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1. Introduction

Major strands of the International Macroeconomics literature study topics in which incom-

plete assetmarkets play a key role (e.g., business cycles, sovereign default, Sudden Stops, global

imbalances, nominal rigidities, macroprudential regulation, currency carry trade, etc.). Since

the dynamics of external wealth or net foreign assets (NFA) generally lack analytic solutions,

researchers rely on numericalmethods. Choosing the appropriatemethod is difficult, however,

because deterministic models yield stationary equilibria dependent on initial conditions and

in stochastic models the evolution of wealth is state-contingent and driven by precautionary

savings. Certainty equivalence fails and, if the interest rate equals the rate of time preference,

precautionary savings make the NFA position infinitely large.

The literature follows two approaches to address these issues. The first, based on the influ-

ential work by Schmitt-Grohé and Uribe (2003), modifies the models by introducing “station-

arity inducing” assumptions that yield a well-defined deterministic steady state for NFA, inde-

pendent of initial conditions, and implements log-linear or first-order approximations (1OA)

around that steady state, recovering certainty equivalence. They proposed introducing one

of three assumptions: a Debt-Elastic Interest Rate (DEIR) function by which the real inter-

est rate rises when NFA falls, preferences with endogenous discounting (ED), or quadratic

NFA-adjustment costs.1 Important innovations to local methods have occurred since then, in-

cluding higher-order perturbation methods (e.g., Devereux and Sutherland, 2010; Fernández-

Villaverde et al., 2011), the risky steady state (RSS) method proposed by Coeurdacier et al.

(2011), and algorithms for solving models with occasionally binding constraints (e.g., OccBin

by Guerrieri and Iacoviello (2015), DynareOBC by Holden (2016, 2019)). The second approach

uses global (GLB) methods to solve for the nonlinear decision rules and long-run distribution

of external wealth of the models in their original form. These methods are similar to those

used in closed-economy models of heterogeneous agents with incomplete markets and their

use dates back to the Mendoza (1991) RBC model of a small open economy.

Global and localmethods have beenwidely used in research andpolicy applications. This is

1They showed that the business cycle moments of an RBC small-open-economy model solved using any of
these assumptions are similar, and impulse response functions to a TFP shock are virtually identical.
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documented in Appendix A using information from the 50 papers most cited in Google Scholar

that cite Schmitt-Grohé and Uribe (2003), all quantitative papers in the references of this paper

not in that top-50 list, several well-known papers going back to the early 1990s (when the first

numerical solutions of open-economy models with incomplete markets were produced), and

the models from eight policy institutions. When local methods are used, 1OA is the most

common in research and is used in all eight policymodels, and from the assumptions to induce

stationarity, DEIR is the most common followed by NFA adjustment costs and ED preferences.

From all DEIR solutions, the majority set the value of the debt elasticity parameter ψ to an

arbitrary small number, with the aim of preventing the DEIR function from playing a role

other than inducing stationarity, since ideally this function should be endogenous.2 The

values range from 0.00001 to 0.01, and the most common is 0.001, as Schmitt-Grohé and Uribe

proposed.3 In other cases, ψ is calibrated to a data target (six cases) or estimated (four cases)

and it ranges from 0.00014 to 2.8.

With GLB methods, the existence of a well-defined stochastic steady state follows from

the same condition as in the Bewley-Aiyagari models of heterogeneous agents (see Ch. 18

of Ljungqvist and Sargent (2018)): the rate of time preference must be lower than the interest

rate. This is a general equilibrium result in multicountry models, because if the rate of interest

equals the rate of time preference, all countries desire infinitely large NFA for self-insurance,

which is inconsistent with market clearing (see Mendoza et al., 2009). This implies that the

issues studied here are relevant also for quantitative multi-country and closed-economy mod-

els with incomplete markets. Moreover, in small-open-economy models, assuming an interest

rate lower than the rate of time preference is an implication of the assumption that the interest

rate is a world-determined price. With local methods, the DEIR function is constructed so that

at a chosen deterministic steady state the rate of interest equals the rate of time preference.

While GLB methods solve the models in their original form and capture NFA dynamics

2Garcia-Cicco et al. (2010) explain that, following Schmitt-Grohé and Uribe (2003), the standard practice is to
set ψ to a small value because the DEIR function aims to obtain independence of the deterministic steady state
from initial conditions without affecting cyclical dynamics. They also studied a model in which ψ represents
financial frictions, and in this case they estimated ψ using Bayesian methods.

3DEIR functional forms are not always the same, so ψ values are not directly comparable. We control for this
bymaking comparisons in terms of the elasticity of the interest rate with respect to steady-state deviations of NFA.
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accurately, they suffer from the traditional “curse of dimensionality” (i.e., they become expo-

nentially inefficient with the number of endogenous state variables). In contrast, local methods

can solve large-scalemodels but require the stationarity-inducing assumptions that are not part

of the original models. These tradeoffs pose four key questions: Are local solutions accurate?

If not, why not? Are the inaccuracies economically meaningful? Can they be reduced?

This paper answers these questions by conducting a theoretic and quantitative analysis

comparing global with local solutions. For local methods, we consider 1OA, second-order ap-

proximation (2OA), RSS, andDynareOBC.4,5 ForGLB solutions, we use the fixed-point iteration

(FiPIt) algorithm proposed by Mendoza and Villalvazo (2020).6

We compared solutions for three popular small open economy models: An endowment

model, a real business cycle (RBC)model, and amodel of Sudden Stops (SS)with an occasionally-

binding collateral constraint. We solve “baseline calibrations” in which the local methods use

DEIR with ψ = 0.001 and the center of approximation of 1OA, 2OA and DynareOBC is the de-

terministic steady state, and RSS is centered at its risky steady state.7 Then we study “targeted

calibrations” with ψ calibrated to match the first-order autocorrelation of NFA in the global so-

lutions.8 For RSS and DynareOBC, we also solve variants without DEIR in which the rate of

interest is lower than the rate of time preference, so that credit constraints bind at the deter-

ministic steady state. We compare statistical moments and impulse response functions (IRFs),

and in the online Appendix we compare spectral densities. For the SS model, we also compare

credit constraint multipliers, financial premia andmacro responses when the constraint binds.

The results show that global and local solutions differ significantly, and that this is due to

differences in the decision rule of NFA, the main endogenous state variable in open economy

4Appendix B.3.7 shows that moments from pruned third-order-approximation (3OA) solutions and 2OA so-
lutions are the same up to the second decimal for the targeted and baseline calibrations (except the variability
ratios for the latter), but this result could change in models with stochastic volatility (see de Groot, 2016).

5We use first-order DynareOBC because it yields the same results as OccBin when the equilibrium is unique.
DynareOBC has the advantages that it converges in finite time and tackles equilibium multiplicity.

6Solving the endowment model with value function iteration yields very similar results (see Appendix B.3.9).
7We also compared results for the endowment model using ED preferences (see Section 2 and appendices C.3

and E.3). ED and DEIR have equivalent 1OA solutions but 2OA solutions differ sharply. In addition, 2OA ED
solutions still approximate poorly the magnitude of precautionary savings of the ED GLB solutions.

8We also studied an alternative in which the center of approximation is the average NFA of the global solu-
tions, but targeting the autocorrelation produces a closer match to the global solutions (see Appendix B.3.6).
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models. GLB and local methods coincide in that NFA is a near-unit-root process. In all baseline

calibrations for the three models, NFA autocorrelations exceed 0.97. In the local solutions,

however, we show that this coefficient is determined by ψ and the center of approximation,

whereas in the GLB solutions it is determined by the endogenous ergodic distribution of NFA.

Because they are near-unit-roots, slight differences in NFA autocorrelations between GLB and

local solutions cause large differences in long-run moments, IRFs, and spectral densities.

The effect on two key moments of open-economy models is particularly striking. First, the

local solutions’ inaccuracies in NFA autocorrelations yield large differences in precautionary

savings or the long-run average of NFA. Local methods also sharply under- or over-predict

the precautionary-savings effect of changes in parameters that alter incentives to self-insure.

For instance, the GLB solution predicts large increases in mean NFA with higher variability

of shocks, lower rate of time preference or higher coefficient of relative risk aversion (CRRA).

In contrast, 1OA maintains certainty equivalence, keeping mean NFA equal to the DEIR’s pre-

determined steady state, while 2OA and RSS produce mean NFA much larger or smaller, de-

pending on the model, the parameter change considered, and whether we use baseline or

targeted calibrations. Similarly, DynareOBC calibrated to a steady state in which the credit

constraint binds (does not bind) yields mean NFA well below (above) the GLB solution.

Second, small differences in NFA autocorrelations yield large differences in the autocor-

relations of net exports (nx), because nx is a quasi first-difference of the near-unit-root NFA

process. In the endowment model with the baseline calibration, GLB predicts that raising the

persistence of income from near 0 to 0.8 increases the autocorrelation of NFA from 0.83 to 0.99

and that of nx from -0.09 to 0.77. In contrast, 2OA and RSS predict that the autocorrelation of

NFA always exceeds 0.99 while that of nx varies from 0.24 to 0.95. For a given autocorrelation

of income in the 0-0.8 range, the local solutions always overestimate the autocorrelations of

NFA and nx. As a result, they also overestimate the variability of consumption and nx and

underestimate their income correlations.

GLB and local solutions also show large differences in IRFs and spectral densities in the

threemodels. In contrast, GLB and localmethods yield similar results for supply-side variables

(i.e., output, investment and inputs) in the RBC and SS models. This is an implication of using
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preferences without a wealth effect on labor supply and of the small equity premium typical

of RBC models. The latter keeps the capital decision rule close to the one featuring Fisherian

separation of investment from saving due to arbitrage of asset returns.

Comparing across local methods, 1OA, 2OA and RSS solutions yield similar second- and

higher-ordermoments and IRFs for all endogenous variables in the endowment and RBCmod-

els. To explain these results, we derive analytic solutions of local NFA decision rules for the

endowmentmodel. We show that i) the coefficient on laggedNFA is nearly the same in the RSS

and 2OA solutions when ψ is small (less than 0.1), unless the deterministic and risky steady

states of NFA differ by a large margin (at least 40 percentage points of GDP); ii) the coefficients

in the square and interaction terms of 2OA decision rules are very small.

Local methods with targeted calibrations (i.e., ψ set to match the GLB autocorrelation of

NFA) do better at matching the GLB solutions. However, this approach has two drawbacks.

One, it requires obtaining first the global solution so as to find the first-order autocorrelation

of NFA to calibrate ψ, and doing this again for any parametric change that alters the NFA

autocorrelation. Two, targeted calibrations require increasing ψ from the common calibration

setting of 0.001 to values of 0.0469 (0.0109) and 0.0469 (0.008) for the 2OA and RSS methods

applied to the endowment (RBC) model, respectively. This increases the elasticity of the DEIR

function by factors of 8 to 47 and makes NFA “sticky,” as deviations of NFA from steady state

become too costly. As a result, the first moments of 2OA and RSS become similar and similar

also to the 1OA solution (i.e., certainty equivalence approximately holds). Hence, 1OAbecomes

the preferable local method, but this also means that precautionary savings are disregarded.

We use DynareOBC to solve the SSmodel because the occasionally binding constraint rules

out standard localmethods. DynareOBCuses local approximations but introduces news shocks

that hit every time the constraint is violated to push the relevant variables back to the con-

straint. For consistency with rational expectations, these news shocks are constructed as if

they were expected by agents along a perfect-foresight path and so are akin to “endogenous

news shocks.” This method, when solved in first-order and without integrating over future

uncertainty, ignores precautionary savings, the possibility of alternative future paths in which

the constraint may or may not bind, and the equity risk premium.
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Findings from the endowment and RBC solution comparisons extend to the SSmodel. GLB

andDynareOBC yield large differences in the amount of precautionary savings induced by the

credit constraint, business cycle moments, the probability of hitting the constraint, impulse re-

sponses, and spectral densities. Moreover, the near-unit-root nature of NFA increases Dynare-

OBC execution time considerably, because it requires multiple, long perfect-foresight paths to

form the news shock realizations that implement the constraint, and long time-series simu-

lations to attain convergence of long-run moments. DynareOBC also underestimates signifi-

cantly the tightness of the credit constraint and its effects on financial premia and macro re-

sponses. Lower equity returns imply higher equity prices and investment when the constraint

binds, and hence higher borrowing capacity. As a result, DynareOBCwith the constraint bind-

ing at steady state yields weaker Sudden Stop macro responses, and with the constraint not

binding at steady state it cannot produce Sudden Stop effects.

In terms of computational performance, the global FiPIt algorithm is slower than localmeth-

ods for solving the endowment and RBC models but of comparable speed to DynareOBC for

solving the SSmodel. For all threemodels, however, the localmethods yieldmuch less accurate

results in terms of larger Euler equation errors and large differences in decision rules.

