). Finally, for each type,

we provide identification results for the preference parameters. We show that in the most general

version of the model where all types can have distinct time-preference parameters, all parameters

are point-identified except for the time preferences of the näıve types. In this latter case we provide

sharp bounds, and we show point identification under a further set of additional (but commonly

assumed) conditions.

Next, we introduce our empirical application. Malaria is an enormous global health burden

and is endemic in our study region, where survey respondents indeed report high expected costs

of malaria as well as strong beliefs in the efficacy of ITNs in preventing it. Despite this, nearly

half of our sample households do not purchase ITNs offered through a micro-credit intervention.

To rationalize these choices, we explore counterfactual pricing policies by estimating a structural
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dynamic choice model of ITN purchase and re-treatment that allows for time-inconsistent agents.

Monte Carlo simulations suggest that time-preference parameters are well estimated with sample

sizes similar to those in the application. We then estimate the model and find that approximately

one-third of respondents are time-consistent while about one-half are näıve inconsistent and the

remaining one-sixth are sophisticated inconsistent. The discount rate for consistent agents is close

to one. Further, we find that näıve and sophisticated agents are considerably present-biased with

our preferred estimates of β being 0.06 (for näıve agents) and 0.16 (for sophisticated agents). The

estimates of both the population distribution of types and of the separate β parameters are, to our

knowledge, new to the literature. Finally, we find that the per-period utilities do vary across agent

types and that ignoring this exacerbates the already considerable high levels of present-bias.

Next, we evaluate the extent to which present-biased but sophisticated agents are more likely

to choose specially designed “commitment” products (Bryan et al. 2010). The ITNs in our context

require regular re-treatment with insecticide in order to remain effective against mosquitoes. We

offered a choice between a standard contract (with the option to purchase re-treatment at a later

time) and a “commitment contract” which also included a bundle of two consecutive re-treatments.

The commitment contract was designed to mitigate the time-inconsistency problem associated with

re-treatment. We find that commitment products are not particularly appealing to sophisticated

agents and that the purchase of these products is in fact higher among näıve households. Note that

this contradicts a—commonly assumed—deterministic mapping whereby the choice of commitment

products reveals an agent to be sophisticated. Previous work (e.g. Fang and Silverman, 2009;

Paserman, 2008) does not address these questions directly since agent type heterogeneity is typically

ruled out by assumption and agents have identical preferences.

Finally, we quantify the relationship between the extent of present-bias and the expected cost

of malaria. Ceteris paribus, a higher present-bias leads to lower ITN purchases and fewer re-

treatments. Since ITNs reduce the risk of malaria, fewer ITN purchases and re-treatments increase

the likelihood of contracting malaria. We find that the median (un-discounted) additional expected

total cost of malaria during our study period exceeds the price of a treated net by a factor of around

four. However, given the high fraction of time-inconsistent households and the high levels of present-

bias, the discounted total costs of malaria are low for many inconsistent agents compared to the

price of an ITN. This rationalizes low demand, which is problematic from the perspective of a social

planner given the strong evidence of positive externalities of ITNs (Lengeler, 2009).

In drawing links to the large literature on time-inconsistency and structural estimation with

unknown types we focus on work closest to our approach.2 Our identification results rely on

the conditional choice probabilities approach pioneered by Hotz and Miller (1993). Our work is

most closely related to Abbring and Daljord (2020b), Abbring et al. (2019) and Fang and Wang

(2015), with important differences. First, we allow for multiple unobserved types while these

papers consider the case of a single observed type. Second, the distribution of these multiple types

2See, e.g., Aguirregabiria and Mira (2010) or Arcidiacono and Ellickson (2011) for a survey on dynamic discrete
choice structural models, and DellaVigna (2018) on structural models in behavioral economics.
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is of intrinsic interest, and we can assess the time-inconsistency problem in terms of both the

type frequency in the population and the type-specific magnitude of time-inconsistency. Third,

our model is motivated by our specific setting in which purposely collected data (beliefs about

future state evolution) provide a natural candidate for the exclusion restrictions. This is a key

source of identifying variation and perhaps contributes to our Monte Carlo simulations being quite

encouraging relative to the literature.

We provide identification results for cases that have not—to our knowledge—previously been

covered in the literature. In the overlapping case of the single known type with known error

distribution, our arguments and assumptions were inspired by those in Proposition 4 of Magnac

and Thesmar (2002)—an exclusion restriction and a rank condition similar to the assumptions in

Abbring et al. (2019). Our exclusion restrictions arise naturally as restrictions on elicited beliefs

about future states and how they enter the choice problem. The special case of our results for a single

known sophisticated type are closest to the model in Abbring et al. (2019). We combine the fact that

we can identify final period utilities with an exclusion restriction and a rank condition (conditional

on state variables that enter the per-period utility function) to identify earlier period utilities as

well as certain combinations of time-preference parameters. Relative to Fang and Wang (2015) we

use additional information and our identification argument is constructive (see also Abbring and

Daljord 2020a who critique their identification results). Finally, we have a substantive empirical

application to which we apply our identification results.

Our identification arguments for unknown types are closely related to those in Kasahara and

Shimotsu (2009). We differ in that we impose an exclusion restriction by requiring a variable that

affects type probabilities but not the choice probabilities, while they place assumptions on the

length of the panel available to the researcher, and do not consider identification and estimation of

time preferences or time-inconsistency. Our work is also related to that of van der Klaauw (2012)

and van der Klaauw and Wolpin (2008) who use information about expected future choices to

improve precision in the context of a structural dynamic model, while we use expectations about

state transitions to achieve identification.

Like Ashraf et al. (2006), we use elicited time preferences to predict behavior and we design a

product that should appeal to sophisticated inconsistent agents, although they focus on reduced-

form correlations between preference reversals and demand for commitment devices in savings

markets and do not estimate time preference parameters. Augenblick et al. (2015) conduct a lab

experiment with real effort choices to identify potentially heterogeneous time-preference parameters

for agents who may be partially sophisticated. Bai et al. (2021) use a field experiment to estimate

a structural model where per-period utility is parametric and time-inconsistency parameters are

drawn from a parametric distribution. Unlike our study, they find low compliance rates among

agents who chose commitment contracts, attributing this to partial näıveté. Heidhues and Strack

(2021) provide identification results with partial näıveté in a stopping problem when data on both

the stopping probabilities and the continuation value are available. Martinez et al. (2021) adapt

their model in the context of filing tax returns and find non-negligible present-bias (assuming a
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per-period discount factor δ = 1). Our paper is also related to Andreoni et al. (2016) who estimate

individual level time-preference parameters and use them to design incentive schemes for health

workers.

The paper is organized as follows. Section 2 outlines the basic elements of the dynamic discrete

choice model with different types and describes the model primitives in some detail. Section 3

provides the identification, first for the simpler case where observables reveal types completely, and

then for the more realistic case where type is only imperfectly observed. Section 4 describes the

data, the estimation methodology and the empirical results, followed by a set of counterfactual

exercises. Section 5 concludes. Additional proofs related to the empirical application, alternative

modeling assumptions, Monte Carlo simulations, and estimation details are relegated to the online

appendix.

2 Model

We consider a dynamic discrete choice model with a finite action and state space. The model

has three periods, the minimum required to identify the time-preference parameters. We begin by

defining and placing assumptions on the state and action spaces, the transition probabilities, the

class of acceptable decision rules and finally the preferences and objective function maximized by

the agent.

State Space: St. The state space St ≡ Xt×Zt×Et where (Xt,Zt) denote the domain of the state

variables that are observed by both the researcher and the agent and Et is the domain of the state

variables that are only observed by the agent. We distinguish between two kinds of observed state

variables: xt ∈ Xt enter the static payoff functions (or per-period utilities, defined below) while

zt ∈ Zt are excluded. In the empirical application zt comprises subjective beliefs elicited from the

agent about elements of the distribution of xt+1 and these are plausibly excludable from the static

payoff function (conditional on the observed state) – see Assumption B for a formal statement and

the subsequent discussion of the exclusion restriction.

We can allow for a rich observable state space with the substantive restriction that it is finite.

The vector of unobserved state variables ϵt ∈ Et is absolutely continuous (w.r.t. the Lebesgue

measure) and has dimension equal to the number of actions available to the agent in period t.

Action Space: At.

In each period t, the agent takes one of a finite number Kt of actions at ∈ At.

Transition Probabilities: P(st|st−1, at−1).

Let P(st|st−1, at−1) denote the distribution function of the random vector st ∈ St conditional

on (st−1, at−1) and refer to it as the transition probability distribution. We make the standard

assumption that the transition probabilities are Markov (see e.g. Aguirregabiria and Mira, 2010)

in the sense that the conditional distribution of st given the entire state and action history through

period t − 1 only depends on last period’s state and action, that is, (st−1, at−1). Incorporating

dependencies across longer horizons requires redefining the state variable to include sufficient lags.
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Error Terms ϵt.

We assume (as is standard) that the vector ϵt is independently distributed across time. This rules

out serially correlated unobserved heterogeneity, such as if agents’ decisions were driven by shocks,

unobserved to the econometrician, whose effects last for multiple periods. This limitation can be

mitigated in two ways. First, one can allow for considerable heterogeneity across time and agents

by permitting time- and type-varying preferences (see below for details). Second, one can include

a large number of observed time-varying variables in the state space, thereby reducing the serial

correlation of the unobserved residual. We also assume that the preference shock ϵt has a known

distribution and is independent of the whole path of observable state variables {xt, zt}3t=1 as well as

past actions {as}t−1
s=1. This rules out for instance direct feedback from current shocks to future state

variables. We deal with this limitation by including a set of state variables and directly modeling

their evolution over time.

Decision Rules: dt.

The decision rule in period t, dt, is a mapping from St to At. We do not allow for history-dependent

decision rules which thus cannot be mappings from
∏t−1

s=1(Ss,As) × St to the action space. Given

the Markov property for the transition probabilities and the assumptions on preferences below, the

optimal decision rule will indeed be a deterministic function only of the current state (see e.g. Rust

1994).

Types and Preferences.

As is common in empirical work, we assume that preferences are additively time-separable, and

parameterize time inconsistency using the tractable (β, δ) formulation described in Strotz (1955).3

Then, for a given sequence of actions {at}3t=1, the utility of an agent of type τ is:

ũt(st, at; τ) + βτ

3∑
j=t+1

δj−t
τ Et(ũj(sj , aj ; τ)). (1)

Broadly, we deal with three types of agents: time-consistent agents (denoted by τC or C), time-

inconsistent näıve agents (τN or N) and time-inconsistent sophisticated agents (τS or S) with two

important qualifications:(a) within each type, we can allow for further heterogeneity in per-period

and time preferences so that there could be multiple (though finite) consistent, sophisticated, and

näıve types; (b) the theory can accommodate partially sophisticated agents and we provide set

identification results for this case.

Following O’Donoghue and Rabin (1999), time-consistent agents (τ = τc) have βτC ≡ βC = 1,

which corresponds to the standard case of exponential discounting. Such agents will maximize

eq. (1) using standard dynamic programming methods (backward induction in this finite hori-

zon case). The other two types of agent are both time-inconsistent, with hyperbolic parame-

ter βτ < 1. Both types of time-inconsistent agents are aware of their current present-bias and

3This is not the only possible formulation: see for instance Gul and Pesendorfer (2001, 2004). See Toussaert
(2018) for an experimental test of the Gul-Pesendorfer model and Giné et al. (2018) for a field-experimental test of
commitment revisions.
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solve the maximization problem using backward induction. However, while sophisticated agents

(τ = τS , βτS ≡ βS < 1) also recognize their future present-bias, näıve agents (βτN ≡ βN < 1) do

not. For the econometrician, this generates differences in predicted behavior that can be exploited

for identification, as we show below.

The formulation in eq. (1) allows for type-varying exponential (δτ ) and hyperbolic (βτ ) param-

eters. Previous empirical work assumes that βN = βS and that δN = δS = δC . We relax these

restrictions while still retaining point-identification for all parameters except the time-preference

parameters for näıve agents. The formulation also allows for time-varying type-specific per-period

utilities ũt(·; τ). This flexibility is important since it allows us to examine heterogeneity across

three dimensions. First, within a given type one can assess how much of the difference in behavior

across time can be attributed to evolving preferences over states and how much to time-preferences,

without confounding their relative role. Second, one can examine how much of the difference in

choices between types is driven by differing preferences over states versus different time preferences.

Third, the time- and type-varying formulation provides a mechanism for flexibly accounting for

serially correlated unobserved heterogeneity. Our formulation nests the model where types only

differ in the degree of present-bias so that we can evaluate the role of present bias relative to those

of other differences in preferences in explaining behavior.

We now have sufficient notation in place to state the first set of basic assumptions. These assump-

tions are always invoked together and we will refer to them jointly as Assumption B (for “Basic”

assumptions). We have already discussed the first two (and they are standard in the dynamic

discrete choice literature) and discuss the remaining three below.

ASSUMPTION B (Basic Assumptions).

Markov Property:

P(st|st−1, ..., s1, at−1, ..., a1) = P(st|st−1, at−1),

Independent Errors with Known Distribution:

P(xt, zt, ϵt|xt−1, zt−1, ϵt−1, at−1) = P(xt, zt|xt−1, zt−1, at−1)P(ϵt),

where the distribution of the vector ϵt is known and is absolutely continuous on RKt w.r.t.

Lebesgue measure and independently distributed across t.

Exclusion Restriction: The variable zt does not enter the per-period utility function, that

is, ũt(xt, zt, ϵt, at; τ) = ũt(xt, ϵt, at; τ).

Additive Separability: For each type τ ∈ T ũt(xt, ϵt, at; τ) = ut(xt, at; τ) + ϵt(at).

Normalization: Utility in period t for a base action at = 0 is known for all types and for

all states, i.e. ut(xt, 0; τ) is known for all (xt, τ) ∈ Xt × T .
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The exclusion restriction requires that there exist zt that does not enter the per-period utility

function. Intuitively, this variable will provide the basis for inducing variation in the forward-looking

component of the value function while keeping current period utility constant. This strategy builds

on the ideas (though not the precise assumption) in Magnac and Thesmar (2002) and is also used

by Abbring and Daljord (2020b) and Abbring et al. (2019). As Abbring and Daljord (2020b) point

out, the assumption in Magnac and Thesmar (in their Section 4.2) imposes conditions on the value

function (rather than the per-period utility) and is therefore not straightforward to interpret.4

In our context, elicited beliefs about the future evolution of state variables are a natural can-

didate for the exclusion restriction. The elicitation and use of expectational and belief data, as

proposed forcefully by Manski (2004), is becoming increasingly common, including in development

(Delavande et al., 2010; Delavande, 2014), finance (Shleifer, 2019) and macroeconomics (Roth and

Wohlfart, 2020). The assumption does, however, rule out models where beliefs about the future

affect current-period utility directly (e.g Brunnermeier and Parker, 2005; Kőszegi, 2010). Beliefs

that are effectively exogenous (i.e. are not determined by actions, preferences or other state vari-

ables) are potential candidates for the exclusion restriction. By the same token, endogenous beliefs

or beliefs based on endogenous information acquisition (as in e.g. Fuster et al., 2022) may be

incompatible with the exclusion restriction.

Beyond beliefs, any variable that does not affect current period pay-offs but does affect the

forward-looking component of the pay-off function is a potential candidate for z. Another example

could be a current measure of a future pay-off, such as marketing tools that promise a future pay-off

based on current period action (e.g a free coffee after 10 purchases), or variables that lead some

agents to be better informed about the likelihood of future payoff-relevant events.

The last two assumptions within Assumption B are standard in the dynamic choice literature.

First, we maintain the additive separability of utility in the unobserved state time-varying variables

ϵt. Second, we assume that payoffs from a base action are known in each state in each period. Such

normalizations are standard although recent work has emphasized that counterfactual analyses can

be sensitive to them.5

3 Identification

We consider both the case where types are directly observed as well as the case where they are

not. While the second model is more general, the identification arguments for it require showing

identification for the directly identified types case, so it is useful to discuss both cases. In the first

case we require that the researcher directly identifies the type for each individual by observing

variables referred to as a type indicator or type proxy (collectively denoted by r ∈ R). In the

second case, we assume that r only imperfectly reveals the agent’s type, for instance due to the

4In addition to the state variables, per-period utility can also be a function of time-invariant characteristics (e.g.
education level of the household head) that we denote v. Since these play no role for identification, we will omit them
as arguments in preferences for the most part, although we do include such variables in the empirical application.

5One example of how to relax this assumption is given in Appendix A of Abbring and Daljord (2020b) who
consider a time-consistent model where the utility normalization is known only up to a constant shift.
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agents’ imperfect understanding of the choice problem, imperfectly chosen survey instruments or

other differing circumstances of the agents.

3.1 Directly Observed Types

We observe an i.i.d. sample on ({a∗t , xt, zt}Tt=1, w) where a∗t is the (optimal) action chosen by the

agent, (xt, zt) are observed state variables and w = (r, v) includes both the type proxy r ∈ R and

other time-invariant characteristics v. We set T = 3 because at least three periods are necessary

to capture the notions of time-inconsistency popular in the literature (with only two periods, no

time-inconsistency problem would arise), and extensions to a general T are straightforward. We

allow for different specifications of R: in the simplest case R = {rC , rS , rN} where each element

corresponds to a unique type, but we can also allow for sub-types within a particular class of

time-inconsistent preferences, in which case R = {rC1 , . . . , rCJ
, rS1 , . . . , rSK

, rN1 , . . . , rNL
}. This

allows e.g. for multiple types of time-consistent agents who may differ in their time preferences or

per-period utility functions. Here, types are directly observed so we could equivalently have stated

these restrictions as a condition on the set of possible types, but we prefer this formulation because

it provides a natural generalization to the unobserved types case.

The key starting point for identification are the type-specific choice probabilities Pτ (a
∗
t =

a|xt, zt), which are directly observed since here we assume that agent type is a known function

of the observed type proxy. In addition, we assume that conditional on type, the proxy is uninfor-

mative about choice.

ASSUMPTION D1 (Directly Observed Types and Exclusion Restriction). Agent type is a known

deterministic function of r and therefore choice probabilities are directly observed for each type. For

an agent of type τ , P(a∗t = a|xt, zt, r = rτ ) = Pτ (a
∗
t = a|xt, zt, r = rτ ) = Pτ (a

∗
t = a|xt, zt).

Implicit in the formulation above is that type-observability is equivalent to knowledge of type-

identity (i.e. whether a type is consistent, näıve or sophisticated). However, for the first set of

results (collected in Lemma 1) we do not need to know the type identity – i.e. we do not need to

know whether the identified type-specific choice probability corresponds to a consistent, näıve, or

sophisticated type; this added generality will prove useful when we turn to the unobserved types

case.

We now turn to identification of the preference parameters. Since this is a finite-horizon dynamic

choice problem, we can use backward induction and we start from the terminal period, when the

agent chooses action k if and only if ũ3(s3, k; τ) > ũ3(s3, a; τ) ∀a ̸= k (we do not index actions by

time unless there is ambiguity). Under Assumption B we can write the choice probability as

Pτ (a
∗
3 = k|x3, z3) = P

(
k = argmax

a∈A3

{
u3(x3, a; τ) + ϵ3(a)

}∣∣∣∣x3, z3) .6
The decision in the terminal period is described by a standard static discrete choice model with a

6Since the terminal period does not have a forward looking component and we do not incorporate learning for
future periods, we do not require the existence of z3 for identification.
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known error distribution. We can thus invert the choice probability to directly identify the period

3 utilities up to the normalization in Assumption B.7

Next, in period 2 the conditional probability that an agent chooses action k is given by

Pτ (a
∗
2 = k|x2, z2) = P

(
k = argmax

a∈A2

{
u2(x2, a; τ) + ϵ2(a) + βτδτ

∫
v∗τ,3(s3) dF(s3|x2, z2, a)

}∣∣∣∣x2, z2) ,
where dF(st+1|xt, zt, a) is our notation for the distribution of the vector st+1 = (xt+1, zt+1, ϵt+1)

conditional on the vector (xt, zt, a) that is used by the agent when making choices in period t.

Given the independence between the unobserved and observed state variables,

dF(st+1|xt, zt, a) = dF(xt+1, zt+1|xt, zt, a) dF(ϵt+1) (2)

where dF(ϵt+1) is known (by Assumption B). We further assume that dF(xt+1, zt+1|xt, zt, a) is

identified so that eq. (2) is identified. However, the precise manner in which this is achieved will

depend upon the nature of the data generating process and the nature of the excluded variables zt.

One conventional approach in dynamic choice models is to impose rational expectations. Combined

with knowledge of the joint distribution of {a∗t , xt, zt}Tt=1, this implies that dF(xt+1, zt+1|xt, zt, a)
(and hence eq. (2)) is identified. In some contexts, such an assumption may be infeasible or

unreasonable without further modification. For instance, if zt are elicited beliefs about the likelihood

of future states then further assumptions are needed to ensure that such elicitations do not impose

onerous data collection requirements for identification of eq. (2). One set of assumptions is to

restrict beliefs zt to be solely about xt+1 and require

dF(xt+1, zt+1|xt, zt, a) = dF(xt+1|xt, zt, a) dF(zt+1).

so that (a) next-period beliefs (zt+1) and next-period states (xt+1) are conditionally independent

given (xt, zt, a) and that (b) the distribution of next-period beliefs does not depend upon current

beliefs, state or action (i.e. dF(zt+1|zt, xt, a) = dF(zt+1)). With these restrictions, beliefs are only

about static-payoff relevant state variables and evolve independently of states and actions. This

ensures, for instance, that we do not need to elicit beliefs in period t about beliefs in period t+ 1

and so the data collection requirements are not as onerous. It does, however, rule out learning or

belief-updating as a function of past states and actions. Formally, define zt = {Qt,t+1(a) : a ∈ At}
where Qt,t+1(a) is a matrix of elicited beliefs of dimension #Xt×#Xt+1 with an element q(a, x′, x′′)

denoting the agent’s elicited belief of being in state x′′ in period t+1 conditional on being in state x′

in period t and taking action a in period t. We then assume that dF(xt+1|xt, zt, a) = q(a, xt, xt+1).

In the application, elicited beliefs (our candidate excluded variable) are only observed at one point

in time (so zt = z) so the transition probabilities reduce to dF(xt+1|xt, z, a). These are directly

7See online Appendix C for an alternative and self-contained argument or see Hotz and Miller (1993).
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identified since they are elicited from each agent.8 Next, define

v∗τ,3(s3) ≡ max
a∈A3

{u3(x3, a; τ) + ϵ3(a)} .

We can then use the standard Hotz-Miller inversion of the type-specific conditional choice proba-

bilities to directly identify the left-hand side of the expression below:

gτ,2,k(x2, z2) ≡ u2(x2, k; τ)− u2(x2, 0; τ) + βτδτ

∫
hτ,3(x3, z3) dF∆,k(x3, z3|x2, z2), (3)

where

hτ,3(x3, z3) ≡
∫
v∗τ,3(s3) dF(ϵ3), (4)

and where dF∆,k(x3, z3|x2, z2) ≡ (dF(x3, z3|x2, z2, k)− dF(x3, z3|x2, z2, 0)) is our short-hand nota-

tion for the signed measure which is the difference in the conditional probabilities of (x3, z3) given

(x2, z2) when action k is taken and when action 0 is taken.

We next explore which of the unknown elements on the right hand side of eq. (3)—the utility

functions and the discount rates—can be identified. First, the integral is directly identified since

(a) hτ,3(·) is identified (because u3(.) is identified and the distribution of ϵ3 is known) and (b)

dF(x3, z3|x2, z2, k) is directly identified from the data so that the signed measure dF∆,k(·) is iden-
tified. Next, z2 only enters the last term in eq. (3) so we can use variation in z2 (conditional on

x2) to isolate this last term. This requires that the variation in z2 translates into variation in the

integral of the period 3 value function (where integrals are taken using the signed measure defined

above).9 This variation allows us to isolate the forward-looking component of the value function

and, along with the previously identified terms in eq. (3), to identify the product βτδτ . While we

do not prove that such variation is necessary for identification, the non-identification of discount

parameters in standard dynamic choice models can be traced to the lack of variation of this kind.

In fact, this variation is a version of the rank condition in Proposition 4 of Magnac and Thesmar

(2002) adapted to the context of our model. Since we require such an assumption for all three

periods, we state it here for all periods for brevity.

ASSUMPTION D2 (Rank Condition). For t ∈ {2, 3} the distribution of zt−1 conditional on xt−1

has at least two points of support (z′t−1, z
′′
t−1) and there exists at least one action kt−1 and one point

in the support of Xt−1 such that

8In our empirical application we use beliefs about malaria risk under various ITN usage scenarios (i.e. different
values of a) as well as about transition probabilities for income. We did not condition on current state (xt) in the
elicitation to cut down survey length, and we do not allow beliefs to vary over time, see Section 4.1 for details. In
Appendix B we show that identification is achieved also with time-invariant beliefs, given that we will only require
within-period variation in z. We thank a referee for comments and suggestions on this point.

9When the zt are beliefs about xt+1, the assumption requires that the variation in beliefs across the population
induces sufficient variation in the expectations of the forward-looking component of the value function.
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∫
hτ,t(xt, zt)

(
dF∆,kt−1(xt, zt|xt−1, z

′
t−1)− dF∆,kt−1(xt, zt|xt−1, z

′′
t−1)

)
̸= 0.

The distribution of z1 conditional on x1 has at least two points of support (z′1, z
′′
1 ) and there exists

at least one action k1 and one point in the support of X1 such that for sophisticated agents,∫
hBS (x2, z2, βSδS)

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k1(x2, z2|x1, z′′1 )

)
̸= 0.

We define and describe hτ,2(·) and hBS (·) below in eq. (8). For t = 3, this assumption is in principle

testable, since the function hτ,3(·) is identified for all types and dF∆(·) is known. For t = 2, this is

not the case since hτ,2(·) is not identified for all types. With the rank condition in place, we can

separately identify the per-period preferences (for t = 2, 3) and the product of the time-preference

parameters.

LEMMA 1 (Identification for Periods 3 and 2). Consider an agent maximizing (1) and

suppose that the model satisfies Assumptions B, D1 and D2. Then

1. Period 3 utility u3(x3, a3; τ) ∀ (a3 ∈ A3, x3 ∈ X3, τ ∈ T ) is identified.

2. Period 2 utility u2(x2, a2; τ) ∀ (a2 ∈ A2, x2 ∈ X2, τ ∈ T ) is identified.

3. The product of the exponential parameter and the hyperbolic parameter {βτδτ : τ ∈ T } is

identified.

All proofs are relegated to the appendix. The intuition for the result is that, following the Hotz-

Miller inversion, the exclusion restriction provides variation in the agents’ future expected utilities

which is used to identify βτδτ . With that in hand, we can then recover the period 3 payoff functions.

Two points are worth keeping in mind for the next section with unobserved types. First, the proof

reveals that we only need the type-specific choice probabilities to be identified (so it is not necessary

to observe each agent’s type). Second, knowledge of the type-identities is not required (i.e. we do

not need to know whether a given type-specific choice probability belongs to a time-consistent or

inconsistent type).

Next, we turn to identification of βτ and δτ separately, and of the period 1 utility functions. As

before, the conditional choice probability that an agent chooses action k in period 1 is given by

Pτ (a
∗
1 = k|x1, z1) = P

(
k = argmax

a∈A1

{
u1(x1, a; τ) + ϵ1(a) + βτδτ

∫
v∗τ,2(s2) dF(s2|x1, z1, a)

}∣∣∣∣x1, z1) .
(5)

The key difference between standard and hyperbolic dynamic programming problems is captured
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in the definition of the value function v∗τ,2(s2) which is defined as

v∗τ,2(s2) =
∑
a∈A2

vτ,2(s2, a, δτ )Aτ (s2, a, β̃τδτ ), where

vτ,2(s2, a, d1) = u2(x2, a; τ) + ϵ2(a) + d1

∫
v∗τ,3(s3) dF(s3|x2, z2, a), and

Aτ (s2, a, d2) = I

{
a = argmax

j∈A2

vτ,2(s2, j, d2)

}
. (6)

Here, v∗τ,2(s2) is the continuation value from period 2 onwards from the standpoint of period 1 and

is defined in terms of the utility measure vτ,2(·) and the choice indicator Aτ (·).10 We introduce

the arguments (d1, d2) since the identification results will involve evaluating the value function at

different candidate values for these parameters. The argument d1 in vτ,2(·) governs utility trade-offs

between periods 2 and 3 from the view-point of t=1 and is equal to δτ for all types.11 The argument

d2 is the rate of time-preference that the period 1 self believes she will use to make choices in period

2. In standard dynamic programming problems—i.e for time-consistent agents, d2 = δ. Agents who

are completely aware of their future present-bias will have d2 = βδ. In contrast, agents who are

completely unaware of their future present bias are those with d2 = δ and β < 1. More generally,

we can write d2 = β̃τδτ , where the parameter β̃τ is interpretable as the extent of present-bias that

the agent in t = 1 thinks her period 2 self will be subject to. For time-consistent agents β̃τ = 1

but for time-inconsistent agents in general β̃τ ≤ 1. The value of this parameter is often mapped

into notions of “sophistication” in the time-discounting literature. Time-inconsistent agents with

values of β̃τ that are close to βτ are said to exhibit greater “sophistication” since they recognize

more clearly the extent of the present-bias in their future behaviour while values of β̃τ further from

βτ and closer to 1 reflect more “naiv̈ete” (since agents are failing to recognize the true extent of

present-bias in their future behavior). For the main results in this paper we make the assumption

that agents are either completely sophisticated or completely naiv̈e.

ASSUMPTION D3 (Three Types). The parameter β̃τ is equal to 1 for consistent and näıve

agents and is equal to βS for sophisticated agents.

In Section 3.3 we explore the weaker assumption of partial sophistication, in which case β̃τ ∈ [βτ , 1]

and β̃τ is an additional parameter that is only set-identified. Intuitively, with partial sophistication

the extra parameter β̃τ drives choices in period 1 but observed choices in periods 2 and 3 are

uninformative about it, because choice in the later periods involve βτ and not β̃τ .

