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I.  Introduction 

For most, peer review has always been a pillar of the scientific enterprise. 

Recent attacks on the U.S. federal-funding system, however, have questioned 

whether peer review identifies the best science (Stahel and Moore 2014; Fang and 

Casadevall 2016; Fang, Bowen, and Casadevall 2016; Gallo, Sullivan, and Glisson 

2016; Li and Agha 2015; Li 2017). This is not the first time the peer-review system 

has come into question (Gustafson 1975; Roy 1985; McNutt et al. 1990; Travis and 

Collins 1991; Godlee, Gale, and Martyn 1998; Wessely 1998; Smith 2006; Costello 

2010). In fact, in 1975 Congress conducted a public debate during the National 

Science Foundation Peer Review Special Oversight Hearings to evaluate the role 

of peer review in federal scientific funding. For the most part, it concluded that peer 

review, compared with all other options (including agency discretion), worked as 

expected (Baldwin 2018). Gustafson (1975, 1065) argued that “for most types of 

fundamental research the traditional project grant, selected by peer review, with 

overall priority among fields and subfields determined at least in part by proposal 

pressure, appears to provide the best available guarantee of scientific merit and 

accurate information.” In this paper, we study the funding decisions at the National 

Institutes of Health (NIH) and examine whether discretion or peer review is more 

effective at identifying future engagement in science. Our results show that peer 

review identifies future success more often than program officer discretion. 

Whether today or in the past, questions continue as to whether the peer review 

system functions like an old boys’ club. On the one hand, we are lucky that in recent 

decades the number of scientists in the U.S. has been greater than at any other time 
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in history, as more and more get trained and fewer leave the larger ecosystem of 

science when they reach retirement age (Heggeness et al. 2016, 2017; Blau and 

Weinberg 2017). More scientists means more intellect being poured into scientific 

advancements and the betterment of humankind—not only in academia but in 

industry and government as well. However, more scientists also suggests increased 

competition—especially for academic science positions (Tilghman and Rockey 

2012)—and competition has been heating up for scientific grant funding.  Even 

those with low percentile scores on grant applications are finding themselves out of 

the loop and unfunded. Frustrated with a system that is not able to fund as many 

high-quality science projects as are out there, peer review continues to be debated 

(Scarpa 2006; Marsh, Upali, and Bond 2008; Fang and Casadevall 2016; Fang, 

Bowen, and Casadevall 2016).  

While it may seem like the peer-review system has always been an integral part 

of the scientific machinery, throughout history journal editors and program 

managers have exercised varying levels of discretion. In fact, scientific funding and 

journal review have a much longer history of relying on funding managers and 

journal editors to make discretionary decisions about what constitutes good science. 

These discretionary decisions made by leaders within the scientific community 

drove much of what we knew as scientific advancements well into the 1970s (Smith 

2006; Benos et al. 2007; Baldwin 2018).  The question remains: Do scientific 

leaders in control of grant funding (and, more broadly, journal publications) 

identify quality science and future superstar scientists more precisely than the 

current peer-review system? 
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While the issue of peer review in journal publications is equally relevant, its 

role is different. Journal editors aim to identify whether an already-completed 

scientific manuscript is novel enough to count as a solid contribution to their 

journal. In most cases, scientific funding agencies do not know what the results of 

the proposed project will be and whether it will, in fact, produce results. Funding 

agencies rely on the scientific track record of the principal investigator and 

educated opinions about whether the idea is robust and worthy enough to fund. 

Since scientific funding decisions occur at the first stage of an innovation and are, 

by nature, a riskier proposition, there is more nuance in determining what will turn 

out to be novel science. For this reason, we focus on identifying the impact of peer 

review at an innovative endeavor’s first stage of development. 

The U.S. federal government is a major contributor to the advancement of the 

scientific enterprise. Federal agencies that fund scientific research include the 

National Institutes of Health (NIH), National Science Foundation (NSF), Defense 

Advanced Research Projects Agency (DARPA), Advanced Research Projects 

Agency-Energy (ARPA-E), United States Department of Agriculture (USDA), and 

a handful of other agencies. NIH, the largest scientific agency in the world, is by 

far the primary federal funder of biomedical research. Each year it provides over 

$39.2 billion in funding.1 The NIH budget has increased since 2013 and more than 

doubled since 2000.2 While NIH is the primary funder, other agencies also 

distribute funds for biomedical and scientific research, and while each agency has 

 

1For more information, see https://www.nih.gov/about-nih/what-we-do/budget  
2For more information, see 

https://officeofbudget.od.nih.gov/pdfs/FY19/Approp%20History%20by%20IC%20FY%202000%

20-%20FY%202019%20(V3).pdf  

https://www.nih.gov/about-nih/what-we-do/budget
https://officeofbudget.od.nih.gov/pdfs/FY19/Approp%20History%20by%20IC%20FY%202000%20-%20FY%202019%20(V3).pdf
https://officeofbudget.od.nih.gov/pdfs/FY19/Approp%20History%20by%20IC%20FY%202000%20-%20FY%202019%20(V3).pdf
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its own system, the systems have similarities. For example, most agencies send a 

proportion of proposals out for external review, and all have program officers who 

manage the grant portfolios and help ensure the research funded meets the priorities 

of the organization. Nevertheless, given the immense size of the NIH funding 

portfolio, and the fact that the review process is the same across all institutes at the 

NIH, it is critically important to understand how discretion operates in conjunction 

with the peer review process. 

Peer review is often seen as a singular and independent method to produce high-

quality evaluations of scientific projects potentially worth funding. In reality, no 

peer-review system mechanically follows rules all the time. Owing to the nature of 

science and the federal managers’ responsibility to hold scientists accountable, 

there is and always will be some element of discretion within the grant-awarding 

system. All federal agencies have some sort of two-step decision-making process 

where expert opinion is sought through peer review, then internal deliberations are 

undertaken with agency leaders and scientific-program staff, and finally budgets 

are explored. All these steps occur before any final decisions are made. The relevant 

questions to ask are, (1) How much discretion exists?  (2) How is it documented? 

And (3) what implications does the level of discretion have on the future of science? 

We take advantage of this type of two-stage review to examine the effectiveness 

of peer review versus that of discretion in identifying successful scientists. Using 

data from administrative records on applicants and awardees of a prestigious 

fellowship program at the NIH between 1996 and 2008, we compare the outcomes 

of applicants chosen with discretion with those of applicants chosen through peer 
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review. In many cases, the NIH uses discretion in awarding grants, and this is 

particularly true when awarding the Ruth L. Kirschstein National Research Service 

Award (NRSA) F32 fellowships. As a result, we can categorize individuals who 

were “skipped over” and those “reached for” in discretionary decisions made by 

program and institute staff and identify how the peer review system performs 

compared with discretion. We use the scoring of fellowship applications and 

matching techniques that allow us to analyze a limited set of outcomes for 

individuals who received the fellowship and for those whose application scores and 

observable characteristics are similar, but who did not receive an award.  

Our study makes two contributions. First, by comparing the applications of 

individuals who are deemed high quality by peer review but “skipped” in the 

funding process with those of individuals who are “reached for” through 

discretionary decisions by program officers and institute leadership, we show that 

peer review predicts future NIH research awards at a higher rate than discretion. 

