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ABSTRACT

Over the last two decades, there has been a surge of opioid-related overdose deaths resulting in a 
myriad of state policy responses. Researchers have evaluated the effectiveness of such policies 
using a wide-range of statistical models, each of which requires multiple design choices that can 
influence the accuracy and precision of the estimated policy effects. This simulation study used 
real-world data to compare model performance across a range of important statistical constructs 
to better understand which methods are appropriate for measuring the impacts of state-level 
opioid policies on opioid-related mortality. Our findings show that many commonly-used 
methods have very low statistical power to detect a significant policy effect (< 10%) when the 
policy effect size is small yet impactful (e.g., 5% reduction in opioid mortality). Many methods 
yielded high rates of Type I error, raising concerns of spurious conclusions about policy 
effectiveness. Finally, model performance was reduced when policy effectiveness had 
incremental, rather than instantaneous, onset. These findings highlight the limitations of existing 
statistical methods under scenarios that are likely to affect real-world policy studies. Given the 
necessity of identifying and implementing effective opioid-related policies, researchers and 
policymakers should be mindful of evaluation study statistical design.
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1. INTRODUCTION

In 2017, over 47,000 Americans died from opioid overdoses, a rate of more than 130 fatalities per 

day (Centers for Disease Control and Prevention 2018). In response, states have adopted a myriad  of 

policies and initiatives to curtail the crisis, including those designed to decrease opioid analgesic use, 

increase access to effective treatment for opioid use disorder, and increase utilization of naloxone, an 

overdose reversal medication (Mauri, Townsend, and Haffajee 2019, Haegerich et al. 2019). As states 

sought to make timely policy decisions in the face of limited resources, opioid-policy researchers 

evaluated the effectiveness of implemented policies using a range of statistical and econometric 

models.  

Studies using these methods often inform policymakers’ decisions, but to date, there have been no 

comprehensive examinations of the relative performance of these methods across settings realistic for 

state policy evaluation, although various reviews of policy evaluations have been done (Schuler Under 

review , Mauri, Townsend, and Haffajee 2019, Haegerich et al. 2019). A recent review of the opioid-

policy literature suggests that approximately 75% of opioid policy evaluation studies using longitudinal 

data estimate a policy’s effectiveness using comparative case study approaches (commonly referred to as 

difference-in-difference [DID], comparative interrupted time series [CITS], group panel data, or event studies; 

(Schuler Under review )). Longitudinal data implies data where one has repeated measures of the outcomes 

of interest, measured at an aggregate geographic area (e.g., states) with some “exposed” (treated) and 

“unexposed” (control) locations, where the exposed locations may implement the policy of interest at 

different times. We assumed state-level implementation (so maximum N=50) and annual measurement of 

outcomes. While some publications provide guidance on how best to handle policy evaluations using 

longitudinal data (Basu, Meghani, and Siddiqi 2017, O'Neill et al. 2016, Wing, Simon, and Bello-Gomez 

2018, Abadie and Cattaneo 2018, Blundell and Costa Dias 2009), methodological best practices have 



not been fully adopted by applied opioid policy researchers, and there may be unique considerations in 

the opioid context that influence practice guidelines.  

There are numerous aspects to a study design examining the impact of opioid policies on mortality 

(or other outcomes) that can influence the accuracy and precision of estimates generated, including: 

very low outcome occurrence rate (mortality), sample size (both in terms of number of treated states 

when evaluating a particular opioid policy as well as longitudinal time points), differences across states 

prior to opioid policy adoption, and specification of regression models (including accounting for 

repeated measures and assumptions regarding timing of the policy effect). Each choice influences how 

well the study can estimate the policy effect both in terms of accuracy (e.g., how close to the truth the 

estimated policy effect is) and statistical precision (e.g., the width of the resulting confidence intervals). 

The urgency of the opioid crisis necessitates that researchers and policymakers bring accurate, robust 

statistical methods to bear on identifying and implementing effective state policies; to our knowledge, 

the influence of each of these data elements and design choices on statistical performance of a 

particular model is not well-known within the context of opioid-policy evaluations.    

There are a growing number of studies highlighting challenges and limitations to using DID models, 

particularly when the key assumptions of the DID model do not hold (Blundell and Costa Dias 2009, Daw 

and Hatfield 2018a, b, Ryan, Burgess, and Dimick 2015)or when a study involves small sample sizes 

(Brewer, Crossley, and Joyce 2017). Additionally, it has been well-established that standard error 

corrections that attempt to adjust for violations of the assumed independence of the repeated 

measures in longitudinal datasets are needed to obtain accurate Type I error rates (Abhay, Donohue III, 

and Zhang 2014, Bertrand, Duflo, and Mullainathan 2004, Donald and Lang 2007, Helland and Tabarrok 

2004, Schell, Griffin, and Morral 2019). Despite the wealth of knowledge concerning best practices and 

the challenges of using DID models in various settings, there have been no comphrenensive 



examinations of their performance across settings realistic for state opioid policy evaluation.  In fact, we 

were aware of only one other study considering the appropriateness of methodological approaches 

applied to another area of state public health policy; namely, Schell, Griffin, and Morral (2019) considers 

the appropriateness of using various analytic approaches for evaluating state gun policy laws on 

outcomes. This study aims to help fill this gap and the notable dearth of rigorous studies examining the 

appropriateness of analytic methods being commonly used to evaluate important public health 

problems and make policy recommendations.  

More specifically, this study seeks to provide needed guidance about which statistical methods are 

most appropriate for measuring the impacts of state-level opioid policies on opioid-related mortality, 

with lessons that apply to state policy evaluations more broadly. Using a simulation study based on 

observed state-level opioid related outcomes, we assessed the relative performance of multiple 

statistical methods commonly used in evaluation studies of state-level opioid policies. Specifically, we 

compared their performance regarding Type I error rates, bias, statistical power, and root mean 

squared error to facilitate a more informed consideration of the existing literature and to support 

sound future state policy evaluations. We found that some commonly-used methods have poor 

statistical performance, and we provide important insights to statisticians and researchers regarding 

methods to estimate  policy effects. We show that there is still work to be done regarding 

development of methods that provide accurate results in these complex policy settings.  

