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1 Introduction

We construct equilibria of continuous-time overlapping-generations (OLG) economies in

which different cohorts receive different endowments and experience different standards of

living over the course of their lives. Imperfect risk sharing across cohorts implies volatile

asset prices and high risk premiums despite constant aggregate consumption and dividend

growths. While all asset-pricing implications stem from the heterogeneous consumption and

income shocks experienced by investors, changes in the cross-sectional consumption and

wealth distributions are smooth, exhibit weak correlation with asset-market fluctuations at

high frequencies, and are substantially more persistent than these fluctuations, consistent

with the data.

Second, we develop a methodology to infer the consumption growth of the marginal agent

by utilizing cross-sectional data. It is important to realize that, due to imperfect risk sharing,

the consumption growth of agents who are marginal for asset pricing differs from the aggre-

gate consumption growth per capita; in fact, the OLG feature implies that the identity of

marginal agents changes constantly. The methodology is flexible enough to account in a com-

prehensive manner for a multitude of factors, such as different cohort sizes, age-dependent

life-cycle effects, shifts in the demographic pyramid, and different cohort productivities. We

show that, empirically, marginal agents’ consumption growth exhibits different and more

volatile low frequency movements than the consumption growth per capita, which is the

relevant quantity in representative agent models. These low-frequency movements can ac-

count for the secular variation in the real interest rate and, in conjunction with recursive

preferences, also for the usual stylized asset-pricing facts.

The framework is a continuous-time, OLG economy. Agents arrive continuously, endowed

with a claim to either a wage path (“workers”) or a dividend stream (“entrepreneurs”). All

shocks are exclusively redistributional; they drive the income shares obtained by firms and

workers born at different times, while aggregate labor and dividend income grow at the

same constant rate. Moreover, to differentiate our results from the literature, which has

predominantly focused on models with lack of intra-cohort risk sharing, we assume that
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intra-cohort risk sharing is perfect, and the shares of labor or dividend income accruing to

a given cohort of investors are locally deterministic processes,1 albeit random over the long

run.

In this setup we introduce a) imperfect inter-cohort risk sharing and b) recursive utility

with a preference for early resolution of uncertainty. We utilize this framework to perform

two exercises, one theoretical and one empirical.

Our theoretical exercise parallels the one in Constantinides and Duffie (1996). Specifi-

cally, we show the following “possibility” result: Share processes exist that support a broad

class of given stationary processes for both the market price of risk and the price-dividend

ratio. Our existence results are not abstract, but constructive; we use them to specify

endowment-share processes that lead to closed-form expressions for asset-pricing quantities.

The model is therefore highly tractable, despite the underlying heterogeneity.

One of the important differences between Constantinides and Duffie (1996) and our paper

pertains to the time-series implications for inequality measures, such as the cross-sectional

variance of consumption. Constantinides and Duffie (1996) relies on heterogeneous period-

by-period changes in individual consumption-growth dispersion, which lead to period-by-

period movements in inequality; by contrast, we rely on dispersion and uncertainty in the

life-long, integrated consumption experienced by cohorts born at different times. In our ap-

proach inequality measures exhibit quite small volatility on a period-by-period basis and are

essentially unrelated with the stock market at high frequencies, but they are quite persistent.

The key distinguishing feature of our model relative to a representative-agent economy

is that the aggregate (per capita) consumption growth does not coincide with the con-

sumption growth of the marginal agent. In our OLG economy, marginal-agent consumption

growth over a given interval is the consumption growth of any cohort that entered before

the beginning of the interval, and consequently does not include the portion of aggregate

consumption accruing to newly arriving cohorts. Over short time intervals the discrepancy

between marginal and aggregate consumption growths is small, but, due to its persistence,

its cumulative effect at long horizons can be arbitrarily large. With recursive preferences

1Throughout the paper “locally deterministic” refers to a time-differentiable process. By definition, such
a process has no diffusion component, but a possibly stochastic drift process.
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the different long-run behavior of the two consumption processes has important asset pricing

consequences.

We show how to use cross-sectional data to infer our notion of marginal agent’s consump-

tion growth. Essentially, we observe that the Euler equation implies a time, age, and cohort

decomposition for log cohort consumption. This decomposition can be estimated from cross-

sectional data, and the variation of the time effect corresponds to the consumption growth

of a fixed cohort (i.e., marginal-agent consumption growth) inside our model. Since detailed

cross-sectional data are available only since the mid-eighties, we also develop an indirect

inference approach to combine information contained in estimated cohort and age effects

with market clearing to extend the sample farther back in time.

One noteworthy feature of our methodology for inferring marginal agent consumption

growth is that it requires relatively few assumptions. It accounts for several features of

the data (time-varying population and cohort sizes, age profiles of consumption, etc.) to

arrive at a measure of marginal-agent consumption growth that applies not only to our

model, but to a wide range of OLG models featuring Euler equations. Moreover, similar to

how aggregate consumption growth per capita encapsulates all relevant information for the

stochastic discount factor in a representative agent economy (whether it is an endowment or

production economy), our measure of marginal agent consumption growth encapsulates all

relevant information for asset pricing in an OLG economy, irrespective of how one chooses

to model production, the government, redistribution policies, demographics, aging effects,

etc.2 For this reason, our tractable OLG model, which features a rich enough specification

of endowment dynamics to reproduce the dynamics of marginal agent consumption growth

in the data, is sufficient for asset-pricing conclusions.

We examine the marginal agent consumption growth that results from our empirical

exercise and compare it to the aggregate consumption growth per capita. We show that our

measure of marginal agent consumption growth exhibits more persistence and predictability

than aggregate consumption growth, and a stronger co-movement with the real expected

interest rate over medium-run cycles. The reason is that economic forces that are typically

2Specifically, any two OLG economies calibrated to match the time series properties of our measure of
marginal agent consumption growth have the same asset-pricing implications.
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irrelevant for representative-agent asset pricing (e.g., the fact that the cohort of people born

in 1940–1950 “did better” than the cohort born in the eighties) become priced sources of

risk in our model.

To illustrate the quantitative implications of the model, we calibrate it to reproduce our

inferred measure of marginal agent consumption growth. We show that the model produces

realistic risk premiums, return predictability, interest rate levels, and volatility. We also

show that the cross-sectional consumption variance has negligible volatility but follows a

near-unit-root process, consistent with the data.

1.1 Relation to the literature

As mentioned above, the nature of our theoretical exercise is similar to Constantinides and

Duffie (1996). We show a similar possibility result, but in a model with imperfect inter-,

rather than intra-, cohort risk sharing, which breaks the tight link between cross-sectional

variance fluctuations and asset-price movements. Some other differences between Constan-

tinides and Duffie (1996) and our approach are: a) we don’t have to take a stance on whether

higher cross-sectional moments of the consumption distribution exist;3 and b) our model is

explicitly set in continuous time and can be time-integrated to any frequency, whereas the

conclusions of Constantinides and Duffie (1996) are sensitive to the choice of time-interval.4

For our theoretical results, we employ a stochastic, endowment version of the Blanchard

(1985) model. An advantage of this framework is that it allows us to isolate the notion

of imperfect risk sharing across cohorts while sidestepping the technical complications of

more conventional OLG models.5 While we use a Blanchard (1985) model for our theoret-

ical results, our empirical measure of marginal consumption growth and the results of our

calibration do not depend on the simplifying assumptions of that framework, as we explain

3Toda and Walsh (2015) argues that higher moments of the cross sectional distribution of consumption
may fail to exist, leading to erroneous conclusions in the Constantinides and Duffie (1996) model.

4Grossman and Shiller (1982) proves that idiosyncratic shocks don’t matter for the market price of risk
as the decision interval approaches zero in a Brownian-risk setting.

5Due to their tractability, in recent years perpetual-youth models have gained popularity in asset pricing.
See, e.g., Campbell and Nosbusch (2007), Gârleanu and Panageas (2015), Ehling et al. (2018), Maurer (2017),
Gomez (2017), Schneider (2017), or Farmer (2018) among others.
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in Section 4.

Our paper also relates to the literature that studies the asset-pricing implications of

OLG models,6 to which we make two contributions. First, our paper highlights how to

appropriately measure the consumption growth of a marginal agent — not just in this model

but also in a broad family of OLG frameworks. Second, for many of the papers in this

literature, the risk-price effects due to the lack of intergenerational risk sharing would vanish

if trading was allowed at a high rate, as all demography-related shocks are locally predictable.

Just as in Grossman and Shiller (1982), only the risk-free rate would be affected. Our

framework helps both formalize this criticism (Section 3.1) and address it by employing

recursive preferences (Section 3.3).

There are several papers in this literature that rely on perpetual-youth models with

stochastic fluctuations in the labor income or profit share of each cohort, and to which ours

relates more closely. Gârleanu et al. (2012) employs an i.i.d. framework, and thus cannot

generate time variation in asset-pricing moments. Kogan et al. (2019) builds models of firm

investment and heterogeneous rent allocation from technological progress. While present in

these models, the lack of inter-generational risk sharing is not their centerpiece. In contrast,

we consider a simpler endowment economy that allows a detailed theoretical analysis of

the implications of the lack of inter-cohort risk sharing, and a methodology to evaluate the

empirical connections between the lack of inter-cohort risk sharing and asset pricing.

Our paper also relates to the literature on long run risks, which was initiated by Bansal

and Yaron (2004). The point we make in this paper is complementary to Bansal and Yaron

(2004). We show (both theoretically and empirically) that inter-cohort risk sharing imper-

fections are an additional source of long run risk, largely independent from the long-run risks

in aggregate per-capita consumption growth.

Further, by modeling dividend and labor income processes explicitly, we avoid the need

for an intertemporal elasticity of substitution above one and we can model explicitly the

6Indicative examples of such papers include Constantinides et al. (2002), Gomes and Michaelides (2005),
Storesletten et al. (2007), and Piazzesi and Schneider (2009). The literature on demographic shocks to asset
prices, which we don’t attempt to summarize here, is also (remotely) related to the present paper. Two
indicative examples are Abel (2003), Geanakoplos et al. (2004).
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source of non-cointegration between the dividends of existing stocks and marginal agent

consumption in general equilibrium.

There is a voluminous empirical literature that employs time, age and cohort decompo-

sitions in repeated cross sections. We do not attempt to summarize this literature here. We

simply mention that a large number of empirical papers (especially in labor economics) also

find a significant role for cohort effects on people’s incomes, consumption, health, etc.7 Our

contribution is to show how to utilize the information contained in a time, age, and cohort

decomposition to reconstruct the consumption evolution of the “marginal agent.”

The study of inequality is outside the scope of this paper, except for its covariance with

asset prices. While the model could be easily extended to account for income inequality at

birth, it cannot account for the increase of inequality over the life cycle, which is due to lack

of intra-cohort risk sharing coupled with idiosyncratic income shocks. There is a debate in

the literatutre on the asset-pricing implications of this type of inequality.8 For reasons of

conceptual differentiation, we abstract from it, without dismissing its importance or claiming

that the two approaches to linking heterogeneity and asset prices are mutually exclusive.

The paper is organized as follows. Section 2 presents the model. Section 3 contains the

possibility results. Section 4 develops the empirical implications of the model and uses them

to measure the consumption and dividend share variations in the data. Section 5 calibrates

the model to match the variation in consumption shares and derives the model’s asset pricing

applications. Section 6 concludes. All proofs are in Appendix A, while Appendix B provides

several of the details of our empirical approach.

7This literature is too large to summarize here. An indicative list includes Oyer (2008), Oyer (2006),
Kahn (2010), von Wachter and Schwandt (2018), and Oreopoulos et al. (2012) amongst many others.

8Indicatively, Krueger and Lustig (2010) points out that conventional modeling approaches to idiosyn-
cratic endowment risk result in cross-sectional consumption dynamics that don’t matter for risk pricing.
As mentioned earlier, Grossman and Shiller (1982) also reaches the conclusion that incomplete risk sharing
amongst existing agents does not matter for risk pricing in a continuous time, brownian setting. Schmidt
(2015) and Constantinides and Ghosh (2017) enrich Constantinides and Duffie (1996) with recursive prefer-
ences and skewness to improve some of its empirical predictions, but don’t consider lack of inter-cohort risk
sharing as we do.
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2 Model

We present the baseline model in two steps. In a first step we perform the analysis assuming

that agents have expected utility, logarithmic preferences. In a second step we extend the

analysis to recursive preferences.

2.1 Consumers

Time is continuous. Each agent faces a constant hazard rate of death λ > 0 throughout her

life, so that a fraction λ of the population perishes at each instant. A new cohort of mass

λ is born per unit of time, so that the total population remains at λ
∫ t
−∞ e

−λ(t−s)ds = 1.

