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1 Introduction

In many oligopoly markets, such as in the airline, entertainment, hotel, and sports in-

dustries, firms choose capacity long before they set price. Seminal research by Kreps and

Scheinkman (1983) and Davidson and Deneckere (1986) analyzes sequential quantity-price

games and characterizes when the Cournot model is a valid prediction in these sequential

quantity-price games. However, an important limitation of this research is that it considers

only one pricing or sales period, yet, the aforementioned industries are all clearly ones in

which consumers purchase in advance and firms adjust their prices over time.

We consider an oligopoly model in which firms first choose capacity and then com-

pete in prices in a series of advance-purchase markets. We use the model to characterize

the pricing behavior of firms competing in multiple advance-purchase markets—more

specifically, we explore the incentives for intertemporal price discrimination to arise in an

oligopoly setting. We highlight the broad conditions under which Kreps and Scheinkman

(1983) and Davidson and Deneckere (1986)’s results are unchanged by incorporating mul-

tiple sales periods.

We highlight two main contributions. First, absent additional commitments made by

firms, strong competitive forces drive equilibrium prices—advance-purchase prices—to be

flat over time. That is, Kreps and Scheinkman (1983) and Davidson and Deneckere (1986)

are robust to breaking up sales into multiple periods because the existence of multiple

sales periods creates a costless arbitrage opportunity in which a firm increases profits

by shifting sales in lower-priced periods to rivals and increasing its own sales in higher-

priced periods. This results in intense price competition and prevents firms from setting

increasing prices when demand in later periods is more price inelastic. It also prevents

firms from setting decreasing prices when demand in later periods is more elastic.

Second, we enrich the model by incorporating inventory controls, or sales limits as-

signed to set prices. We show that firms will choose to set inventory controls in order to

engage in intertemporal price discrimination, but only if demand becomes more inelastic
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over time. Inventory controls allow for increasing prices as well as higher profits for firms,

even when there is no uncertainty about demand. Thus, although inventory controls have

been extensively studied in the context of demand uncertainty, we show that they can

also be used for a different purpose: they can be used to facilitate price discrimination in

oligopoly markets.

In our baseline model, firms sell a homogeneous good and have no private information.

Firms first choose capacity levels—a capacity constraint that is common across selling

periods—and then compete in price in a series of sequential markets. In each period,

firms’ remaining capacities are observed, and then firms simultaneously choose prices.

Consumers then make their purchase decisions. After the final period, no further sales

can take place and unsold inventory is worthless.

For tractability, we assume only two advance-purchase sales periods, although we do

discuss extending the analysis to any finite number of periods in an extension. We assume

that there are a continuum of consumers who are each assigned to one of two sequential

markets, though consumers assigned to the early market can wait and purchase in the later

market. We allow the elasticity of demand to change over time and emphasize the case in

which demand becomes more inelastic over time, though we also establish results under

the case of increasing elasticity of demand. The decreasing elasticity case is appealing for

two reasons. First, it is clear that a monopolist would set increasing prices in this scenario,

and second, prices tend to rise in several industries in which firms compete in sequential

quantity-price setting. This includes airlines, trains, and hotels.

The challenge in solving our game, and the sequential quantity-price games studied

by Kreps and Scheinkman (1983) and Davidson and Deneckere (1986), is that quantity-

constrained price games often have mixed-strategy equilibrium. Solving our game is

even more challenging because we consider more than one sales period. We make the

analysis simpler and more intuitive by focusing on sufficiently high costs of capacity so

that equilibrium capacity choices are sufficiently small and that the equilibrium strategies
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in the price game are pure strategies both on and off the equilibrium path.

Our first main result is that there exist strong competitive forces that prevent intertem-

poral price discrimination. Equilibrium prices are flat over time, even when consumers

who arrive later have a higher willingness to pay. Equilibria with increasing prices do

not exist because individual firms have an incentive to raise their price in the early pe-

riod, shifting early sales to its competitors, in order to sell more in the later period, when

consumers are less price-sensitive and the equilibrium price is higher. Equilibria with

decreasing prices do not exist when demand becomes more elastic because consumers

would wait to purchase at the lower price. However, additionally, individual firms have

an incentive to lower price in the early period, shifting high-priced sales to itself and later

low-priced sales to its rivals.

Because firms can costlessly shift their capacity across periods (or markets), our result

may not seem surprising. But, recall that if firms could choose how much of their capacity

to allocate to each market, then firms will equate the marginal revenues in the two markets,

and not equate the prices. We show that with more than one pricing period, the sequential

capacity-then-price game is different from the Cournot model even though it is the same

as the Cournot model with just one pricing period.

We characterize sufficient conditions under which uniform prices arise as the unique

pure-strategy equilibrium outcome. With a uniform price, sales are equal to the Cournot

quantity associated with aggregate demand—the sum of demands over time. Although

the flattening of prices occurs whether the elasticity of demand is increasing or decreasing

over time, we show there exists important asymmetries in the sufficient conditions for

uniform pricing in the two scenarios.

We then enrich the model by allowing firms to implement unit-sales limits, or inven-

tory controls, in conjunction with price setting. Inventory controls have been studied

extensively in the context of demand uncertainty as a means to more efficiently allocate

scarce capacity (Talluri and Van Ryzin 2006, McGill and Van Ryzin 1999). We show that
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they can be used to facilitate intertemporal price discrimination. We analyze a game that

differs from the baseline model in the price stage. In the game with inventory controls,

firms simultaneously decide sales limits as well as prices in each of the sequential markets.

We show that firms commit to the use of inventory controls in order to increase profits

when the elasticity of demand decreases over time. In this case, equilibria exist in which

prices are increasing because inventory controls curtail firms’ abilities to shift demand to

their competitors in the early, lower priced period. Firms sell their Cournot output in each

period, and so prices rise over time because demand becomes less elastic. Indeed, several

competitive industries, including airlines, hotels, theaters, and trains, all utilize inventory

controls.1

In summary, we identify strong competitive effects that curtail the ability of firms to

price discriminate over time. Instead, firms charge a uniform price and sell the Cournot

output as if sales occurred in just one period. However, when firms can use inventory

controls, then as long as demand becomes more elastic over time, firms shield themselves

from strong competitive effects and sell the Cournot output in each period. Prices increase

over time.

We also discuss a number of extensions. One important extension is to consider

product differentiation. When products are differentiated, prices are no longer uniform

across time as firms benefit from the inability to shift all of the demand using very small

price changes. However, the strategic incentives explored in this paper are still present.

We provide an example which shows that products must be highly differentiated for prices

to increase substantially across periods. Our results suggest that inventory controls are

particularly valuable when products are close substitutes; they allow firms to target the

market in which consumers are less price-sensitive. We also discuss extending the model

to include aggregate demand uncertainty and more than two sales periods. Finally, we

consider more general assumptions about inventory controls.

1Fare increases in the final weeks before departure are consistent with intertemporal price discrimination,
and also consistent with theoretical models of demand uncertainty (Prescott 1975, Eden 1990, Dana 1999).
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1.1 Related Literature

This paper contributes to three strands of the economics literature.

First, we analyze a model of price competition with capacity constraints (Levitan

and Shubik 1972, Allen and Hellwig 1986, Osborne and Pitchik 1986, Klemperer and

Meyer 1986, Acemoglu, Bimpikis, and Ozdaglar 2009). As in Kreps and Scheinkman

(1983) and Davidson and Deneckere (1986), our firms choose capacity and then price,

but unlike earlier research, we consider more than one pricing period. Our results are

also related to Van den Berg, Bos, Herings, and Peters (2012), who consider a two-period

quantity game with capacity constraints, with and without commitment. However, our

main focus is on the way firms use prices to shift rivals sales from the higher-price period to

the lower-price period, which does not happen in their sequential quantity game because

quantity decisions do not affect the way their rivals’ capacity is allocated across periods,

as prices decisions do in our model.2

Second, we analyze intertemporal price discrimination. Stokey (1979) is a seminal

paper that shows that monopoly intertemporal price discrimination is not always feasible.

Much of the literature on intertemporal price discrimination finds that Coasian forces

constrain price discrimination (Öry 2016, Dilmé and Li 2018), however, in our setting,

the key constraint on price discrimination is competition (Champsaur and Rochet 1989).

Other papers consider environments with deadlines and limited capacity and find that

price adjustments over time are profitable (Gallego and van Ryzin 1994, Su 2007, Möller

and Watanabe 2010, Board and Skrzypacz 2016). This is particularly true when consumers

learn their preferences over time, as in Akan, Ata, and Dana (2015) and Ata and Dana

(2015).

Important empirical contributions to the literature on intertemporal price discrimina-

tion, and more generally price adjustments over time, include Nair (2007) on video games,

2Also see Benassy (1989) and Reynolds and Wilson (2000) for related pricing games, Aguirre (2017) for a
related quantity games, and De Frutos and Fabra (2011) for a related price and capacity game.
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Sweeting (2012) on stadium seats, and Hendel and Nevo (2013) on storable goods. Much of

our focus is on prices that increase as a deadline draws closer (such as a scheduled event or

a scheduled departure time), a pattern that has been found in several airline studies (Puller,

Sengupta, and Wiggins 2012, Lazarev 2013, McAfee and te Velde 2007, Williams 2018).

Finally, our work is related to the literature on inventory controls (Littlewood 1972,

Belobaba 1987, Belobaba 1989, Weatherford and Bodily 1992).3 This large and important

literature emphasizes that inventory controls can be an effective tool for managing aggre-

gate demand uncertainty. Notably, our work is the first paper to establish that inventory

controls can also be used to facilitate intertemporal price discrimination in oligopoly.