This paper is related to recent studies comparing global v. local solutions of models with

financial frictions. Holden (2016) shows thatDynareOBCyields similar results as theGLB solu-

tion for a small open economy model with endowment income, quadratic utility (which rules

out precautionary savings) and NFA adjustment costs. There are four occasionally binding

constraints: minimum income, non-negative consumption and autonomous spending, and ex-

pected future income larger than debt service with probability 1. In contrast, we found that the

GLB and DynareOBC solutions of our endowment economy model with an ad-hoc debt limit

differ sharply. Our analysis differs from Holden’s in that it uses CRRA utility (which allows

for precautionary savings) and solves for the stochastic steady state without a cost of holding

assets imposing a deterministic steady state. We also used DynareOBC to solve the SS model,

which has two endogenous states (capital and NFA) and a collateral constraint that depends

on both states and endogenous asset prices, and found that the results again differ markedly

from the GLB solution. Dou et al. (2019) compared GLB v. 1OA, 2OA and OccBin methods for
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closed-economy models and found that local solutions poorly approximate nonlinear dynam-

ics and yield biased IRFs. Rabitsch et al. (2015) compared the local method proposed by Dev-

ereux and Sutherland (2010) (henceforth, DS) for solving portfolio allocations in a two-country,

incomplete-markets model v. a GLBmethod. In the DSmethod, NFA non-stationarity remains

an issue, but given NFA it yields an accurate portfolio structure. They found that DS is accu-

rate only with particular calibrations and with symmetric countries with long-run NFA set to

0. With asymmetric countries, and using ED preferences for stationarity, DS performs poorly

unless the center of approximation matches the GLB solution, and more so if NFA decision

rules are nonlinear. Our work differs from these studies in three key respects. We study 1OA,

2OA, RSS and DynareOBC methods using the dominant DEIR approach to induce stationar-

ity; compare results in the time and frequency domains; and consider endowment, RBC and

SS models, and for the latter we compare global v. DynareOBC solutions.

Local and global solutions with occasionally binding constraints have also been compared

in the literature on closed-economyNew-Keynesianmodels with a zero-lower-bound (ZLB) on

interest rates. Thesemodels formulate a Taylor rulewith the ZLB constraint (rather than study-

ing constraints on the agents’ optimization problems) and typically assume complete markets,

private bonds in zero net supply and a rate of time preference equal to the steady-state interest

rate. Hence, the effects of precautionary savings on the dynamics of bond positions and the

center of approximation of local solutions, which are essential to our findings, are not at issue

in this literature. Fernández-Villaverde et al. (2015) proposed an innovative use of projection

methods based on the Smolyak collocation approach to obtain an efficient global solution of a

ZLB model with one endogenous state (price dispersion) and four exogenous shocks.9 They

found that the ZLB yields important nonlinearities that local methods miss. Gust et al. (2017)

also solved a ZLB model with projection methods and compared the results with the OccBin

results. They found that the latter approximates poorly the GLB solution and that the differ-

ences have major implications for propagation of shocks and estimation results.10 Atkinson

9In their model, the ergodic average and the deterministic steady state of the endogenous state are nearly
identical, whereas a key finding of our analysis is that precautionary savings causes large differences in the ergodic
average v. the deterministic steady state of NFA positions.

10Solving the SS model using these methods is difficult because the global basis functions are not defined in

7



et al. (2019) also examined model estimation but concluded that there are more gains in terms

of accuracy from estimating a richer, less misspecified version of the model using OccBin than

estimating a stylized version of the model using GLB methods.

The rest of the paper is organized as follows. Section 2 compares the endowment model

solutions, providing analytic and numerical results. Section 3 compares global v. DynareOBC

solutions of the SS model. Section 4 provides conclusions and an extensive online Appendix

provides further details on the solutionmethods and the endowment, RBCand SS applications.

2. Endowment economy

2.1. Model structure and equilibrium

Consider first a small-open-economy model with stochastic endowment income. We use

this setup to derive analytic results and characterize NFA dynamics under incompletemarkets.

The economy is inhabited by a representative agent with preferences given by:

E0

{
∞∑
t=0

βtu(ct)

}
, u(ct) =

c1−σt

1− σ
, (1)

where β ∈ (0, 1) is the subjective discount factor, ct is consumption and σ is the CRRA coeffi-

cient. The economy’s resource constraint is given by

ct = ezt ȳ − A+ bt − qbt+1, (2)

where ezt ȳ is stochastic income that fluctuates around a mean ȳ with shocks zt of exponen-

tial term ezt , bt denotes the NFA position in one-period, non-state-contingent discount bonds

traded in a global credit market at constant price q = 1
1+r

, where r is the world real interest

rate, and A is a constant that represents investment and government expenditures for model

calibration.11 Income shocks follow an AR(1) process: zt = ρzzt−1 + σzε
z
t where εzt is i.i.d.

The agent chooses the optimal sequences of bonds and consumption so as to maximize (1)

subject to (2). This optimization problem is analogous to the one solved by a single individ-

points of the state space where it is not feasible to satisfy the collateral constraint with positive consumption. The
boundary varies as capital, NFA and the capital pricing function vary. This problem can be avoided using uneven
grids but this is also difficult because the debt limit imposed by the collateral constraint is not a pre-determined
value. These hurdles do not arise in ZLB models and models with constant, unidimensional debt limits.

11We study later in this Section the implications of allowing r to be stochastic.
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ual in heterogeneous-agentsmodels (e.g., Aiyagari, 1994). The Inada condition of CRRAutility

implies that uc(ct)→∞ as ct goes to zero fromabove. This implies that the economy facesAiya-

gari’s Natural Debt Limit (NDL), by which the NFA position never exceeds the annuity value

of the worst realization of net income bt+1 ≥ −min(ezt ȳ − A)/r, otherwise agents are exposed

to the possibility of nonpositive consumption with positive probability. Following Aiyagari

(1994), we can also impose a tighter ad-hoc debt limit ϕ, such that bt+1 ≥ ϕ ≥ −min(ezt ȳ−A)/r,

which is useful for model calibration.

Using the resource constraint, we can express the Euler equation for bonds as

uc(e
zt ȳ − A+ bt − qbt+1) = (1 + r)βEt [uc(e

zt+1 ȳ − A+ bt+1 − qbt+2)] + µt, (3)

where µt is the Lagrange multiplier of the debt limit.

Under complete markets of contingent claims, and assuming income shocks are idiosyn-

cratic to the small open economy, the economy diversifies away all the risk of its endowment

fluctuations. The equilibrium features a constant consumption streamand the economy’swealth

position is time- and state-invariant. The solution is akin to that of a perfect-foresight model

with β(1 + r) = 1 and wealth (the present value of income plus initial NFA) scaled to represent

the same wealth as in the complete markets economy.

Under incomplete markets, the equilibrium differs sharply, because wealth becomes state

contingent and consumption is not perfectly smoothed. Equation (3) implies that Mt ≡ (1 +

r)tβtuc(t) forms a supermartingale, which converges almost surely to a non-negative random

variable because of the Supermartingale Convergence Theorem (see Chapter 18 of Ljungqvist

and Sargent (2018)). If β(1 + r) ≥ 1, this convergence implies that consumption and NFA di-

verge to infinity because marginal utility converges to zero almost surely, which causes the

non-stationarity problem that led to the use of the DEIR function in local methods. The econ-

omy builds an infinitely large stock of precautionary savings so that self-insurance can sustain

a consumption process for which Mt converges and uc(t) ≥ β(1 + r)Et [uc(t+ 1)] holds. In

contrast, if β (1 + r) < 1, the economy attains a well-defined stochastic steady state with fi-

nite long-run averages of assets and consumption, and the rest of the moments of the model’s

endogenous variables are also well-defined. Intuitively, the opposing forces of the pro-saving

incentive for self-insurance and the pro-borrowing incentive due to β (1 + r) < 1 keep NFA

9



moving within an ergodic set. If NFA falls (rises) too much the first (second) force prevails.

2.2. Global methods

GLBmethods solve themodel in recursive formover a discrete state space of (b, z)pairs. The

AR(1) process of income is approximated as a discreteMarkov chainwith transition probability

matrix π(z′, z). The goal is to solve for the NFA decision rule b′(b, z), which together with the

Markov process of the shocks produces the joint ergodic distribution ofNFA and income λ(b, z)

(i.e., the stochastic steady state).

We solve for b′(b, z) using the FiPIt method (seeMendoza andVillalvazo, 2020, for details).12

For this model, FiPIt iterates on the following recursive representation of the Euler equation:

cj+1(b, z) =

{
β (1 + r)

∑
z′

π(z′, z)

[(
cj(b̂

′
j(b, z), z

′)
)−σ]}− 1

σ

. (4)

Given a conjectured decision rule b̂′j(b, z) in iteration j, the associated consumption function is

cj(b, z) = ezȳ − A + b− qb̂′j(b, z). This consumption function is interpolated over its first argu-

ment in order to determine cj(b̂′j(b, z), z′), so that eq. (4) solves directly for a new consumption

function cj+1(b, z). Using the resource constraint, the new consumption function yields a new

decision rule for bonds b′j+1(b, z), which is re-set to b′j+1(b, z) = ϕ if b′j+1(b, z) ≤ ϕ. Then the de-

cision rule conjecture is updated to b̂′j+1(b, z) as a convex combination of b̂′j(b, z) and b′j+1(b, z),

and the process is repeated until b′j+1(b, z) = b̂′j(b, z) up to a convergence criterion.

The global method solves the model without imposing assumptions to force stationarity. If

β(1+r) = 1, the solution is that NFA diverges to infinity, which is unpleasant but is the equilib-

rium outcome. However, β(1 + r) < 1 is the relevant case because, as noted above, it is implied

by world general equilibrium. Note also that with β(1 + r) < 1 the deterministic stationary state

converges to the debt limit ϕ, with consumption falling at a gross rate of (β (1 + r))1/σ. Hence,

without quantitative analysis, theory predicts that the long-run average of NFA in the stochas-

12This method is in the large class of global methods that iterate on Euler equations dating back to Coleman
(1990) and Baxter (1991), including endogenous grids, time iteration and projection methods (see Rendahl, 2015,
for a general discussion). Mendoza andVillalvazo show that FiPIt performs better than time iteration and endoge-
nous grids, particularly for models with two endogenous state variables and occasionally binding constraints,
because time iteration requires solving Euler equations nonlinearly and endogenous grids require interpolation
techniques for irregular grids, while FiPIt solves Euler equations directly using standard linear interpolation.
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tic, incomplete-markets model can differ significantly from the deterministic steady state and

that the difference is due to precautionary savings.

2.3. Local methods

The local methods solve a local approximation of the optimality conditions (equations (2)

and (3)) around the deterministic steady state (bdss) for 1OA and 2OA or the risky steady state

(brss) for RSS. Since assuming β(1 + r) = 1 implies that bdss depends on initial conditions and

under uncertainty NFA diverges to infinity, 1OA and 2OA require a stationarity-inducing as-

sumption. As noted earlier, the most common assumption is to introduce the DEIR function:

rt = r + ψ
[
eb
∗−Bt+1 − 1

]
, (5)

where b∗ and ψ are parameters, with ψ determining the elasticity of rt with respect to NFA, and

Bt+1 is the “aggregate” NFA position (i.e., treated as exogenous by agents). At equilibrium,

bt+1 = Bt+1. Since DEIR applications assume β(1 + r) = 1, eq. (3) implies b∗ = bdss. The

elasticity of rt with respect to (small) percent deviations of bt+1 from bdss is ηr ≡ −ψbdss.

We implement the 1OAand 2OAmethods usingDynare 4.5.6 and theRSSmethod following

Coeurdacier et al. (2011). 1OA and 2OA solve for local approximations around bdss by solving

a first- or second-order approximation to the decision rules jointly with approximations of

the same order to the model’s optimality conditions. In contrast, RSS uses brss as center of

approximation and assumes β(1 + r) < 1 (see Appendix B.2.2 for details).

RSS aims to take into account future risk, so that the center of approximation may do bet-

ter at capturing precautionary savings. The value of brss is obtained from a second-order ap-

proximation to the conditional expectation of the steady-state Euler equation, solved jointly

with the coefficients of a first-order approximation to the decision rules using a conditional

second-order approximation of the full equilibrium conditions’ Jacobian, which requires the

third derivatives of those conditions. As explained by de Groot (2014), this second part of the

solution is crucial to obtain stationary NFA dynamics in the RSS solution. We also consider a

variant of RSS in which brss is computed in the same way, but is then used together with the

DEIR function and standard first-order approximations to the decision rules and equilibrium

conditions to obtain stationary dynamics. We denote the original RSS method as “full RSS”
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and the alternative with the DEIR function as “partial RSS.”

