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1 Introduction

Transportation is a substantial source of global and local air pollution (Davis and Killian

2011, Tschofen et al 2019). Several new technologies including electric vehicles, fuel cell

vehicles, biofuel powered vehicles, and improved gasoline vehicles hold promise for decreasing

this pollution. Of this suite of technologies, electric vehicles are unique in that, over the near

term, they are commercially viable and have the potential to yield dramatic reductions in

air pollution. The driving range of electric vehicles has increased and their production costs

have decreased due to technological advances in batteries, electric motors, and materials.

These changes, along with investments in complementary infrastructure such as charging

stations, are making electric vehicles viable substitutes for many transportation uses. At the

same time, emissions from electricity generation have fallen dramatically thereby reducing

the pollution from electric vehicles (Holland et al., 2018). This combination of falling costs,

falling emissions, and increasing substitutability has led to calls for a radical transformation

of our transportation systems toward electric vehicles including policies that ban gasoline

vehicles.1

Substantial research has analyzed electric vehicle adoption and policy in static models.2

However, static models are not well suited to study the transition from a fleet dominated by

gasoline vehicles to a fleet dominated by electric vehicles.3 This paper constructs, analyzes,

and simulates a dynamic model of the electric vehicle transition. The model allows us to

analyze questions about the timing of electric vehicle adoption and how the timing is affected

by policies such as an electric vehicle purchase subsidy or a gasoline vehicle production ban.

Furthermore, the model allows a comprehensive welfare assessment of these policies.

Our model accounts for important dynamic aspects of the electric vehicle transition.

First, as coal plants retire and investments in renewables and battery storage grow, the

1Twelve countries currently have planned fossil-fuel vehicle production bans, e.g., Norway in 2025 and
Britain and France in 2040. (See https://en.wikipedia.org/wiki/Phase-out of fossil fuel vehicles Accessed
12/16/2019)

2Examples include Archsmith et al. (2015), Holland et al. (2016), Yuksel et al. (2016), Muehleger and
Rapson (2018), Davis (2019), and Xing et al (2019).

3There are two papers with dynamic models closely related to ours. Creti et al (2018) have a dy-
namic model of vehicle adoption but assume a fixed vehicle stock and perfect substitution. Langer and
Lemoine (2017) analyze adoption of a green technology but do not explicitly model replacement of a dirty
good.
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trend of decreasing pollution from electricity generation is predicted to continue. Holland et

al. (2018) document an extraordinary decline in air pollution from electricity generation in

2010-2017 and determine the corresponding decline in damages from electric vehicles. Our

model allows for declining damages from electric vehicles over time. Second, electric vehicle

production costs are projected to continue to drop primarily due to improvements in the

production of batteries. Falling costs could be due to learning by doing, scale economies, or

exogenous technological change. Our main model allows for exogenously declining produc-

tion costs of electric vehicles, but we extend the model to incorporate endogenously falling

production costs through learning by doing. Third, the substitutability of electric and gaso-

line vehicles may change over time either because of improvements in range, charging time,

or complementary infrastructure such as charging stations (e.g., indirect network effects).

Our main model assumes a range of substitutability, but we also analyze substitutability

that increases exogenously over time or endogenously through investments in complemen-

tary infrastructure. Fourth, vehicles are durable goods that depreciate. Thus we use dynamic

optimization techniques to determine how the current stock of vehicles depends on future

policies, costs, and consumer preferences.

The model allows us to study the transition from a variety of viewpoints. First, we solve

a planner’s problem that fully accounts for external costs from both gasoline and electric

vehicles. Next we determine the business as usual solution that occurs in the marketplace

when the external costs are ignored. Comparing these two solutions reveals two sources

of inefficiencies: in the timing of electric vehicle adoption and in the long run vehicle mix.

The adoption timing inefficiency is largest at high or low levels of substitutability between

electric and gasoline vehicles because the market adopts electric vehicles too late or too early.

The vehicle mix inefficiency is largest at intermediate levels of substitutability in which the

planner would fully transition to electric vehicles but the market does not. To assess the

magnitude of the inefficiencies, we calibrate our model for the US market. Overall, the largest

deadweight loss occurs at intermediate levels of substitutability, but the loss is modest: less

than 5 percent of total externality costs.

The calibrated model also offers insights into second best policies for improving the

efficiency of the transition. Up to now, the most common electric vehicle policy has been
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subsidies for their purchase. We show that these subsidies can improve the adoption timing

and reduce the deadweight loss for all levels of substitutability. Dynamically adjusting

subsidies modestly improves their performance. Another policy is a ban on the production

of gasoline vehicles. Twelve countries have currently announced bans and similar policies

have been proposed for the US. In our model, a production ban can reduce deadweight loss

if the planner’s solution calls for a complete transition to electric vehicles. An unfortunate

feature of the production ban, however, is an inefficient build up of the stock of gasoline

vehicles in anticipation of the ban. A third policy, which we introduce and evaluate, is

a bankable gasoline vehicle production quota. This policy caps cumulative production of

gasoline vehicles and can be implemented by an intertemporal cap-and-trade program. The

bankable production quota results in the smallest deadweight loss by a substantial margin,

even compared to dynamically adjusted subsidies.

In addition to the general literature on electric vehicles, this paper contributes to several

other literatures. A number of papers use dynamic models of transitions between technolo-

gies to analyze the design of subsidies (Kalish and Lilien 1983; Meyer et al. 1993; and

Langer and Lemoine 2017) and learning by doing (Van Benthem et al. 2008; Chakravorty et

al. 2012; Amigues et al. 2016; Bahel and Chakravorty 2016; and Creti et al. 2018). Relative

to this literature, which assumes that technologies are perfect substitutes, a distinguishing

characteristic of our work is that we allow electric and gasoline vehicles to be imperfect sub-

stitutes and also consider substitutability that is exogenously and endogenously increasing.

Another literature analyzes issues related to electric vehicle charging infrastructure such as

the effect of charging standards and the relationship between charging infrastructure and

electric vehicle policy (Springel 2016; Li et al. 2017; Zhou and Li 2018; and Li 2019). We

contribute to this literature by describing the relationship between infrastructure develop-

ment and the substitutability of gasoline and electric vehicles and how this relationship

affects the transition to electric vehicles.
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2 Model

Consider a continuous time model in which society benefits from the stock of gasoline and/or

electric vehicles. The benefit per unit of time in dollars is given by U(G,X) where G(t)

denotes the stock of gasoline vehicles and X(t) the stock of electric vehicles at time t.4

Letting UG and UX denote the partial derivatives, we assume U is concave with UG > 0

and UX > 0.5 The degree of substitutability between gasoline and electric vehicles plays

an important role in determining the transition between them. Substitutability can be

measured by either the cross-partial derivative UGX or a cross-price elasticity, and the use

of these concepts is interchangeable in our model.

The stocks of gasoline and electric vehicles evolve over time by production of new vehicles

and retirement of existing vehicles due to events such as accidents and mechanical failure. Let

g(t) denote the production of gasoline vehicles and x(t) denote the production of electric

vehicles at time t. The state equations for the stocks of vehicles are Ġ = −aG + g and

Ẋ = −aX + x, where Ġ and Ẋ are time derivatives and a is the vehicle retirement rate. The

expected lifetime of a vehicle is 1
a . If there is no production of new vehicles, then the stock

of vehicles decreases exponentially.

Each vehicle has a one-time production cost and ongoing usage costs. Let cg denote

the production cost of a gasoline vehicle, and let δg denote the usage costs of driving a

gasoline vehicle per unit of time. Usage costs include both private operating costs, e.g., fuel

purchases, and external costs, e.g., emissions of air pollution.6 We assume that both cg and

δg are constant over time. At time t, total production costs are given by cgg and total usage

costs are given by δgG.

Electric vehicles initially have greater production costs and/or greater usage costs than

gasoline vehicles, but that these costs are falling over time. Let the production cost of an

electric vehicle at time t be cx(t) with ċx < 0 and c̈x ≥ 0. Decreases in cx over time are due to,

for example, exogenous improvements in battery technology.7 Let usage costs of driving an

4For notational convenience, we often suppress writing variables as explicit functions of time.
5Below we extend the model to include endogenous changes in benefits from investment in charging

infrastructure.
6In practice, there may be externalities associated with production as well.
7Kittner et al (2017). Below we extend the model to include endogenous reductions in production costs

from learning by doing.
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electric vehicle per unit of time at time t be δx(t) with δ̇x ≤ 0. Decreases in δx over time are

due to, for example, decreases in external costs from air pollution as the electricity grid gets

cleaner. Let the limits of production and usage costs for electric vehicles be limt→∞ cx(t) = ĉx

and limt→∞ δx(t) = δ̂x.

