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from noise in real-world teacher effect estimates, this paper serves as a cautionary tale for their 
use in practice.
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1   Introduction 

 
 The increased availability of data linking students to teachers has made it possible to estimate the 

contribution teachers make to student achievement. By nearly all accounts, this contribution is large. 

Estimates of the impact of a one standard deviation (σ) increase in teacher “value-added” on math and 

reading achievement typically range from 0.10 to 0.30σ, which suggest that a student assigned to a more 

effective teacher will experience nearly a year's more learning than a student assigned to an less effective 

teacher (Hanushek & Rivkin 2010; Harris 2011; Jackson, Rockoff, & Staiger 2013; Koedel, Mihaly, & 

Rockoff 2015). These estimates—and evidence that teacher value-added to student achievement is 

predictive of long-run outcomes (Chetty et al. 2014b)—provide the basis for the oft-cited assertion that 

teachers are the most important school input into student learning. 

 Prompted by these findings, policymakers have moved to adopt value-added measures (VAMs) 

as significant criteria in the evaluation, promotion, compensation, and dismissal of teachers. As of the 

2015-16 school year, 36 of 46 states with revised teacher evaluation systems had incorporated VAMs or 

comparable student achievement growth measures into teachers' annual evaluations (Steinberg & 

Donaldson 2016). If such policies successfully improve teacher quality (Hanushek 2009), they have the 

potential to have a large impact on economic growth over the long run (Chetty et al. 2014b). 

Despite the established consensus that teacher quality is important, concerns have been raised 

over the validity and reliability of VAMs for high-stakes personnel decisions (e.g., Baker et al. 2010; 

Braun, Chudowsky, & Koenig 2010). Because teachers are not randomly assigned to students, VAMs are 

potentially biased by student, classroom, or school influences on achievement that vary with teacher 

assignment (Dieterle et al. 2014; Kane 2017; Horvath 2015; Porvath & Amerein-Beardsley 2014; 

Rothstein 2010). Even if VAMs are not biased, they may lack stability if a large share of their variability 

is attributable to student and classroom-level variation unrelated to teachers (McCaffrey et al. 2009; 

Schochet & Chiang 2013). These concerns notwithstanding, the prevailing view appears to be that VAMs, 

though lacking in causal interpretation, are useful for classifying and evaluating teachers (Glazerman et 

al. 2010, 2011; Kane et al. 2013; Koedel, Mihaly, & Rockoff 2015; Sass, Semykina, & Harris 2014). 
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In this paper, we provide a stark illustration of the limitations to using value-added models to 

identify high- and low-performing teachers. We do this by applying commonly estimated models to an 

outcome that teachers cannot plausibly affect: student height. Aside from the implausibility of teacher 

effects on height, student height is an attractive measure for this exercise since it is symmetrically 

distributed, interval measured, and arguably less prone to measurement error than achievement. We find 

that the estimated teacher “effects” on height are nearly as large as the variation in teacher effects on math 

and reading achievement. Using a common measure of effect size in standard deviation units, we find a 

1σ increase in “value-added” on the height of New York City 4th graders is about 0.22σ, or 0.65 inches. 

This compares to 0.29σ and 0.26σ, in math and English language arts, respectively. Moreover, this 

variation is statistically significant when measured using permutation tests. Models that control for school 

effects reduce the dispersion in effects on height, although the effects remain large and comparable to 

those on achievement at 0.16σ – 0.17σ.  

On their face, findings of teacher effects on height raise concerns about what these models are 

measuring. We consider three possible interpretations. The first, and potentially the most worrying, is that 

they reflect sorting to teachers on unobserved factors related to height that are also related to 

achievement. Under this interpretation, achievement differences attributed to teachers could reflect an 

unobserved sorting process, resulting in biased VAM estimates. The second interpretation is that teacher 

effects on height reflect spurious or sampling variation, or “noise.” In this scenario, differences attributed 

to teachers are simply idiosyncratic variation across years and relatively small samples of students. 

Finally, there could be sorting on unobserved factors related to height that are uncorrelated with 

achievement. This type of sorting would be less worrisome for use in educational settings, as it would not 

imply systematic bias in estimates of teacher effects on test performance. 

We evaluate these explanations in several ways. First, we examine the correlation between 

teachers' estimated effects on height and achievement. If effects on height reflect sorting on unobserved 

factors related to achievement, one might expect these effects to be correlated. Instead, we find a 

correlation close to zero. Second, we use a method proposed by Horvath (2015) to identify schools that 
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appear to systematically sort students to classrooms on the basis of prior characteristics. While more than 

60% of NYC schools appear to track students on prior achievement, we find little evidence of tracking on 

height. Third, we estimate the “persistent” component of teacher effects using the covariance across 

years, for teachers with multiple years of data. While positive for achievement measures, the covariance 

for height is close to zero, suggesting the observed effect of teachers on height is largely spurious 

variation. Finally, we perform a series of permutation tests that randomly allocate students to teachers in 

our data set and re-estimate each VAM model. This approach eliminates any potential for sorting, peer 

effects, systematic measurement error (e.g., at the classroom or school level), and/or true effects; and 

provides a benchmark for what teacher “effects” look like simply due to noise or sampling variation. 

Using this benchmark, we can reject the null hypothesis of a zero standard deviation in teacher effects on 

height, suggesting the presence of at least some systematic unexplained variation across teachers. 

Taken together, our results provide a cautionary tale for the use and interpretation of value-added 

models as they are often used in practice. We show that—simply due to chance—teacher effects can 

appear quite large, even on outcomes teachers cannot plausibly affect. To ameliorate the effect of 

sampling error on value-added estimates, analysts often apply a “shrinkage” factor, which scales VAMs 

by their estimated signal-to-noise ratio (Herrmann et al. 2016). This procedure is not always done, nor is 

it done in the same manner. In our context, the only approach to shrinkage that provides the theoretically 

“correct” adjustment—that is, shrinkage of height effects to the mean of zero—uses the covariance in 

effects from multiple years of classroom data to estimate the signal component (as in Kane & Staiger 

2008, and Kane, Rockoff, & Staiger 2008). Shrinkage approaches that do not make use of classroom-level 

variation within teachers over time to estimate signal continue to yield nonzero estimates of teacher 

effects on height. At the same time, we argue that getting the shrinkage factor “right” may be of limited 

value for adjusting teacher effects in practice, since shrinkage has only modest effects on the relative 

rankings of teachers, which are typically what teacher evaluation systems rely upon.1  

 
1 On this point, see also Guarino et al. (2015) and Hermann et al. (2016). 
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In the next section, we provide the framework for our analysis and ground our work in the context 

of a large literature on teacher value-added models. Then, in Sections 3 and 4 we describe our data 

sources and empirical approach. Section 5 presents our main results and a set of robustness checks, and 

Section 6 concludes with a discussion and lessons for researchers and policymakers. 

 

2   Background: estimation and properties of VAMs 

 Teacher effects are defined as the systematic variation in student test performance across teachers 

that remains after accounting for the effects of other observed inputs, such as prior academic 

achievement, and economic or educational disadvantages. They are generally estimated from a model like 

the following: 

 !"# = %!"#&' + )"#
* + + ,"# (1) 

 

in which !"# and !"#&'are test scores for student - in years . and . − 1, respectively, and )"# is a vector of 

student-level covariates related to achievement (and potentially, teacher assignment). ,"# is an error term 

that can be decomposed into teacher (1) and student-level errors, or when multiple years of classroom data 

are available, teacher, classroom, and student errors: 

 ,"# = 23 + 4"#, 67	 ,"# = 23 + 93# + 4"# (2) 

Estimates of :;—the standard deviation in teacher effects on student achievement—typically range from 

0.10:,  to	0.30:, with effects typically larger in mathematics than in reading.2 Especially in comparison 

with other educational interventions, the impact of differences in teacher quality appears to be substantial. 

The residual variation (,"#) used to estimate teacher effects consists of a “true” (persistent) 

teacher effect, effects of any unmeasured factors related to achievement that are common to a teacher, and 

idiosyncratic student- and classroom-level errors (Ishii & Rivkin 2011; Koedel, Mihaly, & Rockoff 

 
2 For extensive reviews of this literature, see Hanushek & Rivkin (2010), Harris (2011), Jackson, Rockoff, & Staiger 
(2013), and Koedel, Mihaly, & Rockoff (2015). As described later, some of these variance estimates are adjusted for 
sampling error, while others are not. 
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2015).3 If not accounted for, the latter factors have the potential to inflate estimates of the overall impact 

of teacher quality (i.e., estimates of :;), or—more importantly for practice—bias individual estimates of 

teacher effects. 

2.1   Unobserved sorting and the question of bias 

 A large literature has investigated whether and to what extent VAMs are systematically biased. 

For example, a number of studies have asked whether model specification—the inclusion or exclusion of 

student or classroom controls, for example—affects VAM estimates (e.g., Ballou, Sanders, & Wright 

2004; Ballou, Mokher, & Cavalluzzo 2012; Ehlert et al. 2013; Goldhaber, Goldschmidt, & Tseng 2013; 

Sass, Semykina, & Harris 2014; Kane et al. 2013). With the exception of a control for prior achievement, 

these studies tend to find that the choice of covariates has only modest effects on the relative rankings of 

teachers. Rankings tend to be more sensitive to the inclusion of school fixed effects, which allow for 

systematic variation in achievement across schools due to sorting or other school-level inputs. However, 

because school effects absorb real differences in mean teacher effectiveness across schools, they are more 

commonly used in research than in practical applications such as district level estimates of teacher value 

added (Ehlert et al. 2014; Goldhaber, Walch, & Gabele 2013; Gordon, Kane, & Staiger 2006; Kane & 

Staiger 2008). 

