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I. Introduction

There is considerable interest in measuring the long—run effects of a surprise

change in income. Estimates vary widely, from a very small effect implied by a

trend stationary representation for income (Deaton [1986]) to a very large effect

implied by a difference stationary representation for income (Campbell and Mankiw

[1988].) Ultimately, this interest stems from the view that substantive economic

questions depend on the magnitude of this effect. For example, Deaton (1986) has

argued that if the effect is large, then modern consumption theory is in trouble,

being unable to account for the observed smoothness of consumption. Nelson and

Plosser (1982) argue that the magnitude of the impact reveals the ultimate source of

disturbances to the economy. If the magnitude is small, then most disturbances are

to aggregate demand: for example, shocks to money, household preference, or

government spending. If the effects are large, on the other hand, then most

macroeconomic disturbances are supply side disturbances, such as the technology

shocks emphasized by Prescott (1986).

Recently, it has been suggested that the magnitude of the impact of income

innovations may have been vastly overstated, because researchers have failed to

take into account that post war GNP has undergone a one—time break in trend

(Perron [1986], Rappoport and Reichlin [1987].) In brief, the argument is that the

change in trend is a one time innovation with permanent effect and those who

ignore it confound it with the quarterly innovations, making the latter seem more

long lasting than they are in fact. The trend break hypothesis has a degree of a

priori appeal, since there are a number of "big events" of the post—war period that

could have sparked a trend change. Examples are the 1964 tax cut, the oil shock of

the early 1970s and financial deregulation in the 1980s.
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the statistical evidence warrants abandoning the no trend break null hypothesis. I
show that there is in fact little statistical evidence against the hypothesis that no

break has occurred at any time in the post war period. Two difficulties make this

argument less than straightforward. By elaborating on these difficulties, I hope that

the results of this paper may be of use to those searching for breaks in other data

series.

The first difficulty is that the standard critical values for testing the presence

of a break are severely biased in favor of rejecting the no break null hypothesis. I

overcome this problem by obtaining the correct small sample critical values by

bootstrap methods. For example, the paper considers the case where an F statistic

is used to test for a break in the intercept and slope of a trendagainst the null

hypothesis that log GNP has a linear representation with an unbroken linear trend

and two lags of log GNP. The conventional methodology in this context is to

compare the computed F statistic against the 5 percent critical value of the relevant

F distribution. In the application of the paper, this critical value is 3.1. I show

that if the true data generating mechanism is the maximum likelihood trend

stationary model with (unbroken) trend fit to post war log GNP (the TS

representation), then 8.1 is in fact the 20 percent critical value if the break being

tested lies in the middle of the sample. The correct 5 percent critical value is 5.5.

The critical value discussed in the previous paragraphassumes, as does the

standard one, that the break date is chosen independent ofany prior information

about the data being tested. This brings us to the second problem that must be

confronted when searching for breaks. This arises because in practiceone never

selects a date to test for a break without prior information about the data. This

second problem, adjusting critical values to reflect pretest examination of the data,

is harder to solve than the first. The difficulty is that in practice it is hard to
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translate the factors that go into selecting a particular break date into a specific

algorithm that could, for example, be programmed on a computer. The paper

describes several simple algorithms for selecting break dates and shows that the

impact on critical values can be quite substantial, but that the impact depends

sensitively on the particular break date selection algorithm used. Given the

difficulty in practice of articulating precisely one's break date selection method, this

sensitivity is unfortunate and complicates inference. The paper explores several

options.

Perhaps the most straightforward option is to use a set of very conservative

critical values which maximize the impact of pre—test data examination.

Conducting inference with these critical values leaves one immune to excessive

rejection of the null hypothesis of no trend break due to pre—test data examination.

Unfortunately, a byproduct of its conservative nature is that the method probably

has poor power characteristics. A set of critical values which is conservative in the

above sense is studied in the paper. It assumes the break date was selected by

choosing that break date that produces the largest F statistic for a trend break.

Assuming the data are generated by the TS model, the 5 percent critical value in

this case is 10.2. This is dramatically higher than the 3.1 critical value implied by

the relevant F distribution. It also exceeds by far the largest F statistic in the post

war GNP data, which is 6.14. In fact, the significance level of 6.14 is a little over 40

percent, relative to the TS model null hypothesis.' Clearly, relative to this set of

critical values, there is no evidence of a trend break in the post war period.

However, this set of critical values may be too conservative, entailing an

'For a statistic whose expected value is positive, I define its significance level as the
probability, under the null hypothesis, of getting a value larger than the realized
value. For a statistic with a negative expected value, I define its significance leval
as the probability, under the null hypothesis, of getting a value smaller than the
realized value.
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unacceptable loss of power. As a result other, less conservative, critical values were

computed. These also deliver no evidence to warrant rejecting the no trend break

null hypothesis.

Following is an outline of the paper. The next section describes the no trend

break null hypothesis of the paper. Reflecting the lack of consensus in the literature

on time series models of post—war GNP, the null hypothesis is captured by two

models. One represents log GNP as stationary about a trend (the TS model

mentioned above) and the other represents it as first order autoregressive in first

differences. These models and their fitted disturbances are used to generate the

artificial data that form the basis for statistical inference in subsequent sections.

Section III demonstrates the poor small sample performance of the usual F test for a

trend break and supplies small sample critical values which are correct under the

assumption that the choice of break date is independent of the data being studied.

