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1 Introduction

The ongoing coronavirus pandemic has presented policymakers with a pivo-

tal challenge: to choose between either an uncontrolled spread of the virus,

that may cost millions of lives in worst-case scenarios, or the imposition of

non-pharmaceutical public health interventions, such as social distancing that

harm economic and social activity and may undermine the livelihoods of far

larger numbers of people. Containing epidemics falls into the realm of public

policy because infectious diseases by their very nature involve externalities:

when infected individuals engage in social or economic activity, they impose

signi�cant externalities on those with whom they interact and whom they put

at risk of infection. The objective of this paper is to characterize the infection

externalities of COVID-19 and compare individually rational behavior with

what is socially optimal.

The novel coronavirus was �rst identi�ed in Wuhan, China, in December

2019. It jumped from bats via an intermediate host (likely pangolins traded in

live animal markets) to humans. The virus has o�cially been named �SARS-

CoV-2,� and the disease that it causes has been named �coronavirus disease

2019� (abbreviated �COVID-19�). It spreads among humans via respiratory

droplets and aerosols as well as by touching infected surfaces. In an uncon-

trolled outbreak, the disease burden grows exponentially, with cases doubling

approximately every six days. The incubation period, i.e. the time between

when one is exposed to the virus and when one develops symptoms of disease,

is from two to 14 days, with an average of �ve days. Those infected usually

present with a fever, a dry cough and general fatigue, frequently involving

a mild form of pneumonia. About 15 percent of cases develop more severe

pneumonia that requires hospitalization, intensive care, and in many cases,

mechanical ventilation. Verity et al. (2020) estimate the case fatality rate

to be around 0.67% � as long as the healthcare capacity of a country is not

overwhelmed.

This paper analyzes the externalities that arise when economic interactions

transmit infectious diseases such as COVID-19. We embed rationally optimi-
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zing individual agents into epidemiological models to study and quantify the

trade-o� between economic costs and epidemiological control. We start out by

building on the simplest epidemiological model, the SIS model, which splits

the population into two compartments � susceptible S and infected I � and

assumes that susceptible agents can acquire an infection by interacting with

infected agents at a given rate.1 Infected agents I in turn recover at a given

rate and return to the pool of susceptible agents S. In section 2 we embed op-

timizing individual agents into this model who choose the level of an economic

activity that may transmit infections and analyze the externalities arising from

individual choices. In section 3 we include an epidemiological compartment R

of recovered & resistant agents in our analysis, delivering the SIR model in the

spirit of the epidemiological model �rst laid out by Kermack and McKendrick

(1927).

We start by analyzing a model economy in which we introduce a disease

that imposes a utility cost on infected agents and that follows the dynamics

of an SIS model. We contrast the behavior of individually rational optimizing

agents with what would be chosen by a social planner who has the power

to coordinate the decisions of individual agents. Individual agents who are

susceptible to a disease rationally reduce the level of their economic activity so

as to reduce the risk of infection. However, individually rational infected agents

recognize that they have nothing to lose from further social interaction and do

not internalize that their economic activities impose externalities upon others

by exposing them to the risk of infection. We show in a proposition that this

induces the social planner to value the cost of an extra infection more highly

than decentralized agents. The decentralized SIS economy converges to an

equilibrium in which the disease is endemic. By contrast, a social planner who

internalizes the infection externalities induces infected agents to signi�cantly

reduce their economic activity so as to lower the spread of the disease. In

our simulations, we �nd that for a wide range of parameter values, the social

1See Anderson and May (1991) for a comprehensive textbook treatment of models of
epidemiology. A good overview is also available at
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
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planner does this to a su�cient extent to contain and eradicate the disease

from the population. Only if the social cost of a disease is extremely low, akin

to the common cold, will the planner allow the disease to become endemic.

We expand our analysis to an SIR model that is calibrated to capture the

epidemiological parameters of COVID-19 and the US economy. Again, we �nd

and prove that infected individuals who behave individually rationally engage

in excessive levels of economic activity because they disregard the infection

externalities that they impose upon the susceptible. In our numerical simula-

tions based on standard statistical value of life considerations, we show that

private agents perceive the cost of an additional infection to be around $80k

whereas the true social cost including infection externalities is more than three

times higher, around $286k, when the fraction of infected agents is 1%.

Focusing on dynamics, this misvaluation has stark implications for how

society ultimately overcomes the disease: for a population of individually ra-

tional agents, the main focus is precautionary behavior by the susceptible,

which �attens the curve of infections. However, in the decentralized setting,

the disease is not overcome until herd immunity is acquired. The resulting

economic cost is high: an initial sharp decline in aggregate output by about

8% is followed by a slow recovery that takes several years. By contrast, the

socially optimal approach in our model focuses public policy measures on the

infected in order to contain and eradicate the disease. Since the infected make

up a smaller fraction of the population, this produces a much milder recession.

A natural concern is that targeting the infected is di�cult since many

countries, including the US, have su�ered from shortages in testing kits, and

because COVID-19 has a long incubation period and a signi�cant fraction of

infected individuals are asymptomatic. To capture this situation, we analyze a

version of our model in which the epidemiological status of individuals is hidden

so the planner has to choose a uniform level of economic activity for all agents.

Even in that case, the social planner aggressively contains and eradicates the

disease. However this must now be achieved through a reduction in the level

of activity of all agents, generating a decline in aggregate output that is much

more severe, about 17%, but followed by a speedy recovery once the disease
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is contained. When the planner cannot distinguish the epidemiological status

of agents, the social cost of an extra infection is more than twice as high as

when the planner can target infected individuals, about $576k.

In an extension of our model, we compare the private and social gains from

vaccination. Individually rational susceptible agents �nd vaccines useful for

two reasons: �rst, they no longer face the risk of costly infection and secondly

they no longer need to incur the cost of social distancing to avoid becoming

infected. Vaccines are most useful in a society in which social distancing is

determined by individually rational behavior. When noone in such a popu-

lation has immunity, the private gain from an individual vaccination is $26k,

falling to $1.8k when her immunity is acquired since the risk of infection falls.

By contrast, a planner would perceive the social gain from vaccination nearly

17 times larger, at $430k when there is zero immunity in the population. In

a society in which public health measures are imposed by a planner and the

disease is quickly eradicated through social distancing, the value of vaccines is

considerably lower.