Identification for t = 1 follows the same general strategy as for t = 2. We first invert the

type-specific conditional choice probabilities to directly identify the function gτ,1,k(·):

gτ,1,k(x1, z1) = u1(x1, k; τ)− u1(x1, 0; τ) + βτδτ

∫
hτ,2(x2, z2) dF∆,k(x2, z2|x1, z1), (7)

10We use A to represent both the event and an indicator for the event.
11Note that βτδτ multiplies utility at both t=2 and =3 (see eq. (5)), so the trade-off between the two periods from

the viewpoint of t = 1 is only governed by the discount factor in vτ,2(·).
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where

hτ,2(x2, z2) ≡
∫
v∗τ,2(s2) dF(ϵ2) =

∑
a∈A2

∫
vτ,2(s2, a, δτ )Aτ (s2, a, β̃τδτ ) dF(ϵ2)

=
∑
a∈A2

∫ u2(x2, a; τ) + ϵ2(a) + δτ

∫
v∗τ,3(s3) dF(s3|x2, z2, a)︸ ︷︷ ︸

≡qτ (x2,z2,a)

Aτ (s2, a, β̃τδτ ) dF(ϵ2)

=
∑
a∈A2

∫
(u2(x2, a; τ) + ϵ2(a))Aτ (s2, a, β̃τδτ ) dF(ϵ2)︸ ︷︷ ︸

≡h̃A
τ (x2,z2,β̃τ δτ )

+δτ ·
∑
a∈A2

qτ (x2, z2, a)

∫
Aτ (s2, a, β̃τδτ ) dF(ϵ2)︸ ︷︷ ︸

≡h̃B
τ (x2,z2,β̃τ δτ )

= h̃Aτ (x2, z2, β̃τδτ ) + δτ · h̃Bτ (x2, z2, β̃τδτ ). (8)

Note that in the expression above the expected value of v∗τ,3(s3) (i.e. qτ (x2, z2, a)) is multiplied by

the discount factor δτ and not βτδτ , because the hyperbolic parameter βτ does not directly enter

into the intertemporal decision problem between any two future periods (in this case, t = 2, 3)

when seen from the point of view of the present (t = 1).

The function hτ,2(x2, z2) represents how much an agent at t = 1 values being in state (x2, z2) at

t = 2 after (a) incorporating her own perceived future behavior in periods 2 and 3 and (b) taking

expectations over the unobserved state variables in period 2 and over all variables in period 3. As

the right-hand side of eq. (8) makes explicit, the only unknowns in hτ (·) are the pair (β̃τδτ , δτ ).

Further, observe that the product βτδτ is identified (by Lemma 1). How informative βτδτ is for

the unknown parameters (β̃τδτ , δτ ) varies by type and so we discuss identification separately by

type below.

3.1.1 Identification for Consistent and Sophisticated Agents

First, for consistent agents, β̃C = βC = 1 and βCδC = δC which is identified by the previous lemma.

Therefore (β̃CδC , δC) = (δC , δC) is identified which in turn implies that hC,2(x2, z2) is identified.

Thus, all the elements in the last term in eq. (7) are identified. Therefore, period 1 preferences (i.e.

the first two terms in eq. (7)) are identified (without any further assumptions).

Second, for a sophisticated type, β̃S = βS (by Assumption D3) so that β̃SδS = βSδS and the

latter is identified by the previous Lemma. Therefore, the only unknown parameter in eq. (7) is δS

which enters it linearly. Rewriting eq. (7) for sophisticated types:

gS,1,k(x1, z1) = u1(x1, k; τS)− u1(x1, 0; τS) + βSδS

∫
hAS (x2, z2, βSδS) dF∆,k(x2, z2|x1, z1)

+ δS (βSδS)

∫
hBS (x2, z2, βSδS) dF∆,k(x2, z2|x1, z1),

(9)

where the δS term that multiplies βSδS in the last term is not identified. As before, we can use
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variation in z1 (guaranteed by the second rank condition of Assumption D2) to identify δS and

then in the next step identify the first period payoffs. We collect the identification results for all

remaining parameters for consistent and sophisticated types here.

LEMMA 2 (Period 1: Identification for Consistent and Sophisticated types).

Consider an agent of type τC solving the problem (1) at t = 1 and suppose that the model satisfies

Assumptions B, D1 and D2. Then, u1(x1, a; τC) is identified ∀ (a ∈ A1, x1 ∈ X1).

Next, consider an agent of type τS solving the problem (1) at t = 1 and suppose that the model

satisfies Assumptions B, D1, D2 and D3. Then,

1. Period 1 utility u1(x1, a; τS) is identified ∀ (a ∈ A1, x1 ∈ X1).

2. The exponential and hyperbolic parameters (δS and βS) for sophisticated agents are identified.

3.1.2 Identification for Näıve Agents

For both consistent and sophisticated agents knowledge of βτδτ was sufficient to identify β̃τδτ

but for näıve agents knowledge of βNδN is not sufficient to identify β̃NδN = δN . The unknown

parameter δN enters eq. (7) in a non-linear fashion through the functions (h̃Aτ (·), h̃Bτ (·)) which are

now not identified (unlike for consistent and sophisticated types), so that identification will require

stronger assumptions.

One simple assumption that ensures point-identification is that the exponential parameter for

the näıve type is the same as for the consistent or sophisticated types: since δS and δC are already

identified, this trivially guarantees identification of δN , and this in turn implies identification of

period 1 payoff functions for the näıve type. However, in order for this assumption to be substantive,

both sophisticated and näıve types (or alternatively time-consistent and näıve types) have to exist.

In other words, the time preferences of time-consistent and time-inconsistent sophisticated agents,

respectively, can be identified even if no näıve agents are present, while the equal discount rate

assumption is only informative when sophisticated (or consistent) agents are also present in addition

to näıve types.

In Appendix A.2, we provide an alternative set of conditions to generate bounds on the time-

preference parameters for the näıve type. The argument has two steps: (a) first, in Lemma A1 we

place additional structure on the transition probabilities to identify the function hτ,2(·) defined in

eq. (8) above (up to a normalization). This allows us to identify the first-period payoff function

using eq. (7). Next, we construct an alternative measure of hτ,2(·) using period 2 and period 3

choices only. A comparison of these two functions provides a measure of the difference between an

agent’s beliefs at t = 1 about her subsequent behavior in periods 2 and 3 and her actual choices in

those periods. This comparison allows us to place bounds on δN (and consequently on βN ) which

we do in Lemma A2. We also discuss an (untestable) monotonicity restriction (Assumption DA2)

that yields point identification for (δN , βN ) in Lemma A3. In the empirical application we will

assume that all types share the same exponential discount parameter, thereby circumventing the

identification problem.
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3.2 Unobserved Types

We next turn to the case where types are not directly observed. This is both a more realistic

scenario (since observables typically do not completely reveal type) and a more general model

because it nests the perfectly observed types model. The starting point is the joint distribution of

({a∗t , xt, zt}Tt=1, w) but now without Assumption D1 so that we do not observe the type for each

observation. Recall that w = (r, v) includes the type proxy r and other time-invariant characteristics

v. There are now four steps involved in going from this observed joint distribution to the preference

parameters for each type of agent:

1. Identify the total number of types.

2. Identify the type-specific choice probabilities, without assigning them to their respective types.

3. Assign the type-specific choice probabilities to the different types.

4. Identify the preference parameters for each type.

To illustrate, step 1 could determine that the population contains eight distinct types. Then

step 2 identifies the eight type-specific choice probabilities {Pτ (at|xt, zt, r, v)}t, leaving the type-

identity of τ unknown. The identity of each type τ is then identified in step 3, and the preference

parameters in step 4. Note that a key implication of this more general approach is that while the

frequency of each type in the population can be identified, the type of any given individual cannot.

This is in sharp contrast to the case discussed in Section 3.1 where the signal r directly identified

the type for each individual.

We discuss each of the four steps above in a separate sub-section, although there is considerable

overlap in the last two steps. We begin by introducing additional elements needed, starting from the

mixture probabilities. The joint distribution of the observed data identifies the ‘aggregate’ choice

probabilities P(at|xt, zt, r, v) which are mixtures over all of the type-specific choice probabilities

Pτ (at|xt, zt, r, v). The mixture probabilities πτ (r, v) denote the probability that an agent is of type

τ conditional on a vector of exogenous variables v and the type proxy r. These probabilities have

a substantive economic interpretation since they represent the relative sizes of the different types

of agents in the population.

3.2.1 Identifying the Total Number of Types

Let T denote the finite set of possible types. As in the previous section under Assumption D3

we distinguish between completely sophisticated agents (β̃τ = βτ < 1), completely näıve agents

(β̃τ = 1, βτ < 1) and time-consistent agents (β̃τ = βτ = 1). Within each type of agent we can allow

for further subtypes—e.g. consistent agents with different preference parameters or sophisticated

agents with different preference parameters—so the cardinality of T can be larger than three.

More generally, we can subsume all inconsistent agents under the rubric of partially sophisticated

agents (β̃τ ∈ [βτ , 1]) within which type there might exist further sub-types with different preference
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parameters. We will show that whether all these types can be separately identified depends upon

how different their behavior is both at a given point in the state space and across different points

in the state space.

Define Mr,v as the total number of types that exist at the support point (r, v):

Mr,v =
∑
τ∈T

I{πτ (r, v) > 0}. (10)

We first provide a lower bound for the total number of types that depends upon the size of the

state-space. Under an additional (albeit unverifiable) assumption on the differential behavior of

types across the state space this is also an upper bound so that we can identify the total number of

types. To state these restrictions formally we begin by clarifying the link between observed choice

probabilities and the underlying unobserved type-specific choice probabilities. For the purpose of

identifying the type-specific choice probabilities Pτ (at|xt, zt, r, v) there is no conceptual distinction

between xt and zt so we denote their union by xt ≡ (xt, zt). We place two restrictions on the

distribution of states and actions:

ASSUMPTION U1 (Exclusion Restrictions).

1. Conditional upon type, the type proxy r is uninformative about choice:

Pτ (a1,x1|r, v) = Pτ (a1,x1|v) ∀ (a1,x1, v), and Pτ (at|xt, r, v) = Pτ (at|xt, v) ∀ (at,xt, v) t > 1.

2. Transition probabilities do not vary by type and are independent of r:

Pτ (xt+1|xt, at, r, v) = P(xt+1|xt, at, v). ∀(xt,xt+1, at, r, v).

Both parts of the assumption can be viewed as exclusion restrictions. The first part is reasonable

to the extent that r is only informative about choices through its predictive power for agent type.

If, however, r provides information about other aspects of the decision process this assumption

would fail. For instance, if r is not just a measure of time-inconsistency but also reflects a lack

of numeracy or other flaws in an agent’s cognitive processes it may have an independent effect on

choice, even after conditioning on type. However, one can mitigate this problem by specifying a rich

set of observables v (e.g. one could include a measure of literacy or cognitive skill if available in v).

The second part of the assumption states that once we condition on action and current state, the

evolution of future states is independent of type. This will be implausible if, for instance, different

types take different unobserved actions that affect transition probabilities. One drawback of this

assumption is that it is not testable since it imposes conditions on unobserved quantities (i.e., the

type-specific choice and transition probabilities).

Consider next the joint distribution of actions and states in two adjacent time periods condi-

tional upon (r, v) and express it as a mixture of the corresponding type-specific joint distributions

P(at+1, at,xt+1,xt|r, v) =
∑
τ∈T

πτ (r, v)Pτ (at+1, at,xt+1,xt|r, v).
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Using Assumption U1 and the Markov nature of the decision rule (see Assumption B) we can write

P(at+1, at,xt+1,xt|r, v) =
∑
τ

πτ (r, v)Pτ (at+1|xt+1, v)P(xt+1|xt, at, v)Pτ (at,xt|v).

Next, define (for P(xt+1|xt, at, v) ̸= 0) the directly identified quantities

Fat,xt
r,v ≡ P(at,xt|r, v),

F
at+1
xt+1,r,v ≡ P(at+1|xt+1, r, v),

F
at,at+1
xt,xt+1,r,v ≡ P(at, at+1,xt,xt+1|r, v)

P(xt+1|xt, at, v)
, (11)

and we will often suppress the dependence on v for brevity. Next, let M t (M for short) denote the

cardinality of the smaller of the state spaces in the two adjacent periods (min{#Xt,#Xt+1}). For
given values (at,x

1
t , . . . ,x

M
t , at+1,x

1
t+1, . . . ,x

M
t+1) define the (M + 1) × (M + 1) directly identified

matrix using the expressions defined above in eq. (11):

Pat,at+1,M
r,v ≡



1 F
at+1,x1

t+1
r,v · · · F

at+1,x
M
t+1

r,v

F
at,x1

t
r,v F

at,at+1

x1
t ,x

1
t+1,r,v

· · · F
at,at+1

x1
t ,x

M
t+1,r,v

...
...

...
...

F
at,x

M
t

r,v F
at,at+1

x
M
t ,x1

t+1,r,v
. . . F

at,at+1

x
M
t ,x

M
t+1,r,v


, (12)

where we will sometimes abbreviate this matrix as P
M
r or P for brevity. Next, we express each

element of this matrix in terms of the corresponding unknown type-specific probabilities

Fat,xt
r,v =

∑
τ

πτ (r, v)Pτ (at,xt|v) ≡
∑
τ

πτ (r, v)λ
at,xt,τ
v ,

F
at+1
xt+1,r,v =

∑
τ

πτ (r, v)Pτ (at+1|xt+1, v) ≡
∑
τ

πτ (r, v)λ
at+1,τ
xt+1,v,

F
at,at+1
xt,xt+1,r,v =

∑
τ

πτ (r, v)Pτ (at,xt|v)Pτ (at+1|xt+1, v) ≡
∑
τ

πτ (r, v)λ
at,xt,τ
v λ

at+1,τ
xt+1,v, (13)

where we have introduced λ·,τ· as a short-hand notation for the type-specific choice probabilities.

To express the relationship between the directly identified object P and the type-specific choice

probabilities, we define the two Mr,v × (M + 1) matrices

Lat,xt,(M+1)
v ≡


1 λ

at,x1
t ,τ1

v . . . λ
at,x

M
t ,τ1

v

1 λ
at,x1

t ,τ2
v . . . λ

at,x
M
t ,τ2

v

...
... . . .

...

1 λ
at,x1

t ,τMr,v
v . . . λ

at,x
M
t ,τMr,v

v

 , (14)
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and

L
at+1,(M+1)
xt+1,v ≡


1 λ

at+1,τ1
x1
t+1,v

. . . λ
at+1,τ1

x
M
t+1,v

1 λ
at+1,τ2
x1
t+1,v

. . . λ
at+1,τ2

x
M
t+1,v

...
... . . .

...

1 λ
at+1,τMr,v

x1
t+1,v

. . . λ
at+1,τMr,v

x
M
t+1,v

 . (15)

Next, define a diagonal matrix containing the type frequencies Vr,v ≡ Diag(πτ1(r, v), . . . , πτMr,v
(r, v)).

With this notation in hand, we can now express the identified matrix P in terms of the unknown

objects of interest:

Pat,at+1,M
r,v = (Lat,xt,(M+1)

v )′V
Mr,v
r,v L

at+1,(M+1)
xt+1,v . (16)

We will use this relationship to determine the number of types (and subsequently identify the

elements on the right hand side as well).

The dimension and rank of the right-hand side of eq. (16) is important because as we show

below there is a relationship between them and the number of types. This is formalized as:

ASSUMPTION U2 (Existence and Rank Condition).

Given (r, v), there exist (at,x
1
t , . . . ,x

M
t , at+1,x

1
t+1, . . . ,x

M
t+1) such that

1. P(xj
t+1|xk

t , at, v) ̸= 0 for (j, k) ∈ {1, . . . ,M}2;

2. The matrices L
at,xt,(M+1)
v and L

at+1,(M+1)
xt+1,v have rank equal to Mr,v.

The first part of the assumption ensures that the elements of P in eq. (12) are well defined and

is, in principle, testable since it is placed on observed quantities. The second part requires the

existence of at least as many points in the state space (M) as the number of types (Mr,v) – and

can be interpreted as an order condition. It further also imposes a rank condition – that there

be sufficient variation in the type-specific choice probabilities across the state space (i.e. that the

rows of the L matrices are linearly independent) and at a given point in the state space (columns

in the L matrices cannot consist of identical entries). This assumption formalizes the intuition

that type-specific choice probabilities are not identified if they do not vary sufficiently across types

(i.e. across rows) so that the state space must be sufficiently rich to distinguish between them.

Although untestable (since it involves unobserved quantities), this assumption is reasonable here to

the extent that the model is only interesting – in the sense that types behave sufficiently differently

– if it is true. With Assumption U1 and Assumption U2 in hand, we can now identify the total

number of types.

PROPOSITION 1 (Identifying the Total Number of Types). Fix (r, v) and suppose that

Assumption U1 holds and we can write

P(at, at+1,xt,xt+1|r, v) =
∑
τ

πτ (r, v)Pτ (at+1|xt+1, v)P(xt+1|xt, at, v)Pτ (at,xt|v).

Then,

1. For a given point (at,x
1
t , . . . ,x

M
t , at+1,x

1
t+1, . . . ,x

M
t+1), the total number of types Mr,v ≥

Rank(P
M
r,v) where the directly identified matrix P

M
r,v is defined in eq. (12).
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2. Suppose in addition that Assumption U2 holds. Then, Mr,v = Rank(P
M
r,v).

The first part of the proposition provides a lower bound on the number of types and is useful when

the support of the state space is restricted (i.e. M is relatively small). The second part shows

that given a sufficiently rich state space and sufficient variation in type behavior across the state

space, the lower bound is also an upper bound. Proposition 1 provides a result for the number

of types at each point (r, v). The conditioning on time-invariant household characteristics v can

be dropped (and will be dropped in the subsequent analysis) without affecting the identification

results. However, we maintain the dependence on r since some of the identification arguments

below depend upon the type indicator.

3.2.2 Identifying the Type-Specific Choice Probabilities

We now turn to identifying the type-specific choice probabilities, making use of the structure of

the identified matrix P
M
r,v as well as the exclusion restriction in Assumption U1. We prove two

different sets of identification results: the first set of results uses variation in the type proxy r.

These results are most useful in situations with limited state space transitions and only consider

transitions between adjacent periods. The second set of results use additional information from

the Markovian nature of the dynamic problem but requires a richer set of transitions beyond just

adjacent periods.

In what follows we allow the type probability πτ to depend upon the exogenous variables v.

This is done in the interest of generality but nothing would be lost if we assumed (as one might

for tractability reasons as we do in the empirical section) that πτ (r, v) = πτ (r). We fix (r, v) and

let Tr,v denote the set of Mr,v types existing at (r, v). In the first approach, we assume that there

is a common set of types that exist for at least two values of the type proxy, that is Tr,v = Tr′,v for

r′ ̸= r. This requires a priori knowledge about the existence of types at different values of (r, v)

and is therefore untestable. A simple and sufficient condition is that all types exist at all values

(r, v) and this is what we assume in the empirical application.

Finally, types must behave sufficiently differently across the state space in the sense outlined

above. Formally, this translates into an invertibility condition on the matrices L
at,xt,Mr,v
v and

L
at+1,Mr,v
xt+1,v defined using eqs. (14) and (15) but replacing M with Mr,v − 1 in the definitions (so the

dimensions now depend only upon the number of types Mr,v). For simplicity, we will abbreviate

these two matrices as Lt,r and as Lt+1,r. We collect both assumptions discussed above in the

assumption below (since they are always invoked together).

ASSUMPTION U2′ (Overlap Condition; Modified Existence and Rank Condition).

1. (Overlap) Fix (r, v). There exists an r′ ̸= r such that Tr′,v, = Tr,v.

2. Given (r, v), there exist (at,x
1
t , . . . ,x

Mr,v−1
t , at+1,x

1
t+1, . . . ,x

Mr,v−1
t+1 ) such that

(a) P(xj
t+1|xk

t , at, v) ̸= 0 for (j, k) ∈ {1, . . . , (Mr,v − 1)}2.

(b) The Mr,v ×Mr,v matrices L
at,xt,Mr,v
v and L

at+1,Mr,v
xt+1,v are invertible.
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The second part above is a restatement of Assumption U2 for the square matrix case (see the dis-

cussion following that assumption) and the first part is the overlap condition discussed immediately

above. We can then state the following lemma for point identification of the type-specific choice

probabilities:

LEMMA 3 (Identifying Type-Specific Choice Probabilities). Fix (r, v) and suppose As-

sumption U1 and Assumption U2′ hold and that the agent’s optimal decision process is Markovian.

Then, the type-specific choice probabilities {Pτ (at|xt, v)}τ∈Tr,v ;t∈{1,2,3} for (xt, v) ∈ Xt×V are iden-

tified.

If the overlap condition fails, identification results can follow from stronger assumptions about the

nature of state transitions across three (as opposed to two) periods. In this case, a set of type-

specific choice probabilities are recovered for each value of (r, v) without requiring any overlap.

These results, which for brevity are stated in Appendix A.3.1 with the main result being Lemma

A5, are helpful for instance if the type proxy creates a mutually exclusive partition of agent types.

Note that this is not the same as in the special case of directly observed types analyzed in Section 3.1.

In this latter case, not only is there a single type in each partition, but it is also known which specific

type is observed in each partition.

3.2.3 Assigning Identities to Choice Probabilities

The previous subsection identified the type-specific choice probabilities but not the identities of the

specific types. We now outline a procedure to assign type identities to the identified type choice

probabilities.

First, we apply Lemma 1 to the identified type-specific choice probabilities Pτ (at|xt, v) to iden-

tify period 2 and 3 utilities ({ut(xt, at; τ))}t∈{2,3},τ∈T ) and the products βτδτ . Next, we use these

objects to construct the functions h̃Aτ (x2, z2, βτδτ ) and h̃Bτ (x2, z2, βτδτ ) defined in eq. (8). Recall

that the function h̃Aτ (x2, z2, d2) represents the period 1 self’s evaluation of (un-discounted) utility

in period 2 (in state (x2, z2)) when actions in period 2 are taken assuming the discount factor

between periods 2 and 3 is d2. Similarly, h̃Bτ (x2, z2, d2) is the period 1 self’s expected period 3

(un-discounted) utility assuming that the discount factor between period 2 and 3 when choosing

period 2 actions is given by d2. Then, define the following terms for a pre-specified point (x20, z20):

h̃∆,j
τ (x2, z2, d2) ≡ h̃jτ (x2, z2, d2)− h̃jτ (x20, z20, d2) j ∈ {A,B}. (17)

Functions with a ∆ superscript can be interpreted as ‘normalized’ future expected utilities relative

to a given point (x20, z20). Lemma A1 of Appendix A.2 shows that the following function is

identified:

h∆τ (x2, z2) ≡ hτ,2(x2, z2)− hτ,2(x20, z20),

where hτ,2(x2, z2) was defined in eq. (8). Next, define the identified function (which is well-defined
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as long as the denominator is not zero):

δ̂τ (x2, z2) ≡
h∆τ (x2, z2)− h̃∆,A

τ (x2, z2, βτδτ )

h̃∆,B
τ (x2, z2, βτδτ )

. (18)

The variation of this function across the state space will be key to distinguish näıve from consistent

and sophisticated types. This will be true as long as, roughly speaking, two views of the future are

sufficiently different across the observed state space. To state this formally, consider the function

h̃τ (x2, z2, d1, d2) ≡ h̃Aτ (x2, z2, d2) + d1h̃
B
τ (x2, z2, d2) (defined in eq. (40) below). Normalizing it by

subtracting h̃τ (x20, z20, d1, d2) we can define the identified function h̃∆τ (x2, z2, d1, d2).

h̃∆τ (x2, z2, d1, d2) ≡ h̃τ (x2, z2, d1, d2)− h̃τ (x20, z20, d1, d2). (19)

The function h̃∆N (x2, z2, δN , δN ) is the (normalized) value of being in state (x2, z2) from the view-

point of a näıve agent’s period 1 self while h̃∆N (x2, z2, δN , βNδN ) is the same value for the agent if

instead she assumed that she would use βNδN to discount utility between periods 2 and 3 when

making decisions in period 2 (i.e. behaved as if she were completely sophisticated). We will require

that these two views of the future have to vary over the state space (formally, this is Assumption

UA3 and is stated in Appendix A.3.2 in the interest of brevity). It seems reasonable to assume

that the näıve and sophisticated calculations differ over the future for if they did not, period 1

choice probabilities would be identical for näıve types and sophisticated types who have the same

preference parameters as their näıve counterparts. We can then state the formal result (details and

some intuition for the proof are relegated to the appendix):

PROPOSITION 2 (Assigning Type-Identities). Suppose that the type-specific choice prob-

abilities are identified and Assumptions B, D1 and D2 hold (so that Lemma 1 holds). Further,

suppose that Assumption UA3 holds. Then, type identities are identified.

3.2.4 Identifying Preferences for each Type

Note that most of the work in identifying preferences was already done in the previous sub-sections

while identifying type identities. In particular, we identified per-period utilities {ut(·, τ)}t,τ for

each period and the product of the time-preference parameters βτδτ . In addition, for sophisticated

and time-consistent agents the identified object δ̂(x2, z2) = δτ so that for these two types the time-

preference parameters are also separately identified. For näıve agents, we can use Lemma A2 and

Lemma A3 to (set or point) identify the time-preference parameters.

3.3 Partial Sophistication

Assumption D3 imposes that sophisticated agents are fully aware of their future present-bias, while

näıve agents are fully unaware of it. This restriction greatly simplifies the analysis by reducing

the number of time preference parameters, but it may be undesirable. In this section, we discuss

identification when agents are only partially aware of their future present-bias. Our main finding
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is that without further assumptions, none of the time preference parameters are point identified.

The arguments for why this is the case is similar to those made for näıve types analyzed above.

We start the analysis by relaxing Assumption D3 and only require that β̃τ ∈ [βτ , 1], so the only

sharp distinction is between time-consistent (βτ = 1) and partially sophisticated agents. Partially

sophisticated agents are not all identical since they may have different values of (β̃τ , βτ ) as well

as different exponential parameters and per period utilities. As always, we assume that the total

number of types is finite.

We first discuss the identification of types. Starting with a given type-specific choice probability

we show that one can determine whether the type associated with the probability is consistent (or

partially sophisticated). The reasoning is very similar to that employed in identifying whether a

given type is näıve (formally worked out in Lemma A6). In particular, a type will be partially

sophisticated if and only if the directly identified object δ̂(x2, z2) (defined in eq. (18) above) varies

over the state space. We collect the assumptions required to identify type-identity in the partially

sophisticated case below.

ASSUMPTION U3 (Restriction for Partially Sophisticated Model).

1. Agents are partially sophisticated (or equivalently partially näıve): β̃τ ∈ [βτ , 1].

2. There exists a set S ⊂ X2×Z2 with positive measure such that for all types τ , h̃∆,B
τ (x2, z2, βτδτ ) ̸=

0.
3. For types τ such that β̃τ ̸= βτ , Var

(
h̃∆
τ (x2,z2,δτ ,β̃τ δτ )−h̃∆

τ (x2,z2,δτ ,βτ δτ )

h̃∆,B
τ (x2,z2,βτ δτ )

)
> 0.

Recall that h̃∆τ (x2, z2, δτ , β̃τδτ ) is the period 1 self’s (normalized) value of being in state (x2, z2),

defined in eq. (19) when they assume that decisions in period 2 will be made using β̃τδτ to discount

period 3 utility back to period 2. The function h̃∆τ (x2, z2, δτ , βτδτ ) is the same value for the agent if

instead they assume that decisions in period 2 will be made using βτδτ to discount period 3 utility

back to period 2 (i.e. as if the agent were fully sophisticated). The assumption above states that

the difference between these two views of the future has to vary over the state space. In its absence

period 1 choice probabilities would be identical for partially and fully sophisticated types (who share

the same remaining preference parameters) – so that it would not be possible to distinguish between

them on the basis of the observed distributions. The argument behind the proof of the result below

is very similar to that employed in Proposition 2 and the proof is relegated to Appendix A.4. As

with Proposition 2, a key ingredient is the function h∆τ (x2, z2) which is identified in Lemma A1.

PROPOSITION 3 (Assigning Type Identities). Suppose that the type-specific choice probabil-

ities {Pτ (at|xt, v)}τ∈Tr,v ;t∈{1,2,3} are identified and that the conditions for Lemma A1 hold. Further,

suppose that Assumption U3 holds. Then,

1. δ̂τ (x2, z2) is a constant for all (x2, z2) ∈ S ⇐⇒ β̃τ = βτ .

2. Time-consistent types (β̃τ = βτ = 1), completely sophisticated types (β̃τ = βτ < 1) and

partially sophisticated types (β̃τ ̸= βτ ) are identified.

We next turn to the identification of the time-preference parameters for the partially sophis-

ticated agents. The main result is that without further assumptions, the three parameters for

24



these agents (i.e., δτ , βτ , and β̃τ ) are not point-identified although if the exponential discount

factor δτ is identified, then the remaining two parameters are also identified. As before, we

can identify the per period utility functions {ut(·, τ)}t∈{2,3},τ∈T and the product βτδτ using pe-

riod 2 and 3 choices regardless of type τ . This information allows us to construct the function

h̃∆τ (x2, z2, d1, d2). Recall that period 1 choices identify the function h∆τ (x2, z2) and we know that

h∆τ (x2, z2) = h̃∆τ (x2, z2, δτ , β̃τδτ ). This information, however, is not enough to identify the time-

preference parameters since the identified function h̃∆τ (·) is not one-to-one in (δτ , β̃τ ). Further,

since types are partially sophisticated, we cannot impose any other restrictions on β̃τ separately.

This is in sharp contrast to the consistent or the completely sophisticated case where β̃τ = βτ , so

that period 2 and 3 choices (which identify βτδτ ) identify β̃τδτ . Equivalently, given the structure of

the model, the product βτδτ is not sufficiently informative about either β̃τδτ or δτ . The following

proposition states the most general result for partially sophisticated types, which only allows for

set identification.

PROPOSITION 4. Suppose that the conditions for Proposition 3 hold. Then, the identified set

for the parameters (βτ , β̃τ , δτ ) is given by

Θβ,β̃,δ =
{
(b, b̃, d) ∈ (βτδτ , 1]

2 × [βτδτ , 1] : h̃
∆
τ (x2, z2, d, bd) = h∆τ (x2, z2) ∀(x2, z2), b = (βτδτ )/d, b ≤ b̃

}
.