Second, although in theory the method of awarding funding appears consistent with 

a regression discontinuity design (RDD), we demonstrate that in practice RDD is 

not an appropriate method to study scientific awards where high levels of discretion 

exist in the decision-making process. RDD is not an appropriate method in this 

environment because discretion drives the second stage of decision making.  In 

addition, NIH institute budgets are semi-fluid. Within agencies, funds shift between 

first-, second-, and third-round funding opportunities and, in some instances, 

between programs as funders examine the quality and depth of projects in each 

round.  
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The paper proceeds as follows. Section II summarizes the historical use of 

discretion and peer review and describes why the federal grant-selection process 

does not always fit the mold of a discontinuous kink at an agency budget line for 

funding along some peer-evaluated score. Section III describes the methods we 

employ and data we use. Section IV analyzes the results comparing the career 

outcomes of those who were chosen with programmatic discretion versus those who 

were chosen through peer review. Section V is a discussion, and Section VI 

concludes. 

 

II. Background 

A. Scientific Funding, Discretion, and Peer Review 

Scientific peer-review systems began to appear in the United States in the 

1940s, driven by federal scientific agencies (Azoulay, Graff Zivin, and Manso 

2013; Farrell, Farrell, and Farrell 2017). At its core, peer review provides a 

systematic process for scientific evaluation driven by the expertise and experience 

of an extramural community of experts. Its main goal is to provide guidance, 

direction, and leadership to federal agencies in selecting the most promising 

scientific research proposals for funding. Today, it is embedded within the scientific 

enterprise as a strong institutional norm and has been driving scientific-funding 

decisions since the 1970s (Baldwin 2018). While it is a foundation of much 

scientific activity, peer review “in theory” often looks different than peer review 

“in practice.” Throughout history, scientific institutions have continually made 
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discretionary decisions regarding which scientific proposals to fund and where to 

allocate scarce resources.  

Discretion, however, may come at a cost. Past studies have shown that actuarial 

judgement outperforms clinical assessments (Dawes, Faust, and Meehl 1989). 

More recent studies have highlighted how human discretion in hiring can lead to 

less-than-average hiring outcomes (Hoffman, Kahn, and Li 2018) and how judicial 

discretion in criminal courts may lead to increased crime or increased jailing 

(Kleinberg et al. 2018).  

Baldwin documents large amounts of discretion at the initiation of scientific 

peer review in the 1940s on the part of federal agencies like the National Institutes 

of Health: 

When the U.S. government formed the National Institutes of Health 

(NIH) in 1948, its Division of Research Grants initially evaluated 

grant applications with little or no consultation from outside 

referees. Instead, each application went first to a small “study 

section” composed of NIH-affiliated scientific experts in a particular 

field. From there, the study sections’ recommendations were 

forwarded to an NIH council of scientists and laymen, which added 

its own recommendations. Final decision-making power rested in 

the hands of the institute directors, heads of NIH member 

institutions such as the National Cancer Institute and the National 

Eye Institute. While the directors took the earlier evaluations into 

account, they were not obligated to follow the recommendations of 

the study sections or the council. Furthermore, NIH applicants 

would receive little information about why their grants had been 

accepted or rejected. Deliberations about the grants were considered 

confidential and internal to the NIH. (2018, 545) 

 

With time and criticism against agencies mounting, peer review gained momentum 

and played an increasingly dominant role in selection of awards, but always within 

the bounds of discretion and the agency’s ability and desire to fund promising, high-

priority research. Baldwin notes that some continued to endorse “the older system 
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of using . . . peer review reports as advisory documents, saying . . . peer review has 

its uses as a first round of proposal screening, but it does not absolve the 

Government program manager from full responsibility for the decision to fund or 

reject a proposal. . . . There are some things that we should not ask of peer review. 

We should not ask it to take Government agencies off the hook on the question of 

protecting the public purse” (556). 

The back-and-forth discussion of the peer review’s role in federal funding ebbs 

and flows. Peer review’s relevance continued to increase from the 1940s to the 

1970s—when most, if not all, agencies established a formalized peer review 

system. While congressional hearings in 1975 concluded that peer review was the 

fairest and best way to allocate scientific funding (compared with agency 

discretion), some scientists were seeing a challenge to the full use of peer review in 

resource allocation. Gustafson (1975) writes, “Even in the programs in which 

external peer review panels have the greatest sway, there appears to be the 

opportunity for the agency staff to influence the process of proposal evaluation by 

shaping the agenda, channeling the flow of information to and from the outside 

advisers, or actually altering or overriding their decisions. In the NIH this influence 

is discreet and informal, while in the NSF it is usually more important than that of 

the external advisers. In both agencies, the importance of the professional staff 

appears to be growing” (1064). In fact, within the NIH, a wide range of variation 

in discretion exists depending on both the grant mechanism and the institute 

funding the research. 
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Smith (2006), decades later, argued against any reality of peer review being 

independently operational, highlighting challenges even in the existence of an 

agreed-upon operational definition of peer review. If, as Smith states, peer review 

is challenging to operationally define, how might we expect it to be the primary and 

sole driver of a grant-award system in practice? Regardless of the challenges, the 

NIH began enhancing the peer review program in 2007. The measures it took 

included incorporating process and change phases and shortened, restructured 

applications in an effort to “fund the best science, by the best scientists, with the 

least amount of administrative burden” (NIH 2011). Below, we further highlight 

how federal agencies handle peer review and the allocation of resources, which we 

argue always includes a peer-review process mixed with the discretionary priorities 

of the agency and program staff.  

 

B. The Value of Peer Review 

Studies have attempted to detangle the value of peer review in selecting the 

best, most innovative science. Li and Agha (2015) studied risk aversion in peer 

review. Specifically, they examined whether peer review selects projects already 

demonstrating success or chooses big-name scientists for continued funding 

regardless of the novelty of their current grant proposal idea. They established that 

proposals with better scores have higher numbers of publications and citations, a 

finding that supports the idea that peer review is working.  This result was also 

confirmed by Gallo et al. (2014) in another funding context. However, when Fang, 

Bowen, and Casadevall (2016) compared percentile scores of 20 or better, they 
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found that peer-review scoring had limited predictive power for future publications 

and citations.   

In somewhat related research, Pier et al. (2018) uncovered little agreement on 

proposal quality in an experiment designed to mimic the NIH peer-review process. 

When Li (2017) examined expertise versus bias in NIH peer review, she discovered 

that expertise slightly outweighed the cost of bias. She also demonstrated that when 

reviewers and researchers shared expertise, they more harshly judged proposals. 

Gallo, Sullivan, and Glisson (2016) obtained a similar result in another funding 

context. Furthermore, Ayoubi, Pezzoni, and Visentin (2019) suggest that the very 

process of applying for research funding improves publications, regardless of 

whether the researcher receives an award.  

Both a handful of smaller studies that randomized peer review and senior 

journal editors discussing their experience have suggested that peer review is little 

better than chance at selecting which science to fund or publish (Smith 2006). 

Taken together, prior work has come to different conclusions on the validity and 

efficiency of the peer-review process. These studies assess questions and concerns 

associated with the quality of the peer-review system and peer review’s ability to 

predict bold and innovative science, but they do not evaluate specific differences 

between discretion and a systematic peer-review process. While Goldstein and 

Kearney (2018) show how federal-program directors use discretion to allocate 

funds in alignment with an agency mission, to our knowledge our study is one of 

the first within the context of federal funding for biomedical science to answer the 
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comparative question of whether peer review or discretionary decisions more 

accurately identify scientists who will develop into independent researchers. 

