
NBER WORKING PAPER SERIES

EQUILIBRIUM GRADE INFLATION WITH IMPLICATIONS FOR FEMALE INTEREST IN 
STEM MAJORS

Thomas Ahn
Peter Arcidiacono

Amy Hopson
James R. Thomas

Working Paper 26556
http://www.nber.org/papers/w26556

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2019

The views expressed in this article are those of the authors and do not necessarily reflect those of 
the Federal Trade Commission. The contributions of Amy Hopson to this article were prepared in 
her former capacity as a researcher at Duke University. The opinions expressed in the article are 
the authors' own and do not reflect the views of the Bureau of Labor Statistics or the Department 
of Labor or the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2019 by Thomas Ahn, Peter Arcidiacono, Amy Hopson, and James R. Thomas. All rights 
reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit 
permission provided that full credit, including © notice, is given to the source.



Equilibrium Grade Inflation with Implications for Female Interest in STEM Majors
Thomas Ahn, Peter Arcidiacono, Amy Hopson, and James R. Thomas
NBER Working Paper No. 26556
December 2019
JEL No. I23,J16

ABSTRACT

Substantial earnings differences exist across majors with the majors that pay well also having 
lower grades and higher workloads. We show that the harsher grading policies in STEM courses 
disproportionately affect women. To show this, we estimate a model of student demand courses 
and optimal effort choices of students conditional on the chosen courses. Instructor grading 
policies are treated as equilibrium objects that in part depend on student demand for courses. 
Restrictions on grading policies that equalize average grades across classes helps to close the 
STEM gender gap as well as increasing overall enrollment in STEM classes.

Thomas Ahn
Naval Postgraduate School
247 Ingersoll Hall 
Monterey, CA 93943
sahn1@nps.edu

Peter Arcidiacono
Department of Economics
201A Social Sciences Building
Duke University
Durham, NC 27708
and NBER
psarcidi@econ.duke.edu

Amy Hopson
Bureau of Labor Statistics 
akhopson@gmail.com

James R. Thomas
Federal Trade Commission
600 Pennsylvania Ave NW 
Washington, DC 20580
james.robinson.thomas@gmail.com



Equilibrium Grade Inflation with Implications for Female Interest

in STEM Majors∗

Thomas Ahn Peter Arcidiacono Amy Hopson James Thomas

Naval Postgraduate Duke University Bureau of Federal Trade

School NBER & IZA Labor Statistics Commission

December 7, 2019

Abstract

Substantial earnings differences exist across majors with the majors that pay well also having

lower grades and higher workloads. We show that the harsher grading policies in STEM courses

disproportionately affect women. To show this, we estimate a model of student demand courses

and optimal effort choices of students conditional on the chosen courses. Instructor grading

policies are treated as equilibrium objects that in part depend on student demand for courses.

Restrictions on grading policies that equalize average grades across classes helps to close the

STEM gender gap as well as increasing overall enrollment in STEM classes.

1 Introduction

Even after accounting for selection, substantial earnings differences exist across majors. Majors in

engineering and the sciences, as well as economics and business, pay substantially more than other

fields.1 Further, earnings disparities across majors have increased substantially over time (Altonji

et al. (2014) and Gemici & Wiswall (2014)). Despite their value in the marketplace, STEM (Science,

Technology, Engineering, and Mathematics) fields are perceived to be under-subscribed. A report

∗The views expressed in this article are those of the authors and do not necessarily reflect those of the Federal

Trade Commission. The contributions of Amy Hopson to this article were prepared in her former capacity as a

researcher at Duke University. The opinions expressed in the article are the authors’ own and do not reflect the views

of the Bureau of Labor Statistics or the Department of Labor.
1See Altonji et al. (2012), Altonji, Kahn & Speer (2016),Xue & Larson (2015) and Altonji, Arcidiacono & Maurel

(2016) for reviews.
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by the President’s Council of Advisors on Science and Technology (2012) highlighted difficulties in

the U.S. retaining “its historical preeminence in science and technology” due to a potential shortage

of approximately 1 million STEM professionals over a decade. More recently, Marcia K. McNutt,

President of the National Academy of Science, in a statement before the Congressional Committee

on Science, Space, and Technology (2019), testified “there are troubling signs that ... U.S.-born

students are not entering STEM fields in sufficient numbers, and foreign STEM students are no

longer coming to the U.S. ... as they did before.” In response, there has been a flurry of recent

legislative activity to encourage majoring in STEM and to retain STEM degree holders.2

But do universities want more STEM majors? Universities appear to at least tacitly discourage

majoring in STEM by being laissez-faire with regard to differences in grading and study time

across fields. The same majors that pay well also give (on average) significantly lower grades

(Sabot & Wakeman-Linn (1991), Johnson (2003)) and are associated with more study time (Brint

et al. (2012), Stinebrickner & Stinebrickner (2014)).3 Lower grades and higher study times deter

enrollment. Sabot & Wakeman-Linn (1991) show that the absolute level of grades was a far more

important indicator of taking further courses in the subject than their ranking within the class.

When colleges have intervened in grading practices, enrollment in STEM classes has increased.

Butcher et al. (2014) showed that a policy of capping the fraction of A’s given at Wellesley College

resulted in shifts towards science classes and science majors.4

These differences in grading and workloads affect major decisions in predictable ways. Those

who have relatively weak academic preparation (e.g. SAT scores or HS grades) are substantially

more likely to leave STEM fields.5 At Duke University, African-American men were more likely to

2A number of state legislatures have introduced or are planning to introduce (as of 2019) bills to waive or reduce

tuition and/or forgive student loans for STEM students who agree to teach in the state for a number of years (Hinz

(2019), Latek (2019), Chapman (2014)). The GI Bill was recently expanded to support veterans seeking a STEM

degree (Veteran STEM Scholarship Improvement Act) (Gross 2019). Legislation has also been introduced to keep

more international students who graduate in STEM fields in the U.S. by easing restrictions on green cards issuance

(Keep STEM Talent Act of 2019, STEM Jobs Act of 2012 (H.R. 6429) ) (Graeml 2019).
3There is also evidence that students enter unaware of the extent of cross-department differences in grading

standards. Stinebrickner & Stinebrickner (2014) show that the over-optimism regarding performance at Berea College

is primarily driven by students over-predicting their performance in the sciences. As students take more classes, they

generally revise their expected performance in the sciences downward. This holds true even for students who persist

in the sciences who ought to have received relatively positive grade realizations.
4Another example is Minaya (2018) that shows that a policy change which reduced the differential in average

grades between STEM and non-STEM fields led to an increase in STEM participation.
5See Arcidiacono (2004), Arcidiacono et al. (2012), and Arcidiacono et al. (2016).
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express an initial interest in STEM majors and economics, yet left these majors at a rate of over

54% compared to just 8% for white men (Arcidiacono et al. 2012). Yet the same study shows that

racial differences in STEM persistence disappear when one accounts for differences in pre-college

preparation.

Women are also more likely to switch out of STEM, though for different reasons; the exist-

ing literature generally finds that this differential attrition cannot be explained by differences in

preparation.6 This is perhaps surprising because women study substantially more than men (Stine-

brickner & Stinebrickner 2004, Arcidiacono et al. 2012) suggesting the higher study times required

for STEM classes would not be a deterrent. But if the reason women study more is the higher

perceived benefits of the grades themselves–as opposed to a lower cost of studying–then the low

grades given in STEM may contribute to the lack of persistence in STEM majors.7 In this case,

reducing the grading differences across STEM and non-STEM classes would work to mitigate the

gender gap in STEM.

In this paper we examine how students make course enrollment decisions and in particular the

sensitivity of these enrollment decisions to grading policies. We treat the difference in grading and

study time across classes as equilibrium objects. Professors choose these grading policies recognizing

how their policies affect the number and type of students who enroll in their courses.

To estimate both the demand and supply side of the model, we use registrar and course evalua-

tion data from the University of Kentucky. The registrar data contains a number of characteristics

of the students as well as the course enrollments and grades. The course evaluation data provides

information on how many hours a week students are studying in each course.

The raw data show that STEM classes are almost twice as large as their non-STEM counterparts.

They also are associated with grades are over 0.3 points lower and average study time that is

almost 40% higher. Women have higher grades in both STEM and non-STEM classes but are also

significantly under-represented in STEM classes.

Our demand-side model helps explain this lack of representation. The demand-side of the

model has students choosing courses and exerting effort based on their preferences for classes and

6See Arcidiacono et al. (2012), Astorne-Figari & Speer (2019, 2018), Kugler et al. (2017), Ost (2010), and Price

(2010). Griffith (2010) is a notable exception which finds that differences in preparation can explain a large portion

of the gender difference in STEM attrition.
7Using elicited expectations data, Zafar (2013) shows that women have a higher preferences for good grades.

Saltiel (2019) shows that, for the same math ability, self-efficacy in math is lower for women. This is perhaps in part

due to higher responsiveness to grading differentials across fields.
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departments, costs of studying, and expected grade grades. Expected grades in turn depend on the

optimal choice of study time. Identification of preferences for grades–and how those preferences

differ between men and women–comes from how students sort into classes. The more students sort

into classes based on their comparative advantage in grades, the higher the estimated preference

for grades.

The results show that comparative advantage in both observed and unobserved ability, differ-

ences in preferences for departments, and differences in female representation among STEM faculty

all contribute to the gender gap in STEM.8 But so too do the differences in grading policies across

STEM and non-STEM professors. In fact, our estimates suggest that the harsher grading policies

in STEM contribute more to the STEM gap than any of the other previously listed explanations

with the exception of differences in preferences for departments. This is driven by our finding that,

while both men and women value grades, women value grades significantly more than men.

