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ABSTRACT

In recent years, electrification has re-emerged as a key priority in low-income countries, with a 
particular focus on electrifying households. Yet the microeconomic literature examining the 
impacts of electrifying households on economic development has produced a set of conflicting 
results. Does household electrification lead to measurable gains in living standards or not? 
Focusing on grid electrification, we discuss how the divergent conclusions across the literature 
can be explained by differences in methods, interventions, potential for spillovers, and 
populations. We then use experimental data from Lee, Miguel, and Wolfram (2019) — a field 
experiment that connected randomly-selected households to the grid in rural Kenya— to show 
that impacts can vary even across individuals in neighboring villages. Specifically, we show that 
households that were willing to pay more for a grid electrification may gain more from 
electrification compared to households that would only connect for free. We conclude that access 
to household electrification alone is not enough to drive meaningful gains in development 
outcomes. Instead, future initiatives may work better if paired with complementary inputs that 
allow people to do more with power.
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While launching the Sustainable Energy for All program to promote rural electrification in 

2011, then-United Nations Secretary General Ban Ki-moon described energy as “the golden thread 

that connects economic growth, increased social equity, and an environment that allows the world 

to thrive” (SEFA 2012). Reinforcing this perspective is the strong, positive cross-country 

correlation between electricity consumption and GDP per capita documented in the 

macroeconomic literature (for example, Burke, Stern, and Bruns 2018), which we present in Figure 

1. Today, nearly a billion people still live without access to electricity (IEA 2018). And, access to 

energy has re-emerged as a key priority for policymakers and donors in low-income countries. 

Electrification could allow poor households to have easy access to lighting for evening chores or 

studying, and power for phone charging and possibly for a range of new small business activities, 

both on and off the farm. 

The idea of a government-subsidized mass electrification program can be traced back to 

the historical “big push” development efforts of the previous century. In the United States, 

initiatives like the Tennessee Valley Authority and the Rural Electrification Administration, both 

of which were launched in the 1930s, dramatically expanded electricity generation capacity and 

rural electrification rates across the American South and other regions. Recent research finds that 

these programs generated meaningful long-run economic benefits (Kline and Moretti 2014; 

Kitchens and Fishback 2015; Lewis and Severnini 2017).  

Nearly a century later, substantial investments are still being made to expand energy access 

around the world. However, the focus of some of the influential development policies that are in 

place today – like the United Nations’ Sustainable Development Goal 7, which targets universal 

access to energy by 2030, and the U.S. Power Africa initiative, which aims to add 60 million new 

electricity connections across Africa – is largely placed on increasing household electrification 
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rates. But the evidence on how much, and in what ways, modern-day residential electrification 

alone contributes to economic development is not always clear, and is sometimes in conflict. 

In this paper, we discuss what we can learn from the past decade of microeconomic 

research on the impacts of household electrification, with the goal of highlighting how future 

initiatives can be better designed. We begin with an overview of how household electrification has 

traditionally been captured in official statistics, and then turn to some of the historical 

electrification programs from around the world, paying special attention to those that are most 

closely related to the settings that have been studied over the past decade or so. 

Broadly, the earlier research from this period suggest that access to electricity is a driver 

of economic development. At the regional-level, electrification appears to increase manufacturing 

output (Rud 2012); agricultural and manufacturing employment (Kline and Moretti 2014); and the 

UN Human Development Index (HDI) and average housing values (Lipscomb, Mobarak, and 

Barham 2013). At the household-level, which is the focus of this paper, electrification leads to 

improvements in summary measures of well-being, such as income, expenditure, and consumption 

(World Bank 2008; Khandker, Barnes, and Samad 2012; van de Walle et al. 2015; Chakravorty, 

Emerick, and Ravago 2016). The primary mechanisms through which electrification impacts 

development outcomes include increases in labor supply, particularly for women (Dinkelman 

2011; Grogan and Sadanand 2013); higher schooling attainment for children (Khandker et al. 

2014; Akpandjar and Kitchens 2017); and better respiratory health (Barron and Torero 2017), 

among others.1 

                                                
1 A related literature addresses how low and middle income country firms respond to electricity shortages (the 
intensive margin) instead of the presence or absence of electricity (the extensive margin). Generally, firms invest in 
back-up generators as a substitute for grid electricity (Steinbuks and Foster 2010), which can limit their overall 
productivity losses (Allcott, Collard-Wexler, and O’Connell 2016); outsource, essentially substituting electricity 
inputs with other types of intermediate inputs (Fisher-Vanden, Mansur, and Wang 2015); or switch to more electricity-
efficient technologies (Alam 2013). 
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However, a number of these studies rely on relatively strong and untested econometric 

assumptions, making it a challenge to disentangle the causal effects of electrification on 

development outcomes from other factors that may also be changing with electrification rates. 

There may also be lingering reverse causality issues, since economic growth – current or 

anticipated – may in turn drive greater electricity consumption. More recent studies exploiting 

experimental or quasi-experimental designs find far less pronounced impacts of electrification on 

both economic and non-economic outcomes, most of which are statistically indistinguishable from 

zero, at least in the medium-run (Burlig and Preonas 2016; Lee, Miguel, and Wolfram 2019). 

Note that we do not conduct a comprehensive literature review, given that there is already 

excellent work along these lines. For example, see Bayer et al. (2019) for a systematic review; van 

de Walle et al. (2015) for a general literature review; Morrissey (2018) for a discussion on 

productive uses of electric power; Peters and Sievert (2016) for a discussion of the studies using 

African data; and Bernard (2012) for historical context on electrification initiatives in Sub-Saharan 

Africa. Instead, we attempt to fill a gap in previous reviews by discussing why the existing set of 

studies might reach such different conclusions, focusing on differences in econometric methods, 

the types of electrification interventions studied, the potential for spillovers, and differences in 

regions and populations. To demonstrate how impacts can vary across subgroups of the same 

population, we build upon the randomized controlled trial design in Lee, Miguel, and Wolfram 

(2019) to estimate the heterogeneous treatment effects of household grid connections in rural 

Kenya. We find suggestive evidence that greater gains from electrification are likely to be 

concentrated in certain subgroups of households. In our example, it is in households that are willing 

to pay more for an electricity connection at baseline. 
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Our main point is that providing poor households with access to electricity alone is not 

enough to improve economic and non-economic outcomes in a meaningful way. The literature 

documents large gains from electrification in a number of settings, but in many cases, we cannot 

rule out the possibility that other factors – either correlated with or visibly part of the electrification 

efforts – are driving economic outcomes. Universal energy access is arguably an important goal 

for global equity considerations. But large-scale contemporary initiatives to expand residential 

access to electricity may not produce meaningful economic impacts unless they are combined with 

complementary programs that will make electrical appliances more accessible, or are targeted 

towards regions that already benefit from complementary factors.  

Measuring Access to Electricity	

How electrification is defined and measured is important because it shapes our views on 

the nature of energy poverty and the solutions that are required. Access to electricity has 

historically been characterized as a binary state: that is, households have either been considered 

“on-grid” or “off-grid.” In the World Bank’s World Development Indicators (WDI) database, for 

example, the only regularly-tracked electrification data point is “access to electricity,” which is 

presented as a simple percentage of the population and, crucially, is only recorded for the 

residential sector. 

But electrification is clearly more than what is captured in a binary variable. The term “off-

grid,” for example, evokes images of remote, rural households that are too far away to connect to 

power. In Lee et al. (2016), we demonstrate how, just prior to the recent rapid expansion of the 

rural electricity grid in Kenya, the majority of households were “under-grid,” or close enough to 

be connected to a low-voltage line at a reasonable cost. This is an important distinction because 
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the appropriate policy responses for under-grid communities (which could potentially be 

connected to the grid) may be different from those for truly off-grid communities, which may 

require the large-scale expansion of national grid infrastructure or stand-alone mini-grid or 

microgrid systems. Another dimension of access to electricity is the reliability of service, an issue 

that plagues grid-connected households in many low- and middle-income countries. In Nigeria, 

the electricity connection rate was nearly 60 percent in 2016, but the reliability of electricity was 

so poor that most people needed to obtain their power from small, diesel generators (as reported 

in Onishi 2015).  

Efforts are underway to expand the way household electrification is measured. The World 

Bank’s Energy Sector Management Assistance Program (ESMAP), for instance, has introduced a 

new approach called the Multi-Tier Framework (MTF), in which the measured level of 

electrification gradually increases with the capacity, duration, reliability, quality, affordability, 

legality, and safety of electricity access (available at: https://www.esmap.org/node/55526). But for 

now, we still lack basic data describing how energy poverty varies across space, both in access 

and in reliability. And, even with an expanded delineation of household access, variation in 

electricity services for non-residential customers, including factories, small businesses, schools, 

health centers, etc. will remain unmeasured. This has been a common limitation across most of the 

existing literature, which collapses all variation in electricity access into a single indicator. We 

return to this issue later in this paper, when discussing differences in the types of interventions 

studied.2 

                                                
2 In the online appendix available with this paper at the Journal of Economic Perspectives website, we present an 
example of a new approach to capturing energy poverty across Africa in terms of “missing” night lights, based on the 
difference between local population density and nighttime brightness, presented in online Appendix Figure A1. 
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Electrification Initiatives and Estimates 

In Table 1, we summarize some of the historical rural electrification efforts that are closely 

related to the settings studied in the recent microeconomics literature.3 For each initiative, we note 

the national and rural electrification rates and GDP per capita at the start and end of the 

electrification period. 