 

2. METHODS 

In this section, we describe the data structure and general empirical models considered in our 

simulation study as well as the different features of the statistical models that we explored in our 

simulation study.  



2.1 Data Structure  

The data structure we considered in this study was longitudinal, repeated measures data measured 

on an annual basis where states were the units of interest. We used repeated measures of the 

outcome (opioid-related mortality) measured annually over 18 years, clustering time points within 

state, providing a total number of observations is 50*18 = 900. We did not consider individual-level 

data. 

2.2 General Empirical Models Considered 

The focus of our simulation study was to compare statistical methods for estimating policy impact 

using annual state-level outcomes, given a policy landscape in which states implemented a given policy at 

different times. A common analytic approach for such aggregate longitudinal data in the health services 

literature, including opioid policy studies, is broadly termed the DID approach. A DID study design 

seeks to account for both selection bias (by controlling for differences in pre-policy outcomes between 

policy and comparison states) and historical trends (by controlling for temporal trends that are 

unrelated to the policy). Essentially, DID estimation compares the pre-policy to post-policy change in 

the treated group to the corresponding pre-period to post-period change in the comparison group. 

This “difference in differences” provides an estimate of the policy effect, while subtracting out 

potential confounding arising from systematic differences between states implementing versus not 

implementing a policy, temporal trends, and other exogenous factors.  

Below, we introduce key notation for the general DID model framework our simulation study focuses 

on. Let 𝐴𝐴it = 0 or 1 denote an indicator for whether state i (where 𝑖𝑖 = 1, … ,𝑁𝑁) has implemented the 

generic policy of interest at time t (where 𝑡𝑡 = 1, … ,𝑇𝑇). Let 𝑌𝑌𝑖𝑖𝑖𝑖 denote the  outcome of interest, namely 

opioid-related mortality rates, as measured longitudinally for state i over time 𝑡𝑡 = 1, … ,𝑇𝑇.  



The DID specification is commonly implemented as the two-way fixed effects model which controls 

for both state- and time-fixed effects as model covariates, expressed as: 

𝑔𝑔(𝑌𝑌𝑖𝑖𝑖𝑖) = 𝛼𝛼 ∙ 𝐴𝐴𝑖𝑖𝑖𝑖 + 𝜷𝜷 ∙ 𝑿𝑿𝑖𝑖𝑖𝑖 + 𝜌𝜌𝒊𝒊 + 𝜎𝜎𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖                                                  (1) 

where 𝑔𝑔(. ) denotes the general linear model (GLM) link function (e.g., linear, log),  𝑿𝑿𝑖𝑖𝑖𝑖 denotes a vector 

of time-varying state-level confounders, and 𝜀𝜀𝑖𝑖𝑖𝑖 denotes the error term. State fixed effects, 𝜌𝜌𝑖𝑖, quantify 

potential differences in the outcome across states and time fixed effects, 𝜎𝜎𝑡𝑡, quantify temporal 

national trends. The coefficient estimate 𝑎𝑎� represents the DID estimator, namely the policy effect of 𝐴𝐴 

after accounting for differences between states implementing and not implementing a policy and time 

trends.  

Equation 1 is generally estimated using ordinary least squares. There are 3 commonly used ways to 

estimate the standard error of the point estimate (𝑎𝑎�): (i) no adjustment; (ii) Huber adjustment = robust 

estimators (also known as sandwich estimators, or Huber corrected estimates) that attempt to adjust 

the standard error for violations of distributional assumptions (White 1980, Zeileis 2004); or (iii) cluster 

adjustment = adjustments to account for possible violations of the assumed independence of 

observations within states (White 1980, Zeileis 2004, 2006). 

When implemented using regression analysis, this basic DID estimation is subject to the standard 

statistical assumptions for linear regression (Wooldridge 2009). Additionally, the DID estimator relies 

on two additional assumptions: the “common shocks” assumption and the “parallel counterfactual 

trends” assumption (Angrist and Pischke 2009). The parallel counterfactual trends assumption states 

that the intervention and comparison groups would have the same trends in the outcome over time, 

had the intervention not been implemented. Note that outcome levels themselves are not assumed to 

be equivalent across groups, but rather changes in the outcome; state and time differences are 

accounted for by fixed effects. When multiple pre-period observations are available, the parallel 



counterfactual trends assumption can be partially assessed by statistically testing whether the pre-

intervention trends differ across intervention groups (Ryan, Burgess, and Dimick 2015). However, the 

parallel counterfactual trends assumption is not fully testable, since this assumption cannot be 

assessed for the post-period and in the post-period the assumption involves unobserved 

counterfactual outcomes.  

Additionally, the common shocks assumption states that both groups were subject to similar 

exogenous factors that may affect the outcome of interest (e.g., market trends, regulatory climate, 

etc.) and had similar reactions to such factors (Ryan, Burgess, and Dimick 2015). Similarly, this 

assumption also implies that there is no “anticipatory” effects on the outcome in the intervention 

group during the pre-period, as individuals are reacting to knowledge of the impending intervention.  

On top of fitting the two-way fixed effects model in equation (1), we also considered three 

additional candidate statistical models in our simulation, based on a literature review identifying the 

most commonly applied statistical models used in studies trying to assess the causal impacts of opioid 

policies (Schuler et al., Under Review). Each of these alternative models vary the methods used to 

control for average differences in the outcome across states by either (a) detrending the data with 

state-specific linear slopes over time; (b) fitting a one-period lagged autoregressive (AR) model, and (c) 

estimating a flexible generalized estimating equations (GEE).  The statistical assumptions underlying 

each of these approaches are important to consider. 