Requiring all classes to have, for example, the same mean grade may professors to respond along

other dimensions such as the amount of work they assign. To understand professor responses–and

indeed why the grading differences are there in the first place–we estimate the supply side of the

market. We posit a professor utility function that penalizes deviations from his or her (individual-

specific) ideal enrollment, average grades, and workload.9

Estimates of professor preferences show that STEM instructors on average have lower ideal

grades and higher workloads. However, differences in demand for STEM classes also contribute

to the lower grades in STEM. Because higher enrollments are costly to the professor, classes that

have high demand–which are disproportionately in STEM–give relatively lower grades to deter

enrollment. Indeed, removing differences in professor preferences would still result in grades being

0.07 points lower in STEM as a result of the higher demand for STEM classes.

By estimating the supply side, we can examine the general equilibrium effects of policy changes.

Requiring the same mean grade across classes provokes a small instructor response but the overall

effect of the policy is a substantial increase in the number of STEM classes taken by females, an

increase that is significantly larger than the corresponding increase for males. From a financial

standpoint as well as its ability to be locally implemented at the school or department evel, this

8Throughout this study, “ability” is shorthand for a pre-college human capital accumulation. See further discussion

in section 5.3.
9Ferreyra et al. (2018) also endogenizes study effort (though not at the level of the course) in an equilibrium

model.
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would be a cheap way of reducing the STEM gender gap.10

The rest of the paper proceeds as follows. Section 2 describes the data and shows some basic

patterns regarding differences in grading between STEM and non-STEM courses. In section 3,

we develop a model of student demand for courses and the optimal study time associated with

those courses. Section 4 describes our estimation strategy. Section 5 shows the estimates of the

model and partial equilibrium counterfactuals. Section 6 explains the set up and estimation of the

supply-side, as well as showing the general equilibrium counterfactuals. Section 7 concludes.

2 Data

Estimating an equilibrium model of student choices of courses and study time as well as professor

preferences over grade policies requires rich data. We use administrative data coupled with course

evaluations from the University of Kentucky (UK). UK, the state’s flagship public post-secondary

institution, has a current undergraduate enrollment of approximately 21,000. The school was ranked

119 out of approximately 200 ‘National Universities’ by U.S. News & World Report (U.S. News

& World Report 2013). This places UK in the middle of the distribution of large post-secondary

institutions, and the student body serves as a good cross-section of college students nationwide.

The data set contains student demographic and course enrollment information. Each semester,

the student body’s course selections and grades are recorded by the Registrar’s Office. This data

set is particularly valuable because every student outcome in every class is captured, allowing us

to estimate a rich model of student and professor interactions. We also collect information on

course pre-requisites to accurately capture a student’s choice set. We focus on student enrollment

observations from one semester, Fall 2012.

In addition, we have access to class evaluation surveys completed by students at the end of the

semester. Students do not identify themselves in the evaluation forms, and while we cannot link

them to the transcript data at the individual level, we are able to match at more aggregated levels.

However, coverage is not complete as some departments opt out of administering end-of-course

evaluations. In addition, linking the class evaluation data to the enrollment data is complex, as

rules for identifying the course (or sections within the course) and instructor (or sub-instructor -

frequently a graduate student - teaching under the supervision of a head-instructor) are defined

10Such a policy may also have multiplier effects from women making up a greater share of STEM enrollments. This

would be the case if the departmental preferences we estimate were influenced by the number of women choosing

courses in those departments.
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independently by the department. Most critically for our research, students are asked about the

number of hours per week they spend on studying for this particular course. This information

makes the identification of structural parameters on study effort possible, allowing us to analyze

how differences in average study time relates to course and student characteristics across courses.11

Our Fall 2012 selected sample yields approximately 58,000 student/class observations. There are

about 16,000 unique undergraduates, implying that on average, each student enrolls and completes

four courses.12 Table 1 provides demographic summary statistics, separated by gender. Overall,

women and men look similar when entering college. Women have higher high school grades and

slightly lower standardized ACT scores.13 Women also have higher grades while in college. Sharp

differences show up in major selection. While women comprise a slight majority at UK overall,

the ratio between men and women in STEM majors is approximately 1.6. In contrast to students

from more selective institutions (seen in many other studies of higher education outcomes), over 30

percent of students at UK are part-time students, taking less than 12 credits during the semester.

Table 2 summarizes class-level characteristics separated by STEM-status of the course. For this

paper, we include Economics, Finance, Accounting, and Data Sciences courses to the commonly

used definition of STEM courses (Biology, Chemistry, Engineering, Mathematics, and Physics).14

STEM classes are substantially larger and give significantly lower grades compared to non-STEM

courses. As implied by Table 1, female students are the minority in STEM classes. This is despite

the fact that they perform better, on average, than their male counterparts in these courses.

For these summary statistics and the reduced-form analyses that follow, we aggregate the eval-

uation data up to the class level and match to the transcript data. We are able to match 76 percent

of classes successfully. We then restrict the data to classes with at least a 50 percent response

rate and drop classes with small numbers of respondents to prevent possible identification. On

11The survey asks 20 questions on the value of the course and instructor to the student on a five-point Likert scale.

Each student reveals what year of school he or she is in, how valuable he or she finds the course and instructor,

expected final grade, and whether the course was a major requirement.
12We also observe withdrawal data. Withdrawal rate of undergraduates is approximately 5.4%. Of these, approxi-

mately 45% withdraw from the course prior to the midterm examination. We speculate that many of these students

were ‘shopping around’ for courses at the start of the semester and realized that they needed to drop a course they

had not been attending part-way through the semester.
13SAT scores are converted to equivalent ACT scores.
14See Table A.12 for categorization of departments into STEM / non-STEM. All empirical results presented in the

paper have been replicated using only the restrictive definition of STEM, and salient conclusions remain qualitatively

identical.
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average, students spend about an additional hour per week (or 40 percent more time) studying

in a representative STEM course, compared to time spent on studying for an average non-STEM

course. The study time difference actually understates the true gap across STEM and non-STEM

courses. Students with higher academic ability will select more often into STEM courses, so each

hour spent studying should yield more learning. Yet, STEM classes average much lower grades.

A student attempting to generate an equivalent grade across a STEM and non-STEM course will

have to invest significantly more than an extra 40 percent in study time in the STEM course.

Table 3 presents simple OLS results showing the relationship between individual and class char-

acteristics with grades and study hours after controlling for a large number of academic background

measures.15 The grades regression sample is at the student/class level, and the study hours per

week regression sample is at the class level. The first column gives the results for grades. The

patterns are consistent with those in Table 2: STEM classes give lower grades and females have

higher grades. Classes that have a higher fraction of female students also give higher grades. This

is consistent with there not being a grade curve that is common across STEM or non-STEM de-

partments. If such a curve existed, the higher grades females receive would translate into lower

grades for everyone else. Class size has a negative effect on grades. The coefficient on class size

confounds two effects that work in opposite directions. On the one hand, students prefer higher

grades so higher enrollments should be associated with higher grades. On the other, courses that

have high intrinsic demand may have lower grades since these courses do not need to have high

grades to attract students.

The second column on Table 3 shows regressions of study hours on the average characteristics

of the class. STEM classes are associated with about an extra half hour of study, slightly less

than what is seen in the descriptive statistics. This suggests that STEM classes are attracting

students who are willing to study more, with the grading policies in the STEM classes further

spurring on these students to commit more time to study. Classes that have more women also

study more, consistent with the previous literature (DiPrete & Buchmann 2013). But perhaps

the most interesting coefficient is that on average grades. Courses that give higher grades have

15We restrict our sample to standard classes with at least 16 students. The total number of classes in the data

set is 2,026. From this we exclude nearly half of the classes from the analysis. Many of the excluded classes can be

categorized into: non-academic classes (e.g. “academic orientation” or “ undergraduate advising”), advanced and

remedial independent student courses (including tutoring), classes in fine arts requiring individualized instruction

(e.g. “voice”, “jazz ensemble”, or “art studio”), and graduate-level classes taken by very advanced undergraduate

students.
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Table 1: Descriptive Statistics by Gender

Men Women

High school GPA 3.49 3.62

(0.472) (0.401)

ACT Reading Score 26.1 26.0

(5.13) (4.84)

ACT Math Score 25.7 23.9

(4.65) (4.23)

Fall 2012 GPA 2.86 3.12

(0.938) (0.848)

Fall 2012 Credits 11.5 11.7

(3.97) (3.85)

STEM Major 38.3% 24.6%

STEM & Econ Major 59.2% 37.6%

Black 6.86% 7.93%

Hispanic 2.48% 2.80%

Misc. Min. 2.10% 2.86%

1st Gen 13.5% 15.0%

Pell Grant 28.8% 30.2%

Note: Fall 2012 University of Kentucky undergraduate students, 7,904 men, 8,286 women. “Econ Major” includes

Economics, Finance, Accounting, and Data Sciences. 1st Gen is first-generation college students. Standard

deviations in parentheses.

less study time, suggesting grades should be interpreted as relative, not absolute, measures of

accomplishment, as well as suggesting grade inflation may have negative consequences for learning.

3 Model

The descriptive evidence motivates our model of course choices. The key components of the model

are that grading policies influence enrollment decisions directly because students value grades but

also indirectly through incentivizing (costly) study effort. Individual i chooses n courses from the

set [1, . . . , J ]. Let dij = 1 if j is one of the n courses chosen by student i and zero otherwise.
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Table 2: Descriptive Statistics by Course Type

STEM Non-STEM

Class Size 80.2 41.4

(99.3) (46.0)

Average Grade 2.94 3.27

(0.45) (0.42)

Average Grade | Female 3.00 3.37

(0.56) (0.43)

Study Hours 3.37 2.45

(1.42) (0.81)

Percent Female 37.0% 58.3%

Percent Fem.Prof. 27.0% 46.4%

Note: Fall 2012 University of Kentucky courses with enrollments of 16 or more students, 341 STEM courses, 743

non-STEM courses. For study hours, 327 STEM courses and 652 non-STEM courses. Standard deviations in

parentheses.