What immediately stands out is how different many of these initiatives are from one 

another. For example, consider the wide range of starting income and electrification levels across 

the various initiatives. In the United States, the Rural Electrification Administration was formed 

in 1935, when GDP per capita was about $9,644 (in 2017 dollars), roughly eight times higher than 

the GDP per capita in Kenya and India at the beginning of their own respective initiatives. Based 

on the difference in average income levels alone, it is plausible that newly electrified households 

and farms in the 1930s United States would have been much better positioned to acquire 

complementary inputs compared to their more recent counterparts in Kenya and India. 

The U.S. Rural Electrification Administration was distinctive for several other reasons as 

well. First, unlike the more recent initiatives in Kenya and India (in which government programs 

directly connected households and villages to the grid), it was designed to provide low-interest 

loans to newly-formed agricultural cooperatives that were themselves responsible for connecting 

farms to the grid and paying back the loans. Second, it was introduced at roughly the same time as 

a number of other New Deal-era programs — including public works programs, and fiscal and 

monetary reforms — and involved efforts to promote and raise awareness about the productive 

agricultural applications of electricity – such as cooled milk storage and spray irrigation – as well 

                                                
3 This list does include many large economies, although China is absent. Speculatively, we believe the list of countries 
largely reflects settings in which there is appropriate data for research.  
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as domestic applications like electric lighting, heated water, electric stoves, and washing machines 

(Kitchens and Fishback 2015). There was also an associated financing program to facilitate 

household purchases of appliances. We raise this example to highlight the contextual factors that 

may have also contributed to the success of the U.S. electrification experience. 

How have researchers estimated the impact of electrification on household economic 

development outcomes across these various episodes? Nearly all existing studies use economic 

survey data to estimate versions of a regression equation in which the dependent variable is a key 

outcome of interest (such as labor supply or schooling years) for an observed unit (typically a 

household or a region) at a certain point in time, and the key explanatory variable is a measure of 

electrification, which is typically a binary variable indicating whether a household has an 

electricity connection.  

Obvious issues arise if the coefficient on the electrification variable is interpreted as 

capturing the causal effect of switching from no connection to an electricity connection. The 

primary challenge is that electrification is likely to be correlated with other factors that jointly 

determine current and expected levels of the outcomes of interest. For example, consider a setting 

in which there were no subsidies for electricity connections. The households that are connected to 

power are probably those with higher incomes, wealth, access to credit, and education, or those 

who believe they would benefit most from an electricity connection. It would be misguided to 

conclude that any differences between connected and unconnected households can be attributed to 

differences in electricity access alone. 

Similarly, consider how a government (or electric utility) might plan its roll-out of 

electricity infrastructure. If political concerns are prioritized, electric grid investments may be 

targeted towards districts that are favored by a ruling government party, and these same districts 
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could also be in line to benefit from myriad other government assistance programs.4 Here, the 

electrification variable would capture a broader pattern of government favoritism. Alternatively, 

they may be targeted towards areas that are predicted to have greater potential for economic 

growth, perhaps due to the presence of a valuable local commodity or the establishment of a new 

industry that will attract additional labor, further boosting local economic activity. Clearly, it 

would be misguided to conclude that extending electrification to areas lacking this potential would 

generate the same effects. 

In these examples, omitted variable bias would lead the analyst to overestimate the causal 

effect of electricity. Of course, these can be addressed using various well-known econometric 

strategies, including difference-in-differences, instrumental variables, regression discontinuity 

designs, randomized controlled trials, and other methods. But even amongst studies that use these 

methods, the past decade of work on this topic has resulted in a wide range of estimated effects. 

To illustrate this point, we focus on two important outcomes that are prominently studied 

in the recent microeconomics literature: labor supply and education. Following the seminal work 

of Dinkelman (2011) on South Africa’s experience with rural electrification in the 1990s, 

numerous studies have examined whether electrification impacts the allocation of household labor 

resources. The leading hypothesis is that the availability of electricity inside a home reduces the 

amount of time required for certain household tasks, and that this primarily frees women to pursue 

and benefit from external employment opportunities. 

In Figure 2, Panel A, we present key estimates of the impact of electrification on labor 

supply, separating by male and female wherever possible. In order to compare different studies on 

                                                
4 For example, Min and Golden (2014) find evidence that politicians in India may manipulate the supply of electricity 
(for example, by allowing more theft to occur) to influence the outcomes of upcoming elections. 
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the same scale, each coefficient estimate is expressed as a percentage of the mean of the dependent 

variable. Along the bottom of the figure, we note the econometric strategy used to address the core 

identification problem for each estimate. In South Africa, rural electrification led to a large 9 to 

9.5 percentage point increase in local female employment on a mean of 7 percent baseline female 

employment (Dinkelman 2011). Similarly large positive results are documented in Brazil 

(Lipscomb, Mobarak, and Barham 2013) and Nicaragua (Grogan and Sadanand 2013), two other 

studies that use instrumental variable approaches.  

In more recent work, however, the pattern of a large and positive impact on female labor 

supply seems to disappear. For instance, van der Walle et al. (2015) find only a small effect in 

rural India using an instrumental variable approach; Burlig and Preonas (2016) find no 

economically or statistically significant effect in rural India using a regression discontinuity 

design; and in Lee, Miguel and Wolfram (2019), we find only a modest effect for women (and 

almost no effect for men) in rural Kenya using a randomized controlled trial. 

Similarly, in Figure 2, Panel B, we present key estimates of the impact on education-related 

outcomes, again separating for boys and girls wherever possible. In theory, electrification 

introduces the possibility of electric lighting, which allows children to study for longer hours in 

the evening, and this may result in improved test scores and higher schooling attainment. Similar 

to labor supply, the earlier set of studies suggest that electrification has large, positive impacts on 

education-related outcomes. In Vietnam, Khandker, Barnes, and Samad (2013) use an instrumental 

variable approach to estimate a 0.9 year increase (21.9 percent) in schooling for girls. But more 

recent studies in India and Kenya find no statistically significant changes in school enrollment or 
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test scores, using instrumental variable, regression discontinuity, and randomized controlled trial 

approaches.5 

How can we make sense of these conflicting results? In the next section, we discuss the 

role of differences in econometric methods, interventions, levels of measurement, regions, and 

populations in explaining these patterns. 

Making Sense of Divergent Estimates	

Different Methods 

Electricity grid infrastructure is costly and long-lived, and its planning and construction 

requires the inputs of multiple stakeholders. Thus, it is rarely randomized, and instead is likely to 

be endogenous to a variety of economic and political factors. Although all of the studies presented 

in Figure 2 attempt to address selection bias in their own way, each approach relies on a set of 

assumptions.  

Dinkelman (2011), for example, employs an instrumental variables method, utilizing land 

gradient as an instrument for the wave of rural electrification that followed the end of apartheid in 

South Africa. Higher land gradient raises the average construction cost of a household connection, 

and so it is likely to factor into the probability of electrification. In addition, it is not immediately 

clear why land gradient would be correlated with local employment other than through its effect 

on construction costs. Thus, it is plausible that using land gradient in an instrumental variable 

approach can produce unbiased estimates of impacts.6 

                                                
5 This pattern is also observed in a comparison of key estimates of the impacts of electrification on income, presented 
in online Appendix Figure A2. 
6 In technical terms, this is the same as saying that the “exclusion restriction” should hold. Note that the instrumental 
variable method requires that an instrument is informative (that is, E(ziEi) ≠ 0, where zi is the instrument and Ei is the 
electrification status for household i) and valid (that is, E(ziεi) = 0, where εi is the error term in the regression described 
in the previous section). The latter condition is referred to as the “exclusion restriction.” 
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Many of the studies on electrification use an instrumental variable approach in a similar 

way and attempt to isolate the variation in the electrification variable that can be attributed to a set 

of exogenous cost considerations. Lipscomb, Mobarak, and Barham (2013), for example, use a 

time series of hypothetical electricity grids — that simulate how the grid would have evolved had 

investments been based solely on geographic cost considerations — as an instrument for the actual 

evolution of the electricity grid in Brazil. Other studies construct instrumental variables based on 

distances between households (or communities) and the nearest grid infrastructure, assuming that 

proximity to existing infrastructure is correlated with the cost of grid extension but uncorrelated 

with current and future economic outcomes (for example, Khandker, Barnes, and Samad 2012; 

Van de Walle et al. 2015; Chakravorty, Emerick, and Ravago 2016). This approach is feasible and 

especially appealing considering the growing richness and availability of spatial economic data. 