The planner’s problem determines the production of gasoline and electric vehicles to

maximize discounted benefits net of production and usage costs. Let r > 0 be the interest

rate and assume the planner starts in an initial steady state with a positive stock Gss of

gasoline vehicles but zero electric vehicle stock.8 The planner’s problem is

max
g,x
∫

∞

0
e−rt (U(G,X) − cgg − cxx − δgG − δxX)dt (1)

subject to the constraints

Ġ = −aG + g ; G(0) = Gss

Ẋ = −aX + x ; X(0) = 0

g ≥ 0 ; x ≥ 0.

(2)

In this optimal control problem, the control variables are the production levels g and x, and

the state variables are the stocks G and X.

The planner’s problem describes the first best solution and also characterizes the outcome

of a competitive equilibrium if all externalities are corrected by Pigovian taxes. Modifying

the planner’s problem allows us to analyze other market outcomes. For example, if we

modify the objective function by ignoring the externalities, then the solution characterizes

the outcome of a competitive equilibrium in which the externalities are not corrected, the

so-called “business as usual” or BAU outcome. As explained in detail below, modifying the

planner’s problem in other ways allows analysis of policies such as electric vehicle subsidies

or gasoline vehicle production bans.

Necessary conditions for the planner’s problem are derived in Online Appendix A. These

8Assume further that UG(0,0) > (a + r)cg + δg which ensures that Gss is positive and that Ux(Gss,0) <
(a + r)cx(0) + δx(0) − ċx(0) which ensures that no electric vehicles are produced at t = 0.
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conditions include the state equations for G and X and the corresponding adjoint equations

α̇ = (a + r)α + δg −UG, (3)

and

β̇ = (a + r)β + δx −UX ,

where α is the adjoint variable forG and β is the adjoint variable forX. Because the objective

and state equations are linear in the controls, and the controls must be non-negative, we

present the Kuhn-Tucker first order conditions:

g ≥ 0 α − cg ≤ 0 g(α − cg) = 0

x ≥ 0 β − cx ≤ 0 x(β − cx) = 0.

These conditions show that the adjoint variables are bounded above by the production costs

and equal production costs when g or x is interior.

Consider interior production of gasoline vehicles. When g > 0, the first order conditions

imply that α = cg and hence because cg is constant over time we have α̇ = 0. The adjoint

equation for G then implies

UG = (a + r)cg + δg. (4)

To interpret this equation, define the full marginal cost of the gasoline vehicle as (a+r)cg+δg,

which is the sum of annualized depreciation, investment, and operating costs. If gasoline

vehicles are produced, then the annual marginal benefit of a gasoline vehicle equals its full

marginal cost.

Interior production of electric vehicles has a similar interpretation. If x > 0, then β = cx,

so taking the time derivative gives β̇ = ċx, and the adjoint equation for X implies

UX = (a + r)cx + δx − ċx. (5)

This equation is analogous to (4) except it has an additional cost −ċx > 0, which is the

opportunity cost of producing the electric vehicle at time t instead of waiting until it is
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cheaper to produce in the future. The full marginal cost of an electric vehicle, (a+r)cx+δx−ċx,

includes this opportunity cost, and, under our assumptions, decreases over time.9

In the initial steady state x(0) = 0 and X(0) = 0, so the initial steady state stock of

gasoline vehicles, Gss, is determined by UG(Gss,0) = (a + r)cg + δg. The initial steady state

production of gasoline vehicles is g = aGss.

Several elements of the model deserve additional explanation. The benefit function U rep-

resents the benefits to society from optimally allocating the stocks of vehicles to consumers.

Adding a vehicle may require the existing stock of vehicles to be reallocated. This benefit

function is consistent with well functioning markets for new and used vehicles. The stocks of

gasoline and electric vehicles G and X are only differentiated by fuel type. In practice, many

other attributes may matter to consumers including the age of the vehicle. The assumption

that usage costs for a gasoline vehicle, δg, are constant over time does not necessarily imply

that gasoline technology is stagnant. If certain components of the usage costs, e.g., the

social cost of carbon, are increasing over time, then we are implicitly assuming that other

components of the usage costs (e.g., fuel economy) are changing to offset these increases.

On the electric side, we assume usage costs are decreasing due to declines in external costs

over time. This does not require modeling vintages of electric vehicles if declines in external

costs arise due to improvements in the electricity grid, rather than efficiency improvements

to the electric drivetrains. An improvement in the grid leads to a contemporaneous decrease

in external costs from the entire fleet of electric vehicles regardless of the ages of the vehicles.

Finally, usage costs are independent of the stock of vehicles. This does not hold if expanding

the stock of vehicles causes each vehicle to be driven less.

2.1 Terminal steady state

Before analyzing the optimal time paths, consider the terminal steady state in which all im-

provements to electric vehicles and the electricity grid have been completed, i.e., production

costs have converged to ĉx, and usage costs have converged to δ̂x. Let g∞ be gasoline vehicle

production in the terminal steady state. Note that g∞ = 0 if there exists some T such that

g(t) = 0 for all t > T . Our first proposition gives conditions that determine whether or not

9The time derivative of the full marginal cost is (a + r)ċx + δ̇x − c̈x.
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it is optimal to have gasoline vehicle production in the terminal steady state. All proofs are

in the Appendix.

Proposition 1. Let X∗ be defined by UX(0,X∗) = (a+r)ĉx+ δ̂x. Gasoline vehicle production

is zero in the terminal steady state, i.e., g∞ = 0, if

UG(0,X
∗) < (a + r)cg + δg.

Conversely, g∞ > 0 if UG(0,X∗) > (a + r)cg + δg.

In the proposition, X∗ is the number of electric vehicles which would be optimal if there

were no gasoline vehicles in the terminal steady state. The proposition states that gasoline

vehicle production is zero if the marginal benefit of a gasoline vehicle, when there are no

gasoline vehicles but X∗ electric vehicles, is less than the full marginal cost of a gasoline

vehicle. Terminal steady state gasoline vehicle production is zero if this marginal benefit is

small, but is positive if this marginal benefit is large.10

Dividing the first two marginal benefits in Proposition 1 yields a condition on society’s

marginal rate of substitution (MRS) between gasoline and electric vehicles. In particular,

g∞ = 0 if
UX(0,X∗)
UG(0,X∗)

>
(a + r)ĉx + δ̂x
(a + r)cg + δg

.

i.e., gasoline vehicle production is zero if the MRS at (0,X∗) is smaller than the ratio of

full marginal costs. If the vehicles are perfect substitutes and the MRS is one, then the

result implies that gasoline vehicle production is zero if the full marginal cost of an electric

vehicle is cheaper. If the vehicles are not good substitutes and the MRS is not one, then the

full marginal cost of an electric vehicles would need to be substantially cheaper in order for

gasoline vehicle production to be zero in the terminal steady state.

10If U is derived from an underlying discrete choice model, the marginal benefit UG(0,X∗) would be
interpreted as the utility gain to the individual with the highest gain in valuation from a gasoline vehicle
relative to optimally having either no vehicle or an electric vehicle.
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2.2 Transition From Gasoline to Electric Vehicles

Now turn to the transition from gasoline to electric vehicles. By assumption, g(0) = aGss > 0

but x(0) = 0, i.e., gasoline vehicles are initially produced but electric vehicles are not. This

leads to two key transition times: tg, the time when gasoline vehicle production stops, and

te, the time when electric vehicle production starts. More precisely tg is defined such that

g(t) > 0 for t ∈ [0, tg] but g(t) = 0 for t > tg.11 If tg = ∞ then gasoline vehicle production is

always nonzero. Similarly, te is defined such that x(t) = 0 for all t ∈ [0, te) but x(t) > 0 for

all t ∈ [te,∞).

For these transition times, there are two possible solutions to the planner’s problem. If

te < tg, then there is a period of time in which gasoline and electric vehicles are both produced.

We call this a simultaneous solution. If tg < te, then there is a period of time in which neither

gasoline nor electric vehicles are produced. We call this a gap solution due to the gap in

vehicle production. Surprisingly, this solution obtains for reasonable parameterizations of

the model, namely, if vehicles are perfect substitutes. This result and other details of the gap

solution are given in Online Appendix B. Here we focus on specifying the transition times

in the simultaneous solution.

The simultaneous solution is characterized first by production of gasoline vehicles only,

then by production of both gasoline and electric vehicles, and finally by production of electric

vehicles only. Before te, the solution has g = aGss > 0 but no electric vehicle production.