Following Nevo et al. (2005), we assume the payoff associated with a bundle of courses is given

by the sum of the payoffs for each of the individual courses where the payoffs do not depend on

the other courses in the bundle.16 We specify the payoff for a particular course j as depending on

student i’s preference for the course, δij , the amount of study effort the individual chooses to exert

in the course, sij , and the expected grade conditional on study effort, E [gij | sij ]:

Uij = φiE [gij | sij ]− ψisij + δij (1)

φi then gives how much the individual values grades while ψi gives the individual’s cost of studying.

Students then solve the following maximization problem when choosing their optimal course bundle:

max
di1,...,diJ

J∑
j=1

dijUij (2)

subject to:
J∑
j=1

dij = n, dij ∈ {0, 1}∀j

16For a model that includes complementarities in bundled choice, see Gentzkow (2007). The Gentzkow (2007)

framework is not feasible in our setting because of the large number of potential course bundles.
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Table 3: Regressions of Grades and Study Time on Characteristics of the Individual and/or Class

Study hours

Dependent Var. Grade per week

STEM Class -0.422 0.444

(0.010) (0.094)

Female 0.213

(0.009)

Percent Female 0.387 0.371

(0.024) (0.172)

Average Grade -0.688

(0.077)

ln(Class Size) -0.057 -0.184

(0.004) (0.051)

Observations 58,081 968

Note: Additional controls for grades regression include, minority, freshman, first-generation, STEM major, Pell

grant, in-state, ACT score, HS GPA, % minority, % freshman, % first-generation. “Average Grade” is calculated

using the final grades for the course. Additional controls in study hours regression include % minority, % freshmen,

% first-generation, % STEM major, % Pell grant, % in-state, avg. ACT score, avg. HS GPA.
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The grade student i receives in course j, gij , depends on the academic preparation of student

i for course j, Aij , the amount of study effort put forth by the student in the course, sij , the

grading policies of the professor, and a shock that is unknown to the individual at the time of

course enrollment, ηij . We specify the grading process as:

gij = βj + γj (Aij + ln(sij)) + ηij (3)

Grading policies by the professors are then choices over an intercept, βj , and a return to academic

preparation and effort, γj .
17 Gains from study effort enters in as a log to capture the diminishing

returns to studying. Along with the linear study effort cost defined in the utility function, this

ensures an interior solution for the optimal amount of study time.

Making grades desirable but effort costly allows us to consider two separate explanations for

observed gender differences in study hours and conditional grade outcomes: First, women may

be studying more and earning conditionally higher grades because they value grades more than

men. Alternatively, women may be studying and achieving more because they find studying less

costly than men. Section 4 discusses how data on study hours from course evaluations allow us to

empirically distinguish these mechanisms.

Students are assumed to know the professors’ grading policies.18 Substituting in for expected

grades in (1) yields:

Uij = φi (βj + γj [Aij + ln(sij)])− ψisij + δij (4)

The optimal study effort in course j can be found by differentiating Uij with respect to sij :

0 =
φiγj
sij
− ψi

s?ij =
φiγj
ψi

(5)

Substituting the optimal choice of study time into (4) yields:

Uij = φi (βj + γj [Aij + ln(φi) + ln(γj)− ln(ψi)− 1]) + δij (6)

17For example, if there is a field-wide (or department-level) mandated/recommended grade distribution, we will be

able to capture such a policy, as βj and γj will have lower variance with-in vs. across department or field.
18Students have a number of formal and informal resources to learn about grading policies. Informally, they may

rely on friends who have previously taken the course and other information social networks. Professors may send out

preemptive signals by posting syllabi online. More formally, course evaluations, which also reveal the (anonymous)

responders’ own expected final course grades, are on-line and publicly available. In addition, several websites curate

online “reviews” of professors and courses.
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Those who have lower study costs, low ψi, and higher levels of academic preparation, high Aij , find

courses with higher γj ’s relatively more attractive all else equal. Those who place a relatively high

weight on expected grades, high φi, study more conditional on choosing the same course, but are

more attracted to courses with higher grade intercepts, high βj .

Substituting the expression for optimal study time into the grade process equation yields:

gij = βj + γj (Aij + ln(φi) + ln(γj)− ln(ψi)) + ηij (7)

Professors who set relatively higher values of γj see more study effort because higher γj ’s induce

more effort and because higher γj ’s attract students with lower study costs.

The key equations for estimation are then given by:

(i) the solution to the students maximization problem where (6) is substituted into (2),

(ii) the grade production process given in (7), and

(iii) the optimal study effort given in (5).

The next section describes the parameterizations used to estimate the model as well as the assump-

tions necessary to overcome the fact that our measures of study effort from the course evaluations

are not linked to the individual’s characteristics.

4 Estimation

We first describe our estimating strategy under the assumption that there is no student-level unob-

served heterogeneity. Under this assumption, the log likelihood function is additively separable, and

we are able to estimate the parameters in three stages. We then show how to adapt our estimation

method to handle student-level unobserved heterogeneity.

In the first stage, we estimate a reduced form version of the grade production process (Eq. (7)).

The relationship between student characteristics and grades gives estimates for the reduced form

parameters. The returns to effort are also identified, up to a normalization at the department level,

by how student characteristics translate into grades relative to the normalized course.19

In the second stage, we relate the optimal study effort given in Eq. (5) to the student evaluation

data. The evaluations are collected for each class, and students report how many hours they spent

19Technically, we mean groupings of departments. See Table A.13 for a list of departments in each of the aggregate

groupings. From hereon, we refer to these groupings as departments.
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studying in that class. This helps us recover some of the study effort parameters, as well as unravel

some of the normalizations on the γ’s required in the first stage. We are able to relate all γ’s across

departments, but still can only identify the γ’s relative to one course.

In the last stage, we estimate the choice problem given by Eqs. (6) and (2). We use the

estimates from the first stage to calculate expected grades for each student and the estimated effort

from the second stage. Combining the estimates from these three stages allows us to identify all

the grading policy parameters, the grade preference parameters, the effort cost parameters, and

the course preference parameters.

4.1 Parameterizations

To estimate the model, we need to place some structure on course preferences, δij , the value of

grades, φi, and the cost of effort, ψi. Further, we must relate academic preparation, Aij , to what

we see in the data. Denote wi = 1 if individual i is female and zero otherwise. Denote Xi as a row

vector of explanatory variables such as ACT scores, high school grades, race, etc.20 Denote Zi as

a row vector of explanatory variables that affect preferences for particular departments or levels of

courses within departments. Hence Zi includes gender as well as year in school, allowing women to

have preferences for classes in particular departments and the attraction of upper-division versus

lower-division classes to vary by department and year in school. Preference shocks for courses are

represented by εij . Finally, we partition courses into K departments, K < J , where k(j) gives the

department for the jth course. We then parameterize the model as follows:

Aij = wiα1k(j) +Xiα2k(j) (8)

δij = δ0j + wiδ1k(j) + Ziδ2k(j) + εij (9)

ψi = exp (ψ0 + wiψ1 +Xiψ2) (10)

φi = φ0 + wiφ1 (11)

There is no intercept in Aij as it can not be identified separately from the βj ’s. Note that the

same variables enter into academic preparation, preferences, and effort costs, only with different

coefficients. Preferences for courses allow for both course fixed effects as well as students with

particular characteristics preferring courses in particular departments, δ1k(j). Note also that the

effort costs are exponential in the explanatory variables. This ensures that effort costs are positive.

20The majority of students at the University of Kentucky submit ACT scores in their college applications.
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Finally, preferences for grades are only allowed to vary by gender. In principle, we could allow

them to vary with Xi as well, but this would substantially complicate the model.

Having separate estimates by gender across all the relevant parameters will help uncover some

of the driving forces behind the gender gap in STEM. For example, if female intrinsic demand for

courses in STEM departments is relatively low (δ1k(j) negative) while preferences for grades and

cost of effort are relatively equal across males and females (φ1 and ψ1 close to zero), then changing

grading policies will have no effect on the gender gap in STEM. In this case, it would require figuring

out why females are not interested in STEM fields, and policies would have to be geared more

towards early education about opportunities in STEM for females, or changing cultural attitudes

towards females in STEM. On the other hand, if females have significantly different preferences over

grades and study effort compared to males, then altering grading policies could affect the gender

distributions within classes and departments. For example, if females have higher preferences for

grades (φ1 positive) and lower cost of effort (ψ1 negative) than males, then increasing γj and

correspondingly changing β to keep enrollments in STEM courses the same would result in an

increase in the fraction of females in STEM.

4.2 Estimation without Unobserved Heterogeneity

4.2.1 Grade parameters

Substituting the parameterizations for academic preparation, Ai, the value of grades, φi, and study

costs, ψi, into (7) yields the following reduced form grade equation:

gij = θ0j + γj
(
wiθ1k(j) +Xiθ2k(j)

)
+ ηij (12)

where:

θ0j = βj + γj(ln(φ0) + ln(γj)− ψ0) (13)

θ1k(j) = α1k(j) + ln(φ0 + φ1)− ln(φ0)− ψ1 (14)

θ2k(j) = α2k(j) − ψ2 (15)

We estimate the reduced form parameters {θ0j , θ1, θ2} as well as the structural slopes, the γj ’s,

using nonlinear least squares. A normalization must be made for every department as scaling

up the θ’s by some factor and scaling down the γ’s by the same factor would be observationally
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equivalent. We set one γj equal to one for each department.21 Denote Ck as the normalization for

department k. We then estimate γNj where γN = γj/Ck(j). Similarly, we estimate θN1k(j) and θN2k(j)

where θN1k(j) = θ1k(j)Ck(j) and θN2k(j) = θ2k(j)Ck(j).

The variation in the data used to identify {θN1 , θN2 } comes from the relationship between student

characteristics and grades in each department. The variation in the data used to identify the γNj ’s

is how these characteristics translate into grades relative to the normalized courses.