While equation (1) adjusts for state variability with respect to average outcome levels, another 

frequently utilized model additionally adjusts for state variability in average outcome trends with state-

specific linear slopes over time (referred to as “detrending” the data). Thus, we considered the 

potential benefits of detrending in our simulation study. Our detrended model can be expressed as: 

𝑔𝑔(𝑌𝑌𝑖𝑖𝑖𝑖) = 𝛼𝛼 ∙ 𝐴𝐴𝑖𝑖𝑖𝑖 + 𝜷𝜷 ∙ 𝑿𝑿𝑖𝑖𝑖𝑖 + 𝜌𝜌𝒊𝒊 + 𝜎𝜎𝑡𝑡 + 𝜂𝜂 ∙ t + ∑ (𝜔𝜔𝑠𝑠 ∙ 𝑡𝑡 ∙ 1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠))50
𝑠𝑠=1 + 𝜐𝜐𝑖𝑖𝑖𝑖        (2) 



This detrended model expands on model (1) by adding in a linear main effect for time (t) along with 

state-specific linear trends. The detrended model can be seen as an improvement over equation (1) 

when it is likely that states will have different time trends in the outcome. The model aims to capture 

these time trends using a linear interaction between continuous time (t) and state-level indicators in an 

effort to avoid over-fitting the data. However, if the assumption of linearity in the time trends does not 

hold, this model will be misspecified and it is of interest to understand the impact such 

misspecification might have on our real world state-level data of opioid-related mortality. 

Second, we explored whether including a lagged outcome measure (i.e., the outcome at the prior 

year 𝑌𝑌𝑖𝑖(𝑡𝑡−1)) in the model improves policy effect estimation when studying opioid-related mortality by 

fitting AR models to our simulated data. The motivation for including lagged outcome measures is to 

both help control for average differences across states implementing versus not implementing a policy 

and to better predict future outcomes when there is high autocorrelation. Such high correlation is 

expected in repeated, annual measures of state-level opioid-related outcomes like opioid-related 

mortality. Thus, it is of interest in this study to assess how controlling for this lag, assuming a linear 

relationship between the GLM link and the lagged value of the outcome might serve to improve the 

model in equation (1). AR models include lagged measures of the outcome (e.g., 𝑌𝑌𝑖𝑖(𝑡𝑡−1)) as covariates to 

control for potential average differences in outcome trends and have been shown to yield more 

accurate effect estimates in the recent gun policy simulation study when examining total firearms deaths 

(Schell et al., 2018). In particular, we tested the relative performance of the best performing AR model 

identified from the gun policy study in which we estimated the following specification of our outcome model: 

𝑔𝑔(𝑌𝑌𝑖𝑖𝑖𝑖) = 𝛼𝛼 ∙ (𝐴𝐴𝑖𝑖𝑖𝑖 − 𝐴𝐴𝑖𝑖,𝑡𝑡−1) + 𝜷𝜷 ∙ 𝑿𝑿𝑖𝑖𝑖𝑖 + 𝛾𝛾 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖−1 + 𝜎𝜎𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖                                   (3) 



Notable, this model includes time fixed effects, 𝜎𝜎𝑡𝑡, to quantify temporal trends across time but does 

not include state fixed effects to quantify potential average differences in the outcome across states. 

Instead, the model attempts to control for confounding by state using the lagged term (𝛾𝛾 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖−1).  

Including this autoregressive predictor creates a “change” model in which the policy’s effect is 

indicated by the extent to which the opioid-related death rate in a given year is higher or lower than 

expected given the prior year’s rate in the same state (closely related to first-differences models 

depending on value of autoregressive term – here 𝛾𝛾� ). As such, we coded the policy variable (A) using 

change coding (𝐴𝐴𝑖𝑖𝑖𝑖 − 𝐴𝐴𝑖𝑖,𝑡𝑡−1) rather than standard effect coding (𝐴𝐴𝑖𝑖𝑖𝑖) since early work with 

autoregressive models (e.g., Cochrane and Orcutt (2012)) demonstrated that effect size estimates can 

be substantially biased AR models that use standard effects coding.  The coding of the policy variable 

needs to take into account the biasing effect of the AR relationship which occurs because controlling 

for the prior value of the outcome often, indirectly, controls for exactly the effect you are trying to 

measure. The coefficient estimate 𝑎𝑎� on the change coding term represents the AR estimator of the 

policy effect of 𝐴𝐴. While commonly used in the broader comparative case study literature, this approach 

is uncommon in in opioid policy evaluations.  

Finally, we considered the use of generalized estimating equations (GEE) which represent a 

commonly used alternative to the DID models specified in (1) and (2) in the context of longitudinal 

analyse (Fitzmaurice, Laird, and Ware 2011, Hardin and Hilbe 2003, Liang and Zeger 1986). GEE 

methods estimate the parameters of a model in which there are correlations between the 

observations within states by specifying a covariance structure for the clustered outcomes. Here we 

estimated the following regression model 

𝑔𝑔(𝑌𝑌𝑖𝑖𝑖𝑖) = 𝛼𝛼 ∙ 𝐴𝐴𝑖𝑖𝑖𝑖 + 𝜷𝜷 ∙ 𝑿𝑿𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑡𝑡 + 𝜁𝜁𝑖𝑖𝑖𝑖                                                 (4) 



where we had time fixed effects 𝜎𝜎𝑡𝑡 , effects coding for the policy variable and time-varying state-level 

confounders measured in 𝑿𝑿𝑖𝑖𝑖𝑖. GEE is a semi-parametric method that requires specification of the 

covariance matrix for within-subject observations (e.g., exchangeable, autoregressive, unstructured).  

We assume an autocorrelation structure of order 1 (AR1) which means the correlation structure R for 

the repeated measures within each state is 

𝑅𝑅𝑡𝑡,𝑚𝑚 = �
1 𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝑚𝑚

|𝜌𝜌𝑡𝑡−𝑠𝑠| 𝑖𝑖𝑖𝑖 𝑡𝑡 ≠ 𝑚𝑚 

for each the t, m element of R. GEE estimates of regression parameters are obtained using an iterative 

algorithm.   