However, it is hard to rule out the possibility that the correlation between the instrument 

and the dependent variable runs through additional channels beyond electrification. Returning to 

the case of South Africa, land gradient may have been equally likely to have influenced the cost 

and placement of post-apartheid roads (or other infrastructure). Roads can reduce transportation 

time, making it cheaper to visit market centers, improving the conditions for local employment 

and other economic outcomes. This possibility raises questions about the validity of any 

geographic cost-based instrument, including in South Africa. During the same post-apartheid 

period, a large number of public investments were made across multiple sectors, and as with rural 

electrification, these investments were also largely targeted towards relatively poor and 

disadvantaged communities by the newly elected government of President Nelson Mandela. Of 
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course, researchers are well aware of these issues and have made efforts to address them.7 But in 

our view, it is difficult to confidently eliminate all of the possible violations of the exclusion 

restriction. This is especially the case if electrification can interact positively with some 

unobserved and time varying factors, as this would result in overestimating the treatment effect.   

More recent work has addressed these concerns using alternative econometric strategies. 

Burlig and Preonas (2016), for example, utilize a regression discontinuity design method, 

exploiting a population-based eligibility cutoff in India’s Rajiv Gandhi Grameen Vidyutikaran 

Yojana (RGGVY) scheme, a massive national rural electrification program launched in 2005. 

When certain types of assignment rules (in this case, a cutoff based on village population) are 

followed, the regression discontinuity design method removes selection bias (here, by comparing 

villages immediately above and below the cutoff). However, these rules are not always cleanly 

implemented in low-income countries, forcing researchers to utilize “fuzzy” regression 

discontinuity design approaches. Burlig and Preonas, however, use satellite images of night lights 

to show that the RGGVY program did increase electricity availability and consumption, providing 

supportive evidence that the village population-based cutoff was implemented to a meaningful 

degree. As noted earlier, they find no evidence of economically or statistically significant impacts 

on village labor market or educational outcomes. 

The obvious hurdle to implementing a randomized controlled trial of electricity grid 

infrastructure is that researchers find it hard to persuade policymakers to randomize the placement 

of infrastructure. The Lee, Miguel, and Wolfram (2019) study in rural Kenya, which we revisit 

                                                
7 Dinkelman (2011) addresses this concern by running a placebo test and other robustness checks. Bensch, Gotz and 
Peters (2019) perform alternative placebo tests and show that land gradient is correlated with employment outcomes 
in non-electrified areas, suggesting a violation of the exclusion restriction. They provide evidence that land gradient 
also influenced road placement. 
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later in this paper, is an exception.8 Like Burlig and Preonas (2016), we find no evidence of 

meaningful economic, educational or other impacts among rural households. 

Beyond the econometric approach, a common difference between studies that use 

randomized controlled trials and those that use other methods is the nature of data collection. In 

an experiment, researchers can design the questions administered through household surveys. As 

a result, it is possible to collect data on a wider range of outcomes and potential mechanisms than 

are typically available in the national administrative data that is often used in non-experimental 

studies. In our experiment in Kenya, for example, we collected a variety of information on energy-

related outcomes, such as how much each household recently spent on electricity versus kerosene, 

the variety of electrical appliances owned and desired, the frequency of blackouts recently 

experienced, and so on; the majority of the studies summarized in Figure 2 are unable to utilize 

these types of data. The flip-side is that administrative data is often more representative and has 

many more observations, which offers benefits in terms of external validity and statistical power. 

 

Different Interventions and Potential for Spillovers 

Another factor contributing to the lack of consensus across studies is that the underlying 

intervention captured by the electrification variable is not always the same. For instance, the 

quality of an electricity connection probably varies across programs in terms of the reliability and 

capacity of power supplied, both of which influence the potential things one can do with electricity. 

                                                
8 To our knowledge, the only other randomized controlled trials of household electricity connections are: Barron and 
Torero (2017), which evaluates the impacts of grid connections in El Salvador on indoor air pollution and respiratory 
outcomes, and Bernard and Torero (2015), the first study that varies grid connections experimentally, which tests for 
the presence of social interaction effects in driving take-up decisions in Ethiopia but does not evaluate economic 
outcomes. 
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The design or scale of an electrification program can also result in local spillovers that are 

not easily measurable using household data. Many historical initiatives to expand electricity access 

were not only large in scale but also included investments in generation capacity, transmission 

lines, and other forms of public infrastructure. In Brazil, for example, Lipscomb, Mobarak, and 

Barham (2013) study the impacts of an electrification effort that entailed a massive upgrade to the 

nation’s energy system. Over the second half of the twentieth century, Brazil witnessed a dramatic 

expansion in electricity access – the transmission network expanded from 2,359 kilometers in 1950 

to 167,443 kilometers in 2000 – and substantial investments were also made to increase generation 

capacity. Much of this progress is owed to Eletrobras, the national electricity utility first 

established in 1961, which spearheaded the financing and coordination of electricity projects 

across the country. 

If an electrification program is likely to have generated local spillovers, the unit of 

measurement is important. Studies that measure impacts at the household-level will not capture 

these spillovers to the same extent as studies that observe outcomes at the regional-level. In the 

example of Brazil, Lipscomb, Mobarak, and Barham (2013) measure impacts over a long 

timeframe and at the county-level, so any potential within-county economic spillovers are usefully 

captured in the estimates. Of course, the gains in the Brazil program and related cases flow from 

not just electrifying households but also schools, health clinics, and local enterprises, making these 

estimates less comparable to some recent electrification efforts that have targeted households. 

These features make the Brazil results more comparable to the historical U.S. studies. 
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Different Regions and Populations 

A simple point, but one that is worth emphasizing, is that the impacts of household grid 

connections depend on what individuals are able to do with electricity. As a result, impact 

estimates may differ across local regions, or even across individuals within the same society. 

Across regions, differences may arise due to the presence or absence of local infrastructure and 

amenities. For instance, electrification may yield greater impacts in regions with better access to 

roads and linkages to neighboring commercial centers, as noted earlier. Impacts may also be 

greater in areas with existing industries that can benefit from cheaper sources of power, or in 

regions that are experiencing rising income levels due to external factors, like commodity price 

shocks. Fetter and Usmani (2019), for example, revisit the regression discontinuity design setting 

studied in Burlig and Preonas (2016) and demonstrate that the impact of India’s RGGVY program 

on non-agricultural employment was higher in villages that simultaneously benefited from a boom 

in the price of a local commodity (guar). At the same time, Kline and Moretti (2014) find that the 

magnitude of benefits from the Tennessee Valley Authority program was the same across counties, 

regardless of whether they were more agricultural or featured any manufacturing at baseline, 

suggesting that further research into the nature of heterogeneous electrification treatment effects 

would be useful. 

Across individuals within the same society, impacts may differ due to variation in 

individual income levels or access to credit. Wealthier households, by virtue of their ability to 

purchase more electrical appliances, are likely to be better positioned to benefit from access to 

electricity. Khandker et al. (2014) is one of the early studies to use an econometric approach to 

address this question. Using a cross-section of household survey data in India, they estimate a 

quantile regression of overall household income and expenditure on household electrification, 
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addressing the endogeneity of their electrification variable with an instrumental variable strategy. 

Their analysis – which relies on the arguably strong assumption that the community electrification 

rate is a valid instrument for household electrification – suggests that households in the highest 

quintile of income experience nearly double the expenditure impacts as households in the middle 

quintile. In the following section, we explore this possibility further, exploiting experimental 

variation from our randomized controlled trial research design in rural Kenya. 

 The studies discussed in this section offer important contributions to the literature on the 

impacts of electricity infrastructure, and each utilizes a creative and novel way to address the 

endogeneity of the electrification variable. But in our view, some skepticism of instrumental 

variables strategies based on geographic variation is warranted. In addition, it is important to 

consider the type of electrification intervention, as well as the other amenities that are being made 

available either through the electrification program or exogenously, as these factors could 

influence the magnitude of estimated impacts. 

 

New Experimental Evidence on Heterogeneous Treatment Effects	

Many existing analyses of heterogeneity rely on the inclusion of interaction terms in the 

regression specifications between a household’s electrification status and observable covariates at 

baseline, like income, assets, and so on. Here, we build on the randomized controlled trial design 

in Lee, Miguel, and Wolfram (2019) to show what we can learn from an alternative approach to 

analyzing heterogeneity that compares households based on how much they are willing to pay for 

an electricity connection, a household characteristic that is rarely if ever captured in observational 

datasets. 
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In our experiment, we provided randomly-selected clusters of households in rural Kenya 

with an opportunity to connect to the grid at a subsidized price. In order to estimate a demand 

curve for grid connections, we randomly assigned the connection price across treatment 

communities. Specifically, one-third of the 75 treatment communities were offered a 29 percent 

subsidy to connect to the grid (that is, the effective price of a grid connection was reduced from 

the prevailing official price of $398 to $284); one-third were offered a 57 percent subsidy (the 

effective price was $171); and one-third were offered a full subsidy (the effective price was $0). 