 

C. Two-Stage Institutional Behavior and Award Decisions 

Most federal agencies have some style of two-stage review. At the NIH, there 

are 27 institutes and centers, and each one has complete independence from the 

others in allocating awards. Grant awards are generally decided based on some 

weighted mix of peer-review scores, the research priorities of institute leadership, 

and the discretionary behavior of staff. In terms of award type, these organizations 

greatly vary in their process for awarding a grant, with smaller grants like 

fellowships exhibiting much larger discretionary influence than large independent-

research awards. For this study, we interviewed staff at four institutes and centers. 

These people provided contextual knowledge into the process of selection. 

Together, they encompassed a range of variation in institute size, disease focus, and 

training programs.  

Our interviews with program staff indicate that the funding process for 

fellowships is indeed complex. Most institutes receive application-review scores as 

defined by a study section coordinated through the NIH’s Center for Scientific 

Review (CSR). Once the institute receives the scores, program officers and staff 

assess the full application, including a summary statement from peer review, the 

quality of the applicant and his or her institution, and the alignment of the research 

proposal with the institute’s priorities. Members of the institute’s staff—

specifically, program officers—then participate in a team meeting in which they 
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defend the proposals that best match their defined priorities. Together, the program 

officers, the training director, and other institute staff make a joint decision for 

recommendations to the institute director. Either the institute director or his or her 

delegate makes the final decision and signs off on which proposals to fund. Institute 

directors vary in terms of their direct involvement in the consideration and final 

approval of proposals. Before making a final decision and informing the candidates, 

the budget office reviews and signs off on the final list of candidates, primarily 

making sure sufficient funds are available for the recommended awards. 

 

D.  Scientific Funding—Type and Evaluative Technique  

i. Research Training—A Case Study 

Since 1974, the U.S. government has formally committed to training high-

potential, early-career scientists to carry out the nation’s biomedical research 

agenda through congressionally mandated programs like the Ruth L. Kirschstein 

National Research Service Award (NRSA).  Subject to periodic review (National 

Research Council 2011), large federally contracted studies have monitored the 

outcomes of those who received the award (Pion 2001; Mantovani, Look, and 

Wuerker 2006). Nevertheless, few studies have used more rigorous methods to 

estimate the award’s unbiased impact on future career outcomes (Levitt 2010; Jacob 

and Lefgren 2011).  

In this study, we focus on the NRSA F32 postdoctoral training award for two 

reasons. First, it allows us to capture scientists at the beginning of their career, when 

evidence of their potential success is not yet fully developed, thereby providing the 



13 

 

strongest raw evidence of whether peer review can identify future successful 

scientists. Second, fellowship awards are relatively inexpensive compared with 

other major funding awards,3 and as individual (non-institutional) training awards, 

they represent the federal government’s best method for directly shaping the future 

generation of scientists. Both these facts drive NIH institutes and their leaders to 

impose even more discretion than is used with other awards. They use a higher level 

of discretion because the risks associated with making a selection error are 

relatively low, and the gains from influencing the future direction of science are 

potentially high. Leaving a lasting legacy influencing the next generation of 

researchers and future direction of science is an admirable goal that most institute 

leaders take seriously and are interested in pursuing. Altogether, this program gives 

our analysis a perfect mix of grants awarded based on both discretion and peer 

review. 

 

ii. Evaluating the Validity of Regression Discontinuity 

Numerous studies have used regression discontinuity design (RDD) to evaluate 

the impact of scientific R&D funding (Jacob and Lefgren 2011a, 2011b; Grilli and 

Murtinu 2011; Benavente et al. 2012; Li 2017; Howell 2017; Bol, de Vaan, and de 

Rijt 2018; Azoulay et al. 2019). An RDD works best when the level of discretion 

is minimal (as is the case with major independent-research grants like R01 awards) 

and budgets are fixed ahead of time. However, with awards like fellowships, high 

 

3 Individual training awards are generally around $60,000 each, whereas a standard R01 

independent-research grant can run anywhere from five to ten times as much. 
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levels of staff discretion and congressionally mandated annual budgets that 

distribute awards in multiple annual cycles dilute the appropriateness of an RDD.  

With fellowships, a budget line is generated showing how many grants the 

organization can fund in a particular council round within a particular year. 

Theoretically, the organization then funds the “best” proposals in each council 

round up to the point where it exhausts its budget. This scenario is seemingly 

appropriate for an RDD, with which one can compare applicants who “just” got 

funding with those who “just did not” get funding solely because of exogenous 

factors (e.g., the money was exhausted through no fault or manipulation of the 

applicant). These applicants would otherwise appear similar; therefore, following 

the logic of RDD, one could reasonably conclude that any difference observed 

between those funded and those not funded around a maximum budget level (called 

a “pay line”) is due solely to the effect of the award. 

The reality, however, is that funding and award-making decisions are 

complicated. What funding is available depends on the number of applicants in 

each council round and previous rounds and whether everyone who was previously 

offered a grant accepts. Institutions receive an annual budget but make grant-

funding decisions by council round. Depending on the institute, there are anywhere 

from two to four council rounds in a given year. If enough high-quality applicants 

do not apply in council round one, the budget (and pay line) can be reduced 

allowing for more applications to be funded in future council rounds within the 

same year. The reverse is also true; budget offices may increase their budget (and 

pay line) if there is a large pool of candidates and funds are available.  
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Another complication is the fluidity of funds across programs and the ability to 

move allocations across scientific divisions. An institute must spend all the money 

appropriated to it by Congress, so if applications in other programs are light in a 

particular year, this could provide additional funds to increase a budget line in 

another program. The fluidity of a budget line and the fact that it could be 

influenced by the quality and quantity of applications violates the assumptions 

required for a valid RDD and even those required for a fuzzy RDD where limited 

discretion around the budget line takes place. 

 

III. Data and Methods 

A. The Data 

Our analytical data include administrative records from the NIH’s Information 

for Management, Planning, Analysis, and Coordination (IMPAC II) system from 

1996 to 2008.4 The NIH matches its administrative records to data from the 

National Science Foundation’s Survey of Earned Doctorates (SED), an annual 

census of doctoral recipients from U.S. institutions. The NSF SED contains 

information on individual demographics, characteristics of graduate study, and 

future career plans. By linking these data sets, we are able to obtain missing data 

and add additional individual-level covariates on our sample. We use demographic 

variables before or at the point of PhD completion. These variables are extracted 

 

4 NIH administrative data is part of the IMPAC II grants data system National Institutes of 

Health, IMPAC II, http://era.nih.gov/. The data is restricted-use. Researchers interested in 

replicating our study or accessing the data for research can submit a request to the National 

Institutes of Health’s Office of Extramural Research. 

. 

http://era.nih.gov/
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from the SED and include age at PhD completion, gender, race and ethnicity, 

marital status at PhD completion, PhD field of study, and type of doctorate-

education funding. We use the two data sources to construct one large panel data 

set for analysis, limiting our data to those who applied for NRSA F32 funding 

between 1996 and 2008, and then observe these individuals’ future NIH award-

application and funding patterns through 2015.  

We include application-review score, funded or non-funded status, time frame, 

the institute or center receiving applications or funding the award, and previous 

grant-funding or training affiliations. We further queried IMPAC II for subsequent 

applications for NIH funding and awards from these individuals. Similar to Jacob 

and Lefgren (2011a), we define our outcome variables to identify research-award 

application or receipt four or more years out from the individual’s application year. 

Our control variables mimic those used in the Ginther et al. (2011) paper on 

research awards and race.  In particular, we include controls for race and ethnicity, 

gender, marital status, age, degree, scientific field, and previous NIH training 

experience. 