A more worrisome concern is that students are assigned to teachers on the basis of time-varying 

factors observed to schools but unobserved by the analyst. In a notable test of bias of this type, Rothstein 

(2010) showed that teachers assigned to students in the future had statistically significant “effects” on 

contemporaneous achievement gains. Because such effects cannot be causal, Rothstein argued that VAMs 

inadequately account for the process by which students are assigned to teachers.4 In another study, Kane 

and Staiger (2008) randomly assigned teachers to classrooms within Los Angeles schools and found non-

experimental VAM estimates were generally unbiased predictors of experimental VAMs, suggesting little 

 
3 Some value-added models allow for “drift” in teacher effectiveness over time; for example, see Chetty et al. 2014a. 
4 Several subsequent papers have argued the “Rothstein test” may not be robust (Goldhaber & Chaplin 2012; Kinsler 
2012; Koedel & Betts 2011).   



 6 

bias (at least within schools). This finding was replicated in the larger Measures of Effective Teaching 

(MET) project (Kane et al. 2013), and a quasi-experimental study by Chetty et al. (2014a) that focused on 

teachers switching between schools found little evidence of bias (see also Bacher-Hicks, Kane, & Staiger 

2014; Bacher-Hicks et al. 2017).5  

2.2   Statistical imprecision, instability, and noise 

 Even if VAMs are unbiased, their utility in evaluating individual teachers' job performance could 

be limited by statistical imprecision and instability (McCaffrey et al. 2009; Schochet & Chiang 2013). 

Imprecision stems not only from sampling error—a consequence of the small number of students used to 

estimate teacher effects—but also from classroom-level shocks, and poor model fit, particularly for 

teachers with students in the tails of the distribution or with otherwise hard-to-predict achievement 

(Herrmann et al. 2016; Kane 2017). McCaffrey et al. (2009) found that 30 to 60 percent of the annual 

variation in teacher effect estimates from Florida were a result of random variation at the student level; of 

the remainder, 50 to 70 percent could be considered “persistent” teacher effects and the rest random 

classroom-level variability. A practical implication of imprecision is that annual VAM estimates vary 

from year to year, sometimes substantially, with correlations ranging from 0.18 to 0.64, raising the 

possibility that seemingly effective teachers in one year are judged ineffective in the next, and vice versa.6 

Studies that report cross-year correlations include, for example, Aaronson, Barrow, & Sander (2007), 

Chetty et al. (2014a), and Goldhaber & Hansen (2013). Stability depends a great deal on model 

specification; for example, whether student or school fixed effects are used (Koedel, Mihaly, & Rockoff 

2015). A counter to this concern is that value-added measures—despite their instability—are useful 

predictors of career productivity, and better than alternative measures of teaching effectiveness 

(Glazerman et al. 2011; Goldhaber & Hansen 2013; Staiger & Kane 2014). 

 
5 Another potential source of bias is through test scaling. See, for example, Kane (2017), Soland (2017), and Briggs 
& Dominigue (2013). 
6 Studies that report cross-year correlations include, for example, Aaronson, Barrow, & Sander (2007), Chetty et al. 
(2014a), and Goldhaber & Hansen (2013). Stability depends a great deal on model specification, for example, 
whether student or school fixed effects are used (Koedel, Mihaly, & Rockoff 2015). 
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A common procedure used to address imprecision in value-added estimates is Empirical Bayes 

shrinkage, which scales unadjusted estimates by a shrinkage factor ?3, the signal-to-noise ratio (Guarino 

et al. 2015; Hermann et al. 2016; Kane, Rockoff, & Staiger 2008; Koedel, Mihaly, & Rockoff 2015): 

 
?3 =

:;@

:;@ + A:B@/D3E
 

(3) 

?3	depends on D3, the number of student observations for teacher 1, and the estimated proportion of the 

overall variation in achievement that is attributable to teacher effectiveness. (:;@ is the between-teacher 

variance in student achievement, and :B@ is the within-teacher variance). Intuitively, a teacher effect 

estimate is “shrunk” toward the mean of zero if it is estimated using a small number of students, or if the 

share of the overall variation in estimated teacher effects that is “signal” versus “noise” is low. Thus, 

individual teacher effects estimated off a relatively small number of students—as well as individual 

teacher effects that vary dramatically from the mean teacher effect (here set to 0)—are disproportionately 

“shrunk” toward zero. Overall, a teacher effect estimate is “shrunk” toward zero the smaller is: (1) the 

number of students used to estimate the effect, and (2) the share of the overall variation in estimated 

teacher effects that is “signal” versus “noise.”  

Shrinkage requires having appropriate estimates of the signal (:;@) and noise (:B@) variance 

components (Schochet & Chiang 2013). Studies vary in the extent to which they use shrinkage at all, and 

in their method for estimating :;@	and :B@ (Guarino et al. 2015). One approach is to obtain the best linear 

unbiased predictors (BLUPs) of 23 from a teacher random effects model, which are by definition 

Empirical Bayes shrinkage estimates. Another used by Kane, Rockoff, and Staiger (2008) uses teachers 

with multiple years of classroom data to calculate the covariance in classroom effects to provide an 

estimate of :;@. This method begins by estimating teacher-by-year effects 23# (equal to 23 + 9"3#	in 

Equation 1). Under the assumption that teacher effects are constant over time, the covariance between 

classroom effects for the same teacher across years is equal to the teacher effect variance :;@. Chetty et al.  

(2014a) relax the assumption of constant effects over time and allow for drift, but the idea is the same. 
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Other authors allow for heteroskedasticity in the within-teacher (classroom) error variance (e.g., 

Herrmann et al. 2016). 

 The shrinkage approach is limited in several respects, however. First, multiple years of classroom 

data are not always available to the analyst or used. For example, many teacher evaluation systems 

calculate VAMs from a single year of achievement data (see American Institutes for Research 2013; 

Isenberg & Hock 2010; VARC 2010). Second, as we discuss in a later section, shrinkage has only a 

modest impact on the relative ranking of teachers when there is little variation in the number of students 

per teacher (see also Guarino et al. 2015; Herrmann et al. 2016). In the extreme case when D3 is the same 

for all teachers, shrinkage has no effect on relative rankings. A teacher evaluation system that rewarded or 

punished teachers based on relative effects would make the same decisions regardless of what shrinkage 

factor was used. In sum, shrinkage procedures are at best a partial solution to the presence of non-

persistent variation in student outcomes across teachers. 

In the next section, we describe the data used in our estimates of teacher value-added on 

achievement and height. 

 

3   Data  

 Our primary data source for estimating teacher effects on height and achievement is a panel of 

more than 360,000 students enrolled in grades 4-5 in New York City public schools between 2007 and 

2010. These data are well-suited to our purposes, for several reasons. First, each student is linked to their 

mathematics and English Language Arts (ELA) teacher and to annual measurements of their height from 

the city's “Fitnessgram” physical fitness assessment. Second, the data represent a large population of 

students and teachers over four years. The number of students observed per teacher is large for some 

teachers, allowing for more precise estimates of teacher effects and estimates using multiple years of 

classroom data. Third, these data are typical of those used to estimate teacher VAMs in practice and were 

in fact used by the NYC Department of Education to evaluate teachers' effectiveness in math and ELA 
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(Rockoff et al., 2012).7 The Fitnessgram also includes measures of student weight. We do not report 

results using weight in the interest of brevity, and because teachers may have real “effects” on weight 

(e.g., through their practices related to physical activity, such as recess participation and school 

meals/snacks).  

We began with an administrative panel data set for students enrolled in grades 3-5 between 2005-

06 and 2009-10. Among other things, this panel included student demographics (birth date, gender, 

race/ethnicity), program participation (ELL, special education, and participation in the free and reduced 

school meals program (a measure of eligibility among those who apply for the program), and scale scores 

in math and ELA, which we standardized by subject, grade, and year to mean zero and standard deviation 

one. The administrative data were matched to teacher-student linkages in math and ELA from 2006-07 to 

2009-10. Linkages were also available for 2010-11, but teacher codes changed in that year as a result of 

the NYCDOE's switch to a new personnel system. This change prevented us from matching teachers in 

2010-11 to earlier years. Although students in grades 6-8 could also be linked to teachers, we restricted 

our analysis to elementary school students, who are predominately in self-contained classrooms with one 

teacher for core subjects. This approach allowed us to avoid issues of proper attribution to middle school 

teachers. Third grade records and 2005-06 data were retained only to provide lagged values of the 

outcome measures. 

The Fitnessgram has been conducted annually in NYC public schools since 2005-06 and relies on 

school staff—usually the physical education teacher—to measure students' height, weight, and physical 

fitness. School personnel are trained to collect height and weight using a common procedure and a 

recommended digital beam scale. See https://vimeo.com/album/4271100/video/217670950. 

Measurements are taken throughout the school year, and the date of measurement is recorded in the 

Fitnessgram data. To parallel the measures used in our achievement models, we standardized height in 

 
7 Bitler et al. (2015) perform a similar analysis using the nationally representative Early Childhood Longitudinal 
Survey-Kindergarten Cohort (ECLS-K), which links students to classroom teachers and also includes measures of 
achievement and health. Their findings are similar. 
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inches by grade and year to mean zero and standard deviation one, with outlying values more than 4: 

from the mean set to missing before standardizing. As explained later, we experimented with other 

methods for standardizing height, such as by gender and age in months. The reference group for 

standardization had little to no effect on our results. In all cases, we standardized using all available data, 

not the analytic sample, which was more restrictive.  