We emphasize that the statistical properties and underlying assumptions in these model differ in 

how we were specifiying the right-hand side of the outcome model (for all three models) and in how 

we are handling the correlation between annual measures of the outcome within a state (for the AR 

and GEE models). The optimal model should be the one for which the underlying assumptions of the 

model match the state-level data we had available to us for the analysis. It is often difficult to test 

model assumptions in real world applications and as such we used a simulation to understand the 

relative performance of these different models on our data.  

Given that only a few published opioid policy studies have utilized random effects to control for 

unobservable state variation (Schuler Under review ), we did not consider random effect models in this 

study.  

2.3 Statistical Models Tested via Simulation 

In total, we identified 17 candidate models, detailed below and summarized in Table 1, drawing 

from our review of the opioid policy literature (Schuler Under review ) as well as the best models 

identified from the recent gun policy simulation study by Schell, Griffin, and Morral (2019). (Note that 

those results have not been widely implemented in opioid policy research, and, importantly, the 



conclusions may also differ for the different setting and type of outcome). The different candidate 

model specifications were chosen in such a way to allow us to identify the preferred specification 

within each of the following domains:   

Table 1. Overview of candidate statistical models evaluated in simulation study 

  GLM Regression Specification Weighting 
1 Linear Fixed effects (FE)  Population weighted 
2   Unweighted 
3  FE + Detrended Population weighted 
4   Unweighted 
5  Autoregressive Population weighted 
6   Unweighted 
7  GEE model Population weighted 
8   Unweighted 
9 Log-linear Fixed effects (FE)  Population weighted 
10   Unweighted 
11  Autoregressive Population weighted 
12   Unweighted 

13 Negative Binomial Fixed effects (FE)  Unweighted; log(population) used as 
an offset 

14  FE + Detrended Unweighted; log(population) used as 
an offset 

15  Autoregressive Unweighted; log(population) used as 
an offset 

16 Poisson Fixed effects (FE)  Unweighted; log(population) used as 
an offset 

17   Autoregressive Unweighted; log(population) used as 
an offset 

 

(1) GLM specifications:  In statistics, GLM is a flexible generalization of ordinary linear regression that 

allows for the outcome being modeled to have an error distribution other than the normal 

distribution. As opioid-related deaths are discrete and historically rare events, count models or 

models accounting for the skewed nature of the outcome may be more appropriate than 

traditional linear models assuming normality. GLMs are advantageous in that alternative 

transformations and/or assumptions about opioid-related mortality distribution can be tested 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution


within the same class of models by varying both the link function (𝑔𝑔(. )) and the assumed 

distribution function of the outcome. We tested the relative performance of the following GLMs:  

linear, log-linear (i.e., a linear model with log-transformed outcome), and two log-link models, 

(negative binomial and Poisson).  

(2) Regression specification: As noted, we considered four different ways to specify our regression 

models: only using two-way fixed effects of time and state in the model, using two-way fixed 

effects plus state-specific linear trends (detrended models), AR models, and GEE models.   

(3) Standard error estimation: For each model (except the GEE model), we explored the impact of various 

methods for estimating standard errors (SE), including robust SE estimators that adjust for 

violations of homoskedasticity assumptions in the data or cluster adjustments adjusting for non-

independence in the observations within states. More specifically, for each model run, we 

estimated the standard error in three ways: no adjustment; Huber adjustment; and cluster 

adjustment. 

(4) Use of state-level population weights: Finally, we explored the impact of using state population as 

an analytic weight in the linear and log-linear models, an approach commonly used in opioid 

policy evaluations  [e.g., Ali et al. (2017), Buchmueller and Carey (2018), McInerney (2017), 

Paulozzi, Kilbourne, and Desai (2011)]. Given that log-link models (e.g., negative binomial, 

Poisson) are conducted directly on the opioid-related death counts (rather than the rates) and do 

not need to be weighted to be nationally-representative, we did not examine the impact of 

weighting in these models. Using population weights in state-level analyses of opioid-mortality 

rates results in models for which each opioid-related death is treated as equally important 

regardless of which state it occurred in. Unweighted analyses treats each state, rather than each 

person, as equally important (see for example; Bachhuber et al. (2014), Birk and Waddell (2017), 



Chang et al. (2016), Dowell et al. (2016), Xu et al. (2018), Yarbrough (2018)). This will result in an 

estimation in which a death in small states will have much greater weight than deaths in larger 

states. We note that data was generated such that policy effects are constant across all states 

regardless of size or other characteristics, so weighting is not expected to bias the asymptotic 

values of the effect estimates but may have substantial effects on their SEs. 

 

3. SIMULATION DETAILS 

This section describes our simulation study design in detail, including the performance metrics used 

to compare the approaches, data sources used in the study and the data generation scheme. 

3.1 Metrics for Assessing Relative Performance of Candidate Statistical Methods 

To guide selection of the preferred statistical methods, we relied on several statistical metrics 

commonly used to judge model performance. 

(1) Type I error rate.  This is the rate by which a null hypothesis that is true (i.e., there truly is no policy 

effect) is rejected based on the model estimated coefficients and standard errors.  When data are 

generated such that there is no true policy effect (i.e., the null hypothesis is true), the model should 

identify a statistically significant effect (i.e., reject the null hypothesis) no more than 5% of the time 

if tested with an α =.05 level of significance. 

(2) Power. Power refers to the ability of the model to correctly identify  that the null hypothesis is false.  

Typically, studies are considered to have good power for a given effect size when they have 80% or 

higher power. When comparing statistical power across candidate models, we needed to ensure that 

we were properly penalizing models with high Type I error rates (see Section 4.1). For all models, we 

computed a correction factor based on the null runs that can be applied to the estimated standard errors 

from the given model to ensure a Type I error rate of 0.05; we then used this correction factor when 



calculating the appropriate level of power for a given model in the non-null runs. For virtually all the 

models, this correction factor inflates the estimated standard errors in a given model and helps us ensure 

power is being accurately captured for the models. 

(3) Bias. Bias assesses the average difference between the estimated effect and true effect over all 

simulations showing the tendency of the estimated effects of a given model to fall closer or further 

from the true effect on average.  