Literature In the economics literature, our work is most closely related to

Goldman and Lightwood (2002), Gersovitz and Hammer (2003, 2004) and

Gersovitz (2011) who study externalities of health interventions for infecti-

ous diseases in SIS and SIR models. Georgiy et al. (2011) show cross-country

externalities in responding to �u pandemics. Our addition to this strand of lite-

rature is (i) to analyze the economic e�ects of the speci�c non-pharmaceutical

interventions relevant for COVID-19 � social distancing � and (ii) to contribute

a quantitative analysis to the evaluation of COVID-19 infection externalities

to better inform the policy debate.

Our work is also related to recent papers who analyze optimal non-pharma-

ceutical controls in SIR models calibrated to COVID-19, that feature a tradeo�

of economic activity and disease transmission. Alvarez et al. (2020) and Ei-

chenbaum et al. (2020) characterize optimal disease control in SIR models in

which the transmission of disease depends on economic choices. We comple-

ment these papers by providing analytic results on the externalities that arise
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in both SIS and SIR models and by quantifying by how much individually ra-

tional agents undervalue the cost of infection. Our �ndings also highlight the

crucial role of testing, as suggested in Berger et al. (2020) and Piguillem and

Shi (2020). We also provide quantitative estimates of the magnitude of the

externalities imposed by COVID-19 and formulate policy as a function of the

measure of infected and susceptible agents. We rely on various estimates of the

rate of COVID-19 transmission, death rates, and hospital capacity provided

by Atkeson (2020), Verity et al. (2020), and others. Our work complements

the collection of recent economics papers that analyze the role of �scal policy

(e.g. E Castro, 2020) or spillover e�ects caused by COVID-19 (e.g. Guerrieri

et al., 2020).

2 First Step: An SIS Economy

2.1 Model Setup

In this section, we develop a simple SIS model that introduces a role for eco-

nomic decision-making, an analysis of welfare and an expression of the exter-

nalities that arise. Although the SIS model omits important characteristics of

diseases such as COVID-19, it illustrates the basic structure of the problem

and allows us to analyze the interactions between economics and epidemio-

logy in utmost clarity. We will build on this setting below to provide a richer

description of externalities in the SIR model.

Epidemiology Let us denote the mass of susceptible individuals by S and

the mass of infected individuals by I, and normalize the total population to

N = S + I = 1∀t. By assumption, all individuals in a given category are

identical. Time is continuous and goes on forever. We follow the convention

in the epidemiological literature of dropping the time subscript of S and I

but remind the reader that they are, of course, time-dependent. Changes

are denoted by Ṡ and İ. The evolution of S and I follows the standard
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epidemiological laws

Ṡ = −β (·) IS + γI (1)

İ = β (·) IS − γI (2)

The term β (·) IS captures the �ow of susceptible individuals that become

infected, where β (·) is the meeting intensity at which individuals interact with
each other, I

N
= I is the probability that an individual's interaction partner is

infected conditional on meeting, and S normalizes the term by the measure of

susceptible individuals in the population. In the economic model block below,

we will specify how exactly β (·) depends on individual behavior. The term

+γI captures that infected individuals recover at rate γ and return to the pool

of susceptible individuals. The expression for İ is the mirror image of Ṡ since

the population is constant. Thus it is su�cient to keep track of only one of

the two variables � an epidemiological version of Walras' Law.

Individual Behavior The utility of an individual agent depends on her

epidemiological status i = S, I as well as on the level of activity ai ∈ [0, 1] that

she chooses to take.2 This may be interpreted as the extent of social activity

and the portion of economic activity in which physical interaction is required.

Activity level ai = 0 re�ects complete isolation whereas ai = 1 captures normal

activity. We parameterize the probability of infection β (aS, aI) = β0aSaI in

the spirit of the epidemiological relationships described above, where β0 re�ects

the spread at the maximum level of activity for both types of agents.

In the analysis of individual behavior, we denote by I = Pr (i = I) the

probability of an agent being infected. We observe that each atomistic agent

takes as given the activity level of other agents and the fraction of infected

in the population and denote these by āI , āS, and Ī, where the latter evolves

2Note that an individual's epidemiological status i = S, I di�ers from the aggregate
measures S̄ and Ī.
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according to the law (2). The individual's epidemiological status thus satis�es3

İ = β (aS, āI) Ī (1− I)− γI (3)

In equilibrium it will be the case that āI = aI , āS = aS, and Ī = I.

For an individual with initial epidemiological status I (0), the utility max-

imization problem is to choose a path of activity levels {aS, aI} so as to

max
{aS ,aI}

U =

∫
t

Ei
[
e−rtui (ai)

]
(4)

subject to (3), where the �ow utility of the agent in a given period is Ei [ui (ai)].

For now, we capture the utility derived from social activity in reduced form.

In our full model below we will describe how activity a interacts with the

economic functions of agents in more detail. We assume that the �ow utility of

susceptible agents uS (a) = u (a) is increasing and concave u′′ (a) < 0 < u′ (a)

up to its maximum level at which it becomes �at so u′ (1) = 0.4 For now, the

�ow utility of infected agents is uI (a) = u (a)− c
(
Ī
)
where c

(
Ī
)
captures the

additional utility loss from being sick and satis�es c (0) > 0 and c′
(
Ī
)
≥ 0.

The latter may re�ect congestion e�ects in the healthcare system, which are

of critical importance during the COVID-19 pandemic.

We reformulate the individual's optimization problem in terms of the current-

value Hamiltonian

H = I
[
u (aI)− c

(
Ī
)]

+ (1− I)u (aS)− VI
[
β (aS, āI) Ī (1− I)− γI

]
together with the transversality condition limT→∞ e

−rTVI = 0, where VI is the

current-value shadow cost of an agent being infected. Each agent internalizes

that her infection status depends on her choice of interactions with other agents

but rationally takes as given the overall fraction of the population infected Ī,

which determines both the risk of infection for susceptible individuals and the

3An alternative interpretation is that the decision maker is a household with a fraction
I of members infected.

4We could also consider a vector a instead of a scalar a to capture that there is a multi-
dimensional set of choice variables a�ecting disease transmission.
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congestion e�ects in the healthcare system. This generates rich externalities,

as we will explore subsequently.