2 The Model

Consider an oligopoly with n firms selling a homogeneous good to a continuum of con-

sumers in a series of advance-purchase sales markets. For tractability, we consider just

two selling periods, or stages, labeled t = 1, 2. Some consumers arrive in Stage 1 and

others arrive in Stage 2. We assume that consumers who arrive earlier can buy in either

Stage 1 or Stage 2, while consumer who arrive later can only purchase in Stage 2.4

We represent preferences using market demand functions, denoted by D1(p) and D2(p)

respectively, which we assume are strictly decreasing and differentiable functions. We let

P1(q) and P2(q) denote the inverse demands associated with D1(p) and D2(p). Note that

throughout the paper we use pi
t to denote Firm i’s price; we use pt to denote the vector of

all firms’ prices; and we use p2 to denote the Stage 2 price when all Stage 2 transactions

are at the same price.

We let Dtot(p) = D1(p)+D2(p) denote the total demand when prices are the same in both

3Talluri and Van Ryzin (2006) and McGill and Van Ryzin (1999) provide an overview of research on
inventory controls.

4 Alternatively, following Dana (1998) and Akan, Ata, and Dana (2015), we could have assumed that some
consumers do not learn their demands until Stage 2 and then make additional mild assumptions that imply
that these consumers would never want to purchase in Stage 1 even if they were able to.
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periods (or when Stage 1 consumers wait and purchase in Stage 2), and Ptot(q) denote the

associated inverse total demand when q units of total output are sold at a uniform price.

We also assume that the market demand functions are associated with concave revenue

functions. That is, we assume P′′t (qt)qt + 2P′t(qt) < 0,∀t = 1, 2, where qt denotes total sales

in Stage t. We let ηt(p) = D′t(p)p/Dt(p) denote the price elasticity of demand in Stage t.

Each firm’s strategy consist of three choices, capacity and two prices, denoted by Ki,

pi
1, and pi

2, where subscripts denote time, and, when necessary, superscripts denote the

individual firm. The game proceeds in three stages (see Figure 1). First, in Stage 0, firms

simultaneously choose their capacities, Ki
≥ 0. The vector of initial capacities is denoted

by K. The cost per unit of capacity for all firms is c ≥ 0. We assume that the marginal cost of

production for each unit sold is zero. Then, in Stage 1, firms simultaneously choose prices

denoted by the vector p1. Consumers who arrive in Stage 1 then make their purchase

decisions. Sales, q1 ≥ 0, are constrained only by the firms’ first period capacities, K1 = K,

and firms’ residual capacities, K2 = K − q1 ≥ 0, are carried forward to the next period.

That is, capacity can be sold in either period, and the capacity constraint is common across

periods. In Stage 2, firms simultaneously choose prices, denoted by the vector p2, and

then consumers who arrive in Stage 2 (or waited) make their purchase decisions. Sales,

q2 ≥ 0, are constrained only by the firms’ residual capacities, K2. Capacity not used in

Stage 2, K2 − q2, has zero value (it is scrapped at no cost). We ignore discounting.

We now describe how Firm i’s individual demand is derived from these market de-

mand functions, given the prices and capacities of the other firms. Products are homo-

geneous, so consumers purchase at the lowest price available, as long as their valuation

exceeds the price. If firms set different prices, then a firm with a higher price can have

positive sales only if all of the firms with lower prices have sold all of their capacity. If two

or more firms charge the same price, then those firms divide the sales equally, subject to

their capacity constraints. That is, demand is divided equally among these equally-priced

firms until the firm with the least capacity sells out, and then it is divided equally among
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Stage 0 Stage 1 Stage 2

Firms choose K

Capacity
K1

= K

Capacity
K2

= K1
−

q1

Firm
s choose p1

Firm
s choose p2

q1
is realized

q2
is realized

END

Figure 1: Timing of the Game

the remaining firms until the firm with the least capacity sells out, and so on.

How much the firm with the higher price sells—that is, the residual demand that is

left after the lower priced firm sells all of its capacity—depends on the rationing rule. The

residual demand function is written RDt
(
pi

t; p−i
t ,K

−i
t

)
, where the arguments are Firm i’s

own price, pi
t, and vectors of all of the other firms’ prices and current capacities, denoted

p−i
t and K−i

t , respectively. This is the total residual demand at price pi
t, which is split among

all firms charging pi
t.

Our results hold for both the efficient rationing rule and the proportional rationing

rule. The efficient rationing rule specifies that the lowest price unit for sale (after other

lower priced units are gone) goes to the remaining consumer with the highest willingness

to pay. Equivalently, under the efficient rationing rule, the residual demand function is

RDt(pi
t; p−i

t ,K
−i
t ) = Dt(pi

t) −
∑

j: p j
t<pi

t

K j
t ,∀t = 1, 2, (1)

where the summation is over all firms j that charge a lower price that Firm i, and where

−i denotes all other firms.

The proportional rationing rule specifies that lowest price unit for sale (after all other

lower priced units are gone) is equally likely to be sold to every remaining consumer whose
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willingness to pay exceeds the price. Equivalently, under the proportional rationing rule,

the residual demand function is

RDt(pi
t; p−i

t ,K
−i
t ) = Dt(pi

t)

1 − ∑
j:p j<pi

K j
t

Dt(p
j
t)

 ,∀t = 1, 2. (2)

In both cases, the residual demand describes demand at the price pi
t. If only Firm

i charges the price pi
t, then the Firm i’s demand at pi

t is given by the residual demand

function, and its sales are the smaller of the residual demand and its capacity. If more

than one firm charges pi
t, then the residual demand is divided equally among those firms,

subject to each firm’s capacity constraint.

Note that the rationing rules determine how sales are allocated to different firms

within each period, but not how sales are allocated across periods. If consumers who

arrive early have higher valuations, then it is natural to think that rationing is efficient

and that demand becomes more elastic over time. Similarly, when demand is less elastic

in Stage 2, then proportional rationing may be more compelling. However, we do not

assume a link between rationing rules and the change in the demand elasticity. Instead,

we derive results that are independent of the rationing rule, but do depend on whether

demand becomes more or less elastic over time.

If there were just one pricing period, and the game ended at the end of Stage 1, then we

know from Kreps and Scheinkman (1983), who analyze efficient rationing, and Davidson

and Deneckere (1986), who analyze proportional rationing, that the pricing subgame has

a unique Nash equilibrium. Both of these papers characterized the equilibrium profits of

the pricing subgame for all capacity choices, including subgames in which the equilibrium

prices were in mixed strategies.
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3 Restriction to Pure Strategies

Quantity-price games, including Kreps and Scheinkman (1983) and Davidson and De-

neckere (1986), are known to have mixed strategy equilibrium off of the equilibrium path

which makes them difficult to solve. However, both Kreps and Scheinkman (1983) and

Davidson and Deneckere (1986) show that when firms choose sufficiently small capacity,

then the pricing subgame has a unique pure-strategy equilibrium in which all prices equal

the market-clearing price. They also show that for sufficiently high capacity costs, every

pricing subgame in which firms earn positive profits has a pure-strategy equilibrium. Far

from being a special case, the sufficient conditions are just that the cost of capacity is large

enough so that firms never find it profitable to choose so much capacity that the marginal

revenue function is negative. That is, firms collectively choose capacities smaller than the

revenue maximizing capacity.

A particularly enlightening example is the case of constant elasticity demand, or p(q) =

q1/ε. In this case, marginal revenue is strictly positive for all q if |ε| > 1, because p(q)+p′(q)q =

(1 + 1/ε)q1/ε. This means that in both Kreps and Scheinkman (1983) and Davidson and

Deneckere (1986)’s models, with constant elasticity demand and |ε| > 1, the equilibrium

of every pricing subgame is the market-clearing price. This holds regardless of the firms’

capacity choices in Stage 1. The pricing subgame never has a mixed-strategy equilibrium,

so the unique equilibrium of the quantity-price game is the Cournot equilibrium. This is

true regardless of the rationing rule (Madden 1998).

Because we have two pricing periods, characterizing the equilibria of the pricing

subgame is considerably more challenging than in Kreps and Scheinkman (1983) and

Davidson and Deneckere (1986). To simplify our analysis, we assume that capacity costs

are sufficiently large so that all of the pricing subgames have pure-strategy equilibria.5

5In addition making it easy to derive the equilibrium prices and profits in all of our subgames, another
benefit of assuming that capacity costs are high is that we can easily derive identical results for both the
efficient and proportional rationing rules. Recall that in both Kreps and Scheinkman (1983) and Davidson
and Deneckere (1986), when firms’ capacities are small—specifically, smaller than the revenue maximizing
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We are able to restrict attention to games with pure-strategy equilibria in all of the

pricing subgames by assuming that capacity costs are sufficiently large, or equivalently,

Stage 0 capacity choices are sufficiently small. Specifically, we assume that

argmax
q

P2(q)q >
∑

i

Ki.

Formally, we do this with two assumptions. The first is that argmaxq P2(q)q > Dtot(c),

which guarantees that marginal revenue is positive in the second pricing period, even

in the event that every firm chooses not to sell any of its capacity in the first period

(Assumption 1).

Assumption 1. The total competitive output with capacity costs c is smaller than the capacity

that maximizes industry revenue, or equivalently, smaller than the second period monopoly output

when the firm has zero capacity costs. That is,

argmax
q

P2(q)q > Dtot(c).

We provide two examples to highlight the potential restrictiveness, and lack thereof,

of Assumption 1.

Example 1: With constant elasticity demand, i.e., P(q) = q1/ε each period and |ε| > 1,

a monopolist with zero cost of capacity produces an infinite output so Assumption 1

is trivially satisfied. Marginal revenue is strictly positive for all q, so marginal revenue

is positive in Stage 2 for q = Dtot(c), for any value c > 0. Formally, this is because

P(q) + P′(q)q = (1 + 1/ε)q1/ε, which is strictly positive for all ε < 1 and for all finite q > 0.