4.2.2 Study parameters

We next turn to recovering some of the study effort parameters as well as undoing the normalization

made on all the γ’s but one. To do so, we use (5). The issue with using (5) is that we do not

directly observe study effort. However, the course evaluation data give reported study hours for each

individual in the classroom. This information cannot be linked to the individual data on grades,

academic preparation, and course choices. But the evaluation data does provide information about

the year in school of the evaluator (e.g., freshman, sophomore, junior, or senior). In contrast to the

reduced form results shown in Table 3, the evaluation data is collapsed to the average values per

year in school cross course level and linked to the enrollment data.22

To link study hours to study effort, we assume that the relationship is log-log with measurement

error ζij :

ln(hij) = µ ln(s∗ij) + ζij (16)

Substituting in for s∗ij yields:

ln(hij) = µ (ln(µ1) + ln(φi) + ln(γj)− ln(ψi)) + ζij (17)

= κ0 + wiκ1 −Xiκ2 + µ ln(γj) + ζij (18)

where:

κ0 = µ(ln(φ0)− ψ0) (19)

κ1 = µ(ln(φ0 + φ1)− ln(φ0)− ψ1) (20)

κ2 = µψ2 (21)

21The study effort analysis allows us to recover the normalizations for all the departments but one, as we will show

in section 4.2.2. The final normalization is undone in the estimation of the utility parameters, shown in section 4.2.3.
22As with the summary statistics, we drop small classes and those with low response rates.
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The coefficient on ln(γj) then gives the curvature of the relationship between study effort and hours.

Recall that we had to normalize one γj for every department in the grade equation. Substituting

in with our estimate γ̂Nj and making the appropriate adjustments yields:

ln(hij) = κ̃0 + wiκ1 −Xiκ2 + κ3k(j) + µ ln(γ̂N ) + ζij (22)

where κ3k(j) = µ ln(Ck(j)/C1) and κ̃0 = κ0 + µ ln(C1). Here C1 is the normalized course for the

base department.

Since we can only link characteristics of the students to the evaluation data by year in school,

the observations we use in estimating the study parameters are at the class-year level. Let li indicate

the year in school of student i. Our estimating equation for students of level l is then:∑
i(li = l)dij ln(hij)∑

i(li = l)dij
= κ̃0 + wjlκ1 −Xjlψ2 + κ3k(j) + µ ln(γ̂N ) + ζjl (23)

where wjl and Xjl are the averages of these characteristics for those of year level l enrolled in course

j. We correct for potential bias due to measurement error in γj using instrumental variables. We

use the share of freshmen, sophomores, and juniors in each class as instruments for log(γj), and

estimate using limited information maximum likelihood (LIML). The instruments are strongly sta-

tistically correlated with the potential endogenous variable. F-statistic calculations on the excluded

instruments pass the rule-of-thumb test (F-stat = 12.05).

Estimates of (23) allow us to recover the elasticity of hours with respect to study effort, µ̂, as

well as an estimate of ψ2, how observed characteristics affect study costs, as ψ̂2 = κ̂2/µ̂. We can

also partially undo the normalization on the γ’s, solving for γ’s that are normalized with respect

to one course rather than one course in each department. Namely, let γ̂Pj = γ̂Nj exp(κ̂2k(j)/µ̂). γ̂Pj

provides an estimate of γj/C1. The last normalization–the returns on preparation and study time

in the normalized course–will be recovered in the estimation of the utility function parameters. The

remaining structural parameters embedded in (23) can be recovered after estimating the parameters

of the utility function, described in the next section.

4.2.3 Utility parameters

We now turn to estimation of the parameters of the utility function. Given our estimates of the

grade equation, equation (12), we can calculate expected grades in each of the courses given optimal

study choices:

̂E[gij |s∗ij ] = θ̂0j + γ̂Nj

(
wiθ̂

N
1k(j) +Xiθ̂

N
2k(j)

)
(24)
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Given the estimates of the unnormalized returns to study and ability, γ̂, we can express the utility

i receives from choosing course j and studying optimally as:

Uij = δ0j + wiδ1k(j) + Zijδ2k(j) +
(

̂E[gij |s∗ij ]− γj
)

(φ0 + wiφ1) + εij (25)

We then substitute in for γj with C1γ̂
P
j which, after rearranging terms, yields:

Uij = δ0j + wiδ1k(j) + Zijδ2k(j) + ̂E[gij |s∗ij ](φ0 + wiφ1)− C1γ̂
P
j (φ0 + wiφ1) + εij (26)

The goal is then to recover the course fixed effects, δ0j , the value women place on courses in

particular departments, δ1k(j), other department-specific preferences as well as preferences over

instructor characteristics, δ2k(j), preferences over grades, φ, and the returns to ability and study

time in the normalized course, C1.

The variation in the data that identifies φ0 and φ1 comes from how individuals sort based on

their comparative advantage in grades. Someone who is strong in mathematics will be more likely

to sort into classes where the returns to ability in mathematics is high. To the extent that women

are more or less likely to sort based on where their abilities are rewarded then identifies φ1.

More subtle is the identification on the returns to the normalized course. If separate course

fixed effects were estimated for both men and women then C1 would not be identified as it would

be subsumed into the course fixed effects. But by allowing females preferences to vary at the

department rather than the course level,23 the extent to which sorting happens beyond the effect

through grades themselves identifies C1.

We assume that εij is distributed Type 1 extreme value. If individuals were choosing one

course, estimation of the parameters in (26) would follow a multinomial logit. Students, however,

choose bundles of courses. Even though the structure of the model is such that there are no

complementarities for choosing particular combinations of courses, the probability of choosing a

particular bundle does not reduce to the probabilities of choosing each of the courses separately.

Simulated maximum likelihood

We use simulated maximum likelihood coupled with a fixed point algorithm to estimate the

choice parameters. To illustrate the approach, denote Ki as the set of courses chosen by i. Denote

Mi as the highest payoff associated with any of the non-chosen courses:

Mi = max
j /∈Ki

δ0j + wiδ1k(j) + Zijδ2k(j) +
(
Ê[gij ]− γ̂j

)
(φ0 + wiφ1) + εij

23Note that females are also allowed to value having a female professor more or less than males.
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Suppose Ki consisted of courses {1, 2, 3} and that the values for all the preference shocks, the εij ’s,

were known with the exception of those for {1, 2, 3}. The probability of choosing {1, 2, 3} could

then be expressed as:

Pr(di = {1, 2, 3}) = Pr(U i1 > Mi, U i2 > Mi, U i3 > Mi)

= Pr(U i1 > Mi)Pr(U i2 > Mi)Pr(U i3 > Mi)

= (1−G(Mi − U i1))(1−G(Mi − U i2))(1−G(Mi − U i3))

where G(·) is the extreme value cdf and U ij is the flow payoff for j net of εij .

Since the εij ’s for the non-chosen courses are not observed, we integrate them out of the like-

lihood function and approximate the integral by simulating their values from the Type I extreme

value distribution. Denoting Mir as the value of Mi at the rth draw of the non-chosen εij ’s and R

as the number of simulation draws, estimates of the reduced form payoffs come from solving:

max
φ,δ

∑
i

ln

 R∑
r=1

J∏
j=1

(
1−G(Mir − U ij)

)dij /R
 (27)

Within the simulated maximum likelihood procedure, we solve for the course-specific effects,

the female cross department effects, and preferences for upper division STEM and non-STEM

courses by for upperclassmen using a fixed algorithm in the spirit of Berry et al. (1995). Using

the fixed point algorithm serves two purposes. First, the number of parameters the optimization

routine searches over is substantially smaller, searching over four parameters rather than 1,090

parameters.24 Second, it ensures that the model matches the data on the following dimensions (i)

enrollment in each course, (ii) the share of courses taken by each gender in each department, and

(iii) the share of upper and lower division courses in STEM and non-STEM taken by upper and

lower classmen.

The fixed point algorithm works as follows. Denote the share of enrollments in course j in

the data as sdj . Denote the share of enrollments of women in department k as sdkw and share of

enrollments for upper-class students in upperclass courses of type c, c ∈ {STEM,non − STEM}

as sdcu. Given an initial guess of the δ’s, we can calculate the model analogs to each of these shares

and update the model analogs in such a way that we eventually iterate to a fixed point. Letting

241,071 course fixed effects, 13 female cross department effects, and 2 STEM cross upper and lower classmen effects

are solved for using the fixed point algorithm. The remaining parameters are preferences for grades for men and

women, female cross female professor, and the normalizing constant.
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τi ∈ (0, 1] be a dampening factor to ensure we have a contraction mapping, the mth update of the

δ’s follows:25

δ
(m)
0j = δ

(m−1)
0j + τ0

(
ln
[
sdj

]
− ln

[
sj

(
δ(m−1)

)])
δ
(m)
1k = δ

(m−1)
1k + τ1

(
ln
[
sdkw

]
− ln

[
skw

(
δ(m−1)

)])
δ
(m)
2k = δ

(m−1)
2k + τ2

(
ln
[
sdku

]
− ln

[
sku

(
δ(m−1)

)])

Updating continues until the maximum of the absolute value of the change in the δ’s is sufficiently

small.

Our simulated maximum likelihood approach is similar in spirit to that of Nevo et al. (2005). The

estimator in Nevo et al. (2005) randomly samples rankings of chosen options, computes likelihood

contributions conditional on rankings, and averages across sampled rankings to simulate a full

likelihood. Our approach simulates the stochastic utility of the best non-chosen course, computes

likelihood contributions conditional on this stochastic utility, and averages across simulation draws

to simulate a full likelihood.

Recovering the remaining structural parameters

Given φ̂0, φ̂1, and Ĉ1, we are now in a position to recover the remaining structural pa-

rameters. The normalizing constants for each department where k 6= 1 can be recovered using

Ĉk = exp(κ̂2k(j)/µ̂2)Ĉ1. Estimates of the unnormalized γj ’s are given by γ̂j = γ̂Nj Ĉk(j).