Descriptive statistics for students in our analytic sample are reported in Table 1, alongside 

statistics for the full population of students who could be linked to classroom teachers. Students in the 

analytic samples for height, math, and ELA were required to have a non-missing lagged dependent 

variable, non-missing covariates, and a teacher with seven or more students in the same grade with 

enough data to be included in the VAM models. Seven is a common minimum group size requirement 

used in other studies and in state teacher evaluation systems. For our baseline models which combine all 

four years of data, this minimum group size of 7 is not that restrictive.  Table 1 shows the average 4th and 

5th grader in our analytic sample was somewhat higher-achieving and smaller in stature than the full 

population of students linked to classroom teachers, with marginally higher ELA and math scores. (This 

is common for the analytic sample used to estimate value-added models, since students are required to 

have a lagged test score). The average 4th and 5th grader in NYC was 54.7 and 57.1 inches in height, 

respectively, with standard deviations of 3.0 and 3.2 inches. For later reference, the average 5th grader 

grew 2.5 inches between 4th and 5th grade, with a standard deviation of 1.8. 

Table 2 reports the number of unique teachers and classrooms in our analytic samples, and 

descriptive statistics for the number of students per teacher (pooling all years) and per class, or teacher-

year. The full distributions are shown in supplemental appendix Figures A.1 and A.2. Over the four years 

combined, approximately 4,300 to 4,700 4th grade teachers and 3,700 to 4,200 5th grade teachers were in 

the analytic sample, depending on the outcome measure. There were more teachers in the analytic sample 

for math, as students were more likely to be missing data for height or ELA. Some teachers were 

observed with 80 or more students over four years, although the average teacher was observed for only 

two years, with 36 to 42 students. The average number of students per classroom (teacher-year) was 20-



 11 

21 for all outcomes. Teachers in our math sample represent about 82-84 percent of all 4th-5th grade NYC 

teachers who could be linked to students during these years. Similarly, the teachers in our height and ELA 

samples represent 73-74 and 80-82 percent of all grade level teachers, respectively. 

To get a better sense of the underlying scales of our outcome variables, Figures 1 and 2 show 

histograms of student height and math achievement in the 4th and 5th grade analytic samples. For height, 

we show both the original measure in inches and the standardized measure. The distributions of both 

measures are roughly bell-shaped, although not normal: K-S tests reject normality, and there are a few 

low-scoring outliers in math. A small mass of students also scored at or near the test ceiling in math. The 

original height distribution has a relatively small number of discrete values (26 and 27 unique values in 

4th and 5th grades, respectively), although after standardization the measure takes on a larger number of 

values, since standardization is within grade and year. (The number of discrete scale scores in math were 

65 and 43 in 4th and 5th grades, respectively). The discrete nature of the height measure in NYC could 

potentially affect the dispersion of teacher effects.  

Finally, Table 3 reports student-level pairwise correlations between the height, math, and ELA 

measures, between year-to-year changes in these measures, and between each measure and its lag. While 

the z-scores for math and ELA are strongly correlated (0.69 and 0.59 in 4th and 5th grade), achievement 

has only a weak bivariate correlation with height. The small negative correlation could be due to grade 

repeaters, who would be tall for their grade. In a multivariate regression model for achievement that 

includes height as a predictor (with controls for lagged achievement, age, and other standard covariates), 

height is a statistically significant predictor of achievement in math and ELA for both grades 4 and 5. The 

implied effect size is small, however, with a 1: increase in height associated with a 0.011: to 0.015: 

higher test score. See supplemental appendix Table A.1 for details. All three measures are strongly 

correlated with their lagged values, with correlations ranging from 0.65-0.68 in ELA and math to 0.79-

0.80 in height. The strong year-to-year correlation in height suggests it is reliable. The correlations 

between year-to-year changes in height and year-to-year changes in achievement are very low. 
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4   Empirical methods 

4.1   Baseline value-added models 

For each grade level and outcome (math achievement, ELA achievement, and height) we estimated 

teacher effects using a standard “dynamic OLS” value-added model that conditions on the prior year's 

outcome and a set of student-level covariates: 

 !"# = %!"#&' + )"#
* + + H# + 23 + 4"# (4) 

I"# and I"#&' are outcomes for student - in years . and . − 1, respectively, and )"# is a vector of fixed and 

time-varying characteristics of student -. The covariates in )"#	include a three-way interaction of gender, 

race, and age; recent immigrant status; limited English proficiency (LEP) and an indicator for a language 

other than English spoken at home; special education status; participation in free or reduced-price lunch 

(a measure of eligibility among those who apply for the program); and borough of residence. Free or 

reduced-price lunch indicators are missing for some students, typically those enrolled in universal free 

meals schools, where schools provide free meals to all students regardless of income eligibility. We coded 

these students with a zero but included an indicator equal to one for students with missing values. The 

three-way interaction of gender, race, and age is not standard in VAM models, but was thought to be 

more appropriate in the model for height. Results are nearly identical with non-interacted controls. In 

their review of the literature; Koedel, Mihaly, and Rockoff (2015) note that after conditioning on lagged 

outcomes, value-added estimates are not especially sensitive to the choice of covariates. Like other 

authors, they also caution against estimating teacher effects on test score gains. Since the gains model is 

seldom used in recent work, we do not take that approach here. The covariates in the height model were 

identical to those used for math and ELA, with the exception of an additional control for days elapsed 

between the student's annual Fitnessgram measurements across years, the timing of which can vary 

between and within schools. The H# are year effects, and the 23 are the teacher effects of interest.  
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To capture the variety of ways in which teacher effects are estimated in practice, we estimate the 

23 alternately under fixed and random effects assumptions.8 As described in Koedel, Mihaly, & Rockoff 

(2015); there are advantages and disadvantages to each approach, and recent work has converged on the 

fixed effects specification. We estimated random teacher effects in two ways. The first fit a random 

effects model using maximum likelihood and then obtained the best linear unbiased predictor (BLUP) of 

each teacher effect. The second estimated Equation 2 without teacher effects and then obtained the mean 

residual for each teacher 1. The mean residuals for teacher j were then manually “shrunk” as described in 

Section 4.2. Fixed effects were estimated using OLS and multiplied by a shrinkage factor for 

comparability with the random effects. We refer to these as “adjusted” fixed effects. Left unadjusted, their 

standard deviation would overestimate the variability in teacher effects. As is commonly found in other 

studies, we find VAMs estimated under random and fixed assumptions are highly correlated (0.71 to 0.96, 

depending on the grade and outcome measure, and in most cases above 0.90). 

 We also estimated versions of Equation (4) with school fixed effects ϕK: 

 !"# = %!"#&' + )"#
* + + H# + LK + 23 + 4"# (5) 

As noted in Section 2, value-added models with school effects are less common in practical applications 

than in research, and have a number of disadvantages (Koedel, Mihaly, & Rockoff 2015). In our context, 

however, we were concerned that height measurement practices could vary at the school level (e.g., 

measurement tool or assessor-level variation). School-level sorting by factors correlated with height is 

also a possibility. The school effects LK will absorb time-invariant factors of these types (but not time-

varying aspects). In the achievement models, the school effects should capture the effects of time-

invariant school influences on the outcome, including leadership quality, other staff, special academic 

programs, or other resources. 

Equation 3 was estimated in two steps (as in Master, Loeb, & Wyckoff 2017). First, we regressed 

the outcome !"# on all of the regressors in 3, including school effects, but excluding teacher effects 23. 

 
8 The baseline models for value added are reported in supplemental appendix Tables A.2-A.4. 
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Residuals from this first step were then used in the second to estimate the teacher effects as either random 

or fixed effects, in the manner described above.  

 

4.2   Variance components and classroom effects 

The approach to shrinkage described in Section 4.1 uses two variance components: variance between and 

within teachers. Estimates of :;@ and :B@, together with the number of observations per teacher D3, provide 

the factor ?3 in Equation 3. The goal of shrinkage in practice is to adjust value-added estimates for 

sampling error, recognizing that teacher effects are less precise when the number of students used to 

estimate each teacher effect is small. In our setting, the D3 over four years of data is large for some 

teachers, but smaller for others. 

In the language of multilevel models, Equation 2 is a “2-level” model with students nested within 

teachers. The 2-level model does not, however, allow for random variation at the classroom level. 

Teachers in a 2-level model—even when observed with many classrooms—are observationally equivalent 

to a large classroom. A 3-level model allowing for a random classroom effect A23# = 23 + 93#E	introduces 

unobserved, group-level variability within teachers over time (McCaffrey et al., 2009). In the 3-level 

model, the shrinkage factor includes a classroom variance component :M@:  

 
?3 =

:;@

:;@ + :M@ + A:B@/D3E
 

(6) 

 :;@, :M@, and :B@ can be estimated directly in the maximum likelihood procedure. Alternatively, the 

approach used by Kane, Staiger, and Rockoff (2008) estimates between-teacher variance (:;@) as the 

covariance between classroom effects 2N#O  for the same teacher in successive years, for teachers with 

multiple years of data. The between-classroom variance (:M@)	is estimated using the total variance in the 

residuals less the within-classroom and between-teacher components. 

We used estimated teacher-by-year (classroom) effects 2N#O   to test for correlation in teacher 

effects across years, and to obtain teacher effect estimates that could be shrunk using the Kane et al. 
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approach and equation 6). We also estimated the 3-level random effects model directly using maximum 

likelihood. 