Electric vehicle production begins at te so (5) must hold at this time. Substituting G(te) =

Gss and X(te) = 0 into (5) yields an equation which characterizes te (see the proposition

below). Over the interval [te, tg], both gasoline and electric vehicles are produced so both

(4) and (5) must hold and the vehicle stocks (and hence production) are determined by these

equations. Note that the costs of electric vehicles are falling so more vehicles are produced

and Ẋ > 0. Because the right-hand-side of (4) is constant over time, it follows that Ġ < 0 over

this interval. If tg < ∞, then gasoline vehicle production ceases at tg. The characterization

of tg involves solving a differential equation (see the proposition below). After tg the stock

of gasoline vehicles simply decreases exponentially, i.e., G(t) = G(tg)e−a(t−tg) for every t > tg.

11It may be optimal to temporarily cease gasoline vehicle production to draw down the existing stock of
gasoline vehicles. In this case, which is explored in Online Appendix C, g(t) need not equal zero for all t > tg.
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Because the gasoline vehicle stock is decreasing, the electric vehicle stock increases toward

a terminal steady state, as determined by (5).

The following proposition characterizes the transition times:

Proposition 2. In the simultaneous solution, the transition time te is the solution to

UX(Gss,0) = (a + r)cx(t
e) + δx(t

e) − ċx(t
e). (6)

If tg <∞, the transition time tg is the solution to

cg = ∫
∞

tg
e−(a+r)(τ−t

g) [UG(Gsim(τ),Xsim(τ)) − δg]dτ (7)

where Gsim(t) = G(tg)e−a(t−tg) and Xsim(t) satisfies UX(Gsim(t),Xsim(t)) = (a+r)cx+δx− ċx

for all t > tg.

The characterization of te in (6) shows that electric vehicle production begins when the

full marginal cost of the electric vehicle falls such that it exactly equals the marginal benefit

of an electric vehicle given a zero stock of electric vehicles. Because gasoline vehicles are in

steady state at te, equation (6) can also be written in terms of the MRS:

UX(Gss,0)

UG(Gss,0)
=

(a + r)cx(te) + δx(te) − ċx(te)

(a + r)cg + δg
.

If there are individuals who highly value electric vehicles, the MRS when X = 0 could be quite

large. In this case it might be optimal to produce electric vehicles even if their full marginal

costs substantially exceed the full marginal costs of a gasoline vehicle. Conversely, if electric

vehicles are seen as inferior even by the individuals with the highest relative valuations

(perhaps due to range anxiety), then the full marginal costs would need to fall below the full

marginal costs of a gasoline vehicle before electric vehicles are produced.

The characterization of tg in (7) shows that gasoline vehicle production stops when the

cost of producing a gasoline vehicle equals the present value of the lifetime benefit of driving

a gasoline vehicle net of usage costs from that time on. Two points are worth noting about

(7). First, the discount factor e−(a+r)(τ−tg) reflects both the interest rate, r, and rate of
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vehicle retirement, a. Second, the path of the gasoline vehicle stock after tg, given by

Gsim(t) = G(tg)e−a(t−tg), is decreasing exponentially because no new gasoline vehicles are

produced after tg. However, G(tg) is not equal to Gss because during the interval [te, tg]

both gasoline and electric vehicles are produced so the stocks evolve to satisfy both (4) and

(5).

2.3 Market outcomes and BAU

A market economy does not have a planner making decisions to produce gasoline and electric

vehicles. Rather these decisions are decentralized to firms and consumers through markets

and prices. The solution to (1) describes the first best solution to our model, which can

be decentralized by Pigovian taxes that fully reflect the externalities. If such taxes are

politically infeasible, it may still be possible to improve outcomes by implementing market

policies such as a subsidy on the purchase of electric vehicles or a ban on the production

of gasoline vehicles. Our framework allows us to analyze the welfare consequences of such

policies.

We start by describing the Business As Usual (BAU) market outcome. Under BAU

consumers ignore all externalities, and there are no market policies put in place to try to

correct for this behavior. Let δpvtg and δpvtx be the private operating costs of gasoline and

electric vehicles, i.e., the usage costs without the externalities. To describe how electric

vehicles are adopted over time by a competitive market, we use the optimal control problem

max
g,x
∫

∞

0
e−rt (U(G,X) − cgg − cxx − δ

pvt
g G − δpvtx X)dt (8)

subject to the constraints in (2). This problem is similar to (1), but with the modification

that δg and δx have been replaced by δpvtg and δpvtx . The solution to (8) gives us the time

paths of production (g and x) and vehicle stocks (X and G) under BAU. To find the welfare

associated with the BAU outcome, we substitute the time paths into

∫

∞

0
e−rt (U(G,X) − cgg − cxx − δgG − δxX)dt, (9)
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and then evaluate the integral. Notice this function is the objective function of the original

planner’s problem, which includes the externalities. With the value of this function at the

BAU time paths in hand, we can calculate the deadweight loss of BAU relative to the first

best.

We follow a similar procedure to analyze other market based policies such as taxes or

subsidies. In particular, by modifying (8) to reflect the private costs that result from a given

policy (e.g., lower purchase costs from a subsidy), the optimization results in the vehicle

time paths that would obtain under the policy. We then calculate the deadweight loss of the

policy by evaluating these time paths with the integral in (9) and comparing to first best.

One possible source of deadweight loss is due to an inefficient vehicle mix. The following

corollary, which follows directly from Proposition 1, provides some guidance on when the

BAU terminal steady state has inefficiently positive production of gasoline vehicles.

Corollary 1. If (a + r)cg + δ
pvt
g < UG(0,X∗

BAU) < UG(0,X
∗) < (a + r)cg + δg, then gasoline

vehicles are produced in the terminal steady state under BAU but not under first best.

The corollary says that the vehicle mix is inefficient in the terminal steady state—i.e.,

gasoline vehicles are produced under BAU but not under first best—if both marginal benefits

are in the interval between (a+r)cg+δ
pvt
g and (a+r)cg+δg. This condition depends critically

on the external costs and the degree of substitutability between gasoline and electric vehicles.

If externality costs are large, then this interval is large and it is more likely that the BAU

vehicle mix is inefficient. If vehicles are poor substitutes, then the two marginal benefits in

the corollary are both large and the vehicle mix is not inefficient because gasoline vehicles are

produced under both BAU and first best. If vehicles are good substitutes, then the marginal

benefits are both small and the vehicle mix is not inefficient because gasoline vehicles are

not produced under either BAU or the first best. The vehicle mix is only inefficient at an

intermediate level of substitutability where the marginal benefits are in the interval so that

gasoline vehicles are produced in the steady state under BAU but not in first best.

Deadweight loss also may result from the inefficient timing of the transition to electric

vehicles. The next proposition shows that this transition time can be too early or too late

under BAU.
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Proposition 3. Under BAU, the transition time te may be greater or less than under first

best.

The proposition is proved by numerical example below in Figure 2 and Table 2. Here we

illustrate the key role played by the degree of substitutability. Figure 1 shows the determi-

nation of the transition time te for both first best and BAU in the simultaneous solution.12

The bold curves illustrate the solution to (6) for first best. The value for te occurs when the

(bold) full marginal cost (a + r)cx + δx − ċx falls to the (bold) marginal benefit UX(Gss,0).

The thinner curves illustrate the solution to (6) for BAU. Notice that both curves shift down

in moving from first best to BAU. The full marginal cost shifts down by the amount of the

external costs.13 To see why the marginal benefit shifts down, first note that BAU ignores

external costs and so the initial steady state stock of gasoline vehicles is larger under BAU

than in first best: Gss
BAU > Gss.14 This higher initial stock shifts down the marginal benefit

UX if UGX ≤ 0. How much this curve shifts down depends on the substitutability between

gasoline and electric vehicles. The figure shows two possibilities. If they are poor substitutes

(as in Case 1), then the curve does not shift much and teBAU is less than te, as shown on

the left part of the figure.15 Conversely, if they are good substitutes (as in Case 2), then

UX(Gss
BAU ,0) shifts down a lot in which case teBAU can be later than te, as shown on the

right. Thus the electric vehicle transition can occur too early under BAU if vehicles are poor

substitutes, but can occur too late if they are good substitutes.

Although the terminal mix inefficiency and the adoption timing inefficiency may not be

the only sources of inefficiency, combining these two results gives insight into the overall

magnitude of deadweight loss under BAU. Corollary 1 shows that the terminal vehicle mix

inefficiency is largest at intermediate levels of substitutability, but Proposition 3 shows that

the adoption timing inefficiency is largest at high or low levels of substitutability. Thus

the two inefficiencies are unlikely to exacerbate one another, which suggests that the overall

inefficiency may be limited.