The remaining structural parameters from the study effort estimation, equation (23), are the

study cost intercept, ψ0, and the (relative) female study costs, ψ1. These can be recovered using:

ψ̂0 = ln(Ĉ1) + ln(φ̂0)−
ˆ̃κ0
µ̂

ψ̂1 = ln(φ̂0 + φ̂1)− ln(φ̂0)−
κ̂1
µ̂

The remaining structural parameters of the grade equation, equation (12), are the course intercepts,

25If we were only updating one of these sets of δ’s no dampening would be needed. We have found that setting τ0

and τ1 to 1 and setting τ3 to 0.5 is sufficient for the problem to be a contraction mapping.
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βj , and the returns to observed abilities α1k(j) and α2k(j). These can be recovered using:

β̂j = θ̂0j − γ̂j(ln(φ̂0) + ln(γ̂j)− ψ̂0)

α̂1k(j) =
θ̂N1j

Ĉk(j)
− ln(φ̂0 + φ̂1) + ln(φ̂0) + ψ̂1

α̂2k(j) =
θ̂N1j

Ĉk(j)
+ ψ̂2

4.3 Estimation with Unobserved Heterogeneity

We now consider the case when one of the components of Xi is unknown to take into account

correlation across outcomes for the same individual. We assume that this missing component takes

on S values where πs is the unconditional probability of the sth value. Let Xis be the set of

covariates under the assumption that individual i is of type s. The components of the unobserved

heterogeneity are identified through the correlation of grades in each of the courses as well as the

probabilities of choosing different course combinations.

Integrating out over this missing component destroys the additive separability of the log likeli-

hood function suggesting that the estimation of the three sets of parameters (grades, course choices,

and study time) can no longer be estimated in stages. However, using the insights of Arcidiacono

& Jones (2003) and Arcidiacono & Miller (2011), it is possible to estimate some of the parameters

in a first stage.

In particular, note that the selection problem occurs because students choose courses. By

focusing just on the grade estimation as well as a reduced form of the choice problem, we can

greatly simplify estimation, recovering the grade parameters as well as the conditional probabilities

of being each of the types. These conditional type probabilities can then be used as weights in the

estimation of the choice and study parameters.

First consider the parameters of the grade process and the course choices. With unobserved

heterogeneity, we now need to make an assumption on the distribution of ηij , the residual in the

grade equation. We assume the error is distributed N(0, ση). We then specify a flexible choice

process over courses that depends on an parameter vector ϕ. The integrated log likelihood is:

∑
i

ln

(
S∑
s=1

πsLigs (θ, γ)Lics (ϕ)

)
(28)

where Ligs (θ, γ) and Lics (ϕ) are the grade and choice (of courses) likelihoods respectively condi-

tional on i being of type s.
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We apply the EM algorithm to then estimate the grade parameters and course choice parameters

in stages. We iterate on the following steps until convergence, where the mth step follows:

1. Given the parameters of the grade equation and choice process at step m−1, {θ(m−1), γ(m−1)}

and {ϕ} and the estimate of π(m−1), calculate the conditional probability of i being of type

s using Bayes rule:

q
(m)
is =

π
(m)
s Ligs

(
θ(m−1), γ(m−1)

)
Lics

(
ϕ(m−1))∑

s′ π
(m)
s′ Ligs′

(
θ(m−1), γ(m−1)

)
Lics′

(
ϕ(m−1)

) (29)

2. Update π
(m)
s using

(∑N
i=1 q

(m)
is

)
/N .

3. Using the q
(m)
is ’s as weights, obtain {θ(m), γ(m)} by maximizing:

∑
i

∑
s

q
(m)
is ln [Ligs (θ, γ)] (30)

4. Using the q
(m)
is ’s as weights, obtain ϕ(m) by maximizing:

∑
i

∑
s

q
(m)
is ln [Lics (ϕ)] (31)

Once the algorithm has converged, we have consistent estimates of {θ, γ, ϕ} as well as the

conditional probabilities of being in each type. We can use the estimates of qis as weights to

form the average type probabilities of students of year in school l in class j to then estimate the

parameters in (23). Finally, we use the estimates of qis as weights in estimating the structural

choice parameters using (27).

4.4 Implications from the Demand-Side Estimation

Even without estimating professor preferences, much can be learned from the demand-side esti-

mates. First, we can explain some of the persistent gender gap in STEM majors. Demand-side

estimates allow us to decompose differences in course choices, grades, and study effort between

males and females into parts due to:

(i) differences in preferences (δij),

(ii) differences in value of grades (φi),

(iii) differences in study costs (ψij).
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The estimates of the model can also be used to see how enrollment in STEM courses by both men

and women would be affected by changes in grading practices. First, we can adjust the intercepts

in the grading equation such that the average student’s expected grade is the same across courses,

isolating the role of the level of the grade from the differences in the slopes, and therefore return

to effort. Second, we can forecast course choices if all professors were to have the same grading

practices.

5 Results

5.1 Preference estimates

Table 4 presents the preference parameters with the exception of the study costs, the class-specific

intercepts, and the coefficients on year in school cross department cross level of the course. Recall

that the parameter on expected grades is identified from variation in how abilities are rewarded

in different classes. While both men and women value grades, women derive substantively higher

utility from higher grades. One additional grade point yields about 62 percent higher utility for

females, compared to males. The estimate of female preferences for female professors is positive,

with the estimate suggesting that women are indifferent between a class that had a female professor

and one that had a male professor who gives grades that are about 0.41 points higher. This

coefficient is likely biased upward due to the aggregation of departments. To the extent that

female professors are more likely to be in departments that females have a preference for and

there is variation within our aggregated groups, we may be picking up within-group preferences for

departments.

The second set of rows of Table 4 shows female preferences (relative to male preferences) for

different departments. The omitted category is Agriculture. The largest difference in preferences is

between Engineering and English: 1.47, which translates into over 3.7 grade points. This helps to

account for the severe under subscription to Engineering courses by women, where female share of

enrollment is at 18 percent. No other department has female shares under 37 percent. Engineering

is thus an outlier, with all the other gaps at 0.73 or smaller (≤ 1.82 grade points).
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Table 4: Estimates of Preference Parameters

Preference for: Coeff. Std. Error

Expected grades (φ) 0.246 (0.010)

Female × expected grades 0.153 (0.010)

Female × female professor 0.162 (0.010)

C1 (normalizing constant) 0.156 (0.014)

Female preferences for Departments

English 0.345

Education & Health 0.332

Psychology 0.245

Biology 0.202

Mgmt. & Mkting. 0.151

Regional Studies 0.147

Language -0.123

Mathematics -0.148

Communications -0.159

Chem & Physics -0.198

Social Sciences -0.279

Econ., Fin., Acct. -0.380

Engineering -1.128

Note: Female preferences for Departments are female non-grade preference for departments, compared to males.

STEM departments are bolded.

5.2 Study effort estimates

Estimates of the study effort parameters are presented in Table 5.26 Women have almost 10% higher

studying costs compared to men. Overall, women study 33% more than men, but we estimate that

they would study over 42% more because of preferences for grades.27 The effort elasticity, µ, is

26Because of measurement error in the γ’s that is compounded by it entering as a log in the study effort equation,

we drop classes in the bottom 5% of the γ distribution. Parameters of the study effort equation stabilize after this

point.
27This number comes from the difference in the log of the preferences for grades and the translation between effort

and study hours: µ(ln(φ0 + φ1)− ln(φ0)− ψ1) = 0.861 · (ln(0.399)− ln(0.246)).
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0.861 implying 1 percent increase in the returns to effort (γ), translates to a 0.86 percent increase

in study hours.

The second set of columns shows how the returns to study effort vary across classes, taking the

median γ class for each course grouping. The heterogeneity is quite large. Doubling study effort

would translate into an almost 0.4 grade point increase in Engineering but would translate into a

bit more than a tenth of a grade point in Management & Marketing and Education & Health.

Table 5: Estimates of Study Effort and Departmental Returns to Studying

Study Effort Median γ

Coeff. (−ψ) Std. Error Department Coeff.

Female -0.097 (0.117) Engineering 0.373

ACT read 0.025 (0.027) Mathematics 0.293

ACT math 0.048 (0.029) Econ., Fin., Acct. 0.284

HS GPA -0.191 (0.115) English 0.277

Unobs. Type -0.674 (0.205) Chem & Physics 0.268

Communication 0.226

Languages 0.222

Effort Elasticity Regional Studies 0.220

ln(γ) 0.861 (0.299) Biology 0.219

Psychology 0.200

Agriculture 0.187

Social Sciences 0.179

Education & Health 0.150

Mgmt. & Mkting 0.133

Note: Additional controls include minority indicator variables (Black, Hispanic, Other Minority) and first

generation college student status. STEM departments are bolded.

5.3 Grade estimates

The estimated α’s (the department-specific ability weights) are given in Table 6. These are calcu-

lated by taking the reduced-form θ’s, undoing the normalization on the γ’s, and subtracting off the

part of the reduced form that θ’s that reflects study time (taken from ψ). The departments are

sorted such that those with the lowest female estimate are listed first. The female-specific ability
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parameter is a measure of pre-college human capital accumulation. Differences between males and

females can arise due to individual preferences and/or conscious/sub-conscious bias from teach-

ers or parents, which then lead to different choices in course-work, extra-curricular activities, and

hobbies that lead to human capital accumulation along different dimensions.28

Note that four of the five STEM departments have the lowest female estimates. This occurs

because females study substantially more than males yet receive only slightly higher grades in STEM

courses. Given that sorting into universities takes place on both cognitive and non-cognitive skills

and that women have a comparative advantage in non-cognitive skills, males at UK have higher

STEM-specific cognitive skills than their female counterpart even though in the population cognitive

skills are similar between men and women. The returns to the different components of the ACT

score are intuitive. Higher returns to ACT math are seen in STEM classes, with higher returns for

ACT reading in English and Psychology.

With the estimates of the grading equation, we can calculate expected grades for an average

student in each department. We do this for freshmen, separately by gender, both unconditionally

and conditional on taking courses in the department. Results are presented in Table 7. Four

patterns stand out. First, there is positive selection into STEM courses: generally those who take

STEM classes perform better than the average student. This is the not the case for all departments.