In addition to the transversality condition, the individual's optimality con-

ditions are

u′ (aS) =VI · β0āI Ī (5)

u′ (aI) =0 (6)

rVI =u (aS)− u (aI) + c
(
Ī
)
− VIβ (·) Ī − VIγ + V̇I (7)

The �rst optimality condition re�ects that the agent equates the marginal uti-

lity of activity aS to the marginal expected cost of becoming infected, which

consists of the lifetime utility loss of infection VI times the marginal probabi-

lity of infection βS (·) Ī = β0āI Ī. Ceteris paribus, a larger number of infected

agents increases the infection probability βĪ and induces the agent to scale

back her economic activity, i.e. to behave in a more cautious manner. The

second optimality condition implies that it is individually rational for the in-

fected agent to pick the maximum level of activity aI = 1 that maximizes her

utility, not taking into account the epidemiological e�ects of her behavior. The

third optimality condition re�ects the �ow shadow cost of being infected versus

susceptible: the agent obtains di�erent �ow utility and experiences the cost

c
(
Ī
)
; moreover, the agent no longer faces the risk of infection, captured by

the term −VIβ (·) Ī and faces the potential prospect of recovery −VIγ; �nally,
the shadow cost of being infected changes through time as I changes.

In equilibrium, the probability of infection of an individual agent equals

the aggregate fraction of infected agents I = Ī.

De�nition 1 (Decentralized SIS Economy). For given initial I (0), a decen-

tralized equilibrium of the described SIS system is given by a path of the

epidemiological variable I that follows the epidemiological law (2) as well as

paths of action variables (aS, aI) and the shadow cost VI that satisfy the op-

timization problem of individual agents.
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Steady State In steady state, we set İ = 0 in equation (2), obtaining a

non-degenerate infection rate of I = 1 − γ/β (aS, aI), and set V̇I = 0 in (7).

The optimality condition (6) implies aI = 1. The three variables I, aS, VI are

jointly pinned down by equation (5) as well as the two laws-of-motion set to

zero.

2.2 Social Planner

Let us now contrast the outcome in a decentralized setting with what would

be socially optimal if a planner who must obey the epidemiological laws can

determine the path of individual actions {aS, aI}. The planner would maximize
overall social welfare, consisting of the integral over the utility (4) of the unit

mass of agents j ∈ [0, 1],

W =

∫
Udj

where the epidemiological status of individuals follows the epidemiological law

(2).

For a given value of inital infections I (0), the problem of the planner can

be captured by the current-value Hamiltonian

H = I [u (aI)− c (I)] + (1− I)u (aS)−WI [β (aI , aS) I (1− I)− γI]

plus the transversality condition limT→∞ e
−rTWI = 0, whereWI is the current-

value shadow cost of an agent being infected. The resulting optimality condi-

tions are

u′ (a∗S) = WI · β0a∗II (8)

u′ (a∗I) = WI · β0a∗S (1− I) (9)

rWI = u (a∗S)− u (a∗I) + c (I) + Ic′ (I) +WI · β (·) (1− 2I)−WIγ + ẆI

(10)

where we denote by an asterisk the planner's choices.

De�nition 2 (Planner's Allocation in SIS Economy). For given I (0), the
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planner's allocation in the described SIS system is given by a path of the

epidemiological variable I that follows the epidemiological law (2) as well as

paths of action variables (a∗S, a
∗
I) and the shadow cost WI that satisfy the

planner's optimization problem.

The optimality condition for a∗S mirrors the equivalent expression (5) in the

decentralized equilibrium � individual agents and the planner both account for

the risk of infection of susceptible agents in a similar manner. However, the

planner's shadow price of infectionWI di�ers from that of decentralized agents,

which we describe below. In our simulations we found that generally VI < WI

so the planner values the cost of acquiring the infection more highly than

private agents and will act in a more precautionary manner than private agents

for given parameter values. The second optimality condition for a∗I di�ers

from the optimality condition of private agents: the planner captures that the

activity of infected agents increases the infection risk of the susceptible, which

individual agents disregard.

The third optimality condition captures the law of motion of the plan-

ner's shadow price of infection. In addition to the costs captured by indi-

vidual agents in the decentralized equilibrium, the term Ic′ (I) re�ects that

at the aggregate level, the cost of infections is convex, and the extra term

WIβ (·) (1− I) re�ects that the planner internalizes that additional infections

will transmit to the current population of susceptible agents. We summarize

our results as follows:

Proposition 1 (Infection Externalities in SIS Economy). The planner in-

ternalizes the infection externalities of the infected and would choose a lower

level of activity for infected agents, a∗I < aI . For given actions, the planner

experiences a higher social cost of infection than private agents, WI > VI .

Proof. See discussion above.

Whether the planner will induce more or less activity for susceptible agents

than in the decentralized equilibrium for given I depends on two competing

forces: since the infected engage in less activity, the risk of infection for suscep-

tible agents is lower, generating a force toward greater activity; however, for
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given actions, the planner recognizes a greater social loss from one more indi-

vidual becoming infected, WI > VI , generating a force toward lower levels of

activity. By implication, for given aI , she would choose a lower level a∗S < aS

than decentralized agents.

Corollary 1 (Decentralizing the SIS Economy). The planner can implement

her allocation in a decentralized setting in the following ways:

1. by imposing taxes on the activities of susceptible and infected agents aS

and aI such that

τI = WI · β0a∗S (1− I) > 0 (11)

τS = (WI − VI) β0a∗I Ī > 0 (12)

2. by imposing a tax (11) on the activity of infected aI , and a utility penalty

on becoming infected of

τV = WI − VI > 0 (13)

3. by imposing a tax (11) on the activity of infected aI , and a utility penalty

or equivalent tax on being infected such that

τC = Ic′ (I) +WI · β (·) (1− I) > 0 (14)

as well as any appropriate combination of the three instruments τS, τV , τC.

Formulating the di�erent ways of decentralizing the SIS economy is not

necessarily meant to provide hands-on policy guidance (especially for points

2. and 3.) Instead, we describe the three options because they o�er three com-

plementary ways to understand the infection externalities in our framework.

Clearly, as captured by point 1., it is the actions of the susceptible and infected

that ultimately need to change to implement the socially optimal allocation.

However, the sole reason why the behavior of the susceptible is distorted is

that they misperceive the social cost of being infected. As point 2. illustrates,
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this implies that correcting the shadow price of becoming infected by impo-

sing an extra penalty would induce the socially optimal level of activity among

the susceptible. Moreover, as clari�ed in point 3., the undervaluation of the

shadow price of infection arises simply because infected individuals � even once

we have induced them to engage in the socially optimal level of activity � do

not internalize the potential cost that they impose on others, captured by the

right-hand side of (14), which consists both of the increase in the cost C (I)

for all agents and the term re�ecting the infection externality.