 

4.1   Testing for sorting on prior characteristics 

 To assess the extent to which students are non-randomly sorted to classrooms within schools on 

prior characteristics, including height, we used a method developed by Horvath (2015). For related 

approaches, see Dieterle et al. 2015; Aaronson, Barrow, & Sander 2007; and Clotfelter, Ladd, & Vigdor 

2006. In that study, Horvath identified schools with non-random sorting by testing for systematic 

variation in lagged student characteristics across classrooms within schools, grades, and years. For 

example, for each school s the following regression is estimated for the lagged outcome I"#&': 

 !"#&' = 2Q + LKR# + S"# (7) 

The 2Q	are teacher-grade-year effects in school T and LKR#	are school-grade-year effects. Schools in 

which the null hypothesis of no systematic differences across classrooms is rejected are presumed to 

exhibit sorting on dimensions associated with their lagged value of !"# (VW: 2Q = 0	∀Z). 

Horvath (2015) found more than half of all schools in North Carolina exhibited sorting on prior 

achievement. Additionally, she found a somewhat smaller share appeared to actively balance the gender 

and race composition of classrooms, and a larger share exhibited within-school sorting by parental 

education. (The latter is consistent with college-educated parents having an influence on their child's 

classroom assignment). 

Schools may exhibit non-random sorting of students within grades and years, but not persistently 

“match” groups of students to specific teachers over time. To test for teacher matching, Horvath (2015) 

regresses mean lagged outcomes on LKR# and teacher, rather than classroom, dummies. Schools in which 

the null hypothesis of no teacher matching (the teacher dummies are jointly zero) is rejected are presumed 

to persistently match students to teachers. She finds roughly 40% of North Carolina schools persistently 

assigned students to teachers in this manner. 
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We replicated these tests for non-random classroom and teacher assignment in our NYC data, 

using lagged achievement and height as potential sorting variables. This test sheds light on whether 

classrooms within schools are grouped on height—or unobserved factors related to height—that might 

explain teacher effects on this outcome. 

 

4.2   Permutation tests 

 Finally, we performed a series of permutation tests to provide a benchmark for what teacher 

“effects” look like in our data under random assignment of student data to teachers, holding class sizes 

constant. For these tests, we randomly allocated students to teachers in our data set within grade and year 

and re-estimated each baseline model. This random permutation was repeated 499 times, maintaining the 

actual number of students assigned to each teacher in each permutation. On each iteration, we saved the 

estimated standard deviation of teacher effects (:;O) and then examined the distribution of these estimates 

across all 499 iterations. 

These results were used as a Fisher exact permutation test to assess whether our estimates of the 

dispersion in teacher effects in the observed data differ from what one would expect under the null of no 

effects, with any variation necessarily caused by different classroom sizes within schools and sampling 

variation. Through randomly assigning students to teachers in our data, we effectively impose the null 

hypothesis of no sorting, no true teacher effect, no peer effects, and no systematic measurement error. If 

the estimated standard deviation from the observed data is larger than the 95th percentile of standard 

deviations from the permutations, we conclude that the standard deviation is statistically different from 

the null of zero.  

For comparison purposes, we also report the results from permutation tests within schools. In this 

case we randomly allocated students to teachers within the same school and year. This imposes the null 

hypothesis of no sorting within schools, but between-school sorting remains possible. In this approach, 

there is a greater possibility that students are randomly allocated to their actual teacher, especially in 

smaller schools. 
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5   Results 

5.1   Teacher effects on achievement and height 

Our baseline estimates of teacher effects on the achievement and height of 4th and 5th graders in NYC are 

summarized in Panel A of Table 4 and visually in Figures 3-4. Panel A reports estimated standard 

deviations of teacher effects on each outcome. Separate standard deviations are reported for each 

outcome, grade, and model assumption (random or fixed effects, and with or without school effects). The 

random effects here are the best linear unbiased predictors (BLUPs); fixed effect coefficients were 

analogously adjusted by applying the shrinkage factor shown in equation 3. 

Focusing first on the models without school effects, Table 4 shows that the standard deviation of 

teacher effects on height is substantial in NYC, despite the implausibility of a true causal effect on height. 

For instance, a 1: increase in teachers' “value-added” on height is associated with a 0.21: − 0.22: 

increase in height in the random effects model. The adjusted fixed effects yield somewhat larger values, 

from 0.25: in 4th grade to 0.32: in 5th grade. In every case, a test of the null hypothesis that the teacher 

effects are jointly zero is soundly rejected at any conventional level. To put these effects in perspective, a 

0.22: increase in height amounts to a 0.68-inch gain in stature for 4th graders and an 0.72-inch gain for 

5th graders. This is roughly a third of a standard deviation in year-to-year growth for children of this age. 

The standard deviations of teacher effects on height are smaller, but not substantially different in 

standard deviation units, from those estimated for mathematics and ELA achievement. In math we find a 

1σ increase in teacher value-added to be associated with a 0.29: − 0.34: and 0.25: − 0.26: increase in 

achievement for 4th and 5th graders, respectively. In ELA, the variation in effects is closer to 0.26: −

0.28: in 4th grade and 0.21: − 0.24: in 5th grade. All estimates of the standard deviation in teacher 

effects are on the upper end of the range of those found in other studies, but close to those estimated by 

others using NYC data (e.g., Rockoff et al., 2012). 

Figures 3-4 provide full pictures of the distribution of teacher effects on height and mathematics 

(see supplemental appendix Figure A.3 for ELA). Both distributions are approximately symmetric around 
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zero, and there is generally less dispersion visible in the effects on height than in the effects on math. 

Comparing the 10th, 25th, 75th, and 90th percentiles of random effects in 4th grade, the centiles of 

teacher effects on height tend to be closer to zero (-0.22, -0.10, +0.10, and +0.21) than the same centiles 

for math (-0.31, -0.19, +0.15, and +0.34). The distribution of height effects is somewhat left-skewed, and 

the distribution of math effects somewhat right-skewed. There are a handful of relatively extreme values 

> 1.5σ) in the distribution of height effects—more so than in the distribution of math effects—but fewer 

than 10 in total (out of 4,262 teachers). Also recall that students with outlier values for height were 

omitted from the analytic sample. The standard deviation of teacher effects on height, therefore, does not 

appear to be inflated by a small number of outliers. 

The next two rows of Table 4 report similar estimates of dispersion in teacher effects for models 

with school effects. The inclusion of school effects should account for systematic differences in height 

across teachers due to school-level factors, such as differences in Fitnessgram timing, procedures for 

carrying out height measurements, and the like. In these cases, the estimated standard deviations are 

approximately 70-75 percent of those estimated in models without school effects. In all cases, however, 

the apparent effect of teachers on height remains meaningful in size, ranging from 0.16:	to	0.17:. 

Teacher effects on math and ELA are comparably reduced when including school effects (to 0.15: −

0.22:). 

 

5.2   Do teacher effects on height imply bias for teacher effects on achievement? 

 A possible interpretation for non-trivial “effects” of teachers on height is that students are sorted 

to teachers on unobserved factors related to height. These factors might include student health, ethnicity 

or immigration history, past grade retention patterns, red-shirting, or birthweight, for example. If these 

unobserved factors are also related to achievement, this would be a potentially troubling finding for 

achievement VAMs. That is, if commonly used covariates in value-added models for achievement 

insufficiently capture this sorting. In their review of the literature; Koedel, Mihaly, & Rockoff (2015) find 

that value-added measures for achievement are not especially sensitive to the choice of covariates. While 
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plausible, the sorting mechanism would have to be more complicated here, since our height models 

condition on lagged height. Sorting would effectively have to occur on grade-to-grade changes in height 

rather than levels.  

To explore this possibility, we first examined how teachers' estimated effects on achievement 

correlate with their effects on height. These correlations are reported in Table 5 for the baseline models. 

There is little evidence of an association between teacher effects on height and academic achievement. In 

both 4th and 5th grade, we find the correlation between value-added on height and achievement is 

typically smaller than 0.05 in absolute value. We found similar results when using Spearman rank 

correlations. In contrast, the correlation between teachers' value-added on math and ELA achievement is 

modest to strong, at 0.64-0.70 in 4th grade, and 0.51-0.56 in 5th grade. There were only two significant 

correlations between effects on height and achievement: the positive correlations of 0.199 and 0.090 

between height and math effects in 4th and 5th grades, respectively. Both emerge only when teacher 

effects are estimated as fixed effects; the corresponding correlations for random effects are close to zero. 

We have examined these two cases closely and have been unable to identify alternative explanations for 

these associations. For example, there are no outlier fixed effect estimates that drive up the correlation. 

When we exclude effects with an absolute value of 1.5 or higher, the correlation remains unchanged. The 

correlation is also not attributable to the shrinkage factor applied to the fixed effect estimates; the 

correlation is present before the adjustment. While not shown in this table, we also found positive 

correlations between value-added on height and ELA, but smaller, and again only with the fixed effects 

model. 

The low correlations in Table 5 offer some assurance that the estimated effects on height are not 

evidence of sorting on factors related to achievement. They do not, however, rule out the possibility that 

students sort to classrooms or teachers on factors related to stature—or changes in stature—that are 

unrelated to achievement. To examine this, we began by using Horvath's (2015) method to identify 

schools that exhibit non-random sorting of students to classrooms on prior characteristics, including 

height. Such grouping might be indicative of sorting on unobserved factors related to height. As described 
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in Section 4.3, this involved estimating separate regressions for each school to test the null hypothesis of 

no mean differences in students across classrooms. As in that study, we obtained p-values for each school, 

separately by grade, and separately for height and math (ELA results are similar). p-values below 0.05 are 

interpreted as evidence of systematic sorting across classrooms within school-years. 