Take-up varied dramatically across treatment arms: 95 percent of households accepted a fully 

subsidized connection; 28 percent took up at a 57 percent discount; and just 14 percent of 

households paid for a connection at a 29 percent discount, while even fewer control (unsubsidized) 

households connected to the grid over the study period. 

Exogenous variation in electrification status, created by the randomized price offers, 

generated unbiased estimates of the impacts of electrification. Roughly 16 to 32 months after 

installation of a home grid connection, the average household showed little evidence of any 

meaningful economic or non-economic gains across a wide range of outcomes. Results are similar 

for the simpler comparison between the control group (in which almost no households were 

connected) and the full subsidy treatment group (in which nearly all households were connected). 

How do these impacts vary across different population groups in this setting? Drawing on 

standard properties of “local average treatment effects” (related to the discussion in Kowalski 

2016), we can separately estimate impacts for different types of households. Specifically, 

households in our experiment can be allocated into the following complier subgroups: (1) “never 

takers,” meaning households that would not even accept a free connection; (2) “adopters of 

electricity only when the price is low,” meaning households that are willing to accept a connection 
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when the price is $0 (one of the randomly assigned prices) and potentially up to $171; (3) “adopters 

of electricity when the price is high,” meaning households that are willing to accept an electricity 

connection when the price is between $171 and $284; and (4) “always takers,” meaning households 

that would pay more than $284. In the remainder of this section, we assess whether the subgroup 

of households that are willing to pay more for electricity – which may be correlated with wealth, 

access to credit, or to other unobserved dimensions of ability, ambition, or opportunity – end up 

benefiting more from an electricity connection than others. 

A first step towards deriving treatment effects for different complier groups is to estimate 

their sample shares. It has long been understood that average treatment effects can be represented 

as the weighted-average of multiple marginal treatment effects that may differ across subgroups 

(Heckman and Vytlacil 1999, 2001). In our sample, 67 percent of households are “adopters only 

when the price is low” and 22 percent are “adopters when the price is high.” The small shares of 

remaining households are either “never takers” or “always takers.”9 

The next step is to estimate separate local average treatment effects for each complier 

subgroup on a range of household outcomes, including among others: monthly electricity 

spending; the number of appliance types owned (including mobile phones, radios, televisions, 

etc.); monthly spending on kerosene; the share of household members that are employed or own 

their own businesses; household asset value; and a measure of recent health symptoms experienced 

by the household respondent. For the “adopters when the price is high” group, we can obtain these 

estimates from a two-stage least squares regression in which we drop the high- and low-subsidy 

treatment arms and regress the various outcomes on an indicator for whether a household has an 

                                                
9 Because we randomized price offers across communities, we need only the standard assumption of monotonicity to 
uncover unbiased estimates of these sample shares (Angrist and Imbens 1994). In online Appendix Note 2, we offer 
a formal description of our econometric approach to estimating heterogeneous treatment effects across complier 
subgroups in this setting. 
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electricity connection, instrumented with an indicator for whether the household was offered a 

medium- subsidy.10  For the “adopters when the price is low,” we can use the subgroup sample 

shares and back out the local average treatment effect by invoking the formula for weighted 

averages. For example, the local average treatment effect for compliers in the $0 treatment group 

is simply the weighted average of the local average treatment effects for the two complier groups 

of interest.11 

We illustrate the results of this approach in Figure 3, where we compare local average 

treatment effects for “adopters only when the price is low” against those for “adopters when the 

price is high” across a key set of outcomes. Overall, “adopters when the price is high” appear to 

do far more with an electricity connection compared to their counterparts; the figure also contrasts 

these treatment effects with the mean characteristic in the control (unsubsidized) group. “Adopters 

when the price is high” spend more on electricity; experience greater savings on kerosene; and 

acquire a greater variety of appliances, such as mobile phones and televisions. The large difference 

in the number of appliance types owned across the two complier subgroups – a significant 83 

percent for the increase for the “adopters when the price is high” versus a (non-significant) 11 

percent decrease for those who connect only when it is free – is statistically significant at the 1 

percent level. Similarly, “adopters when the price is high” also appear to enjoy more pronounced 

economic and non-economic impacts: they are more likely to become employed or own a business; 

more likely to experience an increase in total asset value; and more likely to report better health 

                                                
10 We can do this because compliers in the medium-subsidy group (in which the electricity connection price is $171) 
include both compliers at $171 as well as compliers at $284, by the monotonicity assumption. 
11 Detailed regression results are available in the online appendix. In online Appendix Table 1, we report mean values 
in the control group (column 1), the local average treatment effects for each of the two complier subgroups (columns 
2 and 3), and the p-value of the difference between the local average treatment effects for each outcome (column 4). 
Note that we include the same set of variables presented in Table 3 in Lee, Miguel, and Wolfram (2019) to facilitate 
comparison to the full sample results. 



21 
 

outcomes (note that higher values on the recent health status index correspond to a lower number 

of recent symptoms reported). In additional results (not shown in Figure 3), we do not find that 

any subgroup experiences gains in student test scores. 

Due to limitations in our sample size – a result of the limited number of households who 

choose to connect when it is not free – these results should be treated only as suggestive. Many of 

the estimated local average treatment effects are only marginally significant at traditional 

confidence levels, and we cannot reject equality of effects across the two complier subgroups in 

most cases. Yet the pattern of impacts in Figure 3 tells a remarkably consistent story indicating 

that those who are willing to pay more for an electricity connection are poised to benefit far more 

than those who only connect when it is free. 

Naturally, our approach to estimating heterogeneous treatment effects leads to the question 

of how households in these complier subgroups are different from one another. Is it possible to 

identify households that will benefit the most from electrification using a standard set of 

observable characteristics? We use baseline household survey data collected in 2014 (note that all 

of these households were unconnected at baseline) to summarize the key differences between the 

groups.12 Broadly speaking, “adopters when the price is high” appear to be wealthier and better-

off in multiple ways: household heads in this group are more likely to have attended secondary 

school (21.0 percent versus 9.5 percent), report far higher monthly earnings ($24.39 versus 

$11.55), and hold a bank account (32.4 percent versus 14.7 percent), with this last difference 

statistically significant at the 1 percent level. “Adopters when the price is high” also have 

significantly higher asset ownership. In contrast, several other household characteristics that would 

seem to be less obviously correlated with wealth, including respondent age and gender as well as 

                                                
12 For a table of results, see online Appendix Table 2. 
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the household’s distance to the nearest electricity distribution transformer, appear roughly similar 

across the two groups.  

In our example, households that are willing to pay more for an electricity connection also 

appear to be observably richer and more educated at baseline. However, we cannot rule out the 

possibility that unobservables – like individual initiative, ambition or “spunk,” or other oft-cited 

unobservables in wage equations – may be correlated with both household wealth, for example, 

and the ability to make the most of an electricity connection. This possibility suggests that this 

complier approach to studying heterogeneity, which is possible due to the experimental nature of 

this study, can be valuable in shedding additional light on how treatment effects vary across 

individuals.  In Appendix Table A4, we report the results of a regression in which the treatment 

(household electrification) is interacted with an index of social and economic status at baseline, 

based on commonly-observed measures (e.g., education, income, etc.). This approach does not 

seem to predict larger effects for households in the top quartile of social and economic status at 

baseline, in contrast to the approach that compares the two complier groups. 

Our main point is that the impacts of electrification can vary substantially across different 

types of individuals, even within a relatively homogenous sample of poor rural households in 

neighboring villages, in ways that are difficult to capture with commonly measured household 

observable characteristics.  

Focusing on the Grid 

We have largely focused on lessons from the past decade of research on the impacts of 

residential grid electrification, a growing area of investigation. In addition, the question of how 

governments can expand electricity access to maximize impact holds a great deal of policy-
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relevance today. Across Sub-Saharan Africa, where roughly 600 million people are still without 

power, billions of dollars are being allocated towards expanding residential access to the grid. In 

Kenya alone, roughly $364 million was committed to the Last Mile Connectivity Project (LMCP) 

in 2015, in a project that promised to connect four million under-grid households to power (as 

reported in Business Daily Africa, at the official launch of the LMCP in May 2015). 

But the grid is just one way to expand electricity access. Since the turn of the current 

century, countless entrepreneurs, donors, and policymakers have argued that decentralized, 

renewable energy technologies could allow off-grid households across the developing world to 

“leapfrog” the conventional grid, similar to how the introduction of mobile phones allowed 

populations to leapfrog the landline. Indeed, the home solar sector — a term we use to collectively 

refer to solar lanterns and solar home systems — has seen its estimated penetration rise rapidly 

across Sub-Saharan Africa. Increasing appliance efficiencies and reductions in the cost of 

photovoltaics (in addition to improvements in batteries) are some of the factors that may have 

contributed to this growth (Alstone, Gershenson, and Kammen 2015). 