4 Empirical Application: Adoption and Retreatment of ITNs

In this section, we use the identification results developed above to examine the role of time-

inconsistent preferences in explaining demand for and proper maintenance of insecticide-treated

nets (ITNs) in a sample of households from rural Odisha, India.

We assume that agents have preferences as in eq. (1), and are drawn from a population that

includes time-consistent as well as hyperbolic näıve and sophisticated types. We adopt the more

general framework described in Section 3.2 where types are not directly observed, although for

simplicity we assume that the exponential discount factor δ is common to all agents (and we

abstract from the possibility of partial sophistication discussed in Section 3.3). We also assume

that each type exists with positive probability.12

Agents choose whether to purchase an ITN and whether to retreat it periodically to ensure that

the net maintains its ability to kill mosquitoes that come into contact with it. Given sample size

concerns, we impose functional forms on the utility function so that the structural model reduces to

one characterized by a finite vector-valued parameter; inference will therefore follow from standard

asymptotic arguments.

Recall that the identification strategy requires two key variables: the type proxy (r) and the

excluded variables (z). Prior to the ITN distribution, we elicited time-preferences by asking respon-

dents to make a series of inter-temporal choices (commonly known as “Money Earlier or Later”

12This assumption is made for convenience particularly given our sample size, but one could in principle apply the
results from Section 3.2.1 to first identify the total number of types before proceeding to the analysis undertaken
below.
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or MEL questions, see e.g. Cohen et al., 2020) and this information forms the type indicator r.

Finally, the excluded variables z are elicited subjective beliefs about ITN and untreated net efficacy

in preventing malaria.

We begin by providing some basic context for the study in Section 4.1 and then in Section 4.2 we

set up the structural model and evaluate the performance of the estimator in a set of Monte Carlo

simulations. In the interest of space and because the identification arguments are broadly similar

to those in the general section (subject to a few key differences we outline below) we relegate details

on identification to Appendix B. Section 4.3 presents the estimation results, Section 4.4 provides

a comparison of the time-preference parameter estimates to those in the literature and Section 4.5

describes results from a set of counterfactual exercises.

4.1 Data

Our data were collected in the context of a randomized controlled trial (RCT) carried out in 2007–

2009 in Orissa (now Odisha), the most malaria-endemic state in India (Dhingra et al. 2010). The

study evaluated the impacts of alternative mechanisms of providing ITNs on the health and socio-

economic outcomes of potential users, and was carried out in collaboration with a local partner,

Bharat Integrated Social Welfare Agency (BISWA), a micro-lender with a large presence in Odisha,

see Tarozzi et al. (2014) for details. We use data from a sample of 621 households in 47 villages

where BISWA offered all its clients the opportunity to purchase high quality ITNs on credit, with

repayment over one year.

A baseline, pre-intervention survey was carried out in March–April 2007. In September–

November, all villages were exposed to a brief community-based information campaign about the

importance of ITN use and about their proper use and maintenance. BISWA clients were offered

the opportunity to purchase ITNs. Purchases were completed 2–3 days later, to allow careful con-

sideration of the offers. A second visit was scheduled approximately one month later, and nets

were offered again with the same contracts (no further sales were made after the second visit). The

first net re-treatment was completed approximately six months after the ITN sale, in March–April

2008, while the second and final re-treatment took place another six months later, in September–

November 2008.

Two alternative contracts were offered to BISWA clients. With the first option (referred to as

b henceforth), single (double) nets were sold on credit for Rs. 173 (223), to be repaid within one

year. For perspective, daily wages for agricultural labor in the area were around Rs. 50. Nets

were immediately treated with insecticide, with a chemical concentration that made re-treatment

optimal after approximately six months. Survey personnel would re-visit the villages after six and

twelve months and offer re-treatment for Rs. 15 (single) or Rs. 18 (double). With the second option

(c henceforth), the household purchased the treated net plus a sequence of two re-treatments. The

price in this case was Rs. 203 (259), again to be repaid within one year. With this second option,

no additional cash payment was required for re-treatment as the price of the chemical was already

included in the loan amount. For both contracts the price was inclusive of 20% annual interest—the
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standard annual rate charged by BISWA in its micro-finance operations—but for simplicity in the

sequel we do not explicitly model that nets were sold on credit. This choice will, if anything, lead

to an under-estimation of the extent of present-bias so that relaxing it would only further amplify

the substantial present-bias we document below.

Of the initial 621 households, we exclude 32 that could not be re-contacted at endline, 13

that purchased bed nets with both contracts, 9 that purchased nets for cash, and one because the

contract type was not recorded. We are thus left with a sample of 566 households.

Table 1 shows summary statistics at baseline. Mean monthly total expenditure per head was

approximately twice as large as the official poverty line for rural Orissa in 2004–5. Net ownership

was not uncommon, with a mean of one bed net for every three persons, although one third of

households did not own any nets. However, net treatment was rare, with only 0.06 ITNs per head

on average. On average, 16% of individuals slept under a net the night before the survey, and 3%

under an ITN. Results from blood tests show high prevalence of malaria (11%) and anemia (46%),

where the latter denotes hemoglobin (Hb) levels < 11 g/dl blood.13

Respondents were aware of the role of mosquitoes in transmitting malaria, of the high cost

of malaria episodes, and that bed nets reduced malaria risk. The latter was also reflected in

subjective beliefs, that we elicited asking respondents to hold up a number of fingers increasing in

the perceived likelihood that an event will happen, with no fingers representing “no chance” and

ten fingers indicating that the event would occur with certainty. We then estimated subjective

probabilities by dividing the number by ten.14 Since most respondents were unfamiliar with the

formal concept of probability, the interviewer discussed first hypothetical examples of certain and

uncertain events to explain the procedure. Beliefs were elicited using wording such as the following:

“imagine first that your household, or a household like yours, does not own or use a bed net. In

your opinion, and on a scale of 0-10, how likely do you think it is that an adult that does not sleep

under a bed net will contract malaria in the next 1 year?” Perceived malaria risk was also recorded

conditional on using an untreated bed net or an ITN.15

The histograms in Figure 1 show that about three quarters of respondents believed that without

using nets one would certainly get malaria, or that regular use of ITNs would virtually rule out

risk. About half of respondents reported a 50% chance of developing malaria if an untreated net

was used. Despite the spikes over the focal numbers 0, 5, and 10, there remains a sufficient degree

of variation to be exploited by the structural model outlined below. Note that these beliefs show

that both bed nets and re-treatment with insecticide were recognized as very effective at reducing

malaria risk. Coupled with the high monetary cost of malaria episodes, this is prima facie evidence

that present bias may help explaining the low rates of ownership and especially re-treatment of bed

13Malaria infection and Hb were measured via rapid diagnostic tests that only required fingerprick blood specimens,
and were immediately communicated to individuals, see Appendix A.2 in Tarozzi et al. (2014) for additional details.
At baseline, consent was requested to test pregnant women, children under five years (U5) as well as their mothers,
and one randomly selected adult (age 15-60).

14We did not measure ranges of probability, so we cannot identify the degree of uncertainty around the reports.
15Analogous beliefs were elicited about the protective power of bed nets and treatment for children and pregnant

women. Responses were almost identical across demographic groups, and so we only use information for adults.
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nets.

The baseline survey also included 12 questions intended to gauge respondents’ intertemporal

preferences and the extent of time inconsistency. In a first group of four questions, the respondent

choose between receiving Rs. 10 one month later and an equal or larger sum (Rs. 10, 12, 14 or

16) four months later. In a second group of questions the choice was between Rs. 10 one month

later and Rs. 10, 15, 20 or 25 seven months later. Finally, in a third set of questions the same

rewards described for the first group were offered, but with time horizons shifted by three months.16

Standard expected utility models imply that if a respondent prefers to receive, say, Rs. 10 a month

from today to Rs. 16 paid four months from today, s/he should also prefer Rs. 10 paid four months

in the future to Rs. 16 paid seven months in the future. We interpret preference “reversals”—

whereby the former is true but the choice is reversed for the latter—to be correlated with a form of

inconsistency in time preferences consistent with hyperbolic discounting.17 In Table 2 we summarize

the findings. As expected, in each set of four questions, the fraction of individuals choosing the

earlier and lower reward decreases when the time horizon of the later reward remains the same but

the reward increases. Approximately one fourth of respondents exhibit at least one reversal and

we denote agents with such reversals as having type signal r = 1 (r = 0 otherwise).18

Panel A of Table 3 includes a summary of the results of the ITN sale. Slightly more than 50% of

sample households purchased at least one net on credit (287 of 566). Of these, 141 chose to purchase

only ITNs (contract b), while 146 opted for the “commitment” product whose price also included

the cost of two re-treatments (contract c). In panel B we show that the prevalence of re-treatment

was strongly associated with the choice of contract. At the time of the first re-visit, about six

months after the ITN sale, an overwhelming majority (92%) of the ITNs purchased with contract

c were re-treated with insecticide. However, the fraction was only 36% for bed nets purchased with

contract b, and for which re-treatment required a (small) cash payment to be paid on the spot.

Six months later, re-treatment rates declined to 84% for contract c and dropped by almost half for

contract b. In Appendix D we provide additional descriptions of the association between actions

(purchase and re-treatment) and a list of household characteristics.

Our data do not include beliefs about the joint distribution of income and malaria, but they

16Interviewers told respondents that one of the twelve chosen rewards, selected at random, would be paid by our
micro-lender partner BISWA at the chosen time horizon. In practice, to avoid logistical difficulties, the selected
reward was paid at the end of the interview (we find no evidence that the responses varied for households interviewed
later during the day). Note also that all rewards were to be paid at least one month later. This was done so that
choices would not depend on issues of trust, although such issues were unlikely given that all sample households
included at least one BISWA client.

17See Andreoni and Sprenger (2012) for an alternative view. Rubinstein (2003) shows cases in which preference
reversals arise despite preferences that are neither consistent not time-inconsistent hyperbolic. We focus on the iden-
tification of types with preferences that are compatible with time-consistency or hyperbolic discounting. Identifying
different forms of time-inconsistent preferences, albeit important, is beyond the scope of our paper.

18We ignore the possibility of agents with “future bias” for whom β > 1. Such types are rarely considered in
the literature, and our identification results do not extend to them. For households who exhibited anti-hyperbolic
behavior at least once (that is, chose the later payoff with options closer in time, but then chose the earlier one
with options farther away in time) we assign the signal r = 0. Our results are qualitatively similar if we drop these
respondents. Also recall that we do not require a one-to-one mapping from signals into types, such that the model is
robust against imperfect type signals.
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do include beliefs about future income. These were recorded at baseline using an approach similar

to Guiso et al. (2002), eliciting a plausible range for future income, followed by a simple question

about the probability that income will be below the mid-point of the range. In the model we assume

that gross income and malaria status are independent, although malaria is allowed to affect current

utility by reducing consumption due to the monetary costs due to illness episodes. Appendix E

includes details on the measurement of income, subjective transition probabilities for income, and

malaria costs.

4.2 Empirical Model

We begin by specifying preferences and then discuss the transition probabilities and other key

ingredients of the dynamic programming problem. The central difference from the standard analysis

of dynamic models in what follows is the presence of time-inconsistent agents and the further

complication that types are unobserved. This alters the standard results as we highlight below.

Furthermore, instead of the minimum necessary three periods in our model, we use four periods

because of the specific features of our intervention. For brevity we relegate the details of the variable

construction to Appendix E.

Preferences (Period 4): At t = 4, the state variables are income and health (x4 = (y4, h4)),

where h4 is equal to m if someone in the household has malaria and h (‘healthy’) otherwise, and y4

measures income. For simplicity we discretize income so that yt is a dichotomous variable that can

take either a ‘high’ or a ‘low’ value, depending on whether household income is above or below the

median. The time-invariant household characteristics v that enter preferences include household

size at baseline (vhhs), a measure of households assets (vassets), an indicator of risk aversion (vrisk)

and an indicator of untreated net ownership at baseline voldnet. The survey-based measure of

attitudes towards risk is obtained by using an abbreviated version of the procedure proposed in

Holt and Laury (2002). We specify

u4(x4, v; τ) = C(x4) + ϕτ (v), (20)

where C(x4) is consumption in state x4, and ϕ captures other factors that can affect per-period

utility. Consumption depends on both health and income and is calculated as C(xt) = yt − I{ht =
m}ηm, where ηm accounts for the monetary cost of malaria. We set this value equal to the median

cost of a malaria episode, taking into account both expenses for doctor visits and treatment as

well as any wages paid to labor hired to replace a sick worker. This choice is conservative in the

sense that the use of alternative measures of malaria costs (such as the expected costs of a malaria

episode elicited in our survey, or the inclusion of estimates of lost earnings due to illness) lead to

greater estimated present bias.

The per period utility can vary along both observed (v) and unobserved (τ) dimensions:

ϕτ (v) = ϕ0 + ϕ1I{τ=τS} + ϕ2I{τ=τN} + ϕ3vhhs + ϕ4vassets + ϕ5vrisk + ϕ6voldnet. (21)
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Preferences (Periods 2 and 3): The state variables in period t ∈ {2, 3} are comprised of

income (yt), health status (ht) and the choice of product in period 1 (a1). We define utility in

period t as

ut(xt, at, v; τ) = (C(xt)− pratI{a1 = b} − prI{a1 = c}) + atϕτ (v); (22)

where at = 1 if the net is re-treated in period t and = 0 otherwise, and pr is the price of re-

treatment. The price is paid in period t regardless of the choice to re-treat if the household

purchased a commitment contract, while it is paid only if the household chose the baseline contract

b in period 1 and the net is re-treated.19 The multiplication of ϕ(·) by the action ensures that the

ϕ coefficients are identified.

Preferences (Period 1): In period 1, preferences are given by

u1(x1, a1, v; τ) = (C(x1)− pbI{a1 ∈ {b, c}}) + I{a1 ∈ {b, c}}ϕτ (v),

where pb is the price of a baseline contract b.20 Buyers choosing contract c pay a higher price that

also includes the cost of re-treatment, but in the model we assume that such price is paid at the

time of re-treatment, consistent with eq. (22).

We parameterize the mixture probabilities πτ (r) using the parsimonious Hardy-Weinberg func-

tional form (Hardy, 1908; Weinberg, 1908). In a first step, we estimate the following logit function ψ

that depends on two mixture parameters γ1 and γ2 and the observable value of the MEL type-proxy

r:

ψ(γ, r) =
exp(γ1 + γ2r)

1 + exp(γ1 + γ2r)
. (23)

From this function one can derive the type probabilities conditional on the type proxy r as

πC(r) =ψ
2(γ, r);

πN (r) =2ψ(γ, r)(1− ψ(γ, r));

πS(r) =1− πC(r)− πN (r) = 1− ψ2(γ, r)− 2ψ(γ, r)(1− ψ(γ, r)).

19We do not have reliable data on the timing of debt repayments. We assume that debts are repaid within the
first six months, except for the component attributable to re-treatment. The assumption is conservative in the sense
that present-bias is exacerbated if we consider repayments in future periods. The results remain qualitatively similar
in terms of estimated type probabilities and relative adoption probabilities when putting greater weight on later
repayments. The modeling assumption that the re-treatment component of the commitment contract c (equal to
about 13% of total price) is paid in later periods—as is optional re-treatment for households choosing b—is mostly
due to technical considerations. Dropping this assumption does not qualitatively change the present-bias or type
probability results nor the accuracy of Monte Carlo simulations, but it worsens the fit of the model and in some cases
the sufficiency conditions regarding type identification is violated. The results are available from the authors upon
request. The worse fit arises because high present-bias (i.e., low values of βN and βS) makes c less attractive than b
because of the higher initial payment.

20Due to sample size considerations and for tractability, we do not model the decision to buy single versus double
nets, nor the number of nets purchased. In the data, buyers purchased on average close to two nets and in the model
we assume that demand, when positive, is always equal to 1.5 ITNs. For each contract type, we set the price equal to
1.5 times the average of prices for single and double nets, weighted by the respective purchase frequencies. Compared
to assuming that each household buys one net, or two nets, the estimated type probabilities and discount factor are
virtually unchanged. A higher number of nets slightly decreases the degree of present bias, because the higher cost
decreases demand.
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4.2.1 Solving the Model

Given the finite horizon model, we solve for the optimal decision rule using backward induction.

We solve and estimate the model using the mapping between type-specific choice probabilities and

type-specific value functions (defined below), possible because while we do not observe types, the

type-specific choice probabilities are identified using the results in the previous sections. For clarity

we will sometimes suppress the dependence of the functions below on v (which only enters the

period utility functions).

Period 3 Choice: At t = 3 the event that an agent (who has purchased an ITN) will retreat his

net is

{a3 = 1} ≡
{
1 = argmax

a∈{0,1}

{
u3(x3, a, ; τ, v) + ϵ3(a) + βτδ

∫
u4(x4; τ, v) dF(x4|x3, a; z)

}}
=

{
1 = argmax

a∈{0,1}

{
vτ,3(x3, z, a, βτδ) + ϵ3(a)

}}
,

where

vτ,3(x3, z, a, βτδ) = u3(x3, a; τ) + βτδ

∫
u4(x4; τ) dF(x4|x3, a; z)︸ ︷︷ ︸

qτ (x3,z,a)

. (24)

Here z reflects the household-specific vector of beliefs about malaria risk as a function of the chosen

bed net usage as well as household-specific transition probabilities of income. We emphasize the

dependence on the hyperbolic parameter βτ since it will be useful in the subsequent analysis.

We assume that (ϵ3(0), ϵ3(1))/σ are i.i.d. standard GEV random variables, and to ease notation

we set σ = 1 in what follows. Under this assumption, the type-specific choice probability is given

by

Pτ (a3 = 1|x3; z) =
exp(vτ,3(x3, z, 1, βτδ))∑1
j=0 exp(vτ,3(x3, z, j, βτδ))

. (25)

Period 2 Choice: Under the GEV assumption on the errors, the choice probabilities are

Pτ (a2 = 1|x2; z) =
exp(vτ,2(x2, z, 1, βτδ))∑1
j=0 exp(vτ,2(x2, z, j, βτδ))

. (26)

The vτ,2(·) functions—whose form will provide insight into the time-inconsistency problem—are

defined as in period 3, except that the calculation of the forward-looking component is more in-

volved:

vτ,2(x2, z, a, βτδ) ≡ u2(x2, a; τ) + βτδ

∫
v∗τ (s3, z) dF(s3|x2, a, z), (27)

where v∗τ represents the optimized utility (from the point of view of the period 2 self) in state

s3 = (x3, ϵ3). To simplify notation and make clear the dependence of the v∗τ (·) function on the
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beliefs about the future hyperbolic parameter (β̃), we define the choice indicator (as in eq. (6))

Aτ (s3, k, β̃τδ) ≡ I
{
vτ,3(x3, z, k, β̃τδ) + ϵ3(k) > vτ,3(x3, z, s, β̃τδ) + ϵ3(s) ∀s ̸= k

}
,

which is an indicator for the event that action k is optimal in state s3 given a type-τ agent’s

expected future present-bias of β̃τ . To ease exposition, we will sometimes shorten Aτ (s3, k, β̃τδ) to

Aτ,k. With this notation, we can re-write

v∗τ (s3, z) ≡
∑

k∈{0,1}

(vτ,3(x3, z, k, δ) + ϵ3(k))Aτ (s3, k, β̃τδ).

Substituting this expression into eq. (27) makes clear that from the perspective of period 2 (a)

period 3 utility is discounted back to period 2 using βτδ (b) the period 2 self believes that his

period 3 self will discount utility between periods 3 and 4 (captured by Aτ,k) by the factor β̃τδ. For

time-consistent agents β̃C = βC = 1 while for näıve agents β̃N = 1 ̸= βN and for fully sophisticated

agents β̃S = βS .

In this section, we can simplify the expression in eq. (27) further. First,

hτ (x3, z) ≡
∫
v∗τ (x3, ϵ3, z) dF(ϵ3)

=
∑

k∈{0,1}

{∫
Aτ (x3, ϵ3, k, β̃τδ)

[
u3(x3, k, τ) + ϵ3(k)

]
dF(ϵ3) + δqτ (x3, z, k)

∫
Aτ

k(x3, ϵ3, β̃τδ) dF(ϵ3)

}

which is analogous to the expression derived in eq. (8). Next, using the GEV distribution of ϵ3:

hτ (x3, z) =
∑

k∈{0,1}
P(Aτ,k)

[
vτ,3(x3, z, k, δ)− vτ,3(x3, z, k, β̃τδ)

]
+ γeuler + log

(∑1
j=0 exp

(
vτ,3(x3, z, j, β̃τδ)

))
, (28)

where γeuler is Euler’s constant, and

P(Aτ,k) =
exp(vτ,3(x3, z, k, β̃τδ))∑1
j=0 exp(vτ,3(x3, z, j, β̃τδ))

.

The term in square parentheses in eq. (28) captures the key differences between the three types

of agent in the dynamic programming problem. It can be viewed as the adjustment made by the

period 2 self to account for the perceived future present-bias of the period 3 self. For consistent

agents, no such adjustment is needed, β̃Cδ = δ so this term is zero and the expression reduces to the

standard one in dynamic choice problems (see e.g. eq. 12 in Aguirregabiria and Mira, 2010). For

näıve agents this term is also zero (β̃Nδ = δ) since such agents (incorrectly) do not perceive their

period 3 self to be present-biased, consequently they do not adjust their period 2 value function to

account for future present-bias.21 Finally, this term is not equal to zero for sophisticated types since

21Note, however, that the problem for näıve agents does not reduce to the standard problem since in period 3 such
agents will use a different discount rate (βτδ) than the one they anticipated (that is, δ).
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they are aware of their period 3 self’s future bias and adjust their period 2 decisions accordingly.22

Period 1 Choice: The argument is similar to the one above with the only substantive differ-

ence that there are now three possible actions and the choice probabilities for an agent of type τ

are given by

Pτ (a1 = a|x1; z, v) =
exp(vτ,1(x1, z, a, βτδ))∑

j∈{n,b,c} exp(vτ,1(x1, z, j, βτδ))
, (29)

where b represents the purchase of a baseline contract, c the purchase of a commitment contract,

and n no contract purchase (on occasion we will use 0 to indicate no purchase, 1 to indicate the

standard contract and 2 to indicate the commitment contract). For period 1, the vτ,1(·) function is

vτ,1(x1, z, k, βτδ) ≡ u1(x1, k; τ) + βτδ

∫
hτ (x2, z) dF(x2|x1, k, z), (30)

As in the discussion of period 2,

hτ (x2, z) =
∑

k∈{n,b,c} P(Aτ,k)
[
vτ,2(x2, z, k, δ)− vτ,2(x2, z, k, β̃τδ)

]
+ γeuler + log

(∑
j∈{n,b,c} exp(vτ,2(x2, z, j, β̃τδ))

)
.

where

P(Aτ,k) =
exp(vτ,2(x2, z, k, β̃τδ))∑

j∈{n,b,c} exp(vτ,2(x2, z, j, β̃τδ))
.

In the estimation we also account for the presence of untreated bed nets owned prior to the inter-

vention.23 This is because owning an untreated bed net in period 1 affects the utility in case of

not purchasing an ITN as well as perceived malaria risk, which affects expected utility through the

transition probabilities.

4.2.2 Identification

The identification arguments are broadly similar to those in the general section on identification

but there are some differences that we highlight here: (a) In the application the excluded variable

zt is time-invariant and not part of the state-space. Consequently we condition all probabilities on

z and choices are denoted by Pτ (at|xt, z, v) instead of Pτ (at|xt, v), where xt = (xt, zt). Similarly,

transition probabilities are written as P(xt+1|xt, z, v) instead of P(xt+1|xt, v). Since we do not

exploit any time-series variation in z for identification, this deviation does not impose any new

difficulties. (b) The type proxies vary depending upon the model. For the observed types model,

the type indicator is (r, a1) once agents have made first-period choices, while it only includes r

prior to that (i.e. at t = 1). In the unobserved types case the only proxy is r. (c) For tractability

we assume that all three types exist in the population so we do not need to first identify the total

22To connect this with the argument in Section 3.1.1 note vτ,3(x3, z, a, δ)− vτ,3(x3, z, a, β̃δ) = δ(1− β̃τ )qτ (x3, z, k)
which is linear in the unknown parameter δ for sophisticated types when βSδ is identified.

23This has an effect on the value functions when not buying any contract and when choosing not to retreat after
having bought a contract in subsequent periods. We suppress the dependence of the value functions on first-period
ownership of an old net to ease exposition.
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number of types. (d) Finally, our setting requires an additional period (t = 4) to rationalize choices

in period 3, given that such choices involve an expectation. This additional period (when no action

is taken) adds a complication since terminal period utilities are not identified by the standard

arguments as they were in Section 3. In the interest of space, we relegate the formal discussion on

identification accounting for these differences to Appendix B. Here we only discuss briefly the key

additional variables required for identification and the assumptions imposed on them.

As a type proxy r we use responses to standard MEL experiments that have become quite

common in field surveys. Recall that r needs to satisfy two key (untestable) assumptions (see

Assumption U1). First, conditional upon type the proxy must be uninformative about choice.

Second, transition probabilities (assumed independent of type) do not depend upon the proxy

either. In the empirical application we add a third condition, that is, that the proxy needs to be

sufficiently informative about types that researchers can order specific likelihood ratios that we

define below and formalize in Assumption UE1 in the appendix.

The second key variables for identification are subjective beliefs about the likelihood of con-

tracting malaria conditional on the choice of sleeping regularly under a bed net (either an ITN

or an untreated net) or of not using a net. In addition, we also use household-specific transition

probabilities for income, constructed from expectations on future income measured at baseline, see

Appendix E for details. We assume that these beliefs are time-invariant and that they do not enter

directly the per-period payoff function and only affect the forward-looking component of the value

function, as outlined in the Basic Assumptions.

4.2.3 Monte Carlo simulations

In online Appendix H we illustrate the properties of our model with a set of Monte Carlo simulations.

For the observed types case, Table H.1 shows that for moderate sample sizes (300 and above) both

the mean and the median estimated time preference parameters are close to their true values.

Table H.2 shows that when types are unobserved, the estimates (which now also include the type

probabilities) continue to be close to their true values, albeit with more variability. The largest

differences between the estimates and the true parameter values in small samples occur if βS ̸= βN .

This appears to be related to the additional uncertainty introduced by the need to estimate the

type probabilities. In fact, when we assume that types are unknown but type probabilities are

known, the time preferences as well as the per-period parameters are again very close to their true

values (results available upon request).

In summary, we consider the evidence from the Monte Carlo simulations to be encouraging

enough to conduct a meaningful empirical analysis for the case with three unobserved types, un-

known population type probabilities, and two distinct present bias parameters, but we also present

the results under the more restrictive assumption of βS = βN .
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4.3 Structural Estimation Results

We estimate the model outlined in Section 4.2 using maximum likelihood (we relegate the derivation

of the objective function to online Appendix F). We parameterize and estimate the type proba-

bilities conditional on the type signal r (P(τ |r) ≡ πτ (r)) and then use Bayes’ rule to compute the

probabilities conditional on both the type signal and first period choice (P(τ |r, a1) ≡ πτ (a1, r)).
24

The former estimate the distribution of types in the population conditional on an observed type

predictor, an object that has not been previously estimated in the literature, and that is of direct

interest. The latter estimate the type distribution conditional on both the type predictor and the

purchase decision. A comparison of the two provides a measure of attractiveness of commitment

products to sophisticated types (recall that agent types are unobserved and purchase decisions are

not assumed to uniquely reveal type).

In our main specification, we estimate three time preference parameters, i.e. the discount

factor δ (assumed to be constant across types), and two type-specific present-bias parameters βN

and βS . As specified in eq. (21) we include type indicators, household size, assets, a measure of

risk aversion and an indicator for old net ownership in the per-period utility function. The type-

specific dummies allow take-up and re-treatment decisions to vary by type for reasons unrelated to

differences in time-preferences.

We adopt a sufficiency criterion for the identification of population type probabilities that is

strictly weaker than the assumptions required for the known types case that maps r directly into

types. In particular, we require that the proxy r is informative about types in a monotone like-

lihood ratio sense. This condition is weak in the sense that it does not require that the fraction

of inconsistent agents be larger in the sub-population with r = 1 relative to r = 0. Formally, we

require that for some r ̸= r′, the three ratios
{

πC(r)
πC(r′) ,

πN (r)
πN (r′) ,

πS(r)
πS(r′)

}
can be strictly ordered ex-ante,

see online Appendix B.3 for more details. Recall that in the context of the model, preference

reversals are an imperfect proxy for time-inconsistency and are potentially affected by measure-

ment and cognitive issues as well as factors such as seasonality and other constraints. The main

requirement is that they shift type probabilities. Examining the key ratio πτ (r=0)
πτ (r=1) , τ ∈ {C,N, S},

the sufficiency criterion for type identification would be met if πC(r=0)
πC(r=1) >

πN (r=0)
πN (r=1) >

πS(r=0)
πS(r=1) , which

is not unreasonable in our context.

We begin by discussing the estimated population type probabilities presented in the top panel

of Table 4. We estimate that 36% of agents are time consistent and that the majority of the time-

inconsistent agents (about half of the total population or 75% of the population of time-inconsistent

agents) are näıve. The fraction of time-consistent agents is about the same regardless of the value

of r (col. 3) and indeed the same is true for the two inconsistent types. The estimates satisfy

the monotonicity condition described above for identification, a result that does not depend on

constraints imposed during the estimation.25

24We compute this as P̂(τ |a1, r; θ̂) = P̂(a1,τ |r)
P̂(a1|r)

= P̂(a1|τ)P̂(τ |r)
P̂(a1|r)

, where the last equality follows from the exclusion

restriction that the signal r is not informative on actions conditional on type, see Assumption U1.
25In particular, π̂C(r=0)

π̂C(r=1)
= .36

.35
> π̂N (r=0)

π̂N (r=1)
= .480

.483
> π̂S(r=0)

π̂S(r=1)
= .160

.167
.
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We next examine the informativeness of contract choice by computing type probabilities condi-

tional on first period choice and r (col. 5). These two indicators do not perfectly predict type and,

in fact, all three types exist for every value of the indicators. In contrast, recall that the directly

observed types model assumes that πC(0, ·) = 1, πN (1, b) = 1, and πS(1, c) = 1. Perhaps most

strikingly, the results indicate that conditional on r, the probability of being sophisticated does not

change substantively with the purchase of the commitment product.26 This finding is consistent

with recent work (see e.g. Carrera et al., 2022) that also finds commitment products to be of limited

use in predicting time-inconsistency.