Indeed, the second pattern is that negative selection is more likely to occur in departments with

higher grades. Third, women are disproportionately represented in departments that give higher

grades for the average student. Of the six departments that give the highest grades for the average

student (female or male), all have a larger fraction female than the overall population. In contrast,

of the five departments that give the lowest grades—all of which are in the STEM umbrella—,

females are under-represented relative to the overall population in all but one (Biology). Finally,

and consistent with Table 6, women have a comparative advantage in non-STEM courses. In almost

all cases, the unconditional expected grades for women are higher than for men, in part because

women study more. The two exceptions are i) Chemistry & Physics and ii) Economics, Finance, &

Accounting.

28Of course, all of the data used in the education production function are projections of human capital. The large

estimates on female across almost all departments when we control for ACT scores and HS GPA shows that these

numerical pre-college academic measures fail to capture substantial portions of human capital.
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Table 6: Estimates of Department-Specific Ability Weights (α)

Female ACT read ACT math HS GPA Type

Education & Health 0.360 0.001 0.038 1.424 7.694

Regional Studies 0.334 -0.001 0.087 1.903 7.588

Psychology 0.279 0.082 0.083 2.385 7.676

Communication 0.222 0.008 -0.018 1.545 6.330

Mathematics 0.030 -0.024 0.227 1.714 5.772

Languages 0.026 0.022 0.044 1.613 6.716

Social Science -0.054 0.080 0.035 2.284 8.126

Mgmt. & Mkting -0.114 0.036 0.013 2.736 10.316

English -0.150 0.048 0.001 1.353 6.513

Agriculture -0.219 0.040 0.069 2.371 4.359

Biology -0.257 0.043 0.107 2.045 7.580

Engineering -0.264 -0.005 0.059 0.745 4.429

Econ., Fin., Acct. -0.475 0.016 0.122 1.432 5.120

Chem. & Physics -0.664 0.000 0.180 1.939 6.214

Note: Additional controls include minority indicator variables (Black, Hispanic, Other Minority) and first

generation college student status. STEM departments are bolded.

5.4 Drivers of the STEM gap

Given the estimates of the student’s choices over classes and effort and the estimates of the grading

process, we now turn to examining sources of the male-female gap in choice of STEM classes.

Table 8 shows share of STEM classes taken for males and females as well as how that share changes

for women as we change different characteristics. We also report the difference between the male

and female shares as a measure of the gender gap in STEM participation. The baseline shares of

STEM classes for men and women are 50.7% and 34.6%, respectively implying there is a baseline

participation gap of 16 percentage points. The first counterfactual changes female preferences for

grades to be the same as male preferences for grades. This increases the share of STEM courses

for women by 2.0 percentage points, which is a 12% reduction in the gap. Because professors

do not respond to changes in female demand for STEM courses, male STEM enrollment remains
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Table 7: Expected Freshmen GPA for Median Classes By Department, Unconditional and Condi-

tional on Taking Courses in that Department

EGPA Females EGPA Females EGPA Males EGPA Males Share

Unconditional Conditional Unconditional Conditional Female

Education & Health 3.57 3.62 3.40 3.30 0.70

Agriculture 3.46 3.26 3.38 2.97 0.56

Communication 3.43 3.37 3.19 3.17 0.56

Mgmt. & Mkting. 3.34 3.41 3.20 3.28 0.52

Languages 3.28 3.29 3.12 3.12 0.55

Regional Studies 3.22 3.30 3.01 3.12 0.66

Social Sciences 3.12 3.10 2.97 2.90 0.51

English 3.07 3.13 2.91 2.99 0.65

Psychology 2.99 2.98 2.76 2.73 0.67

Engineering 2.86 3.02 2.79 3.04 0.18

Econ., Fin., Acct. 2.79 2.93 2.80 2.90 0.37

Mathematics 2.69 2.75 2.58 2.70 0.47

Biology 2.66 2.81 2.56 2.76 0.60

Chem & Physics 2.43 2.61 2.48 2.73 0.47

Overall 0.51

Note: “Share Female” is % of enrollment in courses offered in the department that is female. “Unconditional”

represents the avg. grade outcome assuming that the entire student population enrolls in the course. STEM

departments are bolded.

unchanged in this partial equilibrium scenario.29

Turning off observed ability differences such as differences in ACT scores and high school grades

has smaller effects on the gap (counterfactual (2)), though larger effects are found for unexplained

gender differences in ability (counterfactual (3)). Note that these effects are not driven by women

being weaker academically per se, but in part due to women being relatively stronger in non-STEM

29In deriving the counterfactuals, ten classes (out of 1,084) with the estimated γ < 0.01 have their enrollments

fixed. A class with such a flat returns to effort implies that grades are exclusively dependent on ability, which leads

to unstable outcomes where these courses are either empty or extremely over-populated. Administrative constraints

such as enrollment caps and cancellation of classes with no demand would prevent such occurences in the real world.
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Table 8: STEM Enrollment Shares in Counterfactual Scenarios (Partial Equilibrium)

STEM Enrollment Share

Female Male Change in STEM gap†

Baseline 34.6% 50.7% 16.0

(1) Equalize Grade Prefs 36.6% -2.0

(2) Shift obs ability 35.2% -0.5

(3) Shift unobs ability 35.5% -0.9

(4) Equalize Non-grade Prefs 39.4% -4.8

(5) Fem prof effect off 35.0% -0.4

(6) Grade around 3� 38.5% 52.9% -1.7

Note: †: “Change in STEM gap” for the Baseline is the difference between the male and female STEM enrollment

shares. Values beneath this number are deviations from the baseline for the corresponding counterfactual

simulation. Female preference and ability parameters are adjusted to be identical to male preferences and abilities.

�: “Grade around 3” adjusts mean grade in all courses to a B, affecting both males and females. Professor

responses remain fixed in partial equilibrium analysis.

courses.

Counterfactuals (4) and (5) look at differences in tastes. Counterfactual (4) turns off non-grade

taste differences for departments, which increases the share of women to 39.4%, closing the STEM

gap by 4.8 percentage points or 30%. These taste differences may be a mixture of pre-college

experiences and the culture of different departments. Hence anything the university can do to close

the STEM gap on this end is likely bounded above by this number. Counterfactual (5) turns off

female preferences for female professors. One way of closing the gender gap in STEM would be to

hire more female professors. However, our estimates suggest that even equivalent representation of

female faculty in STEM and non-STEM fields would have a very small effect on the gender gap in

STEM participation.

Finally, in counterfactual (6), we examine how changing expected grades across departments

affects the gender gap. Namely, we equalize mean grades across courses by increasing (or decreasing)

the course-specific intercepts. However, there is still heterogeneity in grades due to the relative

difference in γ’s and α’s, the former being especially important as it dictates the returns to studying.

This counterfactual raises the share of STEM courses taken by females to about 38.5%, higher than

most of the other counterfactuals. The reason the effects are larger than in the first counterfactual
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is that the returns to studying are much higher in STEM courses and women are willing to study

more than men, due to valuing grades more. Note that while equalizing grades increases female

participation by 3.9 percentage points, it also increases male participation by 2.3 percentage points.

In aggregate, this decreases the gender gap in STEM participation by 1.7 percentage points or 10%.

While the patterns here suggest a potentially inexpensive way of closing the gender gap is to

equalize average grades across fields, professors are likely to strategically respond to restrictions

on grading policies. Professors may respond to restrictions on average grades by changing work-

loads (γ). In the following sections, we explicitly model professor responses and incorporate these

responses in our counterfactual predictions.

6 Equilibrium Grading Policies

In Section 5, we showed grading policy parameters βj and γj differ significantly across departments.

In particular, STEM courses generally have lower grading intercepts βj but higher returns on effort

γj compared to non-STEM courses. One principle goal of this paper is to analyze how these grading

differences influence course choices and the implications for the gender gap in STEM.

However, this finding also prompts an additional question: Why do grading policies vary across

courses? In particular, why do STEM courses have lower average grades but higher returns on

effort than non-STEM courses? Understanding how professors choose grading policies is crucial to

anticipate equilibrium responses to changes in the environment. For example, increasing STEM

preparation in the hopes of increasing the number of STEM majors may be partially undone by

how professors change their grading policies in response to the new environment.

The model we develop allows for grading policies to arise from differences in intrinsic demand of

students. Heterogeneity in non-grade preferences δij and abilities Aij imply that some courses will

be more popular than others even with homogenous grading policies. These differences in intrinsic

demand imply that the relationship between grading policies and the composition and outcomes

of enrolled students differs across courses. A professor teaching an intrinsically popular course will

need to grade especially harshly to achieve the same class size as a less popular course with average

grading standards.

Because grading policies in all courses affect the choices of students, the composition of students

in each course depends on the grading policies of all professors. This general equilibrium feature

means that each professor’s optimal grading policy depends on the grading policies of all other
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professors. We assume professors do not collude when choosing grading policies implying policies

are set in a non-cooperative game between professors.

To estimate professor preference parameters, we solve for parameter values which explain why

observed grading policies were optimal for professors. First, we estimate grading policy parameters

and student preference parameters using the methods described in Section 4. Second, we derive

the set of first order conditions which describe a pure-strategy equilibrium to the non-cooperative

grade policy setting game. This system of first order conditions describes how professor prefer-

ence parameters, grading policy parameters, and student parameters relate to one another when

all professors are setting grading policy parameters optimally. Finally, we solve for professor pref-

erence parameters which satisfy the set of first order conditions given estimates of grading policy

parameters and student preference parameters.

6.1 The Professor’s Problem

We assume professors choose grading policy parameters βj and γj to maximize an objective function

which depends on both the number and outcomes of students who take their class. We set up the

professor’s objective function to depend on (i) the number of students in their class, (ii) grades

given in the course, and (iii) the cost of assigning work. In particular, we specify the professor’s

objective function to penalize deviations from the professor’s ideal log enrollment, ideal grade for

the average student in the class, and ideal workload (as given by γ).

