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ABSTRACT

A common challenge in estimating the impact of interventions (e.g., job training programs, 
educational programs) is that many outcomes of interest (e.g., lifetime earnings or other labor 
market outcomes) are observed with a long delay. In biomedical settings this is often addressed by 
using short-term outcomes as so-called “surrogates” for the outcome of interest, e.g., tumor size as 
a surrogate for mortality in cancer studies. We build on this literature by combining multiple, 
possibly qualitatively distinct, short-term outcomes (e.g., short-run earnings and employment 
indicators) systematically into a “surrogate index.” Under the Prentice surrogacy assumption, 
which requires that the primary outcome is independent of the treatment conditional on the 
surrogates, we show that the average treatment effect on the surrogate index equals the treatment 
effect on the long-term outcome. We also relate the surrogacy assumption to a set of structural, 
causal assumptions. We then characterize the bias that arises from violations of each of the key 
assumptions, and we provide simple methods to validate these assumptions using additional 
observed outcomes. We apply our method to analyze the long-term impacts of a multi-site job 
training experiment in California. Rather than waiting a full nine years to directly observe the long-
term impact, we show that it is possible to use short-term (the first six quarters) outcomes as 
surrogates. One could have estimated the program’s long-term impacts on mean employment rates 
using the employment rates observed in the first six quarters, with a 35% reduction in standard 
errors.
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1 Introduction

A fundamental challenge for evaluating interventions is that the primary outcomes of interest

are often hard to measure. For example, researchers are often interested in the effect of the

policy on some long-term outcome but do not observe that in their study. Instead, they observe

a number of short-term outcomes that are all related to this primary outcome of interest.

One setting where this type of problem arises involves an educational policy maker evaluating

a policy that would change class size. The ultimate goal may be to improve long-term labor

market outcomes for the students. However, the decision regarding the class size policy needs

to be made at a time when only short-term outcomes such as test scores or other educational

achievement measures are available. Another setting involves policy makers considering labor

market interventions such as job search assistance or human capital acquisition programs, where

they may be primarily interested in the long-term labor market attachment of the participants,

but in the short run they may only have access to outcomes such as employment records or

earnings over a short period of time. In randomized experiments for medical interventions, the

ultimate outcome of interest is often survival or quality-adjusted years of life. Survival rates

may be high in the short run, and so typically such trials are evaluated in terms of surrogate

measures, such as including tumor size or other measures of the progression of the disease, which

can be measured earlier. In all of these types of setting, to make a timely decision, the policy

maker needs to assess the programs based on short-term outcomes. These challenges also arise in

business settings. In the context of experimentation in digital technology companies, a discussion

of the most important challenges ranks as the top concern that “While most experiments in the

industry run for 2 weeks or less, we are really interested in detecting the long-term effect of

a change. How do long-term effects differ from short-term outcomes? How can we accurately

measure those long- term factors without having to wait a long time in every case?” (Gupta

et al. (2019), p. 21).

In these and many other examples, the researcher is faced with making recommendations

regarding the future implementation of the intervention on the basis of measurements of its
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effect on a variety of sometimes disparate and possibly conflicting outcome measures. A key

question is how to balance these different outcomes when making an overall assessment. In prac-

tice, researchers often deemphasize short-term outcomes for which they do not find statistically

significant effects, instead making perhaps somewhat ad hoc qualitative assessments regarding

the relative importance of the remaining short-term outcomes.

In this paper we lay out a framework for analyzing these issues. We consider the scenario in

which researchers do not measure the primary outcome in the context of data containing infor-

mation on the intervention. Instead, we assume that the researcher has a second, observational,

dataset where the researcher observes the surrogates and the primary outcome but does not

observe the treatment. In both samples the researcher may also observe variables not affected

by the treatment, such as pre-treatment characteristics of the participants.

We make four main contributions. First, we articulate three key assumptions under which

the average effect of the treatment on the primary outcome is identified from the combination of

the experimental and observational samples: (i) a standard assumption that the assignment in

the experimental sample is Unconfounded ; (ii) a Surrogacy assumption which requires that the

causal path from the treatment to the primary outcome goes through the surrogates (Prentice,

1989; Day and Duffy, 1996; Begg and Leung, 2000; Frangakis and Rubin, 2002); and (iii)

a Comparability or external validity assumption, which requires that the observational and

experimental samples are comparable in the sense that the outcome distributions conditional

on surrogates and pre-treatment variables are identical.

Under these three assumptions, the average effect of the treatment on the primary outcome

can be estimated as the average effect of the treatment on an aggregate of the surrogates,

which we label the surrogate index. This index combines the individual surrogates through

their predicted value of the primary outcome. For example, when studying the impact of class

size, the primary outcome might be high school graduation, while the two surrogates might be

mathematics and reading scores. For the special case of linear models, the proposal boils down

to multiplying the causal effects of the intervention on the two scores (which can be estimated
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in the experimental sample) by the coefficients from a linear regression of the primary outcome

on the two scores in the observational sample. The approach replaces a subjective assessment

of the relative importance of the two short-term measures by an objective data-driven criterion,

namely the predictive power of the scores for the outcome of interest.

In our second contribution, we derive the efficiency bound and propose various efficient

estimators under various scenarios, including scenarios with a single sample or two samples, as

well as with and without Surrogacy. This allows us to quantify the information content of the

Surrogacy assumption.1

In our third contribution, we provide bounds on the biases that arise in scenarios where either

or both of Surrogacy or Comparability are violated. We show that even if these assumptions

fail to hold (but unconfoundedness does hold), the proposed estimators still estimate a well-

defined causal effect, by providing a principled way of combining short-term outcomes in a

single measure through their predicted effect on the long-term outcome.

In our fourth contribution, we evaluate these methods in the context of a labor market

program where we observe long-term (thirty-six quarters) outcomes in four locations. Following

an approach popularized by LaLonde (1986), we put aside part of the data and investigate

whether we could have estimated the long-term effects without having long-term experimental

data. Specifically, we take one of the locations, Riverside, and put aside the long-term outcome

for individuals from that location. Then we take the other three locations, Alameda, Los

Angeles, and San Diego, and put aside the treatment assignment for that sample. We investigate

whether these two samples allow us to recover the experimental long-term effects in Riverside

using surrogates corresponding to the first T quarters of outcomes (employment, earnings, and

aid indicators). We find that combining six quarters of outcome data into a surrogate index

suffices to obtain estimates close to the long run effects. Using the additional data that were put

aside for the main analysis, we also directly test whether the critical assumptions, Surrogacy

and Comparability, hold given various alternative sets of surrogates.

1We are grateful to Kevin Chen and David Ritzwoller for pointing out an error in one of our earlier efficiency
bound calculations. See Chen and Ritzwoller (2023) for more details.
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We recognize that the credibility of the Surrogacy assumption may be questioned in any

given application, especially when viewed in isolation. Therefore, we view the best path forward

as building a “library” of surrogate indices in which researchers systematically catalog across

several studies the smallest set of surrogates that successfully match long-term outcomes of

interest (e.g., earnings, mortality, educational attainment). If one establishes, for instance, that

six quarters of employment and earnings data are sufficient to predict the impacts of many

different job training programs – as our cross-site comparisons of the GAIN program suggest –

then the long-term impacts of future job training programs could be credibly estimated using

the established six-quarter surrogate index. We view the empirical application in this paper as

providing one element of such a library and hope future work will expand upon it by identifying

surrogate indices that match estimated long-term impacts in other applications.

This study is related to three main bodies of literature, surrogacy, mediation, and missing

data. We extend the literature on surrogacy (Prentice 1989; Day and Duffy 1996; Fleming and

DeMets 1996; Begg and Leung 2000; Xu and Zeger 2001; Lauritzen 2004; D’Agostino, Campbell

and Greenhouse 2006; Qu and Case 2006; Alonso et al. 2006; Gilbert and Hudgens 2008; Weir

and Walley 2006) by formally including the presence of a second observational sample that is

used to estimate the relationship between surrogates and the primary outcome and articulating

the assumptions that justify doing so. In doing so we allow for uncertainty in the estimation

of this surrogates/outcome relationship, whereas the previous literature took this relation as

known. We also consider biases arising from violations of Surrogacy and Comparability.

In addition, this study builds on the literature on mediation (Baron and Kenny 1986; van der

Laan and Petersen 2004; Imai, Keele and Tingley 2010; Zheng and van der Laan 2012; Tchet-

gen Tchetgen and Shpitser 2014; VanderWeele 2015), which considers the decomposition of an

average treatment effect into the direct effect of a treatment on an outcome and indirect effects

that flow through a mediator. In the mediation setup, all three key variables – the outcome, the

treatment, and the mediator – are observed for the same units. The goal in the mediation liter-

ature is to determine the relative magnitudes of the direct and indirect effects. In our surrogacy
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analysis we focus on the case in which the direct effect is absent by assumption.

This paper is also related to the classical missing data literature in statistics (Rubin 1976,

2004; Little and Rubin 2014). Our key assumptions are closely related to the Missing At Random

(MAR) assumption. Our approach can be viewed as a special case of approaches that combine

data sets, e.g., Ridder and Moffitt (2007); Chen et al. (2008). In particular Rässler (2004, 2012)

refers to our setting, where one variable is missing in one part of a sample and a second variable

missing in the remainder of the sample, as a “data fusion” setting. Graham, Pinto and Egel

(2016) discuss efficient estimation for a particular set of models defined by moment conditions

in such a data fusion setting, where they allow the treatment to be a general random variable,

rather than a binary indicator as in our setup.

The paper is organized as follows. Section 2 sets up the problem and introduces the notation.

Section 3 discusses the critical assumptions and links the setup to the mediation and missing

data literature. Section 4 discusses identification and the efficiency bounds. Section 5 presents

formulas for bias when the surrogacy assumption fails and derives bounds on the degree of bias.

Section 6 discusses estimation. Section 7 presents the empirical application. Section 8 concludes.

2 Setup and Notation

We define two samples, an Experimental (E) sample and an Observational (O) sample, with NE

and NO units or individuals, respectively. It is convenient to view the data as consisting of a

single sample of size N = NE +NO, with Pi ∈ {O,E} a binary indicator denoting the sample to

which unit i belongs.

For each unit, there is a binary treatment of interest, Wi ∈ {0, 1}, and a scalar primary

outcome, denoted by Yi. This outcome is not observed for individuals in the experimental sam-

ple. In addition, there are intermediate or secondary outcomes, which we refer to as surrogates

(to be defined precisely in Section 3.2), denoted by Si for each unit. Typically, the surrogate

outcomes are vector-valued in order to make the properties we define plausible. Finally, we

measure pre-treatment covariates Xi for each unit, known not to be affected by the treatment.
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Following the potential outcomes framework or Rubin Causal Model (Rubin 1974; Holland

1986; Imbens and Rubin 2015), individuals in this group have two pairs of potential outcomes:

(Yi(0), Yi(1)) and (Si(0), Si(1)). The realized outcomes are related to their respective potential

outcomes as follows.

Yi ≡ Yi(Wi) =

{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1,

and Si ≡ Si(Wi) =

{
Si(0) if Wi = 0,
Si(1) if Wi = 1.

Overall, the units are characterized by the values of the septuple (Yi(0), Yi(1), Si(0), Si(1), Xi,Wi, Pi).

We do not observe the full septuple for any units. Rather, for units in the experimental sample

we observe the triple (Xi,Wi, Si) with support (X,W,S) where W = {0, 1}. In the observational

sample, we do not observe to which treatment each of the NO individuals were assigned. We

observe the triple (Xi, Si, Yi), with support X, S, and Y respectively. To simplify the exposi-

tion, we analyze the data as if we have a random sample from a population of units for which

we observe the quintuple (Pi, Xi, Si,1Pi=EWi,1Pi=OYi), where we treat Pi as a random variable

taking on the values {O,E}.

Assumption 1. We have a single random sample of size N drawn from the joint distribution of

(Pi, Xi, Si,Wi, Yi), where we observe for each unit in the sample (Pi, Xi, Si,1Pi=EWi,1Pi=OYi).

We summarize this data setup in Table 1. The setup differs from those in Athey, Chetty and

Imbens (2020) and Kallus and Mao (2020), where we would also observe the treatment in the

observational sample, but in the experimental sample we would still not observe the primary

outcome.

We are interested in the Average Treatment Effect (ATE) on the primary outcome in the

population from which the experimental sample is drawn:

τ ≡ E[Yi(1)− Yi(0)|Pi = E]. (2.1)

The same issues we study in the current paper apply to other estimands, such as the average

treatment effect for the treated units, or the average for the observational sample.

[6]



Table 1: Observation Scheme: ✓ is observed, ? is missing

Long-Term Pretreatment
Sample Treatment Outcome Surrogate Variables

Units Pi Wi Yi Si Xi

1 to NE E ✓ ? ✓ ✓

NE + 1 to NE +NO O ? ✓ ✓ ✓

An implicit assumption in our setup is that the two variables that are common to both

samples, Si and Xi, measure the same underlying variables in both samples. In some cases

it is possible that in one of the two samples, a coarser version is measured, for example age

or education may be measured in multi-year categories rather than in years. In that case, a

simple solution is to proceed by using the coarser version of the variables as corresponding to the

surrogate of pre-treatment variable. Another complication arises if the unit of observation differs

in two samples, say individuals versus zipcodes. Again additional assumptions are required to

link the variables between samples.

Table 2 summarizes key definitions and notation.

3 The Critical Assumptions: Unconfoundedness, Surro-

gacy, and Comparability

In this section, we discuss the three key assumptions that together allow us to combine the obser-

vational and experimental samples and estimate the causal effect of the treatment on the primary

outcome, exploiting the presence of the surrogates. The first assumption is Unconfoundedness

or Ignorability, common in the program evaluation literature (Rosenbaum and Rubin 1983b;

Imbens and Rubin 2015), which ensures that adjusting for pre-treatment variables leads to valid

causal effects in the experimental sample. The second assumption is the Surrogacy condition
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Table 2: Notation and Definitions

Sampling Indicator Pi ∈ {E,O}
Potential Outcomes for Primary Outcome Yi(0), Yi(1)

Potential Outcomes for Surrogates Si(0), Si(1)
Binary Treatment Indicator Wi ∈ {0, 1}
Realized Value for Outcome Yi = Yi(Wi)
Realized Value for Surrogate Si = Si(Wi)

Estimand τ ≡ E[Yi(1)− Yi(0)|Pi = E]

µ(s, w, x, p) ≡ E[Yi|Si = s,Wi = w,Xi = x, Pi = p]
Surrogate Index µ(s, x, p) ≡ E[Yi|Si = s,Xi = x, Pi = p]

µ(w, x) ≡ E[µ(Si, Xi, O) | Wi = w,Xi = x, Pi = E]

σ2(s, w, x, p) ≡ V(Yi|Si = s,Wi = w,Xi = x, Pi = p)
σ2(s, x, p) ≡ V(Yi|Si = s,Xi = x, Pi = p)
σ2(w, x) ≡ V(Yi|Wi = w,Xi = x, Pi = O)

Surrogate Score ρ(s, x) ≡ pr(Wi = 1|Si = s,Xi = x, Pi = E)
Propensity Score ρ(x) ≡ pr(Wi = 1|Xi = x, Pi = E)

ρ ≡ pr(Wi = 1|Pi = E)

Sampling Score φ(s, x) ≡ pr(Pi = E|Si = s,Xi = x)
φ(x) ≡ pr(Pi = E|Xi = x)

φ ≡ pr(Pi = E)

Conditional Distribution of Surrogates π(s|w, x) ≡ fSi|Wi,Xi,Pi
(s|w, x,E)

π(s|x) ≡ fSi|Xi,Pi
(s|x,E)

Influence Function ψ(y, s, w, x, p)

Notes: This table summarizes the notation. Conditional expectations and variances of the outcome Yi are
denoted by µ(·) and σ2(·) respectively. Conditional probabilities of the treatment are denoted by ρ(·).

Conditional probabilities of the sample are denoted by φ(·) The arguments of these functions can be both the
surrogates Si and the pre-treatment variables Xi, or just the pre-treatment variables Xi.
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due to Prentice (1989), that allows us to use the surrogate variables to proxy for the primary

outcome. The third assumption is Comparability, which formalizes the connection between the

two samples. This assumption is rarely stated formally, but plays an important role in our

analysis.

3.1 Unconfoundedness

For the individuals in the experimental group, the propensity score is the conditional probability

of receiving the treatment: ρ(x) ≡ pr(Wi = 1|Xi = x, Pi = E). We assume that for individuals

in the experimental group, treatment assignment is unconfounded, and we have overlap in the

distribution of pre-treatment variables between the treatment and control groups (Rosenbaum

and Rubin 1983b; Imbens and Rubin 2015):

Assumption 2. (Unconfounded Treatment Assignment / Strong Ignorability)

(i)

Wi ⊥⊥
(
Yi(0), Yi(1), Si(0), Si(1)

) ∣∣∣ Xi, Pi = E,

(ii) 0 < ρ(x) < 1 for all x ∈ X.

This assumption, widely used in the causal inference literature, implies that in the experi-

mental sample, we can estimate the average causal effect of the treatment on the surrogates by

adjusting for pre-treatment variables. We would also have been able to estimate the causal effect

on the primary outcome had the primary outcome been measured in the experimental sample.

In many applications of surrogacy approaches, the treatment in the experimental sample is

assigned completely randomly. In that case this assumption is satisfied by design. However,

unconfoundedness is all that is required.

3.2 Surrogacy

Next we discuss the second critical assumption, surrogacy. We also introduce two concepts, the

surrogacy score, similar to the propensity score, and the surrogacy index, to combine multiple

surrogates.

[9]



3.2.1 The Prentice Criterion

Prentice 1989 defines a surrogate as a post-treatment variable where conditioning on it makes

the outcome and the treatment independent:

Assumption 3. (Surrogacy, Prentice Criterion)

(i)

Wi ⊥⊥ Yi

∣∣∣ Si, Xi, Pi = E.

and (ii) 0 < ρ(s, x) < 1, for all s ∈ S, x ∈ X, and 0 < pr(Pi = E) < 1.