Later (Proposition 3), we extend the model to accommodate a time-varying birth rate and

a random population size.

Consumers maximize the utility they derive from their stream of consumption. In this

section we illustrate our approach in the special case of logarithmic utility, i.e., consumers

maximize

Es

[∫ ∞
s

e−ρ(t−s) log (ct,s) dt

]
, (1)

where s is the time of their birth and t is calendar time. In Section 3.3, where we derive

the main result, the preferences take the form of recursive utility with unitary intertemporal

elasticity of substitution (IES). Consumers have no bequest (or gift) motives for simplicity.

2.2 Endowments

Following a long tradition in asset pricing, we consider an endowment economy. The total

endowment of the economy is denoted by Yt and evolves exogenously according to

Ẏt
Yt
≡ g, (2)

where g > 0. We intentionally model the aggregate endowment as a deterministic, constant-

growth process in order to isolate the effect of redistribution shocks. Proposition 3 extends
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the model to allow for time-varying aggregate consumption growth.

This aggregate endowment accrues to the various agents populating the economy as

follows. At birth, agents are of two types, to which we refer as “entrepreneurs” and “workers.”

They only differ with respect to their endowment.

Entrepreneurs join the economy at a rate of λε per unit of time and constitute a fraction

ε of the population. The entrepreneurs born at time s introduce a new cohort of firms into

the market. The firms introduced at time s pay the following aggregate dividends at times

t ≥ s :

Dt,s = αYtη
d
se
−

∫ t
s η

d
udu. (3)

The term α ∈ (0, 1) in equation (3) is a constant, while ηdt ≥ 0 is assumed to follow a

non-negative diffusion

dηdt = µdtdt+ σdt dBt, (4)

for some processes µdt and σdt that we specify later. In equation (3) we can interpret α as

the fraction of output that is paid out as dividends, and ηdse
−

∫ t
s η

d
udu ≥ 0 as the fraction of

dividends accruing to firms of vintage s, since
∫ t
−∞ η

d
se
−

∫ t
s η

d
ududs = 1 for any path of ηdt .

9

Accordingly, aggregating across firms of all vintages gives

DA
t ≡

∫ t

−∞
Dt,sds = αYt

∫ t

−∞
ηdse
−

∫ t
s η

d
ududs = αYt. (5)

Figure 2.2 illustrates the paths of dividends for firms of different vintages in the simple

case in which ηdt = ηd is a constant. The figure shows that firms belonging to any given

cohort s account for a smaller and smaller fraction of aggregate dividends as time t goes by.

This is an empirically motivated feature of the model.

We next turn to workers. The specification of workers’ endowments mirrors the one for

9Specifically, this statement holds true for paths of ηdt satisfying
∫ t
−∞ ηdsds =∞. For the type of stochastic

processes that we consider for ηdt this property holds almost surely.
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Figure 1: Illustration of Dt,s for a constant ηdt .

dividends and is a simple extension of the specification in Blanchard (1985). Specifically, per

unit of time a mass (1− ε)λ of workers is born. Accordingly, the time-t density of surviving

workers who were born at time s is given by lt,s = λ (1− ε) e−λ(t−s). The time-t endowment

wt,s of a worker who was born at time s ≤ t is given by

wt,s ≡
(1− α)Ytη

l
se
−

∫ t
s η

l
udu

lt,s
, (6)

where ηlt ≥ 0 is assumed to follow a non-negative diffusion

dηlt = µltdt+ σltdBt,

for processes µlt and σlt that we specify later. As with dividend income, the term ηlse
−

∫ t
s η

l
udu

can be interpreted as the share of aggregate earnings that accrues to the cohort of workers
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born at time s. Repeating the observations we made earlier, aggregate wage earnings are

∫ t

−∞
wt,slt,sds = (1− α)Yt.

In a nutshell, the model is a perpetual-youth endowment model with the additional

feature that the shares of dividend and labor income accruing to new cohorts are stochastic.

2.3 Markets

Markets are dynamically complete. Investors can trade in instantaneously maturing riskless

bonds in zero net supply, which pay an interest rate rt. Consumers can also trade claims

on all existing firms (normalized to unit supply). Following Blanchard (1985), investors can

access a market for annuities through competitive insurance companies, allowing them to

receive an income stream of λWt,s per unit of time, where Wt,s is the consumer’s financial

wealth. In exchange, the insurance company collects the agent’s financial wealth when she

dies. Entering such a contract is optimal for all agents, given the absence of bequest motives.

A worker’s dynamic budget constraint is given by

dWt,s = (rt + λ)Wt,sdt+ (wt,s − ct,s)dt+ θt,s
(
dPt +DA

t dt− rtPtdt
)
, (7)

where Pt is the value of the market portfolio at time t and θt,s is the number of shares of

the market portfolio. Specification (7) assumes that the consumer trades only in shares of

the market portfolio, rather than individual firms. This is without loss of generality in our

setup, since all existing firms have identical dividend growth rates, and therefore the same

price-to-dividend ratios and consequently the same return to avoid arbitrage.

For a worker, Wt,t = 0. An entrepreneur’s dynamic budget constraint is identical, except

that the term wt,s is replaced by zero and the initial wealth Wt,t is given by the value of the

firm that the entrepreneur creates.

We note that, while agents can replicate any claim once they are alive (markets are

“dynamically complete” in that sense), they cannot trade at times prior to their birth. This
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leads to a lack of inter-cohort risk sharing.

2.4 Equilibrium

The equilibrium definition is standard. We let cet,s (resp. cwt,s) denote the time-t consumption

of an entrepreneur (resp. worker) born at time s and θet,s (θwt,s) her holding of stock. With

ct,s = εcet,s + (1− ε) cwt,s the per-capita consumption of cohort s and, similarly, θt,s = εθet,s +

(1− ε) θwt,s, we look for consumption processes, asset allocations θt,s, asset prices Pt,s, and

an interest rate rt such that a) consumers maximize objective (1) subject to constraint (7),

b) the goods market clears, i.e., λ
∫ t
−∞ e

−λ(t−s)ct,s = Yt, and c) assets markets clear, i.e.,∫ t
−∞ λe

−λ(t−s)θt,sds = 1 and
∫ t
−∞ λe

−λ(t−s)(Wt,s − θt,sPt)ds = 0.

3 Solution and Analysis

This section contains our theoretical results, which are in the spirit of the exercise in Con-

stantinides and Duffie (1996). In particular, we establish the existence of share processes

ηlt and ηdt that can support given processes for the asset pricing quantities as equilibrium

outcomes.

The section is divided into four subsections. In Section 3.1 we derive, under the logarithmic-

preference assumption, a key relation linking the processes ηdt and ηlt to the dynamics of the

price-dividend ratio, which we denote by qt. We use this relation in Section 3.2 to establish

the existence of processes ηdt and ηlt that can support any given process for qt as an equi-

librium outcome. In Section 3.3 we enrich the setup to allow for recursive preferences and

show how to obtain any (joint) dynamics for the price-dividend ratio and the market price

of risk (Sharpe ratio) in equilibrium.

Besides providing a comprehensive mapping from assumptions on ηlt and ηdt to the equi-

librium processes for the price-dividend ratio and the market price of risk, the propositions

of this section have a practical implication: They can help determine the functional forms

that one needs to assume for the diffusions ηdt and ηlt in order to ensure a given (closed-form)

expression for the price-dividend ratio and the Sharpe ratio. We illustrate this statement
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with two examples.

Section 3.4 contains a discussion of the implications of the model for the joint dynamics of

inequality and asset prices and highlights the differences of our framework from the literature.

It also contains extensions to the baseline model to allow for random birth rates and time-

varying per-capita consumption growth.

3.1 Logarithmic utility

We start by conjecturing that in this economy investors’ consumption processes are locally

deterministic. Given that agents have expected utility preferences, there are no risk premi-

ums and the equilibrium stochastic discount factor mt follows the dynamics

dmt

mt

= −rtdt, (8)

for an interest rate process that will be determined in equilibrium. We employ the following

definition.

Definition 1 Let qdt,s denote the ratio of the present value of the dividend stream Du,s to the

current dividend:

qdt,s ≡
Et
∫∞
t

mu

mt
Du,sdu

Dt,s

. (9)

Similarly, we define the respective valuation ratio for earnings, qlt,s:

qlt,s ≡
Et
∫∞
t
e−λ(u−t)mu

mt
wu,sdu

wt,s
. (10)

Remark 1 Both qdt,s and qlt,s are independent of s, since Du,s

Dt,s
and wu,slu,s

wt,slt,s
are not functions

of s. Accordingly, we shall write qdt and qlt instead of qdt,s, respectively qlt,s.

Due to unitary IES, the consumption to (total) wealth ratio is constant and equal to

β ≡ ρ+ λ.
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The next lemma uses this fact to derive a simple affine relationship between qdt and qlt.

Lemma 1 In any (bubble-free) equilibrium,

αqdt + (1− α) qlt =
1

β
. (11)

Equation (11) is intuitive. It states that the sum of the present values of all divi-

dend income accruing to existing firms, qdtαYt, and all earnings accruing to existing agents,

qlt (1− α)Yt, equals the present value of the aggregate consumption of existing agents (Ct

β
).

Since Ct = Yt in equilibrium, equation (11) follows.

By Lemma 1, qlt can be expressed as a simple (affine) function of qdt . Therefore, from

now on we can concentrate our efforts on determining qdt , the price-dividend ratio, and we’ll

simplify notation by writing qt instead of qdt .

In the remainder of this section we determine the equilibrium interest rate rt and the

drift of the price-dividend ratio qt as functions of the input variables ηdt and ηlt. In the next

section, we use these results to construct a mapping from the dynamics of qt to those of ηdt

and ηlt.

Applying Ito’s Lemma to (9) yields the drift of the diffusion process qt as10

µq,t ≡
(
rt − g + ηdt

)
qt − 1. (12)

Equation (12) is an indifference relation between investing in stocks and bonds. After some

re-arranging, it states that the expected percentage capital gain on stocks, µq,t
qt

, plus the

dividend yield, 1
qt

, minus the depreciation (or appreciation) rate ηdt − g, should equal the

interest rate rt.

Equation (12) expresses the drift of the price-dividend ratio, µq,t, in terms of the equi-

librium interest rate rt. To determine this equilibrium interest rate, we proceed in three

steps. First, the Euler equation for agents with log preferences implies that the consumption

10To see this, note that (9) implies that mtq
d
t,sDt,s +

∫ t
−∞muDu,sdu must be a martingale, and hence the

drift of this expression must be zero.
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dynamics of any agent are given by11

ċt,s
ct,s

= − (ρ− rt) , (13)

which also implies that ċt,s
ct,s

is independent of s.

Second, as we show in the appendix, the market clearing condition for aggregate con-

sumption implies that the consumption growth of an existing agent equals

ċt,s
ct,s

= g + λ− λct,t
Yt
, (14)

which is intuitive: the growth in consumption to an existing agent consists of the growth in

aggregate consumption (g), plus the consumption share that perishing agents do not consume

(λ), minus the consumption shares accruing to newly born agents (λct,t/Yt).

Finally, the intertemporal budget constraint at the time of a consumer’s birth leads to

the following result.

Lemma 2 Let

ϕt ≡ ηdt − ηlt, (15)

νt ≡ (1− αβqt)ηlt + αβqtη
d
t = ηlt + αβqtϕt. (16)

The arriving agents’ consumption is given by

λ
ct,t
Yt

= νt. (17)

Equation (17) states that the per-capita consumption of an arriving cohort of agents is

given by νt, which is a weighted average of ηlt and ηdt . To derive equation (17), we use the fact

that an arriving cohort’s initial consumption is the product of the consumption-to-wealth

ratio (β) with the sum of the value of the new firms, αηdt qtYt, and the cohort’s present value

11For a derivation of the Euler equation in our perpetual youth model we refer to Gârleanu and Panageas
(2015).
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of labor income at birth, (1− α) ηltq
l
tYt:

λct,t = β
(
αηdt qtYt + (1− α) ηltq

l
tYt
)
.

Dividing both sides of the above equation by Yt and using Lemma 1 and the definition of νt

leads to (17).

Combining equations (14), (16), and (17) shows that the consumption drift of any given

marginal agent is time varying, even though aggregate consumption growth is constant. The

reason is that the existing cohorts, which are marginal in markets, and the arriving cohorts,

which are endowed with a random fraction of the endowment at birth, cannot share that

endowment risk.

Integrating equation (14) from s to t and using equation (17) implies that the time-t

consumption share of the cohort of agents born at time s is given by

λe−λ(t−s)ct,s
Yt

= νse
−

∫ t
s νudu, (18)

an expression reminiscent of the specification we used for dividend and earnings shares in

equations (3) and (6) respectively. Equation (18) shows that different cohorts of agents

experience different integrated consumption growth rates over their lifetimes, a fact that we

use in subsection 3.3.

