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ABSTRACT

The allocation of decision authority by a principal to either a human agent or an artificial 
intelligence (AI) is examined. The principal trades off an AI’s more aligned choice with the need 
to motivate the human agent to expend effort in learning choice payoffs. When agent effort is 
desired, it is shown that the principal is more likely to give that agent decision authority, reduce 
investment in AI reliability and adopt an AI that may be biased. Organizational design 
considerations are likely to impact on how AI’s are trained.

Susan C. Athey
Graduate School of Business
Stanford University
655 Knight Way
Stanford, CA 94305
and NBER
athey@stanford.edu

Kevin A. Bryan
University of Toronto
Canada
kevincure@gmail.com

Joshua S. Gans
Rotman School of Management
University of Toronto
105 St. George Street
Toronto ON M5S 3E6
CANADA
and NBER
joshua.gans@gmail.com



Artificial intelligence (or AI) adoption is often equated with automation, whereby humans

are replaced by machines in tasks and decisions. In practice, however, AI is commonly

used to augment human activity. Consider partially self-driving cars with human override,

suggested scripts for customer service, and scoring for risk or priority in hiring, audits, judicial

sentencing and fraud detection. Decisions often involve considerations that are difficult to

digitize or where prior knowledge is important for anticipating outcomes in novel or unusual

circumstances. These are areas where the automated predictions of fully automated AI can

be insufficient, even when AI reduces the cost of prediction along some margins (Agrawal

et al. [2018]). This motivates an analysis of precisely how humans and AI would work

together and, as we will focus on here, under what circumstances the human or the AI

should have formal decision-making authority.

On the face of it, AIs have several characteristics that make them desirable decision-

makers. Classic incentive theory weighs the benefits of high-powered incentives against the

risk they impose on risk averse agents; AI are not, or at least can be programmed not to

be, risk averse. They do not have significant ‘effort’ costs beyond the fixed costs associated

with developing them. And, as some have argued, they are easier to control and act in

the interests of a principal. On the other hand, there remains the challenge of providing

an AI with the ‘correct’ objective function, which requires defining and digitizing principal

objectives.1 On the other hand, human decision-making may be more accurate than AI

choices in some circumstances, especially when there are deficiencies in the data available to

train and operate an AI.

Consider two stylized cases: a self-driving long haul truck, and an AI that helps filter job

applicants. The principal and the human agent - a driver or hiring manager - may disagree

about optimal actions. A human driver may want to drive too fast on the highway, or route

via their friend’s town for lunch. A hiring manager may want to discriminate on the basis

of race or gender. If the AI can always make principal-optimal decisions for any realization

of new data, it is always optimal to ignore the human agent. However, when the AI makes

mistakes - either because its training is biased or because some relevant information is not

digitalizable - it may be better to combine the AI and the agent’s knowledge in some way.

For example, a human driver may be better able to handle unusual construction-related

street patterns, and a hiring manager may be able to observe characteristics of an applicant

beyond their CV.

These differences motivate us to examine organizational design choices that involve a

human agent and an AI working together on a task or decision. While there are many

relevant organizational design elements, including incentives, job design, and communication

1See Hadfield-Menell and Hadfield [2019]
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patterns, we focus here on the pure allocation of decision-authority. Using the canonical

model of authority from Aghion and Tirole [1997] altered to focus on human-AI interactions,

we consider a principal who faces a choices as to whether to give a human agent or an AI

authority in making a decision. How does the introduction of the AI affect human effort?

When AIs predict well, might humans decrease effort too much (“fall asleep at the wheel”)?

When should the AI or the human have the right to make the final decision? Are “better”

AIs in a statistical prediction sense necessarily more profitable for an organization?

While others have examined the implementation of AI in organizations,2 this is the first

paper that focuses explicitly on the interaction of control problems for humans versus AI.

Importantly, we identify when organizations may prefer to hold back their investments in AI

performance.