Remark 1. If the quadruple (Yi, Si,Wi, Xi) were observed for all units, surrogacy would be

a testable condition. With (Si,Wi, Xi) observed for units in the experimental sample, and

(Yi, Si, Xi) observed for units in the observational sample, this assumption has no testable im-

plications.

Remark 2. Note that Surrogacy is formulated in terms of the realized outcome and surrogate

values. In contrast we formulated the ignorability condition (Assumption 2) in terms of the

potential outcomes. This is partly to connect our discussion to the surrogacy literature (Prentice,

1989; Day and Duffy, 1996).

Surrogacy is often debated in empirical applications. Freedman, Graubard and Schatzkin

(1992) argue that the surrogate may not mediate the full effect of the treatment in many settings.

For example, reductions in class size may affect earnings through changes in non-cognitive skills

that are not fully captured by standardized test scores (Heckman, Stixrud and Urzua 2006;

Chetty et al. 2011).

3.2.2 The Surrogacy Index and the Surrogacy Score

There are two scalar functions of the surrogates that play an important role in the analyses: the

surrogate index and surrogate score.

[10]



Definition 1. (The Surrogate Index) The surrogate index is the conditional expectation of

the primary outcome given the surrogate outcomes and the pre-treatment variables, conditional

on the sample:

µ(s, x, p) ≡ E [Yi|Si = s,Xi = x, Pi = p] .

Remark 3. The surrogate index in the observational sample, µ(s, x,O), is identified because we

observe the triple (Yi, Si, Xi) in the observational sample.

Definition 2. (The Surrogate Score) The surrogate score is the conditional probability of

having received the treatment given the value for the surrogate outcomes and the covariates in

the experimental sample:

ρ(s, x) ≡ pr(Wi = 1|Si = s,Xi = x, Pi = E).

The surrogacy score plays is similar to the role the propensity score plays in analyses un-

der unconfoundedness (Rosenbaum and Rubin, 1983b). Here if the surrogacy condition holds

conditional on (Si, Xi), it also holds conditional on the surrogacy score.

Proposition 1. (Surrogate Score) Suppose Surrogacy (Assumption 3) holds. Then:

Wi ⊥⊥ Yi

∣∣∣ ρ(Si, Xi), Pi = E.

All proofs are given in the Appendix.

3.2.3 The Benefits of Multiple Surrogates

One theme of this paper is that having multiple short-term variables can make a surrogacy

approach more plausible, the same way multiple pre-treatment variables can make the uncon-

foundedness assumption more plausible. Here we discuss some illustrative examples.

The first example is illustrated in Figure 1.A. Suppose the treatment is an educational

intervention. This treatment affects the outcome of interest, some labor market outcome, e.g.,

earnings, through a number of different channels corresponding to different skill sets. These
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channels may include mathematics skills, language skills, and social skills. Using only one

of these variables as a surrogate would lead to biased estimates because they would ignore

the other causal paths. In this case the set of three short-term variables collectively satisfy

Unconfoundedness and Surrogacy.

The second case is illustrated in Figure 1.B. In this setup there is a variable, labeled “skills’,

that satisfies the critical assumptions for surrogacy. However, skills is not observed by the

researcher. Instead we have two noisy measures of this surrogate, say both a written and an

oral exam. Collectively these two variables may still not satisfy Surrogacy, since there may be

impacts of skills on earnings not captured by the exams, but the bias from using both would be

less than the bias from using only one candidate surrogate.

Figure 1.a Surrogacy Assumption Satisfied

Education Language Skills

Math Skills

Social Skills

Wage

Figure 1.b Multiple Surrogates

Education Skills

Written Exam

Oral Exam

Wage

Figure 1.c: Multiple Surrogates, Scenario 1

Informative Ad

Interested in item

Engaged with Website

Click on Ad

Spend Time on Website

Purchase Item

Figure 1.d: Multiple Surrogates, Scenario 2

Click Bait Ad

Interested in item

Engaged with Website

Click on Ad

Spend Time on Website

Purchase Item

The third case is illustrated in Figure 1.C. Here there is a pathway from the treatment,

an informative advertisement about an item, to the outcome, an indicator for the individual

purchasing the advertised item, going through two variables that on their own could each serve

as surrogates. These two variables are whether someone has interested in the item, and whether

the individual engaged with the website where the item was sold. However, we only measure
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noisy versions of these surrogates. For the first surrogate we observe whether an individual

clicked on the advertisement for the item, and for the second surrogate we observe the time

spent on the website. Neither of these two observed variables is a valid surrogate, but the

combination of the two generally removes more of the bias than a single one.

Figure 1.D illustrates further the concerns with only using a single surrogate, the possibility

of focusing on treatments that improve the surrogate variable but not the primary outcome.

Suppose that a researcher uses the single variable “click on ad” as a surrogate for the effect

of the ad on purchases. If the observational sample was based on informative advertisements,

there is likely a positive correlation between clicking on the advertisement and purchases. How-

ever, if the new treatment is uninformative, e.g., clickbait advertisement, with no effect on the

actual interest in the item, the surrogacy analysis using click behavior as the surrogate will be

ineffective. Using both click behavior and time spent on the website as surrogates will likely

reduce the bias. The same argument implies that using multiple tests as surrogates can reduce

problems with “teaching to the test,” where the long-run impact of an intervention is not well

captured by scores on a test.

3.3 Comparability

Surrogacy and Unconfoundedness by themselves are not sufficient for consistent estimation of

τ because they do not place restrictions on how the relationship between Yi and Si in the

observational sample compares to that in the experimental sample. As far as we know, such

restrictions were not previously articulated in the surrogacy literature because the setup is

typically one with just the separate experimental sample. However, a comparability assumption

is implicit in the way the postulated relationship between the surrogate and the primary outcome

is used in that literature. Related assumptions about the possibility of using causal estimates

in one location to predict causal effects in a second location on the basis of distributions of

pre-treatment variables are discussed in Hotz, Imbens and Mortimer (2005) and the literature

on transportability, Pearl and Bareinboim (2014).
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3.3.1 The Comparability Assumption

Let φ ≡ pr(Pi = E) be the probability of a unit being part of the experimental sample. We

introduce the Sampling Score, the propensity to be in the experimental sample:

Definition 3. (Sampling Score)

The sampling score is φ(s, x) ≡ pr(Pi = E|Si = s,Xi = x).

The third key assumption we make is that the conditional distribution of Yi given (Si, Xi) in

the observational sample is the same as the conditional distribution of Yi given (Si, Xi) in the

experimental sample, and that the support of (Si, Xi) in the experimental sample is a subset of

that in the observational sample. Formally,

Assumption 4. (Comparability of Samples)

(i) Pi ⊥⊥ Yi

∣∣∣ Si, Xi,

(ii) φ(s, x) < 1 for all s ∈ S and x ∈ X.

Similar to Unconfoundedness and Surrogacy this is a strong assumption, but unlike those

assumptions it is rarely discussed explicitly. As we show in Section 5, by making it explicit we can

discuss the biases arising from violations and improve the intuition when this assumption may be

of concern. If the observational and experimental samples are substantially different in terms of

the distribution of pre-treatment variables and surrogates, it would likely be more controversial

to assume that conditional on those variables the outcome distributions are identical.

3.3.2 The Surrogate Index and the Sampling Score

We let µ(s, w, x, p) denote the conditional expectation of the primary outcome given pre-

treatment variables, surrogates, treatment, and sample:

µ(s, w, x, p) ≡ E [Yi|Si = s,Xi = x,Wi = w,Pi = p] . (3.1)

Comparability and Surrogacy together allow us to impute the missing primary outcomes in the

experimental sample, as shown by the following proposition.
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Proposition 2. (Surrogate Index) (i) Suppose Assumption 3 (Surrogacy) holds. Then:

µ(s, w, x,E) = µ(s, x,E), for all s ∈ S, x ∈ X, and w ∈ W.

(ii) Suppose Assumption 4 (Comparability) holds. Then:

µ(s, x,E) = µ(s, x,O) for all s ∈ S, and x ∈ X.

(iii) Suppose Assumptions 3 (Surrogacy) and 4 (Comparability) hold. Then:

µ(s, w, x,E) = µ(s, x,O) for all s ∈ S, x ∈ X, and w ∈ W.

Because we can estimate µ(s, x,O) = E[Yi|Si = s,Xi = x, Pi = O], we can impute the

missing Yi in the experimental sample as µ(Si, Xi,O).

3.4 Surrogacy, Mediation, Instrumental Variables, Directed Acycli-
cal Graphs, and Missing Data

To provide context for the setup here and the key assumptions, it is useful to make a link to

three related literatures, on mediation, instrumental variables, and missing data respectively.

We describe the causal structures for surrogacy, mediation, and instrumental variables using a

directed acyclical graph (DAG) (Pearl, 2000). The interpretations provided in this subsection

are note essential to the main results in the next section.

3.4.1 Directed Acyclical Graph Representations

The surrogacy, mediation, and instrumental variables literatures all study causal structures

involving a causally linked sequence of three (sets) of variables. They differ in three key aspects:

(i) the assumptions they make on the causal structure, (ii) the estimands that are the primary

focus of the analysis, and (iii) the data available for the analyses. The literatures also differ in

the labels typically used for the three variables. In Table 3 we list the labels, estimands, and

some of the assumptions.
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Table 3: Surrogacy versus Mediation versus Instrumental Variables

Surrogacy Mediation Instrumental Var

Left Variable (L) Treatment (W ) Treatment (W ) Instrument (Z)
Middle Variable (M) Surrogate (S) Mediator (M) Treatment (W )
Right Variable (R) Outcome (Y ) Outcome (Y ) Outcome (Y )

Estimand Effect of L on R Direct and Indirect Effect of M on R
Effect of L on R

Direct Effect of L on R No Yes No
Unobs Conf between L and M No No No
Unobs Conf between M and R No No Yes
All Variables Observed Together No Yes Yes

In Figures 2.A-2.C we show the differences in structures in DAG form in a single sample

setting (so that we need not be concerned with the comparability assumption). Figure 2.A

illustrates the surrogacy setup, with a causal link from the treatment to the surrogate and

from the surrogate to the outcome. There is no unobserved confounder for the causal relation

between treatment and surrogate, which would violate Assumption 2 (Unconfounded Treatment

Assignment / Strong Ignorability). There is no direct causal link from the treatment to the

outcome. There are also no unobserved confounders for the causal relation between surrogate

and the outcome. These two features of the DAG (no direct link between treatment and outcome

and no unobserved confounder for the relation between surrogate and outcome imply Assumption

(3) (Surrogacy).

Figure 2.B shows a mediation example where Assumption 3 is violated because there is a

direct effect of the treatment on the outcome that does not pass through the surrogate. In this

case Si is a typically labelled a mediator, rather than a surrogate. In the mediation case the

direct effect of the treatment on the outcome is estimable because all three variables, treatment,

mediator and outcome are observed in the same sample.

[16]



Figure 2.A. Surrogacy Assumption
Satisfied

Treatment Surrogate Outcome

Figure 2.B. Violation of Surrogacy due to
Direct Effect (Mediation Setup)

Treatment

Surrogate Outcome

Figure 2.C. Violation of Surrogacy
Assumption due to Unobserved

Confounder (IV Setup)

Instrument

Treatment Outcome

Unobserved Confounder

Figure 2.C shows a DAG representation of the standard instrumental variables (IV) model

familiar to economists. The first difference from the surrogacy setup in Figure 2.A is that in the

instrumental variables setting the interest is in the causal effect of the variable in the middle of

the three variable chain (the surrogate S in the surrogacy setting, and the treatment W in the

instrumental variables setting), on the outcome, whereas in the surrogacy setting the primary

interest is in the effect of the first variable in the chain (the treatmentW in the surrogacy setting

and the instrument Z in the instrumental variables setting) on the outcome. In the instrumental

variables case the surrogacy estimand is immediately identified as the intention-to-treat effect of

the instrument, since the instrument and the surrogate are observed in the same sample. Under

the assumptions of the surrogacy setup, the target for an instrumental variables analysis, the

effect of the surrogate on the primary outcome, is immediately identified. The instrumental

variables settings is characterized by the presence of an unobserved confounder that affects both

the treatment of interest and the outcome. The presence of that unobserved confounder violates

Surrogacy, even if the treatment has no direct effect on the long-term outcome (Frangakis and

Rubin 2002; Rosenbaum 1984; Joffe and Greene 2009; VanderWeele 2015).

The presence of this unobserved confounder also violates the comparability assumption if the

marginal distribution of the treatment W differs between the observational and experimental

samples, as will typically be the case. In both the surrogacy and the instrumental variables cases,

we assume the absence of a direct effect of the first variable in the causal chain (the treatment

W in the surrogacy case and the instrument in the instrumental variables case) on the primary

outcome. In the surrogacy setting, this assumption is part of the Surrogacy assumption, while
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in the instrumental variables setting this is typically referred to as the exclusion restriction

(Angrist, Imbens and Rubin, 1996).

3.4.2 A Missing Data Representation

In the Online Appendix we also discuss a missing data interpretation of the surrogacy approach.

Eessentially we show that the following joint conditional independence assumption,

Pi ⊥⊥ Yi ⊥⊥ Wi

∣∣∣ Si, Xi, (3.2)

implies both surrogacy and comparability.

This missing data characterization is useful because it allows one to use insights from the

missing data literature, both for the current problems and for generalizations. Given (3.2) we

can use the conditional distribution of Yi given (Si, Xi) in the observational sample with Pi = O

to impute the missing outcomes in the experimental sample with Pi = E, and we can use the

conditional distribution of Wi given (Si, Xi) in the experimental sample wth Pi = E to impute

the missing treatments in the observational sample with Pi = O.

This observation directly extends to more general imputation problems. Suppose we have

two samples where in one sample, indicated by Pi = E we observe one set of variables, (Zi1, Zi2)

and in the second sample, indicated by Pi = O we observe a partially overlapping set of variables,

(Zi2, Zi3). Then the analogous assumption that allows the imputation of all missing variables is

Pi ⊥⊥ Zi1 ⊥⊥ Zi3|Zi2.

4 Identification and Semiparametric Efficiency Bounds

4.1 Three Identification Results

We now present our central identification result. We analyze three different representations

of the average treatment effect that lead to three estimation strategies, somewhat similar to

inverse propensity score weighting, regression, and influence function estimators for average

treatment effects under unconfoundedness (Imbens, 2004). The motivation for developing the
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different representations is that estimators corresponding to those different representations can

have different properties in finite samples, just like they do in the unconfoundedness setting.

Estimators based on the first representation require estimation of the surrogate index, but not

the surrogate score. Estimators based on the second representation instead require estimation of

the surrogate score, but not the surrogate index. Estimators based on the third representation

require estimation of both, but have attractive double robustness properties.

We define the following four objects, all functionals of distributions that are directly estimable

from the data. First define the statistical estimand, the average difference in the surrogate index

between treated and control, adjusted for pretreatment variablles, in the experimental sample:

τ ∗ ≡ E
[{

E
[
E [Yi|Si, Xi, Pi = O]

∣∣∣Wi = 1, Xi, Pi = E
]

(4.1)

−E
[
E [Yi|Si, Xi, Pi = O]

∣∣∣Wi = 0, Xi, Pi = E
]}∣∣∣Pi = E

]
.

Next, with a surrogate index representation:

τE ≡ E
[
µ(Si, Xi,O) · Wi

ρ(Xi)
− µ(Si, Xi,O) · 1−Wi

1− ρ(Xi)

∣∣∣∣Pi = E

]
, (4.2)

then a surrogate score representation,

τO ≡ E
[
Yi ·

ρ(Si, Xi) · φ(Si, Xi) · (1− φ)

ρ(Xi) · (1− φ(Si, Xi)) · φ
(4.3)

−Yi ·
(1− ρ(Si, Xi)) · φ(Si, Xi) · (1− φ)

(1− ρ(Xi)) · (1− φ(Si, Xi)) · φ

∣∣∣∣Pi = O

]
.

The third representation is based on the influence function. We first define

µ(w, x) ≡ E[µ(Si, Xi,O)|Wi = w,Xi = x, Pi = E].

Then the influence function is

ψ(y, s, w, x, p) =
1p=E

φ

(
w · (µ(s, x,O)− µ(1, x))

ρ(x)
− (1− w) · (µ(s, x,O)− µ(0, x))

1− ρ(x)

)
(4.4)

+
1p=E

φ

(
µ(1, x)− µ(0, x)− τ

)
[19]



+
1p=O

φ

φ(s, x)

1− φ(s, x)

(y − µ(s, x,O)) (ρ(s, x)− ρ(x))

ρ(x)(1− ρ(x))

with the estimand

τO,E = E [ψ(Yi, Si,Wi, Xi, Pi) + τ ] . (4.5)

Remark 4. An earlier version of the paper had a mistake in the representation of the influence

function. We are grateful to Kevin Chen and David Ritzwoller for pointing this out. See Chen

and Ritzwoller (2023) for details.

Theorem 1. (Identification) (i) Suppose that Assumption 1 holds. Then, assuming all

expectations are finite,

τ ∗ = τE = τO = τO,E.

(ii) Suppose that Assumptions 1–4 hold. Then the average treatment effect is equal to the

following three estimable functions of the data:

τ ≡ E[Yi(1)− Yi(0)|Pi = E] = τ ∗ = τE = τO = τO,E,

(iii) Jointly Assumptions 1, 2(i), 3(i) and 4(i) have no testable implications.

Remark 5. The first part of the theorem implies that the four functionals of the joint distribution

of (1Pi=OYi, Si,1Pi=EWi, Xi, Pi) are identical, irrespective of the Unconfoundedness, Surrogacy,

and Comparability assumptions.

Remark 6. Just like in the unconfoundedness case (Newey, 1994; Chernozhukov et al., 2016),

the influence function representation is doubly robust. Chen and Ritzwoller (2023) show that if

the functions in the influence function that represent conditional expectations of the outcome,

µ(s, x,O) and µ(w, x), are correctly specified, then the influence function has expectation zero

irrespective of the functions used for the various propensity score, ρ(s, x), ρ(x), ρ, and the

sampling score φ(s, x). Similarly, if the various propensity score, ρ(s, x), ρ(x), ρ, and the

sampling score φ(s, x) are correct, the influence function has expectation zero, irrespective of

the functions used for the conditional outcome expectations µ(s, x,O) and µ(w, x).
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4.2 Semiparametric Efficiency Bounds

In this subsection we present two pairs of semiparametric efficiency bound results (Bickel et al.,

1993; Newey, 1990) for two different data configurations. The first directly refers to the main

setup in this paper with the experimental and observational sample. This result is essentially

shown in Chen and Ritzwoller (2023) which corrects a mistake in an earlier version of the current

paper.