Results from these tests are shown in Figure 5. The histograms in this figure show the relative 

frequency of p-values across schools, separately by grade level and outcome. We find strong evidence of 

classroom grouping based on lagged math achievement, but little evidence of grouping on height. For the 

roughly 700 schools in the math regressions, we can reject the null hypothesis of no sorting in 64.6 

percent of cases in 4th grade, and 62.6 percent in 5th grade. These proportions are remarkably close to 

those reported in Horvath (2015), who estimated that 60 percent of North Carolina schools exhibited 

systematic sorting on prior achievement. In contrast, of the 680 schools in the height regressions, we can 

reject the null hypothesis in only 10.1 percent of cases in 4th grade, and 11.2 percent in 5th grade. This is 

more than would be predicted by chance, but a much lower prevalence of rejections relative to math. 

Evidence of classroom grouping was more consistent across grades in math than in height, a 

pattern one would expect if grouping were a school-level practice for achievement but not height. For 

example, conditional on rejecting the null hypothesis of no sorting in 4th grade, a school had an 85.7 

percent chance of rejection in 5th grade (as compared to 17.2 percent for those that did not appear to sort 

in 4th grade). For height, the comparable numbers were 24.6 and 9.9 percent. Only 2.5 percent of schools 

appeared to sort students on height in both grades. 

We also conducted Horvath's test for teacher matching, that is, persistent sorting of students to 

teachers across years. In this case we found 32.9 percent of schools appeared to match students to 

teachers based on math scores (compared to 40% in Horvath's study), while only 8.1 percent appeared to 

match based on height. These results are available in supplemental appendix Figure A.4.  

Our second approach to testing for systematic sorting on unobserved characteristics associated 

with height was to estimate teacher-by year effects 23# and examine how these effects correlate over time 

for the same teacher. If there is a persistent “effect” of teachers on height, potentially explained by teacher 
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matching, one would expect to see a positive correlation in classroom effects for the same teacher over 

time. Instead, we find this correlation is small in absolute value and close to zero, as reported in Table 6. 

The between-year correlations in teacher effects on height are negative (about -0.166) in the random 

effects model, but in the fixed effects model range from 0.001 in 4th grade to -0.094 in 5th grade. By 

contrast, the intertemporal correlations are 0.435-0.587 in math, depending on the model assumptions and 

grade, and 0.210-0.501 in ELA. 

 

5.3   Are teacher effects on height entirely "noise"? 

 The analysis thus far finds little evidence in support of systemic sorting of students to teachers on 

unobserved factors related to height. While a majority of NYC schools exhibit non-random sorting of 

students to classrooms on prior achievement, only a small proportion exhibit such sorting on height (or 

unobserved factors related to height). Moreover, teacher effects from our baseline models for height show 

little to no persistence across years, when correlating effects for teachers with multiple years of classroom 

data. This finding would not preclude classroom-level sorting, but it is not consistent with persistent 

matching of students to teachers across years. 

As described in Section 4.2, an alternative to the baseline model explicitly allows for a random 

classroom effect that is uncorrelated within teachers over time. This is the approach used by Kane, 

Staiger, and Rockoff (2008) in estimating teacher effects as mean classroom-level residuals multiplied by 

a shrinkage factor. (They can also be estimated using maximum likelihood and a 3-level random effects 

model.) The critical difference in this approach is that the “signal” component of the shrinkage factor is 

estimated from the covariance in classroom effects for the same teacher in successive years. Our results in 

the previous section suggested this covariance is close to zero for these estimates of teacher effects on 

height. The shrinkage factor using this method would be the theoretically “correct” one, if there were no 

persistent teacher effects on height. 

Panels (B) and (C) of Table 4 report the estimated standard deviations in teacher effects on 

achievement and height when fitting 3-level models. The estimates in panel (B) come from the mean 
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residuals approach, while those in panel (C) come from maximum likelihood. In these cases, the standard 

deviation in teacher effects on height falls to zero, while those for math and ELA remain significant, 

ranging from 0.087-0.199, depending on the model, grade, and subject. In cases where the covariance in 

annual teacher effects was negative, we set :; to zero. These results suggest that the estimated effects in 

our baseline models for height are almost certainly not “true” effects on height.  

To assess the likelihood that differences in sample sizes of classrooms within schools plus 

sampling variation could produce teacher effects like those observed in the baseline model, we removed 

all effects of sorting, peers, systematic measurement error, and true effects, and randomly assigned 

students to teachers as described in Section 4.4. This random assignment was repeated 499 times for each 

model, and the estimated standard deviation (:;O) was retained on each iteration. Random effect 

estimation using maximum likelihood did not converge when student data was randomly assigned to 

teachers. Thus, for the random effect models, we calculated mean residuals for teachers and multiplied by 

the shrinkage factor. Distributions of the :;O	across permutations are shown in Figure 6, and the means of 

these distributions are reported in Panel D of Table 4. 

Even under random permutations of student data to teachers, we continue to find meaningful (in 

magnitude) effects of teachers on height and achievement in the baseline models although we can reject 

the null that the true SD is zero. In the fixed effects models, the average :;O	across permutations ranged 

from 0.053 for height to 0.068 for ELA. The standard deviation of these estimates across permutations is 

roughly 0.001-0.002. In other words, even when (real) data on students is randomly allocated across 

teachers, a 1: increase in teacher “value-added” is associated with a 0.053: increase in height and a 

0.068: increase in ELA test performance. As one would expect, teacher effects under random assignment 

of students to teachers are uncorrelated with those estimated with the actual data. (They are also 

uncorrelated across subjects.) Moreover, permutation tests that use the 3-level model produce a :;O		close 

to zero. 
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We repeated this permutations test by allocating students to teachers at random within schools. 

Distributions of the :;O	are shown in Figure 6, and the means are reported in Panel E of Table 4. The 

average :;O	across permutations within school is larger (0.072-0.131) in this case, which is not surprising 

since this method may not eliminate systematic measurement error between schools (and some students 

will be randomly matched to their actual teacher when randomizing within school).  

The permutation test offers two important insights. First, even under completely random 

assignment of student data to teachers, there are nonzero teacher “effects” in our baseline model. Even 

more important, the distribution of effects under random permutations provides a sense of the range of 

standard deviations under an imposed null of no systematic sorting, peer effects, or true effects. Second, 

our estimated teacher effects in the observed data are clearly over-dispersed relative to this null effect 

distribution, suggesting our estimated teacher effects on height and achievement have a standard deviation 

that is statistically different from 0. To take one example, the 95th percentile of the :;O		for 4th grade 

height among the permutations is 0.06 (Figure 6). This can be compared to an estimated :;O	in the actual 

data of 0.218. Similar differences are observed in math and ELA. In the case of height, this suggests that 

there is some systematic variation beyond randomness associated with the actual class sizes within 

schools and sampling variation in the covariates. 

 

6   Discussion 

 Schools and districts across the country want to employ teachers who can best help students to 

learn, grow, and achieve academic success. Identifying such individuals is integral to schools' success but 

is also difficult to do in practice. In the face of data and measurement limitations, school leaders and state 

education departments seek low-cost, unbiased ways to observe and monitor the impact that their teachers 

have on students. Although many have criticized the use of VAMs to evaluate teachers, they remain a 

widely-used measure of teacher performance. In part, their popularity is due to convenience-while 

observational protocols which send observers to every teacher's classroom require expensive training and 

considerable resources to implement at scale, VAMs use existing data and can be calculated centrally at 



 24 

low cost. Further, VAMs are arguably less biased than many other evaluation methods that districts might 

use instead (Bacher-Hicks et al. 2017; Harris et al. 2014; Hill et al. 2011).  

Yet questions remain about the reliability, validity, and practical use of VAMs. This paper 

interrogates concerns raised by prior research on VAMs and raises new concerns about the use of VAMs 

in career and compensation decisions. We explore the bias and reliability of commonly estimated VAMs 

by comparing estimates of teacher value-added in mathematics and ELA with parallel estimates of teacher 

value-added on a well-measured biomarker that teachers should not impact: student height. Using 

administrative data from New York City, we find estimated teacher “effects” on height that are 

comparable in magnitude to actual teacher effects on math and ELA achievement, 0.22: compared to 

0.29: and	0.26: respectively. On its face, such results raise concerns about the validity of these models. 

Fortunately, subsequent analysis finds that teacher effects on height are primarily noise, rather 

than bias due to sorting on unobserved factors. To ameliorate the effect of sampling error on value-added 

estimates, analysts sometimes “shrink” VAMs, scaling them by their estimated signal-to-noise ratio. 

When we apply the shrinkage method across multiple years of data from Kane and Staiger (2008), the 

persistent teacher “effect” on height goes away, becoming the expected (and known) mean of zero. This 

procedure is not always done in practice, however, and requires multiple years of classroom data for the 

same teachers to implement. Of course, for making hiring and firing decisions, it seems important to 

consider that value added measures which require multiple years of data to implement will likely permit 

identification of persistently bad teachers, but not provide a performance evaluation metric that can be 

met by teachers trying to improve their performance. In more realistic settings where the persistent effect 

is not zero, it is less clear that shrinkage would have a major influence on performance decisions, since it 

has modest effects on the relative rankings of teachers.  

Taken together, our results provide a cautionary tale for the naïve application of VAMs to teacher 

evaluation and other settings. They point to the possibility of the misidentification of sizable teacher 

“effects” where none exist. These effects may be due in part to spurious variation driven by the typically 

small samples of children used to estimate a teacher's individual effect. 



 25 

References 

Aaronson, Daniel, Lisa Barrow, and William Sander. 2007. “Teachers and Student Achievement in the 

Chicago Public High Schools,” Journal of Labor Economics 25: 95-135. 