12A similar argument holds for the gap solution.
13Note that the private and social full marginal costs have the same asymptote since the externality costs

go to zero.
14More precisely, using (4), the steady state gasoline vehicle stocks are determined by UG(Gss,0) = (a +

r)cg + δg and UG(GssBAU ,0) = (a + r)cg + δpvtg . Because UGG < 0 and δg > δpvtg , we have Gss < GssBAU .
15For example, if they are additively separable, UGX = 0, and the curve does not shift down at all.
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Figure 1: First Best vs. Business as Usual te
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Case 1: Poor Substitutes Case 2: Good Substitutes

2.4 Extensions

In our main model, the benefit function is constant over time. In practice, electric vehicles

may become better substitutes for gasoline vehicles over time as more charging stations

are built, charging times decrease, consumers and mechanics become more familiar with

the technology, information campaigns promote electric vehicles, and so on. Some of these

changes may be reasonably modeled as independent from electric vehicle adoption—e.g.,

research in battery technologies that reduces charging times—but other changes may be

better modeled as jointly determined with electric vehicle adoption—e.g., building charging

stations. To model exogenous substitutability, simply note that the benefit function can shift

over time and all the preceding analysis holds. To model endogenous substitutability, we

introduce complementary infrastructure that affects the benefits of adopting electric vehicles.

In particular, let W be the cumulative stock of complementary infrastructure, w be the

investment in complementary infrastructure at time t, Ẇ = w be the state equation, and cw

be the cost per unit of these investments.16 The benefit function then becomes U(G,X,W )

16In competitive markets, charging infrastructure investment is subject to the “chicken and egg” problem
of two-sided externalities. The planner avoids this externality. See Li et al (2017) for an empirical analysis
of the effect of charging stations on the demand for electric cars.
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with UW > 0 and UXW > 0.17

Our main model also assumes that electric vehicle production costs decline exogenously

over time. In practice, cost declines may also depend on electric vehicle adoption. Endoge-

nous cost declines can be modeled as learning by doing. More specifically, let the marginal

cost of producing electric vehicles decrease in cumulative electric vehicle production, denoted

by a new state variable Z(t) with state equation Ż = x.18 The marginal cost of electric vehicle

production then becomes cx(Z, t).

We extend the theoretical model by analyzing endogenous substitutability and learning

by doing in Online Appendix D. Because the results are generally robust to these extensions,

our numerical simulations below consider these cases.

3 Model Calibration

To assess the magnitudes of the inefficiencies described above, we present a numerical sim-

ulation. This section summarizes the calibration of parameters. Further details are provide

in Online Appendix E. To analyze the full roll-out of electric vehicles, the simulation starts

in 2005, but the calibration is based on observed values in 2018. Instead of an infinite time

horizon, the simulation has a finite terminal time, and, except where noted, the results are

not significantly affected by the terminal conditions.19

Baseline parameter values are shown in Table 1. The annual externalities and operat-

ing costs from gasoline, δg, and electric vehicles, δx, are calculated from data in Holland et

al (2016), Holland et al (2018), and American Automobile Association (2017). The produc-

tion cost of a gasoline vehicle, cg, is from the average transaction price for light duty vehicles

(Kelly Blue Book 2017). Production costs of an electric vehicle are based primarily on the

cost of lithium ion batteries (Kitner et al 2017) and asymptote to the production cost of a

gasoline vehicle. The vehicle retirement rate is assumed to be the same for both types of

vehicles and is calculated from production and stock information published by the Bureau

17In the simulation section, we assume that UW (G,0,W ) = 0, i.e., there is no benefit to investments in
substitutability when there are no electric vehicles. We make a similar assumption for the exogenous case.

18See, for example, Van Benthem et al (2007), Amigues et al (2016), and Bahel and Chakravorty (2016).
19We value any terminal vehicle stocks at production costs.
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Table 1: Baseline parameter values

Parameter Value Description
δg 345 + 2726 Annual gasoline vehicle usage cost: externality + operating
δx 605e(−0.05t) + 1535 Annual electric vehicle usage cost: externality + operating
cg 35000 Production cost of a gasoline vehicle
cx cg+ 21961e−0.06t Production cost of an electric vehicle: 60 kWh battery

G2018 110 million Stock of gasoline passenger vehicles in 2018
X2018 1 million Stock of electric passenger vehicles in 2018
εGpX 0.01 Cross-price elasticity
a 0.067 Vehicle retirement rate
r 0.05 Interest rate

Notes: All dollar amounts are in 2017 dollars.

of Transportation Statistics (2017) and Bureau of Economic Analysis (2017).

The final calibration step involves specifying a functional form for the benefit function

U(G,X). The functional form must satisfy the concavity assumption and ideally be parsi-

monious with parameters which we can identify from estimates in the literature. In addition,

our focus on the introduction of electric vehicles and the end of gasoline vehicle production

requires the functional form to admit corner solutions with only gasoline or only electric

vehicles.20 We use the benefit function

U(G,X) = A ln(G + ηX + γηGX), (10)

where A, γ, and η are parameters to be calibrated.21 This function nests both linear and

convex indifference curves, and the parameters η and γ can be interpreted as the relative

preference for electric vehicles and as the degree of substitutability, respectively. If γ = 0,

vehicles are perfect substitutes and η describes the slope of the linear indifference curves. If

γ > 0 indifference curves are convex, which reflects a social preference for balanced consump-

tion of the two types of vehicles. Further note that either G = 0 or X = 0 implies unitary

demand elasticity. We use observed data on prices and quantities in 2018 and calculate a

cross price elasticity using results in Xing et al (2019), εGpX = 0.01, to calibrate the benefit

20This requirement rules out the simplest versions of widely used functional forms such as Cobb-Douglas
or constant elastiticity of substitution (CES).

21We also explore sensitivity to the more flexible benefit function U(G,X) = A(G + ηX + γηGX)β , which
has an additional parameter, β, to fit.
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function parameters A, η, and γ.

Although we refer to it as baseline, we do not want to place undo emphasis on the

estimated cross price elasticity of 0.01. The data in Xing et al (2019) considers the fleet of

electric vehicles up to 2014. Although the vehicles in the fleet had a range of characteristics,

from relatively expensive vehicles with large batteries and long range (e.g., the Tesla Model

S) to relatively inexpensive vehicles with small batteries and short range (e.g., the Nissan

Leaf), the vast majority of actual vehicles sold were of the latter type.22 Our calibration

has only a single representative electric vehicle with a fairly large battery and long range.

This vehicle is likely to be a better substitute for gasoline vehicles than the baseline cross

price elasticity would indicate. Accordingly, in the simulation section we consider a range of

possible cross price elasticities, and also allow for exogenously and endogenously increasing

substitutability over time.

4 Simulation Results

We use the open-source program BOCOP (2017) to simulate numerical solutions to (1) and

(8). BOCOP implements a local optimization method in which the optimal control problem

is approximated by a finite dimensional optimization problem using a time discretization.23

Where possible, results from BOCOP are verified by solving the necessary conditions nu-

merically in Mathematica.

4.1 Time paths of vehicle stocks and production

Figure 2 shows the time paths for production and stocks of electric and gasoline vehicles

under two scenarios. In the “First Best” scenario, usage costs include both private costs

and external costs. In the “BAU” scenario, usage costs only include the private costs.

Panel A of Figure 2 uses the baseline cross-price elasticity of εGpX = 0.01. In both scenarios,

gasoline vehicle production is not noticeably affected by electric vehicle production. In fact,

22Table 1 in Holland et al. (2019) shows the electric vehicle fleet in 2014. Around 70 percent have batteries
smaller than 25 kWh.

23The optimization problem is solved by IPOPT, (Interior Point OPTimizer) using sparse exact derivatives
computed by Automatic Differentiation by OverLoading (ADOL-C).
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electric vehicle production only serves to increase the total stock of vehicles. This reflects the

poor substitutability of electric vehicles for gasoline vehicles implied by the low cross price

elasticity. BAU leads to more gasoline vehicles in the initial steady state because it does not

account for the external costs from these vehicles. On the electric side, the terminal stock

of electric vehicles is the same in First Best and BAU because external costs from electric

vehicles fall to zero over time. Because the vehicles are poor substitutes, electric vehicles

are adopted too early under BAU, as described in the discussion of Prop. 3. In particular,

the First Best production of electric vehicles begins in 2031, but BAU begins production of

electric vehicles in 2028.24 The deadweight loss of BAU relative to First Best is $18.5 billion.