1 Model Set-up

The initial model setup follows Aghion and Tirole [1997] where there is a principal (P )

who allocations decision authority and a (human) agent H who expends effort in learning

information about the (expected) value of a set of projects. The projects have payoffs to P

and H respectively of (αB, b), (B, βb) and (−KP ,−KH) but which project has which payoff

is, initially, unknown. We assume that both α and β, the ‘congruence parameters,’ lie on

(0, 1] making the first and second projects agent and principal preferred respectively. In

addition, there exists a neutral project with payoff normalized to (0, 0). As in Aghion and

Tirole [1997], it is assumed that (−KP ,−KH) is sufficiently negative that both P and H

would prefer the neutral (or no implementation) choice over a blind choice over all projects.

Initially, the agent does not know any project’s value, but following Aghion and Tirole

[1997], can select effort e at cost g(e), and thus learn the agent’s payoff for all projects with

probability e. We assume disutility of effort is increasing, strictly convex, g(0) = 0, g′(0) = 0,

and g′(1) =∞. Note that, absent other information or decision-makers, when an agent learns

project payoffs and selects their preferred project, the principal prefers that choice to the

neutral project.

Similarly, if the principal has an AI of capability E available, we assume that AI can,

without any additional cost, learn the value of all projects with probability E. In this case,

the AI will be able to select (or communicate costlessly to P ) which project is the principal’s

preferred project.3 E is assumed to be common knowledge.

2For instance, Agrawal et al. [2019], Dogan and Yildirim [2017], Dogan et al. [2018] and Aghion et al.
[2019]

3In Aghion and Tirole [1997], P was assumed to have the ability to learn project values with probability
E provided they incurred an effort cost. Here, we have endowed P with an AI that can learn on their behalf
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We consider the following timing. First, decision rights are allocated: either the AI or

the agent is delegated formal final decision authority.4 Second, the agent chooses how much

effort to exert. Third, the non-delegated player then reports any subset of project payoffs to

the delegated player, where this report is verifiable. Finally, the delegated player chooses a

project.

We also assume that the participation constraint for the agent is never violated; that is,

we consider only how decision rights affect the agent’s intensive margin of effort searching

for projects. Letting the agent outside option be 0 suffices.

2 Allocating Decision Authority

The principal’s choice regarding whether to give the agent or the AI decision authority

depends on their payoff in anticipation of the agent’s choice of effort in learning about

project payoffs. If the agent holds decision rights, payoffs are as follows:

uP = eαB + (1− e)EB

uH = eb+ (1− e)Eβb− g(e)

That is, the agent learns the principal’s preferred project with probability e and implements

it. Otherwise, the agent accepts the AI’s preferred action if the AI makes a recommendation,

and implements the neutral action otherwise. If the AI holds decision rights, these payoffs

become:

uP = EB + (1− E)eαB

uH = Eβb+ (1− E)eb− g(e)

In this case, if the AI learns the payoffs, the principal will implement the project they

prefer, otherwise, if only the agent learns the payoffs, the principal will accept the agent’s

recommended project.

Let êH and êAI be the agent’s effort choices under its own (human) authority and the

AI’s authority respectively. These are determined by the following first order conditions:

(1− Eβ)b = g′(êH) (1)

(1− E)b = g′(êAI) (2)

and H knows the AI’s capabilities.
4Note that decision rights can be conditional on the parameters commonly observed.
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A comparison of these conditions shows that the human’s marginal benefit of learning is

higher when they hold decision rights (as β ≤ 1) so that êH ≥ êAI . This formalizes a cost

of delegating to an AI: when the AI has decision rights, the agent is tempted to “fall asleep

at the wheel” since the AI frequently makes the choices. Even when the agent has decision

rights, if the AI is an attractive “backstop” (that is, the AI’s recommended project is more

aligned with the agent as β increases), then the agent also has reduced incentives for effort.

Finally, agent effort is decreasing in the ‘quality’ (E) of the AI; that is, they are strategic

substitutes.

Given this, P will choose to give the AI (rather than H) decision authority if:

1− E
1− E 1

α

≥ êH
êA

As the RHS exceeds 1, AI authority is only optimal if α is sufficiently low. If E ≥ α, AI

authority is always optimal; the human is so misaligned that even arbitrary human effort

provision due to delegation is less profitable than the imperfect AI making final decisions.