Solar lanterns offer just enough power to meet the basic standard of electrification in the 

World Bank’s MTF, mentioned above. Grid connections can meet far higher standards, depending 

on their reliability. Increasingly, home solar companies are integrating pay-as-you-go technologies 

directly into their products, directly addressing the credit constraints that may limit take-up of new 

technologies in poor settings; in practice, these solar home systems are offered on credit and are 

remotely disabled if payments are not made on time. Pay-as-you-go has transformed the way these 

products are marketed, financed, and distributed. In some countries, like Uganda, pay-as-you-go 

is even allowing consumers to offer up their home solar products as collateral for new types of 

loans (Gertler, Green and Wolfram, 2019). 
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Separate randomized controlled trials have measured the impacts of home solar access on 

child study times, finding mixed results: home solar appears to increase study times, but decrease 

test scores in Uganda (Furukawa 2014); not increase study times in Kenya (Rom, Gunther, and 

Harrison 2017); and increase study times but only for boys in Rwanda (Grimm et al. 2017). These 

results highlight the lack of consensus about the educational benefits of home solar. That said, in 

countless rural households across the world, the increasing adoption of these products should, at 

the very least, reduce the usage of kerosene and dry cell batteries for lighting, resulting in some 

benefits to health and the environment.  

Microgrids have also generated substantial interest, especially for geographically remote 

communities that are prohibitively expensive to connect to a national grid. Microgrids are typically 

defined as small networks of users connected to a centralized and standalone source of electricity 

generation and storage. They are capable of providing longer hours and higher capacities than 

home solar, and can also be powered with clean energy sources like solar, wind, and hydro. 

Technically, it is possible to integrate them into expanding national grids over the long-run, but it 

is too early to tell how widely this will happen in practice. 

Recent research on the demand for microgrid connections has not been wholly positive, at 

times due to external factors. In Rajasthan, India, for example, Fowlie et al. (2018) document how 

demand for connections to privately-operated solar microgrids is very low, largely due to a 

perception that the government would soon be subsidizing connections to the central grid. 

Relatedly, in Bihar, India, Burgess et al. (2019) find that demand for connections to privately-

operated solar microgrids is strongly influenced by the availability and quality of the central grid. 

At the same time, a number of private operators have built microgrids in Kenya that are operational 

and generating revenue, suggesting that demand is positive in some settings. 
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In addition to expectations about the arrival of the grid, fundamental consumer preferences 

can also limit the take-up of alternative energy. In Kenya, we document descriptive evidence at 

baseline suggesting that home solar does not satisfy a wide range of household energy needs, based 

on a survey of appliance ownership and aspirations (Lee, Miguel, and Wolfram 2016). Relative to 

households that primarily use kerosene, home solar users benefit from basic energy applications 

including lighting, mobile phone charging and, for some systems, television. However, once they 

have access to these basic end uses, the appliances they aspire to own next (for example, irons) 

require higher wattages that cannot be supported by most home solar systems, at least based on 

current technologies. 

Discussion	

Over the past decade, studies on the impacts of residential electrification on the well-being 

of households in low- and middle-income countries have generated conflicting results. While some 

studies estimate very large effects on household labor supply, for instance, others rule out point 

estimates that are even a quarter as large. We explore how differences in methods, interventions, 

and/or populations may help reconcile these disparate results. 

Our main conclusion, based in part on our own recent research, is that the provision of 

home electrification alone is not enough to improve economic outcomes substantially for the 

world’s poorest citizens. This perspective stands in contrast to the findings in earlier analyses in 

the literature which explore electrification impacts in middle-income countries, like South Africa. 

Although retrospective analyses of electrification in the United States in the 1930s point to very 

large impacts, these initiatives were introduced at a time when GDP per capita (in current dollars) 

was roughly eight times as large as comparable measures in contemporary Kenya and India. Also, 
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in some cases, the early US initiatives brought electricity to many sectors of the economy, 

including manufacturing facilities. Reconciling these cross-study differences presents its own 

identification challenge, as it is hard to know whether these differences are due to the choice of 

econometric method, the extent of the electrification initiative or to relative differences in starting 

incomes. With that said, our overall position is that the impacts of residential electrification may 

crucially depend on the extent to which households are positioned to take actions and/or make the 

complementary investments that will ultimately allow them to make the most out of an electricity 

connection. 

Consistent with this view that context matters, our own recent work finds that heterogenous 

effects also exist within local areas. We exploit a feature of a recent experiment in Western Kenya 

that allows us to estimate heterogeneous treatment effects across different complier groups using 

the same identification strategy. We show that households that were only willing to connect to the 

grid when it was effectively free experience fewer economic gains than households that were 

willing to connect when the price was high. This result offers suggestive evidence of substantial 

heterogeneity in treatment effects, even within a sample of poor rural households that were all 

equally without electricity at baseline.  

The question of how the impacts of electrification may vary across countries, or regions 

within a country, is likely to be of keen policy interest. We see expanding evidence in this area as 

an important task for future research. The degree of heterogeneity in treatment effects could 

naturally be much larger across rural and urban areas in the same country, or across countries with 

different income levels. On the one hand, understanding which households and areas are most 

likely to benefit from grid connections can help policymakers better target grid investments. On 

the other, if wealthier households are more likely to utilize and benefit from access to electricity – 
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due to their ability to make complementary investments or exploit new business opportunities 

opened up by access to power – expansion of the rural grid infrastructure could exacerbate 

economic inequality in rural areas of low-income countries, an outcome that is seldom discussed 

in the current policy debate. This would imply a fundamental tension in rural electrification 

programs between promoting economic growth and exacerbating inequality.  

To date, both policymakers and researchers have often focused on the impacts of household 

electrification. For policymakers, this may reflect either a political calculus that those not presently 

connected to electricity are a potent group of potential supporters, the belief that electricity should 

be viewed as a basic right even for the very poorest citizens, or some combination of the two. In 

our view, the available evidence suggests that the provision of electrification to poor households 

is unlikely, on its own, to be economically transformative, at least in the short to medium run. As 

such, a singular policy focus on electrifying poor and mostly rural households may be misguided. 

Going forward, we believe that studying the long-run impacts of residential electrification, the 

interactions between electrification and contextual factors, as well as impacts of electricity access 

for non-residential consumers – including schools, health centers, and firms – are all likely to be 

fruitful research directions. 
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Figure 1: The positive correlation between electricity consumption and GDP per capita

Notes: Both variables are presented on a logarithmic scale. GDP per capita data are in current
U.S. dollars. 2014 data obtained from the World Bank DataBank.



Figure 2: Key estimates of the impacts of rural electrification

Panel A: Labor supply impacts

Panel B: Education impacts

Notes: For each study, coefficient estimates have been expressed as a percentage of the mean of
the dependent variable.



Figure 3: Comparison of local average treatment effects between different complier groups

Panel A: Monthly electricity spending (USD) Panel D: Household employed or own business (%)

Panel B: Number of appliance types owned Panel E: Total asset value (000s USD)

Panel C: Monthly kerosene savings (USD) Panel F: Recent health status index

Notes: In Panel C, monthly kerosene savings are presented as relative to the control group mean
of $2.81. In Panel F, a positive value reflects a desirable outcome. See online Appendix Table 1
and associated discussion for additional outcomes and details.



Table 1: Historical rural electrification initiatives

Change over period

Electrification

Nat’l Rural GDP Est. cost
Country Major initiative (%) (%) ($/cap.) ($ Bn)

USA Rural Electrification Administration (REA) 67 < 10 9,644 4.0

1935-1960 REA provided low-interest loans to newly- to to to (between

formed cooperatives to fund rural
electrification, as part of the New Deal,
which included fiscal and monetary reforms,
public works projects, and new regulations.

98 96 19,678 1935 and
1939)

Brazil Eletrobras Power Distribution Projects I, II n/a < 10 2,929 24.4

1960-2000 Between 1982 to 1991, Eletrobras I and II to to to (between

strengthened distribution networks,
expanded supply, and increased rural access
rates from 19 to 49 percent. The period also
witnessed pubic investments across various
sectors as well as policies to counter
hyperinflation.

94 75 6,813 1982 and
1991)

Bangladesh Rural Electrification Board (BREB) n/a < 10 470 4.4

1977- Since the 1970s, BREB targeted universal to to to (as of

present access and other institutional improvements
in rural areas that have also benefited from
social mobilisation campaigns related to
health, education, financial inclusion, and
others.

75 69 1,524 2016)

India (I) Integrated Rural Energy Program n/a 24 456 n/a

1982-1999 Aimed to increase institutional capabilities to to to

to meet domestic energy needs (catered
towards agricultural and rural
development), as part of the Minimum
Needs Program, which covered rural water
supply, health, housing, roads, and others.

60 71 834

Ghana National Electrification Program (NEP) 23 n/a 66 625

1989- Launched in 1989, NEP targeted universal to to to

present access by 2020, focusing first on major
population centers, while the Self Help
Electrification Program (SHEP) aimed to
connect rural areas within 20 kilometers of
an existing transmission line.