Section IV shows how sensitive critical values are to pre—test examination of the

data. That section tabulates critical values under several alternative pre—test break

date selection schemes. It shows that once pre—test and small sample distributional

considerations are taken into account, the F test reveals no evidence against the null

hypothesis of no trend break in post—war U.S. data. Section V considers a test for

trend breaks recently introduced by Perron (1987). I show there that, although that

test does not share the F test's small sample distributional problem, it is still the

case that once pre—test considerations are taken into account, one cannot reject the

no trend break null hypothesis. Section VI concludes the paper.

5



II. The No Break Null Hypothesis.

Throughout this paper the null hypothesis is that there has been no trend

break in GNP. The bootstrap methodology I use requires that this null hypothesis

be embedded in a completely specified time series model. Doing so is complicated

by the fact that there is no professional agreement on how to model log GNP,

whether as stationary about a trend (see, eg., Blanchard [1981]), or as a stationary

process in first differences with no deterministic trend (Campbell and Mankiw

[1988].) I avoid taking a stand on this issue by allowing for the possibility that

either is correct. Accordingly, my bootstrap experiments are based on two data

generating mechanisms. Each was estimated using data on log GNP covering the

period 1948.1 to 1987.4. In each case, the first two quarters' observations were used

up by initial conditions, leaving 158 observations for the regression. The first

regression model, called the TS model, is consistently estimated under the

assumption of covariance stationarity about a linear trend. Following are the

results log GNPt):

TS Model

(11.1) = .36 + .00037t + '34t 1 — 38t 2 + t' ° = .010.
(.14) (.00015) (.07)

—

(.07)
—

Standard errors appear in parentheses. The Q statistic at lag 36 computed from the

fitted residuals, is 23, indicating very little evidence against the null hypothesis

that there is no serial correlation in the disturbances. The 's are plotted in Figure

1, together with the plus and minus one standard deviation lines. The evidence in

the data plot arouses no suspicion that the regression is misspecified. For example,

there are no obvious outliers and the variance seems reasonably constant.
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repeatedly simulating equation (1) using the actual y's for the first two quarters of

1948 as initial conditions, and obtained disturbances by randomly (with

replacement) drawing from {E1,...,e158}. By randomly drawing from the fitted

disturbances in this way, I implicitly impose conditional homoscedasticity on the

disturbances.2 These 1,000 data sets are the basis for analysis of the TS model in

subsequent sections.

I also estimated the following AR(1) representation for

DS Model

(11.2) = .0050 + ." + ut, = .010.
(.0010) (.07)

The Q statistic at lag 36 for this equation is 24, also indicating little evidence

against the null hypothesis of no serial correlation in the disturbances. Note that,

to two significant digits, the standard deviation of the Ut's are the same as that of

the In addition, the plot of the ui's is virtually identical to that of the

and so is omitted.

I generated 1,000 data sets of ye's, each of length 158 in the same way as was

done for the TS model. In particular, the initial conditions for each simulation are

the actual ye's for the first two quarters of 1948. In addition, disturbances were

obtained by randomly drawing, without replacement, from the set {u1,...,u158}.

These data sets are the basis for the analysis of the DS model that follows.3

2Results in Hamilton (1987) indicate there may be some room to doubt this
assumption. It would be of interest to repeat the experiments in the paper with a
data generating mechanism that allows for empirically plausible conditional
heteroscedasticity in the disturbances.
3The TS and DS models are in some respects quite similar. For example, the roots
of the characteristic equation of the TS model are .91 and .38, after rounding. On
the other hand, the characteristic roots of the level representation for yt implied by
the DS model are 1 and .37. Because of the similarity of these roots, the effect of an
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III. Critical Values That Ignore Pre—test Examination of the Data.

As a first step in looking for breaks, I estimated the following T—4

regressions:

(111.1) t = + + + + it—i + +

where,

(111.2) d = 0 t = 1,2,...,i—1

= 1 t = i,i+1,...,T,

for i = 3,...,T—2. The estimation period is t = 1,...,T, with t = 0, —1 reserved for

initial conditions, and T = 158. The periods t = 1, T correspond to 1948.3 and

1987.4, respectively. The jth regression allows the slope and intercept to change at

date i. As such, it can accommodate both a discontinuous jump in the trend line or

a continuous trend with a kink at date t = i. It can achieve the latter by setting 0

= 'y(l—i). Let F denote the F statistic for testing the null hypothesis 0 = = 0, ie.,

that there is no time trend break, in period t = i. The equations in (1) where used

to compute F3,... ,FT_2, which are plotted in Figure 2. There I have highlighted

innovation on the short—term (two or three quarters) forecast horizon is very similar
between the two models; however, they differ greatly in terms of the effects on the
longer term forecast horizon. For example, according to the TS model a unit
innovation in Yt induces the following revisions to the outlook for Ys, S =
t+1,t+2,t+3,t+4: 1.3, 1.4, 1.4, 1.3. Thereafter the effect slowly tapers off to zero.
According to the DS model, on the other hand, a unit innovation to yt induces the
following revisions to the outlook for ys, s = t+1,t+2,t+3,t+4: 1.4, 1.5, 1.6, 1.6,
where it remains forever. The economic consequences of these differences at long
horizons can be great. For a discussion in the context of consumption theory, see
Deaton (1986) or Christiano (1987).
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five locally maximal F statistics. They occur on the dates 1950.1, 1965.1, 1973.2,

1980.2, and 1981.2. These F statistics are reported in Table 1, together with their

significance levels, computed in a variety of ways. The significance level in the

third column is based on the F distribution with 2

numerator and 152 denominator degrees of freedom.4 Since the significance levels of

the locally maximal F statistics are below 5 percent, the conventional test procedure

results in a finding of a statistically significant break at each of the five dates. This

can also be seen in Figure 2, where the 5 percent critical value, 3.1, of the F(2,152)

distribution is plotted.