Example 2: To see that Assumption 1 can be restrictive, but not unreasonably so,

consider the case of linear demand, P(q) = a − bq, and assume that demand is the same in

capacity, or equivalently smaller than a monopolist’s output if capacity were free—then the price is always
equal to the market-clearing price and this is independent of the rationing rule. This is because the marginal
revenue is positive in the pricing stage even when firms act as a monopolist, which implies that marginal
revenue must be positive individually for every firm. Thus, firms can never increase their profits by setting a
price above the market-clearing price.
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both periods. Then Dtot(c) = 2 · ((a − c)/b) and the monopoly output in the second period

(with zero capacity costs) is a/(2b). Thus, Assumption 1 holds if, and only if, c > (3/4)a.

Although the above assumption is about the underlying parameters of the model,

the second assumption that we impose places a mild and intuitive restriction on firms’

strategies. We assume that the firms’ total capacity does not exceed the capacity that

would be produced if the market were perfectly competitive. That is, total capacity is less

than Dtot(c).

Assumption 2. Firms’ capacities are less than total demand at the perfectly competitive price, or∑
i Ki
≤ Dtot(c).

By imposing Assumption 2, we limit the firms’ strategy sets to strategies that yield

profits we can evaluate. Specifically, we characterize the unique equilibrium within this

restricted strategy set and then show that this equilibrium is in the interior of the set, i.e.,∑
i Ki < Dtot(c). Although we do not formally show that every deviation outside of this

set is not profitable, we do show that profits are zero and decreasing in capacity for all

strategic choices on the boundary of this set.

We impose Assumption 2 in order to avoid evaluating profits in subgames with no

pure strategy equilibria. This assumption, along with Assumption 1, lets us show that the

Stage 2 price is always the market-clearing price, which simplifies our analysis and the

intuition for our results.

Assumption 2 is difficult to relax because characterizing firms’ profits and their sub-

game equilibrium mixed strategies in a model with two pricing periods is difficult. We

believe that dropping Assumption 2 does not change the equilibria of the game, or intro-

duce any new equilibria. That is, we believe that no equilibrium exists in which firms

choose more capacity than would be chosen in a perfectly competitive market. If firms

produced that much capacity and sold all of it, total profits would be negative. And it is

also difficult to see how firms could benefit from such large capacity if when it is not all

sold. Of course, unused capacity might be an effective off-the-equilibrium path instrument

12



for punishment; however that is not the case here.

Note that there are alternatives to Assumption 2. For example, we could have instead

assumed that each firm’s capacity is less than Dtot(c)/n to obtain the same result. This

alternative, and others like it, are stronger and still place restrictions on firm’s strategies,

but this assumption does have the appealing property that the restrictions do not depend

on other firms’ strategic choices.

Another alternative to Assumption 2 is to assume that the Stage 0 profit function is

strictly decreasing in Ki for Ki
≥ Dtot(c) −

∑
j,i K j, where profit is clearly equal to 0 and

locally decreasing for Ki = Dtot(c) −
∑

j,i K j. This of course is a property of the profit

function normally derived from assumptions on other parameters, which we cannot do

easily, but this assumption nevertheless is highly reasonable in this setting.

Together, Assumptions 1 and 2 imply that the firms’ total capacity is always less than

argmaxq p2(q)q, which implies that the firms’ remaining capacity in Stage 2 is always less

than argmaxq p2(q)q, and that the equilibrium price in the final pricing period is always

the market-clearing price. This means that both on and off of the equilibrium path, every

final period subgame has a unique pure-strategy equilibrium. We will maintain these

assumptions throughout our analysis.

4 A Benchmark Result

Before characterizing the equilibrium of our game, we consider a useful benchmark.

Imagine that firms set price just once, or more precisely, that firms are constrained to set

the same price is Stage 2 as in Stage 1—that is, pi
2 = pi

1,∀i. Firms choose K in Stage 0 and

p1 in Stage 1 and the price in Stage 2 is constrained to also be p1. Then, K must be the

symmetric Cournot output (the Cournot output when demand is D1 +D2). This is because

Assumptions 1 and 2 imply that the equilibrium price in the pricing subgame is always

equal to the market clearing price, so the Stage 0 capacity game reduces to a standard

Cournot model. We show this in the following lemma. All proofs, except Lemma 3, are in
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the Appendix.

Lemma 1. When firms are constrained to choose the same price in Stage 1 and Stage 2, under either

the efficient or the proportional rationing rule if Assumptions 1 and 2 hold (capacity is constrained

by Assumption 2), then the equilibrium price in every Stage 1 and Stage 2 pricing subgame is the

market clearing price (the price such that D1(p) + D2(p) =
∑

i Ki) and the equilibrium capacities

chosen in Stage 0 are the Cournot capacities associated with demand equal to D1(p) + D2(p).

Since we obtain the Cournot model output levels, as the number of firms goes to

infinity, the price converges to the cost of capacity, c, and the total capacity and sales

converges to D1(c) + D2(c). Hence, we refer to c as the competitive price.

In the next section, we consider the model when firms can set different prices in each

period, and when the elasticity is higher (or lower) in Stage 2 so that setting different prices

generates higher profits.

5 Equilibrium Characterization

We now solve for the subgame perfect equilibrium of the full model, as described in

Section 2, starting with Stage 2 and working backwards to Stage 0.

5.1 The Final Pricing Period

We first characterize equilibrium prices in Stage 2, the final pricing period. Lemma 2 states

that in the second period, firms set prices to clear the market.

Lemma 2. Under either the efficient or the proportional rationing rule, if Assumption 1 and

Assumption 2 hold, then in any subgame perfect equilibrium (SPE) of the three-stage game, the

price in the second selling period clears the market.

Lemma 2 is important because it allows us to easily characterize all of the pure-strategy

subgame-perfect equilibria of the pricing subgame. And note that it holds even if only
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one firm remains, because that firm has sunk its capacity costs and because capacity costs

are large enough (by Assumption 1) that the firm wants to sell all of its capacity.

Also, note that we refer to an equilibrium as unique when all of the equilibria have the

same outcomes and payoffs for all players. This is particularly important to remember

because if prices decline over time, but every consumer buys in the last period, we will

say this is a uniform-price equilibrium because payoffs are the same as the uniform-price

equilibrium which exhibits constant prices over time and across firms.

Lemma 2 shows that the unique equilibrium of the second stage subgame is a uniform

price (for firms with positive capacity), so no equilibria exist in which firms play mixed

strategies in Stage 2.

5.2 The Absence of Price Discrimination in Symmetric Equilibria

Lemma 3 highlights why competing firms find it difficult to price discriminate over time.

It highlights the competitive force that tends to equalize prices.

Lemma 3. No symmetric equilibrium of the pricing subgame exists in which prices are different

in the two periods. Equivalently, in any symmetric equilibrium, pi
1 = pi

2,∀i = 1, ...,n.

Proof. If pi
1 < pi

2, and all of the firms charge the same price (pi
1 = p j

1 and pi
2 = p j

2), then any

firm could profitably deviate to a slightly higher price in Stage 1. The deviating firm’s

Stage 1 sales would fall discretely (possibly to zero); its Stage 2 sales would rise discretely;

and the transaction price in Stage 2 would change by an arbitrarily small amount. So the

deviating firm’s profits would be strictly higher.

A similar argument can be made if pi
1 > pi

2, and all of the firms charge the same price.

In that any firm could profitably deviate to a slightly lower price in Stage 1. The deviating

firm’s period 1 sales would rise discretely (possibly rise to its capacity); its Stage 2 sales

would fall discretely; and the transaction prices in both periods would change by an

arbitrarily small amount. So the deviating firm’s profits would be strictly higher.
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However, clearly pi
1 > pi

2 is also not feasible in a symmetric equilibrium because all of

the consumers would wait to purchase until Stage 2 and buy at the market clearing price,

which will necessarily be lower than pi
1. �

Lemma 3 demonstrates the strong competitive forces in the model. If prices changed

over time (in a symmetric equilibrium), individual firms could change their prices in order

to increase their sales in the higher-priced period. Prices cannot rise over time because

firms can raise their Stage 1 price to shift sales to rivals in Stage 1 and therefore sell more

in Stage 2. Lemma 3 also means price cannot fall over time, but even a monopolist cannot

benefit from declining prices, because in our model consumers can wait until prices are

lower in Stage 2 to make their purchases. As we now show, this does not mean that prices

must be uniform.

Next, we characterize pure-strategy equilibria of the Stage 1 and Stage 2 pricing sub-

game. We consider the increasing and decreasing elasticity of demand cases separately.

5.3 Decreasing Elasticity of Demand

5.3.1 The Pricing Subgame

Proposition 1, below, shows that there are two types of pure-strategy subgame perfect

equilibria in the pricing subgame when the elasticity of demand decreases over time. In a

uniform-price equilibrium, transaction prices are the same for all firms and all consumers

as well as across the two pricing periods. Since the market clears in Stage 2 (see Lemma 2

above), any uniform-price equilibrium must satisfy D1(p∗) + D2(p∗) =
∑

i Ki, so the uniform

price is unique (as in Lemma 1). Note that because all Stage 1 consumers can wait and

purchase in Stage 2, a uniform-price equilibrium with declining offer prices may exist, but

transactions prices are uniform.

In an asymmetric-price equilibrium, a single firm sells in Stage 1; the Stage 1 price is

lower than the Stage 2 price; and all other firms sell only in Stage 2. Let Firm i be the firm
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that sells in the first period, and let pi
1 and qi

1 denote its first-period price and quantity,

where

pi
1 = argmax

p∈[P1(Ki),∞]
pD1(p) + P2

∑
i

Ki
−D1(p)

 (Ki
−D1(p)

)
, (3)

or, equivalently,

qi
1 = argmax

q∈[0,Ki]
P1(q)q + P2

∑
i

Ki
− q

 (Ki
− q

)
. (4)

In both expressions, Firm i’s first-period sales do not exceed Ki. The second-period price

is higher than pi
1 and is given by

P2

∑
i

Ki
−D1(pi

1)

 . (5)

Note, however, that Proposition 1 holds regardless of whether the elasticity is increas-

ing or decreasing.