Proof. The current-value Hamiltonian of individuals who face taxes τS and τI

on consuming goods that are produced by actions aS and aI of susceptible or

infected individuals and a tax on being infected τC is

H = I
[
u (aI)− τIaI − c

(
Ī
)
− τC

]
+(1− I) [u (aS)− τSaS]−VI

[
β (aS, āI) Ī (1− I)− γI

]
Given a utility penalty τV of becoming infected, the resulting optimality con-

ditions are

u′ (aS) =τS + (VI + τV ) β0āI · Ī (15)

u′ (aI) =τI (16)

rVI =u (aS)− u (aI) + c
(
Ī
)

+ τC − VIβ (·) Ī − VIγ + V̇I (17)

By setting τI to the value given in (11) and one of the three instruments τS, τV ,

τC to the values given in (12) to (14), the optimality conditions of decentralized

agents who face the taxes will replicate the optimality conditions (8) and (9)

of the planner.

Steady State The steady state of the system is obtained by setting İ = 0

and ẆI = 0 in equations (2) and (10). For given (I,WI), optimality conditions

(8) and (9) jointly pin down a∗S and a∗I .
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2.3 Calibration

The time units in our calibration are weeks. We set the epidemiological para-

meters to γ = 1/3 to re�ect an average duration of the disease of three weeks

and β0 = 2.5/3 to capture a parameter R0 = β0/γ of 2.5, re�ecting best avai-

lable estimates on the spread of the disease without precautionary measures.5

We set the economic parameter ρ to re�ect a typical annual discount rate of

4%.

To capture the e�ects of the level of activity a on the economy and ulti-

mately on welfare, we assume that there is a unit mass h ∈ [0, 1] of goods ch,

of which a fraction φ requires physical contact. Examples for goods that do

not require physical contact are real estate services, information services, etc.

Conversely, examples of goods that do require physical contact include perso-

nal services such as haircuts, hospitality, medical treatments, transportation,

etc. Although it is di�cult to draw a sharp delineation, we set φ = .25, in

line with estimates reported in Mitchell (2020) on the fraction of the economy

that is paralyzed by a severe physical lockdown of economic activity. (We

note that demand multiplier e�ects such as those discussed in Guerrieri et al.

(2020) may lead to additional negative spillovers from physical lockdowns to

other sectors of the economy that do not intrinsically rely on physical contact.

At present, we still lack data on the magnitude of these e�ects.)

Producing and consuming ch units of good h generates disutility d (ch) and

provides consumption utility ũ (ch). All the goods together provide the agent

with overall �ow utility of

u =

∫
[ũ (ch)− d (ch)] dh

For any good that does not depend on physical contact, it is optimal to choose

the �rst-best level of output and consumption c∗, which satis�es ũ′ (c∗) =

d′ (c∗). By contrast, for the fraction φ of goods that do require physical inte-

raction, output and consumption is scaled by the activity variable a so that

5See the discussion in Atkeson (2020) and references therein. Current evidence suggests
that covid-19 has an R0 between 2.0 to 3.25.
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ch = ac∗. The resulting �ow utility of activity level a is

u (a) = φ [ũ (ac∗)− d (ac∗)] + (1− φ) [ũ (c∗)− d (c∗)]

In our numerical application below, we assume log consumption utility ũ (c) =

log c and linear disutility d (c) = c, implying that overall �ow utility is u (a) =

φ [log a− a], omitting a constant term. Observe that this speci�cation satis�es

our earlier assumptions lima→0 u
′ (a) = ∞ and u′ (1) = 0. Note that we have

implicitly assumed that the utility of all individuals of a given epidemiological

status is a�ected equally by a reduction in activity a. This is valid if individuals

are well-insured, including if they receive social insurance against idiosyncratic

shocks. By contrast, if some individuals lose their jobs and incomes whereas

others can continue to work, additional welfare costs arise (see e.g. Guerrieri

et al., 2020).

The cost of disease captures both the disutility of being sick and, in reduced

form, the potential risk of death. In the analysis of public policies, e.g. sa-

fety regulations or environmental policies, economists routinely have to weigh

decisions that compare economic bene�ts and health costs. Estimates of the

implied cost of adverse health events are obtained by evaluating how much in-

dividuals are willing to spend to avoid a given risk of an adverse event. Based

on guidance from the US Department of Transportation (2012) on the value

of a statistical life by consumer price in�ation, a current estimate in the US

is around $10.3m at the age of the median worker of approximately 40 years.

By comparison, before the pandemic, the weekly level of economic activity in

the US as measured by GDP was approximately $1200/capita. In our model,

we assume that this corresponds to the �rst-best level c∗ = 1 and observe that

the marginal utility of consumption at that level satis�es ũ′ (c∗) = 1. For a

median worker, a risk of death of δ = 0.66% for a disease that lasts on average

for 1/γ weeks can thus be expressed in terms of a weekly �ow utility cost of

$10.3m/$1200·0.0066 · γ ≈ 19.

However, a striking feature of COVID-19 is that the case fatality rate de-

pends strongly on age (Verity et al., 2020), ranging from virtually zero for
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children and teenagers to 7.8% for patients of age≥80. Combining Verity et

al (2020)'s case fatality rates with life expectancy data from the SSA, Table

A1 shows that the expected statistical loss of life years for an average infected

individual in the US is 0.136 years. Using the procedure described by Atkins

and Bradford (2020) and a discount rate of 4%, we translate the $10.3m sta-

tistical value of life into a $498k value of a statistical life year. Calculating

the present discounted value of this �gure across di�erent age cohorts, Table

A1 shows that this delivers an expected statistical loss of life valued at $50.0k,

which amounts to a weekly �ow utility cost of $50.0k/$1200·γ ≈ 14.

We parameterize the cost of disease as c(I) = c0 · (1 + κI) where the base

cost of disease is given by c0 = 14. One of the concerns about COVID-19 is its

potential to overwhelm the capacity of our healthcare system since about 15%

of cases require hospitalization and about 5% of cases require mechanical ven-

tilators. (Given the early stage of medical research, there is still considerable

uncertainty about these parameter values.) The US currently has only about

200,000 ventilators available. Assuming the best available distribution to the

places where they are needed and no other demand for ventilators by chroni-

cally sick patients, this implies that at most .06% of the population can be

served at a given time. If the infection rate rises above I = .06%/5% = .012,

mortality will rise signi�cantly, as experienced in earlier hotspots such as Wu-

han or Northern Italy. We set κ = 1/.012/2 ≈ 40 to re�ect that the cost

of disease is an increasing function of the fraction of the population that is

infected. In summary, the parameters for our baseline calibration of the cost

of disease are (c0, κ) = (14, 40).