Bootstrap critical values for the F statistics where obtained by computing F

statistics for dates i = 3,...,156 (=T—2) on each of the 1,000 artificial data sets

generated by the TS and DS models. To discuss this further I need some notation.

Denote the F statistics obtained for the th date on the rth artificial data set by

where i = 3,...,156 and r = 1,. ..,l000. Then, let

F3,1 F3,2 • F3,1000
F4,1 F4,2 • • F4,1000

(111.3) F =
: .

F156,1 F156,2 • F156,1000

The rth column of the 154x 1000 matrix F contains the 154 F statistics computed in

the rth simulation. These were computed in the same way as the 154 empirical F

statistics plotted in Figure 2. Two F matrices where computed, one based on the

1,000 artificial data sets generated by the DS model and one using the data

4The numerator degrees of freedom is the number of restrictions being tested.
These are two: 0 = = 0. The denominator degrees of freedom are the number of
observation in the regression minus the number of parameters in the unrestricted
regression, which is 6.

9



generated by the TS model. I avoid making this dependence explicit in order to

prevent the notation from becoming too cumbersome. The x% bootstrap critical

value for F is the entry in row i of F with the property that x% of the entries in

that row exceed it. Critical values corresponding to each of the TS and DS models

were computed for each of i = 3,... ,156, and some of these are reported in Table 2.

For comparison, the bottom row of that table contains the 1, 5, 10, and 20 percent

critical values of the F distribution with 2 numerator and 152 denominator degrees

of freedom. Comparing the critical values of the F distribution with the bootstrap

critical values shows that, with the exception of observations at the beginning and

end of the data set, the bootstrap distribution is shifted to the right relative to the

F distribution. Moreover, the bootstrap critical values associated with the DS

model are shifted to the right of those associated with the TS model. These shifts

are also evident in Figure 2, which plots the 5 percent critical values implied by the

TS and DS model. The fact that the bootstrap distribution is shifted to the right

relative to the F(2,152) distribution implies that using the F distribution will result

in too many rejections of the null hypothesis of no trend break.

The simulated F statistics allow me to compute bootstrap significance levels

for the empirical F statistics reported in Table 1. The columns marked TS and DS

report the significance levels assuming the data are generated by the TS and DS

models, respectively. Note that the F statistics corresponding to all dates after

1965.1 fail to be significant even at the 10 percent level relative to the bootstrap F

distributions. The 1965.1 break is not significant at the 5 percent level under either

distribution, and it is not significant even at the 20 percent level assuming the data

are stationary about trend. There is more evidence of a break in 1950.1. According

to the distribution of the F statistic implied by the TS model, the break is

significant in 1950.1 at even the one percent level. It is somewhat less significant if
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one assumes the data have a unit root, though one would still reject the null

hypothesis of no trend break at the 5 percent level. These observations can also be

made by inspecting Figure 2. Figure 3 plots the log GNP data used in the study

and also a time trend with break in 195O.l.

In sum, this section documented that the critical values from the F

distribution are far too small for testing for a break in U.S. GNP data, even if one

ignores the fact that break points being tested were determined by pretest

examination of the data. The point is dramatized in Figure 2. It shows that the 5

percent bootstrap critical values lie far above that implied by the relevant F

distribution. The shift is sufficiently large that many trend breaks that look

statistically significant relative to the F distribution are, in fact, not. The only

break points that still look as though they may be statistically significant are those

occurring in the early 1950s.

5The trend line in Figure 3 was based on estimating (111.1) by ordinary least squareswith = = 0 and i corresponding to 1950.1.
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IV. Taking Account of Pre—Test Examination of the Data.

Let B denote the date on which a trend break occurs under the alternative

hypothesis of a test. The sampling results in the previous section assumed that B

was determined independent of the data being tested. This section shows that

plausible ways of endogenizing the choice of B result in higher critical values for the

F test for a trend break. In particular, what little evidence remained in the previous

section that there is a trend break in GNP disappears completely once endogeneity

of B is taken into account.

The first subsection formally defines six ways of endogenizing B. The fact

that these models of B are explicit mathematical functions of the data reflects the

requirements of my analysis. It does not reflect a view that investigators necessarily

use mathematical formulas to determine B in practice. The hope is that the

mathematical algorithms studied approximate reasonably well the more informal

process of selecting B that investigators actually use. In many cases, they chooseB

based on a visual examination of the data, or of some related series, or based on the

suggestion of others who have done so.

After presenting the break date selection algorithms, I report the size of the

F test for a structural break when B is in fact endogenous, but the critical values

discussed in the previous section—which ignore the endogeneity of B—are used to

conduct inference. There I show that if one applies conventional testing practice,

one can find a trend break in almost all realizations from the TS and DS models. In

the third subsection I report pre—test adjusted critical values for the F statistic.