(4) Root Mean Squared Error (RMSE). RMSE provides us with a broader measure of the difference 

between the estimated policy effects in an individual simulated data set and the true policy effect 

by taking the square root of the sum of the mean squared errors (e.g., �∑ (𝛼𝛼�𝑘𝑘 − 𝛼𝛼)25000
𝑘𝑘=1  ) where 𝛼𝛼 

represents the true policy effect and 𝛼𝛼�  represents the estimated policy effect from a given 

simulation and model. It gives us a sense of how much error exists occurs for a given model 

specification, and takes into account both bias and variance.  

3.2 Data Sources and Measures 

Our outcome of interest is the annual, state-specific opioid mortality rate per 100,000 state 

residents, using the 1999-2016 National Vital Statistics System (NVSS) Multiple Cause of Death 

mortality files. Consistent with other studies (Abouk, Pacula, and Powell 2019, Chan, Burkhardt, and 

Flyr In press, Kilby 2015), opioid related overdose deaths were identified based on ICD10-CM-external 

cause of injury codes X40-X44, X60-64, X85, and Y10-Y14, indicating accidental and intentional 

poisoning, with opioid overdose based on the presence of one of the following diagnosis codes: T40.1 

poisoning by heroin, T40.2 poisoning by natural and semisynthetic opioids (e.g., oxycodone, 

hydrocodone), T40.3 poisoning by methadone, and T40.4 poisoning by synthetic opioids excluding 

methadone (e.g., fentanyl, tramadol).  

Given concerns about model overfitting in the presence of numerous covariates, we included a 



single covariate: state-level unemployment rate (U.S. Department of Labor 2019). This covariate was 

selected both because of the frequency of its use in opioid policy studies (Schuler Under review ), and 

its potential confounding associations with both opioid-related mortality and state policy responses. 

Annual state-level unemployment data comes from the U.S. Department of Labor, Bureau of Labor 

Statistics. Sensitivity analyses including a broader set of covariates (e.g., poverty rate, income level and 

percent race/ethnicity and age groups) resulted in no meaningful change to the general findings with a 

slight increase in model precision. Thus, we present findings from the more parsimonious model.  

We also note that since the AR models use lagged outcomes in the regression model, they utilized 

one less year of data from the time series than the other models considered. 

3.3 Simulation Data Generation 

The simulation design builds directly from prior work that compared statistical methods for 

evaluating the impact of state laws on firearms deaths (Schell, Griffin, and Morral 2019). For each 

simulation iteration, we selected a random subset of k states to be the policy/treated group (i.e., 𝐴𝐴it = 1 

at some point in the study period), with remaining states serving as the comparison group (i.e., 𝐴𝐴it = 0 

for the entire study period). We generated a time-varying indicator for whether a state has implemented 

the hypothetical opioid policy (𝐴𝐴it) in a given year.  

When generating the implementation date for the treated states who enact the policy, we 

randomly selected both the month and year of policy enactment so we had fractional values for the 

amount of time a law was in effect during the first year, restricting the year to be between 2002 and 

2013 to ensure we had three years of outcome data before and after enactment. This simulation 

represents the simplified scenario in which there is no confounding by observed or unobserved 

covariates or by lagged values of the outcome, 𝑌𝑌𝑖𝑖(𝑡𝑡−1). Once a policy is implemented, it remains in 



effect throughout the study period. In the first year of implementation the intervention variablve is coded 

as a variable between 0 and 1, indicating the percentage of the year the policy was in effect. 

For control states and treated (policy-enacting) states in the pre-policy period, generated 𝑌𝑌𝑖𝑖𝑖𝑖 values 

are equal to the actual observed state-specific, year-specific opioid overdose rates. For treated (policy-

enacted) states, we generated synthetic overdose outcomes (𝑌𝑌𝑖𝑖𝑖𝑖) for the time periods following the 

randomly assigned policy implementation date, allowing us to systematically vary the magnitude of the true 

effect of 𝐴𝐴 on 𝑌𝑌.   

Simulation conditions varied the following factors: 

(1) Effect size.  We considered the performance of our candidate statistical models when the policy 

had null effect, as well as an effect size (ES) of ±5%, ±15% and ±25%. For null effect conditions, 

post-policy 𝑌𝑌𝑖𝑖𝑖𝑖 values for the policy states were generated such that they were not correlated with 

𝐴𝐴it (i.e., setting 𝛼𝛼 = 0 in equation 1). For conditions with a true policy effect, synthetic post-policy 𝑌𝑌𝑖𝑖𝑖𝑖 

values were generated to reflect a fixed increase/decrease relative to the true state-specific, year-

specific opioid overdose rate. For a given candidate model, this data generation process was 

tailored according to the specific link function used in the model, such that the absolute magnitude 

of the generated ES would be equivalent on both the linear (i.e., additive) and log linear (i.e., 

multiplicative) scale. For each ES, we generated data in which the policy has both a positive and 

negative effect on the outcome in order to assess whether candidate models were biased towards 

estimating positive or negative effects, as well as assessing bias. 

(2) Number of treated units. We also investigated the role of the number of policy states, simulating data 

in which 1, 5, 15 and 30 states implemented the policy, respectively. We note that the maximum 

total sample size is always 50. 

(3) Timing of policy effect. State policies often do not become 100% effective immediately after 



implementation, making it important to consider variation in the onset of policy effectiveness. We 

consider two possible conditions:  an instantaneous effect and a 3-year linear phase-in effect. In 

both the data generating and analytic models, an instantaneous effect was specified as a simple 

step-function that has a value of zero when the policy is not in effect and a value of one when the 

policy is in effect. The gradual policy effect was specified as a linear spline with values starting at 

zero and reaching an asymptote 3 years after implementation. 

We assess performance of each candidate model across the same set of 5000 randomly generated datasets. 

Simulations were conducted in R; code is available in the appendix. Extensive results for all statistical 

models considered in our simulation are available via our Shiny tool 

(https://elizabethmcneer.shinyapps.io/statmodelsim/). 