2.4. Calibration & comparison of quantitative results

a) Calibration

We use the same baseline calibration as in Durdu et al. (2009), which targeted annual data

for Mexico (see their article for a full description of the calibration). Table 1 lists the parameter

values separating those that are common to global and local solutions from those particular

to each, including for the local methods baseline and targeted calibrations of ψ. For the income

process, the local methods use the AR(1) process estimated by Durdu et al. with σz = 0.0327

and ρz = 0.597. In the GLB solution, we approximate it as a five-point Markov chain using the

improvement of the Tauchen-Hussey quadrature method developed by Flodén (2008).13

The values of ϕ and β in the GLB calibration were set so that the model matches the −0.44

average of the NFA-GDP ratio fromMexican data together with Mexico’s cyclical variability of

private consumption of 3.28 percent over the 1965–2005 period. This implies ϕ = −0.51 and

β = 0.94. Two parameters are required to identify the calibration, because while the average

NFA-GDP ratio can bematched by simply adjusting ϕ, this can result in stochastic steady states

in which the distribution of bond holdings is clustered near the debt limit and consumption

fluctuates too much, or has a high variance and consumption fluctuates too little.

In the baseline calibration for the local methods (except for full RSS) we follow the standard

practice of setting β = 1/(1 + r) so that bdss = b∗. We set b∗ equal to ϕ in the GLB calibration,

hence bdss = −0.51. This is done so that in both solutions bdss = ϕ (this is the case for the GLB

solution because there β(1 + r) < 1). The discount factors of the global and local calibrations

differ only slightly (0.944 v. 0.940).14 The baseline value of ψ is the commonly-used value of

0.001. In the targeted calibrations, we setψ to values so that the solution for a given localmethod

13The Markov process is discrete with bounded support whereas the AR(1) process has normally-distributed
innovations with unbounded support. Floden showed, however, that for other than highly-persistent shocks,
Markov processes produced by quadraturemethodsmatch closely the unconditionalmoments of AR(1) processes
even with few nodes. Appendix B.3.9 shows that increasing the nodes from 5 to 11 yields nearly identical results.

14An alternative calibration strategy could retain the GLB value of β and choose b∗ such that eq. (5) yields
bdss = −0.51. This requires b∗ > bdss and implies rdss > r. The problem with this approach is that ψ no longer
determines the elasticity of rt with respect to NFA. To see this, note that ηr = −ψbdss · eb∗−bdss . Under our
calibration strategy (with b∗ = bdss), ηr is independent of b∗. In contrast, this alternative strategy (with b∗ > bdss)
is isomorphic to the one we proposed but with a higher ψ value. This is problematic since ψ is a key parameter
and adjusting the wedge between b∗ and bdss blurs its interpretation.
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matches the autocorrelation of NFA obtained with the GLB solution. This yields ψ = 0.0469

for both the 2OA and RSS.We do this because, as we show below, the targeted calibrations give

the local methods the best chance to match the GLB solution.

b) NFA decision rule and Net Exports

We compare first the results for two key moments of open-economy models, namely the

first-order autocorrelations of NFA and nx. Assuming that bt+1 follows an AR(1) process with

autocorrelation coefficient ρb, and since nx is a quasi first-difference of NFA (nxt = qbt+1 − bt),

Appendix B.3.2 shows that the first-order autocorrelation of net exports (ρnx) is:15

ρnx =
q2ρb + ρb − q − qρ2b

1 + q2 − 2qρb
. (6)

Hence, if ρb is close to 1, as is typical in incomplete-markets models, small differences in ρb

induce large differences in ρnx. Variances and correlations of b, nx and other variables that

depend on bwould also differ sharply. Thus, small errors in the local solutions for ρb can yield

large errors in ρnx and other key moments. We show below that this is indeed the case.

The 2OA decision rule for NFA can be expressed as:

b̃t+1 = hbb̃t + hzzt +
1

2

(
hbbb̃

2
t + hzzz

2
t

)
+ hbz b̃tzt +

1

2
hσσ, (7)

where b̃t ≡ bt− bdss. The 1OA and RSS decision rules have similar expressions, except that they

only have the first two terms in the right-hand side. For RSS, bdss is replaced with brss.

The key coefficient to analyze is hb, because it is the main determinant of ρb. This is the

case even for the 2OA solutions because in all of our quantitative applications hbb, hzz and hbz

are negligibly small.16 The term hσσ is also important because it isolates the effect of income

variability on mean NFA. It is an estimate of the amount of precautionary savings that the

2OA solution captures. Moreover, since hσσ is the only quantitatively relevant term of those that

distinguish 2OA from 1OA and hb is the same in both, these results also imply that the 2OA

15NFA is an AR(1) process in the 1OA and RSS solutions. In the 2OA solution it includes squared and interac-
tion terms in bt and zt, but these are negligible for second- and higher-order moments in all our experiments.

16Appendix B.3.3 shows that this a robust result. In particular, hbb, hby , and hzz are irrelevant for the autocor-
relation and standard deviation of NFA for a wide range of values of ψ, σ and ρz . Even for meanNFA, those terms
make a difference only if ρz is high and/or ψ is very low.
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and 1OA solutions should be very similar, except in their first moments.

For the RSS method, de Groot (2014) showed that income variability matters also for de-

termining brss because the coefficient of variation of consumption (relative to its risky steady

state) is constant, at a level that depends on β, r and σ.17 Intuitively, this captures precaution-

ary savings because, if income variability rises and the shares of income allocated to savings v.

consumption remain unchanged, the volatility of consumption would rise. But by increasing

NFA relative to endowment income, more disposable income comes from interest income, so

that the coefficient of variation of consumption can remain constant. Since the RSS decision

rule follows from a first-order approximation, however, the ρb value will differ from the 1OA

and 2OA solutions only to the extent that bdss and brss differ, and as we document below, this re-

quires larger differences than those implied by our calibrations. Hence, 1OA, 2OA and partial

RSS solutions are likely to be very similar, except for their first moments.

We show next how ψ and the center of approximation determine hb. Assuming log utility

and i.i.d income for tractabilty, Appendix B.3.2 derives this solution for hb:18

hb(ψ, b
∗) =

R + eb
∗ψ(1− b∗ψ + ψ)−

√
R2 + 2eb∗ψ(b∗ψ + ψ − 1)R + e2b∗ψ (1− b∗ψ + ψ)2

2eb∗ψ
, (8)

where R ≡ 1 + r and b∗ = bdss for 1OA and 2OA or brss for RSS. Since hbb, hzz and hbz are

quantitatively irrelevant, it follows that ρb(ψ, b∗) ≈ hb(ψ, b
∗) for 1OA, 2OA and RSS methods.

Hence, eq. (8) describes how ψ and b∗ determine the autocorrelation of the equilibrium process

of NFA produced by local methods. Moreover, it also implies that the value of hb obtainedwith

1OA and 2OA differs from the RSS solution only to the extent that bdss and brss differ.

Equation (8) demonstrates that setting the value of ψ imposes implicitly the equilibrium

autocorrelation of NFA. In particular, given b∗ and R, choosing a very low ψ implies a ρb close

to 1 (for the RSSmethod, we need to consider also that b∗ = brss and brss is solved together with

the coefficients of the decision rules for b̃t+1 and c̃t, which also depend on ψ). In fact, as the

numerical results reported below show, ρb falls (rises) with ψ for relatively low (high) ψ.

17Corollary 5 in de Groot (2014) shows that var(c)
(crss)2 = 2

σ(1+σ)
1−βR
βR .

18This result applies for both full and partial RSS.
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Equation (8) also illustrates the non-stationarity of the local solutions if a stationarity-inducing

transformation is not used. If ψ = 0, the solution of ρb(ψ, b∗) has two roots, R or 1, so NFA is

non-stationary. In contrast (and assuming b∗ = 0 for simplicity), if ψ > 0 the smaller of the two

roots that solve ρb(ψ, 0) is less than unitary, and thus yields a stable solution.19

We study numerically how variations in ψ and b∗ alter ρb(ψ, b∗). To this end, we use R =

1.059 from the baseline calibration and solve for ρb(ψ, b∗) for a set of values of ψ and b∗. Figure

1 plots ρb(ψ, b∗) for ψ in the interval [0, 0.9] and three values of b∗: 0, -0.41 (brss in the baseline

calibration) and -0.51 (bdss in the baseline calibration).

Figure 1 yields a key finding: ρb is nearly identical across 2OA and RSS for any 0 ≤ ψ ≤ 0.1,

which is an interval that includes the baseline and targeted calibration values and also all the

values of ηr implied by the ψ values used in the literature reviewed inAppendix A.20 Hence, for

the values ofψ used in the literature, the choice of approximating around bdss v. brss and solving

with 1OA, 2OAor partial RSS does notmake a difference! The two steady-state estimateswould

have to differ much more than what the baseline calibration and small variations around it

would predict. We start to notice a non-negligible difference only if bdss is more than forty

percentage points of GDP below brss. Moreover, since in the baseline and targeted calibrations

it is also the case that the quadratic and interaction terms of the 2OAdecision rule of b are nearly

zero, it follows that we can expect the 2OA and RSS solutions to produce similar second and

higher-order moments for all endogenous variables, as the results reported below confirm.21

The above findings indicate that the implications of ρb for ρnx conjectured in condition (6)

by assuming that NFA follows an AR(1) process apply to the equilibrium processes produced

by the local methods. The DEIR function with very small ψ imposes values of ρb near 1, and

small differences between them and the GLB solutions result in large differences in ρnx, as

we document next. In contrast, in the GLB solutions, ρb and ρnx are moments implied by the

19Schmitt-Grohé andUribe (2003) obtained similar results by deriving the analytic solution of theNFAdecision
rule for an endowment economy assuming ED preferences with log utility.

20The highest ψ in the literature is 2.8 in Garcia-Cicco et al. (2010), and with their value of bdss = −0.007 yields
ηr = −0.0196. For 0 ≤ ψ ≤ 0.1 with our bdss = −0.51, we obtain an interval of elasticities 0 ≥ ηr ≥ −0.051. In
our baseline (targeted) calibration, ψ = 0.001 (0.0469) implies ηr = −0.0051 (−0.0239). Figure 1 also shows that
ρb becomes increasing in ψ for ψ ≥ 0.5, but these ψ values imply ηr values much larger than in the literature.

21The analytic solution for hb(ψ, b∗) is strictly valid only for log utility and i.i.d. shocks, but these implications
of the analysis still hold quantitatively in the solutions with AR(1) shocks.
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endogenous limiting distribution of NFA (λ(b, z)), the NFA decision rule (b′(b, z)) and the def-

inition of nx.

Table 2 compares values of ρb and ρnx produced by GLB and local solutions as ρz varies

from 0 to 0.8.22 Panel i) shows GLB results for the baseline calibration. Panel ii) shows 2OA

and partial RSS results for their baseline calibration with ψ = 0.001. Panel iii) shows local

solutions for targeted calibrations with ψ set to match ρb = 0.977 (the value in the GLB solution

shown in Table 3) which implied ψ = 0.0469 for the 2OA and partial RSS solutions. Panel iv)

shows a scenario in which, for each ρb obtained with the GLB solution, we re-calibrate ψ in the

local solutions so as to match that value of ρb (the ψ values are also show in this panel).

The first result evident in Table 2 is that 2OA and partial RSS results are always very simi-

lar, because the gap between bdss and brss and the quadratic and interaction terms in the 2OA

decision rules are too small to yield larger differences in the values of ρb and ρnx that the two

methods produce, for all combinations of ρz and ψ considered. Recall also that for the same

reasons 1OA and 2OA solutions are nearly the same.

Panel i) shows that as ρz rises from 0 to 0.8, the GLB solution indicates that ρb rises from

0.82 to 0.99 and ρnx rises from almost -0.1 to 0.77. Thus, as eq. (6) predicts, small variations

in ρb near 1 cause large changes in ρnx. In contrast, Panel ii) shows that with ψ = 0.001, the

local solutions yield ρb values always above 0.99, which in turn yield ρnx values between 0.24

to 0.95. The differences relative to the GLB solutions are large. For ρz = 0, GLB yields ρb and

ρnx of 0.83 and -0.1 respectively, while 2OA and RSS yield ρb = 0.99 and ρnx of 0.27 and 0.24

respectively. For the calibrated value of ρz = 0.597, GLB yields ρb = 0.977 and ρnx = 0.54, while

2OA and RSS yield ρb = 0.999 and ρnx = 0.82 (see Table 3). Thus, these results confirm that

local methods need very accurate approximations of ρb to approximate ρnx closely.

Panel iii) shows that local solutions perform better with the targeted calibrations (ψ =

0.0469), which match the ρb of the GLB solution for the calibrated ρz (0.597) by construction.

For lower ρz, the local solutions overestimate slightly ρb and ρnx relative to the GLB solutions.

Panel iv) shows that, if we re-calibrate ψ as we change ρz so that the local solutionsmatch the ρb

22Since 1OA and 2OA solutions are nearly identical, we omit the former from the Table.
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of the GLB solutions in each column of the Table, the local methods do a good job at matching

the global solutions. This is true by construction for ρb, but the values of ρnx are also close.