Denote Gj(β, γ) as the expected average grade in class j given the vector of grading policies for

all courses β and γ. The dependence on β and γ comes through the composition of the students

that take the course. Denoting Pij(β, γ) as the probability i takes course j given the vector of

grading policies, Gj(β, γ) is given by:

Gj(β, γ) = βj + γj

[∑N
i Pij(β, γ) [Aij + ln(φi)− ln(ψi)]∑N

i Pij(β, γ)
+ ln(γj)

]
Then the objective function professor j maximizes is:

Vj (β, γ) = −

(
ln

[∑
i

Pij (β, γ)

]
− e0

)2

− λ1
(
Gj(β, γ)− e1j

)2 − λ2 (γj − e2j)2 (32)

Specifying the objective function in this way allows for three sources of heterogeneity across

departments to affect grading policies. First is through innate demand for the courses. Courses

differ in their innate demand and systematic differences exist across departments. These innate

differences in demand affect both log enrollment–which affects the first term–but also affects the
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probability particular students take particular classes which can then affect the average grade given

in the class. Second is through preferences for ideal grades. This is captured by e1j where ideal

grades may on average be different across courses of particular types. Third is through ideal optimal

amount of work to assign, e2j . The ideal amount of work to assign may differ across departments

in part due to differences in the grading technology: it may be easier to grade, for example, math

problems than essays.

6.2 Estimation

Denote Wj as a vector that includes indicators for whether the course is in each of the fourteen

departments30, whether the course is an upper division, and whether the course is upper division

and in STEM. We parameterize e1j and e2j such that they vary with Wj as well as unobserved

preference terms e∗1j and e∗2j according to:

e1j = WjΨ1 + e∗1j

e2j = WjΨ2 + e∗2j

e∗1j and e∗2j are assumed to be orthogonal to the department and the level of the course as well as

innate demand (the δj ’s). These unobserved preference terms are not, however, orthogonal to the

grading policies. To account for the endogeneity of the grading policies, we use simulated method

of moments to estimate the weights on grades and workload (λ1 and λ2) as well as the parameters

governing ideal grades and workloads (Ψ1 and Ψ2).

Because of the complexity of jointly solving for the optimal grading policies as functions of the

parameters, we instead set up a grid of possible grading combinations. These combinations include

the full range of γj ’s as well as βj ’s that produce expected grades on the support of the data. Fixing

the other professor’s grading policies as what we have estimated in the previous step (the estimates

of the βj ’s and γj ’s), we calculate expected grades and enrollment for the different combinations of

β and γ on the grid.31 Using the log expected enrollments and grades for each combination of β

and γ as dependent variables, we then regress them on the a spline in β and γ, doing this separately

for each class. These functions predict expected enrollments and grades extremely well and we use

them when we calculate the professor’s objective function.

30Recall that classes are only counted as belonging to one department
31We use 50 β’s and 50 γ’s where the grid points are equally spaced and the support covers the range of expected

grades and γ’s seen in the data.
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The method of simulated moments then works as follows. Given draws of e∗1j and e∗2j , we

maximize the professor’s objective function with respect to β and γ where some of the components

of the objective function (expected grades and log expected enrollments) are approximated using

the previously mentioned spline. Given the optimal grading policies for particular draws of the

unobserved preferences, we then create moments that we can match from the data.32 Examples of

moments we match are, for each department, average grades, estimated γ’s, and enrollment. The

full list of moments are included in the Appendix Table A.14.

6.3 Professor preference estimates

Table 9 shows estimates of the professor parameters. The first row shows ideal log enrollment. The

number is close to zero–which is outside of the support–implying that enrollment is always costly.

Given that enrollment is costly, instructors deviate from their optimal grades and workloads by

giving lower grades and higher workloads than they would like.

The first column of Table 9 shows how ideal grades vary by department. The sorting of de-

partments by ideal grades shows that STEM instructors generally prefer having lower average

grades than their non-STEM counterparts. Note that for the baseline category–agriculture–the

ideal grade is between an A and a B (3.5). The actual average grade is closer to a B (3.2). This

suggests instructors prefer to give high grades but do not do so in part because it would encourage

student demand. The penultimate entry of the first column shows the standard deviation of the

unobserved preference over ideal grades. Most departments are within one standard deviation of

the unobserved preference with Education & Health an outlier on the high side and Engineering a

near-outlier on the low side.

The second column shows the results for the ideal workload. Departments with low ideal

grades tend to have high ideal workloads. For example, Engineering, Economics, and Mathematics

have the lowest ideal grades, yet are in the group of the four departments with the highest ideal

workloads. The correlation between the two sets of departmental coefficients is -0.76. The estimated

parameters imply that upper-level classes in some non-STEM departments (such as Education &

Health and Management & Marketing), the ideal grade is an A and the ideal γ is near zero.

To summarize, non-STEM professors generally prefer higher grades and require lighter work-

loads compared to their STEM colleagues.33 And both STEM and non-STEM professors prefer to

32We use 64 moments to estimate 37 parameters.
33Note that our model ignores spillovers across classes. Higher grades in introductory classes results in higher
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give out higher grades with lower workloads in upper-division classes. But student demand also

affects grading policies as instructors would prefer smaller class sizes. Biology and Chemistry &

Physics departments offer an example of this dynamic. Professors in these departments prefer giv-

ing students relatively high grades and low workloads. Indeed, their grading and effort preferences

track closer to professors in non-STEM departments. Yet, as we can observe in Table 7, these two

departments have the lowest average grades for freshmen, at around 2.7. The connection between

these seeming contradictory results lies in the high level of demand for courses in these two depart-

ments. Average enrollment size in classes in these two departments are over 100, more than double

the size of the average class in other departments.

6.4 Supply-side counterfactuals

To better understand the role of professor preferences in grading policies and STEM enrollment by

gender, Table 10 revisits the counterfactual analyses of Table 8 in a general equilibrium framework

in which instructors are allowed to re-optimize their grading policies in response to changes in

student characteristics or other factors. To do this, we first take the first order conditions of

professor j’s maximization problem with respect to βj and γj . Following this, we rearrange these

first order conditions so that optimal grading policies of instructor j, βj and γj , are defined as a

function of student characteristics, professor and student preference parameters, and equilibrium

grading policies of all instructors including instructor j. We then iteratively generate vectors of

grading policies until we obtain policies which satisfy the rearranged first order conditions. When

this condition holds, every instructor’s grading policies are a best response to all other instructor

grading policies.

Table 10 conducts the same counterfactuals as those in Table 8 with instructors now allowed

to update their grading practices in response to changes in student preferences and characteristics.

With one exception–equalizing grade preferences–, adding in responses by professors slightly lowers

the counterfactual decreases in the STEM gender gap. For example, in partial equilibrium, shifting

unobserved ability for females to that of males reduces the difference between the share of STEM

courses taken by females and the share of STEM courses taken by males by 0.9 percentage points.34

But Table 10, counterfactual (3) shows that taking into account professor responses means that the

demand for more advanced classes. Hence departmental pressures may explain part of the preferences we observe.
34From Table 8, the gender gap falls from 16 percentage points to 15.1 percentage points, for a difference of 0.9

percentage points.
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Table 9: Estimates of Professor Preferences

Ideal log enrollment (000’s) 0.109

Ideal Grades Ideal γ

Constant 3.536 Constant 0.112

Econ., Fin., Acct. -0.431 Engineering 0.181

Engineering -0.271 Communication 0.109

Mathematics -0.076 Econ., Fin., Acct. 0.103

English -0.061 Regional Studies 0.099

Chem & Physics -0.002 English 0.092

Biology 0.014 Mathematics 0.050

Social Sciences 0.038 Language 0.016

Language 0.061 Chem & Physics 0.001

Psychology 0.101 Biology 0.000

Regional Studies 0.203 Education & Health -0.009

Mgmt. & Mkting. 0.219 Psychology -0.015

Communication 0.244 Mgmt. & Mkting. -0.034

Education & Health 0.430 Social Sciences -0.036

Upper division 0.262 Upper division -0.088

STEM upper division -0.001 STEM upper division 0.055

standard dev of ideal G pref 0.449 standard dev of ideal γ pref 0.118

weight on ideal G 1.866 weight on ideal γ 16.748

Note: “Upper division” are courses with numerical designations 300 and above, typically reserved for classes with

pre-requisites where the majority of students enrolled have opted into the major. STEM departments are bolded.

gender gap only falls by 0.7 percentage points. The lower general equilibrium difference is driven

by the gap in grades given between STEM and non-STEM professor growing. Namely, shifting

female unobserved ability to that of males results in STEM (non-STEM) professors responding by

giving grades that are 0.04 points lower (0.2 points higher) than in partial equilibrium. Average

grades in STEM classes then move from being 0.38 points lower than average grades in non-STEM

classes to 0.43 point lower. Since females respond more to grade differences than males, professor

responses work to reduce the change in the STEM gender gap.

Equalizing grade preferences (counterfactual 1) shows a different pattern. In partial equilibrium,
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Table 10: STEM Enrollment Shares in Counterfactual Scenarios (General Equilibrium)

STEM Enrollment Share

Fem PE Effect?

Female Male Change in STEM gap† / GE Effect

Baseline 34.6% 50.7% 16.0

(1) Equalize Grade Prefs 36.8% 50.6% -2.2 0.90

(2) Shift obs ability 34.9% 50.5% -0.4 1.86

(3) Shift unobs ability 35.1% 50.4% -0.7 1.88

(4) Equalize Non-grade Prefs 39.1% 50.4% -4.6 1.08

(5) Fem prof effect off 35.0% 50.7% -0.3 1.10

(6) Grade around 3� 38.4% 52.9% -1.6 1.02

Note: †: “Change in STEM gap” for the Baseline is the difference between the male and female STEM enrollment

shares. Values beneath this number are deviations from the baseline for the corresponding counterfactual

simulation. Female preference and ability parameters are adjusted to be identical to male preferences and abilities.

�: “Grade around 3” adjusts mean grade in all courses to a B, affecting both males and females.