Our analytical sample is a subset of all applicants. We drop applications that 

are higher than the 60th percentile in each council round, because the NIH does not 

consistently save scores for these applications in the reporting database, and 

practically none of them get funding. Some institutes and centers have too few 

applicants for our matching method, so for this reason, we drop applicants from 

seven institutes and centers. Our final analytical sample contains 14,276 

individuals.  
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B. Descriptive Statistics 

We report descriptive statistics in Table 1. In our analytical sample, awardees 

and non-awardees do not differ in terms of age at application, marital status, or 

likelihood of having a prior T32 traineeship. Table 1 shows that awardees and non-

awardees do differ across a number of observable characteristics. Awardees are 

significantly less likely to be black or Hispanic. Individuals with MD degrees are 

less likely to receive fellowship awards, whereas PhDs are more likely. Individuals 

with biomedical or social-science degrees are more likely to receive fellowship 

awards compared with those without a reported PhD field. Awardees are 

significantly more likely to aspire to and receive subsequent NIH funding, as 

measured by the number of Research Proposal Grant (RPG) applications and 

awards, the probability of an RPG award, and the probability of an R01 award. As 

expected, awardees have significantly lower (better) scores on their last observed 

application. 

In Table A1 in the Appendix, we estimate the probability of receiving an NIH 

F32 award as a function of observable characteristics for the full sample and the 

analysis sample.   

 

C. The NRSA and Discretionary Decision-Making 

Using the NRSA F32 postdoctoral training fellowship program, we demonstrate 

the problems with RDD for federal-grant awards where discretion takes place. 

Figure 1 is an illustration using all applicants from 1996 to 2008. Panels A–C 
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provide three typical institute-level examples of variation in processing the 

awarding of fellowships around a fictitious budget line similar to what is generated 

by a budget office each council round. Each panel shows a point for each F32 

applicant. The points at the top signify applicants who received an award. The 

points along the bottom represent applicants who applied but did not receive an 

award. The x-axis ranks the applicants by peer-reviewed priority score from best to 

worst. In each panel, a vertical line represents a pseudo–pay line5 imposed by a 

budget office suggesting to program officers and staff how many awards can be 

funded in that particular council round. Points at the top and left of the vertical line 

represent awards funded in order of peer-review scores. Points at the bottom and 

right of the vertical line are non-funded applicants in order of peer-review scores, 

meaning that given budget constraints, their scores fell outside of the range of 

feasible acceptance. Points at the top and to the right of the vertical line represent 

awards that were funded out of order. For each of these points, at the bottom and 

left of the vertical line, there is an equal point representing an applicant who had a 

priority score low (good) enough to be funded, but whom staff and institute 

discretion skipped over in order to fund an applicant in the top and to the right of 

the budget line.  

If all funding were awarded based solely on the ranked order of priority scores, 

we would observe Panel A, and no discretion would creep into the award process. 

Panel A distributes awards based solely on the peer-reviewed score, allocated from 

 

5 A pay line is the end point of the budget, where all resources have been exhausted. If there are 

10 applicants with scores ranging from 1 to 10, and the budget allows for the funding of 3 applicants, 

then the pay line is a score of 3. Anyone with a score lower than or equal to 3 would get funded if 

only peer review was followed in decision-making. 
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best score to worst score until the institute budget allocations for the fellowship are 

exhausted. If this were the case (and budgets were not fluid or exchangeable), a 

sharp RDD would be valid.  

Panel B of Figure 1 illustrates an institute following the guidance of the peer-

reviewed score for the best (lowest) scores. However, once the institute has funded 

a majority of applicants with meritorious scores, it uses discretion to distribute 

awards near the pay line. In this case, the institute is comfortable using discretion 

near the pay line to fund applications that best fit within its scientific priorities and 

where the institute staff believes the applicant has the best-case scenario for future 

success—perhaps because they consider the applicants to be more or less similar in 

quality. If this were the case (and budget lines were not fluid), a fuzzy RDD would 

be appropriate.  

A third, more complicated case is Panel C. It demonstrates the most complex 

case of selection for fellowship awards. About two-thirds of proposals funded 

would be below the expected pay line if the institute were to fund based solely on 

peer-reviewed scores. Institutes represented here use a significant amount of 

discretion when selecting proposals for funding and, because of this, no real cutoff 

exists. For our purposes, a very valid question exists as to the frequency with which 

institutes engage in this third scenario and, to some extent, the second scenario as 

well.  

We examine this question in Figure 1, Panel D. Since no real data are available 

for pay lines, we construct pseudo–pay lines by counting the number of awards 

funded and assuming that for each institute this number is equivalent to the pay line 
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for that council round.6 Each diamond represents the percent of applications funded 

within the pseudo-constructed pay line (e.g., the top and left of the budget line; 

funded in order of peer reviewed score) by year, institute, and council round. If an 

institute has three council rounds in one year, they will have three diamonds 

represented vertically for that year. In Panel D, the black, horizontal curved line 

represents an average yearly rate of funding strictly by peer-reviewed score among 

all institute-council rounds in that year. Between 1996 and 2002, overall NIH 

institute-council rounds funded approximately 40 percent of proposals in order 

based solely on the rank of scores. In other words, over half the time, institutes were 

reaching for applicants below the pay line within a council round and, equivalently, 

skipping a proportion of applicants above said pay line.  

After the NIH doubling,7 the rate of institute-council rounds funding solely in 

order dropped to a low of 28 percent in 2006 and increased to 35 percent by 2008. 

This finding suggests that when institutes have fewer resources, they use less 

discretion.   

Between two-thirds to three-fourths of all institute-council rounds used 

discretion in award allocation in recent years. Although review scores assigned 

during study section are an important criterion in the selection of awardees, they 

are clearly not the only criteria. Over the entire period, only 37.5 percent of year, 

institute, and council round (YIC) units (N=701) complied with a sharp RDD 

 

6 This in and of itself is a false presumption because it does not take into account budget-office 

discretion in adding or reducing slots based on the applicant pool. However, we hold judgement on 

that piece in order to demonstrate our general point here. 
7 The NIH doubling occurred between 1998 and 2002. It was a period of 5 years during which 

the total federal budget allocated to the NIH doubled in size. 
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framework (ignoring the issue of budget fluidity). Not only were there few YIC 

units in compliance, but those that did comply had few applicants. Only 10.7 

percent of individual applications were in YIC units that complied (data not shown). 

This result is worth emphasizing. Only one in ten applicants experienced a review 

process where peer review scores were strictly followed—the rest experience a two-

stage process infused with institutional discretion. Extending to a fuzzy RDD,8 

around 61.5 percent of YIC units complied, translating into 47.9 percent of 

applicants in our sample (data not shown). Even under a fuzzy RDD, less than half 

of all applicants experienced a council round that met the criteria for some form of 

RDD. 

In fact, institutes vary widely in how they implement the two-stage process. At 

one extreme, take the National Institute of General Medical Sciences, which 

explicitly delineates its two-stage process and discretionary actions. In a recent 

report on application and funding trends, the institute stated that “we do not use a 

strict percentile cut off (‘pay line’) to make funding decisions. Instead, we take a 

variety of factors into account, including peer review scores, summary statements, 

Institute priorities, overall portfolio diversity, and an applicant’s other research 

support” (Hechtman and Lorsch 2019). 