There I report maximal critical values which have the property that if they indicate

8The size of a test is the probability of falsely rejecting the null hypothesis.
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rejecting the null hypothesis of no trend break, then one can do so without fear of

that the probability of a false rejection is unduly high.

IV.a Six Break Date Selection Methods Defined

The first three of the six algorithms for choosing B selects the maximal F

statistic from a subset of dates in the sample. Each is a special case of what I call

the F Max method. The first of these, called the F Maxuntr method, selects the

maximal F statistics from the untruncated set {F3,...,F156}. As is clear from

Figure 2, the empirical break date chosen by F Maxuntr is 1950.1. Inspection of

Figure 3 suggests that it is not at all implausible that an investigator examining the

post war GNP data might conjecture that a large jump in the economy's trend

might have occurred around that date. However, this is not the only plausible

mechanism for endogenizing the selection of the break date, since others have

investigated the hypothesis that a break occurred at other dates, such as 1973.2.

Evidently, F does not approximate well the method used by these

investigators. Following are two simple algorithms that can account for the choice

of 1973.2 as a date to test for a trend break. The first captures a suspicion felt by

many that a trend break occurred in the early 1970's as a consequence of the first oil

shock. That algorithm, called F Max011, identifies the break date with the date °n

which max {F99,...,F122} occurs. This corresponds to the interval of time 1973.1 to

1978.4, inclusive. Another break date selection method, F Max19708, selects the date

on which max {F87,... ,F126} occurs. The dates t = 87 to 126 correspond to the

interval 1970.1 to 1979.4. The rationale for F Max19708 is that it reflects the sense

that there has been a "productivity slowdown" in the 1970's, whose exact date is

unknown. Evidently, both F Max011 and F Max19io choose 1973.2 as the empirical
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break date. An advantage of studying F Maxuntr, F Max0i, and F Max19708 is that

it permits judging the sensitivity of critical values to the width of the interval over

which one looks for a maximal F statistic.

The three other break date selection algorithms are motivated by the

observation, evident in Figure 2, that under the null hypothesis of no trend break, F

statistics for different B's are realizations from different distributions. In particular,

the distribution of F's corresponding to B's in the middle of the data set are shifted

to the right relative to F's at the beginning and end. This suggests that a more

plausible break date selection algorithm is not to choose the date of the maximal F

statistic, but instead the date on which the F statistic with smallest significance

level occurs. Thus, if an F statistic early in the data set is smaller than one

somewhere in the middle, it might make more sense to select the former as the most

likely break date if its significance level under the null hypothesis of no break is

smaller. For example, according to Table 1 the F statistic for B 1973.2 exceeds

that for B = 1979.4, although the significance level of the latter is less than that of

the former.

Three minimum significance level techniques for selecting B where chosen by

analogy with the three discussed in the previous paragraph. In particular, the Mm

Siguntr method selects the date from the period 1949.1 to 1987.2 with the F statistic

having the smallest significance level. Similarly, Mm Sig0i limits the break date to

occurring in the period 1973.1 — 1978.4 and Mm Sigi9io limits it to the period

1970.1 — 1979.4. Since the significance level is a function of the model of the null

hypothesis, there is a set of Mm Sig methods corresponding to the TS model and

one corresponding to the DS model.

When the untruncated sample is considered, both the DS and TS versions of

the Mm Siguntr method select 1950.1 as the break. The DS version of Mm Sig0i
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chooses 1978.3 as the most likely date of the break, while the TS version selects

1973.2. Finally, both the DS and TS versions of Mm Sigi97o select 1979.4 as the

most likely date of the break. I do not make the notation for Mm Sig explicitly

reflect whether it is based on the DS or TS model in order to avoid proliferating

symbols.

IV.b Impact on Size of Endogenizing the Choice of Break Date.

Table 3 reports the size of F tests for trend breaks which ignore pre—test data

examination when in fact one of the six break date selection methods introduced in

the last section are used. There are three panels in Table 3, each of which

corresponds to a different subset of dates from which break dates were picked.

There are seven columns. Columns 2 — 5 pertain to the F Max method, whereas

columns 6 and 7 pertain to the Mm Sig method. Numbers in italics are results

based on the TS model, and the numbers in columns 2, 4, and 6 are based on the DS

model. Each number in columns 2 and 3 is the fraction of times out of 1,000 that

the F Max F statistic exceeds the critical value of indicated size from the F(2,152)

distribution. Results in columns 4 and 5 are the fraction of times that the bootstrap

critical values discussed in section III are exceeded. Columns 6 and 7 report the

fraction of times that the minimum significance level is below the corresponding

significance level in column 1.

The most dramatic results appear in the first column of Panel A in Table 3.

This shows that when the data are generated by the TS model, the break date is

selected by the F method, and the conventional practice of using critical

values from the F distribution is followed, then a test with nominal 5 percent size in

fact has size 98 percent. When the data are generated by the DS model, then the
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size of this test is 100 percent, after rounding. Of course, this enormous frequency

of rejections reflects in part the fact—demonstrated in section Ill—that the critical

values of the F distribution are far too small, even when B is exogenous. Once this

is taken into account, then the size of the F test falls, as is indicated in columns 4

and 5. Nevertheless, the size continues to be extremely large. For example the size

of the F test based on a break date selected by the F Maxuntr method, which uses

the pre—test unadjusted bootstrap critical values with 5 percent nominal size, in fact

has size 65 percent. Looking at panels B and C, we see that as the interval of dates

from which the break date is selected shrinks, the size of the pre—test unadjusted

test falls. However, even when only the six year period 1973.1 — 1978.4 is

considered, the size of the nominal 5 percent test is still around 20 percent. Of

course, in the limit as the interval of dates shrinks to unity, the sizeof the tests

based on the bootstrap critical values converge by construction to the nominal size

of the test. The size of the pre—test unadjusted F test when the Mm Sig method of

selecting break dates is used is roughly the same as the size of the F Max method.