?: Female PE effect / GE effect reports the PE counterfactual change in the share of courses that women take in

STEM divided by the corresponding GE counterfactual change. Professors change grading strategies based on

student responses to changes in preferences and abilities for general equilibrium analysis.

the STEM gap shrinks by 2.0 percentage points when we shift female preferences for grades to be the

same as male preferences for grades. In general equilibrium, the STEM gap shrinks by even more

at 2.3 percentage points. The reason for this is that grades are no longer as effective at deterring

enrollment. Since instructors are grading more harshly than they would prefer, all departments

raise the grades they offer. But this increase is larger for departments that are furthest away from

their ideal grades; that is, those departments who are grading harshly because their class sizes are

especially large. Biology and Chemistry & Physics see especially large increases in grades and are

the two STEM fields where women have preferences most similar to men.

But considering the STEM gap alone masks the extent of the equilibrium responses as these

responses often move men and women in the same direction. Table 10 compares how large the

partial equilibrium effects are relative to the general equilibrium effects by dividing the partial

equilibrium change in the share of classes taken by women that are in STEM by the corresponding

general equilibrium change. Doing so shows the extent to which the partial equilibrium change
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understates or overstates the general equilibrium change.

As with the changes in the STEM gap, the partial equilibrium changes are larger than the general

equilibrium changes in the all the counterfactuals except the one that equalizes grading preferences.

Changing female abilities (either observed or unobserved) results in the partial equilibrium change

being over 86% higher than the general equilibrium change. The differences between the partial

equilibrium and general equilibrium are smaller for changes in preferences for department or shifting

the fraction of female professors to be the same across departments (8% to 10% higher in partial

equilibrium), and smaller still for curving around a 3.0 (2% higher in partial equilibrium). This

latter result is especially important, implying that, even taking into account professor responses,

curving around a 3.0 would increase the fraction of courses women take in STEM by 3.8 percentage

points, an 11% increase.

Finally, in our framework, grading policies vary for three reasons: first, because of differences

in intrinsic student demand; second, because of differences in professor preferences for ideal grades;

and third, because of differences in ideal workloads. If the same instructor is assigned to teach both

a course with low intrinsic demand and a course with high intrinsic demand, she will grade more

harshly in the course with high demand to reduce enrollment.

Table 11: STEM Enrollment Shares and Grades After Eliminating Differences in Professor Prefer-

ences

STEM Share Avg Grade

Female Male Overall STEM Non-STEM

Baseline 34.6% 50.7% 42.4% 2.79 3.22

Equalize professor preferences 38.0% 53.4% 45.5% 2.95 3.02

Note: Equalizing professor preferences entails setting ideal average grades and ideal γ’s for all courses to the mean

across courses.

In Table 11 we investigate how grading practices and enrollments would change if we removed

preferences instructor differences in preferences for grades and workloads. We do this by setting all

instructor ideal grades and γ’s to the mean. The differences between average grades given in STEM

and non-STEM classes is markedly reduced, though not eliminated, when differences in instructor

preferences are turned off. At baseline, STEM classes gave grades that were 0.43 points lower than

their non-STEM counterparts. Removing differences in instructor preferences shrinks the difference
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to 0.07 points. This remaining difference is the result of higher demand for STEM courses.35

Removing differences in instructor preferences increases enrollment in STEM courses by 3.1 per-

centage points. These effects are larger for women: the share of courses women take in STEM rises

by 3.4 percentage points versus 2.7 percentage points for men. Comparing the effects of equalizing

professor preferences to the effects of grading around a 3.0 in Table 10 shows less (more) STEM par-

ticipation by women (men). Grading around a 3.0 eliminates the grading differences across STEM

and non-STEM courses but leaves substantial differences in workloads. Eliminating differences in

professor preferences reduces, but does eliminate, grading differences across departments as well as

reducing differences in workloads. Since women value grades more than men, the elimination of

the grading differences benefits them more than their male counterparts.

7 Conclusion

The number of STEM graduates—especially for under-represented groups—has been an ongoing

concern. At the same time, STEM courses are on average associated with lower grades and higher

study times, both factors that may deter enrollment. Using administrative data form the University

of Kentucky, we estimate a model of course choices to understand what influences STEM enrollment

and how those influences differentially affect men and women. While we show that a variety of

factors influence how students choose courses, we find that differences in grading policies play an

important role in suppressing STEM demand and this is particularly true for female students.

Specifically, we show that STEM courses assign significantly lower grades than non-STEM

courses and that a policy of curving all courses around a B would increase overall STEM participa-

tion by 7.2% and female STEM participation by 11.3%. This effect on female participation is only

slightly less than the effect of giving female students the same course content preferences as male

students (13.9%). Removing gender differences in content preferences would require large changes

in social attitudes and behaviors and might take decades. Comparatively, eliminating grading

differences across fields should be relatively straightforward and affordable.

One issue with policies aimed at reducing grading differences is that instructors may respond

to these policies by changing other aspects of their courses. To capture these responses—and to

understand the source of grading differences more generally—our analysis treats grading policies

35Note that this is the difference due to demand for these particular courses. A potential reason why STEM classes

as a whole have lower ideal grades may be overall demand for these majors resulting in pressure to restrict enrollment

in STEM classes above and beyond that due the demand for a specific STEM course.
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as equilibrium objects chosen by instructors in competition with one another. Higher demand for

STEM courses explain part, but not all, of the differences in grading between STEM and non-

STEM courses. Accounting for the endogenous response by professors to having to curve around a

B, however, has a limited impact on the overall effects of the policy: large gains in STEM enrollment

would still occur and the gains would be especially large for women.

While it is beyond the scope of this analysis, we speculate that long run effects of grading

regulations could also exceed our estimates due to positive feedback loops generated by other

mechanisms. For example, additional female STEM students attracted by more balanced grading

may induce culture changes that make STEM courses more hospitable to women. These culture

changes may in turn attract additional women creating a positive feedback loop that supplements

the initial effects of grading regulations. We leave analyses of these potential positive feedbacks to

future work.
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Table A.13: Aggregation of Departments

Categories Departments

Agriculture Agricultural Biotechnology, Agricultural Economics, Agricultural Ed,

Agriculture General, Animal & Food Sciences, Biosystems & Agr En-

gineering, Environmental Studies, Forestry, Landscape Architecture,

Plant Pathology, Plant & Soil Sciences, Sustainable Agriculture

Regional Studies Appalachian Studies, Family Sciences, Gender & Women’s Studies, His-

panic Studies, Latin American Studies

Communication Arts Admin, Communication, Communication & Info Studies, Fine Arts

- Music, Fine Arts - Theatre Arts, Schl Of Journalism & Telecomm, Schl

of Art & Visual Studies, Schl of Interior Design

Ed & Health Allied Health Ed & Research, Comm Disorders, Community & Leader

Dev, Dept of Gerontology, Dietetics & Nutrition, Early Child, Spec Ed,

Rehab, Ed, Ed Curriculum & Instr, Ed Policy Studies & Eval, Ed, Schl

& Counsel Psych, Health Sci Ed, Kinesiology- Health Promotion, Lib &

Info Sci, Nursing, Public Health, STEM Ed, Social Work

Engineering Chemical & Materials Engineering, Civil Engineering, Computer Sci-

ence, Electrical & Computer Engineering, Engineering, Mechanical En-

gineering, Mining Engineering, Schl of Architecture

Languages Linguistics, Modern & Classical Languages, Philosophy

English English

Biology Biology, Entomology

Mathematics Mathematics, Statistics

Chem & Physics Chemistry, Earth & Environmental Sciences, Physics & Astronomy

Psychology Psychology

Social Sciences Anthropology, Geography, History, Political Science, Schl of Human En-

vironmental Sciences, Sociology

Mgmt. & Mkting. Aerospace Studies, Department of Mgmt, Dept of Mkt & Supply Chain,

Merchand,Apparel & Textiles, Mil Sci & Leadership

Econ., Fin., Acct. Accountancy, Economics, Dept of Finance & Quantitative Methods
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Table A.14: Simulated and Actual Moments

Av. log Enrollment Av. G Av. γ

Actual Simulated Actual Simulated Actual Simulated

Agriculture 3.25 3.33 3.26 3.42 0.135 0.175

Regional Studies 3.32 3.37 3.25 3.25 0.292 0.206

Communication 3.46 3.50 3.31 3.32 0.287 0.233

Education & Health 3.48 3.50 3.54 3.57 0.157 0.165

Engineering 3.56 3.58 3.01 3.08 0.331 0.356

Languages 3.40 3.41 3.12 3.20 0.194 0.228

English 3.31 3.35 2.97 3.02 0.278 0.283

Biology 4.58 4.58 2.93 2.84 0.239 0.215

Mathematics 4.04 4.05 2.81 2.80 0.239 0.215

Chem & Physics 4.36 4.34 2.88 2.79 0.232 0.253

Psychology 4.10 4.09 3.11 3.08 0.172 0.189

Social Sciences 3.68 3.67 3.07 3.04 0.161 0.180

Mgmt. & Mkting. 3.62 3.63 3.41 3.39 0.135 0.135

Econ., Fin., Acct. 3.90 3.95 2.69 2.84 0.276 0.276

non-STEM upper division 3.41 3.37 3.45 3.34

STEM upper division 3.59 3.58 3.07 3.00

Std dev lower non-stem 0.862 0.856 0.474 0.471 0.136 0.101

Std dev lower stem 0.587 0.590 0.478 0.400 0.132 0.126

Std dev upper non-stem 0.668 0.681 0.447 0.370 0.138 0.095

Std dev upper stem 0.552 0.530 0.458 0.441 0.115 0.092

non-STEM covariance GPA with log enrollment -0.030 -0.039

STEM covariance GPA with log enrollment -0.098 -0.099

non-STEM covariance γ with log enrollment 0.004 0.002

STEM covariance γ with log enrollment 0.002 0.006

non-STEM covariance GPA with γ -0.016 -0.016

STEM covariance GPA with γ -0.016 -0.016
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