Panel B of Figure 2 shows time paths for εGpX = 2. In this case, electric and gasoline

vehicles are better substitutes so electric vehicle production results in a substantial reduction

in gasoline vehicle production under both First Best and BAU. Electric vehicle adoption

causes the stock of gasoline vehicles to decline, but does not decrease the total stock of

vehicles. Although production of gasoline vehicles declines, it never ceases so the terminal

time has a mix of electric and gasoline vehicle production. Under BAU, the total vehicle

terminal stock is approximately equal to First Best, however, BAU has an inefficient vehicle

mix: too few electric vehicles and too many gasoline vehicles. BAU electric vehicle production

begins too late, which, in conjunction with the fact that BAU electric production begins too

early in Panel A, proves Proposition 3. The deadweight lass from BAU in Panel B is $20.9

billion.

In Panel C of Figure 2, substitutability is even better (εGpX = 5.5), and electric vehicle

production again begins too late under BAU. First Best has a period of simultaneous pro-

duction of both gasoline and electric vehicles before ceasing production of gasoline vehicles.

In contrast, BAU production of gasoline vehicles continues throughout. Because BAU does

not cease gasoline vehicle production but First Best does (as described in Corollary 1) the

vehicle mix inefficiency is large, and this elasticity results in the largest inefficiency with

$29.9 billion in deadweight loss.

24Our calibration is based on the state of the electric vehicle market in 2018. A subsidy scenario, which
decreases the production cost of the electric vehicles by $7500 to reflect current subsidies, replicates the
market outcome with a stock of 1 million electric vehicles in 2018 but ramps up electric vehicle production
more quickly than actually occurred.
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Figure 2: First Best and BAU: Vehicle Production and Stocks

Panel A: Low cross-price elasticity: εGpX = 0.01

Panel B: Medium cross-price elasticity: εGpX = 2

Panel C: High cross-price elasticity: εGpX = 5.5

Panel D: Very high cross-price elasticity: εGpX = 8

Notes: Red is gasoline vehicles, blue is electric vehicles, and green is total vehicles. Solid is “First Best”
and includes all costs. Dashed is “BAU” and ignores all externalities.
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Panel D shows the time paths with εGpX = 8. This very high degree of substitutability

leads to the gap solution in which gasoline vehicle production ceases slightly before electric

vehicle production begins. Gasoline vehicle production ceases under both BAU and First

Best, but electric vehicle adoption occurs too late under BAU, and the deadweight loss is

$23.7 billion.

Three things are notable about the results in Figure 2. First, consistent with Proposi-

tion 3, electric vehicle production can begin too early or too late. Panel A of Figure 2 shows

electric vehicle production under BAU can begin too early if electric and gasoline vehicles are

poor substitutes. Conversely Panels B-D show production can begin too late if the vehicles

are better substitutes. Thus the adoption timing inefficiency is largest when the cross-price

elasticity is large or small, and smallest at intermediate elasticities.

Second, the terminal vehicle mix inefficiency is largest if gasoline vehicle production does

not cease under BAU but does under First Best. This occurs at intermediate levels of

substitutability. At low substitutability, gasoline vehicle production does not cease under

either first best or BAU. At high levels of substitutability, gasoline vehicle production ceases

under both first best and BAU.

Third, consider our prior observation that the total deadweight loss may be limited

because the adoption timing and terminal vehicle mix inefficiencies are largest at different

elasticities. Consistent with this observation, the deadweight losses for all elasticities in

Figure 2 are relatively small: BAU deadweight loss is less than $30 billion over 70 years

or an annualized value of about $1.5 billion. For comparison, total annual gasoline vehicle

external costs in the initial steady state are approximately $38 billion per year.25 Thus

deadweight loss is less than 5 percent of initial external costs.

4.2 Second Best Policies

Implementation of the first best through Pigovian taxes that fully reflect externality costs

may not be politically feasible. Nonetheless, it may still be possible to improve on BAU

outcomes by implementing market-based policies such as a subsidy on the purchase of an

electric vehicle or a ban on the production of gasoline vehicles. To analyze such policies,

25$345 per vehicle multiplied by 110 million vehicles.
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we modify (8) to account for the policy, and then evaluate this solution using the welfare

function (9). To avoid comparing inferior policies, we use a numerical search routine to

calculate the policy of each type that minimizes deadweight loss. Unless the policy fully

internalizes all external costs, it will not attain the first best solution so we call the optimal

policy of each type the second best policy.

Table 2 shows the results for three second best policies: an electric vehicle purchase

subsidy which is constant over time (EV Subsidy), a policy that bans gasoline vehicle pro-

duction after a certain time (GV Ban), and a bankable gasoline vehicle production quota

(GV Quota) which limits cumulative production of gasoline vehicles. First consider the EV

Subsidy. Relative to BAU, the second-best EV Subsidy reduces deadweight loss for all four

elasticities. For the low elasticity shown in Panel A, the second-best EV Subsidy is actually

a tax of $762 per vehicle. In this case, electric vehicles are adopted too early under BAU

and the tax delays their adoption. In the other panels, electric vehicles are adopted too late

under BAU and the second-best EV Subsidy is positive and hastens their adoption time.

The largest reduction in deadweight loss (about a 40 percent reduction) is in Panel C where

the EV Subsidy improves both the adoption timing and the terminal vehicle mix inefficiency.

The second policy (GV Ban) prohibits gasoline vehicle production after a certain time.

For low and medium elasticity in Panels A & B, gasoline vehicle production does not cease

in the first best, so it is not surprising that the the second best GV Ban never actually bans

gasoline production. This policy simply replicates BAU and does not reduce deadweight loss,

so it is not shown in Table 2. With the high elasticity in Panel C, gasoline vehicle production

does cease in the first best, and the second best GV Ban prohibits gasoline production

after 2026. In both panels C and D, the second best GV Ban reduces the adoption timing

inefficiency and the terminal vehicle mix inefficiency. Notice that the deadweight loss from

the GV Ban is about the same as that from the EV Subsidy.

Unfortunately, the GV Ban leads to perverse incentives. Because vehicles are durable

goods, production and purchase decisions are based on future benefits. The anticipation of

a future ban causes gasoline vehicle production to optimally spike before the ban occurs.26

26Production capacity constraints would obviously reduce the ability of producers to spike production of
gasoline vehicles. With capacity constraints, producers would produce at capacity until the ban goes in place
and would have an incentive to install additional capacity in anticipation of the ban.
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Table 2: Second Best Policy Results

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

Panel A: Low cross-price elasticity: εGpX = 0.01
First Best n.a. 0 2031.4 n.a. 104.5 17.3
BAU n.a. 18.5 2028.4 n.a. 109.8 17.7
EV Subsidy ψ1= -762 18.0 2030.0 n.a. 109.8 15.7

Panel B: Medium cross-price elasticity: εGpX = 2
First Best n.a. 0 2027.8 n.a. 68.7 53.9
BAU n.a. 20.9 2028.9 n.a. 81.0 42.9
EV Subsidy ψ1= 1090 18.3 2026.8 n.a. 76.3 50.2

Panel C: High cross-price elasticity: εGpX = 5.5
First Best n.a. 0 2027.3 2036.9 5.6 125.7
BAU n.a. 28.9 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 1419 18.6 2026.4 n.a. 13.6 121.2
GV Ban tg = 2026.5 18.7 2028.7 2026.5 6.1 125.7
GV Quota G = 161 8.7 2026.5 2026.4 5.1 126.8

Panel D: Very high cross-price elasticity: εGpX = 8
First Best n.a. 0 2025.3 2025.0 4.5 127.1
BAU n.a. 23.7 2028.9 2028.8 6.1 125.8
EV Subsidy ψ1= 1125 17.0 2025.7 2025.5 4.9 130.3
GV Ban tg = 2023.8 18.1 2026.2 2023.8 5.0 127.0
GV Quota G = 141 8.3 2024.2 2023.7 4.3 127.9

Notes: For the EV Subsidy policy, the price path formula is c̃x = (cg −ψ1)+21961e−0.06t, where ψ1 is selected
to minimize deadweight loss. For the GV Ban, tg indicates the year in which the ban is implemented. For
the GV Quota, G is the cumulative allowed production of gas vehicles. GT and XT are the values at the
end of the finite horizon.
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Panel A of Figure 3 shows the production and stocks of vehicles under first best and the

second best GV Ban for εGpX = 5.5. The second best GV Ban prohibits gasoline production

after 2026, and there is a spike in gasoline production and a coincident increase in the gasoline

vehicle stock just before that date.