Overall, across all values of r and conditional upon any net purchase, time-consistent agents

account for 67% of all purchases while comprising about a little over one-third of the total pop-

ulation. Inconsistent näıve (sophisticated) agents account for 25% (8%) of total purchases while

accounting for 48%(16%) of the total population.

In Panel B of Table 4 we present results for alternative specifications. Our preferred results (in

col. 1) indicate that the exponential discount factor is ≈ 1, so that for the time horizons relevant

for our study time-consistent households do not significantly discount future utility. However, the

two time-inconsistent types dramatically discount the future relative to the present, with β̂N = 0.06

and β̂S = 0.16. Thus, the high present-bias of a large part of the population can rationalize the

low adoption of ITNs despite the much higher expected cost of malaria when not using an ITN.

Col. 2 shows that all the estimated time preference parameters are considerably lower than in col

1 when we remove household characteristics and type intercepts. This exacerbation of the present-

bias problem and increased impatience (relative to col. 1) suggest that ignoring heterogeneity in

the per-period utility function results in even greater present-bias than the considerable amount

already present in col 1. When we impose βN = βS (col. 3), the results remain quantitatively

similar with the common β lying between the two estimated parameters in col. 1.

In col. 4 we assume that types are observed (based on a deterministic mapping from (a1, r) to

types), while in col. 5 there is a single time-consistent type for the whole population. The results

are now quite different: in the known type case, the estimated discount factor δ̂ is 0.08, and in

the single type case it is even lower at 0.01. Furthermore, the present-bias parameters in col. 4

are much higher than in our preferred model being almost indistinguishable from 1. To better

understand these results, recall that for about 3/4 of respondents r = 0, and in the known types

case these are assumed to be time-consistent. Thus, in col. 4 (as well as 5, where all agents are

assumed time-consistent) the vast majority of agents are time-consistent by construction. It is thus

reasonable that under these scenarios the discount factor δ must to be low enough to rationalize

the overall low ITN adoption rate given the high expected costs of malaria and the high perceived

protective power of bed nets.

As a further robustness check, we estimate a version of our model in which we allow the discount

factor to differ for the time-consistent type (δC) and for the time-inconsistent types, although we

assume it remains common to both these latter types (δNS). Recall that our arguments allow

26In fact, demand for commitment is higher for N than for S types, i.e. P(a1 = c|τN , θ̂) > P(a1 = c|τS ; θ̂).
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point-identification of all the time-preference parameters, and it nests models with only two time-

consistent types (i.e. if δC ̸= δNS and βS = βN = 1), or at most two time-consistent types and

one present-biased type (i.e. if either βN or βS is equal to 1). However, when estimating the

model allowing for two distinct discount factors, the results are similar to our preferred model,

with δ̂C = δ̂NS = .99, β̂N = .10 and β̂S = .05.27

To shed further light on the discrepancies between our results and those of the single-type or

known type case, we also conduct a set of “placebo” simulations where we estimate a misspecified

model. We examine two forms of misspecification: (a) there are three types in the population but

we impose only one consistent type; (b) the population comprises only one time-consistent type

but the researcher assumes the existence of consistent, näıve, and sophisticated agents. The results

are presented in Table H.3 in online Appendix H. Under scenario (a), the common δ̂ is considerably

less than the true value (.99) similar to when we impose one time-consistent type. Under scenario

(b), δ̂ is somewhat higher than the true value while both the present-bias parameters are strictly

less than 1 (albeit imprecisely estimated). This suggests that if our primary model had been mis-

specified by falsely assuming the existence of time-inconsistent types, the estimates of βS and βN

could plausibly have been large relative to δ while in fact we find that both estimates are very

small.

These results suggest that if the one type model was true, our baseline model should yield

significantly different results. On the other hand, if the baseline model is true, the misspecified

one-type model in our simulations yields an estimated discount factor similar to that produced by

estimating our model with a single time-consistent type. We interpret this as further support for

our model relative to the alternatives. These results also highlight the importance of separately

identifying the population type distributions and time preference parameters. appeal

4.4 Comparisons of Estimated Time-Preference Parameters

There is growing evidence of substantial heterogeneity in preferences, including discounting, both

across and within countries (see for instance Falk et al., 2018). Most estimates come from high-

income countries, although evidence from low-income countries is also growing. To facilitate com-

parisons we discuss geometric discount rates δ using a six-month horizon (consistent with our

empirical application). In contrast, the parameter β multiplies utility in any future period (with no

difference in how far in the future the payoff is as long as it is in the future), and so estimates from

different studies should be directly comparable. It is important to note that most of the estimates

arise in models with just one type of agent.

Balakrishnan et al. (2020) uses a lab experiment in Kenya, assuming a single agent type, and

estimate β and δ using inter-temporal choices in a convex time budget experiment (as in Andreoni

and Sprenger, 2012). They estimate β in the 0.90-0.92 range, and a high degree of impatience in δ, in

the 0.21-0.48 range. Using data from lab experiments in rich countries with inter-temporal choices

27While in principle one can also test for the number of types in the population as we have outlined above, we do
not pursue this here because of our relatively small sample size.
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on effort, rather than money, Augenblick et al. (2015) and Augenblick and Rabin (2019) estimate β

in the 0.83-0.90 range on average. Carrera et al. (2022) use a model of partial sophistication and offer

contracts for gym attendance with a commitment component in a US city and estimate β = 0.55.

A similar value (0.67) was found in Chaloupka et al. (2019) who study partial sophistication and

demand for commitment products for smoking cessation. Using a job search model with hyperbolic

discounting, Paserman (2008) estimates β = 0.40 and δ = 0.998 among low-wage US workers. In

a context closer to ours, Bai et al. (2021) study demand for commitment contracts for health care

to prevent hypertension in rural Punjab, India. They estimate β = 0.365 on average; however, in

their model agents are partially näıve and on average their perceived β (β̃) is more than twice as

large. Their estimates for δ range from 0.234 to 0.780 although they note that while δ is technically

identified, in practice it is not robustly estimated.

Overall, our estimates suggest a relatively large geometric discounting factor (δ), while we find

a high degree of present bias (i.e. small estimates of β) relative to the literature.

4.5 Counterfactuals

In this section, we carry out a series of counterfactual exercises using the estimated model to (i)

assess the effect of changes in the model’s exogenous parameters and (ii) evaluate additional costs

from sickness associated to low purchase and re-treatment rates of ITNs due to present-bias.

Changing re-treatment Prices: We first discuss the consequences of doubling the price of

re-treatment, balanced by a corresponding increase in the price of the commitment contract.28

Intuitively, the price change has several effects. First, the increase will reduce contemporaneous

demand for re-treatment through a substitution and income effect. Second, the price increase

may reduce overall ITN adoption in the first period, because the dynamic nature of the problem

implies that agents predict that the cost of maintaining the protective power of the net with the

treatment has increased. Third, a sophisticated agent who cares about re-treatment may switch

from the standard to the commitment contract, anticipating that present-bias problems will be

exacerbated in future periods because of the higher cost of re-treatment. This latter effect is,

however, moderated by the effect of the corresponding increase in the price of the commitment

product. In practice, which effect dominates in the first period is an empirical question that the

counterfactuals can answer.

Averaging across types, demographics and states, we find that after a doubling of the re-

treatment price from Rs. 16.5 to 33 per bed net, re-treatment rates under contract b decline by

1% (see Table 5, panel A). We find no effect on re-treatment under contract c, which commits

buyers to re-treatment. Demand for contract c declines by .8% while demand for contract b does

not change substantially. This suggests a substitution from buying c to making no purchases. We

28Counterfactuals without the corresponding increase in the price of c imply that demand for c increases unambigu-
ously. We omit these results here. For other recent examples of identification of counterfactual policy interventions
in dynamic discrete choice models see Aguirregabiria (2010), Norets and Tang (2013), and Arcidiacono and Miller
(2020).
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further examine changes in take-up and re-treatment when the price of re-treatment is halved (to

Rs 8.25 per bed net). First, we find that re-treatment rates for buyers of the standard contract b

increase by .6%. Second, demand for the commitment contract increases by .39%.

Quantifying the effect of time-inconsistency on price responses: Next, we gauge to what

extent price responses are a function of time-preferences. To this end, in Panel B of Table 5 we

re-evaluate the impact of price changes with a model where all three types are time-consistent with

the common value of δ̂ estimated in our preferred specification and no type-specific intercepts for

inconsistent types. In general we find greater responsiveness to price changes relative to Panel

A. Doubling re-treatment price pr reduces overall purchases in period 1 by 4% for a consistent

population, compared to a decline of .4% in the model with inconsistent agents. Similarly, halving

pr increases purchases by 2% for a consistent population, compared to an increase of .2% in the

model with inconsistent agents.

Quantifying the effect of time-inconsistency on health and health costs: Present-bias

reduces the present value of purchasing an ITN and thus reduces demand. This in turn increases

the probability that present-biased agents contract malaria relative to the probability for otherwise

identical but time-consistent agents. A natural next step is thus to conduct a counterfactual exercise

to estimate the resulting increase in health costs due to medical treatment and lost wages.

We provide a broad outline here and relegate the details to online Appendix G. First, we

compute purchase and re-treatment probabilities using the parameters from our preferred model

but assuming away time-inconsistency for all agents as above. Next, we use these probabilities to

compute the expected costs of malaria for each agent.29 While the latter is clearly an extrapolation,

it provides an alternative measure of the efficacy of ITNs relative to our survey measures. We then

compare these expected costs to the actual ones for each agent (i.e. using the estimated parameters

from our preferred model) starting with t=2 (i.e. the first period in which period 1 actions affect

health) and summing across periods without discounting.

Table 6 presents the results from using each measure. In both scenarios, we find that present-

bias substantially increases expected costs from malaria. The median cost associated with present-

bias is Rs. 488 (using the numbers from the meta-analysis in Lengeler, 2009) or Rs. 812 (using

elicited beliefs on net efficacy). Overall, present-bias leads to a median reduction of 3-5 workdays

per malaria episode. Even though these costs are high relative to that of an ITN, the estimated

present-bias is such that investing in ITNs is not an attractive option for the median present-biased

agent (näıve or sophisticated) relative to a time-consistent one (cols 5 and 6). This provides concrete

29The key ingredients in the expected cost calculation are (1) the probability of contracting malaria when sleeping
under an ITN relative to an untreated net or no net, and (2) the expected number of workdays lost due to malaria
elicited during the baseline survey. We use two alternative measures of the probability of contracting malaria. First,
we use the household-specific elicited beliefs about the efficacy of ITNs, untreated nets and sleeping without a net.
Second, we use the meta-analysis in Lengeler (2009) that concludes that “in areas with stable malaria, ITNs reduced
the incidence of uncomplicated malarial episodes in areas of stable malaria by 50% compared to no nets, and 39%
compared to untreated nets.”
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empirical evidence of an important dichotomy raised in theoretical treatments of time-inconsistency:

a long-run self and a social planner with sufficiently high discount rates will prefer to encourage

ITN adoption to reduce long-run health costs and increase productivity. However, time-inconsistent

households do not find ITN purchases particularly attractive. The results, combined with those for

the price elasticities, also suggest that small subsidies may not significantly increase ITN adoption.

5 Conclusions

We develop a dynamic discrete choice model for time-inconsistent agents with unobserved types. We

show identification for all key parameters—including separate hyperbolic parameters for different

types and time- and type-varying per-period utilities. Importantly, we are also able to identify

type distributions—i.e. the fraction of time-consistent, näıve, and sophisticated agents. We further

extend the identification results to any finite set of types in the population. Monte Carlo simulations

suggest that both the time-preference parameters and the population type probabilities can be

estimated with reasonable precision.

We estimate the model on a specifically collected dataset containing detailed information on

beliefs combined with a field intervention. Our empirical results suggest that time-inconsistency is a

strong predictor of investment in a preventive health technology. We estimate that time-inconsistent

agents account for about two thirds of the population, with almost half of the population being

näıve time-inconsistent. While the standard exponential time-preference parameter is close to 1,

time-inconsistent types are substantially present-biased, with estimated present-bias parameters

of 0.06 (for näıve types) and 0.16 (for sophisticated types).30 We find that present-bias among

sophisticated households is so pronounced that our specifically designed commitment products are

not particularly appealing to them (the purchase of these products is in fact higher among näıve

households).

Estimating models with a single time-consistent type or pre-determined types (as standard

in earlier work) leads to significantly different results, in particular to a low exponential discount

factor. We provide further evidence for our preferred specification from a set of placebo simulations.

Overall, our results highlight the importance of separately identifying the type distribution, time

preferences, and the other utility parameters.

Our identification strategy can also be applied to other contexts. Key variables in the identi-

fication strategy are the “excluded” variables z that affect future, but not current utility. Besides

directly eliciting beliefs, as is increasingly common in surveys (Manski, 2004; Delavande et al.,

2010; Delavande, 2014), one could use other available data that similarly indicate the future value

of an action to generate exclusion restrictions. One example could be firms’ disclosed expecta-

tions regarding the return on a specific investment when it is being announced. In such a context,

De Groote and Verboven (2019) use an alternative restriction in a model with only time-consistent

30In contrast, Bisin and Hyndman (2020) find that present-bias is more pronounced among sophisticated individuals
relative to näıve ones in an experiment among U.S. students, while the hyperbolic discount factor among näıve
individuals is close to one.
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agents by assuming that the discount factor for adopting an investment is the same as the one

relevant for weighing investment costs against future benefits.

To recover population type probabilities we require a signal that is correlated with time-

inconsistency but uninformative about choice conditional on type. In our case, we use inter-

temporal choices that are fairly commonly included in household surveys. In addition, in other

contexts there may be other data that could plausibly be informative about self-control problems

(e.g., data on binge-watching of streaming programs). If there is evidence that certain consumption

patterns are associated with agents having less self-control, then such information can also be used

(provided they do not affect utility directly).

Our estimates suggest that the degree of present-bias is large enough (in terms of both the

present-bias parameters and the prevalence of time-inconsistency in the population) to affect the

adoption of ITNs, despite their proven ability to reduce malaria. Small or partial subsidies may

thus only have limited effects on adoption, consistent with recent research that argues that, in poor

areas, free provision may be the only way to ensure universal coverage for important health-related

products (Kremer and Miguel, 2007; Cohen and Dupas, 2010).
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Figure 1: Perceived Protective Power of Bednets
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Notes: Histograms of subjective beliefs about the protective power of bednets and treatment with
insecticide from malaria risk. Data from March-April 2007 baseline survey, n = 566.
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Table 1: Baseline Summary Statistics

Mean Median S.d. Obs.

Household size 5.3 5 2.1 566
no. children under 5 0.47 0 0.7 566
Head is male 0.94 1 0.24 566
Head age 45 45 12 566
Head at least secondary school 0.11 0 0.32 554
Head any schooling 0.71 1 0.45 560
Total monthly expenditure per head 753 607 574 566
Bednets per head 0.32 0.25 0.31 562
ITNs per head 0.059 0 0.19 561
At least one bednet 0.68 1 0.47 562
Fraction of member slept under bednet last night 0.16 0 0.32 566
Fraction of member slept under ITN last night 0.032 0 0.16 564
Fraction of member sleeps under net in peak malaria season 0.56 0.79 0.46 566
Fraction of members +ve to malaria 0.11 0 0.29 522
Fraction of members anemic (Hb< 11g/dl) 0.46 0.5 0.46 514
Aware mosquito bites can cause malaria 0.96 1 0.19 566
Aware bednets can protect against malaria 0.96 1 0.19 566
Expected cost of a malaria episode (working man) (Rs.) 2919 2330 2383 566
Expected cost of a malaria episode (non-working) (Rs.) 1753 1400 1537 566
Cost of recent (actual) malaria episodes (Rs.) 700 0 1928 566
Cost of recent (actual) malaria episodes (Rs.), if > 0 1737 855 2729 228

Notes: Data from March-April 2007 baseline survey. Data from 566 households. All means as un-weighted averages
across sample households. The varying sample size for different variables is explained by missing values. Mean
expenditure per head was measured asking about usual consumption of 18 item categories, including home production
of foodstuff. Both the actual and expected costs of malaria episodes were elicited using an itemized list including
doctor fees, drugs and tests, hospitalization, surgery, costs of lodging and transportation (including those for any
caretaker), lost earnings from days of lost work, and cost of non-household members hired to replace the sick at
work. Costs of recent malaria episodes refer to all health episodes in the household reported as malaria by the
respondents, during the six months before the interview. All monetary values are in nominal Rs. (PPP exchange
rate ≈ 16Rs/USD, World Bank, 2008).
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Table 2: Baseline Time Preferences

Prefers Rs. 10 in 1 month to Rs. 10 in 4 months 0.84
Prefers Rs. 10 in 1 month to Rs. 12 in 4 months 0.71
Prefers Rs. 10 in 1 month to Rs. 14 in 4 months 0.65
Prefers Rs. 10 in 1 month to Rs. 16 in 4 months 0.60

Prefers Rs. 10 in 1 month to Rs. 10 in 7 months 0.82
Prefers Rs. 10 in 1 month to Rs. 15 in 7 months 0.63
Prefers Rs. 10 in 1 month to Rs. 20 in 7 months 0.52
Prefers Rs. 10 in 1 month to Rs. 25 in 7 months 0.49

Prefers Rs. 10 in 4 months to Rs. 10 in 7 months 0.84
Prefers Rs. 10 in 4 months to Rs. 12 in 7 months 0.74
Prefers Rs. 10 in 4 months to Rs. 14 in 7 months 0.65
Prefers Rs. 10 in 4 months to Rs. 16 in 7 months 0.57

Always prefers earlier reward 0.27
At least one “hyperbolic” preference reversal 0.25
Mean no. of “hyperbolic” preference reversals (> 0) 1.31

Notes: Data from March-April 2007 survey. n = 566. “Hyperbolic” preference reversals are defined as cases when
the respondent prefers the earlier reward at a short time horizon but switches to the later reward when both time
horizons are shifted away from the present by a same time period. The mean in the last row is calculated including
only the 147 respondents who displayed at least one hyperbolic preference reversal.
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Table 3: Summary of purchases

Mean
(A) Purchase

Purchased at least one ITN 0.51
# ITNs purchased, any contract 1.03
# ITNs purchased, any contract, if > 0 2.03

Purchased at least one ITN without ‘commitment’ to retreat (b) 0.25
# ITNs purchased, without ‘commitment’ to re-treatments (b) 0.44
# ITNs purchased, without ‘commitment’ to re-treatments (b), if > 0 1.76

Purchased at least one ITN with‘commitment’ to 2 re-treatments (c) 0.26
# ITNs purchased, with ‘commitment’ to re-treatments (c) 0.59
# ITNs purchased, with ‘commitment’ to re-treatments (c), if > 0 2.29

(B) Re-treatment

% Bednets re-treated after 6 months
without ‘commitment’ to retreat (b) 0.36

with ‘commitment’ to retreat (c) 0.92
% Bednets re-treated after 12 months

without ‘commitment’ to retreat (b) 0.19
with ‘commitment’ to retreat (c) 0.84

Notes: Data from September-November 2007. n = 566.
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Table 4: Structural Estimates

(1) (2) (3) (4) (5)
πC 0.357 (0.342-0.372) πC(0) 0.360 (0.346-0.374) πC(0, b) 0.675 (0.662-0.688)

Panel A πC(0, c) 0.664 (0.639-0.688)
πC(1) 0.350 (0.325-0.376) πC(1, b) 0.674 (0.661-0.687)

Type πC(1, c) 0.663 (0.638-0.687)
Probabilities πS 0.162 (0.152-0.172) πS(0) 0.160 (0.151-0.169) πS(0, b) 0.081 (0.075-0.087)

πS(0, c) 0.086 (0.074-0.098)
πS(1) 0.167 (0.149-0.184) πS(1, b) 0.081 (0.075-0.087)

πS(1, c) 0.086 (0.074-0.098)
πN 0.481 (0.476-0.486) πN (0) 0.480 (0.475-0.485) πN (0, b) 0.244 (0.237-0.251)

πN (0, c) 0.250 (0.238-0.263)
πN (1) 0.483 (0.475-0.491) πN (1, b) 0.245 (0.238-0.252)

πN (1, c) 0.252 (0.239-0.264)

Panel B Full model No ϕ βN = βS Known types One type
δ 0.9989 (0.0438) 0.0323 (0.2456) 0.9989 (0.0461) 0.0822 (0.0237) 0.0100 (0.3549)

Preference βN 0.0580 (0.0613) 0.0102 (0.1261) 0.0829 (0.0266) 0.9988 (0.0311)
Parameters βS 0.1550 (0.0708) 0.0100 (0.1581) 0.9986 (0.0302)

ϕ0 1.1132 (0.0054) 0.1080 (0.0087) 1.1128 (0.0044) 0.0230 (0.0055) 0.1127 (0.0064)
ϕNaive -1.0800 (0.0028) -1.0912 (0.0062) -0.8782 (0.0070)
ϕSoph -1.1200 (0.0027) -1.0887 (0.0047) 1.9948 (0.0028)
ϕHHS -0.1354 (0.0055) -0.1354 (0.0023) -0.1251 (0.0047) -0.0472 (0.0241)
ϕAssets 0.1066 (0.0019) 0.1066 (0.0044) 0.0475 (0.0029) 0.0631 (0.0529)
ϕRisk -0.1959 (0.0061) -0.1959 (0.0067) -0.1069 (0.0022) -0.0516 (0.0139)

ϕOldNet 0.1666 (0.0023) 0.1668 (0.0056) 0.1086 (0.0035) -0.0140 (0.0797)
1e6×Log-Likelihood -1651716.1540 -1745755.9478 -1651717.0368 -1597132.8423 -1741713.9648

Notes: In Panel A, πτ (r) are type probabilities conditional on signal r, parameterized using eq. (23), πτ (r, a) also condition on contract
choice a1 (see Footnote 24), and πτ are unconditional type probabilities averaged using the empirical distribution of r (2.5th and 97.5th

percentiles of the distributions computed using the delta method in parentheses). All type probabilities are computed using the preferred
model with three unobserved types and preferences described in Section 4.2. Col. (1) of Panel B shows estimated preference parameters
for our preferred model with three unobserved types and utility function specified as in Section 4.2. In Col. 2 we impose that per-period
utility parameters ϕv = 0. In Col. 3 we impose βS=βN . In Col. 4 types are uniquely identified by (r, a1), with τ = τC if r = 0, τ = τS
if (r = 1, a1 = c), and τ = τN if (r = 1, a1 ∈ {n, b}). In Col. 5 we assume τ = τC for all agents. In cols. 4-5 types are known so
the likelihoods are not mixtures and are thus not directly comparable to those in cols. 1-3. The identification for all estimated models
follows from the arguments in Section 4.2.2.

49



Table 5: Counterfactual Choices with Changes in re-treatment Price

Double pr Half pr
Panel A: Preferred model
% Change No Purchase (n) 0.398 (0.047) −0.194 (0.024)
% Change Take up standard contract (b) −0.015 (0.020) 0.004 (0.010)
% Change Take up commitment product (c) −0.795 (0.078) 0.389 (0.040)
% Change Re-treatment (b) −1.153 (0.021) 0.579 (0.010)

Panel B: Model with no time-inconsistency
% Change No Purchase (n) 4.013 (0.107) −1.978 (0.024)
% Change Take up standard contract (b) −0.020 (0.015) 0.001 (0.010)
% Change Take up commitment product (c) −2.101 (0.033) 1.045 (0.040)
% Change Re-treatment (b) −1.006 (0.009) 0.499 (0.010)

Notes: All changes are relative to the re-treatment price (pr) of Rs.16.5 per bed net. All figures
are averages over the empirical distribution of demographics, beliefs and types. Standard errors in
parentheses estimated using the delta method. We use estimates from our preferred model (col. 1
in Panel B of Table 4).
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Table 6: Median cost of malaria and days missed attributable to time-inconsistent preferences

(1) (2) (3) (4) (5) (6)
t = 2 t = 3 t = 4 Total Total ×βN Total ×βS

(A) Monetary costs Elicited beliefs 307 307 198 812 47 126
(5.0) (5.0) (2.7) (12.8) (49.2) (56.3)

Lengeler (2004) 215 215 58 488 28 76
(3.2) (3.2) (2.1) (8.3) (29.6) (33.9)

(B) Missed days Elicited beliefs 1.79 1.79 1.15 4.72 0.28 0.73
(0.03) (0.03) (0.03) (0.08) (0.29) (0.33)

Lengeler (2004) 1.30 1.30 0.33 2.93 0.17 0.45
(0.03) (0.03) (0.01) (0.06) (0.18) (0.20)

Notes: Panel (A) shows the additional costs of malaria attributable to the lower investment into
ITNs and re-treatment due to present-bias, using either the survey-elicited beliefs about malaria
risk, or estimates on the protective power of ITNs from the meta-analysis in Lengeler (2009). We
report per-period median changes in expected costs (cols. 1-3), as well as their sum, either raw
(col. 4) or discounted by the estimated present-bias parameters (cols 5-6). Panel (B) presents the
same statistics for the median expected days missed at work. Standard errors in parentheses are
estimated using the delta method.
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Appendix

A Proofs

A.1 Proofs for Identification of Directly Observed Types

Proof of Lemma 1

Proof. The probability that an agent in period 3 chooses action k conditional upon state x3 is given by

Pτ (a
∗
3 = k|x3) = P

(
k = argmax

a∈A3

{
u3(x3, a; τ) + ϵ3(a)

}∣∣∣∣x3) .
The decision in the terminal period is a standard static discrete choice model and with a known error
distribution we can invert the relationship (see Hotz and Miller (1993) or see online Appendix C for a
self-contained argument) to directly identify the functions u3(x3, k; τ)− u3(x3, 0; τ). The normalization for
period 3 utility (Assumption B) ensures that u3(x3, k; τ) is identified.
Next, note that because period 3 utility is identified and the error distribution is assumed to be known, the
expected value function

∫
v∗τ,3(s3) dF(s3|x2, k, z2) is also identified. Turning now to period 2, the probability

that an agent of type τ will choose action k given x2 and z2 is given by

Pτ (a
∗
2 = k|x2, z2) = P

(
k = argmax

a∈A2

{
u2(x2, a; τ) + ϵ2(a) + βτδτ

∫
v∗τ,3(s3) dF(s3|x2, a, z2)

}∣∣∣∣x2, z2) .
Inverting the type-specific conditional choice probabilities as before (cf. Hotz and Miller (1993)) we can
identify the function

gτ,2,k(x2, z2) = u2(x2, k, τ)− u2(x2, 0, τ) + βτδτ

∫
v∗τ (s3) dF∆,k(s3|x2, z2) (31)

for all (x2, z2, k). Next, Assumption D2 (the Rank Condition) allows us to express (for at least one action k
and two points (z′2, z

′′
2 ) and all x2 ∈ X2)

βτδτ =
gτ,2,k(x2, z

′
2)− gτ,2,k(x2, z

′′
2 )∫

v∗τ (s3)(dF∆,k(s3|x2, z′2)− dF∆,k(s3|x2, z′′2 ))
(32)

so that βτδτ is identified for all τ .

Next, substituting eq. (32) into eq. (31), (b) using the fact that
∫
v∗τ,3(s3) dF(s3|x2, k, z2) is identified

and invoking the normalization in Assumption B we conclude that the period 2 utility function u2(x2, k; τ)
is identified for all k ∈ A2 for all types.

Proof of Lemma 2

Proof. The (conditional) probability that an agent chooses action k in period 1 is given by

Pτ (a
∗
1 = k|x1, z1) = P

(
k = argmax

a∈A1

{
u1(x1, a; τ) + ϵ1(a) + βτδτ

∫
v∗τ,2(s2) dF(s2|x1, a, z1)

}∣∣∣∣x1, z1) .
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Inverting the type-specific conditional choice probabilities we next identify the function gτ,1,k(·):

gτ,1,k(x1, z1) = u1(x1, k; τ)− u1(x1, 0; τ) + βτδτ

∫
v∗τ,2(s2) dF∆,k(s2|x1, z1) (33)

where

v∗τ,2(s2) ≡
∑
a∈A2

vτ,2(s2, a, δτ )Aτ (s2, a, β̃τδτ )

and vτ,2(·), Aτ (·) are defined in eq. (6). Recall that v∗τ,2(s2) is the continuation value from period 2 onwards,
from the standpoint of period 1, assuming that the event that action a will be chosen in period 2 is given
by the indicator Aτ (s2, a, β̃τδτ ) being equal to one. The parameter β̃τ is interpreted as the amount of
present-bias that the agent in period 1 thinks his period 2 self will be subject to.
We begin by noting that for consistent agents the last term on the right hand side of eq. (33) is identified so
that period 1 preferences are then identified.
Next, we show identification for sophisticated agents. We begin by first isolating the last expression in
eq. (33). Under Assumption D2 we can identify the difference

gτ,1,k,∆(x1) ≡ gτ,1,k(x1, z
′
1)− gτ,1,k(x1, z

′′
1 )

= βτδτ

(∫
v∗τ,2(s2)

(
dF∆,k(s2|x1, z′1)− dF∆,k(s2|x1, z′′1 )

))
= βτδτ

(∫
v∗τ,2(s2) dF(ϵ2)

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

))
= βτδτ

(∫
hτ,2(x2, z2)

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

))
= βτδτ

(∫
h̃Aτ (x2, z2, β̃τδτ ) + δτ · h̃Bτ (x2, z2, β̃τδτ ))

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

))
. (34)

Thus, for sophisticated types

gS,1,k,∆(x1) = βSδS

(∫
h̃AS (x2, z2, βSδS) + δS · h̃BS (x2, z2, βSδS))

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

))
,

where the h̃AS (·) functions are defined in eq. (8)) and are identified. We can then directly identify δS as

δS =

gS,1,k,∆(x1)− βSδS
∫
h̃AS (x2, z2, βSδS)

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

)
βSδS

∫
h̃BS (x2, z2, βSδS)

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

)
where the integral in the denominator is guaranteed to be non-zero by the rank condition (Assumption D2)
and βSδS and all the remaining objects on the right hand side are also identified by Lemma 1.