Since any given agent’s consumption drift is time-varying, so is the interest rate. Indeed,

combining equations (13), (14), and (17) leads to the following result.

Lemma 3 The equilibrium interest rate is given by

rt = β + g − ηlt − αβϕtqt. (19)

Having solved for the equilibrium interest rate, we can now substitute (19) into (12) to

obtain the following important result.
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Lemma 4 The drift of qt is given by

µq,t = (β + ϕt) qt − βαϕtq2
t − 1. (20)

Equation (20) is central for our purposes, since it encapsulates all the equilibrium re-

quirements that our model places on the drift of the price-dividend ratio.

3.2 Supporting a process for qt as an equilibrium outcome

In this section we ask whether, taking two functions f and σ as given, one can specify a

Markovian diffusion for ϕt = ηdt − ηlt such that the equilibrium process for qt is given by

dqt = f (qt) dt+ σ (qt) dBt. (21)

We leave some technical restrictions on f and σ to ensure that qt is stationary and takes

values in some bounded interval [qmin, qmax] for the appendix, and present here the main

argument, followed by an illustrative example and a general proposition.

Any process ϕt that supports (21) as an equilibrium price-dividend ratio must be such

that µq,t = f (qt). Using equation (20) allows us to explicitly solve for the process ϕt as a

function of qt:

ϕt = ϕ (qt) =
1− βqt + f (qt)

qt (1− βαqt)
. (22)

We assume that ϕ thus defined is a strictly decreasing function of qt, so that its inverse

ϕ−1 (ϕt) exists.12 Combining equations (21) and (22), the dynamics of the process ϕt are

12We note that simple differentiation of (22) shows that ϕ decreases for q ≤ 1
2

1
αβ as long as f is decreasing.

Hence, choosing the process qt to have support in [qmin, qmax] with qmax < 1
2

1
αβ , or choosing a function f

that has a sufficiently negative first derivative, is sufficient to ensure that ϕ is strictly decreasing.
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easily obtained from Ito’s Lemma as

dϕt = ϕ′
(
ϕ−1 (ϕt)

)(
f
(
ϕ−1 (ϕt)

)
+

1

2
σ2
(
ϕ−1 (ϕt)

)ϕ′′ (ϕ−1 (ϕt))

ϕ′ (ϕ−1 (ϕt))

)
︸ ︷︷ ︸

≡µϕ(ϕt)

dt

+ ϕ′
(
ϕ−1 (ϕt)

)
σ
(
ϕ−1 (ϕt)

)︸ ︷︷ ︸
≡σϕ(ϕt)

dBt. (23)

Equation (23) provides the answer to the question that we posed at the outset. Specifi-

cally, if we started out with the primitive assumption that ϕt follows the Markov diffusion

dϕt = µϕ(ϕt)dt+ σϕ(ϕt)dBt, (24)

with µϕ(ϕt) and σϕ(ϕt) defined in equation (23), then — by construction — the equilibrium

dynamics of the price-dividend ratio are given by (21).

Before stating a formal general result, we illustrate the above ideas with a concrete

example.

Example 1 Suppose that we fix a process xt obeying the following dynamics

dxt = (−v1xt + v2 (1− xt)) dt− σx
√
xt (1− xt)dBt (25)

where a1, a2, v1, v2, and σx are positive constants. It is established in the literature (see,

e.g., Karlin and Taylor (1981), p. 221) that xt has a stationary (Beta) distribution with

support in [0, 1] as long as v1 + v2 >
σ2
x

2
.

Next suppose that we wish the equilibrium price-dividend ratio to be given by qt = a1+a2xt.

Using (22), the (unique) dynamics of ϕt that support qt = a1+a2xt as an equilibrium outcome

are given as an explicit function of the Markov diffusion xt:

ϕt =
1− β(a1 + a2xt) + a2v2 − a2 (v1 + v2)xt

(a1 + a2xt) (1− βα(a1 + a2xt))
. (26)

Assuming that the right hand side of the above equation is declining in xt (which is guaranteed
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if a1 + a2 <
1

2αβ
or if v1 + v2 is sufficiently large), then ϕt can be expressed as a Markovian

diffusion, since it is a monotone function of the Markov process xt.
13

The above example illustrates a practical benefit of our analysis, namely how to guide

the choice of a functional form specification for the dynamics of ϕt that leads to a closed

form solution for the dynamics of qt and avoids the need for numerical techniques or approx-

imations. For instance, one could postulate that ϕt follows the dynamics of equation (26),

estimate the parameters a1, a2, v1, v2, and σx to match the moments of ϕt = ηdt − ηlt in the

data, and then examine whether the resulting stochastic process for the price-dividend ratio

qt = a1 + a2xt is empirically plausible.

The following proposition provides the general result.

Proposition 1 Suppose that technical Assumption 1 in the appendix is satisfied, and that

the function ϕ (·) in equation (22) is decreasing. Then the equilibrium stochastic process for

qt is given by (21) if, and only if, ϕt follows the (Markovian) dynamics (23). Moreover, qt

is stationary and takes values in an interval [qmin, qmax].

Proposition 1 states that one can support a wide range of diffusions for qt as an equilibrium

outcome, even though aggregate consumption and dividends are both deterministic. A

technical assumption is offered in the appendix to ensure a stationary distribution for qt.

We conclude with two remarks. First, the process ϕt that supports a given equilibrium

stochastic process for qt is unique. Second, the process qt only determines ϕt = ηdt − ηlt.

The individual processes ηdt and ηlt can be chosen freely as long as their difference obeys

the dynamics (23) and the processes are non-negative. (For instance, one choice is to set

ηlt = ηl = ϕ (qmax) and ηdt = ηl + ϕt, which ensures that both processes are non-negative.)

13The price-dividend ratio (i.e., the inverse function qt = ϕ−1(ϕt)) can be computed explicitly as

ϕ−1 (ϕt) =
1

2βα

ϕt + β + v1 + v2
ϕt

−

√(
ϕt + β + v1 + v2

ϕt

)2

− 4βα

ϕt
(1 + a2v2 + α1 (v1 + v2))

 .

Using this expression for ϕ−1 (ϕt) inside (23) allows one to derive a stochastic differential equation for ϕt.
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3.3 Recursive preferences and risk premiums

With expected-utility preferences the model faces an important limitation: Any agent’s

consumption is locally deterministic and so is their marginal utility. Therefore the market

price of risk in this economy is zero.

To introduce a non-zero market price of risk, in this section we allow for recursive pref-

erences and show how to support any given dynamics for the price-dividend ratio and the

market price of risk jointly. The construction of the appropriate processes ηdt and ηlt is

conceptually similar to the construction in the previous section. Hence, in order to avoid

repetition, we simply state the main results and refer the reader to the appendix for the

derivations.

Specifically, we continue to assume that investors have unit intertemporal elasticity of

substitution, but allow for a risk aversion higher than one. In mathematical terms, the

consumer’s instantaneous utility flow is given by the aggregator

f (ct,s,Vt,s) = βγVt,s
(
log (ct,s)− γ−1 log (γVt,s)

)
, (27)

in that

Vt,s = Et

[∫ ∞
t

f (cu,s, Vu,s) du

]
. (28)

Here, Vt,s is a consumer’s value function and γ < 0 is a parameter that controls the risk

aversion of the investor. Utilities of this form are introduced and discussed extensively in

Duffie and Epstein (1992). They correspond to the continuous-time limit of Epstein-Zin-Weil

utilities with unit elasticity of substitution.

Since preferences are homothetic, the hazard rate of death is constant, and the invest-

ment opportunities are the same for all existing agents, it follows that ċt,s
ct,s

continues to be

independent of the cohort s to which the consumer belongs. Accordingly, equation (14)

continues to hold and so do Lemmas 1 and 2, which follow from agents’ budget constraints.

Since ċt,s
ct,s

is independent of s, we shall henceforth write ċt
ct

.
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The only object that changes when agents have recursive preferences is the stochastic

discount factor, described by the following result.

Lemma 5 Define the process Zt as the solution to the backward stochastic differential equa-

tion

Zt ≡ Et

∫ ∞
t

e−β(u−t)
(
γ

(
ċu
cu

)
+

1

2
σ2
Z,u

)
du, (29)

where σZ,t is the volatility of Zt. Then the stochastic discount factor evolves according to

dmt

mt

= −rtdt− κtdBt, (30)

where rt, the interest rate in this economy, continues to be given by equation (19), while κt

is the market price of risk in this economy and is given by κt = −σZ,t.

Recursive preferences imply a risk premium. Intuitively, a risk premium arises because

investors worry not only about the immediate impact of the fluctuations associated with the

share processes, but also about the “long run” impact of these risks on their consumption. As

we discussed in the previous subsection, while the immediate impact is locally predictable,

the long run impact is uncertain. This long run impact is captured by the definition of the

process Zt, and the magnitude of the market price of risk (or Sharpe ratio) κt reflects the

volatility of Zt.

We next ask a question similar to the one we asked in the previous subsection. Is it

possible to choose diffusion processes for ηlt and ηdt to support given stock-market dynamics

(qt) and given dynamics of the Sharpe ratio (κt)?

To provide an answer to this question, we proceed as in the previous section. Specifically,

we fix functions fZ , σZ , fq, and σq and intervals [Zmin, Zmax] and [qmin, qmax] and try to

determine a (vector) Markov process (ηlt, η
d
t ) such that the equilibrium process Zt — to target

a particular Sharpe ratio κt, all we need is that the process Zt have volatility σZ (Zt) = −κt
— has support in [Zmin, Zmax] and follows the dynamics

dZt = fZ (Zt) + σZ (Zt) dBt, (31)

20



while the process for qt has support in [qmin, qmax] and follows the dynamics

dqt = fq (qt) + σq (qt) dBt. (32)

As we show in the appendix, the equilibrium dynamics of Zt and qt obey equations (31)

and (32) when and only when the functions fZ and fq satisfy the relations

fZ (Zt) = βZt + γνt −
1

2
σ2
Z(Zt)− γ(λ+ g) (33)

fq (qt) = (β + ϕt) qt − βαϕtq2
t − 1− σZ(Zt)σq(qt). (34)

Comparing the right-hand sides of (34) and (20) shows that the two expressions are identical,

except for the last term in equation (34), which captures the presence of an equity premium.

Solving for νt from equation (33) and for ϕt from equation (34) leads to

ν(Zt) =
1

γ

(
fZ (Zt) +

1

2
σ2
Z(Zt)− βZt

)
+ λ+ g (35)

ϕ (qt, Zt) =
1− βqt + fq (qt) + σZ (Zt)σq (qt)

qt (1− βαqt)
. (36)

Once again, we wish to be able to invert this mapping, which we can do under the

conditions given in the following lemma.

Lemma 6 Suppose that dν
dZ

> 0 for all Z ∈
[
Zmin, Zmax

]
and also ∂ϕ

∂q
< 0 for any Z ∈[

Zmin, Zmax
]

and q ∈
[
qmin, qmax

]
. Then the mapping (35)–(36) is invertible.

Given invertibility, we obtain, from Ito’s Lemma, two (jointly Markov) diffusion processes

for νt and ϕt that support (33) and (34) as equilibrium outcomes. The values of ηdt and ηlt

follow easily as solutions to the linear two-by-two system constituted by ϕt = ηdt − ηlt and
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equation (16):14

ηdt = νt + (1− αβqt)ϕt (37)

ηlt = νt − αβqtϕt. (38)

We record the formal result and provide an example immediately thereafter.

Proposition 2 Consider intervals [qmin, qmax] ⊂
(

0, 1
αβ

)
and

[
Zmin, Zmax

]
and continuous

functions fZ, fq, σZ, and σq such that the assumptions of Lemma 6 hold. Then there exists

a unique pair of Markov diffusions (νt, ϕt) such that the equilibrium stochastic process for

Zt and qt are given by the diffusions (31) with support
[
Zmin, Zmax

]
and (32) with support

[qmin, qmax].

The main goal of Proposition 2 is to provide an explicit mapping between assumptions

on the share processes ηdt and ηlt and the resulting diffusion processes for the Sharpe ratio

and the price-to-dividend ratio. The restrictions placed on these latter two processes by the

assumptions of Lemma 6 are rather mild and in practical applications amount to simple

parametric restrictions, as the next example illustrates.

Example 2 Suppose that xt follows the process (25) and that we wish to obtain Zt = b1+b2xt

and qt = a1 + a2xt as equilibrium outcomes with b1 = γ
β
(λ + g) and some constants a1 > 0,

a2 > 0, and b2 < 0.