American Institutes for Research. 2013. 2012-2013 Growth Model for Educator Evaluation: Technical 

Report Prepared for the New York State Education Department. Washington, D.C.: American 

Institutes for Research. 

Bacher-Hicks, A., Chin, M. J., Kane, T. J., & Staiger, D. O. 2017. “An Evaluation of Bias in Three 

Measures of Teacher Quality: Value-Added, Classroom Observations, and Student Surveys.” 

National Bureau of Economic Research Working Paper Series, No. 23478. 

Bacher-Hicks, A., Kane, T. J., & Staiger, D. O. 2014. “Validating Teacher Effect Estimates Using 

Changes in Teacher Assignments in Los Angeles.” National Bureau of Economic Research 

Working Paper Series, No. 20657. 

Baker, E. L., Barton, P. E., Darling-Hammond, L., Haertel, E., Ladd, H. F., Linn, R. L., et al. 2010. 

Problems with the Use of Student Test Scores to Evaluate Teachers. Economic Policy Institute 

Briefing Paper No. 278. 

Ballou, D., Mokher, C. G., and Cavalluzzo, L. 2012. “Using Value-Added Assessment for Personnel 

Decisions: How Omitted Variables and Model Specification Influence Teachers' Outcomes.” 

Working paper. 

Ballou, D., Sanders, W., and Wright, P. 2004. “Controlling for Student Background in Value-Added 

Assessment of Teachers.” Journal of Educational and Behavioral Statistics, 29: 37-65.  

Braun, H. I., Chudowsky, N., & Koenig, J. 2010. Getting Value Out of Value-Added: Report of a 

Workshop. Washington, D.C.: National Academies Press. 

Buddin, Richard, and Gema Zamarro. 2009. “Teacher Qualifications and Student Achievement in Urban 

Elementary Schools,” Journal of Urban Economics 66: 103-115. 

Chetty, R., Friedman, J. N., & Rockoff, J. E. 2014a. “Measuring the Impacts of Teachers I: Evaluating 

Bias in Teacher Value-Added Estimates.” American Economic Review, 104(9), 2593-2632. 



 26 

Chetty, R., Friedman, J. N., & Rockoff, J. E. 2014b. “Measuring the Impacts of Teachers II: Teacher 

Value-Added and Student Outcomes in Adulthood.” American Economic Review, 104(9), 2633-

2679. 

Doherty, Kathryn M., and Sandi Jacobs. 2013. Connect the Dots: Using Evaluations of Teacher 

Effectiveness to Inform Policy and Practice. Washington, D.C.: National Council on Teacher 

Quality. 

Glazerman, S., Loeb, S., Goldhaber, D., Staiger, D., Raudenbush, S., and Whitehurst, G. 2010. 

“Evaluating Teachers: The Important Role of Value-Added.” Washington, D.C.: Brookings 

Institution. 

Glazerman, S., Goldhaber, D., Loeb, S., Raudenbush, S., Staiger, D. O., and Whitehurst, G. J. 2011. 

“Passing Muster: Evaluating Teacher Evaluation Systems.” Washington, D.C.: Brookings 

Institution. 

Goldhaber, D., & Chaplin, D. 2011. “Assessing the 'Rothstein Test': Does it Really Show Teacher Value-

Added Models are Biased?” Washington, D.C.: CALDER Center Working Paper No. 71. 

Goldhaber, D., and Hansen, M.L. 2012. “Is It Just a Bad Class? Assessing the Long-Term Stability of 

Estimated Teacher Performance,” Economica 80: 589-612. 

Goldhaber, D. D., Goldschmidt, P., and Tseng, F. 2013. “Teacher Value-Added at the High-School Level: 

Different Models, Different Answers?” Educational Evaluation and Policy Analysis, 35: 220-236. 

Gordon, Robert, Thomas J. Kane, and Douglas O. Staiger. 2006. “Identifying Effective Teachers Using 

Performance on the Job.” Washington, D.C.: Brookings Institution. 

Guarino, C. M., Maxfield, M., Reckase, M. D., Thompson, P., and Wooldridge, J. M. 2015. “An 

Evaluation of Empirical Bayes’ Estimation of Value-Added Teacher Performance Measures.”  

Journal of Educational and Behavioral Statistics, 40(2), 190-222. 

Hanushek, Eric A. 2009. “Teacher Deselection,” in Creating a New Teaching Profession, Dan Goldhaber 

and Jane Hannaway (eds.) Washington, D.C.: The Urban Institute Press. 



 27 

Hanushek, E. A., and Rivkin, S. G. 2010. “Generalizations about Using Value-Added Measures of 

Teacher Quality.” American Economic Review, 100: 267-271. 

Harris, Douglas, and Tim R. Sass. 2006. “Value-Added Models and the Measurement of Teacher 

Quality,” Working Paper, Florida State University. 

Harris, Douglas N. 2011. Value-Added Measures in Education What Every Educator Needs to Know. 

Cambridge: Harvard Education Press. 

Harris, D. N., Ingle, W. K., & Rutledge, S. A. 2014. “How Teacher Evaluation Methods Matter for 

Accountability: A Comparative Analysis of Teacher Effectiveness Ratings by Principals and 

Teacher Value-Added Measures.” American Educational Research Journal, 51: 73-112. 

Hill, H. C., Kapitula, L.,& Umland, K. 2011. A Validity Argument Approach to Evaluating Teacher 

Value-Added Scores. American Educational Research Journal, 48: 794-831. 

Horvath, Hedvig. 2015. “Classroom Assignment Policies and Implications for Teacher Value-Added 

Estimation.” Job Market Paper, University of California-Berkeley Department of Economics. 

Isenberg, E., and Hock, H. 2011. Design of Value-Added Models for IMPACT and TEAM in DC Public 

Schools, 2010–2011 School Year: Final Report. Washington, DC: American Institutes for 

Research.  

Ishii, J., and Rivkin, S. G. 2009. “Impediments to the Estimation of Teacher Value Added.” Education 

Finance and Policy, 4: 520-536. 

Jackson, C. K., Rockoff, J. E., & Staiger, D. O. 2013. “Teacher Effects and Teacher-Related Policies.” 

Annual Review of Economics. 

Kane, T. J., McCaffrey, D. F., Miller, T., and Staiger, D. O. 2013. “Have We Identified Effective 

Teachers? Validating Measures of Effective Teaching Using Random Assignment.” Seattle, WA: 

Gates Foundation. 

Kane, Thomas J., Jonah E. Rockoff, and Douglas O. Staiger. 2008. “What Does Certification Tell Us 

About Teacher Effectiveness? Evidence from New York City,” Economics of Education Review 

27: 615-631. 



 28 

Kane, Thomas J., and Douglas O. Staiger. 2008. “Estimating Teacher Impacts on Student Achievement: 

An Experimental Evaluation,” National Bureau of Economic Research Working Paper #14607. 

Kinsler, J. 2012. “Assessing Rothstein's Critique of Teacher Value-Added Models. Quantitative 

Economics, 3(2), 333-362. 

Koedel, C., and Betts, J. R. 2011. “Does Student Sorting Invalidate Value-Added Models of Teacher 

Effectiveness? An Extended Analysis of the Rothstein Critique.” Education Finance and Policy, 

6: 18-42. 

McCaffrey, Daniel F., Tim R. Sass, J. R. Lockwood, and Kata Mihaly. 2009. “The Intertemporal 

Variability of Teacher Effect Estimates,” Education Finance and Policy 4: 572-606. 

Rockoff, Jonah E. 2004. “The Impact of Individual Teachers on Student Achievement: Evidence from 

Panel Data.” American Economic Review, Papers and Proceedings of the American Economics 

Association. 94: 247-252. 

Rockoff, J. E., Staiger, D. O., Kane, T. J., and Taylor, E. S. 2012. “Information and Employee Evaluation: 

Evidence from a Randomized Intervention in Public Schools.” American Economic Review, 

102(7), 3184–-3213. 

Rothstein, Jesse. 2010. “Teacher Quality in Educational Production: Tracking, Decay, and Student 

Achievement.” Quarterly Journal of Economics 125: 175-214. 

Schochet, Peter Z. and Hanley S. Chiang. 2013. “What Are Error Rates for Classifying Teacher and 

School Performance Using Value-Added Models?” Journal of Educational and Behavioral 

Statistics, 38: 142-171. 

Weisburg, Daniel, Susan Sexton, Susan Mulhern, and David Keeling. 2009. The Widget Effect: Our 

National Failure to Acknowledge and Act on Differences in Teacher Effectiveness. The New 

Teacher Project.  



F
ig
u
r
e
1
:
D
is
t
r
ib
u
t
io
n
s
o
f
h
e
ig
h
t
fo
r
N
Y
C

4
t
h
a
n
d
5
t
h
g
r
a
d
e
r
s

N
ot
es
:
h
ei
gh

t
in

in
ch
es

ta
ke
s
on

26
u
n
iq
u
e
va
lu
es

in
4t
h
gr
ad

e
an

d
27

u
n
iq
u
e
va
lu
es

in
5t
h
gr
ad

e.
T
h
e
z
-s
co
re

fo
r
h
ei
gh

t
(s
ta
n
d
ar
d
iz
ed

by
gr
ad

e
an

d
ye
ar
)
ta
ke
s
on

98
u
n
iq
u
e
va
lu
es

in
4t
h
gr
ad

e
an

d
10
3
u
n
iq
u
e
va
lu
es

in
5t
h
gr
ad

e
(b
u
t
on

ly
26
-2
7

u
n
iq
u
e
va
lu
es

in
ea
ch

ye
ar
).