A.2 Identification Results for Näıve Types

To obtain informative partial identification results we place stronger assumptions on the transition proba-
bilities that allow us to point identify the function hτ,2(x2, z2) – defined in eq. (8) – up to a normalization.
Since these assumptions and the function hτ,2(·) will play a key role in the identification argument when
types are unknown we state them for a general type τ though in this subsection we only invoke them for
näıve types.
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A.2.1 Strengthening Variation in Transitions

We place stronger assumptions on the transition probabilities and this allows us to identify hτ,2(·). In
particular, we require that there exist at least two actions in period 1 such that the resulting transition
probabilities (for period 2) are sufficiently different from each other. In addition, we require that a certain
function of the differences in transition probabilities (across actions) is sufficiently variable in z1. These
assumptions, although strong, are directly testable since they are placed on observable quantities.

To formalize these notions, we need to introduce some notation. Let {xs,j , zs,j} be elements of Xs × Zs

and define the probabilities, all of which are identified:

dFk(xs,j , zs,j |xs−1,j′ , zs−1,j′) ≡ P(xs = xs,j , zs = zs,j |xs−1 = xs−1,j′ , zs−1 = zs−1,j′ , as−1 = k).

Let S denote the cardinality of X2 ×Z2. Define the matrix dF(k, z1) as follows:

dF(k, z1) ≡

 dFk(x2,1, z2,1|x1,1, z1) . . . dFk(x2,S−1, z2,S−1|x1,1, z1)
...

...
...

dFk(x2,1, z2,1|x1,S−1, z1) . . . dFk(x2,S−1, z2,S−1|x1,S−1, z1)

 . (35)

The elements of this matrix are the transition probabilities for all (but one) possible values of the period 2
observed state variables conditional on S − 1 possible values of the period 1 state variable x1, for period 1
action k. We requires that the vector of period 2 transition probabilities display sufficient variation as the
period 1 state varies. In particular, define the matrix

dF∆(k, z1) ≡ dF(k, z1)− dF(0, z1) (36)

for the action pair (k, 0). Then the formal statement is

ASSUMPTION DA1 (Invertibility). X1 has at least S − 1 points of support where S is the cardinality of
X2 × Z2. The (S − 1) × (S − 1) identified matrix (dF∆(k, z

′
1) − dF∆(k, z

′′
1 )) is invertible for some action k

and two points z′1 ̸= z′′1 .

dF∆(·) is the difference in the transition probabilities when action k is taken in period 1 relative to a base
action. Assumption DA1 can be interpreted as requiring that the excluded variable z1 induces sufficient
variability in these probability differences. If we interpret the z1 as beliefs about x2, then we can interpret
the assumption as stating that these beliefs must induce sufficient variability in the transition probabilities
(see the empirical application section for a discussion on this). Assumption DA1 is restrictive in that the
“order” condition – that the number of possible states in period 1 to be at least as large as the cardinality
of X2 × Z2 – may be quite onerous. This assumption would fail if, for instance, the support of the x state
variable in period 2 is larger than its support in period 1 (or equal, if there are at least two points of support
for z2).

It is possible, however, to relax this assumption by instead placing restrictions on the support of A1×X1

which are often more palatable and leads to order conditions that are more likely to be satisfied in practice.
This approach is presented below in Lemma A4 and is useful when x1 has limited support. Assumption DA1
is related to the rank conditions in Assumption D2 in that it imposes sufficient variation in the transition
probabilities arising from the variation in z1. Further, it requires that this variation is sufficiently independent
as x1 varies – i.e. the vectors of the differences of transition probabilities (indexed by points in X1) must
be linearly independent in the sense specified above. With this additional assumption we can recover the
function hτ,2(·) up to a location shift.

We state the result in slightly more generality that it is needed for this section. In particular, we will
show identification of hτ,2(·) for all types τ and regardless of whether the particular identity of τ is known
(i.e. without knowing whether the type is consistent or partially sophisticated). This is because this result
will be useful in the subsequent section when we examine unobserved types.

LEMMA A1 (Identification of hτ,2(·) and First Period Payoffs). Consider an agent of type τ maxi-
mizing equation eq. (1). Suppose that period 2 and 3 utilities {ut(·; τ)}t∈{2,3},τ∈T and the product {βτδτ}τ∈T
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are identified (though type identities are not necessarily known).31 In the directly observed types cases (Sec-
tion 3.1) this follows from Assumptions B, D1 and D2. In the unobserved types case, this follows from
applying Lemma 1 (for which assumptions B, D1 and D2 are needed) once the type-specific choice probabili-
ties are identified. Suppose that Assumption DA1 holds. Then,

1. The function hτ,2(x2, z2) is identified up to an additive constant kτ for all types τ and (x2, z2) ∈ X2×Z2.
We denote this identified function as h∆τ (x2, z2) = hτ,2(x2, z2)− hτ,2(x20, z20)

2. Period 1 utility u1(x1, a; τ) is identified ∀ (a ∈ A1, x1 ∈ X1, τ ∈ T ).

Proof. We begin by first isolating the last expression in eq. (34):

gτ,1,k,∆(x1) = βτδτ

(∫
v∗τ,2(s2)

(
dF∆,k(s2|x1, z′1)− dF∆,k(s2|x1, z′′1 )

))
= βτδτ

(∫
hτ,2(x2, z2)

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

))
Rewriting the integral as a summation and using the fact that βτδτ is identified we can identify

gτ,1,k,∆(x1)

βτδτ
=

∑
(x2,z2)∈X2×Z2

hτ,2(x2, z2)

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

)

=
∑

(x2,z2)∈(X2×Z2)–

(hτ,2(x2, z2)− hτ,2(x20, z20))

(
dF∆,k(x2, z2|x1, z′1)− dF∆,k(x2, z2|x1, z′′1 )

)
.

(37)

where (X2 ×Z2)
– ≡ (X2 ×Z2)\(x20, z20) which has cardinalty S − 1. We add −hτ (x20, z20) where (x20, z20)

is a fixed point in X2 ×Z2 to incorporate the constraint∑
(x2,z2)∈X2×Z2

dFk(x2, z2|x1, z1) = 1.

Without incorporating this restriction the matrix needed in Assumption DA1 below would not be invertible.
Next, define the two (S−1) column vectors gτ,∆(k) and hτ (where we suppress dependence on state variables):

gτ,∆(k) ≡
1

βτδτ

 gτ,1,k,∆(x1,1)
...

gτ,1,k,∆(x1,S−1)

 ; hτ ≡

 hτ,2(x2,1, z2,1)− hτ,2(x20, z20)
...

hτ,2(x2,S−1, z2,S−1)− hτ,2(x20, z20)

 . (38)

Using the notation above we can rewrite eq. (37) (for each candidate value x1,1 . . . x1,S−1) in matrix form as

gτ,∆(k) = (dF∆(k, z
′
1)− dF∆(k, z

′′
1 ))hτ ,

where gτ,∆(k) is identified by eq. (37) and the matrices dF∆(k, z
′
1) and dF∆(k, z

′′
1 ) (defined in eq. (36))

are identified since they are constructed only from observed variables. Under the (testable) invertibility
assumption (Assumption DA1) it follows that

hτ =

(
dF∆(k, z

′
1)− dF∆(k, z

′′
1 )

)−1

gτ,∆(k), (39)

so that hτ,2(x2, z2)−hτ,2(x20, z20) is identified. To simplify notation in the statement of the lemma we have

31That is, it is not known if a given type τ corresponds a consistent, näıve or completely sophisticated type or
more generally whether τ is a consistent or partially sophisticated type.
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defined

kτ ≡ −hτ,2(x20, z20)

Next, we see that the last expression on the right hand side of the equation below is identified:

gτ,1,k(x1, z1) = u1(x1, k; τ)− u1(x1, 0; τ) + βτδτ

∫
(hτ,2(x2, z2)− hτ,2(x20, z20)) dF∆,k(x2, z2|x1, z1),

so that first period preferences are identified for all types τ as

u1(x1, k; τ)− u1(x1, 0; τ) = gτ,1,k(x1, z1)− βτδτ

∫
(hτ,2(x2, z2)− hτ,2(x20, z20)) dF∆,k(x2, z2|x1, z1),

Note that
∑

x2,z2
hτ,2(x20, z20) dF∆,k(x2, z2|x1, z1) = 0 since dF∆,k is a signed measure with total measure

equal to zero.

A.2.2 Application of Lemma A1 for Näıve Types and Partial Identification Results

Next, recalling the definition of h̃jτ (x2, z2, d2) for j ∈ {A,B}in eq. (8), define the function.

h̃τ (x2, z2, d1, d2) ≡ h̃Aτ (x2, z2, d2) + d1h̃
B
τ (x2, z2, d2) (40)

The functions h̃jτ (·) are identified upto d2 and therefore the function h̃τ is identified upto (d1, d2).
32 Next,

using the definition of hτ,2(x2, z2) in eq. (8) we see that

hτ,2(x2, z2) = h̃τ (x2, z2, δτ , β̃τδτ ).

So that
hτ,2(x2, z2)− hτ,2(x20, z20)︸ ︷︷ ︸

≡h∆
τ (x2,z2)

= h̃τ (x2, z2, δτ , β̃τδτ )− h̃τ (x20, z20, δτ , β̃τδτ )︸ ︷︷ ︸
≡h̃∆

τ (x2,z2,δτ ,β̃τδτ )

. (41)

Lemma A1 identifies the object h∆τ (x2, z2) for all types τ ∈ T and the right hand side of eq. (41) is known
upto the time preference parameters (δτ , β̃τδτ ).

Applying this argument to näıve types, notice that the right hand side of eq. (41) is h̃∆τN (x2, z2, δN , δN )

which is known upto δN . If the function h̃∆τN (x2, z2, d, d) were one-to-one in d, then one could recover δN by
inverting the function at the point h∆τN (x2, z2) for a given (x2, z2) or by carrying out a minimum distance
type strategy. Unfortunately, the function is not in general one-to-one in d and the corresponding minimum
distance function will not be uniquely minimized at δτN so the parameter is not point-identified.

We therefore begin by defining the identified set for δN as all those values of d that are consistent with
the identified function h∆τN (x2, z2) and the identified object βNδN . To simplify exposition define

h̃∆τN (x2, z2, d) ≡ h̃∆τN (x2, z2, d, d) (42)

Then, define the identified set for δN as

ΘδN ≡
{
d ∈ (βNδN , 1) : h̃

∆
τN (x2, z2, d) = h∆τN (x2, z2) ∀ (x2, z2) ∈ X2 ×Z2

}
.

This leads to a corresponding identified set for βN :

ΘβN
≡
{
βτN δτN

d
: d ∈ ΘδN

}
.

We state this result formally below

32To see this, notice that the h̃j
τ (·) are functions of the period two and period three payoff functions which are both

identified by previous arguments and the distribution of ϵt which is assumed known.
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LEMMA A2 (Identified set for δN and βN ). Consider a näıve agent solving the problem (1) at t = 1
and suppose that the model satisfies Assumptions B, D1, D2, D3 and DA1. Then, the identified set for δN
is given by ΘδN and the identified set for βN is given by ΘβN

.

Proof. The argument here is straight-forward. First consider any d ∈ ΘδN and the corresponding b =
(βτN δτN ) /d. Then, we have that βτN δτN = bd and since d lies in the identified set for δN , h∆τN (x2, z2) =

h̃∆τN (x2, z2, d). Moreover, this choice of time-preference parameters is consistent with the remaining identified
preference parameters (the per-period utility functions) so we can use this set of parameters to generate the
same observed distribution as the original set of parameters. Moreover, this shows that the bounds are
sharp.

General conditions for point identification are not always available. Here, we outline one relatively
straightforward (and testable) assumption yielding point identification by requiring that h̃∆τN (x2, z2, d) is
strictly monotone in d in the following sense.

ASSUMPTION DA2. There exists (x2, z2) ∈ X2 × Z2 such that the following difference is non-zero and
has the same sign ∀d ∈ ΘδN :∑

a∈A2

(
qτN (x2, z2, a)

∫
AτN (s2, a, d) dF(ϵ2)− qτN (x20, z20, a)

∫
AτN (s20, a, d) dF(ϵ2)

)
.

where s20 = (x20, z20, ϵ2).

Recall that qτN (x2, z2, a), defined in eq. (8) is the un-discounted expected period 3 utility when the period
1 agent (a) contemplates being in state (x2, z2) in period 2, (b) takes action a ∈ A2 and (c) assumes she
behaves optimally in the static period 3 problem.

∫
Aτ (x2, z2, ϵ2, a, d) dF(ϵ2) is the conditional probability

that action a is optimal in state (x2, z2) when the period 1 agent believes that d is used to discount 3 utility
back to period 2 when making choices in period 2.

Roughly speaking, consider (x2, z2) (and (x20, z20)) as being fixed and view the action as a random
variable with the probability of a occurring being P(AτN (x2, z2, a)) ≡

∫
AτN (s2, a, d) dF(ϵ2). Then the

summation
∑

a q(x2, z2, a)P(AτN (x2, z2, a)) is the un-discounted period 3 expected utility from state (x2, z2)
in period 2 from the viewpoint of the period 1 self who believes they will use d to discount utility between
periods 2 and 3. The assumption above states that are at least two points in X2×Z2 such that this expected
utility is always strictly greater (or smaller) at one point (x2, z2) than at the other point (x20, z20) for all
choices of the discount rate d in the identified set for δ, ΘδN – i.e. that the agent is always strictly better off
(in period 3) at one point relative to the other point (in period 2), regardless of the choice of the exponential
discount rate δ. The plausibility of the assumption clearly depends upon context and is likely to hold when
there are certain states in period 2 that unambiguously lead to better outcomes in period 3 (relative other
states).

Formally speaking, the assumption above ensures that the derivative of h̃∆τN (x2, z2, d) with respect to d
is strictly positive (or negative) everywhere in the identified set at least for some value of the state variable.
With this additional assumption, we can separately identify both time preference parameters for näıve types.

LEMMA A3 (Point Identification for δN and βN ). Consider a time-inconsistent näıve agent solving
the problem (1) at t = 1 and suppose that the model satisfies Assumptions B, D1, D2, D3, DA1 and DA2.
Then δτN and βτN are identified.

Proof. The result follows directly from computing the derivative of the function

h̃τ (x2, z2, d, d) =
∑
a∈A2

∫
(u2(x2, a, τ) + ϵ2(a) + dqτ (x2, z2, a))Aτ (s2, a, d) dF(ϵ2).

(where we defined h̃τ (·) in eq. (40)). In fact, this function is convex in d (proof available on request). To
keep the exposition straight-forward we demonstrate the result for the case with 3 possible actions in period
2. In the following, we shall use repeatedly the fact that ϵ2 has a strictly positive density everywhere on its
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domain.

∂h̃(x2, z2, d, d)

∂d
=
∑
a∈A2

∂h̃aτ (x2, z2, d)

∂d
,

where

∂h̃aτ (x2, z2, d)

∂d
=

∂

∂d

∫
(u2(x2, a, τ) + ϵ2(a) + dqτ (x2, z2, a))Aτ (s2, a, d, 1) dF(ϵ2)

=
∂

∂d

∫
(m(x2, z2, a, τ, d) + ϵ2(a))Aτ (s2, a, d, 1) dF(ϵ2),

and where ma(x2, z2, τ, d) = u2(x2, a, τ) + dqτ (x2, z2, a).
In what follows we will refer to this simply asma and its derivative with respect to d asm′

a for brevity. In
addition, we will use ϵ2a to refer to ϵ2(a) Applying Leibniz’s rule and the Dominated Convergence Theorem
repeatedly we can show

∂h̃1τ (x2, z2, d)

∂d
= (m′

1 −m′
0)

∫
ϵ20

∫
ϵ22<m0−m2+ϵ20

(m0 + ϵ20)f(ϵ20,m0 −m1 + ϵ20, ϵ22)dϵ22 d ϵ20

+m′
1

∫
ϵ20

∫
ϵ22<m0−m2+ϵ20

∫
ϵ21>m0−m1+ϵ20

f(ϵ20, ϵ21, ϵ22) d ϵ21 d ϵ22 d ϵ20

+ (m′
1 −m′

2)

∫
ϵ20

∫
ϵ22>m0−m2+ϵ0

(m2 + ϵ2)f(ϵ0,m2 −m1 + ϵ2, ϵ2) d ϵ22 d ϵ20

+m′
1

∫
ϵ20

∫
ϵ22>m0−m2+ϵ20

∫
ϵ21>m2−m1+ϵ22

f(ϵ20, ϵ21, ϵ22) d ϵ21 d ϵ22 d ϵ20.

∂h̃2τ (x2, z2, d)

∂d
= (m′

2 −m′
0)

∫
ϵ20

∫
ϵ22<m0−m2+ϵ20

(m0 + ϵ20)f(ϵ20, ϵ21,m0 −m2 + ϵ20)dϵ21 d ϵ20

+m′
2

∫
ϵ20

∫
ϵ21<m0−m1+ϵ20

∫
ϵ22>m0−m2+ϵ20

f(ϵ20, ϵ21, ϵ22) d ϵ22 d ϵ21 d ϵ20

+ (m′
2 −m′

1)

∫
ϵ20

∫
ϵ21>m0−m1+ϵ20

(m1 + ϵ1)f(ϵ0, ϵ1,m1 −m2 + ϵ1) d ϵ21 d ϵ20

+m′
2

∫
ϵ20

∫
ϵ21>m0−m1+ϵ20

∫
ϵ22>m1−m2+ϵ21

f(ϵ20, ϵ21, ϵ22) d ϵ22 d ϵ21 d ϵ20.

∂h̃0τ (x2, z2, d)

∂d
= (m′

0 −m′
1)

∫
ϵ22

∫
ϵ21>m2−m1+ϵ22

(m1 + ϵ21)f(m1 −m0 + ϵ21, ϵ21, ϵ22)dϵ21 d ϵ22

+m′
0

∫
ϵ22

∫
ϵ21>m2−m1+ϵ22

∫
ϵ20>m1−m0+ϵ21

f(ϵ20, ϵ21, ϵ22) d ϵ20 d ϵ21 d ϵ22

+ (m′
0 −m′

2)

∫
ϵ22

∫
ϵ21<m2−m1+ϵ22

(m2 + ϵ22)f(m2 −m0 + ϵ22, ϵ21, ϵ22) d ϵ21 d ϵ22

+m′
0

∫
ϵ22

∫
ϵ21<m2−m1+ϵ22

∫
ϵ20>m2−m0+ϵ22

f(ϵ20, ϵ21, ϵ22) d ϵ20 d ϵ21 d ϵ22.

Adding the three terms and simplifying suitably, we obtain

∂h̃τ (x2, z2, d, d)

∂d
=
∑
a∈A2

qτ (x2, z2, a)

∫
ϵ2

Aτ (s2, a, d, 1) dF(ϵ2), (43)
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so that

∂h̃∆τ (x2, z2, d)

∂d
=
∑
a∈A2

(
qτN (x2, z2, a)

∫
Aτ (s2, a, d, 1) dF(ϵ2)− qτN (x20, z20, a)

∫
Aτ (s20, a, d, 1) dF(ϵ2)

)
,

where s20 = (x20, z20, ϵ2). The expression above is the expression in Assumption DA2 from which the
conclusion follows.

Point Identification Results for Näıve Types

Another assumption trivially allows point-identification by requiring that the exponential parameter for
näıve type is the same as that for one of the other two (i.e. for the consistent or sophisticated ) types:

ASSUMPTION DA3. Time-inconsistent agents have the same exponential discount rate, δτS = δτN or
alternatively δτN = δτC
Since δτS and δτC are already identified, this assumption trivially guarantees identification of δτN . However,
in order for this assumption to be substantive, both sophisticated and näıve types (or alternatively time-
consistent and näıve types) have to exist. In other words, the time preferences of time-consistent and time-
inconsistent sophsiticated agents, respectively, can always be identified even if no näıve agents are present,
while Assumption Assumption DA3 states that when sophisticated and näıve time-inconsistent agents are
both present and have the same per-period discount factor, this is sufficient to point identify also näıve
agents’ time preferences.

Alternative Assumptions for Lemma A1

Note that Assumption DA1 places a support condition on X1 which may be too strong. We now outline
an alternative assumption that does not require this assumption. To begin, recall that K1 denotes the
cardinality of A1 and let S1 denote the cardinality of X1. Define the ((K1 − 1) × S1) × (S − 1) identified
matrix (recall that S denotes the cardinality of X2 ×Z2)

dF∆(z1) ≡



dF∆,a1,1
(x2,1, z2,1|x1,1, z1) . . . dF∆,a1,1

(x2,S−1, z2,S−1|x1,1, z1)
dF∆,a1,2(x2,1, z2,1|x1,1, z1) . . . dF∆,a1,2(x2,S−1, z2,S−1|x1,1, z1)

...
...

...
dF∆,a1,K1−1

(x2,1, z2,1|x1,1, z1) . . . dF∆,a1,K1
(x2,S−1, z2,S−1|x1,1, z1)

dF∆,a1,1(x2,1, z2,1|x1,2, z1) . . . dF∆,a1,1(x2,S−1, z2,S−1|x1,2, z1)
dF∆,a1,2

(x2,1, z2,1|x1,2, z1) . . . dF∆,a1,2
(x2,S−1, z2,S−1|x1,2, z1)

...
...

...
dF∆,a1,K1−1

(x2,1, z2,1|x1,2, z1) . . . dF∆,a1,K1
(x2,S−1, z2,S−1|x1,2, z1)

...
...

...
dF∆,a1,1

(x2,1, z2,1|x1,S1
, z1) . . . dF∆,a1,1

(x2,S−1, z2,S−1|x1,S1
, z1)

dF∆,a1,2
(x2,1, z2,1|x1,S1

, z1) . . . dF∆,a1,2
(x2,S−1, z2,S−1|x1,S1

, z1)
...

...
...

dF∆,a1,K1−1
(x2,1, z2,1|x1,S1

, z1) . . . dF∆,a1,K1
(x2,S−1, z2,S−1|x1,S1

, z1)



.

ASSUMPTION DA4 (Alternative for Assumption DA1). The matrix dF∆(z
′
1)− dF∆(z

′′
1 ) has rank S− 1.

This assumption requires that the number of points in the support of A1 ×X1 be at least as large as S (the
“order” condition) and so relaxes the requirement on X1. We can then state the modified version of Lemma
A1.

LEMMA A4 (Alternative Period 1 Identification). Consider an agent of type τ maximizing equation
(1) and suppose that the model satisfies Assumptions B, D1, D2, D3 and DA4 (the last of which replaces
Assumption DA1). Then

1. The function hτ,2(x2, z2) is identified up to a constant kτ for all types τ and (x2, z2) ∈ X2 ×Z2.
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2. Period 1 utility u1(x1, a; τ) is identified ∀ (a ∈ A1, x1 ∈ X1, τ ∈ T ).

Proof. The proof is essentially identical to the proof of Lemma A1 with the only modification being how the
function hτ (x2, z2) is identified. To this end, first define H = dF∆(z

′
1)− dF∆(z

′′
1 ). Then by Assumption DA4

the matrix HTH has rank S − 1 and is invertible.
Consider the points (a1,i, x1,j)i=1...K1,j=1...S1

and consider the expression (derived in eq. (37))

gτ,1,a1,i,∆(x1,j)

βτδτ
=

∑
(x2,z2)∈X2×Z2

hτ,2(x2, z2)

(
dF∆,a1,i(x2, z2|x1,j , z′1)− dF∆,a1,i(x2, z2|x1,j , z′′1 )

)
.

stacking the equations and defining the left-hand side (K1 × S1)× 1 vector as ḡτ,∆ we obtain

ḡτ,∆ = Hhτ .

where hτ is defined in eq. (38). Consequently, under Assumption DA4 we recover hτ as (HTH)−1HT ḡτ,∆.
The remainder of the proof is identical to the one above and is omitted.

A.3 Proofs for Identification for Unobserved Types

Proof of Proposition 1

Proof. The proof follows closely the arguments in Proposition 3 of Kasahara and Shimotsu (2009). Given a
value (r, v)

Pa2,a3,M
r,v = (La2,x2,M+1

v )′VMr,v
r,v La3,M+1

x3,v ,

where the matrices above are defined in eqs. (12), (14) and (15). It follows that

Rank(Pa2,a3,M
r,v ) ≤ min

{
Rank(La2,x2,M+1

v ),Rank(La3,M+1
x3,v ),Rank(VMr,v

r,v )
}
.

Since the rank of V
Mr,v
r,v =Mr,v we have that

Mr,v ≥ Rank(Pa2,a3,M
r,v ). (44)

For the second part, suppose that in addition Assumption U2 holds. We will show that in that case the
reverse inequality holds. First note that then L

a3,M+1
x3,v (L

a3,M+1
x3,v )′ is invertible. Post-multiplying both sides

by
(
L
a3,M+1
x3,v

)′(
L
a3,M+1
x3,v

(
L
a3,M+1
x3,v

)′)−1

,

Pa2,a3,M
r,v

(
La3,M+1
x3,v

)′ (
La3,M+1
x3,v

(
La3,M+1
x3,v

)′)−1

= (La2,x2,M+1
v )′VMr,v

r,v .

Since L
a2,x2,M+1
v has rank Mr,v and V

Mr,v
r,v has strictly positive diagonal elements, it must be the case that

the rank of P
a2,a3,M
r,v

(
L
a3,M+1
x3,v

)′(
L
a3,M+1
x3,v

(
L
a3,M+1
x3,v

)′)−1

is Mr,v and it follows that

Mr,v ≤ min

{
Rank(Pa2,a3,M

r,v ),Rank

((
La3,M+1
x3,v

)′ (
La3,M+1
x3,v

(
La3,M+1
x3,v

)′)−1
)}

,

so that Rank(P
a2,a3,M
r,v ) ≥ Mr,v. Combining this with eq. (44) we conclude that Rank(P

a2,a3,M
r,v ) = Mr,v.

Therefore, the rank of the directly identified matrix P
a2,a3,M
2,r,v gives the total number of types in the population.
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A.3.1 Proofs for Identification of Type Specific Choice Probabilities

Proof of Lemma 3

Proof. The idea of the proof is based on Lemma 4 of Kasahara and Shimotsu (2009). The difference is
that we use an exclusion restriction (Assumption U1) to generate identification instead of using observations
that are more than one period apart. As on p.18 we begin by using Assumption U1 to simplify the joint
distribution of states and actions conditional on (r, v).

P(at, at+1,xt,xt+1|r, v)

=
∑
τ∈T

πτ (r, v)Pτ (at+1, at,xt+1,xt|r, v)

=
∑
τ

πτ (r, v)Pτ (at+1|at,xt+1,xt, r, v)Pτ (xt+1|xt, at, r, v)Pτ (at,xt|r, v)

=
∑
τ

πτ (r, v)Pτ (at+1|xt+1, v)P(xt+1|xt, at, v)Pτ (at,xt|v),

where in the last line we have used the Markov nature of the optimal choices (see the discussion on p.7) and

Assumption U1. Next, for given values (x1
t , . . . ,x

Mr,v−1
t ,x1

t+1, . . . ,x
Mr,v−1
t+1 ) define the Mr,v ×Mr,v directly

identified matrix

Pat,at+1,Mr,v
r,v =


1 F

at+1

x1
t+1,r,v

· · · F
at+1

x
Mr,v−1

t+1 ,r,v

Fat

x1
t ,r,v

F
at,at+1

x1
t ,x

1
t+1,r,v

· · · F
at,at+1

x1
t ,x

Mr,v−1

t+1 ,r,v

...
...

...
...

Fat

x
Mr,v−1

t ,r,v
F

at,at+1

x
Mr,v−1

t ,x1
t+1,r,v

. . . F
at,at+1

x
Mr,v−1

t ,x
Mr,v−1

t+1 ,r,v

 , (45)

which is just the matrix defined in eq. (12) but withM replaced byMr,v−1. We will abbreviate P
at,at+1,Mr,v
r,v

to Pr in the sequel to economize on notation.

Next, we define the matrices L
at,xt,Mr,v
v and L

at+1,Mr,v
xt+1,v using eqs. (14) and (15) but replacing M with

(Mr,v − 1) (so the dimensions now depend only upon the number of types Mr,v). Thus,

Lat,xt,Mr,v
v ≡


1 λ

at,x
1
t ,τ1

v . . . λ
at,x

Mr,v−1

t ,τ1
v

1 λ
at,x

1
t ,τ2

v . . . λ
at,x

Mr,v−1

t ,τ2
v

...
... . . .

...

1 λ
at,x

1
t ,τMr,v

v . . . λ
at,x

Mr,v−1

t ,τMr,v
v

 , (46)

which we will abbreviate as Lt,r. Similarly,

L
at+1,Mr,v
xt+1,v ≡


1 λ

at+1,τ1
x1
t+1,v

. . . λ
at+1,τ1

x
Mr,v−1

t+1 ,v

1 λ
at+1,τ2
x1
t+1,v

. . . λ
at+1,τ2

x
Mr,v−1

t+1 ,v

...
... . . .

...

1 λ
at+1,τMr,v

x1
t+1,v

. . . λ
at+1,τMr,v

x
Mr,v−1

t+1 ,v

 . (47)

which we will abbreviate as Lt+1,r.
Assumption U1 and the overlap condition (in Assumption U2′) guarantee that Lt,r = Lt,r′ and Lt+1,r =
Lt+1,r′ . Finally, define the Mr,v ×Mr,v matrix Vr = Diag(πτ1(r, v), . . . , πτMr,v−1

(r, v)) which we will abbre-
viate to Vr. It is easy to show the following factorization holds:

Pr = L′t,rVrLt+1,r, (48)
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and by assumption each term on the right hand side is invertible. Next, for r ̸= r′ consider the directly
identified object A defined by

A ≡ P−1
r Pr′ = L−1

t+1,rV
−1
r Vr′,vLt+1,r, (49)

so that
Lt+1,rA = V̂r,r′Lt+1,r,

where V̂
r,r′ ≡ V−1

r Vr′ is a diagonal matrix. The expression above asserts that the diagonal matrix V̂r,r′,v

contains the eigenvalues of A and that the rows of Lt+1,v comprise its left eigenvectors. Therefore, these
objects are identified by carrying out an eigenvalue decomposition of the identified matrix A. Note that the
eigenvectors are only identified up to scale, so that we can identify the matrix E ≡ DLt+1,r where D is a
diagonal matrix (and we have Lt+1,r = D−1E).
Next,

PrE
−1 = L′t,rVrD

−1.