To explore the full range of outcomes in the SIS model, we also consider

a low-cost disease for which individuals experience just a minor reduction

in utility, akin to e.g. the common cold. Without appealing to any speci�c

disease, we set r = 5% so a unit of time corresponds to longer time periods

and (c0, κ) = (0.05, 0) for this low-cost scenario. As we will show in the

numerical analysis below, these parameter choices induce the planner to prefer

an endemic equilibrium over eradication for su�ciently high values of I (0).
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Computational Procedure Computationally, we solve a system of two

non-linear di�erential equations with boundary conditions using a shooting

algorithm. In the decentralized equilibrium, the system is given by (I, VI)

described in (2) and (7), subject to I(0) and the transversality condition. The

system features two steady states: an unstable one at I = 0 and a stable one

at I ∈ (0, 1− γ
β0

). Starting from any I(0) > 0, the system is saddle-path stable

leading to the non-degenerate equilibrium. Similarly, the planner's allocation

is given by a path of (I,WI) described in 2 and 10, subject to I(0) and the

transversality condition. However, unlike the decentralized equilibrium, the

planner's allocation may feature multiple steady states and dynamic paths

that satisfy the transversality condition, so the shooting algorithm for each

steady state must be complemented by a comparison of the global optimum

across multiple di�erent WI(0)'s.

2.4 SIS Results

Figure 1 depicts the law of motion for the fraction of infected agents in the

population for our baseline calibration (left) and the low cost-of-disease sce-

nario (right).6 The decentralized SIS economy converges to a unique steady

state for any positive initial I (0) > 0, which occurs where the law of motion

intersects with the 45-degree line.7 This occurs around I = 0.2 in the baseline

scenario, and around I = 0.6 in the low-cost scenario. The left-hand side of

Figure 2 shows the policy functions for aI and aS as a function of I in the

decentralized equilibrium: infected agents disregard the infection externalities

and engage in full activity aI = 1, whereas susceptible agents reduce their

activity the greater the fraction of infected in the population. By contrast,

susceptible agents scale down their activity level in proportion to the cost and

risk of infection they face, which is proportional to I.

The social planner, by contrast, chooses to eradicate the disease in the

6For illustration, we compute the law of motion from the continuous-time system on a
discrete time grid with step size one, equivlent to a week in our calibration.

7There is, of course, also a locally unstable steady state at I = 0, at which the population
is wholly disease-free.
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Figure 1: Law of motion for I, in baseline (left) and low cost-of-disease scenario
(right)

baseline scenario (right panel of Figure 1) by reducing the activity level of

both susceptible and infected agents, ensuring that I → 0 asymptotically. For

low I, she focuses her risk mitigation on infected individuals. As I grows, the

planner shifts her mitigation e�orts from infected agents to susceptible agents.

Intuitively, the planner relents on the activity reduction of the infected since

there are fewer and fewer agents left to whom they could pass on the infection.

In the low-cost scenario (lower panels of Figure 2), there is a discontinuity

around I (0) = 0.16: when the initial fraction of the population is su�ciently

low, the planner chooses to eradicate the disease as in the baseline scenario.

However, when the initial disease burden is higher, it is no longer optimal

to incur the cost of eradication, and the planner instead chooses a steady

state with a positive disease burden that is slightly below the steady state of

decentralized agents, internalizing the infection externalities.

The upper panels of Figure 3 simulate the paths of the SIS economy for

initial I (0) = 10% in the baseline parameterization. The solutions in the

decentralized economy and under the planner diverge � the disease remains

endemic in the decentralized economy, with the fraction of infected converging

to an interior steady state, whereas the planner eradicates the disease. The

middle panel shows that the lives of susceptible agents quickly return to normal

under the planner's solution, whereas decentralized agents �nd it optimal to

progressively reduce their activity as I rises. To accomplish a rapid eradication,
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Figure 2: Activity as a function of the measure of infected agents, in baseline
(top panels) and low cost scenario (bottom panels)
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Figure 3: Dynamic paths starting from I(0) = 0.10 in the baseline (top panels)
and I(0) = 0.15 in the low-cost scenario (bottom panels)

the planner isolates infected agents by reducing their economic activity to near

zero, which mitigates the harm to the susceptible. The e�cient solution relies

on the planner's ability to identify and isolate the the sick, highlighting the

role of testing which we explore in later sections.

What is particularly interesting is that the shadow cost of an additional

infection as perceived by the planner is signi�cantly greater than what decen-

tralized agents perceive. Private agents disregard the infection externalities,

whereas the planner recognizes that additional infections cost not only the af-

fected agents but also pose a risk to others. In the baseline scenario, the cost of

infection is an increasing function of I for both the decentralized and the plan-

ner's allocation because more infections imply greater risk for the susceptible

as well as more externalities and (for the planner) a higher cost of reducing

the activity of infected agents.
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The lower panels of Figure 3 show the paths of the economy for an initial

level of infection I (0) that is above the planner's eradication threshold under a

low cost-of-disease scenario. In that case, the planner focuses on slowing down

the rate of infection to preserve the higher utility of uninfected agents, and then

converges to a steady state I that is slightly below the decentralized steady

state. The right-hand panel shows that the planner recognizes the utility loss

from infection to be a multiple of what decentralized agents perceive � because

she internalizes the infection externalities generated by an additional infected

agent. Moreover, the marginal cost of an additional infection is now decreasing

over time as the economy approaches the steady state.

3 SIR Model

3.1 Model Setup

We expand the SIS model from above to account for the observation that

individuals recovered from COVID-19 aquire resistance to future infection.

Epidemiology We denote the fraction of recovered/resistant individuals by

R and normalize the population to S + I + R = 1. The epidemiological laws

of motion in our SIR model are

Ṡ = −β (·) IS (18)

İ = β (·) IS − γI (19)

Ṙ = γI (20)

where the last compartment re�ects that infected individuals recover at rate

γ. Recovered/resistant is an absorbing state. In our derivations below, we will

keep track of the state variables I and R and note that S = 1− I −R.

Individual Behavior The optimal activity level of resistant individuals R

is aR = 1 since they can no longer become infected, generating �ow utility
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uR = u (1). Given that this is constant, there is no change in the endogenous

economic decision variables of agents, and the individual optimization problem

continues to be given by equation 4.