Theorem 2. Suppose Assumptions 1–4 hold. Then

(i) the semiparametric efficiency bound, normalized by the square root of the sample size N , is

V = E[ψ(Yi, Si,Wi, Xi, Pi)
2]

= E
[
1− φ(Si, Xi)

φ2

((
φ(Si, Xi)

1− φ(Si, Xi)

ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

σ2(Si, Xi,O)

)

+
φ(Xi)

φ2

(
µ(1, Xi)− µ(0, Xi)− τ

)2
+
φ(Si, Xi)

φ2

(
(1− ρ(Si, Xi))(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+
ρ(Si, Xi)(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

)]
.

(ii) If in addition the observational sample is large relative to the experimental sample, and

sups,x φ(s, x) → 0, then the efficiency bound, now normalized by the expected sample size of the

experimental sample, E[NE] = φN simplifies to

E
[
(µ(1, Xi)− µ(0, Xi)− τ)2 +

(1−Wi)(µ(Si, Xi,O)− µ(0, Xi))
2

(1− ρ(Xi))2
+
Wi(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

∣∣∣∣Pi = E

]
.

Remark 7. This variance in part (ii) of Theorem 2 is smaller than the effiency bound we would

obtain in a randomized experiment where we do observe the primary outcome and did not observe

the surrogate. The bound in that case is well known since Hahn (1998),

E
[
(µ(1, Xi)− µ(0, Xi)− τ)2 +

(1−Wi)(Yi − µ(0, Xi))
2

(1− ρ(Xi))2
+
Wi(Yi − µ(1, Xi))

2

ρ(Xi)2

∣∣∣∣Pi = E

]
.
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This advantage in terms of asymptotic precision of using the (true) predicted outcome µ(Si, Xi,O)

rather than the actual outcome Yi has been noted previously in Day and Duffy (1996) in a setting

with binary outcomes. In the general case this gain is equal to

E
[
(1−Wi)(Yi − µ(Si, Xi,O))2

(1− ρ(Xi))2
+
Wi(Yi − µ(Si, Xi,O))2

ρ(Xi)2

∣∣∣∣Pi = E

]
.

Next we consider the case where in a single sample we observe the treatment, primary

outcome, surrogates and pre-treatment variables. In this single sample case we do not need

the fifth variable, Pi ∈ {E,O}. To maintain consistency with the other parts of the discussion

and to avoid ambiguity, we keep the notation as before. In this case we can think of Pi always

taking the value Pi = E. We calculate the efficiency bound both without the assumption that

surrogacy holds and with the assumption that surrogacy holds. We do so for a data generating

process where surrogacy does hold, to see the information gain from that assumption.

Theorem 3. Suppose Assumptions 2 and 3 hold. (i) The variance bound without assuming

surrogacy is

Vns = E
[
σ2(Si, Xi,E) ·

(
ρ(Si, Xi)

ρ(Xi)2
+

1− ρ(Si, Xi)

(1− ρ(Xi))2

)
+ (µ(1, Xi)− µ(0, Xi)− τ)2

+
ρ(Si, Xi)

ρ(Xi)2
· (µ(Si, Xi,E)− µ(1, Xi))

2+
1− ρ(Si, Xi)

(1− ρ(Xi))2
· (µ(Si, Xi,E)− µ(0, Xi))

2

]
.

(ii) The efficiency gain from assuming surrogacy is

∆ = Vns − Vs = E
[
σ2 (Si, Xi, E)

ρ (Si, Xi) (1− ρ (Si, Xi))

ρ (Xi)
2 (1− ρ (Xi))

2

]
≥ 0,

where Vs is the variance bound for the case with surrogacy,

Vs = E

[
σ2(Si, Xi,E)

(
ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

+ (µ(1, Xi)− µ(0, Xi)− τ)2

+
ρ(Si, Xi)

ρ(Xi)2
(µ(Si, Xi,E)− µ(1, Xi))

2 +
1− ρ(Si, Xi)

(1− ρ(Xi))2
(µ(Si, Xi,E)− µ(0, Xi))

2

]
Remark 8. The expression for Vns is equivalent to the efficiency bound in (Hahn, 1998). It

is written here in terms of the surrogates to facilitate the comparison to the efficiency bound

exploiting surrogacy.
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Remark 9. Note that the variance bound in part (ii) of Theorem 3 differs from that in Theorem

2(ii) which was derived under the same surrogacy assumption, but assuming that the observa-

tional sample was infinitely large, so the relation between the surrogates and the primary outcome

was known without error. The result in (ii) captures just the value of the surrogacy assumption.

5 Violations of the Surrogacy and Comparability As-

sumptions: Biases and Bounds

The three critical assumptions, Unconfoundedness, Surrogacy, and Comparability, are strong.

There is a large literature studying the sensitivity to unconfoundedness conditions (Rosenbaum

and Rubin, 1983a; Imbens, 2003; Cinelli and Hazlett, 2020) or bounds (Manski, 1990). Multiple

studies have also raised concerns that in practice Surrogacy may not be satisfied (Begg and Le-

ung, 2000; Freedman, Graubard and Schatzkin, 1992; Frangakis and Rubin, 2002; Rosenbaum,

1984; Joffe and Greene, 2009; VanderWeele, 2015), although we are not aware of formal sen-

sitivity or bounds analyses. Violations of Comparability have not been explored because this

assumption has not been previously formalized. In this section we examine the biases that arise

from violations of Surrogacy and Comparability. We first characterize these biases and then

derive estimable bounds on the magnitude of the biases that can arise from such violations.

5.1 Biases

We begin by characterizing the probability limit of estimators based on the representations of the

estimand, τE, τO, and τO,E, in Theorem 1 when the Surrogacy and Comparability assumptions

are violated, as well as in cases where the surrogate index is misspecified. Throughout the

section, we maintain Unconfoundedness in the experimental sample (Assumption 2), and the

random sampling assumption (Assumption 1). We denote the probability limit of the estimators

by τ to differentiate it from the average treatment effect τ = E[Yi(1)− Yi(0)|Pi = E].

Theorem 4. (i) Suppose Assumption 2 (Unconfoundedness) holds, but Assumptions 3 (Surro-
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gacy) and 4 (Comparability) do not necessarily hold. Then

τ ≡ τO = τE = τE,O = E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E] .

(ii) Suppose Assumptions 2 (Unconfoundedness) and 4 (Comparability) hold, but Assumption 3

(Surrogacy) does not necessarily hold. Then the difference between the average causal effect and

the estimand is

(surrogacy-bias) τ−τ = E
[{

µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)
}
· ρ(Si, Xi) · (1− ρ(Si, Xi))

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
.

(iii). Suppose Assumptions 2 (Unconfoundedness) and 3 (Surrogacy) hold, but Assumption 4

(Comparability) does not necessarily hold. Then the difference between the average causal effect

and the estimand is

(comparability-bias) τ−τ = E
[{

µ(Si, Xi,E)− µ(Si, Xi,O)
}
· ρ(Si, Xi)− ρ(Xi)

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
.

(iv). Suppose Assumption 2 (Unconfoundedness) holds, but Assumptions 3 (Surrogacy) and 4

(Comparability) do not necessarily hold. Then the difference between the average causal effect

and the estimand is

(total bias) τ − τ = E
[
(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) ·

(1− ρ(Si, Xi)) · ρ(Si, Xi)

(1− ρ(Xi)) · ρ(Xi)
| Pi = E

]
+ E

[
(µ(Si, Xi,E)− µ(Si, Xi,O)) · ρ(Si, Xi)− ρ(Xi)

(1− ρ(Xi)) · ρ(Xi)
| Pi = E

]
.

Remark 10. Theorem 4(i) shows that even without Surrogacy and Comparability, we estimate a

valid average causal effect as long as unconfoundedness holds. The treatment effect we estimate is

the average effect of the treatment on the surrogate index – a principled aggregate of intermediate

outcomes – rather than the average effect on the primary outcome. This result also shows that the

interpretation does not change with the choice of estimator (using the surrogate score approach,

the surrogate index approach, or the influence function). Theorem 4(ii− iv) show how violations

of Comparability or Surrogacy affect the difference between what is being estimated and the

average treatment effect on the primary outcome.
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Remark 11. The bias from violations of Surrogacy (Theorem 4(ii)) consists of two factors. The

first factor is small if the treatment does not explain much of the variation in Yi and therefore

µ(s, 1, x,E) and µ(s, 0, x,E) are close. The second factor is small if the surrogate explains a large

share of the variation in Wi, so that the surrogate score is close to zero or one and therefore

E[ρ(Si, Xi) · (1− ρ(Si, Xi))] is close to zero.

Remark 12. The bias from violations of Comparability (Theorem 4(iii)) also consists of two

factors. The first is the difference between the surrogacy index µ(s, x,O) and its counterpart

in the experimental sample, µ(s, x,E). The second factor depends on the deviation between the

surrogacy score and the propensity score, ρ(Si, Xi)−ρ(Xi). If the treatment does not have much

effect on the surrogates, violations of Comparability do not generate much bias, because the bias

that comes from a combination of the effect of the treatment on the surrogates and the effect of

the surrogates on the outcome, will be small in that case.

5.2 Bounds on the Bias

In this subsection we explore bounds on the parameter of interest. We show that in general

these bounds are uninformative. However, if outcomes themselves are bounded, for example,

if the outcomes are binary, informative bounds can be derived. Moreover, we present bounds

given assumptions on the range of violations of the Surrogacy and Comparability assumptions.

Lemma 1. Suppose Assumptions 2 (Unconfoundedness) and 4 (Comparability) hold, but As-

sumption 3 (Surrogacy) does not necessarily hold. Then:

(i) If the outcome can take on values on the whole real line, then there is no value for the average

treatment effect τ that can be ruled out.

(ii) if the outcome is binary, then the average treatment effect τ is inside the interval{
E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E]+E

[
∆L

S(Si, Xi)
ρ(Si, Xi)(1− ρ(Si, Xi))

ρ(Xi)(1− ρ(Xi))

∣∣∣∣Pi = E

]
,

E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E]+E
[
∆U

S (Si, Pi)
ρ(Si, Xi)(1− ρ(Si, Xi))

ρ(Xi)(1− ρ(Xi))

∣∣∣∣Pi = E

]}
,
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where

∆L
S(s, x) = −min

(
1− µ(s, x,O)

ρ(s, x)
,
µ(s, x,O)

1− ρ(s, x)

)
∆U

S (s, x) = min

(
µ(s, x,O)

ρ(s, x)
,
1− µ(s, x,O)

1− ρ(s, x)

)
,

and this bound is sharp.

(iii) if the direct effect of the treatment on the outcome µ(Si, 1, Xi,E)−µ(Si, 0, Xi,E) is bounded

in absolute value by c, then the average treatment effect τ is inside the interval{
E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E]− c · E

[
ρ(Si, Xi)(1− ρ(Si, Xi))

ρ(Xi)(1− ρ(Xi))

∣∣∣∣Pi = E

]
,

E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E] + c · E
[
ρ(Si, Xi)(1− ρ(Si, Xi))

ρ(Xi)(1− ρ(Xi))

∣∣∣∣Pi = E

]}
,

and this bound is sharp.

Remark 13. To provide some intuition for the sharpness of the bounds, consider the surrogacy

bias in Theorem 4. The bias has two factors, with the second estimable from the data. The first

factor is the difference µ(Si, 1, Xi,E) − µ(Si, 0, Xi,E). The data are not directly informative

about this difference beyond the fact that the weighted average ρ(Si, Xi)µ(Si, 1, Xi,E) + (1 −

ρ(Si, Xi))µ(Si, 0, Xi,E) is equal to the estimable quantity µ(Si, Xi,O). In the absence of any

restrictions on the outcome this implies there are no restrictions on µ(Si, w,Xi,E) or on the

difference µ(Si, 1, Xi,E) − µ(Si, 0, Xi,E), and thus not on the bias or the average treatment

effect. Given restrictions on the range of the outcome this representation directly leads to upper

and lower bounds on the bias and the average treatment effect.

Lemma 2. Suppose Assumptions 2 (Unconfoundedness) and 3 (surrogacy) hold, but Assumption

4 (Comparability) does not necessarily hold. Then:

(i) If the outcome can take on value on the whole real line, then there is no value for the average

treatment effect τ that can be ruled out.

(ii) if the outcome is binary, then the average treatment effect τ is inside the interval{
E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E] + E

[{
1ρ(Si,Xi)<ρ(Xi) − µ(Si, Xi,O)

}ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

∣∣∣∣Pi = E

]
,
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E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E] + E
[{

1ρ(Si,Xi)>ρ(Xi) − µ(Si, Xi,O)
}ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

∣∣∣∣Pi = E

]}
,

with width

2E
[
1ρ(Si,Xi)>ρ(Xi) ·

ρ(Si, Xi)− ρ(Xi)

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
,

and this bound is sharp.

(iii) if µ(Si, Xi,E) − µ(Si, Xi,O) is bounded in absolute value by c, then the average treatment

effect τ is inside the interval{
E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E]− c · E

[
|ρ(Si, Xi)− ρ(Xi)|
ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
,

E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O)|Pi = E] + c · E
[
|ρ(Si, Xi)− ρ(Xi)|
ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]}
,

and this bound is sharp.

6 Estimation

In this section, we first present four estimators for the average treatment effect. The first, the

surrogate index estimator, is related to previously proposed estimators with the difference that in

the earlier literature the surrogate index was implicitly assumed to be known. We then discuss

three new alternative estimators. The last of these new estimators is a matching estimator.

Although matching estimators are generally not efficient in settings with unconfoundedness

(Rubin 2006; Abadie and Imbens 2006, 2016), they are widely applied, and it is instructive to

see how a matching strategy can be used here.

6.1 Surrogate Index

Suppose we estimate the surrogate index as µ̂(s, x,O) and the propensity score as ρ̂E(x). We

take an average of the surrogate index in the experimental sample for the treatment and control

groups, after adjusting for the propensity score. A natural estimator, corresponding to (4.2), is

the following difference of the two averages over the experimental sample:

τ̂E =
1∑NE

i=1Wi/ρ̂(Xi)

NE∑
i=1

µ̂(Si, Xi,O) · Wi

ρ̂(Xi)
(6.1)
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− 1∑NE

i=1(1−Wi)/(1− ρ̂(Xi))

NE∑
i=1

µ̂(Si, Xi,O) · 1−Wi

1− ρ̂(Xi)
.

We refer to this as the surrogate index estimator. Note that compared to the representation in

Theorem 1, we normalize the weights so that the weights sum up to one. This tends to improve

the finite sample properties of related estimators in other settings substantially (Hirano, Imbens

and Ridder 2003; Busso, DiNardo and McCrary 2014).

In the case where the estimator for the surrogate index µ(s, x,O) was based on a linear

specification for the regression of the primary outcome on the intermediate outcome, µ(s, x,O) =

γ0 + γ′Ss+ γ′Xx, this leads to

τ̂E = γ̂′S τ̂S,

where τ̂S is an estimator for the average effect of the treatment on the surrogates, E [Si(1)− Si(0)] .

In the simplest case without pre-treatment variables and where the experimental sample is ran-

domized, τ̂S = S1−S0, where S1 and S0 are the average values of the surrogate outcomes. Here,

the estimator simplifies to the difference in the estimated surrogate index in the treatment group

and the control group: τ̂E = γ̂′S(S1 − S0). This expression is also familiar from the mediation

literature (e.g., Baron and Kenny 1986) and the surrogacy literature (Day and Duffy, 1996).

However, we emphasize that in general, there may be interactions between the surrogates and

pre-treatment variables, and in that case the linear specification need not be not adequate.

6.2 Surrogate Score Estimator

We now use the second representation for τ in the main theorem to derive an alternative esti-

mator. Let ρ̂(x), ρ̂(s, x), φ̂(s, x), φ̂(x), and φ̂, be estimators for ρ(x), ρ(s, x), φ(s, x), φ(x), and

φ respectively.

The surrogate score estimator is based on averaging the following expression over the obser-

vational sample:

τ̂O =
1∑

i|Pi=O ω1,i

∑
i|Pi=O

Yi · ω1,i −
1∑

i|Pi=O ω0,i

∑
i|Pi=O

Yi · ω0,i, (6.2)
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where for w = 0, 1 the weights are

ωw,i =
ρ̂(Si, Xi)

w · (1− ρ̂(Si, Xi))
1−w · φ̂(Si, Xi) · (1− φ̂)

ρ̂(Xi)w · (1− ρ̂(Xi))1−w · (1− φ̂(Si, Xi)) · φ̂
. (6.3)

6.3 Influence Function Estimator

We can also base estimation on the efficient score given in (4.4). Given estimators for the

propensity score, the surrogate score, and the sampling score, we can estimate the average

treatment effect as

τ̂E,O =
N∑
i=1

{
1Pi=E

φ̂

(
Wi · µ̂(Si, Xi,O)

ρ̂(Xi)
− (1−Wi) · µ̂(Si, Xi,O)

1− ρ̂(Xi)

)
(6.4)

+
1Pi=E

φ̂

(
µ̂(1, Xi)

(
1− Wi

ρ̂(Xi)

)
− µ̂(0, Xi)

(
1− 1−Wi

1− ρ̂(Xi)

))

+
1Pi=O

1− φ̂

(
φ̂(Si, Xi)

1− φ̂(Si, Xi)

1− φ̂

φ̂

)
(Yi − µ̂(Si, Xi,O)) (ρ̂(Si, Xi)− ρ̂(Xi))

ρ̂(Xi)(1− ρ̂(Xi))

}
.

Based on the results in Newey (1994), it follows that under standard conditions the two esti-

mators above and the surrogate index estimator all reach the semi-parametric efficiency bound,

and are first-order equivalent.