78 625 1,338

(Table continued on next page)



(Table continued from previous page)

Change over period

Electrification

Nat’l Rural GDP Est. cost
Country Major initiative (%) (%) ($/cap.) ($ Bn)

South National Electrification Programme (NEP) 36 12 4,390 1.6

Africa Targeted 2.5 million new household to to to

1994-1999 connections, mainly in disadvantaged and
rural areas, and all schools and clinics. Part
of newly-elected government’s
Reconstruction and Development
Programme, which initiated large
investments across multiple sectors.

66 46 4,559

Vietnam Vietnam Rural Energy Project I 86 70 926 0.3

2000-2006 After the end of the U.S. trade embargo, to to to (between

Vietnam established its state utility and
enacted power sector reforms. In 2000, the
focus shifted towards remote, unelectrified
communes and villages.

96 92 1,306 2000 and
2007)

Philippines Expanded Rural Electrification Program 73 n/a 1,899 n/a

2004- Targeted electrification of all villages by to to to

present 2008 and 90 percent of households by 2017,
mainly by providing low-cost financing to
cooperatives and promoting private sector
investments.

< 85 74 3,105

India (II) Rajiv Gandhi Grameen Vidyutikaran Yojana 67 57 1,084 12.9

2005- The RGGVY program aimed to enhance to to to (between

present electricity access in over 400,000 villages
and connect more than 23 million
households. National road connectivity and
social security programs for rural areas were
also implemented during this period.

84 78 2,193 2012 and
2022)

Kenya REA and Last Mile Connectivity Project 24 14 1,232 > 1.0

2007- Rural Electrification Authority (REA) to to to (including

present focused on connecting rural public facilities
(e.g., schools, clinics, and markets). The
Last Mile Connectivity Project (LMCP),
which was first announced in 2015, is
targeting universal access for households by
2030.

56 39 1,541 LMCP)

Notes: All GDP figures are in 2017 USD. For ongoing initiatives, end years report statistics for
2017, the latest available year. See online appendix for further details and references.
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Appendix Figure 1: Distribution of “missing” night lights in Africa

Notes: We combine data from satellite images of night lights in 2013, obtained
from the National Oceanic and Atmospheric Administration’s Defense Meteorologi-
cal Satellite Program–Operational Line Scan (NOAA DMSP-OLS), with data from
the Gridded Population of the World, Version 4 (GPWv4), provided by the Center
for International Earth Science Information Network (CIESIN) at Columbia Uni-
versity, to predict where the largest gains in nighttime brightness would occur if
everyone were able to enjoy the same levels of brightness as OECD countries. The
simple procedure is as follows: (1) estimate Log(N5km) = α + βLog(P5km) for grid
cells in OECD countries; (2) using the estimated parameters, predict ˆN5km for grid
cells in Africa; and (3) subtract N5km from ˆN5km for grid cells in Africa to estimate
“missing” night lights.



Appendix Figure 2: Key estimates of the impacts of rural electrification on income

Notes: For each study, coefficient estimates have been expressed as a percentage of the mean of
the dependent variable.



Appendix Table 1: Local average treatment effects for different complier subgroups

Adopter Adopter
only when when p-value

price is price is of
Control low high diff.

(1) (2) (3) (4)

Share of sample (%) 100 67 22

Panel A: Primary energy outcomes

A1. Grid connected (%) 5.6 – – –

(23.0)

A2. Monthly electricity spending (USD) 0.14 2.00*** 2.47*** 0.28

[0.91] (0.21) (0.31)

Panel B: Additional energy outcomes

B1. Electricity as main lighting (%) 5.2 86.8*** 96.8*** 0.01

[22.2] (2.4) (2.6)

B2. Number of appliance types owned 1.8 -0.2 1.5*** < 0.01

[1.3] (0.2) (0.3)

B3. Owns mobile phone (%) 84.3 -12.7*** 18.5** < 0.01

[36.4] (4.0) (8.9)

B4. Owns radio (%) 54.2 -5.1 23.5* 0.09

[49.8] (5.3) (13.0)

B5. Owns television (%) 17.9 -2.3 47.1*** < 0.01

[38.4] (4.6) (10.7)

B6. Owns iron (%) 4.1 -0.1 6.9 0.37

[19.9] (2.5) (5.9)

B7. Monthly kerosene spending (USD) 2.81 -1.21*** -1.66** 0.64

[2.86] (0.26) (0.76)

B8. Monthly total energy spending (USD) 11.66 4.62* -16.64*** < 0.01

[28.47] (2.57) (4.89)

B9. Solar home system as main lighting (%) 11.8 -13.7*** -10.4 0.74

[32.3] (2.3) (8.0)

(Table continued on next page)



(Table continued from previous page)

Adopter Adopter
only when when p-value

price is price is of
Control low high diff.

(1) (2) (3) (4)

Panel C: Primary economic outcomes

C1. Household employed or own business (%) 36.8 1.1 14.6 0.31

[38.8] (4.2) (10.3)

—— Household women-only (%) 34.5 6.0 18.2 0.44

[44.5] (5.1) (12.1)

—— Household men-only (%) 40.2 -2.5 11.3 0.43

[45.6] (5.5) (13.3)

C3. Total hours worked last week 47.0 -2.2 -4.2 0.81

[24.7] (2.7) (6.6)

C4. Total asset value (USD) 914 3 630** 0.09

[961] (123) (280)

C5. Per capita cons. of major items (USD) 133 -3 -23 0.67

[142] (14) (37)

Panel D: Primary non-economic outcomes

D1. Recent health symptoms index 0 -0.19* 0.29 0.14

[1] (0.10) (0.26)

D2. Normalized life satisfaction 0 0.12 0.23 0.76

[1] (0.11) (0.28)

D3. Avg. student test Z-score 0 -0.08 -0.11 0.92

[1] (0.12) (0.24)

D5. Political and social awareness index 0 -0.09 -0.03 0.86

[1] (0.10) (0.26)

Panel E: Mean treatment effects on grouped outcomes

E1. Economic Index (C outcomes) 0 -0.03 0.30 0.31

[1] (0.11) (0.26)

E2. Non-Economic Index (D outcomes) 0 -0.10 0.06 0.64

[1] (0.10) (0.26)

Notes: Heterogeneous treatment effects estimated using only round 1 data (roughly 16 months post-
connection). The following variables (reported in table 3, Lee, Miguel, and Wolfram 2019) were not
collected in round 1: “C2. Monthly household earnings (USD),” “D4. Avg. student KCPE test
Z-score,” and “D6. Perceptions of security index.” Column 1 reports mean values in the control
group, with standard deviations in brackets. Using the established sample shares, columns 2 and 3
display weighted-average local average treatment effects for each adopter group. Robust standard
errors, displayed in parentheses, are estimated using a stacked regression approach.



Appendix Table 2: Differences between adopter groups at baseline, when all households were
unconnected

Adopter only Adopter when
when price is low price is high p-value of
(0 ≤ p < $171) (171 ≤ p ≤ $284) difference

(1) (2) (3)

Panel A: Household head (respondent) characteristics

Female (%) 60.5 62.6 0.77

Age (years) 53.4 53.4 > 0.99

Senior citizen (%) 2.08 26.2 0.78

Attended secondary schooling (%) 9.5 21.0 0.05

Married (%) 64.6 69.5 0.47

Not a farmer (%) 18.5 26.6 0.20

Employed (%) 34.1 41.9 0.28

Basic political awareness (%) 9.9 15.7 0.25

Has bank account (%) 14.7 32.4 < 0.01

Monthly earnings (USD) 11.55 24.39 0.10

Panel B: Household characteristics

Number of members 5.1 6.0 0.02

Youth members (age ≤ 18) 2.9 3.4 0.17

High-quality walls (%) 12.6 21.3 0.16

Land (acres) 1.9 2.1 0.71

Distance to transformer (m) 363.2 356.9 0.75

Monthly (non-charcoal) energy (USD) 5.16 6.73 0.05

Panel C: Household assets

Bednets 2.2 2.7 0.03

Sofa pieces 5.5 8.1 < 0.01

Chickens 5.9 9.3 0.01

Radios 0.4 0.4 0.42

Televisions 0.1 0.3 < 0.01

Share of sample (%) 67 22

Notes: Columns 1 and 2 report sample means for “adopters when the price is low” and “adopters
when the price is high,” respectively, at the time of the baseline survey. Column 3 reports p-values
of the difference between the means. The basic political awareness indicator captures whether
the household head was able to correctly identify the presidents of Tanzania, Uganda, and the
United States. Monthly earnings (USD) includes the respondent’s profits from businesses and self-
employment, salary and benefits from employment, and agricultural sales for the entire household.