The third policy (GV Quota) is a bankable gasoline vehicle production quota which limits

cumulative production of gasoline vehicles. This policy is similar EPA’s phase-out of lead in

gasoline during the 1980’s and could be implemented with an intertemporal cap-and-trade

program. The cap-and-trade program would begin with an initial bank of permits and a

permit would be retired with the production of each gasoline vehicle. Panel B of Figure 3

shows the production and stocks of vehicles under first best and the second best GV Quota

where the optimal size of the initial bank is 161 million for εGpX = 5.5. The GV Quota

does not lead to a production spike. Table 2 shows that the GV Quota does quite well in

comparison to the subsidy or ban polices, as its deadweight loss is less than half that of

the other policies. This advantage occurs because the GV Quota introduces a shadow cost

on the production of each gasoline vehicle, which leads to a reduction in gasoline vehicle

production well before the electric vehicle transition.

Online Appendix G considers additional second best policies: electric vehicle subsidies

that vary over time and a more flexible quota policy. For dynamic subsidies, we allow

the subsidies to vary over three parameters: the initial subsidy value, the terminal subsidy

value, and the decay rate of the subsidy. We then optimize over the parameters singly or

pair-wise to calculate second best dynamic subsidies. The EV Subsidy, which is constant

over time, compares well with the dynamic subsidies and attains a deadweight loss within

10% of the best dynamic subsidy we calculate. For a flexible quota policy, we consider a

two parameter quota with an initial bank of permits and annual injections of permits. The

optimized flexible quota is identical to the GV Quota in the high-substitutability cases in

which it is optimal to cease production of gasoline vehicles. In addition, the flexible quota can

reduce deadweight loss substantially in the low-substitutability cases in which it is optimal

to reduce production of gasoline vehicles but not to cease production completely. With this

modification, the gasoline vehicle production quota can be applied to a broader range of

situations.
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Figure 3: GV Ban and GV Quota: Vehicle Production and Stocks for εGpX = 5.5

Panel A: GV Ban

Panel B: GV Quota

Notes: Red is gasoline vehicles, blue is electric vehicles, and green is total vehicles. Solid is “first best” and
includes all costs. Dashed is second best “GV Ban” or “GV Quota”
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4.3 Extensions

Two of the key drivers of the electric vehicle transition are the substitutability between

electric and gasoline vehicles and the fall in production costs of electric vehicles. In this

section we modify the preceding model to account for increasing substitutability and learning

by doing.

Suppose at first that substitutability is exogenously increasing over time. In our benefit

function in (10), substitutability is determined by the parameters η and γ: one-to-one perfect

substitutes require that η be one and γ be zero. Thus increasing substitutability arises as η

increases toward one and γ decreases toward zero. However if η and γ move independently,

benefits for a given fleet of vehicles may be decreasing. To avoid this result, we assume that

η and γ move together such that benefits increase over time.27 In particular, we assume γ

decreases exponentially to zero, and η increases toward one such that the marginal rate of

substitution is held constant at some level of gasoline and electric vehicles. In essence this

holds the indifference curve constant at a point but shifts it inward everywhere toward the

line which is tangent at the point (see Online Appendix F for details). With this formulation

we have γ = γoe−φt, where φ captures the speed at which substitutability increases and γo

implies the baseline cross price elasticity of 0.01 at time zero. For φ = 0.1, the cross price

elasticity takes 75 years to reach 8. This decreases to 37 years for φ = 0.20.28 The First Best

time paths of production for various values of φ are given in Figure 4. For low values of φ

(Panels A and B) gasoline production is never halted. For intermediate values of φ there is

a period of simultaneous production of gasoline and electric vehicles. For high values of φ,

the first best features a gap solution.

Next consider a substitutability that increases endogenously through investment in com-

plementary infrastructure (e.g. charging stations). As above, the parameters η and γ need

to be jointly determined so we let γ decay exponentially toward zero as a function of the cu-

mulative stock of investments W . Figure 5 shows the first best vehicle production and stocks

for very high cost and low cost charging infrastructure. In Panel A, charging infrastructure

has very high costs, no investment occurs, and electric vehicles are simply adopted based on

27This means that, for a fixed X and G, we have Ut > 0.
28These calculations assume G stays fixed at 110.
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Figure 4: Exogenously increasing substitutability: First Best

(a) Baseline (φ = 0) (b) φ = 0.05

(c) φ = .10 (d) φ = 0.15

(e) φ = .20 (f) φ = 0.25

Notes: Red is gasoline vehicles, blue is electric vehicles. Figure shows different values of φ where γ = γ0e−φt,
γ0 corresponds the cross price elasticity of 0.01, and η is adjusted as γ changes in the same manner as in

Figure 5.
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Figure 5: Endogenously Increasing Substitutability: First Best.

Panel A: Very High Cost Infrastructure

Panel B: Low Cost Infrastructure

Notes: Red is gasoline vehicles, blue is electric vehicles, green is total vehicles, and brown is charging
infrastructure.

their low level of substitutability. In Panel B, charging infrastructure is low cost and hence

is installed. Investment in charging infrastructure is very rapid and quickly makes electric

vehicles nearly perfect substitutes for gasoline vehicles. Indeed, investment is so rapid that

the gap solution occurs as evidenced by the decline in total vehicle stock before electric car

production begins.

The second best analysis for increasing substitutability is shown in Table 3 for the exoge-

nous substitutability with φ = 0.1 and 0.2 and the endogenous substitutability with low cost

charging infrastructure. Comparing Panels A & B shows that with a faster increase in substi-

tutability the optimal subsidy is larger and the transition occurs sooner. With endogenously

increasing substitutability (Panel C) the transition occurs even earlier. As under constant

substitutability, both the second best EV Subsidy and GV Ban result in small reductions in

deadweight loss, but the GV Quota can result in a large reduction in deadweight loss.
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Table 3: Increasing Substitutability

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

Panel A: Exogenous φ = 0.1
First Best n.a. 0 2030.6 2060.4 36.1 91.1
BAU n.a. 19.2 2028.3 2064.0 45.9 81.2
EV Subsidy ψ1= 357 19.0 2027.6 2063.4 44.3 83.8
GV Ban tg = 2057.6 18.9 2028.3 2057.6 40.9 86.5
GV Quota G = 341 13.0 2028.1 2055.3 29.3 98.8

Panel B: Exogenous φ = 0.2
First Best n.a. 0 2028.1 2029.3 5.9 125.0
BAU n.a. 18.0 2027.8 2030.8 6.8 124.6
EV Subsidy ψ1= 734 16.9 2026.5 2030.1 6.4 126.9
GV Ban tg = 2028.2 17.3 2029.3 2028.2 6.5 124.9
GV Quota G = 167 7.9 2026.6 2027.9 5.5 125.9

Panel C: Endogenous (infrastructure)
First Best n.a. 0 2019.2 2017.9 2.8 128.2
BAU n.a. 18.7 2021.0 2019.9 3.4 128.1
EV Subsidy ψ1= 766 15.8 2019.6 2018.5 3.0 130.5
GV Ban tg = 2017.1 16.2 2019.9 2017.1 3.1 128.4
GV Quota G = 91 7.8 2018.3 2016.9 2.7 128.8

Notes: For the EV Subsidy policy, the price path formula is c̃x = (cg −ψ1)+21961e−0.06t, where ψ1 is selected
to minimize deadweight loss. For GV Ban tg indicates the year in which the ban is implemented. For GV
Quota, G is the cumulative allowed production of gas vehicles. GT and XT are the values at the end of the
finite horizon.
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To model falling costs from learning by doing, we estimate the relationship between

the cost of lithium ion batteries and cumulative electric vehicle production Z and a time

trend (see Online Appendix E.) The resulting cost function for electric vehicles is cx(Z, t) =

cg + 21961e−0.06t−θ ln(Z+1), where θ = 0.16 is an estimated parameter which captures the speed

of learning. Comparing this cost function to the baseline cost function shows that they are

identical when Z = 0 and both asymptote to cg. Thus the key difference in the cost functions

is that learning by doing drives down the electric vehicle production costs faster.