In that case equation (35) implies that νt must be given by

νt =− b2

γ

(
(v1 + v2)xt + βxt −

b2σ
2
x

2
xt(1− xt)− v2

)
. (39)

We require

v1 + v2 + β +
b2σ

2
x

2
> 0

14We note that adding a constant to both ηd and ηl shifts Zt by a constant, but leaves its dynamics (as
well as the process qt) the same. As a consequence, one can always construct positive processes ηd and
ηl by starting from an arbitrary pair (η̂d, η̂l) and letting ηi = η̂i + k, i ∈ {d, l}, for k large enough —
in particular, k ≥ −minZ∈[Zmin,Zmax],q∈[qmin,qmax] η̂

i(q, Z), where the function η̂i(q, Z) defined by plugging
(35)–(36) inside (37)–(38) is continuous.
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so that the right hand side of (39) increases in xt for all xt ∈ [0, 1] and νt can be expressed

as a (Markovian) stochastic differential equation.15 With this specification, the Sharpe ratio

is given by |b2|
√
xt(1− xt).

The dynamics of ϕt that support qt = a1 + a2xt follow from equation (36), namely

ϕt =
1− β(a1 + a2xt) + a2v2 − a2 (v1 + v2)xt + a2b2σ

2
xxt(1− xt)

(a1 + a2xt) (1− βα(a1 + a2xt))
. (40)

We assume that parameters are such that the right-hand side of (40) is decreasing in xt,

so that ϕt can be expressed as a Markovian diffusionm and the relation between ϕt and qt is

invertible. (A sufficient condition is v1 +v2 + b2σ
2
x+β > 0 and a1 +a2 <

1
2αβ

.) We note here

that a2b2 < 0 means that the Sharpe ratio is negatively related to the price-dividend ratio.

As a final remark, we note that we have assumed throughout that Zt and qt (and by

implication ηdt and ηlt) are driven by the same Brownian motion. It is straightforward to

extend the analysis to allow Zt and qt to be driven by separate Brownian motions with some

correlation coefficient ρ.16

3.4 Discussion and extensions

Proposition 2 is a “possibility” result, similar to the one provided in Constantinides and

Duffie (1996), but predicated on qualitatively different specifications of inequality dynamics

and market incompleteness.17 It shows that the model is able to produce a wide range

15The function Z(νt) can be written explicitly as

Zt = ν−1 (νt) = b1 +

σ2
x

2 b2 − v1 − v2 − β +

√(
v1 + v2 + β − σ2

x

2 b2

)2
+ 2σ2

x

(
b2v2 − γ

β νt

)
σ2
x

.

Using the same steps as the ones we used to arrive at (23), one can derive the stochastic differential equation
for dνt.

16The only modification required in that case is the replacement of the term σZσq in equations (34) and
(36) with ρσZσq. As a result, equation (40) in Example 2 would feature Z on the right-hand side, as well,
so that qt follows as a function of both ϕ and Z, and therefore ϕ and ν. (To ensure market completeness,
one would also need to introduce a zero net supply asset to “span” the second Brownian shock.)

17The market incompleteness in Constantinides and Duffie (1996) doesn’t allow an existing cohort of agents
to share risk, while our incompleteness stems from the fact that unborn generations cannot trade before they
are born.
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Figure 2: An indicative, model-implied path of the price-earnings ratio (left scale) and the cross-
sectional standard deviation of log consumption (right scale).

of dynamics for the price-dividend ratio and the Sharpe ratio despite constant aggregate

consumption and dividend growth.

It is an empirical matter to estimate the share processes and establish whether they are

quantitatively consistent with the observed asset-pricing moments. We address this question

in Section 4. Here we discuss (i) how this model differs from Constantinides and Duffie

(1996) and (ii) how the key insights are robust to various model extensions.

One obvious difference to Constantinides and Duffie (1996) is that we do not require

independent innovations to the stochastic discount factor; instead we can accommodate a

Markovian structure. However, the more important difference between the two models (and

indeed relative to many other models of heterogeneous agents) pertains to the dynamic

behavior of inequality. To see this, it is useful to define the cross-sectional variance of log

consumption as

Vt = λ

∫ t

−∞
e−λ(t−s)

(
log (ct,s)− λ

∫ t

−∞
e−λ(t−u) log (ct,u) du

)2

ds.
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Time-differentiating Vt we obtain the following dynamics

dVt = −λVtdt+ λ

(
log (ct,t)− λ

∫ t

−∞
e−λ(t−u) log (ct,u) du

)2

dt (41)

An immediate implication of the above equation is that Vt is a locally deterministic process,

i.e., it has no diffusion component. Accordingly, when integrated over short periods of time

(say, a quarter or a year), the innovations to this process will have negligible volatility and

exhibit an essentially zero covariance with asset returns. Inspection of the first term on the

right hand side of (41) shows that the process Vt is quite persistent, since it mean-reverts

at the rate λ, the rate of population renewal. By contrast, the mean reversion of the price-

to-dividend ratio may be considerably higher than λ; that is, the price-dividend ratio may

exhibit faster mean reversion than the cross-sectional variance of log consumption. Figure 2

provides an illustration of these properties by plotting an indicative path (of length similar

to that of the post-war sample) of the price-dividend ratio and the cross-sectional variance

of log consumption in the calibrated version of the model that we describe in greater detail

in Section 5.

As can be seen from the figure, the model implies a positive, but weak, association be-

tween inequality and the log price-dividend ratio, with the cross-sectional variance of log

consumption exhibiting a smooth path compared to the log price-dividend ratio. More-

over, the log price-dividend ratio and the cross-sectional variance of log consumption exhibit

different persistence (in the calibrated version of the model the persistence of the log price

dividend ratio is 0.89, while the one for the cross-sectional variance of consumption is approx-

imately 0.97). These patterns are consistent with the data, where consumption inequality

only changes by a few basis points on a yearly basis, but exhibits an autocorrelation very

close to one.

We also note that this weak association between inequality and asset price movements

differentiates this model from other heterogeneous-agent models in which asset price move-

ments are driven by agents having different preferences, beliefs, etc. In these models there

is strong contemporaneous correlation between asset returns and cross-sectional inequality,
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which is absent here.

We now turn to a couple of realistic extensions extensions of the model. Specifically,

suppose that both the population size Nt and the per-capita consumption growth Ct

Nt
are

stochastic and given by

dNt = (−λ+ bt)Ntdt (42)

d

(
Ct
Nt

)
= gt

Ct
Nt

dt, (43)

for some birth process bt and some per-capita consumption growth process gt. We have the

following result.

Proposition 3 Suppose that the share processes ηdt and ηlt support a given set of dynamics

for the price-dividend ratio and the Sharpe ratio in the baseline economy, i.e., with gt = g and

bt = λ. Then, the modified share processes η̂dt = ηdt −g+gt+bt−λ and η̂lt = ηlt−g+gt+bt−λ

support the same dynamics for the price-divided ratio, the interest rate, and the Sharpe ratio

in an economy described by (43).

The intuition behind Proposition 3 is straightforward. The adjustments to the share

processes ensure that the entire additional growth accrues to the new cohort, leaving marginal

agents’ consumption growth, ċt,s
ct,s

, the same as in the baseline model. Accordingly, the model’s

asset pricing implications remain unaffected.

Proposition 3 illustrates a more general point. The asset-pricing implications of the model

depend only on the properties of the marginal-agent consumption growth. Modifications or

extensions of the model (e.g., production, government, redistribution policies, etc.) that

imply the same stochastic process for marginal agent consumption growth as our simple

fluctuating endowment-share economy will have identical asset pricing implications.

With this observation in mind, we next propose a methodology to infer marginal agent

consumption growth in the data, and then calibrate our model so as to reproduce its prop-

erties.
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4 Empirical Implications

We focused so far on the theoretical possibility of supporting given dynamics for the price-

to-dividend ratio and the market price of risk as equilibrium outcomes. In Section 4.1 we

develop a methodology to infer the consumption growth rate of a cohort ċt,s
ct,s

and we compare

its properties to the notion of aggregate consumption growth per capita. In Section 4.2 we

measure ηd. In Section 5 we calibrate the model to reproduce the time-series properties of

these time series.

4.1 Measuring cohort consumption growth

4.1.1. Data and preliminary observations

To motivate the results of this section, we present two figures that illustrate the differ-

ences between the consumption allocation across different cohorts. We use the tables readily

available on the website of the Consumer Expenditure Survey, which report household con-

sumption by 10-year age groups18 (25–34, 35–44, etc.) for the year 1972 and then annually

from 1984 to 2016. We isolate the years 1972, 1984, 1994, 2004, and 2014, so that there is a

ten year gap between cross sections (with the exception of the first cross section where the

gap is 12 years). By creating a ten year gap between cross sections we can follow the same

cohort across time, since the people who were, say, born between 1950 and 1960 and were

in the 25–34 age group in the 1984 cross section will be in the 35–44 age group in the 1994

cross section. For each cohort and year of observation we divide by the average (across all

age groups) household consumption in that year from the same CEX tables.

Figure 3 shows that every cohort exhibits a hump-shaped consumption over the life cycle,

which has a similar shape across cohorts and across time. The right plot highlights that these

hump-shaped consumption profiles are roughly parallel to each other indicating the presence

of a permanent, cohort-specific effect on consumption. For example, compare the cohort

born between 1940–1950 with the one born between 1960–1970. The first cohort consumed

1.1 of average consumption when aged 25–34 as opposed to 0.96 for the second cohort when

18Age refers to the age of the head of the household.
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Figure 3: Average per-household consumption of cohorts born in different decades divided by
average household consumption at the time of observation. The left plot depicts the information
as a function of time, the right plot as a function of age.
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Figure 4: Average per-person income of cohorts born in different decades divided by average
income at the time of observation. The left plot depicts the information as a function of time,
the right plot as a function of age. For cohorts born during the decades 1920–1930, 1930–1940,
and 1940–1950, we cannot provide a direct counterpart fo the last observation in Figure 3, due to
reporting differences in the CPS and CEX tables.

aged 25–34. This gap persists across the life cycle with the first cohort consuming 1.29 of

average consumption when aged 35–44, as opposed to 1.16 for the second cohort (when aged

35–44) and similarly for the next phase of the life cycle. In short, the figure shows that some

cohorts obtain a “head start” and maintain it over their entire life as opposed to other, less

28



lucky cohorts.

To address concerns that these patterns are special to the CEX sample, or the result of

measurement biases, Figure 4 shows that exactly the same patterns characterize the income

data in tables P9 and P10 on the website of the Current Population Survey (CPS). For both

Figures 3 and 4 we used directly the summary tables on the websites of the CEX and the

CPS (rather than the publicly available micro-data). The tables have the advantage that

they contain the raw (non-top-coded) data available to these agencies. We note that the

CPS provides data at the person rather than the household level, and whatever measurement

errors are unlikely to be correlated across these two surveys. In results that we don’t report

here to save space, we have confirmed that the patterns in Figure 4 remain the same when

we examine median rather than mean income, and when we produce the graph by males and

females separately.

The fact that — throughout their lives — some cohorts earn and consume more or

less compared to others when they were at a similar point in their life cycle is a central

feature of our model. Indeed, with s′ < s, equation (18) gives
ct,s′

ct,s
=

νs′
νs
e−

∫ s
s′ (νu−λ)du, which

is independent of t. The same property characterizes income differences as well, which

motivates the functional forms we used for the endowment specifications.

4.1.2. Estimation

Here we propose and implement a methodology to measure the gap between marginal agent-

( ċt,s
ct,s

) and aggregate consumption growth rate per capita.

In performing this exercise, we pay particular attention to the facts that i) in the data

cohorts have different sizes, ii) there are hump-shaped consumption profiles over the life

cycle, and iii) the population mass at any given point in time may be an arbitrary function

of t and s. We take these issues into account when identifying the empirical counterpart of

νt that we use for our calibration.

We start by remarking that, inside the model,19 log-consumption of a given agent can be

19This follows by integrating the Euler equation, which gives As = log cs,s −
∫ s
t0
rudu, Lt =

∫ t
t0
rudu, and

Gt−s = −ρ(t− s).
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decomposed as the sum of a cohort effect, a time effect, and an age effect:

log ct,s ≡ As + Lt +Gt−s. (44)

To allow for salient empirical features, we do not impose the linear age effects implied by

our baseline model, but rather estimate a general function Gt−s.