Appendix Table 3: Correlations between various characteristics observed at baseline

Attended
schooling

Not a
farmer Employed

Has bank
account

Monthly
earnings

Total
asset
value

Attended schooling 1

Not a farmer 0.111 1

Employed 0.057 0.249 1

Has bank account 0.278 0.068 0.177 1

Monthly earnings 0.245 0.179 0.332 0.288 1

Asset value 0.148 -0.002 0.180 0.207 0.220 1

Notes: This table presents correlations between six respondent and household characteristics that
were observed at baseline, and appear to be important differences between “adopters only when the
price is low” and “adopters when the price is high,” as shown in Appendix Table 2. These include
whether the household respondent (1) attended secondary schooling; (2) is not a farmer; (3) is
employed; and (4) has a bank account; (5) estimated monthly earnings (USD), which includes the
respondent’s profits from businesses and self-employment, salary and benefits from employment,
and agricultural sales for the entire household; and (6) estimated value of assets at baseline. These
six variables are combined to construct a baseline measure of “Social and Economic Status.” We
then construct a binary variable, SES, indicating whether a household falls into the upper quartile
of this measure. SES is then used as an interaction variable in instrumental variables regressions
estimating the impacts of household electrification, in order to explore heterogeneity. We can
compare the results of this approach to the alternative approach presented in the paper, and shown
in Appendix Table 1.



Appendix Table 4: Local average treatment effects with high “Social and Economic Status” inter-
action

E

×
Control E SES SES

(1) (2) (3) (4)

Panel A: Primary energy outcomes

A1. Grid connected (%) 5.6 – – –

[23.0]

A2. Monthly electricity spending (USD) 0.14 1.86*** -0.05 1.19***

[0.91] (0.13) (0.09) (0.38)

Panel B: Additional energy outcomes

B1. Electricity as main lighting (%) 5.2 88.4*** -0.5 2.8

[22.2] (2.4) (0.8) (3.9)

B2. Number of appliance types owned 1.8 0.4*** 0.6*** -0.2

[1.3] (0.1) (0.1) (0.2)

B3. Owns mobile phone (%) 84.3 -5.0* 4.9*** 7.4*

[36.4] (2.7) (1.9) (4.4)

B4. Owns radio (%) 54.2 7.7** 12.5*** -13.1*

[49.8] (3.8) (3.5) (7.5)

B5. Owns television (%) 17.9 13.3*** 17.0*** -5.6

[38.4] (3.8) (3.2) (7.9)

B6. Owns iron (%) 4.1 3.3** 5.7*** -3.5

[19.9] (1.4) (1.9) (3.7)

B7. Monthly kerosene spending (USD) 2.81 -1.29*** -0.43** 0.43

[2.86] (0.17) (0.19) (0.35)

B8. Monthly total energy spending (USD) 11.66 0.62 2.28 -5.06

[28.47] (2.34) (1.85) (3.20)

B9. Solar home system as main lighting (%) 11.8 -9.3*** 12.5*** -13.2***

[32.3] (1.3) (2.5) (3.3)

(Table continued on next page)



(Table continued from previous page)

E

×
Control E SES SES

(1) (2) (3) (4)

Panel C: Primary economic outcomes

C1. Household employed or own business (%) 36.8 6.2* 12.5*** -4.3

[38.8] (3.7) (2.6) (5.9)

—— Household women-only (%) 34.5 11.3*** 15.8*** -6.9

[44.5] (4.1) (3.1) (7.6)

—— Household men-only (%) 40.2 0.8 6.5* 2.0

[45.6] (4.2) (3.6) (7.6)

C3. Total hours worked last week 47.0 -2.1 2.6 1.5

[24.7] (1.5) (1.7) (2.9)

C4. Total asset value (USD) 914 150 352*** 232

[961] (136) (85) (203)

C5. Per capita cons. of major items (USD) 133 0 45*** -30

[142] (12) (10) (20)

Panel D: Primary non-economic outcomes

D1. Recent health symptoms index 0 -0.06 0.23*** 0.01

[1] (0.08) (0.08) (0.18)

D2. Normalized life satisfaction 0 0.21*** 0.08 -0.27**

[1] (0.08) (0.06) (0.14)

D3. Avg. student test Z-score 0 0 0.39*** 0

[1] (0) (0.09) (0)

D5. Political and social awareness index 0 0.05 0.32*** -0.28*

[1] (0.06) (0.07) (0.16)

Panel E: Mean treatment effects on grouped outcomes

E1. Economic Index (C outcomes) 0 0.10 0.48*** -0.01

[1] (0.09) (0.07) (0.17)

E2. Non-Economic Index (D outcomes) 0 0.03 0.41*** -0.29

[1] (0.07) (0.07) (0.18)

Notes: We report coefficients from separate instrumental variables regressions in which household
electrification status (E) and the interaction between E and SES are instrumented with the three
subsidy treatment indicators (as well as their interactions with SES). SES is a binary variable
indicating whether a household is in the upper quartile of the Social and Economic Status index
constructed using observable characteristics at baseline (see Appendix Table 3 for a list of compo-
nents). Regressions are estimated using only round 1 data (roughly 16 months post-connection). All
specifications include pre-specified household, student, and community covariates, excluding those
captured in SES. See Appendix Table B6A in Lee, Miguel, and Wolfram (2019) for additional
results. Robust standard errors clustered at the community level in parentheses. Asterisks indicate
coefficient statistical significance level (2-tailed): ∗P < 0.10; ∗∗P < 0.05; ∗∗∗P < 0.01.



Appendix Note 1. Sources for historical rural electrification initia-
tives

In Table 1, we summarize some of the historical rural electrification initiatives evaluated in the re-
cent microeconomics literature. In general, electrification rates are obtained from various studies,
including those cited in the paper, as well as World Bank Open Data. GDP figures are calculated
using GDP and CPI statistics from World Bank Open Data. Annual average exchange rates are
obtained from the International Monetary Fund. The costs of electrification initiatives are obtained
from various sources. Unless otherwise indicated, the reported cost is assumed to be in current
prices of the year in which it is reported. All costs are then converted to 2017 USD. The following
is a list of the references that were consulted.

United States of America

• Barnes, Douglas F. 2005. “Meeting the Challenge of Rural Electrification in Developing
Nations: The Experience of Successful Programs.” Energy Sector Management Assistance
Programme, The World Bank.

• Lewis, Joshua and Edson Severnini. 2017. “Short- and Long-Run Impacts of Rural Electrifi-
cation: Evidence from the Historical Rollout of the U.S. Power Grid.” Journal of Development
Economics, forthcoming.

• Maddison Project Database, version 2018. Bolt, Jutta, Robert Inklaar, Herman de Jong and
Jan Luiten van Zanden. 2018. “Rebasing ’Maddison’: new income comparisons and the shape
of long-run economic development.” Maddison Project Working Paper 10.

• Pellegrini, Lorenzo and Luca Tasciotti. 2013. “Rural Electrification Now and Then: Com-
paring Contemporary Challenges in Developing Countries to the USA’s Experience in Retro-
spect.” Forum for Development Studies 40(1): 153-176.

Bangladesh

• Asian Development Bank. “Rural Electrification in Bangladesh – Structure, Technical Per-
formance, Achievements, and Areas for Improvement.”, accessed here on November 4, 2019.

• Samad, Hussain and Fan Zhang. 2017. “Heterogeneous Effects of Rural Electrification:
Evidence from Bangladesh.” Policy Research Working Paper 8102

India

• Planning Commission, Government of India. “National Five Year Plans.”, accessed here on
November 4, 2019.

• Rural Electrification Corporation, Government of India. “Deendayal Upadhyaya Gram Jyoti
Yojana Guidelines.”, accessed here on November 4, 2019.

Brazil

• World Bank. 1994. “Eletrobras I & II Power Distribution Projects, Power Project Completion
Report, Report No. 13173.”

• Goldemberg, Jose, Emilio Lebre La Rovere, and Suani Teixeira Coelho. 2004. “Expanding
access to electricity in Brazil.” Energy for Sustainable Development

10

https://www.adb.org/sites/default/files/linked-documents/49423-005-sd-01.pdf
http://planningcommission.gov.in/plans/planrel/index.php?state=planbody.htm
http://www.ddugjy.gov.in/assets/uploads/1548234273fykio.pdf


• Garcia-Escribano, Mercedes, Carlos Goes, and Izabela Karpowicz. 2015. “Filling the Gap:
Infrastructure Investment in Brazil.” IMF Working Paper No. 15/180

• Borges da Silveira Bezerra, Paula, Camila Ludovique Callegari, Aline Ribas, André F P
Lucena, Joana Portugal-Pereira, Alexandre Koberle, Alexandre Szklo, and Roberto Schaef-
fer. 2017. “The power of light: socio-economic and environmental implications of a rural
electrification program in Brazil.” Environmental Research Letters

Ghana

• Adu, George, John Bosco Dramani, and Eric Fosu Oteng-Abayie. 2018. “Powering the
powerless: Economic impact of rural electrification in Ghana” International Growth Centre,
E-33415-GHA-2

• Ministry of Energy, Government of Ghana. 2010. “National Electrification Scheme, Master
Plan Review (2011-2020).”, here on November 4, 2019.