Figure 6 compares the first best with exogenous production cost decreases (our baseline)

to the first best with learning by doing for the four cross-price elasticities. Comparing the

first best outcomes implicitly assumes that any learning spillovers are internalized and do

not result in additional inefficiencies. In all four panels, learning by doing results in an earlier

transition to electric vehicles by as much as ten years. In all four panels, production of electric

vehicles spikes when production starts. This increase in production causes costs to fall quickly

down the learning curve. The optimal spike trades off inefficiently large production with the

ability to produce electric vehicles sooner at lower costs and thus depends on the discount

rate as well as the substitutability of electric vehicles for gasoline vehicles. In panel A, the

spike in electric car production does not perceptibly affect gasoline vehicle production. In

panel B, the spike causes gasoline vehicle production to plummet but then recover to its

steady state level. In Panels C & D, the spike causes gasoline production to cease and

the high levels of substitutability leads to the gap solution. The second best analysis for

εGpX = 5.5 , shown in Table 4, largely conforms to the previous findings: i.e., shows modest

reductions in deadweight loss from the EV Subsidy or GV Ban and a substantial reduction

in deadweight loss from the GV Quota.

Explicitly modeling investments in complementary infrastructure and learning by doing

in electric vehicle production costs shows two things. First, the simple models described

here lead to spikes in investment and production. Because these spikes are likely unreal-

istic, carefully modeling capacity constraints may be an important step in future analyses.

Second, the fundamental nature of the time paths is not dramatically altered by invest-

ment in infrastructure or learning by doing. The extended models probably suggest greater

substitutability and faster declines in costs than we assume in our baseline calculations.
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Figure 6: Learning by Doing: Vehicle Production and Stocks for various cross-price elastic-
ities, εGpX and θ = 0.16

Panel A: εGpX = 0.01

Panel B: εGpX = 2

Panel C: εGpX = 5.5

Panel D: εGpX = 8

Notes: Red is gasoline vehicles, blue is electric vehicles, and green is total vehicles. Solid lines are first best
with our baseline exogenous price decreases, and dashed lines are first best with learning by doing.
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Table 4: Learning by Doing εGpX = 5.5

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

Panel A: θ = 0
First Best n.a. 0 2027.3 2036.9 5.6 125.7
BAU n.a. 28.9 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 1419 18.6 2026.4 n.a. 13.6 121.2
GV Ban tg = 2026.5 18.7 2028.7 2026.5 6.1 125.7
GV Quota G = 161 8.7 2026.5 2026.4 5.1 126.8

Panel B: θ = 0.16
First Best n.a. 0 2019.3 2019.8 3.2 129.5
BAU n.a. 28.8 2021.0 n.a. 25.9 104.6
EV Subsidy ψ1= 931 20.0 2018.5 n.a. 15.0 119.3
GV Ban tg = 2018.6 16.7 2019.9 2018.6 3.5 129.7
GV Quota G = 105 9.3 2018.3 2018.7 3.1 130.1

Notes: For the EV Subsidy policy, the price path formula is c̃x = (cg −ψ1)+21961e−0.06t, where ψ1 is selected
to minimize deadweight loss. For GV Ban, tg indicates the year in which the ban is implemented. For GV
Quota, G is the cumulative allowed production of gas vehicles. GT and XT are the values at the end of the
finite horizon.

4.4 Sensitivity

We analyze the sensitivity of the simulation results in three ways. First consider the effect

of several parameters on the terminal steady state production of gasoline vehicles. The

social cost of carbon (SCC) is used to determine the external costs associated with global

pollution from electric and gasoline vehicles and is an important element in policy discussions

of electric vehicles. The value of a statistical life (VSL) is used to determine the external

costs of local pollution. The final parameter is the limiting value of the production costs for

electric vehicles (ĉx). Table 5 shows, for various elasticities, the smallest non-negative values

for these parameters such that gasoline vehicle production ceases in the first best terminal

steady state. For low cross-price elasticities, either a high VSL or a high SCC would be

required in order for gasoline vehicle production to cease. For example, if εGpX = 2, the VSL

would have to exceed $171 million or the SCC would need to exceed $516 per ton in order

for gasoline vehicle production to cease. These levels greatly exceed most credible estimates.

At higher cross price elasticities (above six), gasoline vehicle production would cease even

with VSL of zero or a SCC of zero because the gasoline and electric vehicles are such good
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Table 5: Parameters That Lead to g∞ = 0 in Terminal Steady State

Cross-price Value needed for G∞ = 0
Elasticity in Terminal Steady State

εGpX VSL SCC ĉx/cg
0.01 88647 257413 0.00

1 476 1401 0.05
2 171 516 0.59
3 81 253 0.80
4 37 127 0.92
5 12 54 0.99

5.16 9 45 1
5.5 3 28 1.02

6 0* 0* 1.04
7 0* 0* 1.08
8 0* 0* 1.10

Notes: Baseline values are $9 million for VSL, $45 for SCC, and 1 for ĉx/cg. Cross-price elasticities in bold
correspond to cases in Figure 2. “0*” indicates that the smallest non-negative value is zero.

substitutes. The final column shows the smallest production cost ratio, ĉx/cg, which would

lead to gasoline vehicle production ceasing. If the vehicles are poor substitutes (εGpX = 0.01)

electric vehicles would need to be essentially free in order for gasoline vehicle production to

cease. At higher cross-price elasticities, gasoline vehicle production ceases even if electric

vehicles are more expensive than gasoline vehicles.

Next, Table 6 shows how the second best results change when we vary the SCC. For

εGpX = 5.5, Panels A and B analyze modest decrements and increments to our baseline SCC

while Panel C shows a very high SCC of $200. For all SCC’s, the second best EV Subsidy

and GV Ban can reduce deadweight loss, but the GV Quota reduces deadweight loss most.

Electric vehicle adoption is insensitive to the modest changes in SCC, but tg is sensitive with

even modest changes in the SCC leading to decades difference in the time when gasoline

vehicle production ceases. For the very high SCC, which is on the upper end of the range

of some current estimates, the First Best electric vehicle transition occurs quite early (2021)

and the BAU deadweight loss is substantial. Correspondingly, there are substantial gains

from any of the second best policies.

Finally, we study what happens if policy is set based on an incorrect estimate of the cross-

32



Table 6: Sensitivity Analysis for the SCC (εGpX = 5.5)

Deadweight Transition Terminal
Optimal Loss Time State

Policy Parameter ($ billions) te (Year) tg (Year) GT XT

Panel A: Low SCC=$34.20
First Best n.a. 0 2027.7 2055.2 6.6 124.6
BAU n.a. 20.4 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 1180 13.4 2026.8 n.a. 16.4 117.4
GV Ban tg = 2027.4 13.7 2029.3 2027.4 6.4 125.3
GV Quota G = 168 6.6 2027.3 2027.3 5.5 126.4

Panel B: High SCC=$56.27
First Best n.a. 0 2027.0 2029.3 5.2 126.1
BAU n.a. 38.6 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 1649 24.4 2025.9 n.a. 10.9 124.9
GV Ban tg = 2025.8 24.5 2028.2 2025.8 5.8 125.9
GV Quota G = 154 11.1 2025.7 2025.6 4.8 127.1

Panel C: Very High SCC=$200
First Best n.a. 0 2021.6 2021.1 3.2 127.7
BAU n.a. 256.2 2029.1 n.a. 30.2 99.0
EV Subsidy ψ1= 3445 155.1 2022.7 2022.6 4.1 138.0
GV Ban tg = 2018.3 157.8 2022.9 2018.3 3.9 128.2
GV Quota G = 91 59.2 2018.7 2017.8 2.8 129.4

Notes: For the EV Subsidy policy, the price path formula is c̃x = (cg −ψ1)+21961e−0.06t, where ψ1 is selected
to minimize deadweight loss. For GV Ban, tg indicates the year in which the ban is implemented. For GV
Quota, G is the cumulative allowed production of gas vehicles. GT and XT are the values at the end of the
finite horizon. Baseline SCC ($45.23), High SCC ($56.27) , and Low SCC ($34.20) correspond to the values
used in Holland et al 2018. Very High SCC ($200) is similar to the value used in Moore and Diaz (2015).