Using a specific functional form for g(e) = 1
1+γ

e1+γ with γ > 0, the condition for favoring

the AI becomes:
1− E

1− E 1
α

≥ (
1− E

1− Eβ
)γ

which as γ → 1, becomes 1 ≥ αβ (assuming that E < α). Thus, it is optimal to allocate

decision authority to the AI, so long as γ, a driver of the effort elasticity of cost, is not

too high. Thus, in determining whether to give the AI decision authority, P will weigh

the potentially greater reliability of the AI in selecting projects against the difficulty of

motivating H to expend more effort to identify projects with non-negative returns for P .

3 The Demand for AI Performance

Given that, in the model thus far, there is no cost to P in developing an AI with higher

performance, E, it is natural to presume that only technical constraints would limit the level

of E employed. However, as the above analysis shows, when the probability that the AI

learns project payoffs increases, the effort expended by the human agent falls. This reduces

the payoff to P as it reduces their payoff in the scenarios where the AI does not learn project

payoffs. Does this possibility imply that P might choose to deploy an AI with performance

below what is technically feasible?

To answer this question, we begin by identifying the conditions under which P utility

will be non-decreasing in E for all E.
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Proposition 1 The principal will always prefer an AI with higher E if (i) α is sufficiently

low or (ii) | g′(êAI)
g′′(êAI)(1−êAI)

| ≤ 1.

The proof is as follows. The derivative of P utility in E when the AI has decision

authority is:
duP
dE

= (1− êAIα)B +
dêAI
dE

α(1− E)B

and when the agent has decision rights is

duP
dE

= (1− êH)B +
dêH
dE

(α− E)B

When are these derivatives non-negative? Note first that for α close to 0 each of these

derivatives are positive as ê is independent of α. Rearranging terms and assuming that

α > E, we need |dêAI
dE
| ≤

1
α
−e

1−E and |dêH
dE
| ≤ 1−e

α−E . As α → 1, both inequalities collapse to

| dê
dE
| ≤ 1−e

1−E . That is, as E → 0, we need dê
dE
→ 0: H effort needs to decrease arbitrarily

slowly in E when E is low. Note that |dêAI
dE
| = | b

g′′
| > |dêH

dE
| = β| b

g′′
| and under AI authority,

b = g′(êAI)
1−E meaning that with substitutions the condition becomes (ii).

This shows that so long as (i) P and H are not sufficiently aligned in their project

preferences or (ii) the responsiveness of H effort to improvements in E is not too great,

then the impact of better AI on the incentives of the agent will not outweigh the benefits

P receives from employing that AI. Significantly, the analysis in the proof shows that even

if α = 1 and there is goal congruence, the principal may not prefer a better E if this has a

sufficiently adverse effect on agent incentives (condition (ii) in the Proposition fails).

To see this more clearly, using our earlier functional form for g and assuming that γ = 1

and b = 1, we have:

uP = EB + (1− E)(1− E)αB

uP = (1− Eβ)αB + (1− (1− Eβ))EB

for the cases with and without AI authority. Then, the marginal benefit of increasing E is

(1−2(1−E)α)B (AI authority) or (2E−α)B (H authority). Thus, even under AI authority,

P does not always prefer a higher E. Indeed, for E < 1− 1
2α

, P would prefer a lower E and

even for E up to 2− 1
α

may prefer not to employ an AI at all. Under H authority, it is only

when E ≥ α that the principal would employ an AI.

Intuitively, while it is the case that P would employ a perfect AI (with E = 1) and give

it decision authority if that AI were available, when AI is imperfect, P may prefer to reduce

the reliability of the AI as a means of encouraging more H effort. Note that the benefit

to AI over H authority is (1 − α)(1 − 2E)B which is decreasing in E. Thus, the lower is
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the performance of the AI (because of technical feasiblity or choice), the more likely is P to

choose H rather than AI authority.

