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ABSTRACT

Social distancing via shelter-in-place strategies has emerged as the most effective way to combat 
Covid-19. In the United States, choices about such policies are made by individual states. Here 
we show that the policy choice made by one state influences the incentives that other states face 
to adopt similar policies: they can be viewed as strategic complements in a supermodular game. If 
they satisfy the condition of uniform strict increasing differences then following Heal and 
Kunreuther ([6]) we show that if enough states engage in social distancing, they will tip others to 
do the same and thus shift the Nash equilibrium with respect to the number of states engaging in 
social distancing.
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1 Introduction

Some governments have responded to the emergence of Covid-19 by under-
taking extensive testing and contact-tracing, quarantining those who test
positive and their contacts. South Korea, Taiwan and Iceland are in this
category. Others are relying on shelter-in -place (s-i-p) orders, which have
emerged as one of the most widespread policies for mitigating the spread of
Covid-19. (For a review of Covid-19-related policies see Dalton et al. [3].) In
general these policies are implemented at the federal or equivalent level. In
this regard, the national governments of the UK, Italy, France and South Ko-
rea have all mandated1 that most of their residents should remain at home.2

Rather uniquely, the U.S. has left state governors to choose whether to im-
plement such policies. As a result the majority of states, but not all of them,
now have such orders in place, and the choice has become a political one, with
most Democratic governors implementing such orders but many - though not
all - Republican governors reluctant to do so.

Testing plus contact tracing and s-i-p orders can both be seen as different
implementations of social distancing. S-i-p orders are a broadly targeted
form of social distancing, requiring individuals or households to be physically
separate from others, whereas testing plus contact tracing and isolation are
a much more targeted form of social distancing. The ultimate goal of both
approaches is still to prevent Covid-19 from spreading by separating people
who might be carriers of the virus from the rest of the population..

S-i-p orders have costs and benefits (see Thunstrom et al. for a cost-
benefit analysis [9]). The costs are obvious and largely economic: they bring
the local economy to a grinding halt, as many businesses cannot continue
to operate in a world of s-i-p orders. There are also social costs associated
with isolation and lack of social interactions. There are health benefits since

1In South Korea this is actually a government recommendation, which is very widely
followed, rather than an order. Thanks to Jisung Park for this point.

2And in some cases wear masks in public places. On wearing masks, see Sunstein [8].
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illnesses spread much less rapidly and fatalities are reduced when most people
are required to stay at home. With no social distancing regulations in place,
the average person with Covid-19 in the United States will infect about 3
others, whereas with the aggressive social distancing practiced in New York
State, that number appears to have fallen to under one.3 (For a discussion
for the data for New York City see Harris [5], and for a general discussion
of social distancing in epidemic models see Kelso et al.[7], who analyze how
social distancing can reduce the rate at which a disease spreads from infected
to susceptible populations.)

This note shows formally that a state’s decision on whether to introduce
shelter-in -place regulations in the U.S. depends on how many other states
have already instituted such orders. The larger the number of states with
s-i-p policies, the more effective a new one is and more likely it is that a
new state will follow suit. More formally, state i′s payoff from implementing
an s-i-p order depends on the choices of states j for the following reason:
if state j does not implement such a policy, then the virus can continue to
spread in state j and people who travel between j and i can infect people in
i, undercutting i′s shelter-in -place policy.

A good illustration is provided by the tri-state area of New York, New
Jersey and Connecticut. Residents of all these states commute to and work
in New York City, meaning that if New York closes down its businesses,
residents of all three states are affected. Many residents of New Jersey and
Connecticut will lose their jobs and thus have less reason to travel to New
York, and businesses in those states will close too. So a move by New York
to have people shelter-in -place and to close businesses will make it easier
for the governors of adjacent states to do likewise: the incremental economic
costs are lower because part of the work was already done by New York. The
fact that so many people in the tri-state area travel between states for work,
shopping and entertainment, also illustrates well the ease with which a virus

3According to Governor Andrew Cuomo at briefing on 4/19/2020 it is currently 0.9.
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can spread from one state to another. Reducing the incidence of a diseases
in one state will reduce its incidence in others with whom residents of the
first state interact.