In these results, however, ψ has to rise as ρz falls. The required values of ψ range from 0.027

to 0.185, significantly larger than the ideal value of 0.001 that keeps the DEIR inessential, and

effectively they make deviations of NFA from its steady state very costly. Moreover, knowing

the value of ρb needed as calibration target to set ψ requires solving the model globally first.

c) Long-run moments & impulse response functions

Table 3 shows long-runmoments.23 Local solutions under the baseline calibration do poorly

at matching the GLB moments. GLB yields E(b/y) of -41 percent, nearly 10 percentage points

above the -51 percent at the deterministic steady state (which is the 1OA average because of

certainty equivalence). 2OA and partial RSS yield E(b/y) of -28.2 and -45.1 percent, respec-

tively. The former (latter) overestimates (underestimates) precautionary savings by about 13

(4) percentage points. Full RSS yields much lower E(b/y) of nearly -1121 percent of GDP, be-

cause it has the same βR < 1 of the GLB method but lacks the debt limit ϕ that allows the GLB

solution to match E(b/y) and the variability of consumption observed in the data.24

Since NFA is a near-unit-root process, the higher ρb of the three baseline perturbation so-

lutions implies that they also overestimate sharply the variability and persistence of c, nx and

b and underestimate their GDP correlations.25 Notably, given the literature’s emphasis on ex-

plaining consumption variability in emerging markets, all the baseline local solutions overes-

timate significantly consumption variability relative to GDP.

The local methods again perform better at approximating the global results using targeted

calibrations. Themajor exception is that they doworse at capturing precautionary savings, with

RSS and 2OA solutions yielding E(b/y) of nearly -0.51, very close to bdss. This occurs because

231OA solutions are not shown because they are nearly the same as the 2OA solutions, except for the averages.
24Full RSS is closer to (but still below) the mean NFA of the GLB solution without ad-hoc debt limit (i.e.,

with ϕ = NDL), which yields E(b/y) = −1080 percent. These solutions, however, produce high variability and
persistence and lowGDP correlations in all the variables. We also considered re-calibrating β in Full RSS tomatch
E(b/y) of the GLB solution. Since it requires a slightly higher β, ρb moves even closer to a unit root and hence
variability and persistence statistics are even higher and GDP correlations are near zero (see Appendix B.3.6).

25Since ρb ≈ hb and higher-order terms other than the variance term are negligible, the variability of b rises
with ρb because σ(b) = hzσ(z)/

√
1− h2b and the correlationwith GDP falls because ρb,z = [ρz/(1−hbρz)]

√
1− h2b .
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(as explained below) higher ψ is akin to a higher cost of moving b away from its steady state.26

The local solutions with targeted calibrations also continue to overestimate the autocorrelation

of consumption, but for the rest of themoments they approximate better the GLB solution than

the baseline calibrations. As noted before, however, they require the GLB solution to determine

the target values of ψ and those values are much larger than 0.001.

2OA and partial RSS yield similar results for nearly all moments under either baseline or

targeted calibrations. The only exception isE(b/y) under the baseline calibration, which is -0.28

with 2OA v. -0.45 with RSS, but under the targeted calibration even this moment is nearly the

same. This is further evidence indicating that the different centers of approximation in these

solutions and the extra terms in the 2OA decision rules have negligible quantitative effects.

Figure 2 provides further evidence of the inaccuracy of the local methods at accounting

for precautionary savings by showing how E(b/y) changes with σz. Recall that for 1OA solu-

tions, certainty equivalence implies that E(b/y) = bdss = −0.51 for all values of σz and ψ, so

there are no precautionary savings. The plots yield a key result: local methods cannot approx-

imate accurately the values ofE(b/y) produced by the GLB solutions in general, and hence they

yield incorrect measures of precautionary savings. The continuous, blue curves for the GLB

solutions show that the model embodies a strong precautionary savings motive. Increasing σz

from 1 to 8 percent increases E(b/y) from -0.5 to near zero. In contrast, the local solutions with

the baseline calibrations (Panel (a)) show that 2OA overestimates the increase in precautionary

savings significantly, with a gap that widens as σz rises, while partial RSS mostly underesti-

mates E(b/y), although with a smaller error in absolute value than 2OA. Local methods with

targeted calibrations do evenworse than the baseline calibrations (see Panel (b)). E(b/y) barely

rises above bdss as σz rises.

Since the quadratic and interaction terms of 2OA solutions are quantitatively irrelevant,

the above result suggests that, except when ψ is very low, the 1OA, 2OA and RSS solutions

are nearly the same in all dimensions, even long-run averages. In addition, the 2OA and RSS

26We could target ψ to match E(b/y) in the GLB solution (-0.41) instead, but then the local methods do poorly
at matching the GLB value of ρnx. Using this approach, ρnx = 0.74 and 0.88 for the 2OA and RSS solutions
respectively, whereas ρnx = 0.536 in the global solution.
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solutions also become nearly identical, since brss becomes very similar to bdss. Thus, while cal-

ibrating ψ to match ρb in the GLB solution improves the accuracy of second- and higher-order

moments of the local solutions, it also removes precautionary savings almost entirely and ren-

ders 2OA and RSS solutions approximately consistent with certainty equivalence. Appendix

B.3.3 demonstrates this using the analytic decision rules for log utility and i.i.d. shocks.

The intuition for why E(b/y) stays close to bdss in the targeted calibrations follows from

the argument by Schmitt-Grohé and Uribe (2003) showing that the DEIR setup is similar to a

setup without DEIR but where agents incur a quadratic cost (ψ̃/2)(bt+1 − bdss)2 for deviating

from bdss. The log-linearized Euler equations of the two formulations are equivalent if we set

ψ̃ = ψ/(1 + r). Hence, a model with DEIR can be re-interpreted as a model in which agents

are penalized for deviating from bdss, and the cost increases with ψ.27 Moreover, the cost has

variable and fixed components, (ψ̃/2)(bt+1 − 2bdss)bt+1 and (ψ̃/2)bdss, respectively. If the fixed

cost is larger than the benefit derived from precautionary savings, it would be suboptimal to let

E(b/y)deviate from bdss. Thus, local solutions using targeted calibrations have the shortcoming

that it takes only a modest increase in ψ to make precautionary savings nearly vanish and

render 1OA, 2OA and RSS solutions nearly identical.

The execution times of the different algorithms shown in Table 3 should be compared with

caution.28 Full RSS runs in 0.3 seconds because, given the simplicity of the endowment model,

we could split the solution into a step that constructs a non-linear system of equations using

Mathematica and a step that solves it using Matlab. Partial RSS takes longer (5.6 seconds)

because it does both steps within Matlab using the toolkit developed by Schmitt-Grohé and

Uribe (2004). The Dynare 2OA solutions run in 0.7 seconds and the FiPIt GLB solution in 2.5

seconds. Hence, the perturbation methods are significantly faster. The GLB solution, however,

is much more accurate, as indicated by its much smaller maximum and mean Euler equation

errors. Moreover, NFA local decision rules show average (maximum) differences relative to

the GLB solution ranging from 7.5 to 22.5 (12.3 to 47.1) percent. Relaxing the FiPIt convergence

criterion to yield Euler errors of similar magnitude as the local solutions lowers its execution

27With DEIR, for bt+1 < bdss (bt+1 > bdss) agents pay more (get less) for borrowing (saving) more.
28The footnote to Table 3 provides details on hardware and software.

19



time to 1.7 seconds, but it yields moments that are not invariant to stricter convergence criteria.

Figure 3 compares IRFs for a negative, one-standard-deviation income shock. Consumption

and output are shown in percent deviations from long-run means, while b/y and nx/y are in

differences relative to long-run means (since these are GDP ratios already in percent). The

IRFs for 1OA, 2OA and RSS are nearly identical, in line with the results that the hb coefficients

of NFA decision rules are similar and the quadratic and interaction terms of 2OA solutions

are negligible. On the other hand, local IRFs with the baseline calibration differ sharply from

the GLB ones. GLB predicts a smaller decline in b/y (i.e., less borrowing) and much faster

mean reversion. Accordingly, consumption falls nearly twice as much on impact in the GLB

solution, and continues to decline before recovering, displaying also faster mean reversion.

These differences imply smaller trade deficits on impact and in the first periods of transition

and a faster recovery into trade surpluses with the GLB solution. Local solutions with targeted

calibrations yield IRFs that approximate better the GLB solutions, but still show discrepancies.

In particular, they overestimate the fall in consumption on impact.

We also compared GLB and local solutions in the frequency domain using nonparametric

periodograms of simulated data (see Appendix B.3.4). The results are very different. Local

methods under the baseline calibration overestimate the contribution of low frequency move-

ments to the variance of b, c and nx, in line with their slower mean-reversion and higher ρb

relative to the GLB solution. Moreover, while the contribution of fluctuations at the business

cycle frequency or higher for the variability of b is slightly higher with the local solutions than

in the GLB solution, for nx the local methods overestimate it and for c they underestimate it.

For targeted calibrations, GLB and local periodograms of b are nearly the same almost by con-

struction, because the targeted calibrations have the same ρb of the GLB solution. However, the

local solutions still underestimate significantly the contribution of consumption fluctuations at

business cycle and higher frequencies to overall consumption variance.

d) Interest-rate shocks

We examine next the effects of adding interest-rate shocks. This facilitates comparing the

endowment model results with those of the RBC and SS models that also have interest-rate

shocks. This is also important because, as Coeurdacier et al. (2011) and deGroot (2014) showed,
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RSS yields much higher precautionary savings with these shocks. The gross real interest rate

is Rt = ez
R
t R̄, where zRt is a shock with exponential support and R̄ is the mean interest rate.

The endowment and interest rate shocks follow a diagonal VAR representation:

 zt

zRt

 =

 ρz 0

0 ρzR

 ·
 zt−1

zRt−1

+

 εzt

εRt

 , Σ =

 σ2
εz σεz ,εR

σεz ,εR σ2
εR

 , (9)

where Σ is the variance-covariance matrix of the innovations.

The value of ρz is 0.597, as in the original calibration. To minimize the size of the state

space in the GLB solution, we use a bi-variate, two-point Markov chain defined by the Sim-

ple Persistence Rule, which imposes the same autocorrelation on both shocks (see Appendix

B.3.5).29 Hence, ρzR = 0.597. The value of σ2
εz is set at 0.00069, so that the standard deviation

of income is σz =
√
σ2
εz/(1− ρ2z) = 0.0327, as in the original calibration. For the terms that

involve the interest-rate process, we solve the model with values of σ2
εR and σεz ,εR such that σzR

takes values ranging from 0 to 2.5 percent and the correlation between income and the interest

rate is ρz,zR = −0.669, which matches the correlation of the interest rate with TFP in Mendoza

(2010), and is also the value used to calibrate the RBC and SS models. The values of σεz ,εR

and σ2
εR change as we change σzR , and they are given by: σεz ,εR = (1 − ρzρzR)ρz,zRσzσzR and

σ2
εR = σ2

zR/(1− ρ
2
zR).

A well-defined limiting distribution of NFA now requires βR̄ < 1, otherwise βtΠt
j=1Rj di-

verges to infinity (see Chamberlain and Wilson, 2000). In addition, there are long histories of

realizations with Rt lower (higher) than R̄, which imply much weaker (stronger) precaution-

ary savings incentives than with a constant interest rate. For example, histories with βRt > 1

produce sequences where bt+1 can grow very large, since there is no pro-borrowing effect due

to βRt < 1 offsetting the precautionary savings incentive.30 At some point, each of these his-

tories shifts to histories with sufficiently low Rt to induce NFA mean-reversion. Note also that

the NDL is now computed with the highest realization of Rt − 1, so it is tighter than when

29This is reasonable because in the data reported in Mendoza (2010) ρz = 0.537 and ρzR = 0.572.
30Reducing R̄ keeping σzR constant accentuates these effects, because histories with even larger gaps between

β and Rt are possible and with higher probability.
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computed with R̄ − 1. These effects are at work only in the GLB solution, because they result

from expectations of histories of future shocks that take the economy far from E(b/y) and bdss.

The DEIR function now takes this form:

1 + rt = ez
R
t R̄ + ψ

[
eb
dss−bt+1 − 1

]
. (10)

Table 4 shows key moments produced by the different solution methods for σzR in the

[0,0.025] interval. The baseline and targeted calibrations are as in Table 1. For the GLB so-

lution, we show results with both the calibrated ad-hoc debt limit (ϕ = −0.51) and the NDL,

with the aim of comparing the roles of debt limits and interest-rate shocks in inducing higher

mean NFA, and with the similar effect of interest-rate shocks in local solutions.