Differentiating (44) with respect to t, we obtain the consumption growth of the marginal

agent as

d log ct,s = dLt + Ġt−sdt. (45)

There are two components to the fluctuations of d log ct,s: The first component captures

the (stochastic) changes in the time effect, dLt, which are common across all cohorts. The

second component captures the deterministic changes arising from aging effects, Ġt−sdt. For

any asset pricing model that implies an Euler equation at the level of a cohort, only the

first component is of interest: Since all cohorts face the same investment opportunity set, all

fluctuations in the investment opportunity set (i.e., movements in the real interest rate and

the market price of risk) must be reflected in dLt.
20 Besides, the aging effect is deterministic,

so it cannot reflect stochastic fluctuations in the investment opportunity set. (A practical

implication consequence of this observation is that models may differ in their implications

for age effects, but will still have the same asset pricing implications as long as they imply

the same dLt.) Therefore, our objective is to measure Lt, and reproduce its properties in

our calibration.

In principle, Lt, together with As and Gt−s, can be obtained by regressing log ct,s on time,

age, and cohort dummies. Such an approach is, however, limited by the lack of availability

of long time series of cross-sectional consumption data. (Annual CEX cross sections start

20To see this more formally, suppose that we introduce age-effects into our model by introducing an age-
dependent discount factor ρt−s. Then the Euler equation becomes

ċt,s
ct,s

= rt − ρt−s, which can be written in

the regression form (44) with Lt =
∫ t
rudu, As = log cs,s −

∫ s
rudu, Gt−s = −

∫ t
s
ρudu. This implies that

the relation dLt = rtdt is unaffected by the presence of arbitrary age effects in consumption. The same goes
for cohorts of different sizes, etc., which do not affect the validity of the Euler equation for each member of
a cohort.
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in the mid-eighties). Quite remarkably, however, equation (44) allows an indirect inference

approach facilitating the identification of Lt even for times t for which cross-sectional data

are not available.

Specifically, in a first step, the cohort (As) and age (Gt−s) effects in equation (44) can

be estimated from the available cross sections of consumption data. (A limitation of this

regression is that As and Gt−s can only be identified up to an affine term, but, as we explain

shortly, this does not matter for our purposes).

Second, with Λt,s the population of cohort s at time t, aggregating equation (44) yields

Ct =

∫ t

−∞
Λt,se

As+Lt+Gt−sds. (46)

Defining

Ft ≡ log

(∫ t

−∞
Λt,se

As+Gt−sds

)
(47)

and taking logarithms in equation (46) implies

log(Ct) = Lt + Ft, (48)

and therefore

dLt = d log(Ct)− dFt. (49)

Equation (49) presents an indirect way to infer the variation in dLt. Computing Ft does

not require a long time series of cross-sectional consumption data, since the only estimated

quantities that enter the equation are the cohort effects (As) and the age effects (Gt−s) —

thus, not the time effects (Lt). In principle, just two cross sections T − 1 and T suffice

to compute a long path of cohort and age effects, with more cross sections reducing the

estimation error.

A common concern with regression (49), which forms the foundation for our indirect
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inference, is that time, age, and cohort effects can only be identified up to an affine term.

This means that the data cannot distinguish the model of equation (49) from the alternative

model

log ct,s = As + χs︸ ︷︷ ︸
modified cohort effect

+ Lt − χt︸ ︷︷ ︸
modified time effect

+Gt−s + χ (t− s)︸ ︷︷ ︸
modified age effect

,

for some arbitrary constant χ. The implication of this non-identifiability is that dFt (and

hence dLt) can only be identified up to an additive constant.21 However, the variation of

dFt (and hence dLt) around its mean is uniquely identified, and this variation is the relevant

quantity for asset-pricing purposes.

To contrast with the classical, representative-agent based, approach to asset pricing, we

focus on the portion of Lt that is in excess of the per-capita aggregate consumption growth,

d log(Ct/Nt):

dLt − d log(Ct/Nt) = −dFt + d log(Nt). (50)

In the model, the quantity on the right-hand side equals −νt (up to a constant), and it is

therefore the variations in this quantity that our calibration of νt targets.

To implement this approach, we need data on annual aggregate consumption growth

d logCA
t (available from the BEA since 1929), the population Λt,s of people alive at time t

that were born at time s (available from the Census at annual frequency since 1910), and

cross-sectional consumption data to estimate the cohort effects As and the age effects Gt−s

(available from the Consumer Expenditure Survey since 1996 and from the NBER between

1984-2003).22

Since in the data we can only obtain estimates of cohort effects for people born from

21This statement can be proven by using the modified age and cohort effects inside (47) to obtain

dF
(χ)
t ≡ d log

(∫ t

−∞
Λt,se

As+χs+Gt−s+χ(t−s)ds

)
= d log

(
eχt
∫ t

−∞
Λt,se

As+Gt−sds

)
= χdt+ dFt.

22The online data on the CEX start in 1996. The National Bureau of Economic Research (NBER) contains
CEX extracts that cover the period 1984-2003.

32



1890 onwards, we extrapolate linearly cohort effects prior to 1890. In Appendix B we report

results from alternative extrapolation or truncation methods. We show that, as long as we

focus attention on post world-war-II data (and especially post 1970 data), all methods give

the same results, since the population weight of pre-1890 cohorts becomes relatively small.

That appendix also contains a detailed exposition of many further choices that we need in

order to obtain a measurement of Ft, along with a discussion of potential issues related to

measurement error, discrepancies between NIPA and CEX data, etc.. We also perform a

validation exercise, whereby we compare the results of our indirect inference approach to

estimating Lt with a direct estimation of Lt since the seventies.

We conclude this section with a comment. Throughout our empirical exercise we chose

to focus on consumption data rather than income data, since it is consumption (rather than

income) that enters investors’ Euler equation. An alternative approach to calibration would

involve measuring ηl utilizing a time, age, and cohort decomposition for income. Inspection

of Figures 3 and 4 shows that the cohort and age effects for income and consumption data are

quite similar. This implies that the age and cohort-effect estimates that enter our measure

of Ft are unlikely to be driven by measurement errors that are specific to consumption data.

To focus on results, we relegate all measurement-related details to the appendix and

continue with a presentation of the results.

4.1.3. Comparing aggregate and marginal-agent consumption growth

Figure 5 plots the estimated (age-independent component of the) consumption growth of

marginal agents, ∆Lt = ∆ logCt − ∆ logFt, where ∆ is the first difference operator at

annual frequency. To ensure that our results are not driven by extrapolations of pre-1890

cohorts etc., we focus on the post-1950 sample. For comparison purposes, the figure also

plots per capita consumption growth ∆ logCt − ∆ logNt, where Nt is the US population

at time t. It is useful to recall that the the average level of marginal consumption growth

cannot be identified, and therefore only the variations (rather than the level) of the series

are meaningful.

Clearly, the two series look quite similar at annual frequencies, since in the short run
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Figure 5: Left plot: Yearly per capita consumption growth of the marginal agent ∆Lt = ∆ logCt−
∆ logFt (left scale) and yearly (aggregate) per capita consumption growth ∆ logCt−∆ logNt, (right
scale). Right plot: Same plot, but for 10-year moving averages of both series.

the movements in both series are dominated by their common component, namely aggregate

consumption growth ∆ logCt. However, the two time series look noticeably different when

we time aggregate them over 10 years, suggesting that they have different low-frequency

components.

Figure 6 illustrates the source of the low-frequency difference by plotting the difference

between marginal and aggregate consumption growth rate per-capita, ∆ logNt − ∆ logFt.

The figure shows that the difference between marginal and per-capita consumption growth

rate has small year-over-year volatility, but is quite persistent, consistent with our model.

The noticeable low-frequency cycles exhibited in Figure 6 are driven by two basic forces in

the data, namely the baby boom and the relative economic weakness of cohorts that are born

after the baby boomers. The figure shows that the difference between marginal consumption

growth and aggregate per capita consumption growth peaks in 1980, hits a trough in 2000

from which point onward it starts increasing again. The slowdown starting in the 1980s

is driven by the fact that the fraction of aggregate consumption accruing to middle-aged

and older age-groups (say ages 45 and above) has been fairly stable over time (Figure 13
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Figure 6: Difference between marginal agent consumption growth and per capita consumption
growth. The difference is normalized to have mean zero.

in Appendix B). As the populous baby boomers start becoming members of the middle-

aged group in the eighties and early nineties, the mathematical implication is that the per-

household consumption growth of the cohorts that are middle-aged in the mid-eighties must

exhibit a slowdown when compared to aggregate per capita consumption growth. This effect

reverses in early-to-mid 2000, as the cohorts that start joining the middle-aged population

are both smaller and less economically successful.

We note, however, that aggregate consumption growth per capita has itself slowed down

since mid 2000, which explains why the rolling, 10-year moving average of marginal-agent

consumption growth in Figure 5 has been steadily declining since the late eighties, unlike

aggregate consumption growth per capita, which has remained fairly stable from the mid-

seventies to the mid 2000s. Indeed, as the right plot of Figure 5 illustrates, the ten-year

moving average of marginal-agent consumption growth has been on a steady decline since

the mid-eighties, unlike aggregate consumption growth rate per capita, which starts declining

in the mid-2000s.

Table 1 provides a formal econometric framework to model the joint time series properties
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∆ logCt −∆ logNt ∆ logNt −∆ logFt
Lag ∆ logCA

t −∆ logNt 0.4546 -0.1004
(0.1334) (0.3128)

Lag ∆ logNt −∆ logFt -0.0134 0.9203
(0.0301) (0.0707)

R2 0.23 0.81
σε 0.0111 0.0025
N(obs) 87 87

Table 1: Bivariate Vector Autoregression of i)per capita consumption growth (∆ logCt−∆ logNt)
and ii) the difference between marginal and per capita consumption growth (∆ logNt −∆ logFt).

of i) aggrregate consumption growth per capita and ii) the difference between marginal and

per capita consumption growth rate as a bivariate first order vector autoregression ∆ logCt −∆ logNt

∆ logNt −∆ logFt

 =

 ∆ logCt−1 −∆ logNt−1

∆ logNt−1 −∆ logFt−1

B +

 εt

ut

 .
Using the estimates for B in the above equation and the covariance matrix of the residuals

Σ thus obtained, we compute the long-run covariance matrix of the two time series,

Ω ≡
[
I +B +B2 + ...

]
Σ
[
I +B +B2 + ...

]′
=

1

100
×

 0.0481 −0.0280

−0.0280 0.1061

 . (51)

The two time series exhibit low correlation at frequency zero (the correlation implied by

Ω is around −0.39). Hence, the re-distributional risk that arises from imperfect risk sharing

is a separate source of long-run consumption uncertainty, and fluctuations in aggregate

consumption growth per capita don’t seem to offset them. (This is part of the reason why

we chose to abstract from fluctuations in aggregate consumption growth in our model.)

An additional implication of this low correlation is that the the marginal agent consump-

tion growth, which is the sum of ∆ logCt−∆ logNt and ∆ logNt−∆ logFt), has almost twice

as high a long-run variance (the sum of all elements of Ω) as the long-run variance of aggre-

gate consumption growth rate per capita (the top left element of Ω). This higher volatility

of the low-frequency components of marginal consumption growth results in a higher risk
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Figure 7: Top left plot: Expected real interest rate at the beginning of each year and marginal
agent consumption growth over the year. Top right plot: 10-year moving averages yearly marginal
agent consumption growth and 10-year moving average of expected real interest rate. Bottom
left and right plots: Identical to the top plots, except that marginal agent consumption growth is
replaced with aggregate consumption growth per capita.

premium with recursive preferences.

4.1.4. Relating marginal-agent consumption growth to the interest rate

We conclude this section by investigating the model-implied link between our measure of

marginal-agent consumption growth and the expected real interest rate.

To measure the expected real interest rate, we use the short term nominal interest rate

from Robert Shiller’s online data set minus the (ex ante) expected inflation rate as formed

in December of the preceding year (Source: Philadelphia Fed inflation expectations survey).

The top left plot of Figure 7 plots the expected real interest rate and marginal agent
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consumption growth for the respective year. Clearly the two series differ, because in reality

there are shocks to aggregate consumption from which our model abstracts. However, if the

real interest rate reflects the expected (rather than the realized) marginal agent consumption

growth, then we should find that the co-movement between the two series rises as we time

aggregate the two series over longer horizons. Indeed, this is what the top right plot of

Figure 7 shows. Ten-year moving averages of expected consumption growth and real expected

interest rates exhibit very similar fluctuations (the correlation coefficient is approximately

0.8). The bottom two plots show that, by comparison, this co-movement is weaker for

aggregate per capita consumption growth. This strong correlation between the low frequency

movements of the real interest rate and the marginal-agent consumption growth is driven

by the secular decline in marginal-agent consumption growth that starts in the mid-eighties,

which is the same time when the real interest rate starts declining.

In the appendix (Figure 15), we show that the high R2 obtained when regressing 10-

year moving averages of marginal agent consumption growth on similar moving averages

of expected real interest rates is unlikely to be the result of randomness by performing a

bootstrap exercise enforcing the null hypothesis that the two series are uncorrelated.