Proposition 1. Under either the efficient or the proportional rationing rule, if Assumptions 1 and

2 hold, then every pure-strategy subgame-perfect equilibrium of the pricing subgame is either a

uniform-price equilibrium or an asymmetric-price equilibrium satisfying Equations (3), (4) and

(5). When a uniform-price equilibrium exists, it is the unique pure-strategy subgame-perfect

equilibrium.either a uniform-price equilibrium exists, or uniform-price equilibrium does not exist

and between one and n asymmetric-price equilibria exist.

Intuitively, asymmetric-price equilibria exist because a lower price in Stage 1 increases

sales in the Stage 1, leading to less output sold and a higher price in Stage 2. But a firm

can increase its profit in this way only if the elasticity is decreasing (so increasing prices is

desirable) and only if it has sufficient capacity to meet all of the demand in Stage 1 plus

enough additional capacity to profit from selling at the higher price in Stage 2. Other firms

free ride and sell only in Stage 2 at the higher price.
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Asymmetric-price equilibria are more likely to exist when one firm chooses more

capacity than its rivals in Stage 0. The uniform-price equilibrium is less likely to exist

when one firm chooses significantly more capacity than its rivals. The incentive to deviate

to a lower price is increasing in the deviating firm’s capacity, decreasing in the rival firms’

capacity, increasing in the elasticity of first-period demand, and decreasing in the size of

Stage 1 demand.

Proposition 1 suggests that whether the demand elasticity is increasing or decreasing,

price competition puts pressure on firms to equalize prices across the two markets. That

is, equilibrium prices are either uniform, or, if one firm is sufficiently large, the large

firm unilaterally implements an asymmetric-price equilibrium. And although Proposi-

tion 1 shows that asymmetric-price equilibria of the pricing subgame may exist, we can

now show that under relatively mild additional assumptions, the unique equilibrium is

a uniform-price equilibrium even when the elasticity of demand is decreasing. Assump-

tion 3, stated below, is a sufficient condition to guarantee that asymmetric-price equilibria

do not exist.

Assumption 3 requires that demand in Stage 2 not be too inelastic relative to demand in

Stage 1. While demand in the Stage 2 is less elastic than demand in Stage 1, Assumption 3

limits how inelastic demand in Stage 2 can be. This relatively weak assumption implies

that no firm has enough capacity to profitably deviate from the symmetric uniform-price

equilibrium.

Assumption 3. The elasticities of demand and capacities satisfy

η2(p)
η1(p)

>
Ki∑n

j=1 K j ,∀p > 0, i = 1, ...,n. (6)

Proposition 2. When the elasticity of demand is decreasing over time, or |η1(p)| > |η2(p)|,∀p > 0,

then under Assumptions 1, 2, and 3, the unique subgame-perfect pure-strategy equilibrium of the

Stage 1 and Stage 2 pricing subgame is a uniform-price equilibrium.
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Intuitively, when the elasticity is decreasing, deviating to a lower price from a uniform

price is profitable for a monopolist if it raises the Stage 2 profit by more than it lowers the

Stage 1 profit. However, since rivals free ride and sell only in Stage 2, an oligopoly firm

that deviates from a uniform price, by lowering its Stage 1 price, earns at most 1/nth of the

Stage 2 industry profits. The oligopoly firm that deviates cannot increase its profit unless

it can increase the Stage 2 industry profits by at least n times the decrease in its Stage 1

profit. For such a deviation to be profitable, the Stage 1 demand must be at least n times

more elastic than the Stage 2 demand. Assumption 3 guarantees that such a deviation is

not profitable.

Proposition 2 is an important result. It shows that oligopoly firms are unable to

price discriminate even when a monopolist would clearly price discriminate under these

conditions.6 The unique subgame-perfect pure-strategy equilibrium of the Stage 1 and

Stage 2 pricing subgame is a uniform-price equilibrium.

5.3.2 Initial Capacity Choice

We now consider the full game, including the initial capacity choice. We replace Assump-

tion 3 with Assumption 4, which is weaker. It is equivalent to Assumption 3 when the

firms’ capacities are symmetric. Proposition 3 establishes that Assumption 4 is sufficient to

guarantee that when firms choose their capacities in Stage 0, the unique subgame perfect

equilibrium is still a uniform-price equilibrium.

Assumption 4. The elasticity of demand satisfies

η2(p)
η1(p)

>
1
n
,∀p > 0.

6We also conclude prices are uniform when the elasticity of demand is increasing, but that is a setting in
which a monopolist would also set uniform prices because consumers can postpone their purchases in our
model.
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Proposition 3. If the elasticity of demand is decreasing, then under Assumptions 1, 2 and 4

the unique pure-strategy subgame perfect Nash equilibrium of the full game is a uniform-price

equilibrium, and equilibrium capacity and profits are equal to the Cournot capacity and profits

given demand D1(p) + D2(p).

Proposition 3 implies that except in more extreme cases (i.e., when Assumption 4 is

violated) intertemporal price discrimination is impossible when demand becomes more

inelastic over time.

5.4 Increasing Elasticity of Demand

We now establish results under the case in which the elasticity of demand is increasing

over time. Note that when the elasticity of demand is increasing over time, consumers

have an incentive to wait to purchase. These Coasian forces can prevent even a monopolist

from using intertemporal price discrimination.

The following proposition establishes that prices are always uniform in the pricing

subgame when the elasticity of demand is increasing.

Proposition 4. When the elasticity of demand is constant or increasing, |η1(p)| ≤ |η2(p)|,∀p > 0,

then under either the efficient or the proportional rationing rule, if Assumptions 1 and 2 hold, then

the unique pure-strategy subgame-perfect equilibrium of the pricing subgame is a uniform-price

equilibrium.

This result holds for two reasons. First, the same competitive forces that constrain

firms when the elasticity of demand is increasing—firms want to shift lower priced sales

onto their rivals—constrain firms when the elasticity of demand is decreasing. Second,

and more importantly, prices are constrained by the fact that consumers can wait and

purchase in Stage 2 if prices decline over time.
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5.4.1 Initial Capacity Choice

Proposition 5. When the elasticity of demand is increasing, |η1(p)| ≤ |η2(p)|,∀p > 0, then under

Assumptions 1 and 2 the unique pure-strategy subgame perfect Nash equilibrium of the full game is

a uniform-price equilibrium and equilibrium capacity and profits are equal to the Cournot capacity

and profits given demand D1(p) + D2(p).

Proposition 5 is trivial to establish given all the previous results. When the elasticity

of demand is increasing, Assumption 4 is always satisfied. Hence, we do not need any

additional assumptions—when the elasticity of demand is increasing, the Cournot model

is even more robust to breaking up demand into multiple pricing periods. However, this

is largely because consumers have the option to wait.7

6 Inventory Controls

In the previous section, we showed that firms typically produce the same Cournot capacity

and set the Cournot price in both periods, as if there were just one period with demand

D1(p) + D2(p). This is true even though profits would be higher if firms use intertemporal

price discriminate.

We now show that inventory controls make it possible for firms to price discriminate

and earn higher profits, but only if demand becomes more inelastic over time. We model

inventory controls as an upper bound on quantities sold, and we allow firms to set

inventory controls when they set their price. That is, firms first choose their initial capacity,

and then, in each of the two subsequent periods, simultaneously choose both their price

and an inventory control. The game is shown in Figure 2.

Inventory controls allow firms to limit the number of units available so that its avail-

ability exactly matches the number of units it expects to sell in period one. Thus, by

7In an earlier version of the paper, we assumed that consumers did not have the option to wait and we
showed that a pure-strategy equilibrium might not exist under increasing elasticity of demand.
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Stage 0 Stage 1 Stage 2

Firms choose K

Capacity
K1

= K

Capacity
K2

= K1
−

q1

Firm
s choose p1

and IC1

Firm
s choose p2

and IC2

q1
is realized

q2
is realized

END

Figure 2: Timing of the Game with Inventory Controls

utilizing inventory controls, firms can ensure that if a rival deviates to a higher price in

Stage 1, their own sales will not increase.

The logic above only holds when demand becomes more inelastic over time because

inventory controls place a cap on sales and not a floor. Thus, inventory controls highlight

another natural asymmetry that arises between increasing and decreasing elasticity of

demand: Inventory controls can prevent a rival from increasing a firm’s sales by deviating

to a higher price, but they cannot prevent a rival from lowering a firm’s sales by deviating

to a lower price.

Proposition 6. When the elasticity of demand is decreasing, then under Assumptions 1, 2 and 4,

and under either the efficient or the proportional rationing rule, a subgame perfect Nash equilibrium

of the model with inventory controls exists in which all firms set the Cournot price and set inventory

controls equal to the Cournot quantity in each selling period. Profits are strictly higher in this

equilibrium than in the uniform-price equilibrium.

In the equilibrium described in the above proposition, firms commit to inventory con-

trols which are equal to each firm’s equilibrium sales in each period. Inventory controls

do not restrict output on the equilibrium path, but they do act as a strategic commitment

device because they constrain the firm’s off-the-equilibrium-path output. In the equilib-
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rium, firms sell their Cournot output in each period, and so prices rise over time because

demand becomes less elastic. Without inventory controls, firms set a constant price across

the two periods and sales are equal to the Cournot quantity associated with the aggregate

demand, D1(p)+D2(p). In the equilibrium with inventory controls, firms set prices equal to

the Cournot quantities in each period, that is, the Cournot output associated with demand

D1(p1) in Stage 1 and the Cournot output associated with demand D2(p2) in Stage 2.