The recent literature on double robust estimation of average treatment effects under un-

confoundedness (Chernozhukov et al., 2016) suggests that this estimator may have superior

properties in small samples.

6.4 Double Matching Estimator

Consider unit i in the experimental sample with Xi = x and Si = s, and suppose this is a

treated unit with Wi = 1. We need to find three matches for this unit. First, we need to find

a unit with the opposite treatment in the same (experimental) sample. Specifically, we need to

find the closest unit in the experimental sample, in terms of pre-treatment variables, among the

units with Wi = 0. Suppose this unit is unit j, with Wj = 0, and the value of the pre-treatment

variables for this unit are Xj = x′, and the surrogate outcomes are Sj = s′. As a result of the
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matching we should have x ≈ x′, but potentially s could be quite different from s′. Next, we

need to find for each of the two units i and j a match in the observational sample. Find the

unit in the observational sample closest to unit i, in terms of both pre-treatment variables and

surrogates. Let i′ be the index for this unit, and let the value of the outcome for this unit be

Yi′ , and the values of the pre-treatment variables and surrogates Xi′ and Si′ . Now as a result of

the matching Xi ≈ Xi′ and Si ≈ Si′ . Finally, find the unit in the observational sample closest

to unit j, in terms of both pre-treatment variables and surrogates. Let the value of the outcome

for this unit be Yj′ , and the values of the pre-treatment variables and surrogates Xj′ and Sj′ ,

with Xj ≈ Xj′ and Sj ≈ Sj′ .

Then we combine these matches to estimate the causal effect for unit i, Yi(1)− Yi(0), as the

difference in average outcomes for the two matches from the observational sample:

̂Yi(1)− Yi(0) = Yi′ − Yj′ . (6.5)

The matching estimator for τ would then be the average value of (6.5) over the experimental

sample. The double matching estimator is then

τ̂match =
1

NE

∑
i:PiE

{Wi (Yi′ − Yj′) + (1−Wi) (Yj′ − Yi′)} .

7 Application: Impacts of Job Training on Employment

In this section, we apply our method to estimate the causal effect of the Greater Avenues

to Independence (GAIN) job training program on long-term labor market outcomes. GAIN

was a job assistance program implemented in California in the 1980s to help welfare recipients

find work (Riccio et al. 1989; Friedlander and Robins 1995; Hotz, Imbens and Klerman 2006).

MDRC conducted a randomized trial to evaluate the GAIN program’s employment impacts in

six counties in California in the late 1980s. We focus primarily on the GAIN trial in Riverside,

which was widely heralded as the program that had the largest treatment effects on earnings.

The Riverside program emphasized a “jobs first” approach to re-entry into the labor force,

encouraging unemployed workers to take any job they find; in contrast, other sites focused more
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heavily on developing human capital through training programs (Hotz, Imbens and Klerman

2006).

We have available long-term outcomes for the four GAIN sites, including employment, earn-

ings, and receipt of aid over the first thirty-six quarters after random assignment. We take

the average of the thirty-six employment indicators and earnings in Riverside as our primary

outcomes. We then investigate whether we could have predicted the long-term impact on these

outcomes using only the first T quarters of all outcomes (including employment, earnings, and

aid) as surrogates, as well as using pre-treatment variables (characteristics of the individuals as

well as lagged employment, earnings and aid outcomes). The Riverside data on the treatment,

surrogates and pre-treatment variables play the role of our experimental sample. We use the

data from the combination of the other three locations (Alameda, Los Angeles, and San Diego)

as our observational sample. For the observational sample we only use the information on the

surrogates, pre-treatment variables, and outcome, but not the treatment assignment, nor the

indicator for the location.

We begin by presenting a brief summary of the samples. We then describe how we construct

our surrogate index. Next we illustrate our theoretical results by evaluating the magnitude

of the gains from using surrogate indices in terms of time and precision relative to existing

experimental estimates of the program’s long-term impacts in Riverside. We also show how one

can validate the surrogacy assumption using intermediate outcomes and bound the degree of

bias arising from potential violations of surrogacy.

7.1 The GAIN Program

The GAIN treatment was randomly assigned to welfare (Aid for Families with Dependent Chil-

dren) recipients, a very low-income population. The treatment group consisted of NE,T = 4405

participants, which the control group consisted of NE,C = 1040 participants who were not eli-

gible for the additional services in the GAIN program. The data we use come from the Hotz,

Imbens and Klerman (2006) which followed study participants for nine years after assignment
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of the treatment, measuring quarterly employment rates and earnings2 from the Unemployment

Insurance database. They found that the treatment effects of the Riverside GAIN program on

employment rates and earnings were initially large, but declined over time, as shown in Fig-

ure 3A, which plots employment rates by quarter for individuals in the experimental (Riverside)

treatment and control groups, and in Figure 3B, which shows the correspond results for quarterly

earnings.

(a) Employment (b) Earnings

In Riverside, the estimated causal effects on the primary outcomes were a 6.4 (s.e. = 1.2)

percentage point (pp) increase in average quarterly employment rates, and an $249 (s.e. $84)

increase in average quarterly earnings, in both cases averaged over the 36 quarter post-treatment.

Our question is whether these impacts could have been estimated more quickly by using short-

term employment, earnings and aid receipt as surrogates.

The observational sample includes the other three locations, Alameda, Los Angeles and San

Diego, for a total of NO = 13, 725 individuals.

In the online appendix Table 8 presents information on the pre-treatment variables. Clearly

the two samples, Riverside and the combination of the other three locations, are substantially

different prior to the intervention in terms of permanent characteristics such as ethnicity, as well

2All income variables were converted to 1999 dollars using cost-of-living deflators; see footnote 21 of Hotz,
Imbens and Klerman (2000) for more information.
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as in pre-treatment outcomes.

7.2 Three Estimators

We discuss here the estimators for the average effect of the programWe wish to consider different

set of surrogates, indexed by the number of periods t we want to use as surrogates. To capture

this we index the surrogate for individual i, St
i , by the superscript t. St

i contains the employment

indicators, earnings outcomes and aid receipt indicators for the t quarters after the intervention.

7.2.1 Surrogate Index Estimator

To construct the surrogacy index we estimate a linear regression model using least squares, for

the individuals in the observational sample

Yi = β0 + β⊤
S S

t
i + β⊤

XXi + εi. (7.1)

The predicted value from this regression, which we denote by Ŷi, is our surrogate index for mean

employment based on surrogates up to quarter t. We then compute this surrogate index for each

of the individuals in the experimental sample and estimate the treatment effect based on the

surrogate index as

τ̂O =
1

NE,T

NE∑
i=1

ŶiWi −
1

NE,C

NE∑
i=1

Ŷi(1−Wi). (7.2)

If we use the all 36 quarters of employment indicators are surrogates, then the regression of Yi

on the set of surrogates will fit perfectly, Ŷi will be equal to Yi, and the estimated effect will

be identical to the original experimental estimate. The question is whether using a much more

limited set of surrogates will get us close to the experimental benchmark.

7.2.2 Surrogate Score Estimator

For the surrogate score estimator we first estimate a logistic regression of the treatment indicator

on the pretreatment variables and the surrogates. We specify

ln

(
ρ(St

i , Xi)

1− ρ(St
i , Xi)

)
≡ ln

(
pr(Wi = 1|St

i , Xi, Pi = E)

1− pr(Wi = 1|St
i , Xi, Pi = E)

)
= α0 + α⊤

SS
t
i + α⊤

XXi,
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and estimate this on the experimental (Riverside) sample.

Next we estimate the propensity score, also as a logistic regression,

ln

(
ρ(Xi)

1− ρ(Xi)

)
≡ ln

(
pr(Wi = 1|Xi, Pi = E)

1− pr(Wi = 1|Xi, Pi = E)

)
= δ0 + δ⊤XXi,

and estimate this again on the experimental (Riverside) sample. In principle the random as-

signment implies that the δX should be close to zero in this case.

Finally we estimate the comparability score

ln

(
φ(St

i , Xi)

1− φ(St
i , Xi)

)
≡ ln

(
pr(Pi = E|Xi, S

t
i )

1− pr(Pi = E|Xi, St
i )

)
= γ0 + γ⊤S S

t
i + γ⊤XXi,

and estimate this on the combined observational and experimental samples.

The surrogate score estimator is based on averaging the following expression over the obser-

vational sample:

τ̂O =
1∑

i|Pi=O ω1,i

∑
i|Pi=O

Yi · ω1,i −
1∑

i|Pi=O ω0,i

∑
i|Pi=O

Yi · ω0,i, (7.3)

where the weights are as before in Equation (6.3).

7.2.3 Influence Function Estimator

For the influence function estimator we first estimate the surrogacy index, the surrogacy score,

the propensity score, and the comparability score as before. We then plug those into the

estimator in Equation (6.4).

7.3 Results

Here we discuss two sets of results. First the estimates for the average effect of the intervention

on the two primary outcomes under various assumptions about the surrogates. Second, we test

the Surrogacy and Comparability assumptions directly.

7.3.1 Estimation Results

As the discussion after the surrogate index estimator shows, we recover the experimental esti-

mates if we use all 36 quarters of employment indicators as surrogates. The question is whether
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we can do approximately as well with fewer than 36 quarters of surrogates. In Figures 4A and

4B we compare the experimental estimates of the effect on the primary outcomes (0.064 for

the employment outcome, and $249 for the earnings outcome) to the three sets of surrogate

estimates, as a function of how many periods of surrogates we use, ranging from 1 quarter to

36 quarters. To put this in perspective we also include in these two figures what we label the

“naive” estimator where we estimate the effect on the long-term outcome as the effect on the

first t quarters of the outcome. In Tables 4 and 5 we report a subset of the numbers underlying

these estimates with the corresponding standard errors.

Table 4: Estimates for Effect on Employment. Experimental Benchmark: 0.064
(s.e. 0.012)

t Naive Surrogacy Index Surrogacy Score Influence Function
est (s.e.) est (s.e.) est (s.e.) est (s.e.)

1 0.049 (0.013) 0.011 (0.003) 0.010 (0.002) 0.010 (0.003)
2 0.087 (0.012) 0.033 (0.003) 0.032 (0.003) 0.033 (0.004)
3 0.104 (0.011) 0.042 (0.004) 0.043 (0.004) 0.044 (0.004)
4 0.110 (0.011) 0.047 (0.005) 0.050 (0.005) 0.052 (0.005)
5 0.115 (0.011) 0.055 (0.005) 0.058 (0.005) 0.060 (0.005)
6 0.117 (0.010) 0.061 (0.006) 0.063 (0.006) 0.065 (0.006)
12 0.108 (0.010) 0.065 (0.007) 0.071 (0.008) 0.073 (0.008)
18 0.095 (0.010) 0.065 (0.008) 0.073 (0.009) 0.075 (0.009)
24 0.085 (0.010) 0.064 (0.009) 0.070 (0.010) 0.072 (0.010)
30 0.073 (0.010) 0.059 (0.009) 0.067 (0.010) 0.070 (0.010)
36 0.064 (0.010) 0.058 (0.009) 0.065 (0.010) 0.068 (0.010)

We see that the naive estimator does very poorly. It takes more than 25 quarters before

the naive estimator is within two standard errors of the experimental estimate. In contrast all

three surrogate-based estimators are all within two standard errors when the surrogates include

5 quarters of outcomes, for both outcomes.

7.3.2 Validation Results and Other Supplementary Analyses

Given the data available we can also test whether using t quarters of surrogates is sufficient

to satisfy Surrogacy and Comparability. To test Surrogacy we regress the primary outcome on
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Table 5: Estimates for Effect on Earnings. Experimental Benchmark: $249 (s.e.
$83)

t Naive Surrogacy Index Surrogacy Score Influence Function
est (s.e.) est (s.e.) est (s.e.) est (s.e.)

1 122.4 (28.9) 41.8 (13.4) 29.6 (9.5) 31.0 (12.6)
2 217.5 (30.1) 131.1 (18.3) 150.7 (18.9) 150.4 (20.3)
3 260.6 (31.8) 154.5 (23.4) 186.8 (24.1) 187.5 (24.9)
4 284.4 (33.5) 172.7 (27.0) 225.1 (28.0) 225.1 (28.3)
5 306.5 (35.2) 209.6 (29.5) 253.4 (30.3) 254.4 (30.7)
6 327.1 (36.6) 238.8 (31.5) 279.7 (32.5) 280.6 (32.9)
12 353.9 (41.3) 249.1 (39.4) 306.8 (42.9) 308.6 (43.6)
18 340.2 (43.9) 252.3 (44.3) 320.1 (45.7) 321.8 (46.5)
24 322.2 (46.5) 241.0 (49.8) 298.3 (49.7) 300.8 (50.8)
30 286.5 (48.5) 224.3 (50.3) 289.9 (50.5) 293.0 (51.6)
36 249.1 (50.0) 210.9 (50.2) 276.6 (51.4) 279.6 (52.5)

the pre-treatment variables, the surrogates up to quarter t, and the indicator for the treatment;

a finding that the treatment has an impact indicates a violation of Surrogacy. We estimate

this regression using a logistic regression model, using only the data from the experimental

(Riverside) sample. We report in Table 6 and 7 the results from these regressions for a number

of different values for t, for the employment outcome and the earnings outcome. We report the

point estimate, standard error and t-statistic. We see that point estimates for t ≤ 3 are large

and highly statistically significant. After that most of the t-statistics are less than 2, although

there are some where the t-statistics are a little above 2, but the coefficient estimates are small.

We do a similar exercise for Comparability. We combine the experimental and observational

samples and regress the final outcome on the surrogates, the pretreatment variables, and an

indicator for the experimental sample, again using surrogates up to period t. We report the

estimates on the indicator for the experimental sample, and the corresponding standard error.

Here the the point estimates become smaller after t = 12, but the t-statistics remain large even

with a substantial number of surrogate periods, indicating a violation of Surrogacy.

If we are unwilling to make the surrogacy assumption we can still calculate bounds for the
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Table 6: Surrogacy and Comparability Assumption Tests for Employment Out-
come

Surrogacy Assumption Comparability Assumption
t est (s.e) T-Stat est (s.e) T-Stat

1 0.052 (0.010) 5.4 0.008 (0.005) 1.7
2 0.034 (0.009) 3.7 -0.004 (0.004) -0.9
3 0.024 (0.009) 2.6 -0.006 (0.004) -1.5
4 0.018 (0.009) 2.0 -0.007 (0.004) -1.8
5 0.010 (0.008) 1.2 -0.010 (0.004) -2.5
6 0.004 (0.008) 0.5 -0.011 (0.004) -3.0
12 -0.004 (0.006) -0.7 -0.015 (0.003) -5.0
18 -0.007 (0.004) -1.6 -0.009 (0.002) -4.1
24 -0.005 (0.003) -1.8 -0.005 (0.001) -3.6
30 -0.002 (0.001) -1.3 -0.001 (0.001) -1.9
35 0.000 (0.000) -2.0 0.000 (0.000) -0.8

Table 7: Surrogacy and Comparability Assumption Tests for Earnings Outcome

Surrogacy Assumption Comparability Assumption
t est (s.e) T-Stat est (s.e) T-Stat

1 185.6 (50.8) 3.7 -35.6 (25.3) -1.4
2 129.7 (49.9) 2.6 -65.0 (24.5) -2.7
3 94.3 (48.1) 2.0 -72.8 (23.5) -3.1
4 66.3 (46.3) 1.4 -67.5 (22.4) -3.0
5 42.2 (44.5) 1.0 -71.0 (21.5) -3.3
6 12.6 (42.0) 0.3 -73.9 (20.5) -3.6
12 -19.1 (31.3) -0.6 -65.2 (15.3) -4.2
18 -41.8 (22.0) -1.9 -31.2 (10.8) -2.9
24 -20.2 (13.6) -1.5 -27.4 (6.7) -4.1
30 -10.8 (5.9) -1.8 -4.7 (2.8) -1.6
35 -0.5 (1.0) -0.5 -0.4 (0.5) -0.8
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effect on employment, using the fact that this outcome is binary. For the case where the first six

quarters of post-treatment data are used as surrogates, the lower and upper bound are estimated

as -0.186 and 0.124. These are not very informative, because the data now do not allow us to

estimate the indirect effect of the treatment on the outcome.

Similarly, we can calculate bounds for the average effect without assuming Comparability.

With six quarters of surrogates the bounds are again wide at -0.076 and 0.194 respectively. Here

the fact that the treatment effect on the surrogates is strong leads to substantial sensitivity to

the comparability assumption as formalized in Lemma 2.

Using the data for Riverside we can also assess the value of the Surrogacy assumption. Using

the six quarters of data as surrogates, we find that the gain from knowledge of Surrogacy (the

∆ in Theorem 3) is quite large. The standard error given Surrogacy,
√
Vs, is 0.33 times the

standard error without knowledge that Surrogacy holds,
√
Vns.

8 Conclusion

We develop new methods for combining intermediate outcomes to estimate the long-term im-

pacts of treatments more rapidly and precisely. Our method requires estimating a “surrogate

index” – the conditional expectation of the long-term outcome given intermediate outcomes

– and then estimating the treatment effect on the surrogate index. The surrogate index can

be estimated using parametric or nonparametric regression methods. We formalize conditions

under which this method yields unbiased estimates, derive bounds for the degree of bias when

those assumptions fail, and propose a simple out-of-sample validation approach using “hold out”

intermediate outcomes. We show that surrogates can also greatly improve the precision of esti-

mates even in settings where the treatment effect on the long-term outcome can be estimated

directly, particularly when that outcome is rare or noisy.

Applying the method to analyze the impacts of the GAIN job training program in Califor-

nia, we find that using short-term earnings and employment rates to construct surrogate indices

expedite the detection of long-term treatment effects on employment and earnings by several
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years and also substantially increases precision. Furthermore, a single surrogate index accu-

rately predicts heterogeneity in the long-term treatment effects of different types of job training

programs across sites, showing that surrogate indices estimated in a given setting may be gen-

eralizable to other settings. The success of the surrogate index in this application validates the

use of short-term employment outcomes as surrogates for detecting longer-term impacts of job

training programs, an empirical result that can be applied when analyzing ongoing programs.