Considering the baseline calibration for partial RSS and 2OA, we find that the local solu-

tions sharply overestimate the increase in E(b/y) in response to higher σzR relative to the GLB

solution. E(b/y) increases by 140 (109) percentage points for the partial RSS (2OA) solution

and turns from negative to positive, while in GLB it increases by about 3 percentage points. In

addition, the ability of partial RSS v. 2OA solutions to generate precautionary savings changes

as σzR rises. With low or no interest-rate variability, 2OA generates significantly more precau-

tionary savings (E(b/y) = −0.285 v. −0.451), but for interest-rate variability of 2.5 percent the

opposite is true (E(b/y) = 0.806 v. 0.942). Larger interest-rate shocks also alter the result that

the baseline RSS and 2OA solutions have similar second- and higher-order moments.

The above findings suggest that interest-rate shocks in the partial RSS solutions with base-

line ψ could be helpful for matching mean NFA, playing the role of ϕ in the GLB calibration.

This strategy fails, however, because consumption fluctuates too much in all the scenarios for

partial RSS and 2OA. All the local solutions shown in Table 4 overestimate the variability of

consumption in the GLB solutions by ratios ranging from 1.04 (for partial RSS with targeted ψ

and σzR = 0.5%) to 4.01 (for partial RSS with baseline ψ and σzR = 2.5%).

Comparing GLB with local solutions for targeted calibrations, the adjustment-cost-like ef-

fect of higher ψ keeping NFA close to bdss still dominates. Local solutions yield small increases

in E(b/y) (with σzR < 1.5% there is almost no change) and second- and higher-order moments

for RSS and 2OA are very similar. Hence, the result that higher ψ removes precautionary sav-
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ings and yields very similar 1OA, 2OA and RSS results is robust to adding interest-rate shocks.

Table 4 also shows that, with interest-rate shocks, full and partial (baseline) RSS do not yield

similar second- and higher-order moments. Full RSS generates higher variability in consump-

tion and NFA, higher autocorrelations in nx, and very low E(b/y). In fact, full RSS is closer

to the GLB solution that replaces the ad-hoc debt limit with the NDL than to the baseline or

targeted partial RSS solutions. Full RSS and the GLB solution with the NDL have, however,

the major shortcoming that they produce unreasonable NFA positions of -3 to -11 times GDP.

Moreover, for R higher than the calibrated 1.059 and such that βR is almost 1, full RSS yields

much lower E(b/y) than GLB solutions with either ad-hoc or natural debt limits. Conversely,

for low R, the RSS solution violates the NDL very often (e.g., for R̄ = 1.01, NDL is −68.44

while full RSS yields E(b/y) = −69.62). Hence, although at the calibrated R full RSS gets

closer to the mean NFA of the GLB solution with NDL, full RSS performs poorly in general at

approximating E(b/y), whether we use NDL or ϕ as debt limit in the GLB solution.

e) Endogenous discounting instead of DEIR

As noted in the Introduction, most local solutions in the literature induce stationarity us-

ing DEIR, but some do use ED preferences. We report next results showing that, while 2OA

decision rules using ED differ from those using DEIR, 2OA solutions still do a poor job at

approximating E(b/y) and precautionary savings of the GLB solutions. ED yields good ap-

proximations only when precautionary savings are negligible in the GLB solution.

Appendix B.3.8 compares analytical DEIR and ED local decision rules assuming log utility

and i.i.d. shocks for an ED setup in which the discount factor depends on aggregate consump-

tion (i.e., this dependency is disregarded by private agents). In linewith the numerical findings

in Schmitt-Grohé and Uribe (2003), 1OA solutions using DEIR or ED are equivalent: A nonlin-

earmapping determines the elasticity of the discount factor with respect to consumption (ψED)

for a given ψ such that the decision rules are the same. 2OA solutions, however, are not equiv-

alent. Varying ψ while adjusting ψED so that the hb NFA decision-rule coefficients of DEIR and

ED are equal, the hbb coefficient for DEIR is increasing and concave in ψ while that for ED is

slightly and nearly-linearly decreasing. The hσσ coefficient of the ED case is decreasing and

convex in ψ but in the DEIR case it is nearly independent of ψ. Moreover, hσσ is very sensitive
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to small changes in r in the ED case but nearly invariant in the DEIR case. These differences

are due to a critical difference between the two setups: When ct rises as the economy borrows

(reduces bt+1), rt rises in DEIR but βt falls in ED. As a result, the marginal benefit of savings

βt(1 + rt)u
′(ct+1) rises in DEIR but falls in ED. The fall in the marginal benefit of savings with

ED also weakens the precautionary savings incentive in the GLB solution relative to the GLB

solution with standard preferences and βR < 1, as Durdu et al. (2009) showed.

Appendix B.3.8 also compares quantitative results for ED solutions using 2OA and GLB

methods. We consider twoGLB solutions, onewith ED preferences and one that is the baseline

case of Table 3 (which uses preferences with βR < 1). These are compared with 2OA solutions

inwhichψED is calibrated tomatch bdss in each of theGLB solutions. Case I for theGLB solution

of Table 3 and Case II for the GLB solution with ED. The GLB solutions use the calibration

proposed by Durdu et al. (2009) for the same two specifications of preferences. As explained

in the Appendix, this calibration makes the two GLB solutions yield similar E(b/y). Hence,

when calibrating ψED for the comparable 2OA solutions we found that they require similar

ψED values (0.109 in Case I and 0.11 in Case II). The results show that, for the calibrated σz,

precautionary savings (i.e., E(b/y) − bdss) are negligible in the GLB-ED solution (Case I), and

thus the comparable 2OA ED solution approximates it well. As σz rises and self-insurance

incentives strengthen, however, the 2OA ED solution underestimates precautionary savings

and by an increasing margin as σz rises. Case II has stronger precautionary savings incentives

in the GLB solution, because it uses standard preferences with βR < 1 instead of ED. Hence,

the 2OA ED solution underestimates precautionary savings even more than in Case I and the

gap again widens as σz rises. Moreover, the higher ψED of Case II, albeit slightly above that of

Case I, has effects similar to those of higher ψ in DEIR solutions in that it makes deviations of

NFA relative to bdss costlier and keeps NFA close to bdss.

We also compared the 2OA ED solutions against the baseline and targeted 2OA DEIR so-

lutions. As noted above, at the calibrated σz, the ED solutions in Cases I and II yield similar

E(b/y) as their comparable GLB solutions, and as we documented earlier the baseline DEIR

overestimates E(b/y) while the targeted DEIR underestimates it. The ED solutions appear to

approximate better precautionary savings, but this is only because at the calibrated σz precau-
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tionary savings are negligible in the GLB ED solution. For σz high enough to make precaution-

ary savings relevant, the 2OA ED solutions underestimate the E(b/y) of the GLB solutions.

f) Exact-solution model

So far we have compared local and GLB solutions that approximate an unknown “exact

solution.” Under two special assumptions, however, the model can be solved in closed form

so as to allow us to compare those solutions with the “exact” solution. The two assumptions

are: i) income is a multiplicative return on a risky asset with a log-normal i.i.d process; and ii)

consumption is chosen before the return is observed (see Appendix B.3.11 for details).31 The

analytic solutions are ct = λ(σε)bt and bt+1 = (1− λ(σε))Rtbt, where the savings rate is:

1− λ(σε) = β1/σE(R)
1−σ
σ exp

(
−(1− σ)

σ2
ε

2

)
. (11)

The precautionary savings effect is evident in that, if σ > 1, a mean-preserving spread of theRt

process (i.e., higher σ2
ε keeping E(R) constant) increases the savings rate. NFA (in logs) follow

a random walk with drift (ln(bt+1) = ln(1 − λ(σε)) + ln(bt) + ln(Rt)), and hence consumption

does as well, but consumption growth is a log-i.i.d. process: ct+1/ct = (1− λ(σε))Rt.

Appendix B.3.11 implements the GLB solution and local solutions up to fourth order (4OA)

plus RSS by expressing the model in ratios of bt. We keep β = 0.94 (the same as in the baseline

calibration), set E(R) = 1.7, in line with the assumption that b is a risky asset that provides

all of the economy’s income, and vary σε from 0 to 0.45 keeping E(R) unchanged. Higher σε

yields unfeasible equilibria with λ(σε) < 0. The GLB and exact solutions are virtually identical

for all values of σε and 4OA is also very similar. RSS and 2OA are accurate only for σε < 0.3

otherwise they understimate the savings rate by up to 15 and 5 percent, respectively. 1OA starts

to do poorly with σε > 0.08 and underestimates the savings rate by up to 40 percent. Moreover,

1OA, 2OA and RSS yield incorrect results indicating feasible saving rates when the true solu-

tion is unfeasible (for σε > 0.45). Note that, since the theoretical model itself is non-stationary

in this case, ρb and the center of approximation of NFA do not contribute to the inaccuraccies

of the local solutions. Their cause is only the approximation error of RSS, 2OA and 1OA when

31The resource constraint becomes bt+1 = Rt+1 (bt − ct), where log (Rt) = µ+ σεεt+1, εt+1 ∼ N (0, 1), and the
Euler equation for assets is c−σt = βEt

(
c−σt+1Rt+1

)
. Note that b is now a risky asset with return R.
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expanding the Euler equation, which is negligiblewith 4OA.Hence, a higher-order approxima-

tion improves the accuracy of the local methods in this case, but for the other models we solved

it does not because the flaws in pinning down ρb and the center of approximation remain.

3. Sudden Stops Model

This section compares global and local solutions of the SSmodel with an occasionally bind-

ing collateral constraint proposed by Mendoza (2010). Without the constraint, the model re-

duces to a standard small-open-economy RBC model. The solutions for this RBC model are

compared in Appendix C. Local solutions show similar flaws with regard to NFA, consump-

tion and the external accounts as the endowment model, but they are accurate for supply-side

variables because there is no wealth effect on labor supply and the equity premium is small, as

is typical of RBC models. As Mendoza (1991) noted, these features render the capital decision

rule similar to that implied by risk-neutral arbitrage of returns on capital and NFA, which im-

plies that Fisherian separation of investment from consumption and savings decisions nearly

holds. Hence, the coefficient of the capital decision rules on lagged NFA in the local solutions

and the elasticities of the decision rule k′(b, k, ε) with respect to b in the GLB solution are neg-

ligible except when the debt limit binds (see Appendix C.3.1).

3.1. Model structure

As in Mendoza (2010), the model’s competitive equilibrium is represented as the solution

to a representative firm-household problem. Gross output is produced with a Cobb-Douglas

technology using capital, kt, labor, Lt, and imported inputs, υt:

eε
A
t F (kt, Lt, υt) = eε

A
t kγt L

α
t υ

η
t , 0 ≤ α, γ, η ≤ 1, α + γ + η = 1. (12)

Gross output is a tradable good sold at a world-determined price which is the numeraire and

set equal to 1. The relative price of imported inputs is also determined in world markets and is

given by pt = peε
P
t , where p is the mean price and εPt is a terms-of-trade shock. There are also

TFP shocks, εAt , and interest-rate shocks εRt . A standard working capital constraint requires

a fraction φ of the cost of Lt and υt to be paid in advance of sales. Working capital loans are

obtained from foreign lenders at the beginning of each period and repaid at the end, so that the

financing cost of inputs is the net interest rate Rt − 1. Physical capital is costly to adjust, with
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adjustment costs per unit of net investment (kt+1 − kt) given by Ψ(kt+1−kt
kt

) = a
2

(
kt+1−kt

kt

)
, with

a ≥ 0. This functional form satisfies Hayashi’s conditions so that the average and marginal

Tobin Q’s are equal at equilibrium.

The representative firm-household chooses [ct, Lt, it, υt, bt+1, kt+1]
∞
t=0 so as to maximize:

E0


∞∑
t=0

βt

(
ct − Lωt

ω

)1−σ
1− σ

 , (13)

subject to

ct(1 + τ) + it = eε
A
t F (kt, Lt, υt)− ptυt − φ(Rt − 1)(wtLt + ptυt)− qbtbt+1 + bt, (14)

qbtbt+1 − φRt(wtLt + ptυt) ≥ −κqtkt+1. (15)

The utility function is of the Greenwood-Hercowitz-Huffman (GHH) form, which removes the

wealth effect on labor supply. The market prices of labor and capital, which are taken as given

by the agent, are denoted wt and qt. As in the endowment model, bt is a non-state-contingent

discount bond traded in world markets at price qbt . The left-hand-side of the resource con-

straint (14) is the sum of consumption, inclusive of an ad-valorem tax τ used to calibrate the

ratio of government expenditures to GDP, plus gross investment, it, where it = δkt + (kt+1 −

kt)
[
1 + Ψ

(
kt+1−kt

kt

)]
and δ denotes the depreciation rate. The right-hand-side equals total sup-

ply, which consists of GDP (yt ≡ eε
A
t F (kt, L − t, υt) − ptυt) net of foreign interest payments on

working capital loans (φ(Rt−1)(wtLt+ptυt)) minus (plus) net resources lent (borrowed) abroad

(qtbt+1−bt). The net exports is nxt = qtbt+1−bt+φ(Rt−1)(wtLt+ptυt) = yt−ct(1+τ)− it. Con-

dition (15) is a Fisherian collateral constraint by which debt and working capital credit cannot

exceed a fraction κ of the market value of capital.