The model with inventory controls does have other equilibria. In particular, the

symmetric capacity, uniform-price equilibrium characterized in Proposition 3 may still be

a subgame perfect equilibrium of the inventory control game. Even when it is not, there

are many different increasing price paths that can be supported with inventory controls.

We think that it is natural for firms to coordinate on the Cournot quantities, but the point

is that they can price discriminate and earn higher profits using inventory controls.

Example: We illustrate the impact of inventory controls on prices and profits in an

example with linear demand, Pt(qt) = at − btqt, and constant cost per unit of capacity, c.

Suppose that the firms could choose capacity independently for each period (as if the two

periods were separate markets). Then the Cournot profits with price discrimination are

given by

Πdiscr. =
(b2(a1 − c)2 + b1(a2 − c)2)

(b1b2(n + 1)2)

and the Cournot profits with uniform pricing are

Πuniform =
(b2(a1 − c) + b1(a2 − c))

(
b2a1+b1a2

b1+b2
− c

)
(b1b2(n + 1)2)

.
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And profits are higher with discrimination (see the Appendix for more details),

Πdiscr. −Πuniform = b2(a1 − c)2 + b1(a2 − c)2
− (b2(a1 − c) + b1(a2 − c))

(
b2a1 + b1a2

b1 + b2
− c

)
=

1
b1 + b2

(b2(a1 − c)(b1(a1 − a2) + b1(a2 − c)b2(a2 − a1))

=
b1b2

b1 + b2
((a1 − c)(a1 − a2) + (a2 − c)(a2 − a1)) =

b1b2

b1 + b2
(a1 − a2)2 > 0.

7 Model Extensions

7.1 Alternative Timing of Inventory Controls

Inventory controls could also be modeled other ways, including allowing firms to commit

to inventory controls before setting price. If firms could commit to inventory controls

before announcing prices, inventory controls serve two functions. First, they prevent

rival firms from raising their price in order to increase our sales when the price is low.

And second, they limit our own sales in Stage 1. The latter is important and impacts

equilibrium strategies, but collectively firms want to set increasing prices and sell more in

Stage 1 than they do in the uniform-price equilibrium, so commitment does not help firms

to unilaterally increase profits in obvious ways.

If firms could announce and commit to their inventory controls each period before any

firm sets price, then Proposition 4 still holds. In this case, if each firm sets an inventory

control equal to the Cournot output, this would result in the Cournot prices, and no

unilateral inventory control deviation would effect the subsequent prices. But this timing

may also eliminate the uniform price equilibrium. In a duopoly model, a unilateral

inventory control would curtail the rival’s incentives to raise price and cause the rival

to equate marginal revenue across the two periods, even when the rival hadn’t set an

inventory control itself.
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7.2 Product Differentiation

Differentiation does not alter firms’ incentive to attempt to shift demand to competitors in

the early period. However, product differentiation makes it more costly to shift demand.

With undifferentiated products, a small price change shifts all of the demand. With

differentiated products, a firm’s price increase must be larger, and have a first-order effect

on its profits, in order to have a significant impact on a rival’s sales.

Product differentiation also introduces increased complexity, so we focus our attention

on two firms in a symmetric environment, and give intuition instead of analyzing the

equilibrium of the model. We also maintain the assumption that capacity is sufficiently

small so that firms always set market-clearing prices in the second period.

Figure 3: Intertemporal Price Discrimination as a Function of Product Differentiation

(a) Prices Across Periods (b) Competition vs. Joint-Profit Maximization

Notes: Example constructed using a random utility model (logit) with two firms and two periods. Product differentiation
is increasing towards the right of the plots. (a) The light dashed line corresponds to the own-price elasticity for a constant
price offered by both firms. As products become increasingly differentiated, the difference between p1 and p2 increases. (b)
Shows the change in price (p2 − p1) of competition model versus the joint-profit maximization model. Prices are flatter in
the competition model, as the gap between the two models grows with the degree of differentiation.

Product differentiation results in equilibrium subgame prices that are no longer uni-

form over time; however, prices are flatter—as a function of the degree of product

differentiation—than joint-profit-maximizing prices (see Figure 3 for an example, where

the left plot shows increasing differences in prices across periods as product differenti-

25



ation increases). To see this, consider two firms, A and B, and let the inverse demand

functions be PA
1

(
qA

1 , q
B
1

)
, PB

1

(
qA

1 , q
B
1

)
, PA

2

(
qA

2 , q
B
2

)
, and PB

2

(
qA

2 , q
B
2

)
. Joint-profit-maximizing

firms would set marginal revenue equal to the shadow cost of capacity in each of the

four product markets, so
∂P j

i

(
q j

t ,q
− j
t

)
∂q j

t

q j
t + P j

t

(
q j

t , q
− j
t

)
= λ,∀t = 1, 2; j = A,B. Suppose that the

joint-profit-maximizing prices are increasing over time.

Contrast these prices with the prices that would be set by two competing firms given

the same initial capacity. If Firm A sets a higher price than the joint-profit-maximizing

firm, it will sell less in the first period and, hence, more in the second period. Sales for

Firm B are higher in the first period, and it has less to sell in the second period; thus, in

the second period, its price is higher and Firm A’s demand is higher. Because it ignores

the loss for Firm B, Firm A has an incentive to set a higher first-period price than the joint-

profit-maximizing monopolist. Firm B has a similar incentive, and, in equilibrium, both

firms’ prices will be flatter relative to joint-profit-maximizing prices (see the right panel in

Figure 3). It is also worth noting that prices might still be perfectly flat if sufficiently many

consumers were indifferent between the firms—a symmetric increasing price equilibrium

does not exist because either firm could strictly increase profits with an arbitrarily small

price increase.

7.3 Aggregate Demand Uncertainty

Inventory controls are generally described as a tool for managing demand uncertainty, so

it is important to describe how the model can be extended to include such uncertainty. To

generate intuition, we describe an extension in which just first-period demand is uncertain.

A monopolist sets the first-period price before learning the first-period demand and sets

a second-period price to clear the market.

A simple way to add uncertainty to the model is assume realized demand can be high

or low in the first period, but is known to be high in the second period. In this case

a monopolist choosing capacity optimally would set a lower price (based on expected
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demand) in the first period.

However, the monopoly prices are not an equilibrium with competing firms, even

if the firms have the same capacity as the monopolist. Because the monopoly prices

increase in expectation, competing firms prefer to sell more of their capacity in the second

period, when the expected price is higher. And any firm can shift a discrete amount of its

first-period sales to its rival through an arbitrarily small price increase in the first period.

Thus, expected prices must be equal in the two periods in any symmetric pure-strategy

equilibrium.

7.4 Many Periods

An obvious limitation of the paper is that we consider only two pricing periods. One

challenge to extending Propositions 2 and 3 to many periods is that it requires stronger

assumptions than Assumptions 1 and 2 in order to ensure firms play pure strategies for

all histories of the game. Another limitation is the potential for multiple equilibria.

One way to consider many periods is to focus on a duopoly model with constant

elasticity demand, but allow the demand elasticity to become more inelastic over time.

Then, sufficient conditions could be derived under which the last m periods have a uniform

price equilibrium for all capacities. Then, going from m to m + 1 periods is similar to going

from one to two periods in our previous analysis, because the m-period-subgame price is

always the market-clearing price. The only challenge is those sufficient conditions are no

longer on the initial capacities.

In particular, consider a three-period model. Here, it is possible to describe conditions

under which a uniform-price is the unique outcome: on the equilibrium path, the final two

pricing periods of the three-period game are equivalent to our analysis above, so prices

must be equal in the final two periods as long as capacities are sufficiently equal. More

importantly, the intuition that firms can profit from shifting lower-price sales to the rivals

still holds, which is why sustaining increasing prices is difficult.
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8 Conclusion

We establish that inventory controls can facilitate intertemporal price discrimination in

oligopoly. We consider an advance-purchase, sequential-pricing model with complete

information. When a single firm serves the market and demand becomes more inelastic

over time, the firm can clearly charge higher prices to late arriving consumers. However, in

our oligopoly model, strong competitive forces arise. Individually, firms have an incentive

to move their capacity to the period with a highest price. That is, firms have an incentive

to shift sales to their rivals in early periods, when consumers have lower willingness to

pay, in order to capture increased sales in later periods when consumers have higher

willingness to pay. Consequently, we find that firms will compete on price until prices

are equalized across the selling periods even though firms have market power and would

earn higher profits if prices were increasing.

In order for firms to coordinate price increases when late arriving consumers have

higher willingness to pay, they must shield themselves from these strong competitive

forces. By committing to a cap on their sales in each of the sequential markets, which they

can do with inventory controls, competing firms are able to implement increasing prices.

There is extensive research in economics and operations research on the use of inventory

controls as a tool to manage uncertain demand, but here we show that inventory controls

are also a tool to facilitate intertemporal price discrimination.
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Möller, M., and M. Watanabe (2010): “Advance purchase discounts versus clearance
sales,” The Economic Journal, 120(547), 1125–1148.

Nair, H. (2007): “Intertemporal price discrimination with forward-looking consumers:
Application to the U.S. market for console video-games,” Quantitative Marketing and
Economics (QME), 5(3), 239–292.

Öry, A. (2016): “Consumers on a Leash: Advertised Sales and Intertemporal Price Dis-
crimination,” working paper.

Osborne, M. J., and C. Pitchik (1986): “Price competition in a capacity-constrained
duopoly,” Journal of Economic Theory, 38(2), 238 – 260.

Prescott, E. C. (1975): “Efficiency of the natural rate,” Journal of Political Economy, 83(6),
1229–1236.