4. RESULTS 

In the results below, we first present findings regarding Type 1 error rates, highlighting cases where 

models have unreasonably high Type I errors. Next, we discuss our findings regarding power over a 

range of different effect sizes, highlighting analytic ways in which models can be optimized to increase 

power in a study. Third, we discuss bias for each model, assessing which analytic approaches introduce 

bias versus those that do not. Finally, we discuss root mean squared error (RMSE) in an effort to 

identify the best models that minimize the bias-variance trade off. In each section, we first discuss 

findings for the linear model, comparing the overall performance of the two-way fixed effects, 

detrended, AR, and GEE models and briefly highlighting the impact of using population weights in the 

linear model. Then we discuss the relative performance of the different GLMs for a given regression 

specification (e.g., two-way fixed effects), comparing the relative performance of the linear, log-linear, 

Poisson, and negative binomial models. In all cases, we report our summary statistics averaging across 

https://elizabethmcneer.shinyapps.io/statmodelsim/


the simulations where the policy has an instantaneous and 3-year phase-in, noting here that 

performance for all metrics gets worse the longer it takes for a policy to become effective.  

4.1 Type I Error Rates  

 Figure 1 shows the Type I error rates for the four different linear models considered in our 

simulation, all of which use population weights: (1a) the two-way fixed effects model, (1b), the 

detrended model, (1c) the AR model, and (1d) the GEE model. Of note, as shown in Figure 1a, we saw 

very high Type I error rates for most of the models (ranging from 0.29 to 0.67). However, use of cluster 

adjustment to the standard error greatly reduced the Type I error rates when 5 or more states are 

implementing a policy, but they generally were still 2 to 3 times larger than the traditional target of 

0.05 (e.g., range between 0.09 and 0.17). The detrended model, shown in Figure 1b, was similar 

though we noted that Type I error rates for the detrended model tends to be better (e.g., lower; 

mostly less than 0.4). In contrast, Figure 1c highlights the general finding that AR models do not require 

use of any standard error adjustment to obtain Type I error rates that are reasonable when the 

number of states implementing a policy is greater than or equal to 5 (e.g., Type I error rates for the 

linear, population weighted AR model range from 0.04 to 0.06). In fact, use of standard error 

adjustments in the AR models tends to inflate the Type I error rates. Finally, Figure 1d shows the Type I 

error rates for the linear GEE model with population weights. As shown, Type I error rates reach 0.18 

or less once at least 5 states are implementing a policy, though the rates are also still two to three 

times higher than the traditional target of 0.05. The findings concerning the relative performance of 

the different regression specifications shown (two-way fixed effects vs detrended vs AR) holds across 

all GLM specifications (linear, log-linear, Poisson, and negative binomial). 

Figure 1. Type I error rates for the four different linear models considered, all with population weights: 
(1a) the two-way fixed effects model, (1b), the detrended model, (1c) the AR model, and (1d) the GEE 
model.  Black horizontal line denotes the target Type I error rate value of 0.05. 



 

 Additional findings from our simulation studies show that weighting using the population size in the 

linear models results in slightly higher Type I error rates in the two-way fixed effects, detrended, and 

GEE models than for the corresponding unweighted versions of these models (see Shiny Application). 

Conversely, for the AR models, use of population weights do not consistently perform better or worse 

than unweighted models.  

 Next, we explored the relative performance of the different GLMs. We note here that the best four 

models in terms of Type I error when using the best performing standard error adjustment and 

comparing the maximum Type I error rates across the four different sample sizes include: the linear AR 

weighted model (0.06), the linear AR unweighted model (0.07), the log-linear AR unweighted model 

(0.07), and the negative binomial AR model (0.07). Figure 2 shows the Type I error rates for the AR 

models for our four different GLMs: (2a) linear (unweighted), (2b) log linear (unweighted), (2c) Poisson, 

and (2d) negative binomial. This figure highlights how well the AR models do in terms of Type I error 

rates, regardless of the GLM model. It also highlights that generally the log-linear model performed 



slightly worse than the linear model and that the Poisson model can produce rather poor performance 

relative to the other GLMs. 

Figure 2. Type I error rates for the AR models for four different GLMs: (2a) linear (unweighted), (2b) log 
linear (unweighted), (2c) Poisson, and (2d) negative binomial.  Black horizontal line denotes the target 
Type I error rate value of 0.05. 

 

4.2 Power 

Figure 3 shows power (i.e., correct rejection rates) as a function of the number of states 

implementing a policy and the effect size impact of the policy for the four different linear models 

considered in our simulation, all of which use population weights: (2a) the two-way fixed effects 

model, (2b) the detrended model, (2c) the AR model, and (2d) the GEE model. Power is shown for the 

model that uses the best method for SE adjustment (namely, the SE adjustment that produces a Type I 

error rate closest to 0.05).  

Figure 3. Power as a function of the number of states implementing a policy and the effect size impact 
of the policy for four different linear models, all with population weights: (2a) the two-way fixed 
effects model, (2b), the detrended model, (2c) the AR model, and (2d) the GEE model.  Solid line = 5% 
effect size; dotted line = 15% effect size; dashed line = 25% effect size. 



 

 In all cases, the power increases as either the sample size of states implementing a policy increases 

or as the effect size of the policy increases for the range of sample sizes considered here. Most notably, 

the commonly used two-way fixed effects model (Figure 3a) has poor power for all effect sizes, 

reaching a maximum power of 0.27 when the number of states implementing a policy reached 30 and 

the effect size of the policy is 25%. Figure 3b shows that power tends to increase for the detrended 

model when compared to the linear two-way fixed effects model that does not control for state 

specific time trends. In contrast, to the linear two-way fixed effects model, the detrended model 

reaches a maximum power of 0.41 when the number of states implementing a policy reached 30 and 

the effect size of the policy is 25%. Still, power is highest for the AR model (Figure 3c) in comparison to 

either the linear two-fixed effects model or the linear detrended model, with maximum power of 0.73 

when the number of states implementing a policy reached 30 and the effect size of the policy is 25%. In 

the case of using population weights, the linear GEE has similar power to the linear two-way fixed 

effects with the weighted GEE model reaching a maximum power of 0.30 in Figure 3d.  