Given that the spreading of a virus depends not only on a state’s own
action but those of others, the decisions on whether or not to implement s-
i-p orders by individual states can be formalized as a game. This particular
game is supermodular and so will have multiple Nash equilibria, including a
greatest and a least equilibrium (Topkis [2]). If the effectiveness of an s-i-p
policy in state i depends on whether such orders are in place elsewhere and
increases with this number, then the game between states is characterized by
social reinforcement, and in particular its payoffs may show what Heal and
Kunreuther ([6]) call uniform strict increasing differences, a strong form of
strategic complementarity.

The next section models this interdependence and shows how the exis-
tence of tipping sets arises. A tipping set is a set of players with the following
property: if all member of this set choose to implement shelter-in -place poli-
cies, then the best response of every other agent will be to follow suit. So the
member of the tipping set can drive all others to the adoption of shelter-in
-place policies, even in the absence of a federal mandate for such policies.

One can also have local tipping sets. In the context of the social distancing
problem facing states, the Nash equilibria may be regional rather than na-
tional, so that if one or more states change their strategy, some nearby states
may follow suit. For example, a change in policy by New York may force
New Jersey and Connecticut to do likewise. Similarly there may be strong
links between Georgia, South Carolina and Tennessee. Proximity does not
necessarily have to be geographic: it could be measured in terms of economic
links between the states.

The idea that one state’s policies reinforce those of another can be tested
empirically, though we are not aware of any completed studies on this ques-
tion. There are published data on the incidence of Covid-19 by state and
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date and also on when various s-i-p measures in each state or municipality
are introduced.4 We are now using these data determine whether there are
positive effects of one state’s policies on others.

There are other more complex elements of the relationships between
states. They do assist each other in attaining health goals through the re-
inforcement we have discussed, but they also compete for scarce medical
equipment such as personal protective equipment and ventilators, bidding
up prices. New York Governor Andrew Cuomo has frequently complained
in his press briefings of the lack of a centralized national purchasing policy
and the way in which this pits states against each other. This means that
one state’s actions in response to Covid-19 raises the costs of the actions
that others wish to take. This behavior is a result of policies for obtaining
medical equipment to deal with illnesses from Covid-19 and not due to social
distancing policies.

As mentioned above, there is also a political dimension to choices in
dealing with the coronavirus pandemic. Democratic governors more likely
than their Republican counterparts to recognize the seriousness of Covid-19
and the need for collective action to mitigate the spread of the virus. This
could be captured in differences in agents’ preferences as we demonstrate in
the formal game theoretic model presented in the next section.

Heal and Kunreuther ([6]) provide a simple example of a game that meets
all the conditions mentioned above. There are I players and each may choose
as a strategy either zero or one: think of zero as no policy and one as an
s-i-p policy. The payoff to choosing zero, is always 0.1. The payoff to agent
j of choosing 1 is equal to the number of others who choose 1. If no one else
chooses 1, the payoff is 0. It then increases linearly depending on how many
others choose 1 so if n agents choose 1, the payoff to the n + 1 − th agent
to making this choice is n. In this particular game there are only two Nash
equilibria: every agent chooses 0 or every agent chooses 1. If every agent has

4From Kinsahealthcare and the CDC’s data on influenza-like illnesses.
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chosen 0 and a single agent switches to 1, then all the other agents will also
want to switch to 1. In other words, the game has been “tipped” from a Nash
equilibrium where everyone chooses 0 to a Nash equilibrium where everyone
chooses 1.

2 Formal Model

There are I agents (states) indexed by i = 1, 2, ..., I. Each has a strategy
si and a strategy space given by two alternatives S = {0, 1} where si = 0

denotes no s-i-p or social distancing policy and si = 1 indicates that such a
policy is in place. The vector S ∈ RI represents the list of strategies chosen
by all agents S = (s1, s2, ...sI) . Each agent’s payoff function Ui (S) : SI → R1

depends on the choices of all agents, its own and those of others. We let 0i

or 1i denote a zero or a one in the i− th position of S and the vector S−i be
the vector of all choices made by states other than i. We assume that the Ui

all satisfy uniform strict increasing differences, that is using the usual vector
ordering on RI , ∃ε > 0 : S ′−i > S−i ⇒