Puller, S. L., A. Sengupta, and S. N. Wiggins (2012): “Does scarcity drive intra-route price
dispersion in airlines?,” NBER Working Paper, 15555.

30



Reynolds, S. S., and B. J. Wilson (2000): “Bertrand–Edgeworth competition, demand
uncertainty, and asymmetric outcomes,” Journal of economic theory, 92(1), 122–141.

Stokey, N. L. (1979): “Intertemporal Price Discrimination,” The Quarterly Journal of Eco-
nomics, 93(3), 355–371.

Su, X. (2007): “Intertemporal Pricing with Strategic Customer Behavior,” Management
Science, 53(5), 726–741.

Sweeting, A. (2012): “Dynamic Pricing Behavior in Perishable Goods Markets: Evidence
from Secondary Markets for Major League Baseball Tickets,” Journal of Political Economy,
120(6), 1133–1172.

Talluri, K. T., and G. J. Van Ryzin (2006): The Theory and Practice of Revenue Management,
vol. 68. Springer Science & Business Media.

Van denBerg, A., I. Bos, P. J.-J. Herings, andH. Peters (2012): “Dynamic Cournot duopoly
with intertemporal capacity constraints,” International Journal of Industrial Organization,
30(2), 174–192.

Weatherford, L. R., and S. E. Bodily (1992): “A taxonomy and research overview of
perishable-asset revenue management: Yield management, overbooking, and pricing,”
Operations Research, 40(5), 831–844.

Williams, K. R. (2018): “Dynamic Airline Pricing and Seat Availability,” Cowles Foundation
Discussion Paper, No 2103R.

31



A Appendix

Proof of Lemma 1:

Proof. Suppose not, so some firm is charging a price not equal to the market-clearing price

and trade takes place at that price.

Suppose that some firm is charging a price strictly below the market-clearing price

with strictly positive probability. Let pL be the lowest price offered by any firm. Clearly

any firm offering to sell at pL sells all of its capacity. The firm either sells all of its capacity

in Stage 1, or its sales in Stage 1 are equal to D1(pL) and then in Stage 2 the demand for its

product is D2(pL). And since pL is below the market clearing price, it follows that D1(pL) +

D2(pL) strictly exceeds the firms’ total capacity, which in turn clearly exceeds the capacity

of the firm charging pL. But if the firm sells all of its capacity, then there must exist a price

strictly higher than pL at which the firm also sells all of its capacity and the firm earns

strictly higher profits, which is a contradiction.

Now suppose instead that some firm sets a price strictly greater than the market-

clearing price with strictly positive probability. Let pH be the highest price offered in

equilibrium with positive probability, which implies that at least one firm offering to sell

at pH does not sell all of its capacity. If two or more firms set a price of pH with strictly

positive probability, then a firm that does not sell off of its capacity can decrease its price

to pH − ε and strictly increase its sales and profits, which is a contradiction.

If at most one firm charges the price pH with strictly positive probability, then the firm

charging pH earns a profit equal to pHRD1(pH; p−i,K−i) + D2(pH), where p−i and K−i are

the other firms’ prices and capacities, if it’s sales are positive in Stage 1; in this case every

other firm sells all of its capacity in Stage 1 so the firm is the only seller in Stage 2. And the

firm charging pH earns a profit equal to pHRD2(pH; p−i,K−i
2 ), where K−i

2 is the other firms’

remaining capacity at the start of Stage 2, if it has zero sales in Stage 1.

Clearly the firm will not sell all of its capacity in either case, because pH exceeds the
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market-clearing price and, as we have shown above, other firms are all setting prices at or

above the market-clearing price, so total consumption must be less than available capacity.

Consider the profits of the firm charging pH under the assumption that the firms

rivals are playing pure strategies. Under the efficient rationing rule, if the firm charg-

ing pH has positive sales in Stage 1, then the derivative of profit with respect to price is

RD1(pH; p−i,K−i)+pHD′1(pH)+D2(pH)+pHD′2(pH), which is negative because RD1(p; p−i,K−i) <

D1(p), because pD′1(p) + D1(p) < 0, and because pD′2(p) + D2(p) < 0. The second and third

statements are true because, by Assumption 1, D1(pH) + D2(pH) is less than the revenue-

maximizing output (marginal revenue is positive). So, lowering price below pH increases

profit, which is a contradiction. Under the efficient rationing rule, if the firm charg-

ing pH has zero sales in Stage 1, then the derivative of profit with respect to price is

D2(pH) + pHD′2(pH), which is negative because, by Assumption 1, D2(pH) is less than the

revenue-maximizing output (marginal revenue is positive). So, lowering price below pH

increases profit, which is a contradiction. However, rival firms may be playing mixed

strategies, so the firm’s expected profits is a weighted average of the profit functions

above, all of which are higher at a lower price, so we have a contradiction.

Under the proportional rationing rule, if the firm charging pH has positive sales in

Stage 1, then the derivative of profit with respect to Firm i’s price is

RD1(p; p−i,K−i) + pHRD′1(pH; p−i,K−i) + pHD2(pH) + D′2(pH) =(
pHD′1(pH) + D1(ph)

) 1 −∑
j,i

K j

D2(p j)

 +
(
pD′2(p) + D2(p)

)
(7)

which is negative because pHD′1(pH) + D1(pH) < 0 and pHD′2(pH) + D2(pH) < 0. These are

both true because, by Assumption 1, D1(pH) + D2(pH) is less than the revenue-maximizing

output. So lowering price below pH increases profit, which is a contradiction. Under

the proportional rationing rule, if the firm charging pH has zero sales in Stage 1, then the
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derivative of profit with respect to Firm i’s price is

RD2(p; p−i,K−i
1 ) + pHRD′2(pH; p−i,K−i

1 ) =(
pHD′1(pH) + D1(ph)

) 1 −∑
j,i

K j

D2(p j)

 +
(
pD′2(p) + D2(p)

)
(8)

which is negative because pHD′1(pH) + D1(pH) < 0 and pHD′2(pH) + D2(pH) < 0. This is true

because D1(pH) + D2(pH) is less than the revenue-maximizing output. So lowering price

below pH increases profit, which is a contradiction. Again, if rivals are playing mixed

strategies than the firm’s expected profit is a weighted average of the pure-strategy profit

functions above, all of which are higher at a price below pH, so we have a contradiction. �

Proof of Lemma 2:

Proof. Suppose not, so some firm is charging a price not equal to the market-clearing price

in Stage 2.

Suppose that some firm is charging a price strictly below the market-clearing price

with positive probability. Let pL be the lowest price offered in equilibrium with positive

probability. Clearly any firm offering to sell at pL sells all of its capacity (because pL is below

the market clearing price), but then there must exist a strictly higher price at which the

same firm sells all of its capacity and earns strictly higher profits, which is a contradiction.

Now suppose instead that some firm charges a price strictly above the market-clearing

price with positive probability. Let pH be the highest price offered in equilibrium with

positive probability. Clearly at least one firm offering to sell at pH does not sell all of its

capacity (because pH is above the market clearing price). If two or more firms charge

pH with strictly positive probability, then at least one of the firms does not sell all of its

capacity, and that firm can decrease its price to pH − ε and strictly increase its sales and

profits, which is a contradiction. If zero or one firm is charging the price pH with strictly

positive probability, and if other firms are playing pure strategies, then a firm charging pH
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earns profits equal to pRD2(p; p−i,q−i), where p−i and q−i are the other firms’ prices and

remaining capacities.

Under the efficient rationing rule, the derivative of profit with respect to price is

RD2(p; p−i,q−i) + pD′2(p), which is negative because RD2(p; p−i,q−i) < D2(p) and because

pD′2(p) + D2(p) < 0. This is true because, by Assumptions 1 and 2, D2(p) is less than

the revenue-maximizing output. So, lowering price below pH increases profit, which is a

contradiction.

Under the proportional rationing rule, the derivative of profit with respect to Firm

i’s price is RD2(p; p−i,q−i) + pRD′2(p; p−i,q−i) =
(
pD′2(p) + D2(p)

) [
1 −

∑
j,i

q j

D2(p j)

]
, which is

negative because pD′2(p) + D2(p) < 0. This is true because D2(p) is less than the revenue-

maximizing output. So lowering price below pH increases profit, which is a contradiction.

Finally, because the firm charging pH earn high profits at a lower price regardless of

what prices the rivals set, the argument above also holds when rivals are playing mixed

strategies. �

Proof of Proposition 1:

Let pL = mini pi
1 denote the lowest equilibrium price offered in Stage 1. And recall that

by Lemma 2, under Assumption 1 and 2 all firms with positive remaining capacity in the

Stage 2 charge the market-clearing price. The proof of the proposition proceeds as a series

of six claims.

1) In any pure strategy equilibrium of the pricing subgame that has positive sales in both stages,

pL ≤ p2.

If a pure strategy equilibrium exists in which pL ≥ p2, then all consumers who arrive in

Stage 1 must be waiting to purchase until Stage 2. So sales are zero at pL, which is a

contradiction.
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2) In any pure strategy equilibrium of the pricing subgame, if pL is offered by two or more firms in

Stage 1, and if sales at pL are strictly positive, then pL = p2.

Suppose not. Then pL < p2 (by Claim 1), and pL is offered by two or more firms. Let Firm

i be one of these firms. Then Firm i’s profit can be written as pLxi + P2

(
Ki
− xi

)
, where

xi = min
{
RD1

(
pL; pL,

∑
j,i|p j=pL

K j
)
,Ki

}
is Firm i’s sales at pL.