The competitive equilibrium is defined by sequences of allocations [ct, Lt, kt+1, bt+1, υt, it]
∞
0

andprices [wt, qt]
∞
0 such that (a) the representative firm-household solves its optimization prob-

lem given [wt, qt]
∞
0 and initial conditions (k0, b0), and (b) [wt, qt]

∞
0 satisfy their corresponding

market equilibrium conditions.
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3.2. Solution Methods

Local and GLB solutions of this model require considering the additional endogenous state

variable (kt) and handling the occasionally binding constraint. For the global solution, we use

FiPIt with grids of k and b with 30 and 80 nodes, respectively. Mendoza and Villalvazo (2020)

provide full details, including Matlab codes and a Users Guide.

TheDynareOBC solution of the SSmodel is similar to the one described inAppendix B.3.10.

This method treats the occasionally biding constraint as a source of endogenous news about

the future along perfect-foresight paths. If the constraint is (is not) binding at the deterministic

steady state, it uses news shocks to solve for unconstrained (constrained) periods along those

paths by solving a mixed-integer linear programming problem. For instance, if the constraint

does not bind at steady state, when agents anticipate that the constraint will bind at some date

t+ j conditional on the date-t state variables and the deterministic evolution of the exogenous

shocks, this provides “news” that bt+1 will follow a path higher than otherwise. This approach

is akin to assuming that there is no constraint, but whenever agents are on a path that would

lead them to borrow above what the constraint allows, a series of news shocks hit that makes

them borrow only what is allowed and moderate their borrowing before that happens.32

Themain output ofDynareOBC is a time-series simulation constructed by stitching together

the date-t values of perfect-foresight paths conditional on (kt, bt) and the date-t realizations of

the exogenous shocks. Each path is obtainedusing an extendedpath algorithm that traces equi-

libriumdynamics up to T periods ahead of t, with the shocks following their deterministic VAR

dynamics. The extended path can be obtained using first- or higher-order approximations, but

we report here results based on the former.33 The path computed for a given starting date t

determines the values of (kt+1, bt+1) and these together with the realizations of the shocks at t

and the optimality conditions determine the date-t values of all the endogenous variables. The

32Themodelwith the constraint is similar to the samemodelwithout the constraint butwith sequences of news
shocks chosen to yield the same equilibrium as the model with the constraint. This equivalence holds exactly if
the model is linear and shock variances are zero, such that any shocks that occur are truly “unexpected.”

33Holden (2016) showed that a second-order approximation integrating over future uncertainty can approxi-
mate precautionary savings in models with simple constraints, but this method is significantly slower and for the
SSmodel produced results that deviate sharply from the GLB and first-order DynareOBC solutions. In particular,
investment and net exports had negative serial autocorrelation and NFA had near-zero autocorrelation.
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rest of the path is discarded and the process is repeated at t + 1 to generate the values of the

time-series simulation for that period. The efficiency of this method hinges on three factors:

(a) T needs to be large enough so that for t > T no further news shocks are needed (if the

constraint does not bind at the deterministic steady state T needs to be large enough so that

the constraint never binds again, and if it binds at steady state T needs to be large enough so

that it always binds); (b) for each path requiring news shocks, the algorithm needs to find the

sequence of news shocks that supports the correct equilibrium path; and (c) the time-series

simulation needs to be long enough for long-runmoments of the endogenous variables to con-

verge. The algorithm is less efficient in models with persistent dynamics, which require large

T and a long simulation length, and models in which the news shocks are needed frequently.

Figure 4 illustrates the DynareOBC method using the endowment model, for which bt+1 ≥

ϕ is an occasionally binding constraint, including the DEIR function so that ϕ does not bind

at the deterministic steady state (see Appendix B.3.10 for details). Panels (a) and (b) show the

solutions for ct and bt+1 for t=90 to 250 (black, solid curves) and eleven of the perfect-foresight

paths (red, dashed curves) that generated them,with the corresponding date-t solutionmarked

with a red circle. In panels (b) and (d), the shaded area corresponds to bt+1 < ϕ. The constraint

never binds in seven of the perfect-foresight paths shown in Panel (b) and in four it does.

Panels (c) and (d) isolate periods t=140 to 180 and show the extended path that generates

the results for t=141 (red, dashed curve). DynareOBC computes a sequence of news shocks

that sustains this path as an equilibrium. The comparable path of bt+1 in the solution without

credit constraint is also provided in Panel (d) (black, dotted curve). The constraint first becomes

binding along the perfect-foresight path at t=144. Relative to the model without constraint,

agents choose higher bt+1 (less debt) earlier, in anticipation of the constraint becoming binding

with perfect foresight (i.e., the red, dashed curve is above the black, dashed curve at t=142,143).

Since income rises gradually back to its deterministic steady state, the constraint continues to

bind for several periods, until income is high enough for bt+1 to also start rising back towards

its steady state (after t=170).

It is critical to note that first-order DynareOBC ignores the risk of hitting the constraint and

moving across states where it binds or not. At each date t, it does not consider the histories of
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future shocks and associated allocations and prices that can occur, it only considers the perfect-

foresight path conditional on date t and the date-t shock. If the constraint binds (does not bind)

at the deterministic steady state, agents anticipate deterministically hitting (escaping) the con-

straint at some date t + j if unconstrained (constrained) at t and adjust their decisions before

t+j accordingly. Hence, wealth and precautionary-saving effects of the constraint are ignored,

and forward-looking objects like asset prices and excess returns also abstract from them. This

is central to SSmodels, because a financial crisis with a deep recession and collapsing prices oc-

curs when the constraint binds, and the risk of these events strengthens precautionary savings

and alters asset prices even in “good times” (see Mendoza, 2010; Durdu et al., 2009).

3.3. Calibration

Table 5 shows the calibration parameters, most of which were taken from Mendoza (2010)

(see Appendix C.2 for details). The main difference is that ϕ and β in the GLB solution are set

following a strategy similar to that used in the endowment model, by targeting them so that

the RBC version of the model approximates the mean NFA-GDP ratio and the variability of

consumption in Mexican data.

The model’s three shocks follow the same diagonal VAR from Mendoza (2010):
εAt

εRt

εpt

 =


ρA 0 0

0 ρR 0

0 0 ρp

 ·

εAt−1

εRt−1

εpt−1

+


uAt

uRt

upt

 , Σ =


σ2
uA σuA,uR 0

σuA,uR σ2
uR 0

0 0 σ2
up

 . (16)

In this VAR, the co-movement between TFP and interest-rate shocks is driven only by the

covariance of their innovations and price shocks are independent of the other two shocks,

following Mendoza’s empirical evidence. The elements of the autocorrelation and variance-

covariance matrices also take the same values as in Mendoza (2010). The discrete approxima-

tion to the VAR in the GLB solution is constructed using the Simple Persistence Rule, which

requires ρA = ρR (see Appendix C.2 for details). In the local solutions, we impose the same

autocorrelation and innovation matrices on the VAR specification of the shocks.

It is important to note that when DynareOBC is used assuming that the constraint binds at

the deterministic steady state, the steady-state equilibrium is well-defined without the DEIR
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function. The bonds Euler equation becomes 1 = βR+µss/u
′(css), where µ is the multiplier on

the borrowing constraint. Since βR < 1 ⇐⇒ µss > 0, having the constraint bind at steady state

requires βR < 1 and viceversa. The Euler equation is solved jointly with the other steady-state

equilibrium conditions to fully solve the stationary equilibrium.

We study DynareOBC solutions with µss > 0 (labeled “DynareOBC-βR < 1”) and µss = 0

(labeled “DynareOBC-DEIR,” because the DEIR function is used to induce stationarity). For

the former, β is the same as in the GLB solution, and hence DynareOBC and GLB calibrations

are identical. For the DynareOBC-DEIR case, bdss/ydss in the DEIR function is set so that it

matches E(b/y) from the GLB solution, with β = 1/R and ψ = 0.001. The rationale for looking

at this case is that in the GLB solution the constraint binds rarely and E(b/y) is much higher

than bdss/ydss. Hence, a local approximation around an unconstrained steady state is more in

line with the unconstrained long-run equilibrium of the GLB solution.

3.4. Comparison of quantitative results

a) Long-run moments, impulse responses & performace metrics

Table 6 shows that several moments of the DynareOBC solutions differ from their GLB

counterparts, with smaller differences for supply-side variables. The latter occurs because,

around the stochastic steady state, the model is still close to Fisherian separation of savings

and investment. Many of the moments that are underestimated with DynareOBC-βR < 1

relative to the GLB solution tend to be overestimated with DynareOBC-DEIR.

The credit constraint causes a large increase in precautionary savings. In the GLB solution,

E(b/y) rises from -0.37 in the RBC model to 0.015 in the SS model. In contrast, DynareOBC-

βR < 1 (DynareOBC-DEIR) underestimates (overestimates) mean NFA significantly, yielding

E(b/y) = -0.1 (0.206). This has important implications for research and policy. For example,

quantifying optimal macroprudential regulation or foreign reserves to manage Sudden Stop

risk (e.g., Durdu et al., 2009; Bianchi and Mendoza, 2018) requires determining first how NFA

responds to this risk without policy intervention. DynareOBC’s results are sharply above or

below the GLB solution andwould call for policies that are tooweak or too strong, respectively.

Certainty equivalence fails in the DynareOBC solutions even though the perfect-foresight

paths are first-order approximations. In the DynareOBC-βR < 1 (DynareOBC-DEIR) solution,
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bdss/ydss = −0.192 (0.015) while E(b/y) = −0.1 (0.206). This is not due to precautionary sav-

ings, since DynareOBC ignores them, but to asymmetric responses to shocks induced by the

constraint in DynareOBC even without risk. This asymmetry can be illustrated using Figure

4 (see also Appendix B.3.10). A negative shock that causes the constraint to bind along the

perfect-foresight path determining the date-t value of the solution reduces bt+1 by less than the

increase in bt+1 in response to a positive shock of the same size. As a result, upwardmovements

in bt+1 when positive shocks hit are larger than downward movements when negative shocks

hit if bt is near or at a point where the constraint binds. Moreover, bt+1 cannot move below the

constraint but it can wander off to high values after sequences of positive shocks. Hence, the

DynareOBC time-series is “biased” above bdss, which implies a mean above bdss/ydss.34

The GLB solution has a similar asymmetry but it also takes into account precautionary sav-

ings effects due to the risk of future shocks and the constraint becoming binding. It does not fol-

low, however, that DynareOBC always yields mean bond positions lower than the GLB solution

(DynareOBC-βR < 1 yields lowermeanNFAbutDynareOBC-DEIR higher). BothDynareOBC

results ignore precautionary savings, but in theDynareOBC-DEIR solution bdss/ydss is set equal

to the value of E(b/y) in the GLB solution (0.015) and the constraint does not bind at steady

state. As a result, the solution is “biased” above 0.015 and must yield E(b/y) > 0.015.

Choosing between Dynare-βR < 1 and Dynare-DEIR, the former is preferable. Both yield

moments that differ from the GLB solution, but as we show later in this Section, Dynare-βR <

1 does better at approximating the effects of the collateral constraint. It also uses the same

calibration as the GLB solution and does not require extra assumptions to impose stationarity.

We compare next performancemetrics.35 The speed advantage of the local methods shrinks

considerably, particularly for DynareOBC-βR < 1, which has a speed ratio of 0.90 relative to

the GLB solution. This is due to the three determinants of DynareOBC efficiency noted earlier

and the fact that NFA follows a near-unit-root process. Each extended path required at least 60

periods and the full simulations needed 100,000 periods to converge to invariant moments.36

34Recall that the constraint in this example is a fixed debt limit while in the SS model it depends on qtkt+1.
35See footnote to Table 3 for details on hardware and software.
36Intuitively, consider that the estimators of the mean and autocorrelation of an AR(1) process are consistent

but biased in finite samples. The bias is higher the higher the true autocorrelation but it falls as the sample size
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Speed comparisons of DynareOBC and FiPIt need to be pondered carefully. FiPIt suffers

from the curse of dimensionality and it is slower in models that require a root-finder when the

constraint binds.37 But once the decision rules are solved, generating time-series simulations is

fast. In contrast, the number of state variables is less of an issue for DynareOBC, but execution

time rises with the length of perfect-foresight paths, the iterations needed to compute news-

shocks sequences that implement the constraint, and the length of the time-series simulation

needed for convergence of long-run moments. As Appendix C.4.2 shows, DynareOBC-βR < 1

is much slower than FiPIt with a simulation length of 150,000 periods (350 seconds v. 268

seconds), TFP shocks only (230 v. 42 seconds), or κ = 0.3 (228 v. 137 seconds).38 Solving in

second-order and/or integrating over future uncertainty slows down DynareOBC further.