Where the two differ, it is always the size of Mm Sig that is the larger, by

construction.

IV.c Critical Values of Pre—Test Adjusted Tests for Trend Break

Critical values of the F test for trend break which reflect the several ways of

endogenizing B discussed in subsection IV.a are reported in Table 4. Not

surprisingly, it takes a much larger F statistic to reject the null hypothesis 0 = =

0 when the break date has been selected as a function of the data than when it has

not. For example, when the break date is selected by the F Maxuntr method and

the null hypothesis is the TS model, then it takes an F statistic of 9.0 to reject the
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null hypothesis at the 10 percent level. This is to be compared with the 4.3 critical

value that applies if the break date is selected exogenously to be in the middle of the

sample. Alternatively, if the break date is selected by Mm Siguntr then the F

statistic has to have an unadjusted significance level of .2 percent to be significant

at the 10 percent level. The critical values in the Table can be used to assess the

significance of the empirical F statistics reported in Table 1.

Consider first the possibility of a break in 1950.1. This date was chosen as

the most likely break date by both F Maxuntr and Mm Siguntr. Relative to the DS

model, a maximal F statistic of 6.14 is actually quite small, having a significance

level around 70 percent (see panel A, Table 4.) This contrasts sharply with the 1.1

percent significance level implied by the pre—test unadjusted bootstrap critical value

and the .3 percent significance level implied by the F distribution (see Table 1.)

Similarly a maximal F statistic of 6.14 has a significance level in excess of 40

percent relative to the TS distribution. Thus, in fact there is no basis for rejecting

the null hypothesis of a trend break in 1950.1. This stands in striking contrast with

the implications of the conventional testing methodology, which would result in a

finding that the evidence of a trend break is considerable. This result is dramatized

in Figure 2, which shows how much the pre—test adjusted 5 percent critical values

exceed all the empirical F statistics.

There is also no basis for rejecting the null hypothesis of a break at any of

the other dates listed in Table 1 at the conventional 5 percent level. This is true

even before taking pre—test data examination into account. When this is done, the

significance levels of the test statistic rise, making it only harder to reject the null

hypothesis. It is, nevertheless, instructive to investigate the case for a break in

1973.2.

The evidence pertaining to the possibility of a trend break having occurred in

17



1973.2 is collected in Table 5. That table illustrates the central points of this paper.

The first three columns are taken from Table 1 for ease of comparison. As noted

previously, they illustrate how much the F distribution understates the significance

level of a trend break. The right four columns show how failure to take pre—test

examination of the data into account also results in understating the significance

levels. If the 1973.2 break date had been selected from the oil shock period, then

the significance level is between 40 and 60 percent, depending on whether one

interprets the F statistic relative to the TS or the DS model. If instead the 1973.2

break date was selected after inspecting all dates in the 1970s, then the significance

level jumps even further, to the 60 to 75 percent range. Besides showing that there

is absolutely no statistical evidence against the null hypothesis 0 = = 0 in 1973.2,

the results illustrate the difficulty of assigning a precise pre—test adjusted

significance to an F statistic. A researcher may report that he/she selected the

1973.2 date by examining a very limited set of dates only, however there might still

be room to wonder whether the researcher's choice was influenced by the advice of

someone else who suggested looking for a break in 1973 based on examining all the

data in the 1970s, or even more data. As Table 5 shows, whether or not the latter is

true has a quantitatively large impact on the significance level of the F statistic.

Although in the present case this impact does not affect the outcome—that there is

no evidence of a break—one can imagine other cases where it does. This problem is

avoided if the investigator were required to present a break date selection algorithm

which selects his/her break date as a function of all the observations (eg., F

Maxuntr), and perhaps observations on some other data series as well. In the

present case, those who argue for a single trend break in 1973.2 would have to argue

why that is the most likely date for a break and not, for example, 1950.1 or 1965.1.

The researcher's break date selection algorithm could then be used to compute the
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significance level of the test statistic for a break.
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V. Perron's Modified Dickey—Fuller Test For a Trend Break.

Perron (1987) and Rappoport and Reichlin (1987) argue that the failure of

the Dickey—Fuller test to reject the unit root hypothesis reflects not thepresence of

the unit root, but instead that the data are trend stationary about a broken trend.

Perron (1987) proposes a modification to the Dickey—Fuller test which permits,

under the alternative to the unit root null hypothesis, that the data are stationary

about a broken trend. He tabulates a set of critical values for his test statistic

which assume that the break date is picked exogenously. When these critical values

are used to interpret his test statistic computed using post war U.S. GNP data, the

unit root hypothesis is rejected against the broken trend alternative at the 10

percent level. This section shows that when the critical values are pre—test

adjusted, then the unit root hypothesis can be rejected at only the 15 to 30 percent

level, depending on the exact break date selection algorithm used. Thus, like the F

test of the previous sections, the Perron statistic offers no evidence of a trend break

in post war GNP.