If Firm i deviates to a slightly higher price pL + ε, its profit is

(pL + ε) min

RD1

pL + ε; pL,
∑

j,i|p j=pL

K j

 ,Ki


+ P̂2(·) max

Ki
− RD1

pL + ε; pL,
∑

j,i|p j=pL

K j

 , 0
 , (9)

where P̂2(·) is the market clearing price in period 2, which is a continuous and decreasing

function of the total capacity remaining after Stage 1.

If xi = Ki, then Firm i’s profit is clearly higher since pL + ε > pL and P̂2(·) > pL, so all of

Firm i’s sales are at a higher price, and its sales volume doesn’t change.

If, on the other hand, xi < Ki and RD1(pL; pL,
∑

j,i|p j=pL
K j) < Ki, then the same deviation

is still profitable for Firm i because

lim
ε→0

RDi
1

pL + ε; pL,
∑

j,i|p j=pL

K j

 ≤ RDi
1

pL; pL,
∑

j,i|p j=pL

K j

 < Ki,

since RD is decreasing in price (for either rationing rule), and so the limit of (9) as ε goes

to 0 is

pL lim
p↓pL

RDi
1

p; pL,
∑

j,i|p j=pL

K j

 + P2

Ki
− lim

p↓pL
RDi

1(p; pL,
∑

j,i|p j=pL

K j)

 .
Profits are higher because the firm sells more units at p2 and fewer units at pL and p2 > pL.

A deviation is profitable, which is a contradiction.
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3) If pL = p2, then the equilibrium is a uniform-price equilibrium.

Suppose not, so some Firm j sets a price p j > pL = p2 in Stage 1. Because consumers

can wait, it follows that Firm j’s sales are zero, so the equilibrium is a uniform-price

equilibrium.

4) There exists, at most, one uniform-price equilibrium of the pricing subgame (the total sales and

the transaction price is unique).

Given the capacity, the price and volume of sales in a uniform-price equilibrium are

uniquely defined, because only one price satisfies D1(p) + D2(p) =
∑

i Ki.

5) All pure-strategy subgame perfect equilibria are either a uniform-price equilibrium or an asym-

metric price equilibrium, and either a uniform-price equilibrium or an asymmetric price equilibrium,

exists, but not both.

As above, consider the unique candidate uniform-price equilibrium. Suppose this equi-

librium does not exist. Then it must be that either deviating in Stage 1 is profitable. But

deviating to a higher price in Stage 1 is never profitable. Consumers prefer to wait and buy

at the market clearing price in Stage 2. So deviating to a lower price must be profitable.

If deviating from the uniform-price to a lower price in Stage 1 is profitable for some

firm, then it is clearly also profitable for the firm that has the largest capacity. Let i denote

the firm with the largest capacity; let pi
1 denote the firm’s profit-maximizing deviation in

Stage 1; and let p̂2 denote the resulting second-period market-clearing price.

Then it follows that pi
1 and p̂2 must define an asymmetric-price equilibrium. Firm i

sells in both periods (otherwise the deviation isn’t profitable) so all other firms muse sell

only in Stage 2. Clearly Firm i has no incentive to deviate since by construction pi
1 is its

best response to the other firms’ strategies. And if any other firm could increase its profits

by charging a price less than pi
1, then it follows that Firm i could also increase its profit
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by deviating to that same price (because Firm i has more capacity), in which case pi
1 is not

Firm i’s profit-maximizing price, which is a contradiction.

Similarly, if an asymmetric price equilibrium exists, then pi
1 must be the best response

for Firm i to other firms prices, even if they were all charging p2 in Stage 1. So a uniform-

price equilibrium does not exist.

6) There exist at most n asymmetric-price equilibria.

We show that there exists, at most, one asymmetric-price equilibrium in which Firm i is

the low-priced firm in period one (or, more strictly speaking, such equilibria differ only in

the prices of firms with zero sales).

In an asymmetric-price equilibrium, if Firm i is the low-price firm, then it is the only

firm with positive sales in Stage 1. Let p denote Firm i’s equilibrium price. As in Claim 5 let

pi
1 denote Firm i’s best response when rival firm’s are charging the unique uniform-price

equilibrium price, which is the same as its optimal price when rivals are setting the market

clearing price in Stage 2.

However, if p > pi
1, then Firm i can profitably deviate to pi

1 because regardless of what

price it sets, its rivals are selling at the market clearing price in Stage 2. And, if p < pi
1,

then because π(p) is concave and maximized at pi
1, it follows that Firm i is strictly better off

increasing its price. So, p cannot be an asymmetric-price equilibrium price unless p = pi
1.

Therefore, the only one asymmetric-price equilibrium that can exist in which Firm i is

the low-price firm in the first period and that equilibrium is given by (3) and (5). Since

there are n firms there are at most n asymmetric-price equilibria.

Proof of Proposition 2:

Proof. Let Ki denote each firm’s capacity, and let p̃ denote the unique uniform price defined

by Dtot(p̃) = D1(p̃) + D2(p̃) =
∑n

i=1 Ki.

Consider a deviation to a lower price in the first pricing period. If D1(p̃) ≥ maxi Ki,
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then a deviation to a lower price is not profitable, because any firm that cuts its price in

Stage 1 will sell all of its capacity at the lower deviation price and hence earn strictly lower

profits.

If D1(p̃) < maxi Ki, then for any Firm i such that Ki
≤ D1(p̃), a deviation to a lower price

is not profitable by the same argument. When Ki > D1(p̃), then a deviation to a lower price

could increase the market-clearing price in period 2, and could increase the firms profits,

but only if demand is becoming less elastic over time so firms jointly prefer to set prices

that increase over time.

Let Firm i be the deviating firm, and let p2(·) denote the second-period market-clearing

price as a function of remaining capacity. Firm i’s problem is to choose a price pi < p̃, or

equivalently, a quantity qi = D1(pi) to maximize

π̂i(qi; p̃,K) = qip1(qi) + P2

 n∑
i=1

Ki
− qi

 (Ki
− qi

)
, (10)

subject to qi
∈

(
D1(p̃),Ki

]
– higher output levels are not feasible, and lower output levels

are inconsistent with a lower first period price. The first-order condition is

dπ̂(qi; p̃,K)
dq

= P1(qi) + qiP′1(qi) − P2

 n∑
i=1

Ki
− qi

 − P′2

 n∑
i=1

Ki
− qi

 (Ki
− qi) = 0, (11)

or

dπ̂(qi; p̃,K)
dq

= P1(qi)
(
1 +

1
η1(P1(qi))

)
(12)

− P2

 n∑
i=1

Ki
− qi


1 +

1

η2

(
P2

(∑n
i=1 Ki − qi

)) Ki
− qi∑n

i=1 Ki − qi

 = 0.

Clearly, the objective function, equation (10), is concave, so (12) implies that a devia-

tion to a lower price is profitable if and only if limq↓D1(p̃)
dπ̂(q;p̃,K)

dq > 0, or equivalently,
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limp↑p̃
dπ̂(D1(p);p̃,K)

dq > 0. But clearly

lim
p↑p̃

dπ̂(D1(p); p̃,K)
dq

< P1(D1(p̃))
(
1 +

1
η1(P1(D1(p̃))

)
− P2

 n∑
i=1

Ki
−D1(p̃)


1 +

1

η2

(
P2

(∑n
i=1 Ki −D1(p̃)

)) Ki∑n
i=1 Ki


because Ki

−q
(∑n

i=1 Ki−q) <
Ki∑n

i=1 Ki . Since P1(D1(p̃)) = P2

(∑n
i=1 Ki

−D1(p̃)
)

= p̃, it follows that a

deviation to a lower price is not profitable if

1
η1(P1(D1(p̃)))

−
1

η2

(
P2

(∑n
i=1 Ki −D1(p̃)

)) Ki∑n
i=1 Ki

< 0 ⇐⇒
η2(p̃)
η1(p̃)

>
Ki∑n

i=1 Ki
, (13)

or, equivalently, if Assumption 3 holds. If demand in the second period is too much more

inelastic, a deviation will be profitable.

Now consider a deviation to a higher price. If D1(p̃) <
∑

j,i K j, for all i, then no firm’s

deviation to a higher price can have any effect on first or second period sales. The firm’s

that don’t deviate can meet all of the demand at the price p̃.

If on the other hand D1(p̃) >
∑

j,i K j, for some i, then some firm or firms can deviate to

a higher price and have positive sales, however even a monopolist would not find such

a deviation profitable when demand is becoming less elastic over time, so no firm will

deviate to a higher price. �

Proof of Proposition 3:

Proof. Under Assumptions 1, 2 and 4, if a subgame perfect equilibrium exists in which

every firm chooses K∗ units of capacity, then, by Proposition 2, the unique subgame perfect

equilibrium of the pricing subgame is a uniform-price equilibrium. Moreover, for all firm

capacities in a neighborhood of K∗, Assumption 4 and Proposition 2 imply that the unique

subgame perfect equilibrium of the pricing subgame is a uniform-price equilibrium, so
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the first-stage profit function for Firm i can be written as

Πu(Ki; K−i) =

Ptot

∑
j

K j

 − c

 Ki, (14)

where K−i is the capacity of the other firms.

Firm i’s capacity, Ki, maximizes Firm i’s profits only if Ki = K∗ is the solution to

∂Πu(Ki; K∗)
∂Ki = Ptot((n − 1)K∗ + Ki) − c + P′tot((n − 1)K∗ + Ki)Ki = 0, (15)

which is concave and has a unique solution, Ki(K∗), which is decreasing in K∗. So, (15)

uniquely defines a symmetric solution K∗, and it is easy to see that K∗must be exactly equal

to the Cournot quantity associated with n firms, production cost c, and demand Dtot(p).

So we have shown that Ki = K∗ is local best response. Next, we show that Ki = K∗ is the

global best response when rival firms choose K∗.

Suppose that Ki < K∗. If a uniform price equilibrium exists when Firm i chooses Ki and

other firms choose K∗, then Firm i’s profits are given by (14), and so Firm i’s profits at Ki

are strictly lower than at K∗.