South Africa

• Department of Minerals and Energy, Republic of South Africa. 2001. “National Electrification
Programme 1994-1999: Summary Evaluation Report.”

Vietnam

• World Bank. 2007. “Implementation, Completion, and Results Report, Report No: ICR0000485.”

• World Bank. 2011. “Vietnam - State and People, Central and Local, Working Together -
The Rural Electrification Experience.”

The Philippines

• Department of Energy, Republic of The Philippines. 2016. “Terminal Report on Sitio Elec-
trication Program.”, accessed here on November 4, 2019.

Kenya

• Rural Electrification Authority. “Strategic Plan 2008-2012.”

• Rural Electrification Authority. “Strategic Plan 2016/17-2020/21.”
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https://www.mida.gov.gh/pages/view/111/NES_Master_Plan_Review_Executive_Summary_Main_Report.pdf
https://www.nea.gov.ph/phocadownload/sitio-electrification/Terminal%20Report%20on%20Sitio%20Electrification%20Program.pdf


Appendix Note 2. Estimating heterogeneous treatment effects

We are interested in estimating Local Average Treatment Effects (LATE) separately for a set of
complier subgroups. Since any LATE (and any treatment effect) can be represented as a weighted
average of Marginal Treatment Effects (Heckman and Vytlacil (1999, 2001a, 2001b, 2001c, 2005,
2007a, 2007b)), it can also be represented as weighted average of sub-LATE’s. This means that if
we obtain a LATE using an instrumental variable, it can be represented as a weighted average of
sub-LATE’s for more narrowly defined complier subgroups. Therefore, the first step to calculate
LATE’s for different complier groups is to estimate the share that each complier group represents
in the sample. Under randomization, we only need to make a standard assumption of monotonicity
(Angrist, Imbens 1994) to get unbiased estimates of these shares.

In our experimental situation in which there are different randomized subsidy levels across treat-
ment villages, we can define complier group c1 as those individuals who take up a grid connection
when offered the low subsidy but not when offered no subsidy; those who take up power even
without a subsidy are the “always takers”. Those who only take up a connection when offered at
least the medium subsidy are called c2, and those who only connect under the full subsidy (free
treatment) are c3. The monotonicity assumption is equivalent to assuming that if individual i
takes up treatment under a low subsidy, they would also take it up if offered the medium or full
subsidy. This leads to the following logic: if x% of the control group take up a connection (without
a subsidy), then x% of the entire sample are always takers. Then if y% of those offered the low
subsidy take up treatment, we assume there is the same share of always takers in this treatment
group, and therefore y%−x% corresponds to the share of c1 compliers. Next, if z% of those offered
the medium subsidy connect, then z% − y% − x% corresponds to the share of c2 compliers, since
always takers and c1 compliers would also take up treatment under the medium subsidy. Following
the same logic we can estimate the share of c3 compliers and never takers. We will denote these
shares as πat, πnt, πc1, πc2, and πc3.

Along with these shares, estimating the LATE for c1 compliers (LATEc1) is straightforward,
since it simply corresponds to the 2SLS regression of an outcome on the low subsidy (using only
control and low subsidy observations). If we estimate a 2SLS regression of an outcome on the
medium subsidy, we are estimating a weighted average of LATEc1 and LATEc2, since the compliers
at the medium subsidy level include those who would not have complied under the low subsidy,
but also those who would have connected under a low subsidy if it had been offered. We call this
weighted average LATEc1,c2. This same logic applies to the full subsidy.

Exploiting the monotonicity condition yields the following key expressions, which are similar in
notation to those presented in Kowalski (2016):

For c2 compliers:

πc1
πc1 + πc2

LATEc1 +
πc2

πc1 + πc2
LATEc2 = LATEc1,c2

=⇒ LATEc2 =
πc1 + πc2
πc2

LATEc1,c2 −
πc1
πc2

LATEc1

V (LATEc2) =
(πc1 + πc2

πc2

)2
V (LATEc1,c2) +

(πc1
πc2

)2
V (LATEc1)− 2

πc1 + πc2
πc2

COV (LATEc1,c2,LATEc1)
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For c3 compliers:

πc1
πc1 + πc2 + πc3

LATEc1 +
πc2

πc1 + πc2 + πc3
LATEc2 +

πc3
πc1 + πc2 + πc3

LATEc3 = LATEc1,c2,c3

=⇒ LATEc3 =
πc1 + πc2 + πc3

πc3
LATEc1,c2,c3 −

πc1
πc3

LATEc1 −
πc2
πc3

LATEc2

=⇒ LATEc3 =
πc1 + πc2 + πc3

πc3
LATEc1,c2,c3 −

πc1 + πc2
πc3

LATEc1,c2

V (LATEc3) =
(πc1 + πc2 + πc3

πc3

)2
V (LATEc1,c2,c3) +

(πc1 + πc2
πc3

)2
V (LATEc1,c2)

−2
(πc1 + πc2

πc3

)(πc1 + πc2 + πc3
πc3

)
COV (LATEc1,c2,c3,LATEc1,c2)

Baseline characteristics

The LATE’s estimated implicitly come from the identification of the different complier groups
using the monotonicity assumption. For example, LATEc2 is just the difference between the av-
erage outcome for the c2 compliers who were treated and the c2 compliers who were not. When
it comes to baseline characteristics, it means we can identify the average for each complier group
and treated/untreated combination. Following Abadie (2002), a number of studies have aimed
to empirically identify the characteristics of different complier subgroups (for examples, see Card
2019; Mountjoy 2019; and Kline and Walters 2016). Here, we are able to calculate average baseline
values corresponding to the combination of treated and untreated compliers within each subgroup
using the assumption of monotonicity and the basic formula for weighted averages. As an example,
consider the average characteristics X for those connected under the low subsidy. This average is
a weighted average of the characteristics of the always takers and the treated c1 compliers. Since
we can identify the always takers in the control group, we can back out the average characteristics
for the treated c1 compliers. Similarly, the average characteristics X for those who remain uncon-
nected under the medium subsidy is a weighted average of the never takers and those who only
comply under the full subsidy, c3 compliers. Since the never takers are identified through those
unconnected under the full subsidy, we can back out the average characteristics of the untreated
c3 compliers. The following equations use the shares we previously described, T = 1 to represent
treated (connected) households, and Z1, Z2, and Z3 to represent the low, medium, and full subsidy
respectively:

For treated compliers:

E[X|c1]t =
πat + πc1
πc1

E[X|T = 1, Z1 = 1]− πat
πc1

E[X|T = 1, Z = 0]

E[X|c2]t =
πat + πc1 + πc2

πc2
E[X|T = 1, Z2 = 1]− πc1

πc2
E[X|c1]t −

πat
πc2

E[X|T = 1, Z = 0]

E[X|c3]t =
πat + πc1 + πc2 + πc3

πc3
E[X|T = 1, Z3 = 1]− πc1

πc3
E[X|c1]t −

πc2
πc3

E[X|c2]t −
πat
πc3

E[X|T = 1, Z = 0]
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For untreated compliers:

E[X|c3]u =
πnt + πc3
πc3

E[X|T = 0, Z2 = 1]− πnt
πc3

E[X|T = 0, Z3 = 1]

E[X|c2]u =
πnt + πc3 + πc2

πc2
E[X|T = 0, Z1 = 1]− πc3

πc2
E[X|c3]u −

πnt
πc2

E[X|T = 0, Z3 = 1]

E[X|c1]u =
πnt + πc3 + πc2 + πc1

πc1
E[X|T = 0, Z = 0]− πc3

πc1
E[X|c3]u −

πc2
πc1

E[X|c2]u −
πnt
πc1

E[X|T = 0, Z3 = 1]

In Appendix Table 2, we compare baseline characteristics for each complier subgroup. Specifi-
cally, we present the minimum variance weighted average for each subgroup, instead of presenting
them separately for treated and untreated households. Furthermore, we present a weighted aver-
age (using their shares) of the baseline characteristics and LATE’s of complier subgroups c1 and
c2, primarily because π1 and π2 are quite small and thus pooling the data leads to more statisti-
cal power. There is also a meaningful conceptual distinction between those willing (and able) to
pay “something” for a connection, versus those who only connect when it is completely free. As
noted above, the weighted average for c1 and c2 is just the LATE and the average characteristics
for medium subsidy treatment group compliers, and in this case the relevant sub-LATE can be
obtained directly from that IV estimate.

To be able to estimate the standard errors for the LATE’s and the baseline characteristics, we
need to estimate a full covariance matrix, given the covariance terms that appear in the expressions
above. To do this, we employ a stacked regression approach, which is numerically equivalent to
a seemingly unrelated regression (SUR) approach. This allows for a straightforward estimation of
the analytical standard errors, rather than having to rely on bootstrapped estimates. All of the
data and code that generated the results are in this article’s replication files.
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