33



Table 7: Deadweight Loss ($ Billions): Incorrect Cross-Price Elasticity

Assumed Policy Actual Elasticity
Elasticity Parameter 0.01 2 5.5 8

Panel A: EV Subsidy
εGpX = 0.01 $-762 18.0 25.3 41.3 36.9
εGpX = 2 $1090 21.1 18.3 19.2 17.0
εGpX = 5.5 $1419 22.4 18.6 18.6 17.4
εGpX = 8 $1125 21.2 18.3 19.1 17.0

Panel B: GV Ban
εGpX = 0.01 or 2 n.a. 18.5 20.9 28.9 23.7
εGpX = 5.5 year 2026.5 1242.3 143.9 18.7 20.5
εGpX = 8 year 2023.8 1538.0 180.2 21.5 18.1

Panel C: GV Quota
εGpX = 0.01 or 2 n.a. 18.5 20.9 28.9 23.7
εGpX = 5.5 161 million 1385.7 147.7 8.7 12.2
εGpX = 8 141 million 1730.5 195.6 12.6 8.3

price elasticity. Panel A of Table 7 shows the deadweight loss that results from different EV

Subsidies. Suppose, for example, that a policy maker estimates that the cross-price elasticity

is 0.01. The appropriate policy is a negative subsidy (a tax) of $-762, which results in an

$18.0 billion deadweight loss if the cross-price elasticity is indeed 0.01. However, this same

subsidy would result in a higher deadweight loss of $41.3 billion if the actual cross-price

elasticity is 5.5. This is more than double what the deadweight loss would have been if the

cross-price elasticity had been correctly estimated (as shown in the main diagonal of Panel

A). In contrast, Panels B and C show that setting a gasoline production ban or quota based

on the incorrect cross-price elasticity can increase the deadweight loss by a factor of almost

100. Although we do not analyze uncertainty explicitly, this suggests that a price mechanism

(such as a subsidy) may dominate a quantity mechanism (such as a quota) in a model in

which there is uncertainty about the cross-price elasticity. Note that the deadweight losses in

the first row of Panel B and C are simply the deadweight losses from BAU. Comparing these

deadweight losses with the other deadweight losses in the table shows that basing policy on

the incorrect cross-price elasticity can be much worse than no policy at all.
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5 Conclusion

This paper studies the transition from gasoline vehicles to electric vehicles using a theoretical

model and numerical simulations calibrated to the U.S. market. The theoretical model

shows that BAU electric vehicle production can begin too early or too late depending on the

substitutability of gasoline vehicles for electric vehicles. Similarly, the vehicle mix inefficiency

depends on substitutability but is highest at intermediate levels of substitutability in which

the first best transitions to electric vehicles but BAU does not. These offsetting effects

suggest that inefficiencies may not be large. Our numerical simulations assess the magnitudes

of these inefficiencies for the U.S. and find modest levels of deadweight loss: less than five

percent of total external costs.

Electric vehicle purchase subsidies have been implemented by a number of countries. For

example, the U.S. provides a tax credit of $7500 for the purchase of an electric vehicle and

several states offer additional subsides. Our numerical simulations show that such subsidies

can reduce deadweight loss. We calculate optimal purchase subsidies ranging from $-750

(for very low substitutability) to $3500 (for a very high SCC), which are well below the

current U.S. subsidy. These purchase subsidies are constant over time, but more compli-

cated dynamic subsidies do not yield much additional efficiency improvement. The constant

subsidies also seem to be robust in the sense that the additional deadweight loss from using

an incorrect cross-price elasticity is not extreme.

Gasoline production bans are increasingly attracting the attention of policy makers. We

find that a gasoline vehicle production ban can reduce deadweight loss if the cross-price

elasticity is such that ceasing gasoline vehicle production would be first best. If gasoline

vehicle production does not cease in first best, the ban cannot reduce deadweight loss, so the

second-best ban simply replicates BAU. The ban can also result in very large deadweight

loss if it is based on an incorrect cross-price elasticity. In particular, deadweight loss can

be almost two orders of magnitude larger than BAU if the regulator bans gasoline vehicle

production when the true cross-price elasticity is small. Even in the case in which the

production ban is effective, it leads to an inefficient spike in production in anticipation of

the ban due to the durability of the vehicles. For those countries that have proposed a
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production ban, the dates of implementation range from 2025 to 2040. Our results for the

U.S. suggest that the optimal time to ban production of gasoline vehicles varies quite a bit

depending on the model assumptions and parameters. On the one hand, if substitutability

is very low, then it is never optimal to ban gasoline vehicles. On the other hand, with a very

high SCC or endogenous rollout of inexpensive charging infrastructure, then our simulations

optimally implement the ban around 2018.

A bankable gasoline vehicle production quota has not yet been part of the policy dis-

cussion surrounding electric vehicles, but our results point out several advantages of the

policy. A bankable quota results in the smallest deadweight loss of all policies considered

by a substantial margin. In contrast to a production ban, a bankable quota does not lead

to an inefficient spike in production because it introduces a shadow value on every vehicle

produced. It can also be modified to be effective even in the case in which gasoline vehicle

production does not cease in the first best. Like the production ban, however, it is sensitive

to incorrect estimates of the cross-price elasticity. Finally, a bankable quota is similar to poli-

cies that were effective to phase out leaded gasoline, which may help boost its acceptability

to policy makers.

Appendix

Proofs of Propositions 1-2

Before proving Propositions 1-2, we state and prove the following lemma, which allows us to

solve for the adjoint variable for gasoline vehicles from the adjoint equation:

Lemma 1. The adjoint equation (3) for gasoline vehicles is solved by the function

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τ [δg −UG(G(τ),X(τ)]dτ +K] (11)

for an arbitrary constant K.
With an initial condition α(t0) = α0, the adjoint equation is solved by

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τ [δg −UG(G(τ),X(τ))]dτ + α0e

−(a+r)t0] (12)

With a terminal condition, the adjoint equation is solved by

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(G(τ),X(τ)) − δg]dτ. (13)
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Proof. The adjoint equation (3) is a first-order differential equation of the form

α̇ − (a + r)α = f(t)

where f(t) = δg −UG(G(t),X(t)) is a function of t. Using the integrating factor method, the
solution to a differential equation of this form, which can be easily verified, is

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τf(τ)dτ +K] ,

where K is an arbitrary constant.
If α(t0) = α0, we set (11) equal to α0 and solve for K, which implies K = α0e−(a+r)t0 .

Substitution in (11) yields (12).
For the terminal condition, instead of using the transversality conditions, we use the

terminal condition α(T ) = α1 with an arbitrary end period T . We then determine the
constant KT with this arbitrary end period and take the limit of KT as T →∞. With this
terminal condition in (11) we can solve for KT which yields

KT = α1e
−(a+r)T − ∫

T

t0
e−(a+r)τ [δg −UG(G(τ),X(τ))]dτ.

We then take the limit as T →∞ of KT and substitute the result into (11) which gives

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τ [δg −UG(G(τ),X(τ)]dτ − ∫

∞

t0
e−(a+r)τ [δg −UG(G(τ),X(τ))]dτ]

which simplifies to (13). Note that the solution does not depend on the arbitrary constant
α1.

Proof of Proposition 1

Proof. To prove the condition for banning gasoline vehicles, we show that the solution sat-
isfies the first order conditions with g∞ = 0. As t → ∞, if g = 0 and x is such that (5) is
satisfied, then for some T1 we have (G,X) ≈ (0,X∗). We can then evaluate the adjoint
variable using (13) from Lemma 1, which shows that for t > T1

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(G(τ),X(τ)) − δg]dτ.

≈ e(a+r)t∫
∞

t
e−(a+r)τ [UG(0,X∗) − δg]dτ.

= (UG(0,X
∗) − δg)/(a + r) < cg

which implies α(t) < cg. Together with g = 0, the remaining first order condition is satisfied.
A proof by contradiction demonstrates the condition under which gasoline vehicles are not

banned. Suppose g∞ = 0 which implies that g(t) = 0 for all t > T1 for some T1. But this implies
that for some T2 with t > T2 > T1 we have G ≈ 0 and X ≈ X∗ so that UG(G,X) ≈ UG(0,X∗)
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where ≈ means “arbitrarily close to”, i.e., within an ε-ball. Again using (13) from Lemma 1,
we have that for t > T2

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(G(τ),X(τ)) − δg]dτ.

≈ e(a+r)t∫
∞

t
e−(a+r)τ [UG(0,X∗) − δg]dτ.

= (UG(0,X
∗) − δg)/(a + r) > cg

which contradicts the first order condition α ≤ cg.

Proof of Proposition 2

Proof. To characterize te note that x > 0 over the interval [te, tg] so (5) must hold including
at te. But at te we have G(te) = Gss and X(te) = 0. Substituting these into (5) UX(Gss,0) =
(a+ r)cx(te)+ δx(te)+ ċx(te) which can then be solved for te and characterizes te. (6) follows
directly.

To characterize tg, we focus on the adjoint variable α. During [te, tg], we have g interior,
so that α = cg. After tg, α evolves according to the adjoint equation (3) which we can solve
using (13) from Lemma 1 to have

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(Gsim(τ),Xsim(τ)) − δg]dτ. (14)

But at tg, we have α(tg) = cg which implies the result

cg = ∫
∞

tg
e−(a+r)(τ−t

g)(UG(Gsim(τ),Xsim(τ)) − δg)dτ.
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