The current-value Hamiltonian of individuals in the SIR model is

H =I
[
u (aI)− c

(
Ī
)]

+RuR + (1− I −R)u (aS)

− VI
[
β (āI , aS) Ī (1− I −R)− γI

]
+ VR [γI] , (21)

where R = Pr(i = R) is the individual's probability of being resistant, plus the

two transversality conditions limT→∞ e
−rTVI = 0 and limT→∞ e

−rTVR = 0 on

the current-value shadow cost of being infected and shadow value of becoming

resistant, respectively. The optimality conditions from the Hamiltonian are8

u′ (aS) = VI · β0āI Ī (22)

u′ (aI) = 0 (23)

rVI = u (aS)− u (aI) + c
(
Ī
)
− VIβ (·) Ī − (VI + VR) γ + V̇I (24)

rVR = uR − u (aS) + VIβ (·) Ī + V̇R (25)

De�nition 3 (Decentralized SIR Economy). For given I (0) and R (0), a de-

centralized equilibrium of the described system is given by a path of the epi-

demiological variables I and R that follow the epidemiological laws as well as

paths of (aS, aI) and VI , VR that satisfy the optimization problem of individual

agents.

3.2 Social Planner

Social welfare in the economy continues to be given by expression (4), where

the expected �ow utility Ei [ui (ai)] is now calculated over the fractions of

the three types of agents i = S, I,R. The planner's Hamiltonian is given

by the equivalent to the decentralized Hamiltonian (21) with Ī = I, R̄ = R

and āI = aI , where we denote the shadow prices on the laws of motion for

8Note that we de�ne VI as a shadow cost but VR as a shadow value in the Hamiltonian;
therefore the optimality conditions for the two are rVI = −HI + V̇I but rVR = +HR + VR.
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I and R by WI and WR. The planner's optimality conditions for a∗S and a∗I
are equivalent to (8) and (9) with S = 1 − I − R. The optimality conditions

describing the evolution of shadow prices are

rWI =u (a∗S)− u (a∗I) + c (I) + Ic′ (I) (26)

+WI · β (·) (1− 2I −R)−WRγ + ẆI (27)

rWR =uR − u (a∗S) +WRβ (·) I + ẆR (28)

De�nition 4 (Planner's Allocation in SIR Economy). For given I (0) and

R (0), the planner's allocation in the described SIR system is given by a path

of the epidemiological variables I and R that follow the epidemiological laws

as well as paths of (aS, aI) and VI , VR that satisfy the planner's optimization

problem.

Comparing the allocations of decentralized agents and the planner, we

arrive at similar results on the di�erences in behavior as in the SIS model:

Proposition 2 (Infection Externalities in SIR Model). The planner interna-

lizes the infection externalities of the infected and would choose a lower level

of activity for infected agents, a∗I < aI , but the same (full) level of activity

for recovered agent, a∗R = aR = 1. For given actions, the planner perceives

a higher social cost of infection than private agents, WI > VI , but the same

social value of being recovered as private agents.

Proof. See discussion above.

As in our discussion follow Proposition 1, the planner's e�ects on the acti-

vity level of susceptible agents depends on the two competing forces: since the

infected engage in less activity, the risk of infection for susceptible agents is

lower, generating a force toward greater activity; however, for given actions,

the planner recognizes a greater social loss from one more individual becoming

infected, WI > VI , generating a force toward lower levels of activity.

The social planner's allocation can be decentralized in a similar fashion to

what we discussed in Corollary 1 for the SIS economy:
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Corollary 2 (Decentralizing the SIR Economy). The planner can implement

her allocation in a decentralized setting in the three ways discussed in Corollary

1.

3.3 SIR Results

We keep the parameterization from the baseline scenario of Section 2.3 but

now account for the fact that recovered individuals are resistant to re-infection.

Computationally, we solve a non-linear four-dimensional boundary value pro-

blem in (I, R, VI , VR) with conditions I(0) > 0, R(0) = 0 and the two trans-

versality conditions. The boundary conditions for the planner's solution are

equivalent in the corresponding system in (I, R,WI ,WR), where again the al-

gorithm must check for a global optimum across potentially multiple paths that

satisfy the system given by equations (19), (20), (26),(28), and the boundary

conditions.

Figure 4 illustrates the path of the disease in the decentralized and plan-

ner's allocation starting from an initial infection rate of I (0) =1%, which is

close to estimates of the true number of COVID-19 cases in the US in the

�rst half of April, given that the fraction of undiagnosed cases is signi�cant

(Verity et al., 2020), and setting R (0) = 0. In the decentralized economy,

susceptible agents reduce their economic activity but infections continue to

rise for the �rst 12 weeks. As the higher fraction of infected increases the risk

for susceptible agents, they continue to reduce their economic activity until

infection activity peaks. Subsequently, the rising number of recovered agents

in the population together with still very cautious behavior by the susceptible

leads to a decline in the fraction of infected, allowing susceptible agents to

increase economic activity again. One striking observation is that even after

two years, the epidemic is still ongoing: the fraction of infected in the popu-

lation is still 0.5%, whereas close to half of the population has recovered and

acquired resistance (middle panel).

Taken together, once could say that the extremely cautious behavior of

the susceptible has ��attened the curve,� but ultimately the mechanism that
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overcomes the epidemic is to acquire herd immunity, i.e. to acquire su�cient

resistance in the population so that the epidemic dies out. Given the externa-

lities, infected agents simply do not �nd it individually rational to engage in

the severe measures that would be necessary to contain the disease.

The planner, by contrast, aims to eradicate the disease as quickly as possi-

ble by reducing activity by the infected to close to zero, even though this

imposes a stark utility cost on infected agents given the Inada condition

lima→0 u
′
I (a) = ∞. After eight weeks, the fraction of infected is su�ciently

close to zero that the planner allows infected individuals to raise their economic

activity. However, observe that all throughout, the planner allows susceptible

agents � who make up the majority of the population � to engage in almost

full activity. In short, one could say that the planner's strategy to overcome

the epidemic is containment and eradication, i.e. to drive down the number of

infected su�ciently so that it no longer poses a risk to the susceptible, even

though they never acquire herd immunity. This illustrates the stark di�erence

in how the disease is overcome by decentralized agents versus the planner.

These results crucially hinge on the assumption that the epidemiological

status of individuals is observable. In practice, widespread shortages in testing

capacity as well as the considerable number of asymptomatic cases that are still

potentially able to spread the disease currently make it di�cult to implement

what we have characterized as the planner's optimal strategy. For compari-

son, we consider the case in which the epidemiological status of individuals is

unobservable in Section 3.4.