Building on this application, it would be useful to systematically establish surrogate in-

dices that match the long-term treatment effects estimated in other experiments and quasi-

experiments. Over time, this would allow researchers to collectively build a public library of

surrogate indices for long-term outcomes that could be used to expedite the analysis of future

interventions.
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ONLINE APPENDICES

A. Additional Table

Table 8: Summary Statistics of Covariates by Location

Riverside (NE = 5, 445) Other Locations (NO = 13, 725)
Mean (Std. Dev.) Mean (Std. Dev.) t-statistic

Female 0.88 (0.33) 0.88 (0.32) 0.0
Highschool Diploma 0.52 (0.50) 0.50 (0.50) 3.1

Children <5 0.16 (0.37) 0.14 (0.34) 4.6
Single 0.87 (0.34) 0.86 (0.34) 0.4

Grade 17 to 20 0.00 (0.03) 0.00 (0.07) -5.3
Grade 16 0.01 (0.08) 0.02 (0.12) -5.4

Grade 13 to 15 0.11 (0.31) 0.12 (0.33) -3.5
Grade 12 0.36 (0.48) 0.33 (0.47) 4.0

Grade 9 to 11 0.40 (0.49) 0.34 (0.47) 7.5
White 0.52 (0.50) 0.30 (0.46) 27.4

Hispanic 0.27 (0.45) 0.26 (0.44) 1.9
Black 0.16 (0.36) 0.34 (0.47) -28.6
Age 33.64 (8.20) 35.39 (8.81) -13.1

Lagged Aid for t = 1 Quarter 0.77 (0.42) 0.84 (0.37) -9.8
Lagged Aid for t = 2 Quarter 0.65 (0.48) 0.77 (0.42) -16.0
Lagged Aid for t = 3 Quarter 0.64 (0.48) 0.76 (0.43) -16.3
Lagged Aid for t = 4 Quarter 0.63 (0.48) 0.75 (0.43) -15.6

Lagged Earnings for t = 1 Quarter 453 (1405) 437 (1283) 0.7
Lagged Earnings for t = 2 Quarter 575 (1553) 510 (1433) 2.6
Lagged Earnings for t = 3 Quarter 598 (1601) 543 (1492) 2.2
Lagged Earnings for t = 4 Quarter 613 (1602) 571 (1582) 1.7
Lagged Earnings for t = 5 Quarter 666 (1701) 580 (1619) 3.2
Lagged Earnings for t = 6 Quarter 698 (1761) 580 (1587) 4.3
Lagged Earnings for t = 7 Quarter 709 (1789) 579 (1630) 4.6
Lagged Earnings for t = 8 Quarter 726 (1839) 567 (1631) 5.6
Lagged Earnings for t = 9 Quarter 719 (1828) 571 (1656) 5.2
Lagged Earnings for t = 10 Quarter 730 (1815) 573 (1663) 5.5

B. Related Literature

Critical Assumptions in the Mediation Literature and their Relation to Surrogacy

In the mediation literature (e.g., Baron and Kenny 1986; VanderWeele 2015), the intermediate

outcome that we refer to here as the surrogate Si is called a mediator. To emphasize its
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role as a causal variable in the mediation literature, we expand the notation and consider

potential outcomes Yi(w, s) that are indexed by the treatment and the surrogate. (In terms of

these potential outcomes the original potential outcomes defined in the previous section, Yi(w),

indexed only by the treatment Wi, equals Yi(w) = Yi(w, Si(w)), for w ∈ W.) In the setting

considered in the mediation literature, we observe the quadruple (Yi, Si,Wi, Xi, Pi) for all units

in the sample and so there is not necessarily a distinction between the experimental sample and

the observational sample. To capture that we focus in this section on the case where we only

have the experimental sample, Pi = E, and where we observe the primary outcome Yi for this

sample.

The focus of the mediation literature is on decomposing the causal effect of the treatment on

the outcome into a direct effect that involves comparing potential outcomes where the surrogate

remains fixed, and an indirect effect that passes through the mediator/surrogate. Three key

estimands are the average total effect,

τ total ≡ E [Yi(1, Si(1))− Yi(0, Si(0))] ,

the average natural indirect effect, where we fix the treatment at w = 1, but change the surrogate

from Si(0) to Si(1),

τnie ≡ E [Yi(1, Si(1))− Yi(1, Si(0))] ,

and the average natural direct effect, where we fix the surrogate at Si(0) and change the treatment

from Wi = 0 to Wi = 1:

τnde ≡ E [Yi(1, Si(0))− Yi(0, Si(0))] ,

with the latter two adding up to the first: τ total = τnie + τnde.

These effects are identified in the mediation literature using assumptions similar to Assump-

tions 2 and 3. The first assumption in the mediation framework is a reformulation of the uncon-

foundedness assumption, Assumption 2. It rules out the presence of unmeasured confounders

between the treatment and the surrogate, and between the treatment and the outcome.
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Assumption 5. (Unconfounded Treatment Assignment / Strong Ignorability)

(i) Wi ⊥⊥
(
Si(0), Si(1), Yi(0, Si(0)), Yi(1, Si(1))

) ∣∣∣ Xi, Pi = E,

(ii) 0 < ρ(x) < 1 for all x ∈ X.

The second assumption typically made in the mediation literature is another unconfounded-

ness assumption that rules out the presence of unobserved confounders between the surrogate

and the outcome, conditional on the treatment.

Assumption 6.

Si ⊥⊥
(
Yi(Wi, s)s∈S

) ∣∣∣ Wi, Xi, Pi.

This assumption implies that comparisons of primary outcomes for units with different values

for the surrogates but identical values for the treatment and pre-treatment variables can be given

a causal interpretation.

To make the link to the surrogacy literature we need to add one key assumption that is not

commonly made in the mediation literature. This assumption rules out any direct effect of the

treatment on the outcome, allowing only for an indirect effect through the surrogate.

Assumption 7. For all i, w,w′ ∈ W, s ∈ S,

Yi(w, s) = Yi(w
′, s).

This assumption is similar to the exclusion restriction in instrumental variables settings,

e.g., Imbens and Angrist (1994); Angrist, Imbens and Rubin (1996). In combination with the

previous assumption this implies that we can give comparisons in the primary outcome between

units with different values for the surrogates but the same values for pre-treatment variables a

causal interpretation, without knowing the treatment status.

The following proposition links the surrogacy and mediation assumptions.

Proposition 3. Suppose Assumptions 5-7 hold. Then Assumptions 2 and 3 hold.
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This connection highlights that at the heart of the surrogacy assumption is a causal relation

between the surrogate and the primary outcome that mediates the causal effect of the treatment

on the outcome.

Surrogacy and Comparability from a Missing Data Perspective

From a missing data perspective, Surrogacy and Comparability have parallels to the missingness

at random (MAR) assumption common in the missing data literature (Rubin 1976; Little and

Rubin 2019), and specifically the literature on combining samples with different sets of variables,

(Ridder and Moffitt 2007; Gelman, King and Liu 1998; Rässler 2004; Graham, Pinto and Egel

2016). In particular (Rässler, 2012) focuses on a missing data structure closely related to ours.

In our two sample setting, we can think of the complete data as the quintuple (Yi, Si,Wi, Xi, Pi).

Here, we view the sample as randomly drawn from a large population, so that we view Pi as a

stochastic missing data indicator. For the units in the sample we observe the incomplete data

(1Pi=OYi, Si, Xi,1Pi=EWi, Pi), where for units with Pi = O the treatment indicatorWi is missing,

and for units with Pi = E the outcome Yi is missing. Now consider the following assumption.

Assumption 8. (Augmented Missing At Random Assumption)

Conditional on (Si, Xi), the three variables Pi, Yi and Wi are jointly independent:

Pi ⊥⊥ Yi ⊥⊥ Wi

∣∣∣ Si, Xi.

This is slightly different from a standard MAR assumption in (Rubin, 1976) where one would

assume Pi ⊥⊥ Yi|Si, Xi and/or Pi ⊥⊥ Wi|Si, Xi. We need the stronger assumption to incorporate

surrogacy, as the following proposition shows.

Proposition 4. (Missing Data Model)

(i) Assumption 8 implies Assumption 3 (Surrogacy)

Yi ⊥⊥ Wi

∣∣∣ Si, Xi,

and Assumption 4 (Comparability)

Pi ⊥⊥ Yi

∣∣∣ Si, Xi.
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(ii) Assumption 8 has no testable implications.

Note that even after we have dealt with the missing Yi and missingWi problems, we still have

the missing potential outcomes, which is why we also need the unconfoundedness assumption.

C. Proofs

Proof of Proposition 1:

pr (Wi = 1|Yi = y, ρ(Si, Xi) = r, Pi = E) = E [Wi|Yi = y, ρ(Si, Xi) = r, Pi = E]

= E [E [Wi|Yi = y, Si, Xi, ρ(Si, Xi) = r, Pi = E]|Yi = y, ρ(Si, Xi) = r, Pi = E]

= E [E [Wi|Yi = y, Si, Xi, Pi = E]|Yi = y, ρ(Si, Xi) = r, Pi = E]

= E [E [Wi|Si, Xi, Pi = E]|Yi = y, ρ(Si, Xi) = r, Pi = E]

= E [ρ(Si, Xi)|Yi = y, ρ(Si, Xi) = r, Pi = E] = ρ(Si, Xi),

which proves the result. □

Proof of Proposition 2: Part (i) follows directly from the definitions of µ(·,E) and Assumption

3. Part (ii) follows directly from the definitions of µ(·,E) and µ(·,O) and Assumption 4. Part

(iii) follows from parts (i) and (ii). □

Proof of Proposition 3: We wish to show that the three conditions

Wi ⊥⊥
(
Si(0), Si(1), Yi(0, Si(0)), Yi(1, Si(1))

) ∣∣∣ Xi (8.1)

Si ⊥⊥
(
Yi(Wi, s)s∈S

) ∣∣∣ Xi,Wi (8.2)

and

Yi(w, s) = Yi(w
′, s) ∀ i, w, w′ ∈ W, s ∈ S, (8.3)

imply

Wi ⊥⊥
(
Yi(0), Yi(1), Si(0), Si(1)

) ∣∣∣ Xi, (8.4)
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Wi ⊥⊥ Yi

∣∣∣ Si, Xi. (8.5)

Note that we leave out the conditioning in Pi = E in the last two conditions because we

are focused here on the one-sample case. Condition (8.4) follows directly from (8.1) because

Yi(w) = Yi(w, Si(w)).

Condition (8.3) implies that we can write Yi(s) without ambiguity, and by (8.1), we have

Wi ⊥⊥ Yi(s)
∣∣∣ Xi. By (8.2) we have Si ⊥⊥ Yi(s)

∣∣∣ Xi,Wi. Combining these implies
(
Si,Wi

)
⊥⊥

Yi(s)
∣∣∣ Xi. This in turn impliesWi ⊥⊥ Yi(s)

∣∣∣ Si, Xi, which in turn impliesWi ⊥⊥ Yi(Si)
∣∣∣ Si, Xi.

This is equivalent to the condition we set out to prove, Wi ⊥⊥ Yi

∣∣∣ Si, Xi. □

Proof of Proposition 4: The first part of the Proposition is immediate. For the second part,

note that we can identify from the data the distributions

fYi|Si,Xi,Pi
(y|s, x,O), fWi|Si,Xi,Pi

(w|s, x,E), and fPi,Si,Xi
(p, s, x),

but no other distributions. That implies that the joint distribution of (Yi, Si,Wi, Xi, Pi) implied

by fYi|Si,Wi,Xi,Pi
(y|s, w, x, p) = fYi|Si,Xi,Pi

(y|s, x,O), and fWi|Si,Xi,Pi
(w|s, x,O) = fWi|Si,Xi,Pi

(w|s, x,E),

for all (y, s, s, w, x, p) is consistent with the data, and it also satisfies Assumption 8. □

Proof of Theorem 1: We prove the case for E[Yi(1)|Pi = E], specifically

E[Yi(1)|Pi = E] = E
[
µ(Si, Xi,O) · Wi

ρ(Xi)

∣∣∣∣Pi = E

]
(8.6)

= E
[
Yi ·

ρ(Si, Xi) · φ(Si, Xi) · (1− φ)

ρ(Xi) · (1− φ(Si, Xi)) · φ

∣∣∣∣Pi = O

]
(8.7)

= E
[
µ(Si, Xi,O) · ρ(Si, Xi) · φ(Si, Xi) · (1− φ)

ρ(Xi) · (1− φ(Si, Xi)) · φ

∣∣∣∣Pi = O

]
(8.8)

The proof of E[Yi(0)|Pi = E] is similar. The score function representation is immediate from

these equalities. We note that equality (8.6) uses Assumptions 2–4 and equalities (8.7) and (8.8)

only use the overlap condition, Assumption 4(ii).
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Consider (8.6). By Assumption 2 (unconfoundedness), it follows that

E[Yi(1)|Pi = E] = E
[
Yi ·

Wi

ρ(Xi)

∣∣∣∣Pi = E

]
.

Using the law of iterated expectations, we can first condition on Si and Xi to get

E
[
Yi ·

Wi

ρ(Xi)

∣∣∣∣Pi = E

]
= E

[
E
[
Yi ·

Wi

ρ(Xi)

∣∣∣∣Si, Xi, Pi = E

]∣∣∣∣Pi = E

]
.

By Assumption 3 (surrogacy), we have

E
[
E
[
Yi ·

Wi

ρ(Xi)

∣∣∣∣Si, Xi, Pi = E

]∣∣∣∣Pi = E

]
= E

[
E [Yi|Si, Xi, Pi = E] · E [Wi|Si, Xi, Pi = E]

ρ(Xi)

∣∣∣∣Pi = E

]
By Assumption 4 (Comparability), µ(s, x,E) = µ(s, x,O) so that this is equal to

E
[
µ(Si, Xi,O) · E [Wi|Si, Xi, Pi = E]

ρ(Xi)

∣∣∣∣Pi = E

]
= E

[
µ(Si, Xi,O) · ρ(Si, (Xi)

ρXi)

∣∣∣∣Pi = E

]
Undoing the law of iterated expectations gives us the desired equality.

Consider (8.7). By the definition of φ(s, x), we have

φ(s, x)

(1− φ(s, x))
· 1− φ

φ
=

pr (Si = s,Xi = x|Pi = E)

pr (Si = s,Xi = x|Pi = O)

where the common support condition assures 1− φ(s, x) is not zero. This leads to

E
[
Yi ·

ρ(Si, Xi) · t(Si, Xi) · (1− φ)

ρ(Xi) · (1− t(Si, Xi)) · φ

∣∣∣∣Pi = O

]
= E

[
Yi ·

ρ(Si, Xi)

ρ(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
Again, by the law of iterated expectations, conditioning on Si and Xi leads to

E
[
Yi ·

ρ(Si, Xi)

ρ(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
= E

[
µ(Si, Xi,O)

ρ(Si, Xi)

ρ(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
Using the definition of conditional expectations, we obtain

E
[
µ(Si, Xi,O)

ρ(Si, Xi)

ρ(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
=

∫
µ(s, x,O)

ρ(s, x)

ρ(x)
· pr (Si = s,Xi = x|Pi = E)

pr (Si = s,Xi = x|Pi = O)
· pr (Si = s,Xi = x|Pi = O) dsdx

=

∫
µ(s, x,O)

ρ(s, x)

ρ(x)
pr (Si = s,Xi = x|Pi = E) dsdx

=E
[
µ(Si, Xi,O)

ρ(Si, Xi)

ρ(Xi)

∣∣∣∣Pi = E

]
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Consider (8.8). By the law of iterated expectations conditional on Si and Xi, we obtain

E
[
Yi ·

ρ(Si, Xi) · φ(Si, Xi) · (1− φ)

ρ(Xi) · (1− φ(Si, Xi)) · φ

∣∣∣∣Pi = O

]
= E

[
µ(Si, Xi,O) · ρ(Si, Xi) · φ(Si, Xi) · (1− φ)

ρ(Xi) · (1− φ(Si, Xi)) · φ

∣∣∣∣Pi = O

]
where the common support condition assures 1 − φ(s, x) is not zero. Part (iii) follows from

Proposition 4, which shows that Surrogacy and Comparability have no testable implications.