In terms of accuracy, FiPIt produces accurate GLB results with small maximum errors in

the bonds and capital Euler equations. Since DynareOBC solutions only produce a time-series

simulation, we follow Holden (2016) to evaluate their accuracy by constructing consumption

simulations of the GLB solution for the same initial conditions and sequence of shocks as in the

DynareOBC solutions, and computing the maximum absolute values of the differences across

them. The maximum differences in log base 10 are about 1.3 for both DynareOBC solutions,

much larger than Holden’s estimates for an endowment model.

Figure 5 shows IRFs for a one-standard deviation, negative TFP shock. The IRFs for the GLB

solution are conditional on starting at the long-run averages of k and b, and those for Dynare-

OBC solutions on starting at the deterministic steady state (which for DynareOBC-DEIR are

the same as the GLB averages). DynareOBC IRFs differ sharply from their GLB counterparts.

With DynareOBC-βR < 1, b/y hardly moves and nx/y moves into a surplus on impact, reflect-

ing reduced demand for imported inputs. This occurs because the constraint binds at date 0

and the TFP shock tightens the constraint more. For DynareOBC-DEIR, b/y declines, offsetting

rises. For a near-unit-root process, the sample needs to be quite large to make the estimation bias negligible.
37As Mendoza and Villalvazo (2020) explain, this is not needed for several specifications (e.g., the same Men-

doza SS model but without working capital in the constraint, which reduces the FiPIt run time by 57 percent).
38DynareOBC also poses logistical hurdles. Updates to Dynare can make older versions of DynareOBC inop-

erable, and some versions of Dynare operate only in certain operating systems and software environments. For
instance, the DynareOBC toolbox we used operates with Dynare 4.4.3 and only with Matlab2016a. Dynare 4.4.3
operates with the Ubuntu 14.04 Linux operating system but not with Ubuntu 18.04.
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the fall in imported inputs to yield an almost unchanged nx/y. In contrast, in the GLB solution

nx/y jumps on impact nearly twice as much as under DynareOBC-βR < 1 and b/y rises grad-

ually to peak roughly 150 basis points above its mean, and after that it falls slowly to a trough

400 basis points below its mean before gradually reverting to its mean. For k, both DynareOBC

solutions yield a decline on impact, while in the GLB solution it is nearly unchanged. Then k

declines slightly and starts recovering in the two local solutions, while in the GLB solution it

falls by nearly three times as much reaching nearly 1.5 percent below average before starting

to recover. Qualitatively, the responses of c, i, L, υ and y are similar in all solutions, but the

declines on impact are significantly larger in the GLB solution.39

Appendix C.4.1 compares periodograms for the DynareOBC and GLB solutions and shows

that they differ sharply. DynareOBC assigns significantly less consumption variability to busi-

ness cycle and lower frequencies than the GLB solution. Net exports show higher persistence

in theDynareOBC-DEIR solutionwhile DynareOBC-βR < 1 andGLB have similar persistence.

The GLB solution has less variability at all frequencies. Investment has higher persistence in

the GLB than in the local solutions, and it has uniformly higher variability at all frequencies.

b) Credit constraint multipliers, Sudden Stops and risk effects

Local and global solutions also differ sharply in that the constraint binds much more often

in the former (51 to 71 percent of the time in the two local solutions v. only 2.6 percent in

the GLB solution). This is in part because DynareOBC disregards precautionary savings, but

it is also the case that it yields multipliers that are too small when the constraint binds and

this alters results significantly, as we document next. We compare results for credit constraint

multipliers and their effects on financial premia and sudden-stop responses ofmacro variables.

Financial premia include the shadow interest rate premium (SIP ), the equity premium (EP ),

its components due to unpledgeable capital ((1 − κ)SIP ) and risk premium (RP ), and the

Sharpe ratio (S). For sudden-stop responses, we compare deviations from long-run averages

39For the GLB solution, the IRFs of the RBC and SS models are very similar, because the constraint binds only
in the left tail of the ergodic distribution (see Appendix C.3.3 for IRFs of the RBC model). Hence, IRFs, which are
triggered by shocks of standard magnitudes and start from long-run means, are nearly unaffected by the credit
friction. In contrast, the DynareOBC IRFs for the SS model are very different from the IRFs that all the local
methods produce for the RBC model.
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in c, nx/y, i, y, L and υ.

SIP is the amount bywhich the intertemporalmarginal rate of substitution u′(t)/[βEt(u′(t+

1))] exceeds Rt. The bonds’ Euler equation yields:

SIPt =
Rtµt(1 + τ)

u′(t)− µt(1 + τ)
. (17)

SIPt is relevant only when µt > 0 and it rises as the constraint becomes more binding, because

µt rises and Et(u′(t+ 1)) falls, since the constraint forces agents to defer consumption.

The equity premium is EPt ≡ Et[R
q
t+1]− Rt, where Rq

t+1 ≡ (dt+1 + qt+1)/qt is the return on

equity and dt+1 is the dividend payment, where dt ≡ exp(εAt )Fk(t) − δ + a
2
(kt+1−kt)2

k2t
. Using the

Euler equations for bonds and capital it follows that:

EPt = (1− κ)SIPt +RPt, RPt ≡ −
COVt[u

′(t+ 1), Rq
t+1]

Et[u′(t+ 1)]
. (18)

EPt has two components: the standard risk premium (RPt) driven by COVt[u′(t + 1), Rq
t+1]

and the fraction of SIPt pertaining to the share of kt+1 that cannot be pledged as collateral

(1 − κ). EPt rises when µt > 0 for two reasons: First, SIPt rises, as explained above. Second,

RPt rises, because COVt[u′(t + 1), Rq
t+1] becomes more negative as consumption is harder to

smooth and Et[u′(t+ 1)] falls as the credit constraint forces consumption into the future. Thus,

EP reflects both the tightness of the constraint via SIPt and the larger risk premium that the

constraint induces. The Sharpe ratio measures the compensation for risk-taking, defined as

St = E[EP ]/σ(Rq). Following standard practice, we compute St using uconditional moments.

For the GLB solution, the financial premia are computed for each triple (b, k, ε) in the state

space (see Appendix C.4.3). Averages are then computed using the conditional and uncondi-

tional distributions of (b, k, ε). For the DynareOBC solutions, SIPt is computed using the time-

series simulation they produce. The equity premium is then generated as EPt = (1 − κ)SIPt

becauseRPt = 0 by construction, since each date-t solution is determined by a perfect-foresight

path (the simulated datasets also produce very small values for COV [u′(·), Rq]).

Table 7 reports quintile distributions of µ conditional on µ > 0, the associated within-

quintile averages of financial and macro variables, their overall means and medians, and the
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Sharpe ratios.40 µ is very small in all five quintiles of all solutions, but this is because µ is in

units of marginal utility with CRRA preferences and σ = 2. For instance, at the unconditional

means of c and L, marginal utility is about 2.05E-05 (-4.688 in log base 10). Hence, small µ

values do not imply that the constraint is irrelevant, as shown below.

Themultipliers, financial premia and sudden-stop responses when the collateral constraint

binds are significantly smaller in the local solutions than the GLB solution. The differences

grow larger for higher µ (i.e., in the fourth and fifth quintiles), and they are larger relative to

the local solution with unconstrained deterministic steady state (DynareOBC-DEIR) than the

one with constrained steady state (DynareOBC-βR < 1).

For financial premia, GLB yields overall means of 2.6, 2.2, 2.1 and 0.1 percent for SIP , EP ,

(1 − κ)SIP and RP , respectively, while DynareOBC-βR < 1 (DynareOBC-DEIR) yields 0.8,

0.6, 0.6 and 0 (0.13, 0.10, 0.10 and 0) percent, respectively. In the GLB solution, RP is about

0.1 percent on average in each of the five quintiles of µ, but EP still increases sharply with µ

because (1 − κ)SIP rises sharply. In the fifth quintile, GLB yields averages of 6.6, 5.4, and 5.3

percent for SIP , EP , and (1 − κ)SIP , respectively, while DynareOBC-βR < 1 (DynareOBC-

DEIR) yields 3.3, 2.7 and 2.7 (0.64, 0.51 and 0.51) percent, respectively. The local solutions

sharply underestimate SIP and EP . They also miss the risk premium, but this accounts for a

small fraction of the gap in EP . GLB yields a Sharpe ratio of 1.16, nearly 5 and 30 times the

DynareOBC-βR < 1 and DynareOBC-DEIR results, respectively. Since RP is small in the GLB

solution and zero in the local solutions, the differences in S are due to the large gap in SIP .

Large differences in SIP andEP result in very different sudden-stop responses. To explain

why, we follow Mendoza and Smith (2006) in expressing the price of capital as:

qt = Et

(
∞∑
i=1

[
i∏

j=0

1

Et(R
q
t+1+j)

]
dt+1+i

)
. (19)

Since eq. (18) implies that Et[Rq
t+1] = (1 − κ)SIPt + RPt + Rt, lower financial premia with

DynareOBC imply higher qt when µt > 0, which in turn imply weaker Fisherian deflation

effects of the binding credit constraint. Moreover, since qt and investment are monotonic func-

40Variables are assigned into quintiles according to the quintile distribution of µ. If a given µi belongs to a
particular quintile of µ, then the corresponding values of the other variables are assigned to that same quintile.
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tions of each other due to the Tobin Q nature of the investment setup, kt+1 is higher and so is

borrowing capacity (κqtkt+1), which is key for determining allocations when µt > 0. This also

affects future dividends, causing further feedback effects into qt and borrowing capacity.

The differences in sudden-stop responses reported in Table 7 reflect the above arguments.

In the GLB solution, the responses are in line with standard features of Sudden Stops (i.e., large

recessions and sharp reversals in the external accounts). The mean percent declines (relative

to long-run averages) are -3.6 in c, -4.1 in i, -1.0 in y, -0.7 in L, and -1.8 in υ while nx/y rises 2.6

percentage points. The responses are generally larger when the constraint binds more, reach-

ing means of -4.9 for c and -13.5 for iwith a trade balance reversal of 5.1 percentage points for

the top quintile of µ. The DynareOBC-βR < 1 solution underestimates the mean responses

of consumption and net exports (-1.9 v. -3.6 for c and 1.2 v. 2.6 for nx/y) and overestimates

those for L, υ and y. It also fails to match the property that the responses should be larger

when the constraint binds more, as it yields the largest responses in the third quintile of µ.

DynareOBC-DEIR performs worse, producing positive mean responses for c and i and a nega-

tive mean response for nx/y. Moreover, these counterfactual responses grow larger when the

constraint binds more, in the 4th and 5th quintiles of µ. This failure to produce Sudden Stops

when the constraint binds is a major shortcoming of DynareOBC-DEIR.

4. Conclusions

We found major differences between global and local solutions of open-economy models

with incomplete markets (an endowment economy, an RBC model and a Sudden Stops model

with an occasionally binding credit constraint). Local solutions were produced using 1OA,

2OA, 3OA, RSS and DynareOBC methods and the global solutions were generated using the

FiPItmethod. Most localmethods need a stationarity-inducing assumption, forwhichwe chose

the widely-used DEIR function that makes the real interest rate a decreasing function of the

NFA position. We considered the standard “inessential” approach to set a very low DEIR elas-

ticity so that the interest rate remains close to the world interest rate and a variation in which

the elasticity is targeted to match the autocorrelation of NFA in the global solution.

The key limitation of local methods is that they approximate poorly the effects of precau-

tionary savings on NFA, net exports and consumption, even using higher-order methods such
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as 2OA and RSS. For the Sudden Stops model, first-order DynareOBC has two additional dis-

advantages: it underestimates the tightness of the credit constraint and its effects on financial

premia andmacro variables, and it does not capture risk effects of the credit constraint and their

implications for precautionary savings and forward-looking variables like asset prices. Local

methods are faster for the endowment and RBC models, but for the Sudden Stops model FiPIt

and DynareOBC are of comparable speed. FiPIt yields significantly smaller Euler equation

errors but the curse of dimensionality remains a limitation.

NFA is a near-unit-root process in the three models. Analytical and quantitative results

for local solutions show that small errors in calculating the NFA autocorrelation cause sizable

errors in the long-run averages of NFA, consumption and net exports, and various features of

business cycle moments, impulse responses and spectral densities. Local solutions with tar-

geted calibrations perform better but imply DEIR elasticities akin to imposing large costs in

moving NFA from its steady state, which remove precautionary savings completely, and re-

quire knowing the global solution. Interestingly, 1OA, 2OA, and RSS produce very similar

second- and higher-order moments, impulse responses and periodograms, because they yield

decision rules that differ mainly in their intercepts but have similar first-order terms and neg-

ligible higher-order terms. Hence, if first moments are not central to the question under study,

the 1OA method is the preferable local method.