We examine whether discretion varies by council round and year.  If discretion 

depends solely on budgets, we would expect it to depend on the budget remaining 

in a given fiscal year.  Thus, we examine whether the probability of reaching for or 

 

8 Here we assume that a YIC unit fits a fuzzy RDD if less than 10 percent of cases either skip a 

good review score or reach for a worse review score. 
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skipping a proposal depends on the timing of the council round (three per fiscal 

year) after control for institute and fiscal-year dummies.  It could be that if fewer 

funds were systematically spent in the first council, then the amount of discretion 

would increase in the following two rounds.  In Table 2, we show that there is not 

a statistically significant difference in the probability of discretion as a function of 

council round measured by reaching or skipping proposals.  However, in times of 

tight budgets (after the NIH doubling ended in 2002), the probability of a proposal’s 

being funded by discretion (reached) falls.  As funding got tighter in the late 2000s, 

the probability of skipping proposals with good scores also fell.  As with Figure 1, 

discretion falls when budgets become tight. 

Figure 1 and Table 2 indicate that discretion is widely used in the allocation of 

the NRSA F32 fellowship.  Since other factors besides review score drive the 

decision-making process (and pay line) in fellowship awards, the often-used RDD 

approach is not a valid methodology. We use more appropriate matching methods 

for our analysis. More importantly, however, since all applications in our analytical 

subsample have a review score (details described below), we can take advantage of 

the heavy use of discretion in the NRSA F32 postdoctoral training awards to 

evaluate whether discretion or peer review more often predicts future scientific 

success. 

 

D. Using Matching to Identify a Causal Effect 

As described, the multi-step selection process for grants first generates a review 

score via a systematic peer review process. Given this step and the fact that the 
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groups of individuals applying to the awards are relatively homogenous, we use 

matching techniques. While any unobserved characteristics differing between 

funded and unfunded applicants could confound our results, we argue that matching 

is a feasible approach for the following reasons. First, we can account for 

unobserved differences by institute and council round by controlling for these 

factors. Additionally, selection is made at the institute level. Any unobserved 

differences among applicants are unobserved by the institute also and therefore not 

a driving component of the selection process. There is no self-selection of 

fellowship award offerings. Finally, the groups of individuals that apply for funding 

are relatively homogeneous within each institute. All of these people clearly excel 

in academics, have been encouraged to apply by their mentors (which means their 

mentors believe they have a chance of getting the award), and are typically 

intensely interested in biomedical research. If this unobservable variation does 

exist, we argue that it is minimal within this select group of applicants. 

To estimate the causal effect of fellowship awards on subsequent NIH funding 

outcomes, we use the potential-outcomes framework employed in econometric 

analysis (Rubin 2004). To fix ideas, let 𝑇𝑖 = 1  be the treatment when an 

individual’s fellowship application is funded, and let 𝑇𝑖 = 0 if the application is not 

funded. Each individual has two potential outcomes of subsequent NIH funding: 

𝑌𝑖(1) if the individual receives the award treatment and 𝑌𝑖(0) if the individual is 

not treated. For each individual, the causal effect of the award on subsequent NIH 

funding is defined as the difference in potential outcomes 𝑌𝑖(1) − 𝑌𝑖(0). However, 
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each individual is observed only when they do or do not receive the award, and, in 

this case, we must estimate the counterfactual outcome using matching methods. 

In order to implement matching methods, we assume that treatment is 

independent of the outcome conditional on covariates 𝑇𝑖┴(𝑌𝑖(0), 𝑌𝑖(1))|𝑋𝑖. This is 

the unconfoundedness assumption, which means that the treatment is conditionally 

independent of the outcome after conditioning on observable characteristics. Given 

unconfoundedness, we can define the average treatment effect in terms of potential 

outcomes as the expected value of potential outcomes: 

𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]. 

We use two matching methods to identify the ATE. First, we employ 

propensity-score matching, defining the propensity score as the probability of 

receiving treatment conditional on observed characteristics 𝑒(𝑋) = Pr⁡(𝑇𝑖 =

1|𝑋𝑖 = 𝑥). In order to implement propensity-score methods, the propensity scores 

for the treated and untreated in our sample must overlap such that 0 < 𝑒(𝑥) < 1. 

Although the unconfoundedness assumption cannot be directly tested, we can 

examine whether the propensity score has a causal effect on a pseudo-outcome that 

was determined prior to the treatment. If the estimated effect of the treatment on 

the pseudo-outcome is significant, then unconfoundedness has likely been violated 

(Imbens 2015). 

Propensity-score matching has been widely used in economics and other social 

sciences (Imbens 2015). However, King and Nielson (2019) and Imbens (2015) 

note that propensity-score estimates break down if the propensity-score model fits 

to the data too well. As a result, we cannot use the review score to estimate the 
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propensity score related to fellowship funding. Thus, we use the coarsened exact 

matching (CEM) algorithm (Blackwell et al. 2009) to improve the balance of the 

data and nearest-neighbor methods to facilitate matching on the review score. We 

use propensity-score matching, and as a robustness check, we also use nearest-

neighbor matching after reducing the data using the CEM algorithm (results in the 

Appendix).   

In addition, given that we have information on a pseudo-constructed pay line 

(the total number of funded applicants in each council round), review score, and 

award, we construct four indicator categories: those funded and within a pseudo-

constructed pay line based on review score (as expected), those not funded and 

outside a pseudo-constructed pay line based on review score (as expected), those 

not funded but within a pseudo-constructed pay line based on review score 

(skipped), and those funded outside a pseudo-constructed pay line based on review 

score (reached). We then use our matching methods to examine treatment effects 

by comparing outcomes. In particular, we compare outcomes for those who were 

(1) reached compared to not funded as expected; (2) funded as expected compared 

to reached; (3) reached compared to skipped; (4) skipped compared to not funded 

as expected; (5) skipped compared to those funded in order; and (6) funded as 

expected compared to those not funded as expected. 

 

IV. Results of Peer Review versus Discretion 

Table 3 reports the Average Treatment Effect (ATE) Propensity Score 

Matching (PSM) estimates for the analytical sample. If we include the review score 
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in the propensity-score estimates, the propensity score becomes too precise, and the 

matching algorithm breaks down (King and Nielson 2019; Imbens 2015). Thus, our 

propensity-score estimates include institute and council round fixed effects and the 

covariates listed in column 1 of Table A1. Each column of Table 3 shows outcome 

variables: the number of research program grant (RPG) awards, the number of RPG 

applications, the probability of an RPG, the probability of an R01 and the 

probability of never applying for additional funding.   

We identify four major categories of funding status based on scores and institute 

behavior: funded in order, skipped, reached, and not funded in order. Using the 

review score as a measure of the proposal’s scientific merit, those proposals funded 

in order were applications judged as the most meritorious by the reviewers and 

institute staff. Some proposals with favorable review scores within the pseudo-

constructed pay line (budget) were skipped in favor of proposals with worse review 

scores. In this case, the institute reached to fund a proposal out of the review score 

order. Proposals that were not funded in order had review scores in excess of the 

budget pay line and worse scores than those that were funded in order or skipped. 

In Table 3, the first row compares the treated proposals that were reached 

compared with those that were not funded. Compared with those not funded, 

reached scientists secured around 0.17 more independent-research awards and had 

around 0.80 more applications in future years, more than the full sample (results 

not shown; see Heggeness et al. 2018 for a detailed analysis of the full sample). 

More importantly, they were between 7 to 8 percent more likely to receive 

independent awards conditional on applying, and they were 11.9 percent less likely 
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to never apply for future independent awards. These estimates were slightly higher 

than those for the full analysis sample (see Heggeness et al. 2018).  