Standard arguments then imply that unconfoundednes does not generate any testable implica-

tions. □

Proof of Theorem 2: For Part (i), we need to calculate the variance of the Efficient Influ-

ence Function (EIF) to obtain the efficiency bound. We provide the detailed calculation for

completeness.3

Given the EIF:

ψ(y, s, w, x, p) =
1p=E

φ

(
w · (µ(s, x,O)− µ(1, x))

ρ(x)
− (1− w) · (µ(s, x,O)− µ(0, x))

1− ρ(x)

)

+
1p=E

φ

(
µ(1, x)− µ(0, x)− τ

)
+
1p=O

φ

(
φ(s, x)

1− φ(s, x)

(y − µ(s, x,O)) (ρ(s, x)− ρ(x))

ρ(x)(1− ρ(x))

)

V =

[
ψ(Yi, Si,Wi, Xi)

2

]

= E
[(

1p=E

φ

(
Wi · (µ(Si, Xi,O)− µ(1, x))

ρ(Xi)
− (1−Wi) · (µ(Si, Xi,O)− µ(0, x))

1− ρ(Xi)

))2

+

(
1p=E

φ

(
µ(1, x)− µ(0, x)− τ

))2

3While our influence function representation coincides with Chen and Ritzwoller (2023), the variance calcu-
lation resulted in a slightly different expression.
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+

(
1p=O

φ

(
φ(Si, Xi)

1− φ(Si, Xi)

(Yi − µ(Si, Xi,O)) (ρ(Si, Xi)− ρ(Xi))

ρ(Xi)(1− ρ(Xi))

))2 ]
Focusing on the first block(

1p=E

φ

(
w · (µ(s, x,O)− µ(1, x))

ρ(x)
− (1− w) · (µ(s, x,O)− µ(0, x))

1− ρ(x)

))2

,

noting that w(1 − w) = 0 and hence the cross-term disappearing, we only have to take the

expectation of(
1p=E

φ

w · (µ(s, x,O)− µ(1, x))

ρ(x)

)2

and

(
1p=E

φ

(1− w) · (µ(s, x,O)− µ(0, x))

1− ρ(x)

)2

Note that

E
[(

1p=E

φ

Wi · (µ(Si, Xi,O)− µ(1, Xi))

ρ(Xi)

)2 ]

= E
[
(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2φ2
E
[
1p=EWi|Si, Xi

]]
(∵ Tower Property)

= E
[
(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2φ2
φ(Si, Xi)E

[
Wi|Si, Xi, Pi = E

]]
= E

[
(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2φ2
φ(Si, Xi)ρ(Si, Xi)

]
= E

[
φ(Si, Xi)ρ(Si, Xi)

φ2ρ(Xi)2
(µ(Si, Xi,O)− µ(1, Xi))

2

]
Likewise, we can derive

E
[(

1p=E

φ

(1−Wi) · (µ(Si, Xi,O)− µ(0, Xi))

1− ρ(Xi)

)2 ]

= E
[
φ(Si, Xi)(1− ρ(Si, Xi))

φ2(1− ρ(Xi))2
(µ(Si, Xi,O)− µ(0, Xi))

2

]
Collectivizing the two term yields the first block:

E
[
φ(Si, Xi)

φ2

(
1− ρ(Si, Xi)

(1− ρ(Xi))2
(µ(Si, Xi,O)−µ(0, Xi))

2+
ρ(Si, Xi)

ρ(Xi)2
(µ(Si, Xi,O)−µ(1, Xi))

2

)]
Next, for the second block

1p=E

φ

(
µ(1, x)− µ(0, x)− τ

)
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we can likewise derive by using the Tower Property with respect to Xi that

E
[(

1p=E

φ

(
µ(1, Xi)− µ(0, Xi)− τ

))2 ]
= E

[
φ(Xi)

φ2

(
µ(1, Xi)− µ(0, Xi)− τ

)2]
Finally, for the third block(

1p=O

φ

(
φ(s, x)

1− φ(s, x)

(y − µ(s, x,O)) (ρ(s, x)− ρ(x))

ρ(x)(1− ρ(x))

))2

,

note that

E
[(

1Pi=O

φ

(
φ(Si, Xi)

1− φ(Si, Xi)

(Yi − µ(Si, Xi,O)) (ρ(Si, Xi)− ρ(Xi))

ρ(Xi)(1− ρ(Xi))

))2 ]

= E
[

(φ(Si, Xi))
2

φ2(1− φ(Si, Xi))2
(ρ(Si, Xi)− ρ(Xi))

2

((ρ(Xi)(1− ρ(Xi)))2)2
E
[
1Pi=O(Yi − µ(Si, Xi,O))2|Si, Xi

]]
= E

[
(φ(Si, Xi))

2

φ2(1− φ(Si, Xi))2
(ρ(Si, Xi)− ρ(Xi))

2

(ρ(Xi)(1− ρ(Xi)))2
E
[
(1−φ(Si, Xi))(Yi−µ(Si, Xi,O))2|Si, Xi, Pi = O

]]
= E

[
(φ(Si, Xi))

2

φ2(1− φ(Si, Xi))2
(ρ(Si, Xi)− ρ(Xi))

2

(ρ(Xi)(1− ρ(Xi)))2
(1− φ(Si, Xi))σ

2(Si, Xi,O)

]
= E

[
(φ(Si, Xi))

2

φ2(1− φ(Si, Xi))

(ρ(Si, Xi)− ρ(Xi))
2

(ρ(Xi)(1− ρ(Xi)))2
σ2(Si, Xi,O)

]

= E
[
1− φ(Si, Xi)

φ2

((
φ(Si, Xi)

1− φ(Si, Xi)

ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

σ2(Si, Xi,O)

)]
Hence, adding up the three blocks (in the order from the third to the first block) yield the

desired efficiency bound:

V = E[ψ(Yi, Si,Wi, Xi, Pi)
2]

= E
[
1− φ(Si, Xi)

φ2

((
φ(Si, Xi)

1− φ(Si, Xi)

ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

σ2(Si, Xi,O)

)

+
φ(Xi)

φ2

(
µ(1, Xi)− µ(0, Xi)− τ

)2
+
φ(Si, Xi)

φ2

(
(1− ρ(Si, Xi))(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+
ρ(Si, Xi)(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

)]
.

= E
[
1

φ2

φ(Si, Xi)
2

1− φ(Si, Xi)

(
ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

σ2(Si, Xi,O)
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+
φ(Xi)

φ2

(
µ(1, Xi)− µ(0, Xi)− τ

)2
+
φ(Si, Xi)

φ2

(
(1− ρ(Si, Xi))(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+
ρ(Si, Xi)(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

)]
.

For part (ii), first rewrite the variance bound, normalized by the square root of the expected

size of the experimental sample, φN , instead of normalized by the total sample size N , as

Ṽ = E
[
1

φ

φ(Si, Xi)
2

1− φ(Si, Xi)

(
ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

σ2(Si, Xi,O)

+
φ(Xi)

φ

(
µ(1, Xi)− µ(0, Xi)− τ

)2
+
φ(Si, Xi)

φ

(
(1− ρ(Si, Xi))(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+
ρ(Si, Xi)(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

)]
.

Next, we re-write the bound in terms of a conditional expectation in the experimental sam-

ple, rather than as the unconditional expectation, (this implies multiplying by φ/φ(Si, Xi) or

φ/φ(Xi) appropriately) as

Ṽ = E
[

φ(Si, Xi)

1− φ(Si, Xi)

(
ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

σ2(Si, Xi,O)

+
(
µ(1, Xi)− µ(0, Xi)− τ

)2
+

(
(1− ρ(Si, Xi))(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+
ρ(Si, Xi)(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

)∣∣∣∣Pi = E

]
.

Now we consider a sequence of data generating processes, where the outcome distribution in

the observational sample remains fixed, and the propensity and surrogate scores remain fixed,

and only the functions φ(s, x), φ(x) and the scalar φ change, in such a way that sups,x φ(s, x) →

0. The the first term converges to zero, leaving us with

V̄ = E
[(
µ(1, Xi)− µ(0, Xi)− τ

)2
+

(
(1− ρ(Si, Xi))(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+
ρ(Si, Xi)(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

)∣∣∣∣Pi = E

]
.
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The final step is to note that ρ(Si, Xi) = E[Wi|Si, Xi, Pi = E] so we can write V̄ as

V̄ = E
[(
µ(1, Xi)− µ(0, Xi)− τ

)2
+

(
(1− E[Wi|Si, Xi, Pi = E])(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+

E[Wi|Si, Xi, Pi = E](µ(Si, Xi,O)− µ(1, Xi))
2

ρ(Xi)2

)∣∣∣∣Pi = E

]
= E

[(
µ(1, Xi)− µ(0, Xi)− τ

)2
+

(
(1−Wi)(µ(Si, Xi,O)− µ(0, Xi))

2

(1− ρ(Xi))2
+
Wi(µ(Si, Xi,O)− µ(1, Xi))

2

ρ(Xi)2

)∣∣∣∣Pi = E

]
.

□

Proof of Theorem 3:

The first representation of the efficiency bound without surrogacy in part (i) of the Theorem

is essentially rewriting the efficiency bound in Hahn (1998), and related results in Robins and

Rotnitzky (1995); Robins, Rotnitzky and Zhao (1995). The standard version of the efficiency

bound is

V = E
[
σ2(1, Xi)

ρ(Xi)
+
σ2(0, Xi)

1− ρ(Xi)
+ (µ(1, Xi)− µ(0, Xi)− τ)2

]
.

The proof consists of showing that this is equal to the expression for Vns in Theorem 3:

Vns = E
[
σ2(Si, Xi,E) ·

(
ρ(Si, Xi)

ρ(Xi)2
+

1− ρ(Si, Xi)

(1− ρ(Xi))2

)

+
ρ(Si, Xi)

ρ(Xi)2
· (µ(Si, Xi,E)− µ(1, Xi))

2 +
1− ρ(Si, Xi)

(1− ρ(Xi))2
· (µ(Si, Xi,E)− µ(0, Xi))

2

+(µ(1, Xi)− µ(0, Xi)− τ)2
]
.

which amounts to showing the equality of

E
[
σ2(1, Xi)

ρ(Xi)
+
σ2(0, Xi)

1− ρ(Xi)

]
, (8.9)

and

E
[
σ2(Si, Xi,E) ·

(
ρ(Si, Xi)

ρ(Xi)2
+

1− ρ(Si, Xi)

(1− ρ(Xi))2

)
(8.10)
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+
ρ(Si, Xi)

ρ(Xi)2
· (µ(Si, Xi,E)− µ(1, Xi))

2+
1− ρ(Si, Xi)

(1− ρ(Xi))2
· (µ(Si, Xi,E)− µ(0, Xi))

2

]
.

By unconfoundedness

σ2(1, x) ≡ V(Yi(1)|Xi = x) = V(Yi|Wi = 1, Xi = x),

where as mentioned in the main text, we implicitly condition on the sampling indicator and

abstract it from the notation when it does not lead to confusion.

By iterated expectations this is equal to

E [V (Yi|Wi = 1, Si, Xi = x)|Wi = 1, Xi = x] + V (E[Yi|Wi = 1, Si, Xi]|Wi = 1, Xi) .

By surrogacy the conditional distribution of Yi given Wi, Si and Xi does not vary by Wi, so this

is equal to

E [V (Yi|Si, Xi = x)|Wi = 1, Xi = x] + V (E[Yi|Si, Xi]|Wi = 1, Xi)

= E
[
σ2(Si, Xi)

∣∣Wi = 1, Xi = x
]
+ V (µ(Si, Xi)|Wi = 1, Xi) .

For the first term,

E
[
σ2(Si, Xi)

∣∣Wi = 1, Xi = x
]
= E

[
σ2(Si, Xi)ρ(Si, Xi)

ρ(Xi)

∣∣∣∣Xi = x

]
.

For the second term, note that

E [µ(Si, Xi)|Wi = 1, Xi] = E [E[Yi|Si, Xi]|Wi = 1, Xi]

is by surrogacy equal to E [E[Yi|Wi = 1, Si, Xi]|Wi = 1, Xi] , which in turn by iterated expecta-

tions is equal to E [Yi|Wi = 1, Xi] = µ(1, Xi). Hence the second term is

V (µ(Si, Xi)|Wi = 1, Xi) = E
[
(µ(Si, Xi)− µ(1, Xi))

2
∣∣Wi = 1, Xi

]
= E

[
(µ(Si, Xi)− µ(1, Xi))

2 ρ(Si, Xi)

ρ(Xi)

]
.

Combining the two terms and including the denominator ρ(Xi), we have

E
[
σ2(1, Xi)

ρ(Xi)

]
= E

[
σ2(Si, Xi)ρ(Si, Xi)

ρ(Xi)2

]
+ E

[
(µ(Si, Xi)− µ(1, Xi))

2 ρ(Si, Xi)

ρ(Xi)2

]
.
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By the same argument

E
[
σ2(0, Xi)

1− ρ(Xi)

]
= E

[
σ2(Si, Xi)(1− ρ(Si, Xi))

(1− ρ(Xi))2

]
+ E

[
(µ(Si, Xi)− µ(0, Xi))

2 1− ρ(Si, Xi)

(1− ρ(Xi))2

]
Hence, adding up the two equalities above shows the desired equivalence of (8.9) and (8.10).

This finishes the proof of part (i) of the theorem.

Next, for part (ii) of the theorem, we derive the efficiency bound for the case with surro-

gacy by first deriving the efficient influence function and then deriving its variance. To derive

the efficient influence function, we follow the proof in Chen and Ritzwoller (2023) and Newey

(1990), specifically the following four steps: (1) constructing the tangent space, (2) deriving the

pathwise derivative of the target estimand (i.e. the ATE under surrogacy), (3) showing that the

conjectured efficient influence function (EIF) lies in the tangent space, and (4) showing that the

pathwise derivative of the target estimand and the conjectured EIF satisfies a key condition in

Newey (1990).

First, to characterize the tangent space, considering the data density where the functions f

denote the density of random variables.

fYi,Si,Wi,Xi
(y, s, w, x) = fYi|Si,Xi

(y | s, x)fSi|Wi,Xi
(s | w, x)fWi|Xi

(w | x)fXi
(x).

We assume the data density satisfies the regularity and smoothness conditions in Definition

(A.1) of Newey (1990).

Let Gϵ be a parametric submodel parameterized by ϵ ∈ [0, 1] where Gϵ=0 = G and G is the

true data generating model. Let f ϵ be the corresponding density function for the parametric

submodel. Then, the score of fϵ is

δ

δϵ
log(f ϵYi,Si,Wi,Xi

(y, s, w, x))

=
δ

δϵ
log(f ϵYi|Si,Xi

(y | s, x)) + δ

δϵ
log(f ϵSi|Wi,Xi

(s | w, x)) + δ

δϵ
log(f ϵWi|Xi

(w | x)) + δ

δϵ
log(f ϵXi

(x))

=Qϵ
Yi|Si,Xi

(y | s, x) +Qϵ
Si|Wi,Xi

(s | w, x) +Qϵ
Wi|Xi

(w | x) +Qϵ
Xi
(x).

We use Q(·)’s to denote the score function, i.e. Q(·) = δ
δϵ
log(f ϵ(·)). Evaluating the derivative
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at ϵ = 0 leads us to the score of the true model, i.e.,

QYi,Si,Wi,Xi
(y, s, w, x) = QYi|Si,Xi

(y | s, x) +QSi|Wi,Xi
(s | w, x) +QWi|Xi

(w | x) +QXi
(x).

The tangent space T is the mean closure of a linear combination of mean-zero, square-integrable

functions Q1, ..., Q4 that satisfy the following conditions:

T =

{
Q(y, s, w, x) ∈ R | Q(y, s, w, x) = Q1(y, s, x) +Q2(s, x, w) +Q3(w, x) +Q4(x)

E[Q1(Yi, s, x) | Si = s,Xi = x] = E[Q1(Yi, s, x) | Si = s,Wi = w,Xi = x] = 0

E[Q2(Si, x, w) | Xi = x,Wi = w] = 0, E[Q3(Wi, x) | Xi = x] = 0,

E[Q4(Xi)] = 0

}
.

Second, we derive the pathwise derivative of our estimand. With some abuse of the integral

notation, our estimand can be written as follows:

τ = E
[
E
[
E[Yi | Si, Xi] | Wi = 1, Xi

]]
−E
[
E
[
E[Yi | Si, Xi] | Wi = 0, Xi

]]
=

∫ ∫ ∫
yfYi|Si,Xi

(y | s, x)fSi|Wi,Xi
(s | 1, x)fXi

(x)dydsdx

−
∫ ∫ ∫

yfYi|Si,Xi
(y | s, x)fSi|Wi,Xi

(s | 0, x)fXi
(x)dydsdx.

The pathwise derivative of the estimand τ is

[59]



δ

δϵ
τ =

∫ ∫ ∫
y
δ

δϵ

{
f ϵYi|Si,Xi

(y | s, x)f ϵSi|Wi,Xi
(s | 1, x)f ϵXi

(x)
}
dydsdx

−
∫ ∫ ∫

y
δ

δϵ

{
f ϵYi|Si,Xi

(y | s, x)f ϵSi|Wi,Xi
(s | 0, x)f ϵXi

(x)
}
dydsdx

=

∫ ∫ ∫
y

{
Qϵ

Yi|Si,Xi
(y | s, x)f ϵYi|Si,Xi

(y | s, x)f ϵSi|Wi,Xi
(s | 1, x)f ϵXi

(x)

+ f ϵYi|Si,Xi
(y | s, x)Qϵ

Si|Wi,Xi
(s | 1, x)f ϵSi|Wi,Xi

(s | 1, x)f ϵXi
(x)

+ f ϵYi|Si,Xi
(y | s, x)f ϵSi|Wi,Xi

(s | 1, x)Qϵ
Xi

(x)f ϵXi
(x)

}
dydsdx

−
∫ ∫ ∫

y

{
Qϵ

Yi|Si,Xi
(y | s, x)f ϵYi|Si,Xi

(y | s, x)f ϵSi|Wi,Xi
(s | 0, x)f ϵXi

(x)

+ f ϵYi|Si,Xi
(y | s, x)Qϵ

Si|Wi,Xi
(s | 0, x)f ϵSi|Wi,Xi

(s | 0, x)f ϵXi
(x)

+ f ϵYi|Si,Xi
(y | s, x)f ϵSi|Wi,Xi

(s | 0, x)Qϵ
Xi

(x)f ϵXi
(x)

}
dydsdx

=

∫ ∫ ∫
yQϵ

Yi|Si,Xi
f ϵYi|Si,Xi

(y | s, x)f ϵXi
(x)

{
f ϵSi|Wi,Xi

(s | 1, x)− f ϵSi|Wi,Xi
(s | 0, x)

}
dydsdx

+

∫ ∫ ∫
yf ϵYi|Si,Xi

(y | s, x)f ϵXi
(x)

{
Qϵ

Si|Wi,Xi
(s | 1, x)f ϵSi|Wi,Xi

(s | 1, x)

−Qϵ
Si|Wi,Xi

(s | 0, x)f ϵSi|Wi,Xi
(s | 0, x)

}
dydsdx

+

∫ ∫ ∫
yf ϵYi|Si,Xi

(y | s, x)Qϵ
Xi

(x)f ϵXi
(x)

{
f ϵSi|Wi,Xi

(s | 1, x)− f ϵSi|Wi,Xi
(s | 0, x)

}
dydsdx.

The derivatives above use the chain rule from calculus and the fact that

δ

δϵ
f ϵ =

δ

δϵ
log(f ϵ)f ϵ = Qϵf ϵ

Let τ ′ denote evaluating the above derivative at ϵ = 0, i.e.