To provide additional intuition on the di�erences between the decentralized

outcome and the planner's solution, the left-hand panel of Figure 5 illustrates

how private agents and the planner perceive the marginal cost of an additi-

onal infection VI versus WI . The �rst observation is that the planner's WI

is signi�cantly higher than private agents' VI , for two reasons: �rst, she in-

ternalizes that infected agents spread the disease, and secondly she induces

infected agents to starkly reduce their level of economic activity. At the initial

level of infected I (0) = 1%, private agents perceive the cost of infection to be

around $80k (using the same conversion mechanism as discussed in Section 2.3
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Figure 4: Dynamic paths starting from I(0) = 0.01 under the baseline scenario.

when we converted the statistical value of life years into utils). The social cost

of an additional infection as perceived by the planner, by contrast, is much

larger and corresponds to approximately $286k � about three-and-a-half times

higher than what decentralized agents perceive. Furthermore, the social cost

of infection rises in I as the planner internalizes that the rising case load risks

overwhelming the capacity of the healthcare system, raising the social cost of

disease C (I).

The right-hand panel of Figure 5 illustrates the policy functions for econo-

mic activity aS (I, R) and aI (I, R) for varying I while holding R = 0. Since an

increase in I exposes susceptible agents to higher infection risk, they strongly

scale back their economic activity in the decentralized equilibrium. For an

infection rate of I =1%, susceptible agents cut back physical activity from a

normal level of 1.00 to aS = 0.65; for I =5%, they cut activity to aS =0.25.

By contrast, the planner reduces the economic activity of the infected to near

zero while maintaining activity for the susceptible near normal levels.

To verify the robustness of our �ndings, Figure 6 illustrates an alternative

scenario in which we only consider the purely economic cost of the disease with

c(I) = c0 = 1.7 � this is 88% less than the cost in our baseline scenario that

was derived from the statistical value of life calculation in Section 2.3. The

planner's solution is nearly identical, with rapid containment and elimination
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Figure 5: Cost of disease and initial economic activity (for R = 0) as a function
of I.

of the disease. By contrast, the disease spreads more rapidly in the decentra-

lized economy since susceptible agents engage in less precautionary behavior

when the cost of disease is lower. They cut back on activity in proportion to

the fraction I, which drives their risk of infection. In the long-run, over 70%

of the population experiences an infection (middle-panel) compared to 50%

in the baseline. There continues to be a discrepancy between the private and

social shadow cost of an infection VI and WI � the two di�er by a factor of al-

most six as private agents do not internalize the infection externalities that are

now greater, given less precautionary behavior of the susceptible population.

3.4 Hidden Epidemiological Status

Following a containment and elimination strategy that focuses on the infected,

as we found optimal in our analysis above, requires that the epidemiological

status of individuals is readily identi�able. This has been di�cult for many

countries, not only because COVID-19 has a long incubation period, up to

14 days, and a signi�cant fraction of infected individuals are asymptomatic

(Verity et al., 2020), but also because many countries, including the US, have

su�ered from shortages in testing kits. Whereas our baseline model assumed
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Figure 6: Dynamic paths starting from I(0) = 0.01 under c0 = 1.7 and κ = 0.

that individuals and the planner can easily target their chosen actions to the

epidemiological status of a given individual, the reality is that many are una-

ware of their epidemiological status. To analyze the implications of this lack of

information, we now consider the extreme case that the epidemiological status

i of an individual is hidden so that the planner needs to chose a uniform level

of activity â that does not depend on epidemiological status.

This modi�es the Hamiltonian (21) of the planner so that there is just a

single decision variable â that replaces aS, aI and aR,

H =u (â)− Ic
(
Ī
)
− VI

[
β
(
ˆ̄a, â
)
Ī (1− I −R)− γI

]
+ VR [γI]

The optimality condition for individual agents with respect to â is

u′ (â) = VI · β0ˆ̄aĪ (1− I −R)

By contrast, the planner's optimality condition becomes

u′ (â) = 2WI · β0âI (1− I −R)

Comparing the the two conditions, we �nd:

Proposition 3 (Infection Externalities with Hidden Status). In the model with
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Figure 7: Dynamic paths starting from I(0) = 0.01 under the baseline scenario,
including optimal policy under hidden status

hidden epidemiological status, the planner internalizes twice the infection risk

perceived by decentralized agents for a given cost of infection. Furthermore,

for given actions, the planner perceives a higher social cost of infection than

private agents, WI > VI .

Proof. See discussion above.

The reason why the planner internalizes twice the expected cost of infection

is that she recognizes that it is not only the actions of the susceptible that

matter but also the actions of the infected agents.

Figure 7 illustrates the dynamic path of the disease starting from an in-

fection rate of 1%. The left and middle panels reproduce the paths of infections

and levels of activity ai from Figure 4 and add (red dash-dotted) lines for the

planner who cannot distinguish the infection status of individuals. The path

of infections is virtually unchanged from the solution of a planner who can

distinguish epidemiological status � the planner still contains and quickly eli-

minates the virus; however this must now be achieved through a reduction

of the level of activity of all agents. The middle panel shows that the level

of activity of all agents is initially reduced close to 25% of the normal level,

increasing back to 75% over the span of 11 weeks, and then slowly returning

to normal.
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The right panel illustrates the impact on aggregate output, including the

fraction 1 − φ = 0.75 of output that does not require physical/social inte-

raction which we assumed remains una�ected. In the decentralized economy

with epidemiological status visible, output initially declines by 8% and conti-

nues to fall as the disease spreads, then gradually returning to normal. Still,

after nearly two years output is 5% below normal. In the planner's case with

epidemiological status visible, the recession is much smaller and shorter-lived:

aggregate output initially falls by 0.5% then returns to virtually normal within

6 weeks. By contrast, when the planner cannot detect the status of individuals

and must resort to blunter measures that are independent of epidemiological

status, she induces a recession that is large but considerably shorter-lived than

in the decentralized economy. Aggregate output is initially reduced by 17%

and returns to 5% below normal after 13 weeks, far outpacing the economic

recovery in the decentralized economy � even if individuals are aware of their

epidemiological status.

When the planner cannot distinguish the epidemiological status of agents,

the social cost of infection is higher, as shown in the left-panel of Figure 8.

At an initial infection rate of 1%, the social cost is $576k, more than twice as

high as when the planner can separately reduce the activity of the infected and

more than seven times as high as what is perceived by decentralized agents

who know their epidemiological status. The planner internalizes that even for

a small initial outbreak, they must impose economic costs across all agents,

which leads to large social costs. The right panel of Figure 8 shows that the

planner, under hidden epidemiological status (red dash-dotted line), reduces

economic activity by more than 50% and, if the fraction infected is 5%, by up

to 85%.