Ui

(
1i, S

′
−i
)
− Ui

(
0i, S

′
−i
)
≥ ε+ Ui (1i, S−i)− Ui (0i, S−i) (2.1)

In words, consider two configurations of strategy choices by players other than
i, denoted S−i and S ′−i. Then if in S ′−i at least one state has changed from
zero to one relative to S−i, which is implied by S ′−i > S−i, then the payoff
to state i to changing from zero to one is strictly and uniformly greater
at S ′−i than at S−i. This means that agent j changing from zero to one
raises the payoff to this change for agent i for any i and j. This is implied
by the interactions between state strategies discussed above: the adoption
of an s-i-p policy by state j makes such a policy more effective for state
i. In the inequality (2.1) the parameter ε is a measure of the degree of
social reinforcement: the greater is ε, the greater is the degree of social
reinforcement or strategic complementarity and the small is the tipping set.
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For simplicity we are assuming the ε to be independent of the states involved,
though the discussion above of the tri-state area makes it clear that in reality
some pairs of states reinforce each other more than other pairs. Think of New
York and New Jersey versus New York and Alabama.

Tipping sets are important in this analysis. Intuitively a tipping set is a
subset T of players which has the following property. If all the members of
T choose strategy 1, then the best response for any other player is strategy
1. If all members of T choose s-i-p orders, then every other state finds that
its best strategy is also to choose an s-i-p order. Formally, if Si = 1∀i ∈ T ,
then ∀i /∈ T, Ui (1i, S−i) ≥ Ui (0i, S−i). A minimal tipping set is a tipping
set with the property that no strict subset is also a tipping set.

The set of possible strategy vectors S in this game is the set of vectors
of the form (0, 1, 1, 0, 0, ...) where every coordinate is a zero or a one. These
vectors form the vertices of the unit cube in RI , which is a lattice. By
assumption (2.1), the game is supermodular. Hence we know by a theorem
of Topkis ([2]) that the set of pure strategy Nash equilibria is non-empty
and contains greatest and least elements which we call S̄ and S respectively.
From Dall, Lakshmivarahan and Verma ([4]) we know that for two players
S̄ = (1, 1) and S = (0, 0) (corollary 3.2) and for three players these are
(1, 1, 1) and (0, 0, 0) (Corollary 3.6). For two and three players, then, the
greatest and least Nash equilibria are where all agents choose 1 or all choose
0. We assume this is also true for I players: the maximal Nash equilibrium
is where all players choose 1 and the minimal where they all choose 0. In the
Appendix we will give simple conditions that are necessary and sufficient for
this to be the case.

Under these conditions, we can prove that there is a tipping set T of
states with the ability to tip the no-s-i-p order equilibrium to the all-s-i-p
equilibrium. Furthermore there is a tipping set that will tip any equilibrium
with less than every state having s-i-p orders to one where all do so. It is
also true that our proof that there is a set that will tip the equilibrium of
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all zeros to that of all ones applies with minor modifications to showing that 
there is a set that will tip from the least Nash equilibrium to the greatest, 
whatever these may be. A formal statement of our results is given in the 
technical appendix, together with proofs.

In addition to tipping, we can have the related phenomenon of cascades. 
A cascade occurs when a change of policy by agent 1 causes 2 to change her 
policy, which in turn causes 3 to change and so on, a classical “domino effect.” 
This process may take in all agents or only a subset. A simple example from 
Heal and Kunreuther ([6]) is as follows. There are 10 agents. For any agent 
the return to setting si = 0 is 0.91i. The return to si = 1 is # (1), the 
number of other agents also choosing one. Clearly all zeros and all ones are 
both Nash equilibria. Suppose that all are choosing zero and agent 10 decides 
to switch to one. Then the return to agent 1 to choosing 1 is now 1 > 0.91i 
and she will switch to 1. Agent 2 will now find that the return to choosing 1 
is 2 > 1.82 and will switch. And so on for all agents up to and including 9. 
Agent 10, by switching, started a cascade of all the other agents beginning 
with 1. Heal and Kunreuther ([6]) give sufficient conditions for a cascade to 
occur. It is possible that the connections between New York and adjacent 
states are best described by a cascade rather than by tipping.