Since the first row of L′t,r consists of ones, the first row of the identified matrix PrE
−1 identifies the elements

of the diagonal matrix VrD
−1. Define F ≡ VrD

−1 to be the identified matrix from this analysis. Next,

L′t,r = PrL
−1
t+1,rV

−1
r = PrE

−1DV−1
r = PrE

−1F−1,

where all the terms on the right hand side are identified, so that Lt,r is identified. Next,

VrLt+1,r = (L′t,r)
−1Pr = PrE

−1F−1Pr. (50)

where the right hand side is directly identified. The first column on the left hand side consists of the diagonal
elements of the matrix Vr,v. Therefore Vr,v is identified. Denote by G(≡ Vr) the diagonal matrix obtained
by this argument. Then,

Lt+1,r = G−1PrE
−1F−1Pr, (51)

where the matrix G is invertible since by assumption all its diagonal entries are non-zero. Finally, note that
since Vr is identified, then Vr′ = GV̂r,r′ and so Vr′ is also identified since both G and V̂ are identified.

We first apply this result to (t, t + 1) ∈ {(2, 3), (1, 2)} in order to identify the type-specific choice
probabilities Pτ (at+1|xt+1, v) and Pτ (at,xt|v) for each period. Note that the model is actually overidentified
in a sense since we can recover period 2 choice probabilities from both applications of the argument. In
principle, one could use this to propose a specification test (i.e. that the period 2 choice probabilities
obtained by two applications of the argument should be the same).

Finally, we also note that we have identified the type probabilities πτ (r, v) so we have identified the
relative sizes of the different types of agent in the population.

We next state a result that does not require the overlap condition (Assumption U2′– the overlap of types
across (r, v)). In its stead we require the existence of a set of state-variables across three periods that satisfy
a stronger version of Assumption U2′. We can, however, substantially relax Assumption U1 to:

ASSUMPTION UA1. The transition probabilities do not vary by type: Pτ (xt+1|xt, at, r, v) = P(xt+1|xt, at, r, v).

So, type-specific choice probabilities need not be independent of the type proxy r – the recovered preference
parameters will then also be indexed by r (i.e. uτ,r(xt, v) and (βτ,r, δτ,r). Assumption U2′ is,however,
strengthened to

ASSUMPTION UA2. Given (r, v), there exist (x1,x
1
2, . . . ,x

Mr,v−1
2 ,x1

3, . . . ,x
Mr,v−1
3 ) such that

(a) P(xj
3|xk

2 , r, v)P(xk
2 |x1, r, v) ̸= 0 for (j, k) ∈ {1, . . . ,Mr,v} and

(b) the Mr,v × Mr,v matrices Lv and Lt+1,v are invertible. In addition, the matrix Px1 defined below is
invertible.

LEMMA A5 (Alternative Result for Identifying Type-Specific Choice Probabilities). Fix (r, v)
and suppose that Assumption UA1, and Assumption UA2 hold and that the optimal decision process is
Markov. Then, the type-specific choice probabilities {Pτ (at|xt, r, v)}τ∈Tr,v ;t∈{1,2,3} for xt ∈ Xt. are identified

Proof. The proof is very similar to the proof of Lemma 3 with the main addition being that we now examine
events in three consecutive time-periods (as opposed to two periods earlier). To ease exposition we suppress
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the dependence on v throughout.
First, define the identified quantities

Fx1,x2,x3,r ≡
∑
τ∈Tr

πτ (r)Pτ (a3|x3, r)Pτ (a2|x2, r)Pτ (a1,x1|r)

=
∑
τ∈Tr

πτ (r)λ
a3,τ
x3,rλ

a2,τ
x2,rλ

a1,x1,τ
r

Fx1,x2,r =
∑
τ∈Tr

πτ (r)Pτ (a1,x1|r)Pτ (a2|x2, r) =
∑
τ∈Tr

πτ (r)λ
a2,τ
x2,rλ

a1,x1,τ
r

Fx1,x3,r =
∑
τ∈Tr

πτ (r)Pτ (a3|x3, r)Pτ (a1x1|r) =
∑
τ∈Tr

πτ (r)λ
a3,τ
x3,rλ

a1,x1,τ
r

Fx1,r =
∑
τ∈Tr

πτ (r)Pτ (a1x1|r) =
∑
τ∈Tr

πτ (r)λ
a1,x1,τ
r

Next, for given values of x1,x
1
2, . . . ,x

Mr−1
2 ,x1

3, . . . ,x
Mr−1
3 , define the Mr ×Mr square matrix

Px1
r,v =


Fx1 Fx1,x1

3
· · · F

x1,x
Mr,v−1

3

Fx1,x1
2

Fx1,x1
2,x

1
3

· · · F
x1,x1

2,x
Mr,v−1

3

...
...

...
...

F
x1,x

Mr,v−1

2

. . . . . . F
x1,x

Mr,v−1

2 ,x
Mr,v−1

3

 , (52)

Define the matrix Dx1,r ≡ Diag(λa1,x1,τ1
r , . . . , λ

a1,x1,τMr,v−1

r ) and as before Vr = Diag(πτ1(r), . . . , πτMr−1
(r)).

Then, the following factorizations hold – suppressing the dependence on r since identification does not depend
upon variation in r

Px1 = L′2VDx1
L3; P = L′2VL3,

where the matrix P = P
a2,a3,Mr,v
r,v is defined in eq. (45) and the matrices (L2, L3) are defined in eq. (46). The

argument from here onwards follows the same broad outlines as the previous lemma but using the period
ahead decompositions (rather than the variation in r). Consider the directly identified object A defined by

A ≡ P−1Px1 = L−1
3 Dx1L3, (53)

so that
L3A = Dx1L3.

The eigenvalues of A determine Dx1
and the rows of L3 are the left eigenvectors of A. Therefore, these

objects are identified by carrying out an eigenvalue decomposition of the identified matrix A. Note that the
eigenvectors are only identified up to scale, so that we can identify the matrix E ≡ HL3 where H is a diagonal
matrix with non-zero diagonal entries (and we have L3 = H−1E). Next,

PE−1 = L′2VH
−1.

Since the first row of L′2 consists of ones, the first row of the identified matrix PE−1 identifies the elements
of the diagonal matrix VH−1. Define F ≡ VH−1 to be this identified matrix. Next,

L′2 = PL−1
3 V−1 = PE−1HV−1 = PE−1F−1,

where all the terms on the right hand side are identified, so that L2 is identified. Next,

VL3 = (L′2)
−1P = PE−1F−1P. (54)

63



The first column on the left hand side consists of the diagonal elements of the matrix Vr. Therefore V is
identified since all the matrices on the right hand side in eq. (54) are identified. Denote by G(≡ V) the
diagonal matrix obtained by this argument. Then,

L3 = G−1PE−1F−1P, (55)

where the matrix G is invertible since by assumption all its diagonal entries are non-zero. Finally, note that
since V is identified, then Dx1 = (L′2V)

−1Px1L−1
3 is also identified.

A.3.2 Proofs for Identification of Type Identities

ASSUMPTION UA3.

For h̃∆τ (x2, z2, d1, d2) is defined in eq. (41) and

h̃∆,j
τ (x2, z2, d) ≡ h̃∆,j

τ (x2, z2, d)− h̃∆,j
τ (x20, z20, d) j ∈ {A,B}

1. There exists a set S ⊂ X2 ×Z2 with positive measure such that for all types τ , h̃∆,B
τ (x2, z2, βτδτ ) ̸= 0.

2. Var

(
h̃∆
N (x2,z2,δN,δN)−h̃∆

N (x2,z2,δN,βNδN)

h̃∆,B
N (x2,z2,βNδN)

)
> 0.

The first part of the assumption is a significant strengthening of the second part of Assumption D2 and
applies to all types (not just sophisticated types) which is necessary since type identities are not known.
Note, however, that it is testable since it is imposed on an identified object. The assumption ensures that
δτ enters h∆τ (x2, z2) linearly for sophisticated types and guarantees that eq. (18) is well-defined at least on
S for all types.33

We can now state the results for assigning type identities to the (type-specific) choice probabilities. We
begin with a useful result and then state the general result immediately after.

LEMMA A6. Suppose that the type-specific choice probabilities {Pτ (at|xt, v)}τ∈Tr,v ;t∈{1,2,3} are identified
and the conditions for Lemma A1 hold. Further, suppose that Assumption UA3 holds. Then,

δ̂τ (x2, z2) is a constant for all (x2, z2) ∈ S ⇐⇒ τ ̸= τN .

Proof. “⇒”: Suppose that δ̂τ is a constant but τ = N . First, note that

h∆N (x2, z2) = h̃∆N (x2, z2, δN, β̃N δN) = h̃∆N (x2, z2, δN, δN)

= h̃∆,A
N (x2, z2, δN) + δN h̃

∆,B
N (x2, z2, δN)

If instead, näıve types used βNδN (instead of δN) to discount period three utility to period two (from the
viewpoint of the period one self), then the corresponding version of the h̃∆N (·) function would by given by

h̃∆N (x2, z2 δN, βNδN) = h̃∆,A
N (x2, z2, βNδN) + δN h̃

∆,B
N (x2, z2, βNδN)

Next, rewrite

δ̂N (x2, z2) =
h∆N (x2, z2)− h̃∆,A

N (x2, z2, βNδN)

h̃∆,B
N (x2, z2, βNδN)

by adding and subtracting δN h̃
∆,B
N (x2, z2, βNδN) to the numerator we obtain

δ̂N (x2, z2) =
h̃∆N (x2, z2, δN, δN)− h̃∆N (x2, z2, δN, βNδN)

h̃∆,B
N (x2, z2, βNδN)

− δN .

The first term in the expression above is non-constant by Assumption UA3 so we have a contradiction. The
“⇐” follows by simply observing that for τ ∈ {τS , τC}, δ̂τ (x2, z2) = δτ .

33To see this, note that h∆
τ (x2, z2) ≡ h∆,A

τ (x2, z2, β̃τδτ ) + δτh
∆,B
τ (x2, z2, β̃τδτ ).
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The proof for Proposition 2 proceeds by applying Lemma 1 to identify period 2 and 3 payoffs as well as
the product βτδτ (note that Lemma 1 does not require knowledge of the type identities). Using these objects,
we then apply Lemma A1 to identify h∆τ (x2, z2). Lemma A1 requires an invertibility condition (Assumption
DA1) on an appropriately differenced transition probability matrix. Such an assumption is likely to hold as
long as the excluded variable z1 induces sufficient variation in the transition probabilities (we discuss the
formal statement and its plausibility in Appendix A.2.1).34 We then use the objects identified in Lemma A1

to construct the function δ̂τ,2(x2, z2). Finally, Lemma A6 shows that δ̂τ,2(x2, z2) is a constant for all (x2, z2)

if and only if the type τ is not näıve. When δ̂τ,2(x2, z2) is a constant, we can then distinguish between
consistent and sophisticated types by comparing the identified quantities βτδτ and δτ,2(x2, z2).

Proof of Proposition 2

Proof. First, note that the results of Lemma 1 and Lemma A1 do not require the type identity to be known
(i.e. they apply to all types). Therefore, starting with a given set of type-specific choice probabilities
{Pτ (at|xt, zt)}t we can identify the per period utilities for all three periods (without knowing the type τ)
as well as the product βτδτ and the normalized function h∆τ (x2, z2) defined in eq. (8). Using these, we can

construct the known function δ̂τ (x2, z2) defined in eq. (18). First, suppose that δ̂τ (x2, z2) is a constant (in

(x2, z2)). Then, by Lemma A6 the type must be either sophisticated or consistent and and that δ̂(x2, z2) = δτ .
Next, if the ratio of the directly identified objects βτδt

δ̂τ
= 1 then we can conclude the type must be consistent

while if the ratio is strictly less than one, the type must be inconsistent and sophisticated . If, however,
δ̂τ (x2, z2) is not a constant, then by Lemma A6 the type must be näıve .

A.4 Partially Sophisticated Agents

Proof of Proposition 3

Proof. We first prove part 1 starting with the “⇐” implication by noting that if β̃τ = βτ then h∆τ (x2, z2) =

h̃∆τ (x2, z2, δτ , βτδτ ) (where the latter is defined on p.23 in eq. (19)). Then, δ̂τ (x2, z2) = δτ which is constant.

We prove the “⇒” implication using a proof by contradiction. Suppose β̃τ ̸= βτ but δ̂τ (x2, z2) is a constant.

First, as in the proof of Lemma A6 rewrite δ̂τ (x2, z2) as

δτ (x2, z2) =
h̃∆τ (x2, z2, δτ , β̃τ δτ )− h̃∆τ (x2, z2, δτ , βτδτ )

h∆τ,2(x2, z2, βτδτ )
− δτ .

By Assumption U3 if β̃τ ̸= βτ then the first term is not-constant (in (x2, z2)) and we have a contradiction.
The argument for the second part of the lemma is essentially identical to the arguments for the proof of

Proposition 2. As before, using the results of Lemma 1 and Lemma A1 we identify the per period utilities
for all three periods for any given type τ , the product βτδτ and the function hτ (x2, z2) defined in eq. (8).

Using these, we can construct the known function δ̂τ (x2, z2) defined in eq. (18).35

First, suppose that δ̂τ (x2, z2) is a constant (in (x2, z2)). Then, by part 1 of this lemma β̃τ = βτ so that

agents are either completely sophisticated or time-consistent and in either case δ̂τ = δτ . Next, if the ratio
of the two identified quantities βτδt/δ̂τ = 1 then we can conclude the type must be consistent while if the
ratio is strictly less than one, the type must be completely sophisticated.

Suppose instead that δ̂τ (x2, z2) is not a constant. Then again by the first part of this lemma we must
have β̃τ ̸= βτ so that the type under consideration must be partially sophisticated. Note, however at this
point we cannot further categorize partially sophisticated agents on the basic of the values of β̃τ (e.g. into
completely näıve agents) since the latter is not identified.

34In particular, Lemma A4 shows identification of h∆
τ using Assumption DA4 (as an alternative to Assumption

DA1) which places fewer restrictions on the support of X1.
35Note that the assumptions for Lemma A1 imply that Lemma 1 holds.
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Proof of Proposition 4

Proof. Under the assumptions, the function h∆τ (x2, z2) is identified (part 1 of Lemma A1) and is equal to
the function

h̃∆τ (x2, z2, δτ , β̃τδτ ). The definition of the identified set follows. Note that the identified set is sharp in
the sense that all values in Θ are candidate values for the true parameter (β̃τ , δτ ).
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Online Appendix for Identification of Time-Inconsistent Models:
The Case of Insecticide Treated Nets

B Identification Proofs for the Empirical Application

In this appendix we discuss model identification when applying our general results from Section 3 to our
empirical application. The main reason for this discussion is to account for the deviations in our setting
from that of the general setting in Section 3. There are four important differences worth highlighting:
(a) In the application the excluded variable zt is time-invariant and consequently is not part of the state-
space. Consequently we condition all probabilities on z and choices are denoted by Pτ (at|xt, z, v) instead
of P(at|xt, v), where xt = (xt, zt). Similarly, transition probabilities are written as P(xt+1|xt, z, v) instead
of P(xt+1|xt, v). Since we do not exploit any time-series variation in z for identification, this deviation
does not impose any new difficulties. (b) In the directly observed types case, not all types are directly
identified in the first-period since we need first-period choices to determine types. We derive the relevant
identification results for this period below. (c) For tractability we assume that exactly three types exist in
the population so we do not need to first identify the total number of types. (d) Finally, our setting requires
an additional period (period four) to rationalize choices in period three (since they involve an expectational
component). This additional period (where no action is taken) adds a complication since terminal period
utilities are not identified by the standard arguments as in Section 3. We discuss the modifications needed
for the identification arguments to go through below.

As earlier, we begin by defining the state space and the action space and then discuss the fidelities to
and departures from the original set of assumptions for the general model.
Observable State Space: Xt

In the empirical work and formal identification results we allow for a rich observable state space (including
income and other characteristics), but for ease of exposition we simplify the state space to the bare minimum
required for identification. Online Appendix E contains details on the construction of the state space for the
empirical implementation.

To fix ideas, in period 1, x1 ∈ X1 is a binary variable equal to one if the respondent reported at
least one case of malaria in the household in the past six months and zero otherwise. In periods 2 and 3,
xt ∈ Xt = (nm, nh, bm, bh, cm, ch), where the first letter in each pair records the purchase decision of the
agent, while the second indicates malaria status. The agent can either purchase no net (n) or purchase
one with one of two contracts. Contract b (“base”) involves the purchase of an ITN that is repaid over
the next 12 months. With contract c (“commitment”), the agent purchases both an ITN and a set of two
retreatments with insecticide. Buyers who choose b can still purchase re-treatments for cash. Contract c
may be appealing to sophisticated agents who wish to commit to the ITN maintenance schedule at the time
of purchase. However, demand for c may also depend on factors different from time preferences. The second
letter captures whether anyone in the agent’s household suffered from malaria in the past six months, with
m denoting someone had malaria and h (“healthy”) if no-one did. The state space can be easily extended
so that agents keep track of their entire history of malaria.
Observables: Z (Beliefs)
Beliefs form a key ingredient for identification in the empirical section. In particular, during the baseline
we elicited beliefs about: (a) the likelihood of contracting malaria (when using ITNs, untreated nets and no
nets) and (b) income expectations (see Appendix E for more details).

We use the elicited malaria baseline beliefs, denoted by z, as the excluded variable in Assumption B.
There is one significant difference in the use of beliefs in our empirical application and the zt variable in the
general identification results: our beliefs are measured at baseline and are time-invariant (and thus are best
viewed as conditioning variables rather than state variables). This means that we are abstracting away from
belief evolution, ruling out, for instance, learning about ITN efficacy as a motive for purchase.
Action Space: At

The action space in period 1 (A1) has three elements denoted by (n, b, c), which are defined as above. In
periods 2 and 3 the action space is At = {0, 1}, where 0 denotes that the agent did not re-treat a net and 1
denotes that an agent did so. Note that if an agent did not purchase a net in period 1, she cannot take any
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more actions. Finally, we do not observe the state of the world in the terminal period and the agent takes
no action in this period.

With the definition of the state and action space in hand we can now discuss the substantive content
of the assumptions made in Section 3. We begin by imposing Assumption B, with the modification that
zt ≡ z and discuss its plausibility and implications below.36 The markov property in Assumption B rules
out a complicated state dependence structure, or requires a suitable re-definition of the state space if these
dependencies are important. For instance, it rules out the possibility that the probability that malaria
infection in period three conditional on malaria status and retreatment in period two, depends on malaria
status in period one. Incorporating such a dependency will require suitably redefining the state space (in this
instance we would need to re-define the state space at t to contain the entire malaria history up to t).The
exclusion restriction in Assumption B requires that household beliefs— about the likelihood of malaria
infection in the next period — do not enter the current period utility function. While we cannot test this
assumption directly, it seems plausible that conditional on current health status and income, beliefs about
malaria in the next period do not affect utility. Before discussing the next assumption on directly observed
types, we outline our type indicator.
Type Indicator
We collect information about whether individuals exhibit preference reversals in a series of questions designed
to gauge the extent of consistency in time preferences (these are known as “Money Earlier or Later” (MEL)
questions) In previous work we show that these reversals are important predictors (in a reduced form sense)
of subsequent decisions about net retreatment (Tarozzi et al., 2009). Agents who exhibited at least one
preference reversal are referenced by the binary variable r̃ = 1 and agents who exhibit no preference reversals
have r̃ = 0. We use this as a type signal in both the observed types case as well as the unobserved types
case.

We also designed a contract that should appeal to sophisticated inconsistent agents and we use this as
a indicator of type in the directly observed types case (for t > 1). We do not use product choice as a type
signal in the unobserved types case because the likelihood function generated by doing so had significant
disadvantages (we discuss this below in Appendix F). Instead, we use only the MEL responses as type signals
and then ex-post evaluate the ability of the commitment contract to predict type.
Directly Identified Types Case
In the directly observed types case, we use both the MEL response as well as the choice of contract to
characterize the type of agent. Agents with r = 0 are classified as time-consistent and agents with r = 1
are classified as time-inconsistent. We can further classify agents with (r = 1, a1 = c) as sophisticated and
(r = 1, a1 = n) as näıve and thereby provide a complete classification of agents into types and when we
estimate the model assuming types are known, this is indeed the mapping we use. However, for completeness,
we also consider identification under the possibility that agents who do not purchase a net (a1 = n) and have
r = 1 can be either näıve or sophisticated, but we cannot directly assign these labels to them. We discuss
identification of their type in greater detail below.
Unobserved Types Case
In this case, the researcher does not directly observe the type of any individual. We assume instead that the
MEL variable r is only an imperfect indicator for type. For instance, an agent may choose r = 1 due to an
imperfect understanding of the choices offered rather than genuine time-inconsistency. Alternatively, an agent
who expects sufficiently high income at the time of re-treatment may not choose the commitment product
regardless of time-inconsistency.37 Finally, MEL responses may also reflect rates of return to investments
(see Cohen et al., 2020, for an overview of the debates around the relationship between MEL responses
and time-preferences). For these reasons, we will assume that r does not map deterministically into types.
Instead, we will impose a weaker requirement explicated below.

36As a reminder, Assumption B comprises the markov property, the knowledge of the error distribution, the
exclusion restriction, additive separability and normalization. The knowledge of the error distribution, the additive
separability and normalization assumptions are all standard in dynamic choice models and so we do not discuss them
here.

37In principle, the decision to not commit could also depend on low perceived benefits of re-treatment. However,
we will show that this is not a concern for identification to the extent that such perceptions are reflected in agents’
elicited beliefs.
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B.1 Directly Observed Types

As before, we first discuss identification for the directly observed types case. The main difference is that we
need to modify Assumption D1 to reflect the fact that given our type-proxy, not all types are observed.

ASSUMPTION DE1 (Modification of Assumption D1). Choice probabilities for types that purchase a
product are directly observed. In particular, for a time-consistent agent

PC(a
∗
t = a|xt, z) = P(a∗t = a|xt, z, r = 0).

For a näıve time-inconsistent agent

PN (a∗t = a|xt, z) = P(a∗t = a|xt, z, r = 1, a1 = b) for t > 1.

Finally, for a sophisticated time-inconsistent agent (for t > 1)

PS(a
∗
t = a|xt, z) = P(a∗t = a|xt, z, r = 1, a1 = c) for t > 1.

The assumptions that (a) information about preference reversals in MEL choice questions is informative
about time preferences and (b) the purchase of a commitment product reveals agents as being sophisticated
is common in the empirical literature (see e.g. Ashraf et al., 2006; Andersen et al., 2008). Carrera et al. (2022)
note 33 studies that examine various commitment contracts and offer a critical review of the plausibility of
such contracts identifying sophisticated inconsistent agents (indeed, our unobserved types approach is an
attempt weaken both (a) and (b)).

As before, we start the backward induction from the last decision made by the agent, which is the
decision to retreat the net in period 3. Since the decision to retreat is based on an expectation about the
future, we introduce a terminal period (period 4) where no action is taken but over which expectations are
formed in period 3 and which affect the period 3 decision to retreat. This adds a complication relative to the
identification argument in Section 3.1 since terminal period utilities are not identified by standard arguments
as they would be if actions were taken in the terminal period.
To be specific, utility for type τ in period 4 is u4(x4; τ) and the agent’s choice in period 3 is

{a3 = 1} ⇐⇒ u3(x3, 1; τ)− u3(x3, 0; τ) + βτδτ

∫
u4(x4; τ) dF∆(x4|x3, z) + ϵ3(1)− ϵ3(0) > 0.

where we define the signed measure

dF∆,k(x3|x2, z) ≡ (dF(x3|x2, z, k)− dF(x3|x2, z, 0)) , (56)

and we will on occasion abbreviate dF∆,k = dF∆ if no ambiguity results. Next, using the Hotz-Miller
inversion argument we can identify the function

gτ,3,1(x3, z) = u3(x3, 1; τ)− u3(x3, 0; τ) + βτδτ

∫
u(x4; τ) dF∆(x4|x3, z),

and as before, using variation in z we can isolate the last term in the expression above.

gτ,3,∆(x3) ≡ gτ,3,1(x3, z)− gτ,3,1(x3, z
′) =

∫
x4∈X4

βτδτu4(x4; τ) (dF∆(x4|x3, z)− dF∆(x4|x3, z′)) . (57)

Next, we seek to identify its constituent components using the variation in x3. Intuitively, as long as x3 has
sufficiently rich support (specifically, as large as that of x4) we can generate a system of linear equations
using the support of x3 as follows: let S4 denote the number of elements in X4. Define the square matrix

dF(k, z) ≡

 dFk(x4,1|x3,1, z) . . . dFk(x4,S4−1|x3,1, z)
...

...
...

dFk(x4,1|x3,S4−1, z) . . . dFk(x4,S4−1|x3,S4−1, z)

 .
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and define the matrix dF∆,1(z) ≡ dF(1, z) − dF(0, z). As long as this matrix is invertible we can identify
period three preferences as well as the product of the time preferences and period four utility (see e.g.
Assumption DA1 for a similar requirement in the general case):

ASSUMPTION DE2 (Invertibility, Modification of Assumption DA1). Suppose

1. X3 has at least S4 − 1 points of support (where S4 is the cardinality of X4).

2. The distribution of z conditional on x3 ∈ X3 has at least two points of support.

3. The (S4 − 1)× (S4 − 1) identified matrix dF∆,1(z)− dF∆,1(z
′) is invertible for z ̸= z′.

In the empirical application, period three has a much richer state-space that of period 4 and the beliefs
conditional on x3 have at least two points of support, suggesting that this assumption is not onerous. The
invertibility assumption requires that beliefs about the likelihood of period 4 states be sufficiently different
across individuals (i.e. possess at least two points of support with at which future state likelihoods differ)
and our belief data, though it has marked modes, does possess this level of variability.

LEMMA B1 (Identification of Period 3 and (Scaled) Period 4 Preferences). Consider an agent
solving eq. (1) and suppose that we assume that all the Basic Assumptions hold with the modification that
zt ≡ z which is no longer a state variable but instead a conditioning variable. In addition, suppose that
Assumption DE1 and Assumption DE2 hold.38 Then,

1. u3(x3, a; τ) is identified for all types τ and x3 ∈ X3.

2. βτδτ (u4(x4; τ)− u4(x40; τ)) is identified for all types τ and x4 ∈ X4 and a fixed given x4,0 ∈ X4.

It is useful to note that this lemma does not require knowledge of the type-identity (i.e. whether a type
τ is consistent, näıve or sophisticated), which will prove useful in the sequel (specifically for Proposition 6
below).

Proof. The argument of the proof is similar to the argument in the proof of Lemma A1. We begin by defining
the S4 − 1 column vectors gτ,3,∆(k) and hτ,4

gτ,3,∆ ≡

 gτ,∆(x3,1)
...

gτ,∆(x3,S4−1)

 hτ,4 ≡ βτδτ

 u4(x4,1; τ)− u4(x4,0; τ)
...

u4(x4,S4−1; τ)− u4(x4,0; τ)

 . (58)

We have subtracted u(x40; τ) where x40 is a fixed point in X4 to incorporate the constraint that∑
x4∈X4

dFk(x4|x3, z) = 1.

Without incorporating this restriction the corresponding matrix needed in Assumption DE2 would not be
invertible.
Using the notation above we can rewrite eq. (57) in matrix form as

gτ,3,∆ = (dF∆,1(z)− dF∆,1(z
′))hτ,4,

where gτ,3,∆ is identified from the argument culminating in eq. (57) and the matrices dF∆,1(z) and dF∆,1(z
′)

are identified since they are constructed from observed beliefs. Under Assumption DE2 it follows that we
can identify hτ,4 as:

hτ,4 =

(
dF∆,1(z)− dF∆,1(z

′)

)−1

gτ,3,∆. (59)

Therefore, the object βτδτ (u4(x4; τ)− u4(x40; τ)) is identified for all x4 ∈ X4. Next, note that

gτ,3,1(x3, z) = u3(x3, 1; τ)− u3(x3, 0; τ) + βτδτ

∫
(u4(x4; τ)− u4(x40; τ)) dF∆(x4|x3, z), (60)

38These replace Assumption D1 and Assumption DA1 respectively.
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since ∫
u4(x40; τ)dF∆(x4|x3, z) = 0.

Since the last term in eq. (60) is now identified and u3(x3, 0; τ) is known, we can identify u3(x3, 1; τ) for all
x3 ∈ X3.

In general, we are only able to identify the product of the time-preference parameters and the period four
payoff function βτδτ (u4(x4; τ) − u4(x40; τ)). However, for the functional forms used in the application
(where period 4 utility is given by eq. (20)) we can go further. In particular, for the application (u4(x4; τ)−
u4(x40; τ)) = C(x4)−C(x40) which is identified (since C(·) is known). Then, it follows that in the application
βτδτ is separately identified from period three choices alone.

However, for completeness we consider identification without using the period 4 payoff specification in
eq. (20). To do so, we examine period 2 choices . We start by applying the Hotz-Miller inversion to directly
identify the function gτ,2,1(·):

gτ,2,1(x2, z) ≡ u2(x2, 1; τ)− u2(x2, 0; τ) + βτδτ

∫
hτ (x3, z) dF∆(x3|x2, z), (61)

which is conceptually analogous to eq. (7) in the Directly Observed Types section. Analogous to the notation
in that section, define

hτ (x3, z) ≡
∫
v∗τ (x3, ϵ3, z) dF(ϵ3) =

∑
a∈A3

∫
vτ,3(s3, z, a, δτ )Aτ (s3, z, a, β̃τδτ ) dF(ϵ3)

=
∑
a∈A3

∫
(u3(x3, a; τ) + ϵ3(a))Aτ (s3, z, a, β̃τδτ ) dF(ϵ3)︸ ︷︷ ︸

h̃τ,1(x3,z,β̃τδτ )

+
∑
a∈A3

δτ

∫ ∫
u4(x4; τ) dF(x4|x3, z, a)Aτ (s3, z, a, β̃τδτ ) dF(ϵ3)

= h̃τ,1(x3, z, β̃τδτ ) + β−1
τ

∑
a∈A3

∫ ∫
βτδτ (u4(x4; τ)− u4(x40; τ)) dF(x4|x3, z, a)Aτ (s3, z, a, β̃τδτ ) dF(ϵ3)︸ ︷︷ ︸

h̃τ,2(x3,z,β̃τδτ )

+δτu4(x40; τ)

= h̃τ,1(x3, z, β̃τδτ ) + β−1
τ h̃τ,2(x3, z, β̃τδτ ) + δτu4(x40; τ)

where39

vτ,3(s3, z, a, d1) ≡ u3(x3, a; τ) + ϵ3(a) + d1

∫
u(x4; τ) dF(x4|x3, z, a)

Aτ (s3, z, a, d2) ≡ I
{
a = argmax

j∈A3

vτ,3(s3, z, j, d2)

}
.