3.5 Private versus Social Gains from Vaccination

The future economic damage imposed by the virus will depend heavily on

how soon a vaccine is developed. Individually rational susceptible agents have

incentives to become vaccinated in order to avoid the risk of infection. In our
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Figure 8: Cost of disease and economic activity as a function of I under hidden
status (for R = 0)

SIR model, the bene�t of moving from susceptible to resistant is re�ected by

VR in equation (25). The �ow gains over time are captured by two terms. The

�rst term, uR − u(aS), captures that recovered agents do not have to distance

themselves in order to avoid becoming infected. The second term, VIβ(·)I,
captures the expected gain from avoiding the infection entirely.

The left panel of Figure 9 illustrates the private gain from a vaccination

(solid-blue line) when 1% of the population is infected, for R ∈ [0, 0.99]. Ini-

tially if no one has immunity, the private gain from becoming vaccinated is

equivalent to $26k. The gain falls as more of the population becomes re-

sistant/recovered as this reduces the risk of infection. Around R = 0.6 the

population acquires herd immunity, and the private gain to an additional

vaccination declines to $1.8k as the infection risk of susceptible individuals

becomes negligible.

However, since private agents do not internalize the infection externality,

the social gain of an additional vaccination in the decentralized economy is

many times larger, shown as the dashed-purple line in the left panel of 9,

which re�ects WR, the planner's willingness to pay to transition an agent

from susceptible to resistant/recovered, taking as given the private actions
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Figure 9: Private versus social gains from vaccination, given I = 1%

of agents. At zero immunity the social gain from an additional vaccination

is $430k, nearly 17 times larger than what private agents are willing to pay.

As more of the population becomes resistant the social gains from additional

vaccinations fall. Around the level of herd immunity, WR declines sharply:

from to $67k at R = 0.6 to merely $14k. at R = 0.75.

The right panel of Figure 9 illustrates that the social gains from vaccination

depend crucially on what strategy society adopts to contain the disease. The

green line marked with circles plots the social bene�t of an extra vaccination,

WR, under the assumption that the planner employs the optimal containment

strategy described in section 3.2. Since the disease is quickly eradicated in that

scenario, the social gain from moving an agent from susceptible to recovered

is rather small � only $40 (without �k�). This illustrates that eradication

and vaccination are substitutes. However, when the epidemiological status

of individuals is hidden and the planner is forced to reduce activity across all

individuals to contain the disease, the social gain from an extra vaccination ŴR

is signi�cantly larger, around $24k at zero immunity, and remaining positive

even once herd immunity is reached.
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4 Conclusions

We integrate macroeconomic activity into epidemiological SIS and SIR models

in order to analyze and quantify the externalities that arise. Our main �nding

is that agents who behave individually rationally generate large externalities

because they do not internalize the e�ects of their economic and social activi-

ties on the infection risk of others and therefore engage in inadequate social

distancing. Infected agents rationally choose to engage in full economic acti-

vity, while susceptible agents reduce activity which �attens the spread of the

virus. However full recovery only occurs after herd immunity is reached across

several years.

We �nd in a model calibrated to capture the main features of COVID-19

and the US economy that private agents perceive the cost of an additional

infection to be around $80k whereas the true social cost is more than three

times higher, around $286k. Facing an initial outbreak in which 1% of the

population is infected, the planner optimally isolates the infected by reducing

their social activity close to zero while only slightly reducing the activity of the

susceptible. This leads to a sharp reduction in the number of infected agents

and an overall mild impact on aggregate output.

Alternatively, if the planner cannot make policy contingent on the epidemi-

ological status of individuals, for instance either because of the asymptomatic

nature of COVID-19 or the lack of su�cient testing, then optimal policy still

sharply reduces the number of infections but at signi�cantly larger initial eco-

nomic cost but that is short lived. The social cost of an additional infection

in this scenario is around $576k.

We leave several possible extensions for future work: First, it would be

useful to re�ne our epidemiological models to account for additional nuances

of the SARS-CoV-2 virus. For example, including a separate compartments

for exposed agents E would make it possible to explicitly account for the long

incubation period of COVID-19 and for the possibility that exposed agents

recover without ever displaying symptoms of the disease. Accounting for spa-

tial heterogeneity would make it possible to better capture the dynamics of
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the disease in a large country such as the US and to analyze the bene�ts of

travel restrictions. Moreover, since the case fatality rate of COVID-19 di�ers

so strongly for patients of di�erent age, accounting for di�erent age groups

would make it possible to analyze how the externalities by age group di�er.

Secondly, it would be useful to re�ne the analysis of the macroeconomic

feedback e�ects of the reductions in social and economic activity that we ana-

lyze. For example, Guerrieri et al. (2020) show that feedback e�ects in a

multi-sector economy with �nancial market imperfections may lead to an am-

pli�cation of the initial shock generated by social distancing. This provides

valuable insights for macroeconomic policymakers.
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 Age Case fata-

 group Men Women Men Women Men Women lity rate Men Women

0–9 20.45 19.56 72.0 76.9 12,171$       12,305$       0.002% 0.2$  0.2$  

10–19 21.43 20.54 62.2 67.1 11,810$       12,006$       0.007% 0.8$  0.8$  

20–29 23.22 22.21 52.8 57.3 11,304$       11,571$       0.031% 3.5$  3.6$  

30–39 21.98 21.71 43.6 47.7 10,598$       10,947$       0.084% 8.9$  9.2$  

40–49 20.06 20.40 34.5 38.3 9,600$        10,058$       0.161% 15.5$         16.2$         

50–59 20.95 21.88 26.0 29.3 8,266$        8,839$        0.595% 49.2$         52.6$         

60–69 17.76 19.65 18.3 20.9 6,628$        7,243$        1.930% 127.9$        139.8$        

70–79 10.35 12.31 11.6 13.4 4,713$        5,280$        4.280% 201.7$        226.0$        

≥80 4.92 7.76 6.2 7.4 2,810$        3,240$        7.800% 219.2$        252.7$        

Total: 327.14 Wgt. Average 50.0$         

* in thousands of USD

Sources:

Population numbers: US Census Bureau (2018)

Life Expectancy: US Social Security Administration, Period Life Table (2016): https://www.ssa.gov/oact/STATS/table4c6.html 
Case fatality rate: Verity et al. (2020), Table 1

Value of statistical life* E[loss] given infection*

Table A1: Calculation of population-weighted expected loss of VSLYs (Value of Statistical Life Years) in US given infection

Population Life Expectancy
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