Returning to the issue of political differences on s-i-p policies, it is pos-
sible we could model these by differences in the states’ payoff functions 
Ui (S−i, Si) : republican states may value the outcomes associated with s-i-p 
policies - reduced morbidity and mortality - but have a preference against 
the action of implementing an s-i-p policy. The might prefer a world in which 
good public health outcomes are attained by other states implementing s-i-p 
policies while they don’t: they strongly prefer (1−i, 0i) (the vector of ones 
everywhere except in the i − th position to (1, 1, ..., 1), the vector of all ones. 
In this case there can be no Nash equilibrium where all agents choose one: 
the greatest Nash equilibrium S̄ will satisfy S̄ < (1, 1, ..., 1). The fact that 
states with conservative governors, such as Georgia, are moving first to relax
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s-i-p policies, is consistent with them having a strong negative preference for
these policies. The importance of political orientation for attitudes towards
Covid-19 is studied by Barrios and Hochberg ([1]), who show that the atten-
tion paid to Covid-19 is negatively correlated with support for Donald Trump
in the last presidential election. Using Google search data, they show that
areas showing high Trump support only start paying attention when there are
Covid-related deaths in their region, or when prominent conservative figures
emphasize the reality of the epidemic. Their work actually suggests that
there is support for social distancing in conservative states, but only once
lives are being lost. They suggest that preferences evolve over the course of
the epidemic, not something we can model in our framework.

3 Conclusions

shelter-in -place (s-i-p) strategies and social distancing are integral to over-
coming a pandemic. In the U.S. s-i-p strategies have to be implemented
by states, which face complex combinations of costs and benefits from their
possible choices. Their decisions are affected by those of other states since
strategy choices demonstrate social reinforcement. A compelling illustration
of this interdependence is the interactions between New York and its neigh-
boring states: the tri-state region can be seen as a single unit in terms of
employment, commuting, entertainment and retail shopping. A move to-
wards social distancing by any of these states will affect the other two, and
its effectiveness will depend on the reactions of the others. Because of this,
we can model their choices as a game. Specifically, we show that the choice of
an s-i-p policy by a single state can tip a system to a new Nash equilibrium at
which many more agents have adopted shelter-in -place or social distancing
policies. It could also cause a cascade from one equilibrium to another.
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4 Appendix

Theorem 1. Under assumption (2.1), there is a minimal tipping set T con-
sisting of less than I − 1 agents, which will tip the least Nash equilibrium
to the greatest Nash equilibrium. Furthermore, any Nash equilibrium with
less than I − 1 s-i-p orders or social distancing choices can be tipped to the
equilibrium with I such orders.

Proof. We study the effect on agent j′s payoff of changing from no s-i-p to an
s-i-p (changing from 0 to 1) and how this effect is altered by changes in the
strategy choices of another agent i.We know by (2.1) that if i switches from 0
to 1 then this will increase the incremental payoff to j from the same switch.
Let S−i−j, 1i, 0j denote the vector of strategies in which all agents other than
i, j are choosing Sk ∈ S−i−j and i, j are choosing 1 and 0 respectively. (S−i−j
is the vector of strategies chosen by all agents other than i and j.) Define

∆j (i = 0, S−i−j) = Uj (S−i−j, 0i, 1j)− Uj (S−i−j, 0i, 0j) (4.1)

and
∆j (i = 1, S−i−j) = Uj (S−i−j, 1i, 1j)− Uj (S−i−j, 1i, 0j) (4.2)

These are the returns to j from changing from 0 to 1 when i chooses either
0 (first line) or 1 (second line) and everyone else chooses sk ∈ S−i−j. The
difference between these is

∆ij

(
S−i−j

)
= ∆j (i = 1, S−i−j)−∆j (i = 0, S−i−j) ≥ 0 (4.3)

This is the increase in the return to j′s change of strategy as a result of i′s
change of strategy and from (2.1) we know that this is positive. We focus on
equation (4.3) when all agents other than i and j are choosing strategy 0 so
as to derive conditions for tipping the Nash equilibrium of all zeros to that
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of all ones:

∆ij (0) =
{
Uj

(
0I−2, 1i, 1j

)
− Uj

(
0I−2, 1i, 0j

)}
−
{
Uj

(
0I−2, 0i, 1j

)
− Uj

(
0I−2, 0i, 0j

)}
(4.4)

where 0I−2 indicates that there are I − 2 zeros in position other than i and
j. Consider the following sequence of inequalities, which link the equilibrium
with all 0s to that will all 1s in a series of steps in each of which an additional
state changes strategy from 0 to 1, and which hold because of (2.1):

Ui

(
0I−1, 1i

)
− Ui

(
0I−1, 0i

)
+ ε < Ui

(
0I−2, 11, 1i

)
− Ui

(
0I−2, 11, 0i

)
(4.5)

Ui

(
0I−2, 11, 1i

)
−Ui

(
0I−2, 11, 0i

)
+ε < Ui

(
0I−3, 11, 12, 1i

)
−Ui

(
0I−3, 11, 12, 0i

)
Ui (11, ..1I−2, 0j, 1i)−Ui (11, ..1I−2, 0j, 0i)+ε < Ui (11, ..1I−1, 1i)−Ui (11, ..1I−1, 0i)

The first inequality here (4.5) shows that the payoff to state i from a
strategy change is raised by at least ε when state 1 also picks strategy 1.
The second inequality shows that the payoff to i from the change is again
increased by ε when state 2 also changes from 0 to 1. Working back from a
typical inequality in this sequence we find that

Ui

(
0I−k, 11, 12, ..., 1i

)
−Ui

(
0I−k, 11, 12, ..., 0i

)
> (k − 1) ε+Ui

(
0I−1, 1i

)
−Ui

(
0I−1, 0i

)
Note that Ui

(
0I−1, 1i

)
−Ui

(
0I−1, 0i

)
< 0 as the vector of zeros is a Nash

equilibrium so zero is a best response. Note also that the last difference in
this sequence Ui (11, 12, ...1I−1, 1i) − Ui (11, 12, ...1I−1, 0i) > 0 as the vector
of all ones is a Nash equilibrium and therefore 1 is a best response. As the
sequence of differences starts negative and ends positive it must change sign:
there will be a k < I − 1 such that (k − 1) ε−Ui

(
0I−1, 1i

)
+Ui

(
0I−1, 0i

)
> 0

and the first k states will form a tipping set. To be precise we need k to
satisfy

(k − 1) ε > Ui

(
0I−1, 1i

)
− Ui

(
0I−1, 0i

)
∀i (4.6)

11



Figure 4.1: All possible plays for three players. Black edges are connected to
the least Nash equilibrium and blue to the greatest.

In this case each of the other states finds it in its interest to change its
strategy from zero to one and the equilibrium of zeros is tipped to that of
ones if the first k states all change from zero to one. Equation (4.6) shows
a tradeoff between the social reinforcement parameter ε and the size of a
tipping set k : the great the social reinforcement (the greater ε) the smaller
the number k in the tipping set.

Next we turn to the characterization of the greatest and least Nash equi-
libria of the game S̄ and S, whose existence is assured by the theorem of
Topkis ([2]).

Theorem 2. A necessary and sufficient condition for S = (0, 0, ..., 0) and
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S̄ = (1, 1, ..., 1) is that for every agent i, if all other agents have chosen the
same strategy s, then that common strategy s is i’s best response.

Proof. The proposition is immediate.

In plain English, we have Nash equilibria at all zeros and all ones if it never
pays to be the odd-man-out. Proposition 2 has implications in terms of the
structure of agents’ utility functions. It requires that Ui (0i, 1i)−Ui (0i, 0i) <

0 and Ui (1i, 1i)−Ui (1i, 0i) > 0. So the derivative of i′s payoff with respect to
its strategy depends heavily on the strategy choices of others, to the extent
of changing sign if these other strategy choices all change.

Figure 4.1 illustrates how payoffs to a choice by i vary with the choices of
others. There are three players and (0, 0, 0) and (1, 1, 1) are Nash equilibria.
So if starting from (0, 0, 0) agent 1 changes to 1 and moves to vertex (1, 0, 0)

then she is worse off. Likewise if agent 2 moves to (0, 1, 0) she is worse off.
However if agent 1 changes from zero to one starting from (0, 0, 1) and so
moves from vertex (0, 0, 1) to vertex (1, 0, 1) she may gain.
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