4.2 The measurement of ηdt

The model implies the following result.

Lemma 7 Let PA
t =

∫ t
−∞ Pt,sds denote aggregate market capitalization and let πs = Pt,s

PA
t

denote the market-capitalization weight of firms of vintage s. Then

ηdt =

Market capitalization

of firms added in year t︷︸︸︷
Pt,t
PA
t︸︷︷︸

Total market cap

=
dPA

t

PA
t︸︷︷︸

Aggregate

market capitalization growth

−
∫ t

−∞
πs
dPt,s
Pt s

ds︸ ︷︷ ︸
Market capitalization growth of

firms already in the market portfolio

. (52)

The first equality in (52) provides a straightforward empirical proxy for ηdt : the ratio of

the market value of additions to the market index to the total market value of the index.
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Figure 8: Left plot: Logarithm of GDP, logarithm of the CRSP market index (obtained by cumu-
lating ex-dividend CRSP gross returns), log market capitalization, and log market capitalization
plus the cumulative sum of the logarithm of 1+addition rate to the market. The addition rate
is defined as the market value of additions to the index (valued at the end of each year) divided
by the total value of the index at the end of each year. All series are deflated by subtracting the
logarithm of the CPI. Right plot: Same as left plot, except that the market index is the S&P 500.

We use this measure in our calibration. According to the model, this ratio also equals the

discrepancy between aggregate market capitalization growth and the market capitalization

growth of firms already in the market portfolio, i.e., the (ex-dividend) return on the index.

Figure 8 illustrates equation (52) in the data. The solid line in the figure depicts the

(log) level of the market index. The figure also depicts the aggregate gross domestic product

(GDP) series and the total stock market capitalization. The figure shows that the log-level

of the index (which is identical to the cumulative sum of the log gross rates of ex-dividend

returns) follows a markedly slower growth than the aggregate stock market capitalization.

Interestingly, the discrepancy between these two comes down almost entirely to the value of

additions to the index: adding the cumulative sum of log
(

1 + Pt,t

PA
t

)
to the log index results

in a series that tracks the market capitalization growth very closely.

Figure 9 compares the path of the discrepancy between marginal and per capita con-

sumption growth (νt) that we obtained in the previous subsection with the path of ηdt . The

graph starts in 1963 so that AMEX is already incorporated in CRSP and we treat 1972 (the
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Figure 9: Market share of new entrants (ηdt ) and difference between aggregate per capita and
marginal agent consumption growth (νt).

year when NASDAQ is added to CRSP) as an outlier (we just replace the value in 1972 by

the average of the values in 1971 and 1973). An additional advantage of focusing on the

post-1963 sample is that the weight of cohorts born prior to 1890 does not impact νt. The

figure shows that while the two series differ on a year-to-year basis, they appear to share the

same low-frequency cycle.23

5 Calibration

The exercise we perform is straightforward. First, we choose functional forms for the dynam-

ics of ηlt and ηdt . We choose these parametric forms judiciously so as to support closed-form

solutions for the dynamics of the price-dividend ratio qt and the Sharpe ratio κt. Second, we

choose the parameters governing the dynamics of ηlt and ηdt to match the empirical moments

23To formalize this idea we computed the cumulative sums of log(1 + νt) and log(1 + ηdt ) and performed a
Johansen rank statistic for co-integration with restricted trend, since the mean of νt is not identified. That
test fails to reject the hypothesis of a co-integrating relation between the two cumulative sums at the 5%
significance level. This means that a shock that widens the distance between the market capitalization of
existing firms and total market capitalization in a permanent fashion and a shock that widens the distance
between marginal agent and per-capita consumption growth in a permanent fashion are perfectly correlated.
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v1 0.012 β 0.03 γ 8
v2 0.078 α 0.3 g 0.025
σx 0.12 a1 1.1 a2 2.25
|b2| 7

Table 2: Parameters used in the model calibration.

of ηdt and νt in the data. (Note that by equations (38) and (37) there is a one-to-one corre-

spondence between the pairs (ηlt, η
d
t ) and (ηdt , νt).) Then we examine the resulting moments

of asset-price dynamics and compare them to the data.

Specifically, we employ a functional form specification similar to Example 2. Using the

definition of xt in equation (25), we specify νt as in equation (39). For ϕt we choose the

functional specification

ϕt =
e−a1−a2xt − β + a2 (−v1xt + v2(1− xt)) +

(
a22
2
− |b2|

)
σ2
xxt(1− xt)

1− αβea1+a2xt
. (53)

With these specifications, the price-to-dividend ratio is log-linear in xt, log(qt) = a1 + a2xt,

while the Sharpe ratio is given by |b2|
√
xt(1− xt).

We fix preference parameters to β = 0.03 (sum of discount and death rates) and γ = −8,

which maps into a risk aversion coefficient of 1− γ = 9. We set α to a level that reflects the

share of capital income in output (0.3). The aggregate growth rate is set to 0.025, in line

with historical data. We choose the six parameters (v1, v2, σx, b2, a1, and a2) that govern

the dynamics of νt and ϕt in equations (39), respectively (53), to (approximately) match six

moments, namely the stationary mean, stationary standard deviation, and autocorrelation

of the inferred values of νt and ηdt in the data. To confirm that the functional forms that we

chose (motivated by the desire to obtain simple, closed-form solutions for the price-dividend

ratio and the Sharpe ratio) are consistent with the data, we perform a Kolmogorov-Smirnov

test, which cannot reject that the model-implied stationary distributions of νt and ηdt is

different from the respective stationary distributions in the data. We note that since the

mean value of νt cannot be identified with the time-, age-, and cohort- decomposition method

of the previous section, we target instead ct,t
Yt
≈ 1 motivated by the evidence in Figure 3.
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Data Model

Median arrival rate of new firms 2.2% 2.30%
(1.19%)

Standard deviation of the arrival rate of new firms 1.6% 1.94%
(0.98%)

Autocorrelation of the arrival rate of new firms 0.77 0.88
(0.0617)

Median value of νt 2.97%
(1.19%)

Standard deviation of of νt 0.55% 0.55%
(0.23%)

Autocorrelation of imputed νt 0.89 0.89
(0.0613)

Table 3: Targeted moments, model and data. We simulate 1000 independent paths of similar
length as the data, and compute each of the six moments for every path. We then report the mean
and standard deviation (across the 1000) paths for each moment. The term “arrival rate of new
firms” refers to the ratio of the value of the market value of additions to the market portfolio to
the total value of the market portfolio.

This implies a mean value of νt close to the sum of the birth and (net) immigration rate,

which is about 2.5% in our sample.24

Table 3 shows that these parameter choices allow us to plausibly reproduce the targeted

empirical moments within our model. To account for estimation error, we do not only report

average values of the targeted moments within our model, but also the standard deviation

for the model-implied values, when we simulate our model over similar sample lengths to

the data. The table shows that the moments in the data are within two standard deviations

of their simulated means inside the model. Figure 10 provides an alternative, graphical

illustration of Table 3 by comparing the empirical and the simulated distributions of νt and

ϕt.

Having determined the parameters to match the moments of the share processes, we next

examine what these parameter choices imply for asset pricing moments. Table 4 provides a

comparison between the model-implied unconditional moments and the respective moments

in the data. In reporting the results we follow the approach of Barro (2006) to relate the

24We compute the sum of birth and immigration rates as the sum of the population growth rate (around
1.5% for most of our sample) plus the death rate (around 1% for most of the sample of interest).
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Figure 10: Left plot: Histogram of (de-meaned) inferred values of νt and kernel density of the
respective quantity inside the model. Right plot: Histogram of the market capitalization of new
index additions over the existing market capitalization of the index (de-meaned) and kernel density
of the respective quantity inside the model. To obtain the model-implied quantities, we simulate
1000 paths of length identical to the length of the data sample, and de-mean the simulated data
separately on each sample path, to account for sampling error in the computation of the means.
We then compare the distribution of the de-meaned simulated data to the de-meaned empirical
data.

results of our model (which produces implications for an all-equity financed firm) to the data

(where equity is levered). Specifically, we use the well known Modigliani-Miller formula,

according to which the levered equity return is equal to the un-levered equity return times

1.7 (the leverage ratio in the data (see e.g., Barro (2006)).

Inspection of Table 4 shows that the model accounts for a sizable fraction of all asset

pricing moments. To put these numbers in the proper relation to the literature, it is worth

highlighting that aggregate consumption and dividend growth are constant in this model.

The numbers should therefore be interpreted as the asset-pricing moments that would obtain

in an economy where one abstracts from all aggregate sources of uncertainty and examines

the impact of the share processes in isolation.

Table 4 only pertains to unconditional moments. To evaluate the model’s ability to

account for variations in conditional moments we turn to Figure 11 and Table 5. Figure 11

plots the equity premium, market price of risk, interest rate, and stock-return volatility as a

function of the log-price-earnings ratio. The Sharpe ratio and the equity premium are both
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Data Model

Aggregate consumption growth rate 2.3% 2.3%
Standard deviation of consumption growth rate 3.3% 0%
Sharpe ratio 0.29 0.26
Stock market volatility 18.2% 14.32%
Equity premium 5.2% 4.13%
Average interest rate 2.8% 2.37%
Standard deviation of real interest rate 0.92% 0.72%
Average (log) PD ratio 2.9 3.05
Standard deviation of (log) PD ratio 0.27 0.21
Autocorrelation of (log) PD ratio 0.89 0.91

Table 4: Unconditional moments for the data and the model. The data for the average equity
premium, the volatility of returns, and the level of the interest rate are from the long historical sam-
ple available from the website of R. Shiller (http://www.econ.yale.edu/?shiller/data/chapt26.xls).
The volatility of the real rate is inferred from the yields of 5-year constant maturity TIPS as in
Gârleanu and Panageas (2015).

declining functions of the log-price-earnings ratio. This counter-cyclicality is responsible for

the model’s ability to reproduce the predictability relations documented in Table 5. This

table reports results of simulated predictability regressions inside the model and compares the

results with the data. The main takeaway of the table is that the model-implied predictability

is close to the respective time-variation in the data.

Finally, for a discussion of the model’s implications for inequality, we refer the reader to

Section 3.4 and specifically the discussion of Figure 2.

6 Conclusion

In this paper we propose a simple mechanism to relate low frequency movements in in-

equality with volatile asset-price movements. We exploit the structure of an overlapping

generations economy, which allows different cohorts of agents to experience different (and

random) consumption growth paths over their lifetimes, even though aggregate consump-

tion evolves deterministically. Combining this observation with recursive preferences, we

prove that an appropriate specification of endowment shares can account for a host of styl-
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Figure 11: Calibration results. Equity premium, market price of risk (Sharpe ratio), interest rate,
and stock return volatility for the baseline parametrization. We plot each variable against the (log)
price-to-earnings ratio log(qt). The range of values of log(qt) correspond to the interval between
the bottom 1% and the top 99% percentiles of the stationary distribution of log(qt).

ized asset-pricing facts. Unlike Constantinides and Duffie (1996), our framework implies

an inequality process that is non-volatile, weakly related to asset-price fluctuations at high

frequencies, and substantially more persistent than the price-to-dividend ratio.

The main difference, for the purposes of asset pricing, between OLG and representative-

agent economies is that the Euler equation applies at the level of a given cohort, but not at

the aggregate level. This feature is quite general and applies to a broad class of OLG models.

Motivated by this fact, we develop an empirical strategy to infer the discrepancy between the

consumption growth at the aggregate and cohort levels by utilizing a time, age, and cohort

decomposition of cross-sectional consumption data and imposing market clearing. Since it

does not require time-series information, this technique can be implemented using existing

cross-sectional data sources.
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Year β (Data) β (Model) R2(Data) R2(Model)

1 -0.130 -0.086 0.040 0.032
[-0.200 -0.007] [0.000 0.091]

3 -0.350 -0.232 0.090 0.086
[-0.516 -0.012] [0.000 0.220]

5 -0.600 -0.343 0.180 0.128
[-0.744 0.005] [0.000 0.321]

7 -0.750 -0.429 0.230 0.163
[-0.893 0.023] [0.000 0.435]

Table 5: Long-horizon regressions of excess returns on the log P/D ratio. The simulated
data are based on 1000 independent simulations of 100-year long samples. For each of these
100-year long simulated samples, we run predictive regressions of the form logRe

t→t+h =
α + β log(Pt/Dt) , where logRe

t→t+h denotes the time-t gross excess return over the next h
years. We report the mean values for the coefficient β and the R2 of these regressions, along
with the respective [0.025, 0.975] percentiles.