Another way to consider AI performance is from the perspective of bias. Suppose that

even if the AI learns project payoffs, it does so imperfectly so that with probability µ it rec-

ommends P ’s preferred project but otherwise recommends a project with payoffs of (ᾱB, β̄b)

where ᾱ ≤ α and β̄ ≤ β. In this case, P and H payoffs under AI authority are:

uP = E(µ+ (1− µ)ᾱ)B + (1− E)eαB

uH = E(µβ + (1− µ)β̄)b+ (1− E)eb− g(e)

and under H authority are:

uP = eαB + (1− e)E(µ+ (1− µ)ᾱ)B

uH = eb+ (1− e)E(µβ + (1− µ)β̄)b− g(e)

Note that while H’s effort does not change with µ under AI authority, under H authority

it falls with µ. Intuitively, as more bias (1 − µ) is introduced, the human agent is more

motivated to avoid the AI making decisions as those decisions are more likely to be poor

outcomes for H. A lower µ creates an AI that antagonizes H. Thus, even though a biased

AI may not be preferred, ceteris paribus, by P , it may be employed under H authority so

that the human agent relies less on the AI so long as β−β̄
1−ᾱ (i.e., the degree to which the AI

choice harms H more than P ) is sufficiently high.5

4 A Taxonomy

The potential trade-off that arises in terms of agent incentives when a better AI is employed,

allows for a taxonomy of the types of AI that a principal might choose to employ. This

taxonomy is show in Table 1 under the regimes of AI and H authority and whether P has

a preference for better AI under each.

The different types of AI are as follows:

• Replacement AI: If a high performing AI is available (i.e., E close to 1 and sufficiently

5Of course, decreasing µ has to be considered to be a better option than switching back to AI authority.
Using our earlier functional form, under H authority, êH = (1−E(µβ + (1− µ)β̄)b and, examining, duP

dµ as

µ→ 1, we can see that it will be worthwhile to introduce bias if (β− β̄)b(α−E) > (1− (1−E)b)(1− ᾱ)α. If
this condition holds, then it is optimal to introduce some bias and employ an antagonistic AI if H authority
is otherwise optimal with µ = 1.
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Table 1: AI Taxonomy

AI Authority H Authority
Better AI Replacement AI Augmentation AI
Worse AI Unreliable AI Antagonistic AI

unbiased), then the AI should hold decision rights and AI training focuses on eventually

fully replacing humans.

• Augmentation AI: If current AI performance is relatively weak (E sufficiently low),

human agents sufficiently well aligned with the principal, and human effort only weakly

responsive to changes in AI performance, then human agents retain decision rights, and

marginal improvements in AI performance or decreases in AI bias are profit-enhancing.

• Unreliable AI: When human agents are poorly aligned with the principal and poten-

tial AI performance is relatively strong, the AI optimally holds final decision rights.

However, human effort is still important when the AI does not learn the optimal ac-

tion, so if human effort is highly responsive to incentives, “unreliable” AI (lower E

than technically feasible) is optimal as it trades off worse performance when the AI

thinks it learns the optimal action against more human effort when it does not.

• Antagonistic AI: If current AI performance is relatively weak and human agents suf-

ficiently well-aligned with the principal, but human effort strongly responds to changes

in AI performance, then humans should retain decision rights. However, unlike with

Augmentation AI, it is optimal to bias an AI such that the AI action is particularly

bad for the agent. When the AI’s choice “antagonizes” human agents, they increase

effort to avoid the AI’s recommendation being reported to the principal.

This taxonomy leaves many potential details out, but it maps the broad choices for organiza-

tions in terms of whether to give an AI or a human decision authority and, in turn, whether

to favor a technically superior (i.e., reliable and unbiased) AI or not. This choice will depend

on the nature of human reactions to working with AI as well as what is technically available

to the organization.

On the latter point, we note here that the data that is used to train the AI may be relevant.

For instance, replacement AI may require a high degree of reliability and, therefore, may

require training based on repeated experiments rather than data that may be at hand. The

same is true for augmenting AI although the organization may be more tolerant of data that

is generated by past human decision observations. For unreliable AI, there may be reasons

8



to forgo extensive data training while for antagonistic AI, data that identifies outcomes that

humans dislike may be valuable. In future work, we will explore the issues of training data

– in particular, how these interact with human incentives both past and present – in order

to develop a clearer picture of the types of AI that may be employed at different stages of

AI adoption in organizations.
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