In the context of postwar, quarterly U.S. GNP, Perron proposes estimating

the following augmented Dickey—Fuller regression:

(V.1) = + Od + /3t + 7dxt + + c1y_1 + c2y_2,

where d is defined in (II.2).8 Under the null hypothesis of Perron's modified

7Perron applies his test to many other data series, and reports evidence of trend
breaks. It may well be that those results are robust to date break selection
considerations. It would be of interest to investigate this.
81n some contexts, Perron advises imposing the restriction 0 = y(1—i). In this case,
the alternative hypothesis is a model with continuous trend, but a possible change
in slope at date i.
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Dickey—Fuller test, 9 = = a = fi = 0. In this case, (1) is a difference stationary

model which, when c2 = 0, reduces to the DS model of this paper. Perron

recommends comparing the t statistic on a, ta with the critical values tabulated in

his paper. In the light of the analysis of the F test in section II, it is not surprising

that those critical values depend on the date, B, on which the trend break is

permitted to occur under the alternative hypothesis. Asymptotic critical values for

ta relevant when the break date is exogenously set at 1973.2 are reported in the first

row of Table 6. These are taken from Perron. The second row of Table 6 reports

bootstrap critical values for ta computed using the 1,000 data sets generated by the

DS model described in section II. Note the similarity of these two sets of critical

values. Thus, unlike the F statistic, the Perron statistic has roughly the same

sampling distribution in a sample the length of post war quarterly data as it does

asymptotically. Subsequent rows in Table 6 provide pre—test adjusted critical

values for a variety of break date selection algorithms. The first three are the three

F Max algorithms discussed in the previous section. Results for the Mm Sig

algorithm are not reported since they are roughly the same as those for the F Max

method. The last three rows in Table 6 report results based on the Mm ta break

date selection method. It selects break dates to minimize ta over the indicated set

of dates.

Table 6 indicates that the effect of selecting the break date as a function of

the data being tested is to increase the likelihood that Perron's version of the

Dickey—Fuller regression will spuriously reject the unit root specification in favor of

the broken trend alternative. This is because the pre—test adjusted critical values

exceed the unadjusted critical values.9 Note that the critical values implied by the

9The pre—test unadjusted critical values in Table 6 assume a break date near the
middle of the sample. These critical values are larger than those closer to the
beginning or the end of the sample (see Table 5B in Perron). Consequently, the
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Mm t break date selection procedure are roughly the same as those implied by F

Max. Where there is a difference, the Mm t critical values are larger, by

construction.

The column marked ta Table 7 reports empirical values oft and associated

significance levels, under alternative break date selection mechanisms. The numbers

in braces in that column report the expected value of t. Expected values and

significance levels were computed using the 1,000 data sets generated by the DS

model. The break date preferred by Perron is 1973.2. The first row of Table 7

reports that t for that date is —3.94, and that the probability is only 8 percent of

getting a value of t smaller than —3.94 in the 100th date (1973.2) of a sample

generated by the DS model. The expected value of ta is —2.81, and this evidently is

quite far from the empirical value of —3.94. Thus, the null hypothesis is rejected at

the 9 percent significance level, assuming 1973.2 is picked exogenously.

Subsequent rows in Table 7 report pre—test adjusted results. Consider first

the results corresponding to F Max197o and F Max01. As noted before, these two

break date selection procedures rationalize picking 1973.2 as a break date. However

they assign very difference significance levels to the empirical estimate of t =

—3.94. For example, F Ma.x19io assigns it a significance level of 23 percent. If we

evaluate t = —3.94 relative to this break date selection procedure, then the null

hypothesis cannot be rejected at even the 20 percent significance level. Not

surprisingly, the significance level drops if ta = —3.94 is evaluated relative to F

Max01. In that case one can reject the null hypothesis at the 20 percent level,

although not at the 15 percent level. The two untruncated break date selection

algorithms pick different dates. According to Mm tufltr the most likely break date

pre—test adjusted critical values in Table 6 exceed these other unadjusted critical
values by even more.
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is 1965.1, whereas F Maxuntr identifies 1950.1 as the most like break date. The

associated significance levels are 18 and 34 percent. Here too, there is no evidence

of a statistically significant break.

The last column in Table 7 reports the results of a chi—square test of the null

hypothesis 9 = = = a = 0. The chi square statistic is 16.99 when B is set to

1973.2. The first row reports that the significance level of 16.99 is 11 percent when

the break date is treated as though it had been selected exogenously. When instead

it is interpreted relative to the F Max selection procedure, 16.99 has a significance

level of 27 or 39 percent. In fact, the null hypothesis cannot be rejected at even the

20 percent level relative to any of the break date procedures. Evidently, this test

also delivers no evidence of a trend break in post war U.S. GNP.
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VI. Conclusion

This paper has tested the null hypothesis that the parameters of the time

series model for GNP have been stable during the post war period against the

alternative that there has been a one time break in trend. A variety of test

statistics were presented and none can reject the null hypothesis at even the 15

percent level. In reaching this conclusion a pitfall that confronts tests for structura

break was identified, and a bootstrap simulation methodology for overcoming it

applied. The problem arises because the standard sampling theory used to interpre

tests for structural break assumes, implausibly, that the date of the break is chosen

independent of prior information about the data, or some related series. In practic€

researchers use a combination of visual examination of data plots, consultation witl

colleagues, and formal techniques to select a break date which is then tested for

statistical significance. I showed that whether or not the computed statistical

significance level takes into account pre—test examination of the data can make a

drastic difference. For example, the F statistic of the null hypothesis that a trend

break occurred in 1950.1 is 6.14. This statistic has significance level .5 percent

under the null hypothesis that post—war log GNP data are stationary about an

unbroken linear trend and assuming that the date 1950.1 was chosen exogenously.