 We found that weighted linear and log-linear models tend to have lower power than the 

unweighted versions of these models. The maximum power for the weighted versus unweighted linear 

two-way fixed effects model is 0.27 versus 0.40, respectively. For the linear AR model, it is 0.81 versus 

0.72, respectively, when 30 states are implementing a policy and the effect size is large (25%). Use of 

population weights in the GEE model has the greatest impact with maximum power going from 0.30 to 

0.67 when one removes the population weights from the model. 

 Figure 4 shows the average power across all scenarios for each type of model to highlight the 

relative performance of the different models considered. Power is poor across all methods, but, of 

note, we saw clear superiority of both the linear AR models (weighted or unweighted; average power = 

0.24 and 0.22, respectively) and the negative binomial models (power ranges from 0.20 to 0.23). The 

worst performing models are the linear and log-linear two-way fixed effects models and the lienar 

weighted GEE model (power ranges from 0.09 to  0.11). The Poisson models considered have power 

that ranges from 0.12 for the two-way fixed effects model to 0.18 for the AR model; for each type of 

model, the negative binomial is clearly more powerful.  

Figure 4. Average power for all models considered in this simulation 
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 Most notably for all models considered in our simulation, the models had extremely low power to 

detect small effect sizes of 5% for a policy, an effect size that would equate to a reduction in 700 

opioid-related mortalities per year (e.g., maximum power for the negative binomial models was 

approximately 0.08 and power for the linear models ranged from 0.04 to 0.11). 

4.3. Bias 

 Figure 5 shows the percent bias for all models considered in this simulation when the true effect of 

a law is 5% (or ~700 deaths per year). We first standardized the results so quantities from the linear 

and nonlinear models represent the count of deaths by which the model is biased on average over all 

the simulations. Then, we converted bias into percent bias by dividing by 700. In general, bias is low for 

most models (e.g., less than 10%) with the exception of the non-linear AR models (14-25% percent); 

however, care needs to be taken when comparing the linear models to the log-linear, Poisson, and 

negative binomial models. In addition, we found that converting all bias metrics into linear units (count 

of deaths) provides a small advantage to the linear models when making comparisons to nonlinear 

models because this metric is directly proportional to the model coefficients in a linear model. Thus, 

direct comparisons across link functions here (e.g, linear versus log-linear) is not recommended. For 

example, it is possible that a negative binomial model that has unbiased model coefficients in their 

native units will show a small bias on the exponentiated coefficients used to convert the bias to a total 

count of deaths. There is no method to compare bias across linear and nonlinear models that allows 

both to be in their native units. When bias measures are converted into the native units of the negative 

binomial models (log risk ratios), the negative binomial models tended to show slightly better 

performance relative to the linear models than is evident in Figure 5. Taken together, we found that 

the greatest bias for each type of type of GLMs occurs in the AR models as would be expected. Further, 



as the number of states implementing a law or the size of the effect of the law increases, bias 

decreases to less than 5% for all models considered (see Shiny app). 

Figure 5. Percent bias for all models considered in this simulation when true effect is 5% (or 700 
deaths) 

 

Note: It is not really recommended that we directly compare across link functions here since there is no method  
to compare bias across linear and nonlinear models that for a one-to-one comparison. The statistics shown will  
slightly favor linear over non-linear models since we have to convert  
 
4.4 Root Mean Square Error 

Figure 6 shows the average RMSE for the simulations where the true policy effect is 0 for each 

model considered in our simulation. First, we considered findings for the linear model, comparing the 

overall performance of the two-way fixed effects, detrended, AR, and GEE models. In general, the 

RMSE of the two-way fixed model can be improved upon by using detrending or AR models (e.g., for 

the linear two-way fixed effects with population weight model the RMSE = 1.78 versus 1.69 for the 

detrended model and 1.08 for the AR model). The linear AR models have the lowest RMSE (1.08-1.12). 

For the linear two-way fixed effects, detrended and GEE models, the unweighted models have lower 
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RMSE as compared to the weighted versions of the same models, while for the AR models, we saw 

slightly lower RMSE for the weighted models.  

Figure 6. Root Mean squared error for all models considered in this simulation when the policy has no 
true effect 

 

Note: It is not really recommended that we directly compare across link functions here since there is no method to compare  
RMSE across linear and nonlinear models that for a one-to-one comparison 
 
Next, we considered the RMSE for the non-linear models. Notably, we found that RMSE for the count 

models is minimized by using the negative binomial over the Poisson or log-linear models. For the 

negative binomial model, the detrended and two-way fixed effects models have the lowest RMSE  

(0.22) while the AR model has the highest RMSE  (0.31). 

5. DISCUSSION 

 Our findings highlight several key challenges for opioid-policy research and more broadly state-

level policy evaluations.  First, policy makers using the results of these models to make decisions must 

recognize the challenges of such studies given the limited total sample size of 50 states. Power for the 

majority of scenarios was lower than the typically desired 0.80, even in the most advantageous cases 
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when we had 30 out of 50 states implementing the policy of interest and a large assumed effect size of 

25%. Furthermore, Type I error rates for the majority of models when fewer than 15 states are 

implementing a new policy were unreasonably high, meaning these models could show a notable 

effect of a policy when in fact such an effect does not exist. It is critical that researchers use models 

that minimize Type 1 error rates whenever possible and use of standard error corrections to ensure a 

Type I error rate of 0.05 are needed in this space.  