To ease notation in what follows, define

h̄τ,∆,1(x2, d) ≡
∫ (

h̃τ,1(x3, z, d) dF∆(x3|x2, z)− h̃τ,1(x3, z
′, d) dF∆(x3|x2, z′)

)
(62)

h̄τ,∆,2(x2, d) ≡
∫ (

h̃τ,2(x3, z, d) dF∆(x3|x2, z)− h̃τ,2(x3, z
′, d) dF∆(x3|x2, z′)

)
(63)

(where we have suppressed the dependence on (z, z′) for convenience). As before, we use variation in beliefs
z to identify objects of interest. Using the notation defined above and taking differences of the identified

39Note that
∑

a

∫ ∫
δτu4(x40; τ) dF(x4|x3, z, a)A(s3, z, a, β̃τδτ ) dF(ϵ3) = δτu4(x40; τ)
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function gτ,2(·) at two different points (z, z′):

gτ,2,∆(x2) ≡ gτ,2,1(x2, z)− gτ,2,1(x2, z
′)

= βτδτ

∫ (
hτ (x3, z) dF∆(x3|x2, z)− hτ (x3, z

′) dF∆(x3|x2, z′)
)

= βτδτ

(
h̄τ,∆,1(x2, β̃τδτ ) + β−1

τ h̄τ,∆,2(x2, β̃τδτ )
)

= βτδτ h̄τ,∆,1(x2, β̃τδτ ) + δτ h̄τ,∆,2(x2, β̃τδτ ) (64)

The subsequent arguments now depend upon the type of agent. Suppose that agents are either sophisticated
or consistent (so that β̃τδτ = βτδτ ). This simplifies matters because then the h̄τ,∆,j(x2, βτδτ ) functions
are identified. This is because h̄τ,∆,j(x2, βτδτ ) is a functions of (a) u3(·; τ) and βτδτ (u4(x4; τ)− u4(x4; τ))
which are both identified by Lemma B1; (b)

∫
u4(x40) dF∆(x3|x2, z) = 0 since dF∆(·) is a signed measure

integrating to zero; (c) Aτ (s3, z, a, β̃τδτ ) = Aτ (s3, z, a, βτδτ ) and the latter is identified.40

For consistent agents (for whom βC = 1) the exponential parameter δC can be obtained directly by
solving eq. (64) as long as h̄C,∆,1(x2, z, δC) + h̄C,∆,2(x2, z, δC) ̸= 0. For sophisticated agents, the expression
in eq. (64) is a linear equation in two unknowns (βSδS , δS). One can then separately identify βS and δS by
imposing an appropriate invertibility condition as below.

Specifically, we would require the existence of two points (x2, x
′
2) such that the 2 × 2 matrix below is

invertible. We record this assumption below.

ASSUMPTION DE3 (Invertibility). There exist (x2, x
′
2) such that the matrix[

h̄S,∆,1(x2, βSδS) h̄S,∆,2(x2, βSδS)
h̄S,∆,1(x

′
2, βSδS) h̄S,∆,2(x

′
2, βSδS)

]
.

is invertible.

eq. (64) yields two equations in two unknowns (βSδS , δS) that can be solved for uniquely under Assumption
DE3. However, this argument however does not extend to näıve agents because for such agents, eq. (64) is
a non-linear equation of the unknowns (βτN δτN , δτN ) and in general it is difficult to write down an easily
interpretable condition that guarantees a unique solution. One possible way forward, as long as both näıve
and sophisticated types exist is to assume that sophisticated and näıve agents have the same exponential
parameter.

ASSUMPTION DE4. Time-inconsistent agents have identical exponential parameters δS = δN (≡ δI).
41

LEMMA B2 (Identification of Time Preferences and Period 2 Preferences). Consider an agent
solving eq. (1) and suppose that the Basic Assumptions hold with the modification that zt ≡ z which is
no longer a state variable but instead a conditioning variable. Suppose that Assumption DE1, Assumption
DE2,Assumption DE3 and Assumption DE4 hold. In addition, assume that

1. (Identificiation of δC) h̄C,∆,1(x2, δC) + h̄C,∆,2(x2, δC) ̸= 0

2. (Identificiation of βN ):h̄N,∆,1(x2, δI) ̸= 0.

Then,

1. (δC , δI) are identified.

2. The time-preference parameters for sophisticated and näıve agents, (βS , βN ) are identified.

3. u2(x2, a; τ) is identified for all types τ for x2 ∈ X2.

40Note that the argument for identification for Aτ (x3, z, j, d) requires d ((u4(x4; τ)− u4(x40; τ)) to be identified.
This is only true for d = βτδτ from Lemma B1. Thus part (c) is not identified for näıve agents.

41There are potentially alternative assumptions for achieving identification. We note,however, that assuming the
hyperbolic parameters are identical does not solve the identification problem completely. The reason is that even if
βτN is known, (the right hand side of) gN,2,∆ is not 1-1 in δN and consequently δN need not be identified.
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Proof. Under the assumptions above, δC is identified as

δC =
gC,2,∆(x2)

h̄C,∆,1(x2, δC) + h̄C,∆,2(x2, δC)
.

Note that δC enters the functions h̄C,∆,j(x2, δC) as the product δC(u4(x4; τC) − u4(x40; τC)) which term is
identified from Lemma B1 – therefore all terms on the right hand side of the expression above are identified.
Under the invertibility condition Assumption DE 3 we can identify βS and δI . Then,

βN =
gN,2,∆(x2)− δI h̄N,∆,2(x2, δI)

δI h̄N,∆,1(x2, δI)

Once the time-preference parameters are identified, the second term on the right hand side of eq. (61) is
identified so we can identify the (normalized) period two utility functions for all types as

u2(x2, 1; τ)− u2(x2, 0; τ) = gτ,2,1(x2, z)− βτδτ

∫
hτ (x3, z) dF∆(x3|x2, z), (65)

Since we restrict δτ = δ in the empirical application (in order to be parsimonious with parameters
given our sample size), we can use this common discount factor assumption to identify βS and βN without
imposing the invertibility condition Assumption DE3. In particular, having identified the common parameter
δ as outlined above from the choices of consistent agents, we can solve for βS and βN as

βS =
gS,2,∆(x2)− δh̄S,∆,2(x2, βSδ)

δh̄S,∆,1(x2, βSδ)
(66)

βN =
gN,2,∆(x2)− δh̄N,∆,2(x2, δ)

δh̄N,∆,1(x2, δ)
(67)

as long as the denominators are not equal to zero.
In addition, for the empirical application, we can exploit the specification of the static utility functions

and the common δ parameter to simplify and extend the identification argument above. In particular, recall
from the penultimate lemma that for our empirical application βτδτ and u(x4; τ)− u(x40; τ) are separately
identified. Further, from the specifications in eqs. (21) and (22) we see that u(x2, 1; τ) − u(x2, 0; τ) =
−prI{a1 = b} + ϕτ (v) which is identified (note ϕτ (·) is identified from the period 3 utility identification
argument). Therefore, it only remains to separately identify δτ and βτ . Since we assume that the δτ = δ
and that type identities are known, then we can recover βτ directly as βτδ/δ. Once the time-preference
parameters are identified we can recover period 2 utility functions as above (since all terms on the right hand
side of eq. (65) are identified).

B.1.1 Identification of Period One Preferences

The only remaining unidentified objects are now the period one payoff functions. There is a sharp distinction
in period one (relative to the later periods) regarding direct type identification for individual agents. In
particular, types are not observed for all agents in period one so we are in effect in a model with unobserved
types. Specifically, we cannot directly sub-classify time-inconsistent agents who do not purchase a product
(i.e. agents with r = 1 and a1 = n) into näıve or sophisticated types, because their decision to not purchase
a product is uninformative of their type. To compound the problem, these agents make no further decisions.

We approach this problem by first noting that the key object required for the inversion argument is the
type-specific choice probability Pτ (a1|x1, z).42 As in Section 3.2.2 for unobserved types we adapt the insights
from Kasahara and Shimotsu (2009) by imposing a set of exclusion restrictions. We use the structure imposed
by the markov assumptions and the exclusion restrictions on the identified matrix of choice probabilities (Pr,v,

42For t > 1 we identified Pτ (at|xt, z) for agents who purchased a product since the agent’s choice of product revealed
his type perfectly (as ensured by Assumption DE1).
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defined below) to identify the type-specific choice probabilities. To ease notation we omit dependence of the
objects below on household time-invariant characteristics v (this is without loss of generality since these
variables are not used for identification).

We consider here the case where r = 1, that is sub-population that expressed time-inconsistent prefer-
ences in the baseline survey. As noted before, we assume that both näıve and sophisticated types (as well
as consistent types) exist. In order to proceed, we first restate Assumption U1 in terms of the variables in
the empirical application and only for periods one and two.

ASSUMPTION DE5 (Exclusion Restrictions). 1. Conditional upon type, the MEL survey response r is
uninformative about choice Pτ (at|xt, z, r) = Pτ (at|xt, z) for t = 2 and Pτ (a1, x1|r, z) = Pτ (a1, x1|z). 2. The
transition probabilities do not vary by type and are independent of r: Pτ (xt+1|xt, at, z, r) = P(xt+1|xt, at, z)
for t = 1.

The assumption above is only used for period 1 and 2 in the directly observed types case but we will
need it to hold for t > 2 when types are completely unobserved (as was the case in Section 3.2.2). We first
use the Markov property and the assumption above to obtain

P(a1, a2, x1, x2|r, z) =
∑
τ∈Tr

πτ (r)Pτ (a1, x1|z)Pτ (a2|x2, z)P(x2|x1, a1, z), (68)

and as in eq. (11) we define the quantities Fa1,a2
x1,x2,r,F

a1,x1
r and Fa2

x2,r as functions of the type-specific choice
probabilities (the objects of interest)– λa2,τ

x2
≡ Pτ (a2|x2, z, v), and λa1,x1,τ ≡ Pτ (a1, x1|z, v).

We then use eq. (68) to express the identified matrix Pa1,a2

1,r in terms of the objects of interest. In this
case, since there are only three types we only need a 3× 3 matrix and two points in the state space (in each
period) for the identification arguments. Let (x1t , x

2
t ) denote these elements for t ∈ {1, 2}

Pa1,a2

1,r =


1 Fa2

x1
2,r

Fa2

x2
2,r

F
a1,x

1
1

r Fa1,a2

x1
1,x

1
2,r

Fa1,a2

x1
1,x

2
2,r

F
a1,x

2
1

r Fa1,a2

x2
1,x

1
2,r

Fa1,a2

x2
1,x

2
2,r

 ,

La1
1 =

 1 λa1,x
1
1,τC λa1,x

2
1,τC

1 λa1,x
1
1,τN λa1,x

2
1,τN

1 λa1,x
1
1,τS λa1,x

2
1,τS

 La2
2 =

 1 λa2,τC
x1
2

λa2,τC
x2
2

1 λa2,τN
x1
2

λa2,τN
x2
2

1 λa2,τS
x1
2

λa2,τS
x2
2

 . (69)

Note that the difference in notation across sections reflects the fact that (a) we are suppressing dependence
on v and (b) since z is time-invariant we do not need to incorporate it into the state space and so the state
space here is just xt and not xt ≡ (xt, zt) as before. Lat

2 is directly identified since we observe type-specific
choice probabilities from period 2 onwards, which simplifies the identification argument in this sub-section
considerably. We can state the remaining assumptions required for identification.

ASSUMPTION DE6 (Invertibility). The matrix L1
2 defined in eq. (69) is invertible for two pairs (x′2, x

′′
2)

and (x∗2, x
∗∗
2 ). Further, we assume that for x1 ∈ {x11, x21}: (a) (x′2, x

′′
2) such that P(x′2|x1, a1 = b, z) >

0,P(x′′2 |x1, a1 = b, z) > 0.; (b) (x∗2, x
∗∗
2 ) such that P(x∗2|x1, a1 = c, z) > 0,P(x∗∗2 |x1, a1 = c, z) > 0.

The invertibility assumption formalizes the precise sense in which different types must behave sufficiently
differently at two points in the state space. The second condition ensures that the (directly identified) matrix
Pa1,a2

1,r is well defined. Since the a1 is a part of the second period state variable and we require a separate
identification argument for each first period choice, we need the assumption to hold at two pairs of states.
We can now state the result for identification of first-period choice probabilities and preferences as well.

LEMMA B3 (Identification of Period One Preferences and Type Distribution). Consider an agent
solving eq. (1) and suppose that the conditions in Lemma B2 hold. In addition, suppose that Assumption
DE5 and Assumption DE6 hold. Then,

1. First period preferences u1(x1, a; τ) are identified ∀x1 ∈ X1 ∀a ∈ A1 ∀τ ∈ T

2. The type probabilities (conditional on the MEL response r) πτ (r) are identified.
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Proof. Given the notation introduced we can write

P
{b,c},1
1,1 = (Lb1)

′V1L
1
2,

where we have set (r, a1, a2) = (1, {b, c}, 1) so we are examining the sub-population that (a) expressed
inconsistency in the survey and (b) purchased an ITN and retreated it in period 2. The decision to combine
contracts (b, c) in the first-period action for the proof is to ensure that we can examine both näıve and
sophisticated types in period two.43

Next, evaluating Vr at r = 1: V1 = Diag(0, πτN (1), πτS (1)). Note that the first entry is zero since
by definition (for this section on directly observed types) consistent agents cannot have r = 1. Using the
invertibility of L1

2 (from Assumption DE6 above)

(L12)
−1P

{b,c},1
1,1 = (Lb

1)
′V1,

where the left-hand side is identified (because the elements of L1
2 are period-two type-specific choice proba-

bilities which are identified by assumption and P
{b,c},1
1,1 is directly identified). The right hand side is equal

to  0 πN (1) πS(1)

0 πN (1)λ
a1x

1
1

N πS(1)λ
a1x

1
1

S

0 πN (1)λ
a1x

2
1

N πS(1)λ
a1x

2
1

S

 ,
so that the type-frequencies {πτ (1) : τ ∈ {N,S}} are identified as well as the first-period type-specific choice
probabilities PτN (a1 = b|x1, z) (and also consequently PτN (a1 = n|x1, z) since näıve agents can only choose
among (b, n)) and PτS (a1 = c|x1, z) (and likewise PτS (a1 = n|x1, z)).

Once first-period type-specific choice probabilities are identified and since all time-preference parameters
are identified we can recover first-period preferences. In particular, use the Hotz-Miller inversion to identify

gτ,1,k(x1, z) = u1(x1, k; τ)− u1(x1, n; τ) + βτδτ

∫
v∗τ (s2) dF∆(s2|x1, z),

and then since the entire last term in the expression above is identified, we can identify first period payoff
functions.

The lemma is useful for at least two reasons: First, we have now identified type-specific utilities for
each time period, which along with the identified time parameters, can form the basis for standard model
specification tests as well as computing counterfactuals. Second, we also identify the relative size of all three
different types of agent in the population. This is important because it provides us with the unconditional
distribution of types whereas previous work (as well as the type classification by observed product choice)
provides at best only the distribution of types conditional on choice. To the extent that the purchase
decision is affected by type (e.g. näıve agents may be more likely to purchase nets than sophisticated agents
because they down-weight the future costs of retreatment in the present) the two distributions will be
different. Further, heterogeneity in take-up, ceteris paribus, provides us with a measure of how attractive
the commitment contract is for the different types of agents. We explore each of these issues in the estimation
section.

B.2 Unobserved Types

As noted above, although survey responses are informative about agents’ time preferences it is not clear that
they are definitively so in the presence of other factors that may affect these responses but are unrelated to
time preference (see Appendix page OA-2 for a longer discussion). For this reason we consider a model with
unobserved types. The arguments for identification here are identical to those in Section 3.2.2 once we have

43Recall that näıve types are only choosing between contract b and no-purchase and similarly sophisticated types are
only choosing between c and no-purchase (by assumption and only for this section). Therefore, PN (a1 ∈ {b, c}|x1) =
PN (a1 = b|x1) and PS(a1 ∈ {b, c}|x1) = PS(a1 = c|x1).
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accounted for the relevant differences between the empirical application and the general model (i.e. those
mentioned at the start of the section).

LEMMA B4. Let t = 2 and fix (r, v). Suppose Assumption U1 holds with the modifications that zt ≡ z;
Assumption U2′ holds with Mr,v = 3 and the optimal decision process is Markov. Then, the type-specific
choice probabilities {Pτ (at|xt, z, v)}τ∈T ;t∈{1,2,3} for (xt, v) ∈ Xt × Z × V are identified for t > 1. For t = 1,
fix r and assume that the previous conditions hold. Then the type-specific choice probabilities for period 1
are also identified.

Proof. The proof is a direct application of Lemma 3. Note that the alternative approach of using a longer
panel is not feasible here.

B.3 Identifying Type Identities

Having identified the type-specific choice probabilities, the next step is to identify the identities of the different
types (i.e. classify a given choice probability as belonging to a consistent, näıve or sophisticated type). We
adopt two alternative approaches towards identification. The first method avoids strong assumptions on
the type-proxy and relies instead on different types behaving sufficiently differently. The second method is
relatively straightforward but involves placing stronger assumptions on the type proxy r. We discuss each
strategy in turn.

The first strategy assumes that the type proxy is informative about types in a monotone likelihood ratio
sense which is achieved by imposing a monotonicity restriction on πτ (r)/πτ (r

′). To motivate the weakest con-
dition, we start with a stronger set of sufficient conditions. Suppose that the set of agents with responses r = 1
are most likely to be sophisticated inconsistent agents and least likely to be time-consistent agents. Second,
the set of agents with (r = 0) are most likely to be time-consistent agents and least likely to be sophisticated
inconsistent agents. This implies an ordering on the ratios: {πC(r)/πC(r′) ≥ πN (r)/πN (r′) ≥ πS(r)/πS(r

′)}
for r = 0 and r′ = 1. This ordering then guarantees the identification of type-identities (i.e. the labelling of
types). While the direct assumptions on the probabilities themselves may appear reasonable in our empirical
framework, we only need the following weaker condition to hold (which in fact allows us to test the previous
set of conditions) for the ratios of the probabilities:

ASSUMPTION UE1 (Monotone Likelihood Ratio Like Property). For some r ̸= r′, the three ratios{
πC(r)

πC(r′)
,
πN (r)

πN (r′)
,
πS(r)

πS(r′)

}
can be strictly ordered ex-ante.

Under this additional assumption the type-identities are identified.

PROPOSITION 5. Suppose that Lemma B4 holds and that Assumption UE1 holds. Then, type identities
are identified.

Proof of Proposition 5

Proof. Lemma B4 identifies the type probabilities πτ (r). We can then form {πτ (r)/πτ (r′)}τ∈T . By The
monotonicity assumption, the strict ordering of these ratios allows us to identify the type-identity for each
τ .

Note that in principle one could use the strategy and assumptions outlined in Section 3.2.3 and Propo-
sition 2. However, sample size concerns militated against such an approach – i.e. estimating the identified
function eq. (18) non-parametrically is a tall order in our empirical application.

B.3.1 Alternative Theorem for Type Identities

The result above is useful when we have sufficient confidence in the ability of the proxy to distinguish
between different types of agent. We next discuss assumptions that instead rely on sufficiently different
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behavior across different types. The argument follows the broad outlines of the discussion in Section 3.2.3
but needs to account for (a) no action being taken in the terminal state – so that βτδ is not identified in the
first two steps of the backward induction (unlike the argument in Section 3.2.3), (b) the arguments need to
account for the constancy of z across time.

Our starting point is the identified type-specific choice probabilities Pτ (at|xt, z) for t = 2, 3 but for which
the type identity itself (i.e. whether the agent is consistent or näıve or sophisticated) is unknown. Lemma
B1 can be applied without knowledge of the type identity to identify period 3 utilities u(x3, a; τ) and the
product βτδ (u(x4; τ)− u(x40; τ)).

Next, using the Hotz-Miller inversion and the differencing argument as earlier on p.OA-6 we can identify
the function gτ,∆,2(x2) defined in eq. (64). Define the 2 × 1 vector gτ,∆,2(x2, x

′
2) ≡ [gτ,∆,2(x2), (gτ,∆,2(x

′
2)]

′

for two points (x2, x
′
2) ∈ X2 ×X2. Next, define the 2× 2 identified matrix

Kτ (x2, x
′
2) =

(
h̄τ,∆,1 (x2, βτδ) h̄τ,∆,2 (x2, βτδ)
h̄τ,∆,1 (x

′
2, βτδ) h̄τ,∆,2 (x

′
2, βτδ)

)
(70)

where we have suppressed dependence on (z, z′) for readability and the functions h̄τ,∆,j(·) are defined in
eq. (62).44 If we assume this matrix is invertible, we can identify the 2× 1 vector

d̂τ (x2, x
′
2) ≡ [Kτ (x2, x

′
2)]

−1gτ,∆,2(x2, x
′
2) (71)

We then identify types by examining d̂ for different pairs of points (x2, x
′
2). For consistent and sophisticated

types, d̂ will always be a constant – equal to (βτδ, δ) – for all pairs (x2, x
′
2). This will not be the case for

the näıve types if the following is true: (a) their (period two) view of the trade-off between period three and
period four differs depending upon whether they use δN or βNδN as the discount rate (which is reasonable)
and (b) these differential views of the future vary across the state space. More formally, we need the following
condition to hold:

ASSUMPTION UE2 (Invertibility and Variation over State Space). Define the matrix

K̃τ (x2, x
′
2) ≡

 h̄τ,∆,1

(
x2, β̃τδ

)
h̄τ,∆,2

(
x2, β̃τδ

)
h̄τ,∆,1

(
x′2, β̃τδ

)
h̄τ,∆,2

(
x′2, β̃τδ

)  . (72)

There exist distinct points (x2, x
′
2, x

′′
2) ∈ X2 × X2 × X2 and (z, z′) ∈ Z × Z such that the inverses in the

display below exist and[
(KN (x2, x

′
2))

−1
K̃N (x2, x

′
2)− (KN (x2, x

′′
2))

−1
K̃N (x2, x

′′
2)
] [

βNδ
δ

]
̸= 0 (73)

PROPOSITION 6 (Alternative Type Identification Result). Suppose that the conditions for Lemma B4
hold and that Assumption UE2 holds. Then, type identities are identified.

Proof. The proof follows by examining the behavior of the identified objects d̂τ (x2, x
′
2) and d̂τ (x2, x

′′
2) as

(x2, x
′
2, x

′′
2) range over X 3

2 . If these objects are the same regardless of the choice of triplet, then τ ∈ {S,C}
and

d̂τ (x2, x
′
2) = d̂τ (x2, x

′′
2) = (βτδ, δ)

′,

and we can distinguish between sophisticated and consistent types be examining whether the two elements
of the vector are equal. Next, observe that for näıve types by Assumption UE2 there exist points (x2, x

′
2, x

′′
2)

44Note that even though βτδ is not currently identified, it only enters the h̄τ,∆,j(·) functions as the product
βτδ (u(x4; τ)− u(x40;τ )) and this object identified (by Lemma B1). Thus the h̄τ,∆,j(·) functions are identified.
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such that d̂τ (x2, x
′
2) ̸= d̂τ (x2, x

′′
2). To see this,

d̂τ (x2, x
′
2) = (Kτ (x2, x

′
2))

−1
K̃τ (x2, x

′
2)
(
K̃τ (x2, x

′
2)
)−1

gτ,∆,2(x2, x
′
2)

= (Kτ (x2, x
′
2))

−1
K̃τ (x2, x

′
2)

[
βτδ
δ

]
.
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C Inversion Argument

In in the interest of keeping proofs self-contained we provide a simple direct argument for the inversion of
choice probabilities that is used repeatedly in the previous proofs. See Hotz and Miller (1993) for the original
(different) argument. Note that for our argument, we require that the distribution of the unobservable state
variables conditional on the observed state variables has support over all of RK where K is the number of
possible actions. To simplify the exposition, we consider the case where the action space has 3 elements so
that a ∈ {0, 1, 2} although the general case follows analogously. We maintain Assumption B for the argument
(but do not need the exclusion restriction). The probability that an agent chooses action 0 is

P(a2 = 0|x2) =Px2


u(x2, 0) + ϵ(0) + βδ

∫
v∗(s3) dF(s3|s2, 0) ≥

u(x2, 1) + ϵ(1) + βδ
∫
v∗(s3) dF(s3|s2, 1),

u(x2, 0) + ϵ(0) + βδ
∫
v∗(s3) dF(s3|s2, 0) ≥

u(x2, 2) + ϵ(2) + βδ
∫
v∗(s3) dF(s3|s2, 2)

 .

Correspondingly, the probability that an agent will choose action 1 will be given by

P(a2 = 1|x2) =Px2


u(x2, 0) + ϵ(0) + βδ

∫
v∗(s3) dF(s3|s2, 0) ≤

u(x2, 1) + ϵ(1) + βδ
∫
v∗(s3) dF(s3|s2, 1),

u(x2, 1) + ϵ(1) + βδ
∫
v∗(s3) dF(s3|s2, 1) ≥

u(x2, 2) + ϵ(2) + βδ
∫
v∗(s3) dF(s3|s2, 2)

 .

Next, define

û1 ≡ u(x2, 1)− u(x2, 0) + βδ

∫
v∗(s3) dF∆,1(s3|s2),

û2 ≡ u(x2, 2)− u(x2, 0) + βδ

∫
v∗(s3) dF∆,2(s3|s2),

and as usual, the signed measure is defined as

dF∆,k(s3|s2) ≡ dF(s3|s2, k)− dF(s3|s2, 0).

Using this notation, we can write the inequalities more compactly as

P(a2 = 0|x2) = P (ϵ(0)− û1 ≥ ϵ(1), ϵ(0)− û2 ≥ ϵ(2)|x2)
P(a2 = 1|x2) = P (ϵ(0)− û1 ≤ ϵ(1), ϵ(1) + (û1 − û2) ≥ ϵ(2)|x2).

Suppose that (û1, û2) are not identified from these equations. Then, there exist (u∗1, u
∗
2) such that

P (ϵ(0)− û1 ≥ ϵ(1), ϵ(0)− û2 ≥ ϵ(2)|x2)− P (ϵ(0)− u∗1 ≥ ϵ(1), ϵ(0)− u∗2 ≥ ϵ(2)|x2) = 0 (74)

P (ϵ(0)− û1 ≤ ϵ(1), ϵ(1) + (û1 − û2) ≥ ϵ(2)|x2)− P (ϵ(0)− u∗1 ≤ ϵ(1), ϵ(1) + (u∗1 − u∗2) ≥ ϵ(2)|x2) = 0. (75)

We will show that these inequalities are mutually contradictory. We will throughout assume that we are
conditioning on x2. First, assume first that û1 > u∗1. Then, in order for the first equality to hold, we must
have û2 < u∗2. To see this, note that if instead û2 ≥ u∗2 then the set

{ϵ(0)− û1 ≥ ϵ(1), ϵ(0)− û2 ≥ ϵ(2)} ⊂ {ϵ(0)− u∗1 ≥ ϵ(1), ϵ(0)− u∗2 ≥ ϵ(2)} = 0.

and as long as dF(ϵ|x2) had strictly positive measure on all of R3, the equality in eq. (74) cannot hold.
Therefore, if û1 > u∗1 we must have û2 < u∗2. But, in turn, if this is true, then the equality (eq. 75) cannot
hold because

{ϵ(0)− û1 ≤ ϵ(1), ϵ(1) + (û1 − û2) ≥ ϵ(2)} ⊂ {ϵ(0)− u∗1 ≤ ϵ(1), ϵ(1) + (u∗1 − u∗2) ≥ ϵ(2)}.

We can carry out similar arguments using the opposite inequalities to conclude that the (û1, û2) are identified.
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D Correlates of Actions

In this Appendix we illustrate reduced-form patterns in the data, with a special attention to predictors of
purchase and re-treatment. In Table OA-1 below we look at correlations between purchase and re-treatment
decisions and a list of predictors that include proxies for household socio-economic status, beliefs about the
protective power of nets and re-treatment, recent malaria episodes, and responses to the inter-temporal choice
questions. In column 1 we show that the only strong (and statistically significant) predictor of purchase is
malaria exposure: take up increases by 21 percentage points if either someone tested positive to malaria
based on the RDTs conducted by our study team, or the respondent reported at least one malaria episode
in the six months that preceded the interview. An increase in the perceived protective power of bed nets
(relative to no nets) or ITNs (relative to untreated bets) predicts a decrease in demand, although neither
estimate is significant at standard levels and the latter is close to zero. Note that this finding does not
imply that beliefs are measured with error, or that they do not matter for demand. In fact, demand also
depends on discount factors, and indeed our model rationalizes low demand despite high perceived benefits
as indication of impatience (especially low β).