If a uniform-price equilibrium does not exist, then by Proposition 1 an asymmetric-

price equilibrium must exist. Under Assumption 4, Firm i cannot profit by deviating from

the uniform-price equilibrium even if its capacity is K∗, so Firm i is not the low-priced firm

in the first period. The only asymmetric-price equilibrium that can exist is one in which

one of Firm i’s rivals is the firm that sells at the low price in the first period. There are n−1

such equilibria because any of the n − 1 firms with capacity K∗ could set the low price in

the first period.

Firm i’s profit in all of these asymmetric-price equilibria is

Πa(Ki; K∗) =
[
P2

(
(n − 1)K∗ + Ki

−D1(p1)
)
− c

]
Ki, (16)
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where p1 is the price charged in the first period, and so p1 maximizes

D1(p1)p1 + P2

(
(n − 1)K∗ + Ki

−D1(p1)
) (

K∗ −D1(p1)
)
. (17)

Firm i’s first order-condition is

P′2
(
(n − 1)K∗ + Ki

−D1(p1)
) (

1 −D′1(p1)
dp1

dKi

)
+ P2

(
(n − 1)K∗ + Ki

−D1(p1)
)
− c = 0. (18)

Because p1 < p2, D(p1) is greater than first-period sales at the uniform price. This implies

that n − 1 firms are each selling less than K∗ − D(p̃)/n in period 2, where p̃ is the uniform

price. In this case, ignoring the impact of Ki on p1, Firm i’s best response is greater than

K∗ −D(p̃)/n, which implies that Ki > K∗, which is a contradiction. And, as Ki increases, the

optimal first-period price falls (dp1/dKi < 0). Thus, ignoring the impact of Ki on p1 does

not alter the result. Deviating to a lower Ki is still not profitable.

Now suppose that Ki > K∗. Again, the equilibrum of the pricing subgame may be

an asymmetric-price equilibrium or a uniform-price equilibrium. If it is a uniform-price

equilibrium, then by the same argument, profits are strictly lower.

If it is an asymmetric-price equilibrium, then it must be an asymmetric-price equilib-

rium in which Firm i sets a low price in the first period. This is because an asymmetric-price

equilibrium exists only if a firm wants to deviate from the uniform-price equilibrium, and

equation (13) tells us that a firm wants to deviate only if η2(p)/η1(p) exceeds its share of

capacity. But by Assumption 4, this happens only if the capacity share exceeds 1/n and

only Firm i’s share of capacity exceeds 1/n.

So, if Firm i deviates to Ki > K∗, then its profit must be

max
p1

D1
(
p1

)
p1 + P2

(
(n − 1)K∗ + Ki

−D1
(
p1

)) (
Ki
−D1

(
p1

))
.
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Rewriting this as a function of quantity yields

max
q1

P1(q1)q1 + P2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
. (19)

Thus, the firm’s profit in stage one is

max
q1

P1(q1)q1 + P2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
− cKi, (20)

and its maximized profit in stage one is

max
q1,K1

P1(q1)q1 + P2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
− cKi, (21)

which we can rewrite using a change of variables (q2 = Ki
− q1) as

max
q1,q2

P1(q1)q1 − cq1 + P2
(
(n − 1)K∗ + q2

)
q2 − cq2. (22)

Therefore, q1 is the first-period monopoly output. and q2 is the second-period best response

to (n− 1)K∗. But this is not an equilibrium unless p1 < p2, or equivalently the Lerner index

in the first period is smaller than the Lerner index in period 2, or

P′1(q1)q1

P1(q1)
<

P′2
(
(n − 1)K∗ + q2

)
q2

P2
(
(n − 1)K∗ + q2

) (23)

1
|η1(p1)|

<
1

|η2(p2)|
q2

(n − 1)K∗ + q2
(24)

or
η2(p2)
η1(p1)

<
q2

(n − 1)K∗ + q2
, (25)

which violates Assumption 4 because q2 < K∗. So, this is a contradiction. Hence there

exists no profitable deviation for any firm. �

43



Proof of Proposition 4:

This follows immediately from Proposition 1, which shows that a pure strategy equilibrium

exists and that any pure strategy equilibrium must be a uniform-price equilibrium or an

asymmetric price equilibrium in which the Stage 1 price is strictly lower than the Stage 2

price. But if the elasticity of demand is increasing, an asymmetric price equilibrium cannot

exist. The firm selling in Stage 1 prefers to sell all of its capacity at the market clearing

price is stage 2.

Proof of Proposition 5:

By Proposition 4 all transactions take place at the same price, and by Lemma 1 this implies

that firms must set the Cournot capacities as if there were one combined sales period.

Proof of Proposition 6:

Proof. Let ki
t denote the inventory control for Firm i in period t.

Consider an equilibrium in which, on the equilibrium path, firms choose capacity

equal to the sum of the Cournot capacity in each period, qC
1 + qC

2 , and then set the Cournot

price, pC
t in each period, and set ki

t = qC
t in each period, so inventory controls equal to the

Cournot output in each period.

Off of the equilibrium path, firms set the market-clearing price in the last period. In

the first period, given capacity, firms set the price pi
1 and the inventory control ki

1 which

correspond to the Cournot price and quantity. That is, firms allocate their capacity across

periods one and two as if they were playing a Cournot game in each period with a capacity

constraint across the two periods. The set price equal to the Cournot price associated with

the firms’ allocations and the set the inventory control equal to that allocation. More

formally, firms equate the marginal revenue of output across the two periods.

Clearly no deviation is profitable in the final period. That is, in every subgame firms

set the market clearing price and set a non-binding inventory control. This is because
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Lemma 2 holds, so any second-period price not equal to the market-clearing prices are not

sequentially optimal – the presence of inventory controls does not change this result.

Now consider a deviation by Firm i to a lower price in the first selling period. De-

creasing demand elasticity implies that pC
1 < pC

2 , so a small decrease in its first-period price

discontinuously increases Firm i’s first-period sales, decreases Firm i’s second-period sales,

and decreases Firm i’s profits. More generally, if Firm i had a profitable deviation to a

lower price in period one, then that price would define an asymmetric price equilibrium,

but by Proposition 2 an asymmetric-price equilibrium does not exist. So no deviation to a

lower price is profitable.

Suppose, instead, that Firm i deviates to a higher price in the first period. Under

the efficient rationing rule, the residual demand function facing the deviating firm is

RDi
1(pi; p − i1, q − i1) = D1(p) − (n − 1)qC

1 . This is because rival firms’ inventory controls,

k j
1 = qC

1 (if any firm deviate in stage zero, then k j
1 equals then adjust Cournot output given

the new capacity constrain.

Since the shadow cost of capacity is c on the equilibrium path (and, more generally,

is equalized across both periods), Firm i’s first-period profit function is (D1(pi) − (n −

1)qC
1 )(pi

− c) or, equivalently, (p1((n − 1)qC
1 + qi) − c)qi where p1 is the first period inverse

demand function. Thus, the optimal price deviation is given by the first-order condition,

which is

P′1
(
(n − 1)qC

1 + q
)

q + P1

(
(n − 1)qC

1 + q
)

= c.

But this implies that q = qC
1 and that the optimal price and quantity is the first-period

Cournot output (or, more generally, is the output that equalizes the marginal revenue

across the two periods), so no deviation to a higher price is profitable.

Under proportional rationing, the deviating firm’s residual demand function is

RDi
1(pi; pC

1 , q
C
1 ) = D1(pi)

1 − (n − 1)qC
1

D1(pC
1 )

 =
1
n

D1(pi),
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since D1(pC
1 ) = nqC

1 . The shadow cost of capacity is c on the equilibrium path (and, more

generally, is equalized across the two periods), so Firm i’s first-period profit function is
1
n D1(p)(p−c), or equivalently, p1(nq)−c)q. The first-order condition is P1

(
nq

)
+P′1

(
nq

)
q = c,

which implies that q = qC
1 , so no deviation to a higher price is profitable.

In stage zero, firms choose capacity expecting to equalize marginal revenue across

periods 1 and 2, and it is easy to see that Ki = qC
1 + qC

2 is a best response to K j = qC
1 + qC

2 for

all j , i. �

Cournot Model with linear demand and with and without discrimination

First, suppose that P(q) = a − bq, firms have constant cost c, and that there are n frms.

Cournot output for each of n firms is (a − c)/b(n + 1), so the total Cournot output is

(a − c)n/b(n + 1), the Cournot price is (a + nc)/(n + 1), and the Cournot profit of each firm

is (a − c)2/b(n + 1)2.

Now consider two markets and suppose firms sell in two markets and demands are

P1(q1) = a1 − b1q1 and P2(q2) = a2 − b2q2. Then if the demands are combined into one with

the same price, demand is qtot = a1/b1 +a2/b2−p
(

1
b1

+ 1
b2

)
or b1b2qtot = b2a1 +b1a2−p (b1 + b2)

or p = b2a1+b1a2
b1+b2

−
b1b2

b1+b2
qtot, so Cournot profit is ( b2a1+b1a2

b1+b2
− c)2(b1 + b2)/(b1b2(n + 1)2) or (b2a1 +

b1a2− (b1 +b2)c)( b2a1+b1a2
b1+b2

−c)/(b1b2(n+1)2) or (b2(a1−c)+b1(a2−c))( b2a1+b1a2
b1+b2

−c)/(b1b2(n+1)2)

If the markets are separate and firms set different quantities (and prices) in each market,

then the Cournot profits are (a1 − c)2/(b1(n + 1)2) + (a2 − c)2/(b2(n + 1)2) or equivalently(
b2(a1 − c)2 + b1(a2 − c)2

)
/(b1b2(n + 1)2).
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