We evaluate the model quantitatively and show that the discrepancy between aggre-

gate and cohort-level consumption growth exhibits strong persistent components, which are

largely independent from fluctuations in aggregate consumption growth. With recursive

preferences, these persistent components lead to sizable and time-varying risk premiums,

even in a world of deterministic aggregate consumption growth. Cohort-level consumption

growth also exhibits a stronger medium-run comovement with expected real interest rates

than does per capita consumption growth, consistent with our theory.
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A Proofs

Proof of Lemma 1. The absence of bubbles together with the assumption of a unit elasticity of
substitution implies that aggregate consumption is given by Ct = β

(
W̄t + H̄t

)
, where

W̄t =

∫ t

−∞
qdt,sDt,sds = αqdt Yt (54)

is the present value of all dividends to be paid by existing firms. Similarly, the total value of all
human capital of existing agents is

H̄t =

∫ t

−∞
qlt,slt,swt,sds = (1− α) qltYt. (55)

Combining goods market clearing (Ct = Yt) with (54) and (55) and re-arranging leads to (11).

Proof of Lemma 2. The present value of all newly-born workers’ wages is given by (1− α) ηltq
l
tYt,

while the present value of all newly created firms is αηdt q
d
t Yt. The sum of these quantities gives the

total wealth of newly born agents. Given that the consumption-to-wealth ratio for investors is β, the
per-capita consumption of the newly born, as a proportion of total consumption, is given by (17).

Proof of Lemma 3. The only step of the proof not made completely explicit in the proof is
the one yielding equation (14). To show this relation, time-differentiate aggregate consumption
Ct = λ

∫ t
−∞ e

−λ(t−s)ct,sds to get

Ċt = −λCt + λ

∫ t

−∞
e−λ(t−s)ċt,sds+ λct,t = −λCt +

ċt,s
ct,s

(
λ

∫ t

−∞
e−λ(t−s)ct,sds

)
+ λct,t, (56)

where we used Leibniz’s rule and the fact that
ċt,s
ct,s

is independent of s. Dividing both sides of (56)

by Ct, using Ct = λ
∫ t
−∞ e

−λ(t−s)ct,sds = Yt and Ċt
Ct

= g leads to (14).

Proof of Lemma 4. Contained in the text.

The following technical restrictions on f and σ ensure existence of stationary q.

Assumption 1 The functions f and σ are Lipschitz continuous on the bounded interval [qmin, qmax] ⊂
(0, 1

αβ ). Moreover, f is twice differentiable, monotonically decreasing, and satisfies f
(
qmin

)
> 0

and f (qmax) < 0. Finally, σ(q) ≥ 0, σ
(
qmin

)
= σ (qmax) = 0, and

lim
q→qmax

σ2 (q)

qmax − q
< 2 |f (qmax)| , lim

q→qmin

σ2 (q)

q − qmin
< 2

∣∣f (qmin
)∣∣ . (57)

Proof of Proposition 1. Let q̂t be a solution to the stochastic differential equation (21) with
support in [qmin, qmax]. By construction, the process ϕ(q̂t) solves the SDE (23). Since q̂t is bounded,
so is ϕt, and we can construct two positive processes ηlt and ηdt such that ηdt − ηlt = ϕt.
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Taking these two processes as given, posit that the equilibrium price dividend ratio is qdt =
qt = q̂t and qlt is given by Lemma 1. Further, conjecture that the interest rate rt is given by
equation (19). We next confirm that these postulates for qdt , q

l
t and rt constitute an equilibrium.

Given the dynamics of qt, the definition of ϕ(·), and the definition of rt, pricing equation (12)
is satisfied. Further, using also the definition of qlt, which implies αdqdt + (1− α)dqlt = 0, we obtain
the analogous pricing equation for qlt:

E[dqlt] =
(
rt − g + ηlt

)
qlt − 1. (58)

Agents’ consumption optimality require ct,t = βWt,t, yielding Lemma 2, as well as the Euler
equation (13). Starting with equation (13), then applying Lemma 2 and equation (19) in succession,
we obtain

Ct =

∫ t

−∞
λe−λ(t−s)e

∫ t
s (ru−ρ)ducs,sds (59)

=

∫ t

−∞
e
∫ t
s (ru−β)du

(
ηls + αβqsϕs

)
Ysds (60)

=

∫ t

−∞
e
∫ t
s (ru−β−g)du (β + g − rs)Ytds (61)

= Yt, (62)

given that rt is bounded above away from β + g. Proposed consumption processes are therefore
optimal and clear the consumption market, given the interest rate.

Finally, with qdt and qlt the valuation ratios, the total wealth in the economy is

1

β
Ct =

1

β
Yt = αqdt Yt + (1− α) qltYt. (63)

To see that asset markets clear, note that integrating forward the budget constraint (7) of all agents
born at time s and alive at time t and taking expectations gives

λe−λ(t−s)Wt,s = λe−λ(t−s)Et

[∫ ∞
t

mu

mt
e−λ(u−t)(cu,s − (1− ε)wu,s)du

]
,

where mt is given by (8). Aggregating across all cohorts, and using the same arguments as in
Lemma 1 shows that

λ

∫ t

−∞
e−λ(t−s)Wt,s =

∫ t

−∞
Pt,sds,

i.e., the stock market is clearing. Consumption market clearing and stock market clearing implies
bond market clearing by Walras’ law. Uniqueness of the process ϕt is a direct consequence of the
analysis in the text, in particular equation (20).

We end the proof with a technical detail — a sketch of an argument that shows that qt is
stationary. We make use of results in Karlin and Taylor (1981). Specifically, we start by defining

s (q) ≡ exp

{
−
∫ q 2f(ξ)

σ2 (ξ)
dξ

}
,
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noting that by assumption (57) there exists v̄ > 1 such that, for ε small enough and q ∈ (qmax − ε, qmax)
we have

s (q)

s (qmax − ε)
= exp

{
−
∫ q

qmax−ε

2f(ξ)

σ2(ξ)
dξ

}
< exp

{
−
∫ q

qmax−ε

v̄

qmax − ξ
dξ

}
=

(
q

qmax − ε

)−v̄
.

Hence, for q “close” to qmax the function s (q) (and accordingly the speed measure S (q) =∫ q
s (η) dη) behaves as in Example 5 on page 221 in Karlin and Taylor (1981). (A similar argument

applies to the boundary q = qmin.) It then follows that the boundaries qmin and qmax are entrance
boundaries whenever condition (57) holds and a stationary distribution exists.

Proof of Lemma 5. The fact that mt is a (spanned) stochastic discount factor (SDF) means

d log(mt) = −rtdt−
κ2
t

2
dt− κtdBt, (64)

where κt is the market price of risk (the maximal Sharpe ratio). In the special case when preferences
are specified by (27), and given the existence of annuities, optimality implies that the process
log(mt) satisfies25

d log(mt) = β (γ log(ct)− log(γVt)) dt− ρdt+ d log(γVt)− d log(ct). (65)

An agent’s value function V is homogeneous of degree γ in the her total wealth Ŵt, which is the
sum of her financial wealth and the present value of her future earnings. We consequently write

Vt(Ŵt) =
Ŵ γ
t

γ
eZ̃t (66)

for an appropriate process Z̃t. Furthermore, from the envelope condition we have

γ

Ŵt

Vt =
∂Vt

∂Ŵt

= fc =
βγVt
ct

,

giving ct = βŴt.
For any s < t, the definition of Vt implies

Vt +

∫ t

s
βγVu

(
log (cu)− 1

γ
log(γVu)

)
du = Et

∫ ∞
s

βγVu

(
log (cu)− 1

γ
log(γVu)

)
du.

Since the right-hand side is a martingale, the drift of the left-hand side equals zero, implying that
dVt +

(
βγVt

(
log (ct)− γ−1 log(γVt)

))
dt is a martingale increment and therefore, upon applying

Ito’s Lemma we obtain

d log(γVt) = −βγ
(
log(ct)− γ−1 log(γVt)

)
dt− 1

2

σ2
V,t

V 2
t

dt+
σV,t
Vt

dBt, (67)

25See Duffie and Epstein (1992) for details.
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where σV,t denotes the instantaneous volatility of Vt at time t. Combining (67) and (65), we obtain

d log(mt) = −βdt− 1

2

σ2
V,t

V 2
t

dt− d log(ct) +
σV,t
Vt

dBt.

Comparison with (64), along with the fact that aggregate consumption growth is deterministic and
as a result individual consumption growth needs to be locally deterministic implies

σV,t
Vt

= −κt (68)

ċt = (rt − ρ)ct. (69)

Consumption ct is therefore locally deterministic, and so is Ŵt = β−1ct, which, upon using equation
(66), leads to

σV,t
Vt

= σZ̃t
= −κt.

Combining ct = βŴt and (66) leads to

d log (γVt) = dZ̃t + γd log ct = −β
(
γ log β − Z̃t

)
dt− 1

2

σ2
V,t

V 2
t

dt+
σV,t
Vt

dBt, (70)

where the second equality follows from (67). Letting Zt ≡ Z̃t − γ log(β) and noting that
σV,t

Vt
=

σZ̃,t = σZ,t leads to

dZt = −γd log ct + βZtdt−
1

2
σ2
Z,tdt+ σZ,tdBt. (71)

Integrating (71), and noting that σZ is bounded, gives equation (29).

Proof of Lemma 6. Since the right hand side of (35) depends only on Zt, it is immediate that

strict monotonicity is equivalent to invertibility. Fixing Zt and therefore νt,
∂ϕ(qt,Zt)

∂qt
< 0 implies

that there is a unique qt = ϕ−1 (ϕt, νt).

Proof of Proposition 2. The proof of the proposition follows the same logic as that of Propo-
sition 1. In the interest of completeness, we start by invoking Ito’s Lemma to write down the SDE
for ν:

dνt = ν ′
(
ν−1 (νt)

)(
fZ
(
ν−1 (νt)

)
+
σ2
Z

(
ν−1 (νt)

)
2

ν ′′
(
ν−1 (νt)

)
ν ′ (ν−1 (νt))

)
dt

+ ν ′
(
ν−1 (νt)

)
σZ
(
ν−1 (νt)

)
dBt (72)

Similiarly, one can write the dynamics of

ϕt = ϕ(qt, Zt) (73)
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based on the dynamics of qt and Zt, and then plug in qt = ϕ−1(ϕt, νt) and Zt = ν−1(νt).
The existence of the inverse functions ν−1 and ϕ−1 is ensured by Lemma 6. To avoid repetition,

we only justify two key statements in the text, namely equations (33) and (34).
As before, the definition of qt implies that

mtqtDt,s +

∫ t

s
mtDt,s = Et

∫ ∞
s

muDu,sdu. (74)

is a martingale. Using Ito’s Lemma and κt = −σZ,t yields equation (34).
From equations (71), (14), and the definition of νt, the drift of Zt equals

βZt − γ
ċt
ct
− 1

2
σ2
Z(Zt) = βZt − γ(λ+ ρ− νt)−

1

2
σ2
Z(Zt), (75)

which is equated to fZ(Zt) to yield equation (33).

Proof of Proposition 3. The modification of the share processes ηdt − g + gt, η
l
t − g + gt imply

that
ċt,s
ct,s

and
Ḋt,s

Dt,s
remain unaffected. Hence the real interest rate, the Sharpe ratio and the price-

dividend ratio are identical in the two economies.

Proof of Lemma 7. The first equality follows from ηdt =
Dt,t

DA
t

=
qtDt,t

qtDA
t

=
Pt,t

PA
t

. The second

equality follows upon time-differentiating PAt =
∫ t
−∞ Pt,sds to obtain dPAt =

∫ t
−∞ dtPt,sds + Pt,t

and then dividing by PAt .

B Details on the computation of marginal agent con-

sumption growth

In this appendix, we provide more details on the construction of our empirical measure for marginal
agent consumption growth dLt and the discrepancy between marginal agent consumption growth
and aggregate per capita consumption growth d logNt−d log(Ft). We also discuss issues related to
measurement error and discrepancies between CEX and NIPA data, and provide a direct validation
exercise for the part of the sample where we can estimate time effects in both a direct and indirect
fashion.

For the construction of our measure of marginal consumption growth we need to choose: a) the
measure of aggregate consumption CAt , b) how to estimate cohort and age effects in the data, c)
the demographic table Λ(t, s), d) how to extrapolate cohort effects that we can’t measure back in
time, and finally e) where to set the age cutoff at which agents enter the population and become
marginal.