(1) (2) (3) (4)
Any net Choose First Second
purchased net + retr. bundle re-treatment re-treatment

t = 1 t = 1 t = 2 t = 3

Purchased ITN + 2 retreatments bundle 0.461*** 0.643***
(0.068) (0.090)

Pr(Malaria|no net)−Pr(Malaria|untreated net) -0.105 0.123 0.124 -0.018
(0.101) (0.156) (0.112) (0.115)

Pr(Malaria|untreated net)-Pr(Malaria|ITN) -0.037 0.102 0.220 0.274***
(0.118) (0.181) (0.147) (0.096)

ln(monthly income per person) -0.055 0.000 -0.001 -0.059
(0.035) (0.051) (0.031) (0.039)

Asset Index (First Principal Component) -0.017 0.007 0.014 0.009
(0.015) (0.026) (0.020) (0.015)

Any malaria episode last 6mts (reported or RDT) 0.209*** -0.020 0.004 0.023
(0.036) (0.070) (0.035) (0.035)

Nets owned at baseline 0.044 -0.088 0.017 0.049
(0.058) (0.076) (0.053) (0.047)

PC Costs malaria episodes last 6mts>Rs 500 -0.032 -0.157 0.061 -0.037
(0.073) (0.100) (0.093) (0.103)

HH. head had any formal schooling -0.022 0.101 0.078* 0.004
(0.053) (0.070) (0.041) (0.067)

Intertemporal choices: any preference reversal 0.037 0.060 -0.298*** -0.056
(0.051) (0.073) (0.092) (0.082)

Intertemporal choices: always chooses earlier payoff -0.024 0.059 -0.068 -0.007
(0.045) (0.075) (0.059) (0.051)

Any preference reversal × Purchased ITN+2R bundle 0.267*** 0.097
(0.097) (0.096)

Constant 0.910*** 0.403 0.339 0.582*
(0.305) (0.504) (0.260) (0.296)

Observations 549 280 270 275
R-squared 0.068 0.029 0.402 0.485
Clusters 47 42 42 42

Table OA-1: Predictors of purchase and re-treatment
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In column 2 we show that none of the regressors is significant at standard levels when we predict the
choice of the bundle contract (net + two re-treatment, or contract c), conditional on purchase. Here we only
note that beliefs about risk reduction from nets and ITNs predict about a 10 percentage point increase in
the probability of choosing the bundle, but both are estimated very imprecisely.

When we look at predictors of re-treatment after six months (t = 2 in our model) and twelve months
(t = 3), most coefficients are again not significant at standard levels, but some interesting patterns emerge.
First, consistent with the results in Table 3 of the paper, re-treatment rates are substantially higher among
buyers of the bundle product c)—46 and 64 percentage points higher in t = 2 and t = 3, respectively (both
p-values > 0.01 when we test the null of equality). Second, households are significantly more likely to re-treat
when their perceived risk reduction from re-treatment is higher: in both time periods the slope is very large
(0.22 and 0.27), although only in the second period it is significant (p-value< 0.01) at conventional levels.
Note that this is not a result of learning after purchasing from our program, given that beliefs were measured
at baseline, before the sales were conducted. Third, at t = 2 (although not at t = 3) the event that the inter-
temporal choices included at least one preference reversal (the standard indicator of hyperbolic preferences
that we include in our type signal r) predicts a very large and significant decrease in the probability of

re-treatment (β̂ = −0.298, p< 0.01), among households who did not choose the ‘commitment’ bundle (c).45

This is broadly consistent with present-bias playing a relevant role in re-treatment decisions, although once
again this reduced form approach does not allow us to clearly disentangle the role of beliefs and household
characteristics from that of (unobserved) time preference parameters.

45Among household who purchased the bundle, the predicted change in the probability of re-treatment is −0.298+
0.267 = −0.031, which is close to zero and not significant at standard levels (p= 0.4723).
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E Variable Description

We start by summarizing the timing of the data collection, which guides several of our choices in the
construction of the variables used in the estimation. Recall that we denote the key time periods as t =
1, 2, 3, 4, where t = 1 corresponds to the time of ITN sales, t = 2, 3 to the the two re-treatments, and t = 4
to the endline survey. However, in practice several variables were observed at baseline (t = 0).

The following figure illustrates the timeline. In what follows we assume that each two subsequent periods
are separated by six months, which is approximately correct.

t = 0

Baseline
Mar-Apr 2007

t = 1

ITN Purchase
Sep-Nov 2007

t = 2

1st Re-treatment
Mar-Apr 2008

t = 3

2nd Re-treatment
Sep-Nov 2008

t = 4

Endline
Dec 2008-Apr 2009

Figure OA-1: Timeline

Malaria: We define malaria cases at the household level, as a function of the information available to the
household in each time period. Below we describe which information was collected in each period, and how
weconstruct the malaria indicators ht used in the model for each period.

At baseline (t = 0), rapid diagnostic blood tests (RDTs) were used to measure malaria prevalence, that
is, the fraction of individuals with ongoing malaria episodes at the time of the measurement, regardless of
severity. Individuals targeted for blood tests included all pregnant women, children under the age of five
(U5) and their mothers, and one randomly selected adult (age 15-60). For every household member we also
recorded malaria incidence (that is, the number of cases) during the previous six months. Unlike prevalence,
incidence was not measured by our research team with RDTs, and only relied on respondents’ reports. In
Tarozzi et al. (2014) we show that although respondent’s reports of recent cases and RDTs were strongly
correlated, a large majority of infections detected by RDTs were not reported. This suggests that most
cases were asymptomatic, and thus not severe enough to cause loss of income. In Tarozzi et al. (2014) we
show that both RDT-based prevalence and respondent-reported incidence were predictive of ITN purchase.
Incidence (self-reported) and prevalence (from RDTs) were also recorded at endline (t = 4), although at this
time all members were targeted for testing. Finally, at the time of the first re-treatment (t = 2) RDTs were
not used and we only recorded how many members had malaria after the ITN sales, that is, between t = 1
and t = 2. Malaria status, one of the key state variables in the model, was thus constructed in each period
as follows:

t = 1 Data on malaria cases were not collected at this time, and so we use, as malaria indicator, information
from the baseline survey (t = 0). We construct a binary malaria indicator (h1 = 1) if either someone
in the household was found to be positive, or if someone was reported as having had malaria in the
six months before the baseline survey.

t = 2 At this time we only have malaria incidence as reported by the respondent, so h2 = 1 if any individual
was reported as having been sick with malaria between t = 1 and t = 2, and = 0 otherwise.

t = 3 No information on malaria incidence or prevalence was collected at this time, and so we use data from
the endline survey at t = 4 and we set h3 = 1 if either someone in the household was found to be
positive, or if someone was reported as having had malaria in the six months before the survey, and
= 0 otherwise.

Expected Cost of Malaria Episodes: Forward-looking agents consider the expected cost of future malaria
episodes when taking decisions about bed net purchases and re-treatment. In the empirical application we
use the median monetary cost of a malaria episode reported by the respondent at baseline, equal to Rs. 386.
This choice is conservative in the sense that the use of alternative measures of malaria costs (such as the
expected costs of a malaria episode elicited in our survey, or the inclusion of estimates of lost earnings due to
illness) lead to greater estimated present bias. Monetary costs take into account both expenses for doctor’s
visits and treatment as well as any wages paid to labor hired to replace a sick worker.
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Income: Annual total household income was recorded both at baseline (t = 0) and endline (t = 4). At
baseline the respondent was asked the following question:

Now please think about the income of everybody in your household from last year this time.
Think about income from wages, sales, business, or any other source from each member of your
household. Also include the value of any in-kind earnings. Now think about the period of time
from today until last year this time. Can you please tell us the total income that your household
has been able to earn during this period?

At endline, the question was phrased similarly, but respondents were allowed to indicate a range—instead
of a single figure—in case they were not certain. More than half of respondents (57%) indicated a single
figure, and even among those who indicated a range, its width was usually not very wide.46 For these
observations we assume that income was equal to the mid-point of the range.

Because income was not observed at t = 1, 2, 3, we impute it using simple interpolations between t = 0
and t = 4, with weights proportional to the distance in time between the two endpoints. As indicated in
Figure OA-1, there are about two years between baseline and endline surveys, and approximately six months
between each two periods. We also need to convert yearly into six-month household income. Letting Yt
denote yearly income in our data, six-month income yt at times t = 1, 2, 3 is thus imputed as

yt =
(1− t/4)Y0 + (t/4)Y4

2
.

Note that respondents were asked to report actual total household income, that is, net of any earnings
lost because of malaria episodes. Our data do not include beliefs about the joint distribution of earnings and
malaria incidence, and so for simplicity we assume that malaria status and gross income are stochastically
independent. For this reason, and taking into account that the cost of malaria episodes was recorded using
a six-month recall, we set the two values Y0 and Y4 to be equal to total household yearly income as reported
by the respondent plus twice the six-month income loss due to malaria episodes. We recorded earning losses
due to malaria episodes due to reduced labor supply for both the sick individual and any care-taker.

For tractability, we assume that income in each period can only take two values (‘High’ or ‘Low’). Let
yHt and yLt denote median income conditional on yt being above or below the overall time-specific median,
respectively. For each household i, we then replace income yt, t = 0, 1, 2, 3, 4 as constructed above with
either yHt or yLt , depending on whether household income is above or below the median.

Subjective Transition Probabilities for Income In addition to the subjective beliefs about the protective
power of nets, at baseline we also recorded beliefs about yearly income in the 12 months following the
interview. The question was as follows:

Now please think about the income of everybody in your household. Think about income from
wages, sales, business, or any other source from each member of your household. Also include
the value of any in-kind earnings Now think about the next agricultural year (April 2007 to
March 2008): in your opinion, in the best possible situation, what is the largest amount of total
income that your household may be able to earn during the next agricultural year?

A similar question was then asked about the smallest possible value, and then the surveyor would ask
about the perceived probability that income would be below or above the midpoint between largest and
smallest value. We used this information to generate a household-specific distribution, as described below.

Let the lower and upper bound of the reported range be denoted by l and u, respectively, and let q
denote the reported probability that realized income will be smaller than the average of the lower and upper
bounds. We follow Guiso et al. (2002, Fig. 1) in assuming that the distribution is ‘triangular’, so that the
density function will take a shape like in the example shown in Figure OA-2, where we have assumed that
q < 1/2.

46Among the respondents who reported a range, the median ratio between the upper and lower bounds of the range
was 1.2, while the 90th percentile was 1.5.
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Figure OA-2: Triangular Distribution for Expected Income

One can show that the density function is described by the following expression

f(y) = I
{
y ≤ l + u

2

}[
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,

while the cumulative distribution function is:
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. (76)

We assume that the household-specific distribution of income described above remains constant over
time. Although strong, this assumption is reasonable given our data, where we find that income at baseline
is strongly correlated with income at endline (ρ = 0.48) and especially the mid-point of the distribution of
one-year ahead income ((l+u)/2 in equation (76), ρ = 0.84). In addition, the cross-sectional distributions at
baseline (y0) and endline (y4) appear overall quite similar, although mean and median are about 10% larger
at endline.

We maintain the assumption that income and malaria are independent. Recall that this does not mean
that malaria episodes have no monetary costs. In the model, agents interpret l and u as the upper and lower
bound of predicted income, and then consider that any malaria episodes—whose likelihood depend on bed
net ownership and re-treatment—will lead to monetary costs that will reduce consumption.

Recall that in the estimation we dichotomize income, with income in each period set to be equal to
median income below or above the period-specific median, depending on whether actual reported income is
below or above the median, respectively. Consistent with this, for each household we calculate subjective
transition probabilities of income defined over two values. So, if yH0 and yL0 denote median income at baseline
conditional on it being above or below the baseline median ym0 , for household i we calculate the (stationary)
transition probabilities as Pri(yi,t+1 = yL0 ) = Pri(yi,t+1 ≤ ym0 ) = Fi(y

m
0 ); t = 1, 2, 3, where Fi(.) is the

respondent-specific CDF in equation (76). Lastly, this also implies that Pri(yi,t+1 = yH0 ) = 1− Fi(y
m
0 ).

Malaria Beliefs. We use the baseline elicited beliefs about the likelihood of malaria summarized in Section 4.1.
Since the beliefs were elicited for a horizon of one year we modify them to be reflective of a six-month horizon,
so that for a subjective one-year probability of p12 we calculate the six-month probability as p6 = 1−

√
1− p12,

where we have assumed for simplicity that malaria risk is equal and independent in the two halves of the
year. In order to avoid imputing p6 = 1 (certainty of malaria within six months) when the respondent
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chooses p12 (certainty over one year), we interpret p12 as ‘almost certainty’ of malaria, replacing p12 = 1
with p12 = 0.95, so that p6 = 1 −

√
0.05 = 0.76. Using the unadjusted beliefs resulted in estimating even

higher rates of present-bias.
Time-invariant Household-specific controls. The utility function in equation (21) also accounts for time-
invariant controls z recorded at baseline that include a measure of risk aversion, an asset index, household
size, and whether the household already owned bed nets before our sales program. The first three variable
are standardized by subtracting the mean and dividing by the standard deviation, while bed net ownership
is binary, as described below. Attitudes Towards Risk: This is measured using a version of the procedure
proposed by Holt and Laury (2002). Each respondent was presented with a set of five choice problems. In
each problem, the respondent was asked to choose between two lotteries (denoted A and B respectively).
The lotteries were designed so that a risk-neutral agent would choose lottery A for the first two problems
and switch to lottery B for the remaining 3 problems. We use as our measure of a household’s attitude
towards risk the (standardized) number of times the household chose option A in response to the choice
problems. Household Assets: This is the (standardized) first principal component of the following baseline
binary asset indicators, equal to one if the household owned the asset: dwelling, motorbike, bicycle, radio,
clock, car, television, fan, poultry, livestock (small and large), land. Household size: This is the number of
household members, censored at nine and standardized. Bed net ownership: This is a binary variable = 1 if
the household owned at least one bed net at baseline, and zero otherwise.

F Maximum Likelihood Estimation

In this appendix, we show how the model’s joint probability distribution can be rewritten in a form that
yields an estimable equation for Conditional Maximum Likelihood Estimation (CMLE). We start with the
joint distribution of the observed variables for a single agent and express them as a mixture over the type
distributions:

P (a1, a2, a3, x1, x2, x3, r; z) =
∑
τ∈T

P (a1, a2, a3, x1, x2, x3, r, τ ; z)

=
∑
τ∈T

P (a1, a2, a3, x1, x2, x3|r, τ ; z)P (τ |r)P (r),

where we have imposed that z does not enter the conditional distribution of types given r or the marginal
distribution of r. Next, we use the exclusion restrictions and the Markov property to simplify the right hand
side as:

∑
τ∈T

(
3∏

t=1

P (at|xt; z, τ)P (τ |r)

)
2∏

t=1

P (xt+1|xt; z)P (x1; z, r)P (r)

=

2∏
t=1

P (xt+1|xt; z)P (x1; z, r)P (r)
∑
τ

(
3∏

t=1

P (at|xt; z, τ)P (τ |r)

)
,

so that (and dropping inessential quantities)

P (a1, a2, a3, x1, x2, x3, r; z) ∝
2∏

t=1

P (xt+1|xt; z)P (x1; z, r)P (r)
∑
τ

(
3∏

t=1

P (at|xt; z, τ)P (τ |r)

)
. (77)

Taking logs and removing the parts that do not depend on the estimable parameters, this results in the
objective function

n∑
i=1

log

(∑
τ∈T

P (τ |ri)
( 3∏

t=1

P (ait|xit; zi, τ)I{ai1 ̸= 0}+ P (ai1|xi1, zi, τ)I(ai1 = 0)

))
. (78)

Denote the vector of model parameters by θ ≡ (δ, βN , βS ,ϕ,γ), where δ is the usual exponential discounting
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parameter, (βN , βS) are the hyperbolic parameters for the näıve and sophisticated agents, respectively, ϕ are
within-period parameters inside the utility function, and γ are the parameters that explain the population
type distribution, as discussed before.

For each choice of θ, the different parts of equation (eq. 78) will have to be computed: the population
type probabilities that depend on γ, and the type-specific choice probabilities. The latter can be identified
using the methods outlined in Lemma B4 (which is an application of Lemma 3). For any candidate of θ,
the choice probabilities can be calculated by starting with the value functions for the last period and then
working backwards using eqs. (24), (27) and (30). Using these value functions one can compute the model
choice probabilities using the right hand side of eqs. (25), (26) and (29) for any given set of parameter
values. In order to compute these value functions we also need estimates of the transition probabilities
dF(xt+1|xt, at; z) used by agents in solving the problem. We obtain these using elicited beliefs about the two
stochastic components of this distribution (income and health) along with information on the monetary costs
of illness. The time-invariant variables comprise v = (vhhs, vassets, vrisk, voldnet), type-specific fixed effects,
and elicited subjective beliefs (z) about the reduction of malaria risk from using untreated bednets and
ITNs. We also use household beliefs about income transitions to compute this transition probability (but
suppress dependence of this variable in the notation, see p.OA-17 for details). We choose our estimate of θ0
to be the value of θ that maximizes the sample likelihood function implied by eq. (78). For considerations of
space, we have derived only the case of unobserved population types. The derivation of the known type case
is available from the authors upon request. For our CMLE estimations we used a constrained minimization
routine in MATLAB (using the sqp and interior-point algorithms) with multiple random starting points and
a function value convergence tolerance of 10−16. We minimized the (negative of the) log-likelihood using
40 random starting points and for each point carried out a global minimization (using the sqp algorithm)
followed by another minimization using the interior-point algorithm. We then chose the value that minimized
the objective function over the range of starting points. For additional details on the computational analysis
please see the Computational Reproducibility Analysis on Zenodo.47

Note that if we were to use a1 as a type indicator, the decomposition used to obtain eq. (68) would be
different in that we would decompose (suppressing x1) P (a1, τ ; r) as P (τ |a1, r)P (a1|r). Using this in the
likelihood function involves taking a stand on how to treat first-period choices P (a1|r). One option is to leave
them un-modeled in which case they would not contribute to the likelihood function. This has the obvious
disadvantage that first-period choices are not used in estimation. The second option would be to decompose
P (a1|r) as

∑
τ P (a1|r, τ) and use the structural model implied type-specific probabilities. However, this

approach has the disadvantage that it assumes types can vary over time (i.e. agents can be one type in
period 1 and another type in periods 2 and 3). Since neither approach is attractive, we do not use a1 as
a type indicator for estimation. Instead, we derive P (τ |a1, r) as derived from the model using Bayes rule
(i.e. P (a1|τ, r)P (τ |r)/P (a1|r)) where estimates of all the objects on the right-hand are available after the
structural estimation.

G Computation of Effect of Time-Inconsistency on Health Costs
and Loss of Workdays

Denote by Pτ,t(at = a|xi; zi, θ) the probability of choosing action a in period t for an agent i of type τ with
observed states xi, beliefs zi, and a vector of preference parameters θ which also includes the sub-parameter
γ that describes the population type probabilities. Denote the probability of agent i buying a bed net with
either contract b or c (in period 1) or choosing to retreat an ITN (in periods 2 and 3) given the parameter
vector θ by Ψt,i(θ).

The probability of agent i with signal ri choosing to purchase a net in period 1 can be written as

Ψ1,i(θ) =
∑

τ∈{C,N,S}

πτ (ri, γ)[Pτ,1(a1 = b | xi; zi, θ) + Pτ,1(a1 = c | xi; zi, θ)],

and similarly, the probability of agent i choosing to retreat an ITN in period t ∈ {2, 3} can be written as

47https://zenodo.org/records/15699365
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(recall that only nets sold through our program could be re-treated, and so re-treatment was only possible
if at least one net was purchased)

Ψt,i(θ) =
∑

τ∈{C,N,S}

πτ (ri, γ){Pτ,1(a1 = b | xi; zi, θ)Pτ,t(at = 1 | xi; zi, θ) + Pτ,1(a1 = c | xi; zi, θ)Pτ,t(at = 1 | xi; zi, θ)}.

Next, denote by θ̂ the vector of estimated parameters, and by θC a parameter vector identical to θ̂ except
for having βN = βS = 1 instead of the estimated present bias parameters. Because both vectors include
the same discount factor δ, differences in the probability of bednet purchase or re-treatment in periods 2–3
depending on the two parameter vectors can be interpreted as the ‘effect’ of present bias on the choices of
the näıve and sophisticated types. The impact of present bias on the choices of agent i in periods t ∈ {1, 2, 3}
can thus be written as

∆Ψt,i(θ̂, θ
C) ≡ Ψt,i(θ̂)−Ψt,i(θ

C).

For period 1, this can be rewritten as

∆Ψ1,i(θ̂, θ
C) =

∑
τ∈{N,S}

πτ (ri, γ̂)
[
∆Pτ,1(a1 = b | xi; zi, θ̂, θC) + ∆Pτ,1(a1 = c | xi; zi, θ̂, θC)

]
,

where for a ∈ {b, c} we have

∆Pτ,t(at = a | xi; zi, θ̂, θC) ≡ Pτ,t(at = a | xi; zi, θ̂)− Pτ,t(at = a | xi; zi, θC).

We next focus on how the change in the probabilities of buying or re-treating a bednet affect the
probability of having malaria in the subsequent periods. To do so, define the difference in the probability
of getting malaria when not using any bednet relative to sleeping under an ITN as DITN,0, the difference
relative to sleeping under an untreated net as Duntr,0, and the difference in the probability between sleeping
under an untreated net and an ITN as DITN,untr. Denote by 1i,untr a binary variable = 1 if agent i already
owned any untreated nets before period 1. To determine these quantities we use either the subjective beliefs
measured in the survey, or we use values from Lengeler (2009), i.e. DITN,0 = 0.5, DITN,untr = 0.39, and
Duntr,0 = 0.11. We maintain the assumption that both bednets purchased through our intervention and
previously owned bednets remain available for usage during the study period, while (consistent with the
actual rule followed during the study) re-treatment is only possible for nets purchased from us.

The impact of present-bias on malaria risk for household i at t = 2 (that is, in the time interval between
t = 1 and t = 2) can be calculated as the product between the impact on the purchase rate and the difference
in malaria risk between using an ITN and an alternative that is equal to either not using a net (if none was
owned prior to t = 1) or using an untreated net (if at least one was). The impact of present bias on malaria
risk (MR) can thus be written as

∆MR2,i = ∆Ψ2,i(θ̂, θ
C) [DITN,0(1− 1i,untr) +DITN,untr1i,untr] .

In periods t ∈ {3, 4}, the change in the household-specific malaria risk needs to take into account both
the impact of present bias on the decision to purchase a bednet with either contract, and the decision to
re-treat the nets if any are indeed purchased. Thus, the change in the probability of malaria for household
i can be written as
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∆MRt,i =
∑

τ∈{N,S}

πτ (ri, γ̂)

{ ∑
j∈{b,c}

∆Pτ,1(a1 = j | xi; zi, θ̂, θC)
[
Pτ,t(at = 0 | xi; zi, θC)(1−Duntr,0)

+ Pτ,t(at = 1 | xi; zi, θC)[(1− 1i,untr)DITN,0 + 1i,untrDITN,untr]
]}

+
∑

τ∈{N,S}

πτ (ri, γ̂)

{
Pτ,1(a1 = b | xi; zi, θ̂)[∆Pτ,t(at = 1 | xi; zi, θ̂, θC)DITN,untr]

+ Pτ,1(a1 = c | xi; zi, θ̂)[∆Pτ,t(at = 1 | xi; zi, θ̂, θC)DITN,untr]

}
.

Next, we use these estimates to recover the household-specific ‘impact’ of present bias on malaria costs,
evaluated using either the expected monetary cost of a malaria episode or the expected numbers of days lost,
both measured in our survey. We show the median costs in Table 6.

H Monte Carlo Simulations

To focus attention on the accurate estimation of the time preference parameters, we provide a parsimonious
model parametrization for per-period utilities, imposing that they are common across types. We begin by
specifying utility in each period as a function of the state variables and actions taken in the last period.

• Period 4: x4 ∈ {h,m}

u(x4) = y − I{x4 = m}ηm + θ,

where h refers to being healthy, m refers to having malaria, y is an agent’s income, θ is a utility
parameter, and ηm accounts for the costs of malaria.

• Periods t = 2, 3: xt ∈ {b, c, n} × {h,m} ≡ {bh, bm, ch, cm, nh, nm}

u(xt, at) = y − I{xt ∈ {bm, cm, nm}}ηm − prI{xt ∈ {bh, bm}}I{at = 1} − prI{xt ∈ {ch, cm}}+ θ.

where pr is the price of retreatment, at = 1 if the net is re-treated in period t, and at = 0 otherwise.

• Period 1: x1 ∈ {h,m} and a1 ∈ {b, c, n}

u(x1, a1) = y − I{x1 = m}ηm − pbI{a1 = b} − pcI{a1 = c}+ θ,

where pb is the price of the standard contract and pc is the price of the commitment contract.

We assume that the unobserved state variables ϵt are independent Type I extreme-valued so that we obtain
a simple characterization of the choice probabilities

Pτ (at = a | xt, z) =
exp(vτ (xt, a, z))∑

s∈At
exp(vτ (xt, s, z))

,

where the vτ (·) functions are constructed using backward induction.
We estimate θ along with the time preference parameters (δ, βN , βS) and (in case of unobserved types) the

type probabilities. We use 200 simulations for each model. For the belief variables z, we use a distribution
that is close to the empirical distribution in the data. We use the following distributions to draw the
subjective probabilities of individual i contracting malaria when not using any net (pi,nonet), an untreated net
(pi,netunt), and an ITN (pi,itn): pi,nonet = 0.8+0.2ui,nonet; pi,netunt = 0.2·1{bi,netunt = 0}+0.7·1{bi,netunt =
1}+0.05ui,netunt; pi,itn = 0.05 ·1{bi,itn = 0}+0.3 ·1{bi,itn = 0}+0.05ui,itn; where ui,itn, ui,netunt, and ui,itn

OA-22



Table H.1: Monte Carlo Results: Directly Observed Types

βS = βN = β βS ̸= βN
Mean Median Std.Dev True Mean Median Std.Dev True

N=300 δ 0.897 0.917 0.094 0.9 δ 0.918 0.922 0.070 0.9
β 0.315 0.309 0.071 0.3 βN 0.295 0.288 0.055 0.3
βS βS 0.596 0.582 0.109 0.6
θ 1.002 1.014 0.111 1 θ 1.016 1.011 0.128 1

N=600 δ 0.911 0.910 0.074 0.9 δ 0.907 0.901 0.061 0.9
β 0.300 0.294 0.052 0.3 βN 0.301 0.297 0.046 0.3
βS βS 0.606 0.604 0.092 0.6
θ 1.001 1.002 0.080 1 θ 1.001 1.001 0.086 1

Notes: Each model was simulated 200 times.

are all uniformly distributed over (0,1), bi,netunt follows a Bernoulli distribution with mean 0.6, bi,netunt
follows a Bernoulli distribution with mean 0.5. For the signal r we use a binomial distribution with mean
r = 0.4. For y we use a value of 9600, which is close to the median income in our data, while ηm is set to
660. Note that because y is constant, the transition probabilities are fully pinned down by the beliefs z.

Table H.1 show the results for the observed types case for one and two separate present bias parameters,
respectively. Table H.2 show associated results when the types are unobserved.

Table H.2: Monte Carlo Results: Unobserved Types

βS = βN = β βS ̸= βN
Mean Median Std.Dev True Mean Median Std.Dev True

N=300 δ 0.752 0.740 0.181 0.700 δ 0.733 0.713 0.195 0.700
β 0.383 0.336 0.188 0.400 βN 0.374 0.304 0.253 0.400
βS βS 0.283 0.225 0.223 0.200
θ 0.984 0.979 0.139 1.000 θ 0.981 0.976 0.140 1.000
πC 0.282 0.238 0.182 0.200 πC 0.262 0.231 0.164 0.200
πN 0.411 0.427 0.074 0.478 πN 0.409 0.425 0.059 0.478
πS 0.307 0.283 0.186 0.322 πS 0.329 0.317 0.183 0.322

N=600 δ 0.747 0.736 0.156 0.700 δ 0.750 0.725 0.176 0.700
β 0.383 0.348 0.156 0.400 βN 0.362 0.307 0.205 0.400
βS βS 0.278 0.244 0.172 0.200
θ 1.001 0.993 0.099 1.000 θ 0.995 1.000 0.100 1.000
πC 0.244 0.232 0.136 0.201 πC 0.219 0.208 0.123 0.200
πN 0.431 0.446 0.065 0.478 πN 0.423 0.435 0.056 0.478
πS 0.325 0.296 0.168 0.321 πS 0.358 0.339 0.153 0.322

N=1200 δ 0.712 0.702 0.119 0.700 δ 0.718 0.697 0.147 0.700
β 0.402 0.393 0.118 0.400 βN 0.384 0.340 0.162 0.400
βS βS 0.270 0.240 0.156 0.200
θ 1.003 1.001 0.066 1.000 θ 1.002 1.007 0.076 1.000
πC 0.230 0.221 0.120 0.201 πC 0.215 0.209 0.103 0.201
πN 0.440 0.462 0.059 0.478 πN 0.438 0.441 0.044 0.478
πS 0.330 0.306 0.151 0.321 πS 0.347 0.328 0.129 0.321

Notes: Each model was simulated 200 times.
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Table H.3: Monte Carlo Results: 3 Types vs 1 Type Comparison

Assuming 1 Type Assuming 3 Types
Mean Median Std.Dev True Mean Median Std.Dev True

N=300 δ 0.308 0.308 0.019 0.99 δ 0.560 0.513 0.132 0.46
βN 1 1 0 0.06 βN 0.701 0.738 0.296 1
βS 1 1 0 0.16 βN 0.556 0.639 0.337 1
θ 0.953 0.990 0.064 1 θ 1.017 1.011 0.129 1
πC 1 1 0 0.222 πC 0.489 0.504 0.283 1
πN 0 0 0 0.445 πN 0.217 0.147 0.148 0
πS 0 0 0 0.333 πS 0.294 0.188 0.286 0

N=600 δ 0.306 0.306 0.014 0.99 δ 0.529 0.501 0.083 0.46
βN 1 1 0 0.06 βN 0.788 0.816 0.218 1
βS 1 1 0 0.16 βN 0.599 0.694 0.341 1
θ 0.965 0.990 0.046 1 θ 1.001 1.000 0.099 1
πC 1 1 0 0.221 πC 0.516 0.555 0.290 1
πN 0 0 0 0.445 πN 0.225 0.155 0.148 0
πS 0 0 0 0.334 πS 0.259 0.172 0.257 0

Notes: The left panel shows placebo simulations when assuming a single time-consistent type when,
in fact, the data is generated from three distinct types. In the right panel we estimate a 3-type
model when, in fact, there is a single type. Each model was simulated 200 times.
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