29



F
ig
u
r
e
2
:
D
is
t
r
ib
u
t
io
n
s
o
f
m
a
t
h
s
c
o
r
e
s
fo
r
N
Y
C

4
t
h
a
n
d
5
t
h
g
r
a
d
e
r
s

N
ot
es
:
ov
er

al
l
ye
ar
s,

th
e
z
-s
co
re

fo
r
m
at
h
(s
ta
n
d
ar
d
iz
ed

by
gr
ad

e
an

d
ye
ar
)
ta
ke
s
on

26
1
u
n
iq
u
e
va
lu
es

in
4t
h
gr
ad

e
an

d
16
9

u
n
iq
u
e
va
lu
es

in
5t
h
gr
ad

e.
T
h
e
nu

m
b
er

of
u
n
iq
u
e
va
lu
es

in
ea
ch

ye
ar

is
ap

p
ro
xi
m
at
el
y
65

in
4t
h
gr
ad

e
an

d
43

in
5t
h
gr
ad

e.
(T

h
er
e
ar
e
m
or
e
u
n
iq
u
e
va
lu
es

ov
er
al
l,
as

th
e
m
ea
n
an

d
st
an

d
ar
d
d
ev
ia
ti
on

of
sc
al
e
sc
or
es

va
ri
es

by
ye
ar
).

30



F
ig
u
r
e
3
:
D
is
t
r
ib
u
t
io
n
o
f
t
e
a
c
h
e
r
e
↵
e
c
t
s
o
n
h
e
ig
h
t

N
ot
es
:
se
e
n
ot
es

to
T
ab

le
4
fo
r
a
d
es
cr
ip
ti
on

of
h
ow

te
ac
h
er

e↵
ec
ts

w
er
e
es
ti
m
at
ed
.
N
=
4,
26
2
4t
h
gr
ad

e
te
ac
h
er
s
an

d
3,
68
7
5t
h

gr
ad

e
te
ac
h
er
s.

31



F
ig
u
r
e
4
:
D
is
t
r
ib
u
t
io
n
o
f
t
e
a
c
h
e
r
e
↵
e
c
t
s
o
n
m
a
t
h
a
c
h
ie
v
e
m
e
n
t

N
ot
es
:
se
e
n
ot
es

to
T
ab

le
4
fo
r
a
d
es
cr
ip
ti
on

of
h
ow

te
ac
h
er

e↵
ec
ts

w
er
e
es
ti
m
at
ed
.
N
=
4,
72
1
4t
h
gr
ad

e
te
ac
h
er
s
an

d
4,
24
9
5t
h

gr
ad

e
te
ac
h
er
s.

32



Figure 5: Tests for nonrandom tracking by prior math achievement and

height

Notes: Each p-value is from a test of the hypothesis that classroom e↵ects in a school s
are jointly zero. Regression models are estimated separately for each school and grade,
with lagged student outcomes regressed on school-grade-year and classroom e↵ects.
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Figure 6: Standard deviations of teacher e↵ects from 499 random permuta-

tions

Notes: to create these figures, we repeated the following steps 499 times. First, randomly
allocate all students in our data to teachers (within year). Then, re-estimate the value-
added model assuming fixed or random e↵ects. (Standard deviations of the adjusted fixed
e↵ects are shown). For each iteration we saved the estimated standard deviation in teacher
e↵ects c�u. These figures show the distribution of c�u’s across permutations.
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Figure 7: Standard deviations of teacher e↵ects from 499 random permuta-

tions within schools

Notes: to create these figures, we repeated the following steps 499 times. First, randomly
allocate all students in our data to teachers (within school and year). Then, re-estimate the
value-added model assuming fixed or random e↵ects. (Standard deviations of the adjusted
fixed e↵ects are shown). For each iteration we saved the estimated standard deviation in
teacher e↵ects c�u. These figures show the distribution of c�u’s across permutations.
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Table 2: Count of unique teachers and classrooms, and students per teacher

or classroom in analytic sample

Height Math ELA

Grade 4 Grade 5 Grade 4 Grade 5 Grade 4 Grade 5

Unique teachers (N) 4,263 3,687 4,721 4,249 4,366 3,978

Mean years observed 1.90 1.98 1.88 1.94 1.82 1.87

Students per teacher:

Mean 36.0 39.0 38.7 42.5 35.9 39.5

SD 22.9 25.5 24.5 27.4 22.8 24.9

p25 19 20 20 21 19 20

p50 27 29 29 33 26 29

p90 71 76 77 84 72 78

Unique classrooms (N) 7,594 6,848 8,712 8,138 7,941 7,451

Students per classroom:

Mean 20.0 20.8 20.9 22.2 19.7 21.1

SD 5.4 6.4 5.1 6.4 5.6 6.3

p25 17 17 18 19 16 18

p50 20 21 21 22 20 21

p90 26 28 27 28 26 28

Notes: Teachers and classrooms are counted only when seven or more students were
available with the minimum data to be included in the value-added models for these
outcomes. For the full distributions, see the supplemental appendix.
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Table 3: Student-level bivariate correlations in outcome variables

Correlations between: Grade 4 Grade 5

Math and ELA 0.688⇤⇤⇤ 0.585⇤⇤⇤

Math and height �0.059 �0.068⇤⇤⇤

ELA and height �0.046⇤⇤⇤ �0.042⇤⇤⇤

Correlation with lag: Grade 4 Grade 5

Math 0.701⇤⇤⇤ 0.757⇤⇤⇤

ELA 0.683⇤⇤⇤ 0.646⇤⇤⇤

Height 0.799⇤⇤⇤ 0.793⇤⇤⇤

Correlations between changes in: Grade 4 Grade 5

Math and ELA 0.158⇤⇤⇤ 0.140⇤⇤⇤

Math and height 0.002 0.007⇤⇤

ELA and height 0.013⇤⇤⇤ �0.006⇤

Notes: Pairwise correlations using all students with available data, not just those in the
analytic VAM samples. All outcome measures are z -scores, where the height measure is
standardized by grade and year. ***, **, and * indicate statistically significant correlations
at the 0.0001, 0.01 and 0.05 levels, respectively.
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Table 4: Standard deviation of estimated teacher e↵ects

Grade 4 Grade 5

Model Height Math ELA Height Math ELA

A. Baseline models

RE 0.218 0.286 0.256 0.210 0.253 0.210

FE (adj) 0.250 0.344 0.278 0.315 0.258 0.240

RE w/school e↵ects 0.169 0.216 0.184 0.157 0.199 0.155

FE w/school e↵ects (adj) 0.166 0.202 0.172 0.160 0.189 0.145

B. 3-level models (KS&R)

RE 0.000 0.163 0.104 0.000 0.132 0.097

RE w/school e↵ects 0.000 0.107 0.077 0.002 0.087 0.062

C. 3-level models (MLE)

RE 0.000 0.199 0.159 0.000 0.164 0.121

RE w/school e↵ects 0.000 0.108 0.070 0.000 0.089 0.056

D. Permutations

FE (adj) - mean c�u 0.056 0.063 0.065 0.053 0.056 0.068

E. Permutations within school

FE (adj) - mean c�u 0.131 0.083 0.077 0.123 0.084 0.072

Notes: For Panel A, teacher e↵ects were estimated in four ways: (1) assuming random
teacher e↵ects; (2) assuming fixed teacher e↵ects and “shrinking” using the estimated
signal-to-noise ratio after estimation; (3) assuming random teacher e↵ects and including
school fixed e↵ects; and (4) assuming fixed teacher e↵ects (shrunken after estimation) and
including school e↵ects—uses a two stage method that regresses outcome on covariates
and school fixed e↵ects and then uses the residuals to estimate the teacher fixed e↵ects.
For Panel B, mean residuals for each teacher were shrunk using Equation 3, from models
without and with school fixed e↵ects. For Panel C, a 3-level random e↵ects model was
used. Panels D and E show the mean c�u across 499 permutations of students to teachers
within year (Panel D) or students to teachers within schools and years (Panel E).
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Table 5: Pairwise correlations between teacher e↵ects

Math VAM:

RE w/ FE w/

Grade 4 RE FE (adj) school e↵ects school e↵ects

Height VAM:

RE -0.019 -0.014 -0.007 0.008

FE (adj) �0.030+ 0.199⇤
-0.022 -0.023

RE w/school e↵ects 0.000 -0.003 0.002 0.002

FE w/school e↵ects -0.002 -0.004 0.001 0.000

ELA VAM:

RE 0.697⇤
0.597⇤ 0.521⇤ 0.519⇤

FE (adj) 0.658⇤ 0.689⇤
0.477⇤ 0.475⇤

RE w/school e↵ects 0.525⇤ 0.432⇤ 0.646⇤
0.643⇤

FE w/school e↵ects 0.522⇤ 0.428⇤ 0.643⇤ 0.641⇤

RE w/ FE w/

Grade 5 RE FE (adj) school e↵ects school e↵ects

Height VAM:

RE 0.016 0.015 0.002 0.002

FE (adj) 0.009 0.090⇤
0.005 0.005

RE w/school e↵ects 0.001 0.002 -0.006 -0.007

FE w/school e↵ects 0.000 0.002 0.005 0.005

ELA VAM:

RE 0.557⇤
0.540⇤ 0.438⇤ 0.434⇤

FE (adj) 0.511⇤ 0.562⇤
0.382⇤ 0.378⇤

RE w/school e↵ects 0.425⇤ 0.406⇤ 0.514⇤
0.509⇤

FE w/school e↵ects 0.424⇤ 0.405⇤ 0.514⇤ 0.511⇤

Notes: See notes to Table 4 for a description of how teacher e↵ects were estimated. All
correlations at pairwise at the teacher level. * indicates statistical significance at the 0.001
level. + indicates significance at 0.05 level.
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Table 6: Between-year correlations in teacher e↵ects

Grade 4 Grade 5 N(4) N(5)

Height:

RE -0.166 -0.167 3319 3135

FE (adj) 0.001 -0.094 3319 3135

RE w/school e↵ects -0.004 0.007 3285 3100

FE w/school e↵ects (adj) 0.000 0.011 3285 3100

Math:

RE 0.557 0.479 4001 3885

FE (adj) 0.587 0.498 4001 3885

RE w/school e↵ects 0.463 0.435 3988 3868

FE w/school e↵ects (adj) 0.471 0.438 3988 3868

ELA:

RE 0.456 0.408 3428 3357

FE (adj) 0.501 0.453 3428 3357

RE w/school e↵ects 0.247 0.210 3410 3345

FE w/school e↵ects (adj) 0.249 0.214 3410 3345

Notes: See notes to Table 4 for a description of how teacher e↵ects were estimated. All
correlations at pairwise at the teacher level. * indicates statistical significance at the 0.001
level. + indicates significance at 0.05 level.
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A Supplemental Appendix

This file contains supplemental appendix figures and tables. It is not intended

for publication, but will be made available at the authors’ websites.