For choice a) For aggregate consumption growth d logCAt we use NIPA aggregate consumption
expenditure of goods and services deflated by the respective PCE deflator (available from the Bu-
reau of economic Analysis since 1929). To construct aggregate per capita consumption growth we
subtract total population growth d logNt (available from the Census) from aggregate consumption
growth. Whether we use NIPA aggregate consumption of goods and services, total NIPA consump-
tion expenditure or even the aggregate expenditure as measured by the CEX makes no difference to
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the calculation of the discrepancy between marginal agent and aggregate per capita consumption
growth, which is the measure we use for our calibration. The reason is that aggregate consumption
growth cancels out when we compute the difference d log(Nt) − d log(Ft). (We revisit the choice
of the appropriate notion of aggregate consumption when we discuss the issue of the choice of a
cutoff age.) As a robustness check, we also re-computed our measure of the discrepancy between
marginal agent and aggregate per capita consumption growth using the population growth of the
adult rather than the general population (ages greater or equal to 20). We report the results in
column A of Table 6. We note that using either the adult population growth in the US or the
growth in the number of households in the US (available since 1947) gives similar results (correla-
tion of 0.8 between the two measures of d log(Nt)−d log(Ft)) , but the measure of households in the
data is volatile and contains a few abrupt year-over-year changes in some years, presumably due
to data revisions. Besides, the demographic breakdown of households by age is sparse (households
are binned in 10-year age-groups), and we need a more granular information on the demographic
pyramid (see point c below).

For choice b), there are two sets of issues to address. First, whether to aggregate at the
household level or the cohort level, and second, how to adjust for different cohort sizes. Concerning
the first issue, we chose to use the public use micro data (PUMD) and the computer programs
provided by the CEX to aggregate consumption expenditure for an entire cohort s in year t and
then divide by the number of households in year t whose head of household was born in year s,
using the weighting variable provided by the CEX. This gives us a set of 1,354 observation of ct,s,
which can then be regressed on time, age, and cohort dummies. The advantage of this approach
is that the CEX code isolates expenditure within a given calendar year and performs a “months
in scope” adjustment. Moreover, it becomes possible to compare results with the published CEX
tables, which are not subject to top-coding and correspond to a larger sample than the Public Use
Micro-Data.

An alternative approach to the estimation of time, age, and cohort effects is to aggregate
expenditure at the level of a household (across all four interviews) and then regress that quantity
on the appropriate dummies. The main disadvantage of this method is that, since households
start and end their interviews at different times, part of a household’s consumption will span two
different years. As a robustness check, we used this alternative approach to the estimation of
time, age, and cohort effects using the convention that year t corresponds to the calendar year
of the earliest interview for each household. Using this convention, we re-estimated the cohort
and age effects, and recomputed our measure of the difference between marginal and aggregate
per-capita consumption growth. In performing this exercise, we combined the PUMD data with
the CEX extracts on the NBER website (provided by John Sabelhaus), which reach back to the
early eighties (we report the results in Table 6 column B). The correlation between our baseline
measure of the discrepancy and this alternative measure of the discrepancy was quite high (0.92).

Our results also don’t depend on how we adjust for household size. Robustness check C recom-
putes our baseline measure by estimating time, age ,and cohort effects but using only households
with at least 2 members (to make sure that trends in single-member households don’t affect our
results). Robustness check D recomputes our baseline measure by aggregating consumption at the
household level (as outlined in the above paragraph) and then including a control for log family
size along with the dummies. The correlations with the baseline measure are above 0.9 in both
cases.

For point c), we need a measure of the population of people at time t born in year s. These
demographic tables are available from the Census going back to 1910 at annual frequency. Older
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Baseline A B C D E F G H

Correlation (1930-2016) 1.00 0.82 0.92 0.95 0.91 0.96 0.85 0.99 0.99
Correlation (1971-2016) 1.00 0.86 0.92 0.95 0.89 1.00 0.92 0.98 0.99
Standard Deviation (1930-2016) 0.74 0.97 0.70 0.77 0.64 0.61 0.68 0.79 0.73
Standard Deviation (1971-2016) 0.56 0.82 0.54 0.67 0.53 0.57 0.54 0.64 0.51

Table 6: The first two rows display the correlations between the measures of the discrepancy
between marginal agent growth and per-capita consumption growth d log(Nt)−d log(Ft) computed
as in the baseline specification, respectively according to alternative specifications. The last two
rows display the standard deviations of these measures, expressed in percent per annum.

ages are binned together past a cutoff for some census tables (typically past age 90). In these cases,
we used the age-appropriate survival rates of the census closest to the calendar date (survival rates
are available decennially) to split up the binned population, so as to make sure that for all years
we have the population going to age 100. This procedure played no role in the end, because even
if we simply truncate the sum Ft at age 90, we get (essentially) identical results.

Ideally, it would be best to use the age distribution of heads of households. Unfortunately, this
time series is available only for 10-year binned age groups (25–34, 35–44, etc.) and only post 1960.
We were able to confirm, however, that, the age distribution of heads-of-household largely mirrors
the age distribution of adult persons when we bin the population of adult persons by 10-year age-
groups and compare to the respective age distribution of heads of households (for the years where
this information is available).

For choice d), in our baseline construction we used information on cohorts going back to 1907
only. (The earliest PUMD cross section is 1996 and age information is top-coded at 90, so 1907 is
the earliest cohort we had information on). For cohorts prior to that we extrapolated the cohort
estimates As by using linear extrapolation.26 We performed three robustness checks. In column E
of table 6, we used constant instead of linear extrapolation (i.e., we set As = A1907 for s < 1907).
In column F, we combined the PUMD data sets and the NBER CEX extracts (as outlined above),
which allowed us to increase the number of cross sections back to 1980 and estimate cohort dummies
back to 1891, with linear extrapolation prior to that. (We note here that cohort dummies prior
to 1907 have quite large confidence bands, since these cohorts are not very well populated.) We
also re-computed our measure, introducing an upper cutoff age of 75 when computing the moving
sum in Ft (column G). Any of these modifications made little difference to our baseline measure for
the entire sample. Especially in the post 1970 subsample, the three measures produce practically
identical results, because the measure of people born prior to 1900 has become quite small by that
time.

Before explaining how we make choice e), we note that this cut-off age is immaterial as long as
the same cut-off is used in the computation of the integrals in equations (46) and (47), to compute
Ct, respectively Ft. Figure 12 illustrates this point in the data: Starting with 1984, the CEX tables
allow us to compute aggregate consumption for age groups above given cutoffs. The different lines
in the figure depict dLt by using equation (49) with different minimal age cutoffs (i.e., summing
across age groups above 25, 35, etc., in the computation of both Ct and Ft). Since we are interested

26Specifically, for s < 1907, we set As = A1907 + χ(s − 1907) and used χ to correspond to the average
value of ∆As for s ∈ [1907, 1937].
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Figure 12: Difference between the consumption growth rate of the marginal agent and aggregate
consumption growth using different minimal age cutoffs. All series have been de-meaned. We depict
5-year moving averages to illustrate the low frequency movements of the series, which is the focus
of our analysis.

in low frequency co-movements between the series, we illustrate the co-movements of 5-year moving
averages, which are essentially the same no matter which cutoff is used.

For our baseline results we choose the minimal age cutoff to be 45. There are three reasons for
this: First, for our purposes “birth” refers to the age at which an agent joins the financial market
and her Euler equation starts holding. Accordingly, we want to ensure that agents have reached
an age where borrowing constraints, which may invalidate equation (44) for younger cohorts, are
likely to be irrelevant. We therefore aimed for a cut-off where the consumption-age profile starts
reaching its peak. Second, immigration (which is prevalent in younger cohorts and acts similar
to birth in our framework) is unlikely to be important past age 45. Third and most importantly,
the aggregate consumption Ct of people in the included age groups should be a relatively stable
fraction of aggregate NIPA consumption. Indeed, Figure 13 shows that a cut-off of 45 meets this
goal. (The ratio for the 1972 cross section is essentially the same as for the 1984 cross section and
all the subsequent cross sections). We note that such stationarity does not characterize the ratio
of aggregate consumption in the CEX data to NIPA aggregate consumption, which is about 0.8
in the 1972 cross section and in the 1984 cross section, then exhibits an almost linear decline to
around 0.6 until 2003 and fluctuates around that level thereafter.

The fact that the ratio of aggregate consumption in the CEX to aggregate consumption in
NIPA is below one is not a particular concern for our purposes.27 If the two series were in a
(constant) proportion to each other, this would not impact the computation of d logCt. What
is more disconcerting is the period between 1984 and 2003, when ratio of aggregate consumption
according to CEX divided by aggregate consumption according to NIPA exhibits a downward trend.

27This discrepancy is most likely due to different definitions, weighting schemes, and under-reporting of
certain consumption categories in the CEX
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Figure 13: Ratio of aggregate consumption accruing to households 45 years or older according
to the CEX divided by NIPA aggregate consumption expenditure. We also report the ratio of
aggregate consumption according to the CEX divided by NIPA aggregate consumption expenditure.

While the consumption aggregate above our minimal age cutoff has remained a roughly constant
fraction of aggregate NIPA consumption, as a robustness check in column H of Table 6, we re-
ran our results using only the CEX cross sections after 2003 for the estimation of age and cohort
effects that we use in the computation of Ft. For these cross sections, the ratio between CEX and
NIPA aggregates has remained relatively stable. As column H of Table 6 shows, our results are
unchanged.

In the context of measurement error, we would also like to note that the left plots of Figures 3
and 4 imply that the same patterns describe both the consumption and income of different cohorts.
Income data are based on substantially more observations and are not subject to the same type of
measurement errors as consumption surveys. Hence, whatever the source of measurement error in
the CEX, it is unlikely to be impacting the measurement of age- and cohort- effects, which enters
the measurement of Ft.

We conclude this appendix with a simple validation exercise that we can perform for a sub-
sample. We compare our indirect inference approach for the estimation of the time-effects with
a direct approach that can be performed by using data from the published CEX tables. These
tables provide information on the average per-household consumption of 10-year binned age groups
(25–34, 35–44, 45–54, 55–64, and 65–74). We isolate the cross sections 1972 (the earliest cross
section), then the first cross section that is available thereafter (1984), and then cross sections
every ten years (1994, 2004, 2014) so that there is approximately (for the first) and exactly (for
all subsequent) a 10-year gap between the cross sections. Letting t ∈ {1972, 1984, 1994, 2004, 2014}
and i index the age-groups 25–34, 35–44, 45–54,55–64,65–74, we compute the expression

log ci+1
t+10 − log cit − (logCt+10 − logCt)−

1

4

∑
t

[
log ci+1

t+10 − log cit − (logCt+10 − logCt)
]
. (76)

If equation (44) holds, then the expression (76) should be equal to the de-meaned, decennial time
effect Lt+10 − Lt minus the de-meaned, decennial aggregate consumption growth rate logCt+10 −
logCt.

28 Furthermore, according to equation (49), it also equals — up to measurement error —

28Intuitively, the term log ci+1
t+10− log cit is the consumption growth rate for a fixed, 10-year binned cohort;

by subtracting the term 1
4

∑
t

[
log ci+1

t+10 − log cit
]

we remove the part of that consumption growth that can
be attributed to the age-effect, so that the remainder is the de-meaned time effect.
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Figure 14: Comparison of direct method (i.e., by directly inferring the decennial time effects
Lt+10 − Lt minus decennial aggregate consumption growth logCt − logCt) and indirect method
of inferring the same concept with our measure of log(Ft) − logFt+10. Each point in the graph
corresponds to the difference in the two growth rates over the course of the preceding decade, with
the exception of the first observation, which spans 12 years (1972-1984).

log(Ft)− log(Ft+10), consistent with Figure 14.

C Additional results

Figure 15 shows that the high correlation between real expected interest rates and marginal agent
consumption growth is unlikely to be the result of sampling error. The figure shows the R2 of
the regression of the 1-, 2-, ...,12-year moving average of marginal consumption growth on the 1-,
2-, ...,12-year moving average of the real expected interest rate. The solid line refers to the data,
the dotted line refers to the 95% confidence bands obtained by constructing 10,000 artificial time
series by drawing from the empirical distribution of marginal agent consumption growth, time-
aggregating both the real interest rate and the marginal agent consumption growth for each sample
to obtain 1-, 2-, ...,12-year moving averages of both series, computing the R2 for each of those
10,000 samples, and reporting the top 95-th percentile of R2. The R2 obtained in the data for
years larger than 2 is higher than the bootstrapped 95-th percentile of R2, implying that the high
correlation between the two series in the data is unlikely to be random.
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Figure 15: Top left plot: R2 of Regression of 1-, 2-, ...,12-year moving average of marginal con-
sumption growth on 1-, 2-, ...,12-year moving average of the real expected interest rate. The solid
line refers to the data, the dotted line refers to the 95% confidence bands obtained by drawing
10,000 random time-series of marginal agent consumption growth with replacement from the data,
time-aggregating both the real interest rate and the marginal agent consumption growth for each
sample, computing the R2 for each of those 10,000 samples, and reporting the top 95-th percentile
of R2.
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