τ ′ =

∫ ∫ ∫
yQYi|Si,Xi

(y | s, x)fYi|Si,Xi
(y | s, x)fXi

(x)

{
fSi|Wi,Xi

(s | 1, x)− fSi|Wi,Xi
(s | 0, x)

}
dydsdx

+

∫ ∫ ∫
yfYi|Si,Xi

(y | s, x)fXi
(x)

{
QSi|Wi,Xi

(s | 1, x)fSi|Wi,Xi
(s | 1, x)

−QSi|Wi,Xi
(s | w = 0, x)fSi|Wi,Xi

(s | 0, x)
}
dydsdx

+

∫ ∫ ∫
yfYi|Si,Xi

(y | s, x)QXi
(x)fXi

(x)

{
fSi|Wi,Xi

(s | 1, x)− fSi|Wi,Xi
(s | 0, x)

}
dydsdx

= E

[
E
[
E
[
YiQYi|Si,Xi

(Yi | Si, Xi)
∣∣Si, Xi

]∣∣∣∣Wi = 1, Xi

]
− E

[
E
[
YiQYi|Si,Xi

(Yi | Si, Xi)
∣∣Si, Xi

]∣∣∣∣Wi = 0, Xi

]]

+ E

[
E
[
µ(Si, Xi)QSi|Wi,Xi

(Si |Wi = 1, Xi)

∣∣∣∣Wi = 1, Xi

]
− E

[
µ(Si, Xi)QSi|Wi,Xi

(Si |Wi = 0, Xi)

∣∣∣∣Wi = 0, Xi

]]
+ E[QXi

(Xi)(µ(1, Xi)− µ(0, Xi))]
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Third, consider the conjectured efficient influence function (EIF).

ψ(Yi, Si,Wi, Xi) =
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))

ρ(Xi)(1− ρ(Xi))

+
Wi(µ(Si, Xi)− µ(1, Xi))

ρ(Xi)
− (1−Wi)(µ(Si, Xi)− µ(0, Xi))

1− ρ(Xi)

+ µ(1, Xi)− µ(0, Xi)− τ

We show that ψ(Yi, Si,Wi, Xi) is an element of the tangent space T by showing that different

parts of ψ(Yi, Si,Wi, Xi) satisfies conditions for Q1, Q2, and Q4.

1. For Q1, we have E
[
(Yi−µ(Si,Xi))(ρ(Si,Xi)−ρ(Xi))

ρ(Xi)(1−ρ(Xi))

∣∣∣∣Si = s,Xi = x

]
= 0 by definition of µ(Si, Xi)

and E
[
(Yi−µ(Si,Xi))(ρ(Si,Xi)−ρ(Xi))

ρ(Xi)(1−ρ(Xi))

∣∣∣∣Si = s,Wi = w,Xi = x

]
= 0 by using statistical surro-

gacy.

2. For Q2, we have E
[
Wi(µ(Si,Xi)−µ(1,Xi))

ρ(Xi)

∣∣∣∣Wi = w,Xi = x

]
= w

ρ(x)
(E[µ(Si, Xi) | Wi = w,Xi =

x]−µ(1, x)) = 0 for any value of w. Similarly, E
[
(1−Wi)(µ(Si,Xi)−µ(0,Xi))

1−ρ(Xi)

∣∣∣∣Wi = w,Xi = x

]
=

1−w
1−ρ(x)

(
E
[
h(Si, Xi)

∣∣∣∣Wi = w,Xi = x

]
− µ(0, x)

)
= 0 for any value of w.

3. For Q4, we have E[µ(1, Xi)− µ(0, Xi)− τ ] = 0.

By setting Q3 = 0, we arrive at ψ(Yi, Si,Wi, Xi) ∈ T .

Fourth, we show that τ ′ and ψ(Yi, Si,Wi, Xi) satisfy the following relationship that all effi-

cient influence functions must satisfy from Theorem 2.2 in Newey (1990):

τ ′ = E[ψ(Yi, Si,Wi, Xi) ·Q(Yi, Si,Wi, Xi)]. (8.11)

We break the proof of this equality into several steps.

(a) Let us consider the part of the ψ(Yi, Si,Wi, Xi) concerning
(Yi−µ(Si,Xi))(ρ(Si,Xi)−ρ(Xi))

ρ(Xi)(1−ρ(Xi))
. We
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have

E
[
(Yi − h(Si, Xi))(ρ(Si, Xi)− ρ(Xi))

ρ(Xi)(1− ρ(Xi))
QYi,Si,Wi,Xi(Yi, Si,Wi, Xi)

]
=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QYi,Si,Wi,Xi

(Yi, Si,Wi, Xi)

∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E

[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QYi|,Si,Xi

(Yi | Si, Xi)

∣∣∣∣Xi

]]

+ E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QSi|Wi,Xi

(Si |Wi, Xi)

∣∣∣∣Xi

]]

+ E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QWi|Xi

(Wi | Xi)

∣∣∣∣Xi

]]

+ E

[
QXi

(Xi)

ρ(Xi)(1− ρ(Xi))
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))

∣∣∣∣Xi

]]

The first equality uses the law of total expectation. The second equality uses the definition

of QYi,Si,Wi,Xi
. We consider each term separately, starting from the bottom.

For the QXi
term, we have

E

[
QXi

(Xi)

ρ(Xi)(1− ρ(Xi))
E

[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))

∣∣∣∣Xi

]]

=E

[
QXi

(Xi)

ρ(Xi)(1− ρ(Xi))
E
[
(ρ(Si, Xi)− ρ(Xi))E

[
(Yi − µ(Si, Xi))

∣∣Si, Xi

]∣∣∣∣Xi

]]

=E

[
Q4(Xi)

ρ(Xi)(1− ρ(Xi))
E
[
(ρ(Si, Xi)− ρ(Xi)) · 0

∣∣∣∣Xi

]]
=0.

The first equality uses the law of total expectation. The second equality uses the definition

of µ(Si, Xi).
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For the QWi|Xi
term, we have

E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QWi|Xi

(Wi | Xi)

∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
QWi|Xi

(Wi | Xi)E
[
(Yi − h(Si, Xi))(ρ(Si, Xi)− ρ(Xi))

∣∣Wi, Xi

]∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
QWi|Xi

(Wi | Xi)E
[
(ρ(Si, Xi)− ρ(Xi))E

[
(Yi − µ(Si, Xi))

∣∣Si,Wi, Xi

]∣∣∣∣Wi, Xi

]∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
QWi|Xi

(Wi | Xi)E
[
(ρ(Si, Xi)− ρ(Xi))(E

[
Yi | Si,Wi, Xi

]
− µ(Si, Xi))

∣∣∣∣Wi, Xi

]∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
QWi|Xi

(Wi | Xi)E
[
(ρ(Si, Xi)− ρ(Xi)) · 0

∣∣∣∣Wi, Xi

]∣∣∣∣Xi

]]
=0

The first and second equalities use the law of total expectation. The third equality is

algebra. The fourth equality uses statistical surrogacy.

For the QSi|Wi,Xi
term, we have

E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QSi|Wi,Xi

(Si |Wi, Xi)

∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QSi|Wi,Xi

(Si |Wi, Xi)

∣∣∣∣Xi,Wi

]∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
E
[
(ρ(Si, Xi)− ρ(Xi))QSi|Wi,Xi

(Si |Wi, Xi)E
[
Yi − µ(Si, Xi)

∣∣∣∣Si, Xi,Wi

]∣∣∣∣Xi,Wi

]∣∣∣∣Xi

]]
=0

The first two equalities use the law of total expectation. The third equality uses statistical

surrogacy.

For the QYi|Si,Xi
term, we have

E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))QYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
Yi(ρ(Si, Xi)− ρ(Xi))QYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Xi

]]

− E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
µ(Si, Xi)(ρ(Si, Xi)− ρ(Xi))QYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Xi

]]

The first term above is equal to E
[
Yi(Wi−ρ(Xi))QYi|Si,Xi

(Yi|Si,Xi)

ρ(Xi)(1−ρ(Xi))

]
because
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E

[
Yi(Wi − ρ(Xi))QYi|Si,Xi

(Yi | Si, Xi)

ρ(Xi)(1− ρ(Xi))

]

=E
[

1

ρ(Xi)(1− ρ(Xi))
E
[
Yi(Wi − ρ(Xi))QYi|Si,Xi

(Yi | Si, Xi) | Si, Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
YiQYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Si, Xi

]
E
[
Wi − ρ(Xi)

∣∣∣∣Si, Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
YiQYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Si, Xi

]
(ρ(Si, Xi)− ρ(Xi))

]

=E

[
Yi(ρ(Si, Xi)− ρ(Xi))QYi|Si,Xi

(Yi | Si, Xi)

ρ(Xi)(1− ρ(Xi))

]

The first equality uses the law of total expectation. The second equality uses statistical

surrogacy where Yi ⊥ Wi|Si, Xi implies Yi, Si, Xi ⊥ Wi, Xi|Si, Xi. The third equality is

the definition of the surrogate score. The fourth equality uses the law of total expectation.

The second term above simplifies to zero because

E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
µ(Si, Xi)(ρ(Si, Xi)− ρ(Xi))QYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
µ(Si, Xi)(ρ(Si, Xi)− ρ(Xi))E

[
QYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Si, Xi

]∣∣∣∣Xi

]]

=E

[
1

ρ(Xi)(1− ρ(Xi))
E
[
µ(Si, Xi)(ρ(Si, Xi)− ρ(Xi)) · 0

∣∣∣∣Xi

]]
=0

The first equality uses the law of total expectation. The second equality uses the the

mean-zero property of the score function QYi|Si,Xi
(Yi | Si, Xi).

Finally, we can rewrite
Yi(Wi−ρ(Xi))QYi|Si,Xi

(Yi|Si,Xi)

ρ(Xi)(1−ρ(Xi))
as

Yi(Wi − ρ(Xi))QYi|Si,Xi
(Yi | Si, Xi)

ρ(Xi)(1− ρ(Xi))
=
YiWiQYi|Si,Xi

(Yi | Si, Xi)

ρ(Xi)
−
Yi(1−Wi)QYi|Si,Xi

(Yi | Si, Xi)

1− ρ(Xi)
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Also, in expectation, each term above equals to

E
[
WiYiQYi|Si,Xi

(Yi | Si, Xi)

ρ(Xi)

]
= E

[
1

ρ(Xi)
E
[
YiQYi|Si,Xi

(Yi | Si, Xi) | Wi = 1, Xi

]
ρ(Xi)

]
= E

[
E
[
YiQYi|Si,Xi

(Yi | Si, Xi) | Wi = 1, Xi

]]
,

E
[
(1−Wi)YiQYi|Si,Xi

(Yi | Si, Xi)

1− ρ(Xi)

]
= E

[
1

1− ρ(Xi)
E
[
YiQYi|Si,Xi

(Yi | Si, Xi) | Wi = 0, Xi

]
(1− ρ(Xi))

]
= E

[
E
[
YiQYi|Si,Xi

(Yi | Si, Xi) | Wi = 0, Xi

]]
.

The first equality uses the law of total expectation and the definition of the propensity

score. The second equality is algebra. Overall, we have

E
[
(Yi − µ(Si, Xi))(ρ(Si, Xi)− ρ(Xi))

ρ(Xi)(1− ρ(Xi))
QYi,Si,Wi,Xi

(Yi, Si,Wi, Xi)

]
=E
[
E
[
YiQYi|Si,Xi

(Yi | Si, Xi) | Wi = 1, Xi

]]
− E

[
E
[
YiQYi|Si,Xi

(Yi | Si, Xi) | Wi = 0, Xi

]]
.

(b) Let’s consider the part of the ψ(Yi, Si,Wi, Xi) concerning
Wi(µ(Si,Xi)−µ(1,Xi))

ρ(Xi)
. We have

E
[
Wi(µ(Si, Xi)− µ(1, Xi))

ρ(Xi)
QYi,Si,Wi,Xi

(Yi, Si,Wi, Xi)

]
=E
[
Wi

ρ(Xi)
E
[
(µ(Si, Xi)− µ(1, Xi))QYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Wi, Xi

]]
+ E

[
Wi

ρ(Xi)
E
[
(µ(Si, Xi)− µ(1, Xi))QSi|Wi,Xi

(Si |Wi, Xi)

∣∣∣∣Wi, Xi

]]
+ E

[
Wi

ρ(Xi)
QWi|Xi

(Wi | Xi)E
[
µ(Si, Xi)− µ(1, Xi)

∣∣∣∣Wi, Xi

]]
+ E

[
Wi

ρ(Xi)
QXi(Xi)E

[
µ(Si, Xi)− µ(1, Xi)

∣∣∣∣Wi, Xi

]]
=E
[
Wi

ρ(Xi)
E
[
(µ(Si, Xi)− µ(1, Xi))E

[
QYi|Si,Xi

(Yi | Si, Xi)

∣∣∣∣Si,Wi, Xi

]∣∣∣∣Wi, Xi

]]
+ E

[
Wi

ρ(Xi)
E
[
(µ(Si, Xi)− µ(1, Xi))QSi|Wi,Xi

(Si |Wi, Xi)

∣∣∣∣Wi, Xi

]]
=E
[
Wi(µ(Si, Xi)− µ(1, Xi))QSi|Wi,Xi

(Si |Wi, Xi)

ρ(Xi)

]
The first equality uses the law of total expectation. The third equality uses the relationship

E[µ(Si, Xi)|Wi = w,Xi] = µ(w,Xi). The fourth equality uses the mean-zero property of

the score and the law of total expectation.

We can further simplify the above expression by noticing that

E
[
Wiµ(1, Xi)QSi|Wi,Xi

(Si | Wi, Xi)

ρ(Xi)

]
= E

[
Wiµ(1, Xi)

ρ(Xi)
E
[
QSi|Wi,Xi

(Si | Wi, Xi)

∣∣∣∣Wi, Xi

]]
= 0
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The first equality uses the law of total expectation. The second equality uses the mean-zero
property of the score function. Also,

E
[
Wiµ(Si, Xi)QSi|Wi,Xi

(Si |Wi, Xi)

ρ(Xi)

]
= E

[
E
[
µ(Si, Xi)QSi|Wi,Xi

(Si |Wi = 1, Xi)

∣∣∣∣Wi = 1, Xi

]∣∣∣∣Xi

]
The first equality uses the law of total expectation and the definition of conditional

expectation with the definition E[Wi | Xi] = ρ(Xi).

Overall, we end up with the following expression

E
[
Wi(µ(Si, Xi)− µ(1, Xi))

ρ(Xi)
QYi,Si,Wi,Xi(Yi, Si,Wi, Xi)

]
= E

[
E
[
µ(Si, Xi)QSi|Wi,Xi

(Si |Wi = 1, Xi)

∣∣∣∣Xi,Wi = 1

]∣∣∣∣Xi

]

(c) Let’s consider the part of the ψ(Yi, Si,Wi, Xi) concerning
(1−Wi)(µ(Si,Xi)−µ(0,Xi))

1−ρ(Xi)
. From the

above exercise, we end up with

E
[
(1−Wi)(µ(Si, Xi)− µ(0, Xi))

1− ρ(Xi)
QYi,Si,Wi,Xi

(Yi, Si,Wi, Xi)

]
= E

[
E
[
µ(Si, Xi)QSi|Wi,Xi

(Si |Wi = 0, Xi)

∣∣∣∣Wi = 0, Xi]

∣∣∣∣Xi

]

(d) Let’s consider the part of the ψ(Yi, Si,Wi, Xi) concerning µ(1, Xi)−µ(0, Xi)− τ . We have

E[(µ(1, Xi)− µ(0, Xi)− τ)QYi,Si,Wi,Xi
(Yi, Si,Wi, Xi)]

=E[(µ(1, Xi)− µ(0, Xi)− τ)E[QYi|Si,Xi
(Yi | Si, Xi) +QSi|Wi,Xi

(Si | Wi, Xi) +QXi
(Xi) | Xi]]

=E[(µ(1, Xi)− µ(0, Xi)− τ)QXi
(Xi)]

=E[(µ(1, Xi)− µ(0, Xi))QXi
(Xi)]

The first equality uses the law of total expectation. The second equality uses the property

of the score where E[QWi|Xi
(Wi | Xi) | Xi] = 0. The third equality uses both the law of

total expectation and the property of the score where

E[QYi|Si,Xi
(Yi | Si, Xi) | Xi] = E[E[QYi|Si,Xi

(Yi | Si, Xi) | Si, Xi] | Xi] = E[0 | Xi] = 0

Combining the four steps (a)-(d) arrives at the desired equality between τ ′ and ψ(Yi, Si,Wi, Xi).