With such a low significance level one would ordinarily reject the no break null

hypothesis easily. However, a critical assumption underlying such an inference fails

The date 1950.1 was not picked at random. Instead it was chosen because it is the

date in the sample which produces the largest F statistic testing for a break. When

this is properly taken into account, the significance level of the 6.14 F statistic

jumps from .5 percent to over 40 percent.
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Table 1: Selected Empirical F Statistics
and their Significance Levels

Pre—test Unadjusted Significance Level2
Break Date F Statistic' F(2152)3 TS4

1950.1* 6.14 .003 .005 .011
1965.1* 4.44 .013 .083 .233

1973.2* 3.17 .045 .162 .348
1978.3 2.74 .068 .179 .304
1979.4 3.06 .050 .13j .225
1980.2* 3.41 .036 .121 .189
1981.2* 3.15 .046 .127 .183

'Empirical F statistics testing for a trend break in the period indicated in column 1.
2Significance level assuming break date is selected without prior examination of the
data being tested.
3Significance level of the associated column 2 F statistic using the F distribution
with 2 numerator and 152 denominator degrees of freedom.
4Significance level of the associated column 2 F statistic assuming the data are
generated by the TS model described in section II.
5Significance level of the associated column 2 F statistic assuming the data are
generated by the DS model described in section II.
*These dates are highlighted in Figure 2.

Table 2: Critical Values of F Statistic'

t/158 date DS Model TS Modeli !Q
.02 49,1 6.3 3.5 2.5 1.6 5.4 3.6 2.7 1.6
.10 52,2 6.5 4.3 3.4 2.5 5.8 4.0 3.3 2.2
.20 56,2 7.7 5.9 4.8 3.4 6.9 4.9 3.9 2.8
.30 60,1 9.3 6.4 5.1 4.1 7.2 5.5 4.1 2.9
.40 64,1 10.0 7.1 6.0 4.8 7.5 5.4 4.3 3.0
.50 68,1 10.6 7.7 6.1 4.8 7.7 5.5 4.3 3.2
.60 72,1 10.0 7.5 6.1 4.8 8.1 5.0 4.1 9.0
.70 76,1 9.4 6.7 5.4 3.9 6.4 4.7 3.9 2.8
.80 79,4 8.6 5.9 4.6 3.2 6.9 4.6 3.6 2.5
.90 83,4 7.2 4.7 3.6 2.3 6.3 3.9 3.0 2.0
.99 87 1 5.6 3.1 2.3 1.6 5.3 3.2 2.3 1.6

F(2,152 4.8 3.1 2.3 1.6

'Rows 1 — 11 provide the critical values, for the indicated set of dates
(year,quarter), size and data generating mechanism, of simulated F statistics. The
last row provides the critical values of the F distribution with 2 numerator and 152
denominator degrees of freedom.
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Table 3: Size of Pretest Unadjusted Trend Break Tests
When Break Dates are Selected Endogenously and the
Data Are Generated by the DS Model and TS Model'

Nominal Size2 F Max Method Mm Sig Methods
F(2,152) Bootstrap

Critical Values3 Critical Values4

A. Untruncated Break Date Selection Methods 6

1% .91 .73 .27 .29 .30 .31
5% 1.00 .98 .65 .72 .76 .76

10% 1.00 1.00 .83 .91 .92 .94
20% 1.00 1.00 .95 .99 .99 .99

B. Productivity Slowdown Break Date (1970s)7

1% .50 .31 .07 .09 .08 .09
5% .76 .60 .24 .28 .25 .29

10% .86 .76 .39 .45 .40 .45
20% .95 .89 .59 .65 .61 .66

C. Oil Shock Break Date8

1% .38 .21 .05 .06 .05 .06
5% .63 .5 .17 .20 .17 .20

10% .74 .60 .29 .32 .30 .32
20% .87 .77 .47 .52 .48 .52

'Frequency of times, out of 1000, that the null hypothesis, 0 = = 0 is rejected
when i in equation (111.1) is chosen by one of the six methods described in
subsection IV.a. The italicized numbers are the results obtained when the TS
model was the data generating mechanism, the other results are based on the DS
model.
2Size of critical value used to assess the presence of a break. This size ignores that
the break date itself was chosen as a function of the data prior to executing the
test.
3Presence of a break is tested by comparing F Max with the critical values of the
F(2,152) distribution, which are reported in the bottom row of Table 1.
4 Max is compared with the bootstrap critical values for the F statistic discussed
in section III, and reported for selected dates in Table 1.
5Frequency of times that the minimum significance level is below the indicated
nominal significance level.
6Untruncated break date selection methods consider the possibility of a break in
dates 3,...,156.
TBreak dates chosen from the restricted interval t = 87,...,126, which corresponds
to 1970.1 — 1979.4.
8Break dates chosen from the restricted interval t = 99,...,122, which corresponds
to 1973.1 — 1978.4.
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Table 4: Critical Values of Pre—Test
Adjusted Tests for Structural Break