The contents are as follows.

• Figure A.1 shows the distribution of students per teacher for our sam-

ple.

• Figure A.2 shows the distribution of students per classroom for our

sample.

• Figure A.3 shows the distribution of estimated teacher e↵ects on ELA

achievement.

• Figure A.4 shows the distribution of p-values for tests of nonrandom

tracking of students to classrooms by prior EA achievement.

• Table A.1 shows coe�cients from regressions of achievement on height,

lagged achievement, and the controls.

• Table A.2 shows coe�cients from the baseline regressions used to cal-

culate teacher value added on height.

• Table A.3 shows coe�cients from the baseline regressions used to cal-

culate teacher value added on math.

• Table A.4 shows coe�cients from the baseline regressions used to cal-

culate teacher value added on ELA.
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Figure A.1: Students per teacher

Notes: includes teachers with at least seven students with su�cient data for VAM models.
A small number of teachers with more than 160 students over four years are excluded
from the figure. For height, N=4261 and 3681. For math, N=4720 and 4242. For ELA,
N=4366 and 3977.
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Figure A.2: Students per classroom

Notes: includes classrooms (teacher-years) with at least seven students with su�cient data
for VAM models. A small number of classrooms with more than 60 students are excluded
from the figure. For height, N=7590 and 6831. For math, N=8707 and 8109. For ELA,
N=7788 and 7318.
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Figure A.4: Tests for nonrandom tracking by prior ELA achievement

Notes: Each p-value is from a test of the hypothesis that classroom e↵ects in a school s
are jointly zero. Regression models are estimated separately for each school and grade,
with lagged student outcomes regressed on school-grade-year and classroom e↵ects.46
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Table A.2: Coe�cients from baseline regression models: height

Height RE Height RE (SFE) Height FE Height RE Height RE (SFE) Height FE

4th grade 4th grade 4th grade 5th grade 5th grade 5th grade

Lag height (z-score) 0.835*** 0.826*** 0.839*** 0.842*** 0.834*** 0.845***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Immigrant 0.031*** 0.031*** 0.029*** 0.003 0.005 0.001

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

LEP -0.026*** -0.029*** -0.029*** -0.01 -0.015* -0.011

(0.005) (0.005) (0.006) (0.006) (0.006) (0.006)

Special education 0.009 0.009 0.009 0.003 0.004 0.004

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Low income 0.007 0.007 0.006 0.011* 0.009 0.006

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Low income flag -0.019* -0.022** -0.017* 0.001 -0.003 -0.003

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Bronx 0.023 -0.174 0.162* 0.040** 0.089 -0.016

(0.013) (0.096) (0.076) (0.014) (0.145) (0.083)

Brooklyn -0.004 0.014 -0.233** -0.007 0.168 -0.472***

(0.012) (0.097) (0.080) (0.013) (0.137) (0.130)

Queens 0.026* 0.008 -0.051 0.02 0.091 0.005

(0.012) (0.101) (0.073) (0.013) (0.139) (0.062)

Staten Island -0.027 -0.255 -0.175 0.016 0.408 -0.680*

(0.018) (0.169) (0.097) (0.019) (0.260) (0.282)

Fitnessgram date di↵ 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Gender x race x age YES YES YES YES YES YES

Year dummies YES YES YES YES YES YES

Constant -1.171*** -1.140*** -1.053*** -1.847*** -1.942*** -1.621***

(0.115) (0.141) (0.127) (0.129) (0.171) (0.149)

N 153242 153018 153242 143738 143570 143738

Notes: Table reports baseline coe�cients from estimation of value added for height.
Columns 1–3 are for 4th graders and 4–6 for 5th graders. Columns 1–2, and 4–5 are
random e↵ects models and columns 3 and 6 are fixed e↵ect models. Columns 2 and 5 add
school fixed e↵ects (SFE).
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Table A.3: Coe�cients from baseline regression models: math

Math RE Math RE (SFE) Math FE Math RE Math RE (SFE) Math FE

4th grade 4th grade 4th grade 5th grade 5th grade 5th grade

Lag math (z-score) 0.544*** 0.571*** 0.536*** 0.632*** 0.653*** 0.626***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Immigrant 0.076*** 0.073*** 0.079*** 0.081*** 0.079*** 0.082***

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

LEP -0.258*** -0.264*** -0.253*** -0.175*** -0.172*** -0.173***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Special education -0.235*** -0.262*** -0.236*** -0.178*** -0.190*** -0.180***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Low income -0.091*** -0.098*** -0.075*** -0.052*** -0.057*** -0.045***

(0.005) (0.006) (0.005) (0.005) (0.005) (0.005)

Low income flag -0.059*** -0.073*** -0.051*** -0.054*** -0.056*** -0.053***

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Bronx -0.118*** -0.145 -0.027 -0.055*** 0.113 -0.077

(0.015) (0.124) (0.069) (0.014) (0.136) (0.061)

Brooklyn -0.051*** -0.037 -0.435*** -0.018 -0.182 -0.07

(0.014) (0.125) (0.081) (0.013) (0.152) (0.083)

Queens -0.017 0.069 -0.268*** 0.041** -0.017 -0.05

(0.015) (0.133) (0.073) (0.014) (0.147) (0.058)

Staten Island -0.080*** 0.176 -0.456*** 0.027 -0.12 -0.303*

(0.022) (0.243) (0.100) (0.021) (0.262) (0.122)

Gender x race x age YES YES YES YES YES YES

Year dummies YES YES YES YES YES YES

Constant 0.677*** 0.742*** 0.873*** 0.669*** 0.791*** 0.736***

(0.122) (0.160) (0.133) (0.127) (0.171) (0.137)

N 182623 182441 182623 180639 180576 180639

Notes: Table reports baseline coe�cients from estimation of value added for math.
Columns 1–3 are for 4th graders and 4–6 for 5th graders. Columns 1–2, and 4–5 are
random e↵ects models and columns 3 and 6 are fixed e↵ect models. Columns 2 and 5 add
school fixed e↵ects (SFE).
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Table A.4: Coe�cients from baseline regression models: ELA

ELA RE ELA RE (SFE) ELA FE ELA RE ELA RE (SFE) ELA FE

4th grade 4th grade 4th grade 5th grade 5th grade 5th grade

Lag ELA (z-score) 0.507*** 0.547*** 0.491*** 0.533*** 0.559*** 0.517***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Immigrant 0.096*** 0.091*** 0.098*** 0.073*** 0.071*** 0.074***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

LEP -0.339*** -0.336*** -0.332*** -0.145*** -0.122*** -0.148***

(0.007) (0.007) (0.007) (0.009) (0.008) (0.009)

Special education -0.269*** -0.300*** -0.270*** -0.141*** -0.150*** -0.144***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Low income -0.111*** -0.115*** -0.088*** -0.109*** -0.106*** -0.089***

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

Low income flag -0.111*** -0.124*** -0.101*** -0.064*** -0.069*** -0.051***

(0.009) (0.009) (0.009) (0.010) (0.010) (0.010)

Bronx -0.107*** -0.036 -0.147* -0.103*** 0.1 -0.081

(0.014) (0.133) (0.073) (0.013) (0.168) (0.077)

Brooklyn -0.047*** -0.001 -0.241* -0.053*** 0.101 -0.236*

(0.013) (0.129) (0.101) (0.012) (0.184) (0.109)

Queens 0.040** 0.201 0.04 -0.021 0.111 0.025

(0.014) (0.139) (0.099) (0.013) (0.177) (0.087)

Staten Island -0.009 0.205 -0.418 -0.021 0.182 -0.478

(0.025) (0.245) (0.219) (0.023) (0.335) (0.254)

Gender x race x age YES YES YES YES YES YES

Year dummies YES YES YES YES YES YES

Constant 0.411** 0.397* 0.474** 0.657*** 0.603** 0.663***

(0.139) (0.174) (0.153) (0.172) (0.217) (0.186)

N 156767 156599 156767 157023 156967 157023

Notes: Table reports baseline coe�cients from estimation of value added for ELA. Columns
1–3 are for 4th graders and 4–6 for 5th graders. Columns 1–2, and 4–5 are random e↵ects
models and columns 3 and 6 are fixed e↵ect models. Columns 2 and 5 add school fixed
e↵ects (SFE).
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