Finally, note that the Vs is obtained by calculating the variance of the EIF (already written

in Theorem 3):4

4We henceforth explicitly show the conditioning Pi = E to be consistent with the notation in our Theorem
statement.
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ψ(Yi, Si,Wi, Xi, Pi) =
(Yi − µ(Si, Xi,E))(ρ(Si, Xi)− ρ(Xi))

ρ(Xi)(1− ρ(Xi))
+
Wi(µ(Si, Xi,E)− µ(1, Xi))

ρ(Xi)

− (1−Wi)(µ(Si, Xi,E)− µ(0, Xi))

1− ρ(Xi)
+ µ(1, Xi)− µ(0, Xi)− τ,

i.e.,

Vs =

[
ψ(Yi, Si,Wi, Xi, Pi)

2

]
= E

[(
(Yi − µ(Si, Xi,E))(ρ(Si, Xi)− ρ(Xi))

ρ(Xi)(1− ρ(Xi))

)2

+

(
Wi(µ(Si, Xi,E)− µ(1, Xi))

ρ(Xi)

)2

+

(
(1−Wi)(µ(Si, Xi,E)− µ(0, Xi))

1− ρ(Xi)

)2

+ (µ(1, Xi)− µ(0, Xi)− τ)
2

]

= E

[
σ2(Si, Xi,E)

(
ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

+ (µ(1, Xi)− µ(0, Xi)− τ)2

+
Wi

ρ(Xi)2
(µ(Si, Xi,E)− µ(1, Xi))

2 +
1−Wi

(1− ρ(Xi))2
(µ(Si, Xi,E)− µ(0, Xi))

2

]
= E

[
σ2(Si, Xi,E)

(
ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2

+ (µ(1, Xi)− µ(0, Xi)− τ)2

+
ρ(Si, Xi)

ρ(Xi)2
(µ(Si, Xi,E)− µ(1, Xi))

2 +
1− ρ(Si, Xi)

(1− ρ(Xi))2
(µ(Si, Xi,E)− µ(0, Xi))

2

]
by the law of iterated expectations, and hence we have that

∆ = Vns − Vs = E

[
σ2(Si, Xi,E)

(
ρ (Si, Xi)

ρ (Xi)
2 +

1− ρ (Si, Xi)

(1− ρ (Xi))
2 −

(
ρ(Si, Xi)− ρ(Xi)

ρ(Xi)(1− ρ(Xi))

)2
)]

= E
[
σ2(Si, Xi,E)

ρ (Si, Xi) (1− ρ (Si, Xi))

ρ (Xi)
2 (1− ρ (Xi))

2

]
□

Proof of Theorem 4: Consider part (i). By the law of iterated expectations conditional on

Si and Xi, we have

τE ≡E
[
µ(Si, Xi,O) · Wi

ρ(Xi)
− µ(Si, Xi,O) · 1−Wi

1− ρ(Xi)

∣∣∣∣Pi = E

]
=E

[
µ(Si, Xi,O) · ρ(Si, Xi)

ρ(Xi)
− µ(Si, Xi,O) · 1− ρ(Si, Xi)

1− ρ(Xi)

∣∣∣∣Pi = E

]
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By the proof of (8.7) in Theorem 1 where we don’t use Surrogacy or Comparability, we get

τO ≡E
[
Yi ·

ρ(Si, Xi) · φ(Si, Xi) · (1− φ)

ρ(Xi) · (1− φ(Si, Xi)) · φ
− Yi ·

(1− ρ(Si, Xi)) · φ(Si, Xi) · (1− φ)

(1− ρ(Xi)) · (1− φ(Si, Xi)) · φ

∣∣∣∣Pi = O

]
=E

[
µ(Si, Xi,O) · ρ(Si, Xi)

ρ(Xi)
− µ(Si, Xi,O) · 1− ρ(Si, Xi)

1− ρ(Xi)

∣∣∣∣Pi = E

]
The second equality in τE = τO = τE,O is immediate based on only the law of iterated expecta-

tions. Finally, by the law of iterated expectations conditional on Xi, we have

E
[
µ(Si, Xi,O) · Wi

ρ(Xi)
− µ(Si, Xi,O) · 1−Wi

1− ρ(Xi)

∣∣∣∣Pi = E

]
=E

[
E
[
µ(Si, Xi,O) · Wi

ρ(Xi)
− µ(Si, Xi,O) · 1−Wi

1− ρ(Xi)

∣∣∣∣Xi, Pi = E

]∣∣∣∣Pi = E

]
By Assumption 2 (unconfoundedness), we have

E
[
E
[
µ(Si, Xi,O) · Wi

ρ(Xi)
− µ(Si, Xi,O) · 1−Wi

1− ρ(Xi)

∣∣∣∣Xi, Pi = E

]∣∣∣∣Pi = E

]
=E

[
E
[
µ(Si(1), Xi,O) · Wi

ρ(Xi)
− µ(Si(0), Xi,O) · 1−Wi

1− ρ(Xi)

∣∣∣∣Xi, Pi = E

]∣∣∣∣Pi = E

]
=E [E [µ(Si(1), Xi,O) | Xi, Pi = E]− E [µ(Si(0), Xi,O) | Xi, Pi = E]|Pi = E]

Undoing the law of iterated expectations give the desired result.

For parts (ii)-(iv), we prove (iv) first. By Assumption 2 (unconfoundedness), we have

τ = E [E [Yi|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [Yi|Wi = 0, Xi, Pi = E] | Pi = E] .

By iterated expectations, this is equal to

τ = E [E [E [Yi|Si,Wi = 1, Xi, Pi = E] |Wi = 1, Xi, Pi = E] | Pi = E]

− E [E [E [Yi|Si,Wi = 0, Xi, Pi = E] |Wi = 0, Xi, Pi = E] | Pi = E]

= E [E [µ(Si, 1, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, 0, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

Thus, we have

τ − E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O) | Pi = E]

=E [E [µ(Si, 1, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, 0, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

− {E [E [µ(Si, Xi,O) |Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,O) |Wi = 0, Xi, Pi = E] | Pi = E]}

We add and subtract

E [E [µ(Si, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]−E [E [µ(Si, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]
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to get

τ − E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O) | Pi = E]

=E [E [µ(Si, 1, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, 0, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

− E [E [µ(Si, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E] + E [E [µ(Si, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

+ E [E [µ(Si, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

− {E [E [µ(Si, Xi,O) |Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,O) |Wi = 0, XiPi = E] | Pi = E]}

Rearranging the terms, we have

τ − E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O) | Pi = E] (8.12)

=E [E [µ(Si, 1, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]
(8.13)

− E [E [µ(Si, 0, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E] + E [E [µ(Si, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]
(8.14)

+ E [E [µ(Si, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,O)|Wi = 1, Xi, Pi = E] | Pi = E]
(8.15)

+ E [E [µ(Si, Xi,O)|Wi = 0, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]
(8.16)

Next, by the definition of expectations,

µ(s, x,E) =E[Yi|Si = s,Xi = x, Pi = E]

=E[Yi|Si = s,Wi = 1, Xi = x, Pi = E] · pr(Wi = 1|Si = s,Xi = x, Pi = E)

+ E[Yi|Si = s,Wi = 0, Xi = x, Pi = E] · pr(Wi = 0|Si = s,Xi = x, Pi = E)

=µ(s, 1, x,E) · ρ(s, x) + µ(s, 0, x,E) · (1− ρ(s, x))

Use this to write (8.13) as

E [E [µ(Si, 1, Xi,E)|Wi = 1, Xi, Pi = E]Pi = E]

− E [E [µ(Si, 1, Xi,E) · ρ(Si, Xi) + µ(Si, 0, Xi,E) · (1− ρ(Si, Xi))|Wi = 1, Xi, Pi = E] | Pi = E]

=E [E [(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) · (1− ρ(Si, Xi))|Wi = 1, Xi, Pi = E] | Pi = E]

=E
[
E
[
(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) ·

(1− ρ(Si, Xi)) · ρ(Si, Xi)

ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) ·

(1− ρ(Si, Xi))ρ(Si, Xi)

ρ(Xi)
| Pi = E

]
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Using the same argument we can write (8.14) as

− E [E [µ(Si, 0, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E] + E [E [µ(Si, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

=− E [E [µ(Si, 0, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

+ E [E [µ(Si, 1, Xi,E) · ρ(Si, Xi) + µ(Si, 0, Xi,E) · (1− ρ(Si, Xi))|Wi = 0, Xi, Pi = E] | Pi = E]

=E [E [(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) · ρ(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]

=E
[
E
[
(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) ·

(1− ρ(Si, Xi)) · ρ(Si, Xi)

1− ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) ·

(1− ρ(Si, Xi)) · ρ(Si, Xi)

1− ρ(Xi)
| Pi = E

]
Combining the results for (8.13) and (8.14) leads to

E
[
(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) ·

(1− ρ(Si, Xi)) · ρ(Si, Xi)

(1− ρ(Xi)) · ρ(Xi)
| Pi = E

]
Collecting the last two terms, (8.15) and (8.16), we have

E [E [µ(Si, Xi,E)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,O)|Wi = 1, Xi, Pi = E] | Pi = E]

+ E [E [µ(Si, Xi,O)|Wi = 0, Xi, Pi = E] | Pi = E]− E [E [µ(Si, Xi,E)|Wi = 0, Xi, Pi = E] | Pi = E]

=E
[
E
[
µ(Si, Xi,E) ·

ρ(Si, Xi)

ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
− E

[
E
[
µ(Si, Xi,O) · ρ(Si, Xi)

ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
+ E

[
E
[
µ(Si, Xi,O) · 1− ρ(Si, Xi)

1− ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
− E

[
E
[
µ(Si, Xi,E) ·

1− ρ(Si, Xi)

1− ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
E
[
(µ(Si, Xi,E)− µ(Si, Xi,O)) · ρ(Si, Xi)

ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
− E

[
E
[
(µ(Si, Xi,E)− µ(Si, Xi,O)) · 1− ρ(Si, Xi)

1− ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
E
[
(µ(Si, Xi,E)− µ(Si, Xi,O)) · ρ(Si, Xi)− ρ(Xi)

(1− ρ(Xi)) · ρ(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
(µ(Si, Xi,E)− µ(Si, Xi,O)) · ρ(Si, Xi)− ρ(Xi)

(1− ρ(Xi)) · ρ(Xi)
| Pi = E

]
Combining the terms together, we obtain the expression in (iv)

τ − E [µ(Si(1), Xi,O)− µ(Si(0), Xi,O) | Pi = E]

=E
[
(µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)) ·

(1− ρ(Si, Xi)) · ρ(Si, Xi)

(1− ρ(Xi)) · ρ(Xi)
| Pi = E

]
+ E

[
(µ(Si, Xi,E)− µ(Si, Xi,O)) · ρ(Si, Xi)− ρ(Xi)

(1− ρ(Xi)) · ρ(Xi)
| Pi = E

]
Finally for part (ii), under Assumption 4 (Comparability), but not Assumption 3 (Surrogacy), µ(Si, Xi,E)−

µ(Si, Xi,O) = 0 and the result is immediate from (iv). For part (iii), under Assumption 3 (Surrogacy),

but not Assumption 4 (Comparability), µ(Si, 1, Xi,E)−µ(Si, 0, Xi,E) = 0 and the result is immediate

from (iv). □
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Proof of Lemma 1 We can identify, given overlap, the surrogate score ρ(s, x), the propensity

score ρ(X), the surrogate index µ(s, x,O), and the joint distribution of (Si, Xi, Pi). This implies

that to derive upper and lower bounds we just need to derive upper and lower bounds for the

difference µ(s, 1, x,E)−µ(s, 0, x,E) for each value of (s, x) and then integrate these bounds. We

will demonstrate the sharpness of these bounds by showing that there exist data distributions

consistent with all assumptions such that these bounds are achieved.

Part (i): By Theorem 4 the surrogacy bias can be characterized as

surrogacy-bias = E
[{

µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)
}
· ρ(Si, Xi) · (1− ρ(Si, Xi))

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
.

The data are not directly informative about the two conditional expectation µ(s, w, x,E) (be-

cause we do not observe the outcome in the experimental sample) beyond their relation to the

surrogacy index:

µ(s, x,O) = ρ(s, x)µ(s, 1, x,E) + (1− ρ(s, x))µ(s, 0, x,E), ∀s, x.

This implies the difference µ(s, 1, x,E)− µ(s, 0, x,E) can be written as

µ(s, 1, x,E)− µ(s, 0, x,E) =
µ(s, x,O)

ρ(s, x)
− µ(s, 0, x,E)

ρ(s, x)
.

Fixing µ(s, x,O), ρ(s, x), and µ(s, 0, x,E) this places no restrictions on the difference µ(s, 1, x,E)−

µ(s, 0, x,E) and thus no restrictions on the bias, and therefore any value for the treatment effect

on the whole real line is consistent with the data in the absence of surrogacy.

Part (ii): If the outcome is binary, then some values can be ruled out. Because µ(s, w, x,E) is

the conditional expectation of the outcome given some conditioning variables, it obviously must

be inside the interval [0, 1], and both µ(s, 1, x,E) and µ(s, 0, x,E) must lie inside the interval

[0, 1]. This directly implies that µ(s, 1, x,E) − µ(s, 0, x,E) ∈ [−1, 1]. However, we can sharpen

these bounds exploiting the fact that µ(s, x,O) = ρ(s, x)µ(s, 1, x,E) + (1− ρ(s, x))µ(s, 0, x,E).

This implies that

µ(s, 1, x,E) =
µ(s, x,O)− µ(s, 0, x,E)(1− ρ(s, x))

ρ(s, x)
. (8.17)
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First consider the upper bound on µ(s, 1, x,E)− µ(s, 0, x,E). The question is what the pairs of

values (µ(s, 1, x,E), µ(s, 0, x,E)) are that both lie inside [0, 1], such that µ(s, x,O) = ρ(s, x)µ(s, 1, x,E)+

(1−ρ(s, x))µ(s, 0, x,E) for given µ(s, x,O) and ρ(s, x), and that maximize the difference µ(s, 1, x,E)−

µ(s, 0, x,E). There are two possibilities. Either µ(s, x,O) ≥ ρ(s, x) or µ(s, x,O) < ρ(s, x).

If µ(s, x,O) ≥ ρ(s, x), then the smallest value for µ(s, 0, x,E) such that the value for µ(s, x,E)

implied by (8.17) is less than or equal to one is µ(s, 0, x,E) = (µ(s, x,O) − ρ(s, x))/(1 −

ρ(s, x)). This value has to be less than one by the assumption that there is a pair of val-

ues (µ(s, 0, x,E), µ(s, 1, x,E)) that satisfies (8.17). In this case upper bound for the difference

µ(s, 1, x,E)−µ(s, 0, x,E) is equal to (1−µ(s, x,O))/(1−ρ(s, x)). If µ(s, x,O) ≤ ρ(s, x), then the

largest value for µ(s, 1, x,E) such that µ(s, 0, x,E) is nonnegative is µ(s, x,O)/ρ(s, x). In that

case the upper bound for the difference µ(s, 1, x,E)− µ(s, 0, x,E) is equal to µ(s, x,O)/ρ(s, x).

In summary, to demonstrate sharpness, consider the following data distributions:

If µ(s, x,O) ≥ ρ(s, x), set µ(s, 0, x,E) = µ(s,x,O)−ρ(s,x)
1−ρ(s,x)

and µ(s, 1, x,E) = 1.

If µ(s, x,O) < ρ(s, x), set µ(s, 0, x,E) = 0 and µ(s, 1, x,E) = µ(s,x,O)
ρ(s,x)

In both cases, these distributions are admissible under our assumptions, and also achieve the

bounds, demonstrating that the bounds are sharp.

Therefore, the sharp upper bound is

∆U
S (s, x) =

{
(1− µ(s, x,O))/(1− ρ(s, x)) if µ(s, x,O) ≥ ρ(s, x)
µ(s, x,O)/ρ(s, x) if µ(s, x,O) ≤ ρ(s, x),

= min

(
µ(s, x,O)

ρ(s, x)
,
1− µ(s, x,O)

1− ρ(s, x)

)
.

The proof for the lower bound follows the same argument.

Part (iii):

surrogacy-bias = E
[{

µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)
}
· ρ(Si, Xi) · (1− ρ(Si, Xi))

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]

≤ E
[∣∣∣{µ(Si, 1, Xi,E)− µ(Si, 0, Xi,E)

}∣∣∣ · ∣∣∣∣ρ(Si, Xi) · (1− ρ(Si, Xi))

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣∣∣∣∣Pi = E

]
≤ c · E

[
ρ(Si, Xi) · (1− ρ(Si, Xi))

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
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The upper bound can be achieved by setting µ(s, 0, x,E) = µ(s, x,O)−c·ρ(s, x) and µ(s, 1, x,E) =

µ(s, 0, x,E)+ c, These distributions are admissible under our assumptions, and hence sharpness

is obtained. We can likewise obtain the lower bound.

□

Proof of Lemma 2 We show that the derived bounds are sharp by demonstrating that there

exist data distributions consistent without assumptions that achieve these bounds. (i) In the

absence of Comparability the data imply no restrictions on the values for µ(s, x,E), and so as

long as there is some difference between ρ(s, x) and ρ(x) there is no bound on the bias.

(ii) If the outcomes are binary, the only restrictions implied on µ(s, x,E) are that all values lie

inside [0, 1]. The upper bound comes from imputing 1 for µ(s, x,E) if ρ(s, x) > ρ(x) and 0 if

ρ(s, x) < ρ(x), a choice of distribution that is admissible. This directly implies the bounds on

the bias.

(iii)

comparability-bias = E
[{

µ(Si, Xi,E)− µ(Si, Xi,O)
}
· ρ(Si, Xi)− ρ(Xi)

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
.

Then ∣∣∣∣E [{µ(Si, Xi,E)− µ(Si, Xi,O)
}
· ρ(Si, Xi)− ρ(Xi)

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]∣∣∣∣
≤ E

[∣∣∣{µ(Si, Xi,E)− µ(Si, Xi,O)
}∣∣∣ · |ρ(Si, Xi)− ρ(Xi)|

ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
≤ c · E

[
|ρ(Si, Xi)− ρ(Xi)|
ρ(Xi) · (1− ρ(Xi))

∣∣∣∣Pi = E

]
.

The upper bound can be attained by setting

µ(s, x,E) =

{
µ(s, x,O) + c if ρ(s, x) ≥ ρ(x),
µ(s, x,O)− c otherwise,

and similarly for the lower bound. □

C. Illustration of Bias Bounds Calculation

We will provide a simple illustration of how the theoretical bias bounds we calculated in

Section 5.2 look like in practice. We focus on the employment outcome to illustrate the surrogacy

bias and comparability bias bounds in the binary case (Case (ii)).
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Table 9 shows the bounds on the treatment effects using the Influence Function Estimator

under potential violations of Surrogacy and Comparability.5 This demonstrates that in the

binary outcome of employment, the sign can still be credibly inferred under the latter half even

under surrogacy violation. The comparability bias seems to be non-negligible, part of our design

of choosing Riverside (experimental data) due to its unique “jobs first” approach, in contrast

to the “human capital” approach used in LA, San Diego, and Alameda counties (observational

data). Further work must be done to ensure cases where comparability bias is minimal. We can

similarly compute non-binary outcomes like Earnings, with some plausible range of user-specified

parameter c (Case (iii) in Section 5.2).

Table 9: Bounds on the Influence Function Estimator for Employment Outcome

Without Surrogacy Without Comparability

t Lower Bound Upper Bound Lower Bound Upper Bound
1 -0.80 0.36 -0.03 0.02
2 -0.64 0.18 -0.09 0.07
3 -0.46 0.12 -0.12 0.11
4 -0.36 0.09 -0.14 0.13
5 -0.29 0.07 -0.14 0.13
6 -0.25 0.06 -0.15 0.14
12 -0.13 0.03 -0.16 0.15
18 -0.09 0.02 -0.16 0.16
24 -0.07 0.01 -0.17 0.17
30 -0.05 0.01 -0.18 0.18
36 -0.04 0.01 -0.18 0.18

5If we are interested in conducting inference on the partial identification bounds, we can take the approach
illustrated in, e.g., Imbens and Manski (2004); Molinari (2020).
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