DS Model and TS Model1

Break Date
Selection
Method 1Q2&

A. Data Generating Mechanism: DS Model
F Max2

Untruncated 15.5 12.7 11.3 9.7 6.1 5.6 4.8 3.4
1970's 14.6 10.5 9.1 7.4 3.5 2.8 2.1 1.0
Oil Shock 13.0 9.6 8.2 6.3 2.6 2.0 1.4 0.5

Mm Sig3

Untruncated 0.0 0.1 0.2 0.5 4.2 5.8 8.8 18.4
1970's 0.1 0.5 1.3 3.6 27.3 36.4 47.7 71.3
Oil Shock 0.1 1.0 2.3 6.0 37.9 47.9 61.3 82.4

B. Data Generating Mechanism: TS Model
F Max

Untruncated 12.8 10.2 9.0 7.8 4.9 4.3 8.8 2.7
1970's 10.8 8.2 7.1 5.8 2.6 2.1 1.5 0.7
Oil Shock 10.4 7.3 6.0 4.9 1.9 1.4 1.0 0.5

Mm Sig

TJntruncated 0.0 0.0 0.2 0.5 4.0 5.7 8.0 15.9
1970's 0.0 0.5 1.! 2.7 22.0 50.3 42.5 66.5
Oil Shock 0.1 0.8 1.8 5.0 55.0 44.0 57.2 76.8

Ix is a y% critical value if the probability (here defined as frequency, out of 1000
trials) of exceeding x is y%, under the null hypothesis. In panel A the null
hypothesis is the DS model, and in panel B it is the TS model.
2The critical values for F Max were obtained as follows. First in each of the DS and
TS cases, the 1000 simulated F Max statistics were ranked, with the smallest one
ranked 1 and the largest ranked 1000. The F Max statistic with rank 990 is the 1%
critical value, the one with rank 950 is the 5% critical value, and so on.
3The critical values for Mm Sig were obtained in the same way as for the F Max
critical values. That is, in each of the DS and TS cases the 1000 simulated Mm Sig
statistics were ranked, with the smallest one ranked 1 and the largest ranked 1000.
The Mm Sig statistic with rank 990 is the 1% critical value.
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Table 5: Significance Level of 3.17 F Statistic
Testing a Trend Break in 1973.2

Pre—test Unadjusted' Pre—test Adjusted2
F Max01 F Max,g7o

F(2,152) TS DS TS DS TS DS

.045 162 .348 .SO .607 .58 .746

'Entries in these columns are taken from Table 1.
2Entries under F Max0i are the fraction of times, out of 1,000, that the F Max011
statistic exceeded the empirical F statistic. This was computed relative to the
artificial data generated by the TS and DS models, as indicated. The entries under
F Max1gio were obtained in a similar way, based on the simulated F Max,gro
statistics.

Table 6: Critical Values of ta

Break Date
Selection
Method

1973.2(asymptotic)2 —4.84 —4.22 —3.92
1973.2 —4.91 —4.23 —3.88 —3.51

F Max
untruncated —5.86 —5.23 —4.86 —4.45
1970's —5.34 —4.79 —4.42 '-4.00
oil shock —5.18 —4.62 —4.25 —3.81

Mm ta
untruncated —5.86 —5.23 —4.93 -4.55
1970's —5.38 —4.82 —4.46 —4.10
oil shock —5.18 —4.66 —4.28 —3.88

IWith the exception of the results in the first row, the data generating mechanism
underlying the results in this table is the DS model. Critical values are for the t
statistic on a in (V.1) with k = 2.
2Computed by interpolating the relevant entries in the A = 0.6 and A = 0.7 columns
in Perron (1987,Table 5B). Weights of .7 and .3 were assigned to the A = 0.6 and A
= 0.7 columns, reflecting that 1973.2 roughly corresponds to a value of A = 0.63.
Here, A is the ratio of the break date to the number of observations in the sample.
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Table 7: Point Estimates. (Significance Levels), and {Exected Values)
of Two t Statistics Based on the Following Regression Equation:'

= p + 1kl + fit + 'd'xt + + ciIy 1 + c2zyt_2.

(Ot<B
dB=(lt�B

Break Date
Selection Empirical
Method Break Date. B

1973.2 1973.2 —3.94 16.99
(.08) (.11

{—2.81} {n.57
F Max

Untruncated 1950.1 -.4.09 20.29
(.34) (.46

{—3.7o} {2o.so

1970s 1973.2 —3.94 16.99
(.23) (.39

{—3.28) {16.2o

oil shock 1973.2 —3.94 16.99
(.16) (.27

{—3.06} {14.51

Mm t
Untruncated 1965.1 —4.63 20.54

(.18) (.36
{—4.ol} {19.28

1970s 1974.1 —3.96 16.23
(.25) (.40

{—3.43} {15.48

oil shock 1974.1 —396 16.23
(.18) (.28

____________________________________ {—3.20} {13.88

'The data generating mechanism for expected values and significance levels is the
DS model.
2\ is the likelihood ratio statistic for testing the null hypothesis 0 = = = = 0.
It is computed as \ = (T_c)(o.2 - o- ), where T is the number of observations in the
sample (T = 157), c (=7) is a correction for small sample bias (see Sims[1980,p.17J),

and are the sum of squared errors in the restricted and unrestricted
regressions, respectively.
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