Next, we compare proposals where the treatment was reached and had relatively 

higher (worse) review scores compared with those that were funded in order. The 

ATE estimates indicate that the subsequent NIH funding outcomes for reached 

proposals were significantly worse than those funded in order. Reached proposals 

received 0.096 fewer RPG awards, submitted 0.5 fewer RPG applications, had a 

5.0 ppt lower probability of receiving an RPG award, had a 3.8 ppt lower 

probability of receiving an R01 award, and had a 6.3 ppt probability of never 

applying for additional NIH funding. These results suggest that those reached 

individuals do not perform as well as those who were funded in order.  

We then compare the reached proposals that received fellowship funding with 

the skipped proposals that had better scores but were not funded. Reached proposals 

received .18 fewer RPG awards than skipped proposals, had a 5.1 ppt lower 

probability of receiving an RPG award, and had a 4.7 ppt lower probability of 

receiving an NIH award. Both skipped and not funded in order proposals did not 

receive the fellowship award.  However, the skipped proposals were judged to have 

better scientific merit than the not funded in order proposals. On average, the 

skipped investigators have much better outcomes than the not funded in order 

proposals for all outcomes. In other words, discretion results in the selection of 

lesser-quality, less-productive scientists. 

What is the opportunity cost of skipping meritorious proposals relative to 

comparable proposals that were found to be the best during the review process?  



28 

 

We find that skipped proposals submitted .342 fewer RPG applications and, as a 

result, had a 5.1 ppt lower probability of receiving an RPG compared with proposals 

funded in order.  Skipped proposals were 6.9 ppt more likely to never submit a 

subsequent NIH application. Not getting the award hindered the future success of 

the skipped applicants, making them less productive. Even though skipped did not 

do as well as funded in order, they still did better than not funded in order. In other 

words, those skipped still thrived. 

The last row of Table 3 compares the best proposals funded in order with those 

not funded in order.  The estimated ATEs are between 10 to 41 percent larger for 

the reached compared with not funded in order. Compared with those not funded 

in order, four years out reached, skipped, and funded in order all do relatively better 

in achieving an independent R01 award: 7.8 ppt, 8.3 ppt, and 8.6 ppt, respectively. 

As a robustness check, we estimated these models using the coarsened exact 

matching (CEM) algorithm and nearest-neighbor matching in Appendix Table A2. 

The signs, magnitudes, and statistical significance of the estimated effects are 

similar to those found in Table 3. 

Although we cannot test the unconfoundedness assumption directly, Imbens 

(2015) recommends using propensity score matching (PSM) on pseudo-outcomes 

that occur before the award treatment. Given the SED data, we evaluate whether 

the fellowship award predicts the probability that an applicant has a PhD degree, 

the applicant’s highest degree is in biomedicine, and the applicant’s doctoral 

funding was from a fellowship or scholarship. Table 4 presents these results and 

finds that the fellowship award has no significant impact on these pseudo-
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outcomes. These results indicate that the unconfoundedness assumption is not 

violated. 

 

V. Discussion 

Our findings provide evidence that within a pool of young, ambitious scientists, 

peer review more accurately identifies scientific “diamonds in the rough” than NIH-

institute discretion. Our results indicate that scientific leaders and policymakers do 

in fact have a choice to make. If they want to fund in the most efficient way possible 

the expansion of the scientific frontier, they should encourage peer review and fund 

awards without discretion until funding is exhausted.  These results echo findings 

by Li and Agha (2015) and Gallo et al. (2014), who found that evaluation scores 

are correlated with subsequent research publications, indicating that the peer-

review process is efficient. While scientific staff members of federal agencies do 

their best to keep scientific innovation moving, our results hint that the priorities of 

program officers and institutes may come at a cost to the scientific enterprise in 

terms of advancing the best science.  

Interestingly, our findings also indicate that for those with competitive 

applications but no funding (skipped), applying for the award favors future research 

success even if they do not receive the award. These results are consistent with 

those found by Ayoubi, Pezzoni, and Visentin (2019), who demonstrate that 

applying for research funding in a Swiss grant competition increased publications 

regardless of whether funding was obtained. For those on the margin (reached), 

however, our results show that the fellowship award can have an impact on keeping 
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these young scientists engaged in science. For scientific organizations looking to 

retain talent of a particular nature, reaching for that talent does increase their ability 

to stay engaged. 

 

VI. Conclusion 

Our results have implications for the debate on the validity of the peer review 

process. Fang, Bowen and Casadevall (2016) and Pier et al. (2018) argued that peer 

review cannot distinguish between proposals of comparable quality.  However, the 

fact that applicants with skipped proposals are more likely than those with reached 

proposals to receive subsequent NIH funding suggests that the peer-review process 

can identify small differences in research-proposal quality. Our results also indicate 

that review scores are a good predictor of subsequent NIH applications and awards 

and an efficient way to allocate research funding given an alternative option of 

discretion.  

We described in detail why regression discontinuity design (RDD) is not 

appropriate and should not be used for studying the impact of scientific funding 

when discretionary decisions overriding peer-review rankings are common. The 

method of evaluation must fit with the idiosyncrasies of the setting. With matching 

methods, we found that the NRSA F32 award keeps postdoctoral researchers 

engaged in NIH-funded science at higher rates than they would have otherwise 

experienced. Regardless of the restrictions or matching methods we used, our 

estimates are robust. Overall, we have demonstrated the value of a peer-review 

system in selecting the best talent compared with discretionary decisions. We 
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conclude by noting that even though it has been under intense scrutiny throughout 

its existence and has rarely been used in its purest form, peer review is an efficient 

option compared with institutional discretion if the goal is to maximize the 

advancement of the frontier of science.  

What about other methods? Fang and Casadevall (2016) and others have argued 

for a two-step lottery, one where a subset of highly qualified applications are 

selected by peer review and then funded applicants are selected by lottery. Smith 

(2006) argues that peer review is basically equivalent to chance because reviewers 

differ, and selection decisions are random based on who one happens to get as a 

reviewer and study section.  

Perhaps there is an argument for randomization after a preliminary peer review. 

If it produces results similar to peer review, cost efficiencies could be realized by 

randomizing funding decisions. Greenberg (2008) highlights this point and states 

that “reliance on chance wouldn’t be inferior to what’s happening now, which, as 

it turns out, is a game of chance in the guise of informed selection. Moreover, the 

[cost] savings from a lottery could be recirculated to research, providing many 

millions of dollars for projects that would otherwise go unsupported.” 

There is one additional reason why allocating funding via a lottery after initial 

peer review is a potentially wise managerial decision of federal scientific leaders. 

It would actually allow policy researchers to rigorously test the true effect of federal 

funding on both the system and scientific discovery. Randomized control trials are 

common in science. Everyone understands why they are needed, yet scientists still 

struggle to accept this simple, highly valued method as a mechanism to study their 
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own productivity and innovation. As Smith (2006), who also noted little difference 

between peer review and randomization, stated when discussing challenges to 

incorporate randomization, “Peer review is . . . likely to remain central to science 

and journals because there is no obvious alternative, and scientists and editors have 

a continuing belief in peer review . . .  how odd that science should be rooted in 

belief.”  

While scientific leaders (and scientists) may be concerned by the random 

assignment of funding beyond a certain threshold, perhaps they would be open to 

running an experiment along those lines. Such an experiment would begin with 

traditional peer review, with study sections then randomly divided into three 

groups. Group one would allow unconstrained discretion by the part of staff. Group 

two would allow constrained discretion—where rules governing discretion would 

be documented and include an audit trail detailing deviations. The third group 

would randomize funding selection of those applications receiving the best peer-

review scores that meet a certain threshold.  This kind of experiment is already 

taking place in New Zealand.  The Health Research Council allocates two percent 

of its budget for “explorer grants” that provide approximately $100,000 in funding.  