 Additionally, we found notably differences in the relative performance of commonly used statistical 

methods for estimating the effects of state-level opioid policies which has substantial implications for 

interpretation and application to state-level policy evaluations more generally. In our simulations, we 

found two classes of models that performed best when estimating the effects of a simulated opioid 

policy on opioid-related mortality in terms of (i) producing Type I error rates near 0.05, (ii) maximizing 

power for the scenarios considered, and (iii) minimizing RMSE. These were 1) linear AR models 

(weighted or unweighted) and 2) negative binomial models. Linear two-way fixed effects models and 

Poisson models generally performed the worst across the scenarios considered. To maximize power for 

opioid-related mortality, we highly recommend that researchers utilize either linear autoregressive 

models or negative binomial model specifications when estimating the effects of state-level policies on 

opioid-related mortality.   

 It is unclear how many of these specific recommendations are notable for any specific state policy 

evaluation, as the findings will necessarily be dependent on the level and distribution of the outcome 

variable as well as the rate of state-level adoption of the policy. At a minimum, however, we think four 

general recommendations for practice come from our findings.  First, it is critical to utilize cluster 

adjustments to the standard errors when using state and year fixed effects in a linear or log-linear 

specification of a model evaluating state policy adoption. Second, use of an autoregressive term is 



particularly helpful in the linear model in terms of RMSE, when modeling opioid-related mortality as a 

crude rate. Third, detrending models with state and year fixed effects improves performance so long as 

not overfitting the data. Fourth, use of a negative binomial model performs better than a Poisson 

model when modeling counts of opioid-related mortality. 

Although these generalizations have been found by others, they have not been well appreciated by 

the statistical or applied literature, and questions have remained regarding best practices with real-

world data like opioid-related mortality rates. For example, with regard to standard error corrections, 

prior simulation studies (Abhay, Donohue III, and Zhang 2014, Helland and Tabarrok 2004) show that 

cluster adjustments are needed to reduce Type I error rates. Bertrand, Duflo, and Mullainathan (2004) 

showed that the classic sandwich estimator does poorly with small samples; this paper also shows DID 

without adjustment has high Type I errors (approximately 45%) in their case study data where they also 

randomly simulated random “placebo” laws. Our work builds on this prior work by highlighting the 

challenges to evaluating state-level policies within the context of the opioid crisis and with respect to 

opioid-related mortality, a commonly used outcome in evaluations of state-level opioid policies.  

Of note in this simulation, we never formally tested the functional form of the model to help us 

determine the best performing GLM specification. We did this because we aimed to compare 

commonly used specifications that have been published in the literature. In practice, it is highly 

recommended that more careful consideration be given to selection of the GLM specification. For 

example, one way to limit concerns about using an inappropriate model is to do a parks test and 

boxcox test to determine what is appropriate for the outcome transformation and variance adjustment 

(Box and Cox 1964). We also note that use of population weights generally had small effects on 

performance so the choice whether to use them should be based on the inferences desired by the 

research, although this may be in part be a reflection of the situation considered, with constant effects 



across states. Finally, we note that we expected bias to be small in our simulations given the  policies 

are randomly assigned; the bias is largely going to be driven by model misspecification. 

 Findings from our simulations on opioid-related mortality are highly similar to findings for total 

firearm deaths considered in Schell, Griffin, and Morral (2019). The models considered here are 

virtually identical to  the models considered in the Schell, Griffin, and Morral (2019) study, though we 

expand the simulation scenarios to consider performance across a wider range of assumed effect sizes 

of the law (5% to 25% versus 3% in Schell, Griffin, and Morral (2019)). In their case, one model proved 

optimal across all performance metrics considered: the negative binomial AR model, whereas we 

found in favor of two set of models of which the negative binomial AR model is one. We suspect this is 

in part due to the additional consideration of a range of effect sizes and that we only assumed a three-

year phase in (versus five in Schell, Griffin, and Morral (2019)) for the slower phase in period of the 

new policy. 

 The goal of this study was to assess the relative performance of commonly used statistical methods 

for evaluating the impacts of state-level opioid policies on opioid-related mortality and provide insights 

into the limitations and sources of bias introduced by more commonly used methods. Study findings can 

help statisticians, researchers, and policy makers better gauge the validity of the existing evidence base 

and to conduct sound evaluations of new policies enacted by states. The use of simulation studies to 

assess the statistical properties of commonly used methods is an innovative yet underutilized approach 

for helping researchers examine methods’ performance in a specific context (Black et al. 2019).  

 The simulation design has several limitations and future research is needed to build upon this work 

and provide best methods for the field. First, by randomly selecting states that will enact a given policy, 

this simulation represents the simplified scenario in which there is no confounding by observed or 

unobserved covariates or by lagged values of the outcome. Future work will expand the simulation to 



consider more complex scenarios where such confounding exists given the reality that states 

implementing certain policies likely differ from their comparison states in systematic ways. For example, 

it is often the case that the outcome of concern will be notably increasing among states that choose to 

enact the policy being evaluated (e.g., states enacting pain management clinic laws have notably higher 

fatal opioid overdose rates in the years before implementing the law than states without these laws 

(Popovici et al. 2018)). Second, while there are numerous outcomes of interest when evaluating the 

impact of an opioid policy, we focused on fatal overdoses given that approximately 1/3 of published 

evaluation studies of state opioid policies use this outcome. Future work will expand to consider 

additional outcome domains like prescribing and distribution. 

 More broadly, as noted by Schell, Griffin, and Morral (2019): “A scientific field built on studies with 

such low power (e.g., less than 0.20) will have a large fraction of significant results that are spurious, a 

substantial proportion of significant effects that are in the wrong direction, and significant effects that 

substantially overestimate the true effect size (Gelman and Carlin 2014).” There is an urgent need for 

the field to develop more robust and powerful methods that can be used to help guide state-policy. This 

call is needed to face the current crises in the U.S. (gun violence and the opioid epidemic) but also 

extends beyond to future crises that will develop (e.g., climate change). One area that holds promise 

would be to promote the use of Bayesian approaches to estimate state-level policy effects as a way to 

ensure better representation of the large amount of uncertainty in these analyses (Schell, Griffin, and 

Morral 2019). Research in this areas is needed to help us ensure we are meeting the needs of applied 

policy researchers and key decision makers. 
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