Short proposals are screened for eligibility and then funded at random until the 

budget is exhausted.  A recent study reported that those who were funded by the 

lottery supported this system, however, it did not evaluate the impact of receiving 

funding on scientific output (Liu et al. 2020). 

Understanding what we are trying to optimize with federal scientific funding is 

key. This type of experiment would allow us to understand two important factors. 
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First, when discretionary decisions are made specifically to achieve alternative 

institutional goals, are those goals met? Second, if we automate decision-making to 

a lottery, do outcomes such as publications and subsequent grants increase, 

decrease, or stay the same? If outcomes stay the same or increase, then perhaps 

using a lottery mechanism could, in fact, be more efficient, in the sense that 

resources currently allocated to discretionary decisions could be reallocated to other 

priorities. Regardless, it is clear that if we really care about figuring out the best 

way to allocate the limited funding available from the federal government for 

scientific advancements, we need to have access to application data from federal 

funding agencies and, with a clear understanding of the role discretion plays in 

research awards, evaluate the outcomes from funding. 
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Panel A.        Panel B.    Panel C. 

 

Panel D. Percent of NRSA F32 Applications Funded within Pay Line by Year, Institute, and Council Round, 1996 to 2008 

 

FIGURE 1. THE NRSA F32 SELECTION PROCESS 

Note: Figure excludes council rounds with an N<20. 

Source: Authors’ calculations. National Institutes of Health IMPACII administrative records. 
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TABLE 1. DESCRIPTIVE STATISTICS OF APPLICANTS BY FUNDING STATUS, ANALYTICAL SAMPLE, 1996–
2008 

    All F32 awarded No F32 awarded t-test p-value 

 Review score 220.67 162.244 193.68 60.22 0.000 
  (75.291) (26.899) (34.432)   

DEMOGRAPHICS           

 Age at application   31.201 30.942 31.078 1.12 0.261 

  (7.629) (6.775) (7.115)   
 Age at application missing 0.042 0.034 0.037 0.98 0.328 

  (0.200) (0.181) (0.189)   
 Married at application 0.381 0.396 0.38 -1.84 0.066 

  (0.486) (0.489) (0.485)   
 Married at application missing 0.205 0.182 0.186 0.68 0.494 

  (0.404) (0.386) (0.389)   
 Female 0.417 0.412 0.424 1.30 0.194 

  (0.493) (0.492) (0.494)   
 Sex missing 0.051 0.038 0.055 4.90 0.000 

  (0.219) (0.190) (0.228)   
 White, non-Hispanic 0.344 0.386 0.319 -7.93 0.000 

  (0.475) (0.487) (0.466)   
 Black, non-Hispanic 0.009 0.006 0.01 2.64 0.008 

  (0.095) (0.075) (0.098)   
 Asian, non-Hispanic 0.086 0.085 0.079 -1.29 0.196 

  (0.280) (0.279) (0.269)   
 Other, non-Hispanic 0.002 0.002 0.002 -0.33 0.744 

  (0.048) (0.050) (0.047)   
 Hispanic 0.032 0.029 0.029 -0.07 0.946 

  (0.175) (0.168) (0.167)   
 Race missing 0.544 0.509 0.579 7.97 0.000 
  (0.498) (0.500) (0.494)   
EDUCATION and TRAINING           

 MD 0.086 0.084 0.08 -0.74 0.459 

  (0.280) (0.277) (0.272)   
 MD/PhD 0.032 0.035 0.03 -1.80 0.073 

  (0.176) (0.185) (0.170)   
 PhD 0.867 0.87 0.874 0.67 0.506 

  (0.340) (0.336) (0.332)   
 Other Degree 0.016 0.01 0.016 2.76 0.006 

  (0.125) (0.102) (0.125)   
 Biomedical degree 0.594 0.614 0.617 0.33 0.739 

  (0.491) (0.487) (0.486)   
 Physical Science degree 0.129 0.129 0.124 -0.72 0.471 

  (0.335) (0.335) (0.330)   
 Social Science degree 0.069 0.074 0.071 -0.67 0.506 

  (0.253) (0.261) (0.256)   
 Prior T32 Predoc Award 0.021 0.024 0.027 0.96 0.339 

  (0.144) (0.154) (0.162)   
 Prior T32 Postdoc Award 0.019 0.016 0.02 1.65 0.099 

  (0.136) (0.127) (0.141)   
 Prior NRSA Predoctoral Fellowship 0.001 0.001 0 -1.64 0.101 

  (0.023) (0.023) 0.000    
OUTCOME VARIABLES           

 Number of RPG Awards 0.387 0.586 0.367 -10.24 0.000 

  (1.071) (1.281) (1.095)   
 Number of RPG Applications 1.94 2.752 1.698 -12.51 0.000 

  (4.360) (5.158) (4.066)   
 Probability of RPG 0.183 0.266 0.165 -13.69 0.000 

  (0.386) (0.442) (0.372)   
 Probability of R01 0.133 0.204 0.122 -12.25 0.000 

  (0.339) (0.403) (0.328)   
 Probability of Never Receiving an RPG 0.678 0.579 0.713 16.02 0.000 

  (0.467) (0.494) (0.452)   
N 14,276 9,276 5,000     

 

Source: Authors’ calculations. National Institutes of Health IMPACII and NIH/NSF Survey of Earned Doctorates. 
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TABLE 2. PROBABILITY OF NIH F32 PROPOSAL BEING FUNDED BY DISCRETION (REACHED) OR NOT 

FUNDED BY DISCRETION (SKIPPED) 

  

   

  (1) (2) 

VARIABLES Reached Skipped 

      

Second Council Round -0.005 -0.006 

 [0.006] [0.006] 

Third Council Round -0.005 -0.004 

 [0.005] [0.005] 

FY 1997 -0.001 -0.011 

 [0.011] [0.009] 

FY 1998 0.012 0.007 

 [0.012] [0.011] 

FY 1999 -0.006 -0.003 

 [0.011] [0.011] 

FY 2000 -0.009 0.005 

 [0.011] [0.011] 

FY 2001 -0.008 0.002 

 [0.011] [0.011] 

FY 2002 -0.008 -0.015 

 [0.012] [0.010] 

FY 2003 -0.012 -0.029*** 

 [0.011] [0.009] 

FY 2004 -0.012 -0.027** 

 [0.010] [0.009] 

FY 2005 -0.015 -0.034*** 

 [0.010] [0.008] 

FY 2006 -0.025** -0.038*** 

 [0.009] [0.008] 

FY 2007 -0.026** -0.030*** 

 [0.009] [0.008] 

FY 2008 -0.030*** -0.035*** 

 [0.009] [0.008] 

   

N 14,276 14,276 

Note: Robust Standard errors in brackets.  *** p<0.001, ** p<0.01, * p<0.05 

Source: Authors’ calculations. IMPACII and NIH/NSF Survey of Earned Doctorates, 1996 to 2008. 
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TABLE 3. PROPENSITY SCORE MATCHING (PSM) ESTIMATES OF THE IMPACT ON OUTCOMES BY 

COMPARATIVE FUNDING-STATUS TYPES 

  Number Number Probability Probability  Never 

VARIABLES RPG Awards RPG Applications RPG R01 RPG 

Reach vs. Not Funded 0.174*** 0.801*** 0.071*** 0.078*** -0.119*** 

  N = 5,215 [0.043] [0.167] [0.017] [0.015] [0.018] 

Reach vs. In Order -0.096* -0.495** -0.050** -0.038* 0.063** 

  N = 9,062 [0.048] [0.183] [0.018] [0.016] [0.019] 

Reach vs. Skip -0.176** -0.333 -0.051** -0.047** 0.025 

   N=2,538 [0.063] [0.220] [0.019] [0.017] [0.022] 

Skip vs. Not Funded 0.243*** 0.655*** 0.085*** 0.083*** -0.083*** 

  N=5,211 [0.053] [0.181] [0.019] [0.016] [0.021] 

Skip vs. In Order -0.047 -0.342* -0.051** -0.025 0.069*** 

  N=9,058 [0.048] [0.165] [0.016] [0.014] [0.019] 

In Order vs. Not Funded 0.246*** 0.983*** 0.106*** 0.086*** -0.140*** 

  N = 11,735 [0.034] [0.153] [0.012] [0.010] [0.014] 

            

Note: Robust Standard errors in brackets.  *** p<0.001, ** p<0.01, * p<0.05  

Source: Authors’ calculations. IMPACII and NIH/NSF Survey of Earned Doctorates, 1996 to 2008. 
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TABLE 4. COUNTERFACTUAL TREATMENT EFFECTS WITH PSEUDO-TREATMENTS 

  (1) (3) (5) 

VARIABLES PhD degree 
Biomedical 

degree 

Fellowship or 

scholarship PhD 
funding 

        

ATE 0.007 0.001 0.005 

 (0.007) (0.010) (0.010) 

    

ATT 0.005 0.007 0.004 

 (0.008) (0.012) (0.012) 

    

Observations 14,273 14,273 14,273 
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Appendix.  
APPENDIX TABLE A1. PROBIT REGRESSIONS ON EVER RECEIVING AN AWARD, 1996-2008 

    (1) (2) (3) (4) 

    
Full         

sample 

Full         

sample 

Analysis 

sample 

Analysis 

sample 

Review score  -0.006  -0.008 

   (0.000)  (0.000) 

Age (missing = <26)     
 Age = 27 -0.107 -0.033 -0.053 0.021 

 
 (0.024) (0.030) (0.036) (0.039) 

 Age = 28 -0.040 -0.031 -0.034 -0.028 

 
 (0.022) (0.027) (0.030) (0.036) 

 Age = 29 -0.056 -0.022 -0.050 -0.016 

 
 (0.021) (0.026) (0.029) (0.035) 

 Age = 30 -0.061 -0.013 -0.041 0.002 

 
 (0.021) (0.026) (0.029) (0.034) 

 Age = 31 -0.072 -0.031 -0.035 0.024 

 
 (0.020) (0.026) (0.029) (0.033) 

 Age = 32  -0.088 -0.039 -0.060 -0.005 

 
 (0.020) (0.026) (0.030) (0.034) 

 Age = 33 -0.086 -0.017 -0.045 0.027 

 
 (0.021) (0.027) (0.030) (0.033) 

 Age = 34 -0.105 -0.031 -0.055 0.016 

 
 (0.021) (0.027) (0.031) (0.035) 

 Age = 35 or 36  -0.149 -0.035 -0.057 0.028 

 
 (0.020) (0.026) (0.031) (0.034) 

 Age = 37 or 38 -0.181 -0.068 -0.085 0.014 

 
 (0.020) (0.027) (0.034) (0.036) 

 Age  > 38 -0.248 -0.104 -0.137 -0.019 

 
 (0.017) (0.026) (0.034) (0.037) 

Marital status (missing = not married) 

 Married 0.009 0.014 0.016 0.018 

  (0.007) (0.008) (0.009) (0.010) 

 Marital status missing 0.093 0.057 0.044 0.086 

  (0.062) (0.090) (0.085) (0.092) 

Sex (missing = male)    
 Female -0.010 -0.008 -0.009 -0.006 

  (0.006) (0.007) (0.009) (0.009) 

 Sex missing -0.120 -0.098 -0.115 -0.103 

  (0.014) (0.017) (0.023) (0.026) 

Race and ethnicity (missing = White, non-Hispanic)  
 Black, non-Hispanic -0.156 -0.099 -0.146 -0.103 

  (0.030) (0.036) (0.055) (0.055) 

 Asian, non-Hispanic -0.038 -0.021 -0.025 -0.016 

  (0.011) (0.013) (0.016) (0.017) 

 Other race, non-Hispanic 0.135 0.167 0.064 0.048 

  (0.063) (0.078) (0.074) (0.074) 

 Hispanic -0.022 0.001 0.014 0.033 

  (0.018) (0.021) (0.025) (0.025) 

 Race missing 0.005 0.013 0.011 0.016 

  (0.008) (0.009) (0.010) (0.011) 

MD  0.088 0.033 -0.009 -0.019 

  (0.030) (0.033) (0.042) (0.045) 

MD/PhD 0.189 0.098 0.076 0.016 

  (0.031) (0.037) (0.039) (0.046) 

PhD 0.126 0.093 0.060 0.049 

  (0.024) (0.027) (0.039) (0.041) 

Biomedical science degree 0.145 0.065 0.041 0.073 

  (0.059) (0.086) (0.088) (0.101) 

Physical science degree 0.107 0.054 0.052 0.094 

  (0.062) (0.090) (0.084) (0.089) 

Social science degree 0.133 0.022 0.017 0.031 

  (0.062) (0.089) (0.087) (0.097) 

Prior T32 Predoc Award 0.067 -0.004 -0.024 -0.045 

  (0.022) (0.025) (0.026) (0.028) 

Prior T32 Postdoc Award -0.061 -0.056 -0.048 -0.033 
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  (0.022) (0.025) (0.031) (0.033) 

Prior NRSA Predoc Award -0.002 0.128   
  (0.140) (0.260)   

Observations 27,504 25,719 14,268 14,268 

 

Notes: Robust standard errors in parentheses. All specifications include controls for IC and council rounds.   
Source: Authors’ calculations. IMPACII and NIH/NSF Survey of Earned Doctorates.   
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APPENDIX TABLE A2.  Nearest Neighbor Estimates of Discretion versus Scientific Review on Career Outcomes 

  Number Number Probability Probability  Never 

VARIABLES RPG Awards 
RPG 

Applications RPG R01 RPG 

            

Reach vs. Not Funded 0.168** 0.709*** 0.067*** 0.071*** -0.093*** 

  N = 5,160 [0.052] [0.200] [0.020] [0.017] [0.024] 

Reach vs. In Order -0.172** -0.624** -0.095*** -0.061** 0.099*** 

  N = 8,502 [0.055] [0.229] [0.022] [0.019] [0.029] 

Reach vs. Skip -0.138 -0.101 -0.035 -0.031 0.003 

   N=2,471 [0.079] [0.286] [0.025] [0.022] [0.031] 

Skip vs. Not Funded 0.166* 0.612** 0.058* 0.062** -0.091** 

  N=5,151 [0.071] [0.231] [0.025] [0.023] [0.030] 

Skip vs. In Order 0.040 -0.258 -0.017 -0.003 0.060** 

  N=8,493 [0.054] [0.186] [0.017] [0.016] [0.019] 

In Order vs. Not Funded 0.201*** 0.739** 0.090*** 0.075*** -0.134*** 

  N = 11,182 [0.049] [0.238] [0.019] [0.016] [0.023] 

Source: IMPACII and NIH/NSF Survey of Earned Doctorates, 1996 to 2008 
Note: Robust Standard errors in brackets.  *** p<0.001, ** p<0.01, * p<0.05. 

 

 