These results are robust to several modifications, including setting the DEIR elasticity to its

inessential low value v. targeting it to the global solution, replacing DEIRwith a rate of interest

lower than the rate of time preference or with an endogenous discount factor, introducing

different shocks and changing their variability, and examining a model with an exact solution.

Our findings argue strongly in favor of using global methods unless the curse of dimen-

sionality makes them unfeasible. The exception are models or variables within models for

which wealth and precautionary-savings effects of incomplete markets are irrelevant (e.g., we

found that, without wealth effects in labor supply and trivial risk premia, moments for fac-

tor allocations, output and investment are well-approximated by local methods even if they

fail to approximate those for NFA, consumption and net exports). Our findings also suggest

caution in assessing existing results obtained with local solutions. For example, this matters
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for predictions regarding average NFA positions to assess global imbalances and optimal for-

eign reserves, assessments of a model’s ability to explain key cyclical moments such as GDP-

correlations and autocorrelations of net exports and consumption-to-GDP variability ratios,

IRF analysis to study the effects of shocks and policy changes, and evaluation of macropru-

dential policies for reducing the frequency and magnitude of Sudden Stops.
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Table 1: Calibration of the Endowment Economy Model

Notation Parameter/Variable Value

1. Common parameters
σ Coefficient of relative risk aversion 2.0
y Mean endowment income 1.00
A Absorption constant 0.28
R Gross world interest rate 1.059
σz Standard deviation of income (percent) 3.27
ρz Autocorrelation of income 0.597
2. Global solution parameters
β Discount factor 0.940
ϕ Ad-hoc debt limit −0.51
3. Local solution parameters
Common parameters
β Discount factor 0.944
b̄ Deterministic steady state value of NFA −0.51

Baseline calibration
ψ Inessential DEIR coefficient 0.001

Targeted calibration
ψ DEIR coefficeint for 2OA 0.0469
ψ DEIR coefficient for RSS 0.0469

Note: 2OA and RSS denote the second-order and risky-steady state solutions, respectively.
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Table 2: Autocorrelations of Net Exports, NFA, and Income in the Endowment Economy

ρε

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
GLB

ρb 0.827 0.866 0.899 0.926 0.947 0.964 0.977 0.987 0.993
ρnx -0.088 0.010 0.110 0.213 0.321 0.432 0.547 0.661 0.768

Baseline
2OA
ρb 0.995 0.996 0.997 0.998 0.998 0.998 0.999 0.999 0.999
ρnx 0.265 0.375 0.479 0.578 0.670 0.754 0.830 0.896 0.949

RSS
ρb 0.995 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.999
ρnx 0.239 0.35 0.457 0.559 0.655 0.745 0.826 0.896 0.952

Targeted
2OA
ρb 0.914 0.929 0.942 0.953 0.962 0.971 0.978 0.984 0.990
ρnx -0.013 0.086 0.186 0.286 0.386 0.486 0.586 0.687 0.789

RSS
ρb 0.912 0.928 0.941 0.952 0.961 0.97 0.977 0.984 0.990
ρnx -0.010 0.089 0.188 0.287 0.386 0.485 0.585 0.684 0.784

Targeted for all ρε
2OA
ψ 0.185 0.158 0.13 0.106 0.083 0.064 0.046 0.034 0.027
ρb 0.827 0.866 0.899 0.926 0.947 0.964 0.977 0.987 0.993
ρnx -0.029 0.068 0.166 0.267 0.37 0.476 0.586 0.698 0.807

RSS
ψ 0.185 0.158 0.13 0.106 0.083 0.064 0.046 0.034 0.027
ρb 0.827 0.866 0.899 0.926 0.947 0.964 0.977 0.987 0.993
ρnx -0.030 0.067 0.166 0.266 0.369 0.475 0.585 0.696 0.804

Note: GLB, 2OA and RSS denote the global, second-order and risky-steady state solutions, respectively.
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Table 3: Long-run Moments: Endowment Economy Model

Baseline Calibration Targeted Calibration
GLB 2OA RSS 2OA RSS

DEIR βR < 1 DEIR DEIR DEIR

ψ = n.a. 0.001 n.a. 0.001 0.0469 0.0469
Averages
E(c) 0.694 0.702 0.093 0.692 0.689 0.689
E(nx/y) 0.022 0.015 0.625 0.025 0.028 0.028
E(b/y) -0.410 -0.286 -11.210 -0.451 -0.502 -0.506
Variability relative to variability of income
σ(c)/σ(y) 0.995 1.577 1.161 1.617 1.000 0.997
σ(nx)/σ(y) 0.663 1.335 1.202 1.346 0.730 0.730
σ(nx/y)/σ(y) 0.647 1.319 1.161 1.331 0.710 0.709
σ(b)/σ(y) 7.497 63.033 1.706 40.078 6.648 6.576
σ(b/y)/σ(y) 7.777 62.711 1.892 40.213 7.178 7.118
Income correlations
ρ(y, c) 0.751 0.200 0.188 0.197 0.684 0.684
ρ(y, nx) 0.726 0.584 0.312 0.567 0.725 0.708
ρ(y, nx/y) 0.704 0.568 0.006 0.567 0.705 0.708
ρ(y, b) 0.266 0.126 0.070 0.124 0.489 0.488
ρ(y, b/y) 0.064 0.154 0.445 0.149 0.592 0.592
First-order autocorrelations
ρc 0.838 0.995 0.996 0.995 0.929 0.929
ρnx 0.536 0.821 0.934 0.823 0.582 0.582
ρnx/y 0.544 0.828 0.995 0.830 0.591 0.590
ρb 0.977 0.999 0.999 0.999 0.977 0.977
ρb/y 0.980 0.997 0.953 0.998 0.958 0.959
Performance metrics
Execution time (secs.) 2.5 0.7 0.3 5.6 0.7 5.7

ratio rel. to GLB 1.0 0.280 0.120 2.920 0.280 2.880
Max. Abs. Euler eq. errors 1.22E-04 2.27E-04 3.42E-03 2.41E-04 5.27E-04 7.17E-04
Mean Abs. Euler eq. errors 6.44E-12 1.17E-08 3.35E-03 1.13E-04 2.79E-07 5.95E-04
Decision rule diff b 0.120 (0.248) 0.225 (0.471) 0.099 (0.378) 0.086 (0.127) 0.075 (0.123)
Decision rule diff c 0.025 (0.049) 0.053 (0.157) 0.028 (0.055) 0.019 (0.037) 0.020 (0.039)

Note: GLB, 20A and RSS refer to the global, second-order and risky steady state solutions, respectively. σ(·)
denotes the coefficient of variation for variables in levels and the standard deviation for variables in ratios (nx/y,
b/y and the leverage ratio lev/rat.). The results were obtained using Matlab 2020a in a Linux cluster with 128gb
of RAM, two 10-core Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz processors, and a Samsung SSD 840 512GB
hard drive. The number of CPUs called by the parallel computing toolbox was set to minimize execution time.
Execution times include elapsed time up to the solution of decision rules. Euler equation errors and decision rule
differences are computed for all (b, z) pairs in the state space of the GLB solution. Decision rule differences in
the last two rows are differences between the local and GLB solutions in percent of the latter. We report mean
and maximum (maximum in brackets) differences conditional on bond values that have positive probability in
the ergodic distribution of the GLB solution.
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Table 4: Endowment Economy Model with Income and Interest-Rate Shocks

Std Dev of Int Rate (percent)
0.0 0.5 1.0 1.5 2.0 2.5

Global calibrated
E(b/y) -0.411 -0.410 -0.408 -0.403 -0.396 -0.384
σ(c)/σ(y) 0.995 0.977 1.009 1.058 1.126 1.214
σ(b)/σ(y) 7.497 7.169 7.465 8.009 8.874 10.311
ρ(y, nx) 0.726 0.681 0.617 0.527 0.415 0.298
ρ(nx) 0.535 0.540 0.542 0.546 0.551 0.559
ρ(b) 0.977 0.973 0.975 0.976 0.978 0.981

Global with NDL
E(b/y) -10.778 -9.249 -7.445 -5.991 -4.875 -3.956
σ(c)/σ(y) 9.747 7.375 6.962 6.189 5.563 4.906
σ(b)/σ(y) 1.682 2.418 4.232 5.771 7.194 8.374
ρ(y, nx) 0.684 0.457 0.343 0.308 0.297 0.301
ρ(nx) 0.858 0.880 0.924 0.931 0.927 0.914
ρ(b) 0.999 0.998 0.998 0.998 0.998 0.997

Full RSS w. βR̄ < 1
E(b/y) -11.21 -9.098 -7.182 -5.577 -4.226 -3.075
σ(c)/σ(y) 12.484 11.171 9.672 8.209 6.745 5.322
σ(b)/σ(y) 19.067 38.394 49.967 53.952 52.038 45.600
ρ(y, nx) 0.315 0.077 0.011 -0.021 -0.044 -0.066
ρ(nx) 0.933 0.987 0.993 0.994 0.992 0.986
ρ(b) 0.999 0.999 0.999 0.999 0.999 0.999

Partial RSS w. baseline ψ
E(b/y) -0.451 -0.426 -0.279 -0.018 0.381 0.942
σ(c)/σ(y) 1.617 1.645 1.773 2.085 2.894 4.969
σ(b)/σ(y) 40.078 43.072 71.486 1327.807 94.562 71.228
ρ(y, nx) 0.567 0.560 0.531 0.469 0.357 0.217
ρ(nx) 0.823 0.823 0.830 0.856 0.910 0.965
ρ(b) 0.999 0.999 0.999 0.999 0.999 0.999

2OA w. baseline ψ
E(b/y) -0.286 -0.319 -0.179 0.056 0.384 0.806
σ(c)/σ(y) 1.577 1.612 1.664 1.747 1.857 1.990
σ(b)/σ(y) 63.033 55.583 100.480 313.282 47.421 23.101
ρ(y, nx) 0.584 0.568 0.555 0.536 0.512 0.485
ρ(nx) 0.821 0.816 0.809 0.798 0.785 0.771
ρ(b) 0.999 0.999 0.999 0.999 0.999 0.999

Partial RSS w. targeted ψ
E(b/y) -0.506 -0.507 -0.505 -0.501 -0.495 -0.487
σ(c)/σ(y) 0.997 1.016 1.068 1.150 1.254 1.375
σ(b)/σ(y) 6.576 6.571 6.657 6.805 7.022 7.315
ρ(y, nx) 0.708 0.695 0.663 0.619 0.571 0.523
ρ(nx) 0.582 0.580 0.576 0.570 0.564 0.559
ρ(b) 0.977 0.977 0.977 0.977 0.977 0.977

2OA w. targeted ψ
E(b/y) -0.502 -0.505 -0.502 -0.498 -0.492 -0.484
σ(c)/σ(y) 1.000 1.020 1.073 1.157 1.264 1.391
σ(b)/σ(y) 6.648 6.612 6.694 6.833 7.030 7.287
ρ(y, nx) 0.725 0.693 0.660 0.615 0.564 0.514
ρ(nx) 0.582 0.581 0.577 0.572 0.566 0.561
ρ(b) 0.977 0.977 0.977 0.977 0.977 0.977

Note: The variability and persistence of endowment shocks are kept as in Table 1. The correlation between en-
dowment and interest-rate shocks is set to−0.669, for all columns with the exception of the first column for which
the correlation is set to 0. GLB, 20A and RSS refer to the global, second-order and risky-steady state solutions,
respectively.
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Table 5: Calibration of the Sudden Stops Model

Notation Parameter/Variable Value

1. Common parameters
σ Coefficient of relative risk aversion 2.0
R Gross world interest rate 1.0857
α Labor share in gross output 0.592
γ Capital share in gross output 0.306
η Imported inputs share in gross output 0.102
δ Depreciation rate of capital 0.088
ω Labor exponent in the utility function 1.846
φ Working capital constraint coefficient 0.2579
a Investment adjustment cost parameter 2.75
τ Consumption tax 0.168
κ Collateral constraint coefficient 0.20
ρA TFP autocorrelation 0.555
ρR Interest rate autocorrelation 0.555
ρp Input price autocorrelation 0.737
σ2
uA

Variance of TFP innovations 1.0273e− 04
σ2
uR

Variance of interest rate innovations 2.4387e− 04
σ2up Variance of input price innovations 5.1097e− 04
σuA,uR Covariance of TFP and interest rate innovations −0.0047

ydss GDP at the deterministic steady state 396
2. Global solution parameters
β Discount factor 0.920
ϕ Ad-hoc debt limit as a share of ydss −0.505
bdss/ydss NFA/GDP at the deterministic steady state −0.192

3. Local solutions parameters
DynareOBC with βR < 1
β Discount factor 0.920
bdss/ydss NFA/GDP at the deterministic steady state −0.192

DynareOBC with DEIR
β Discount factor 0.9211
ψ Inessential DEIR coefficient 0.001
bdss/ydss NFA/GDP at the deterministic steady state 0.015

Note: For the Sudden Stops model, the GLB solution has two credit constraints, namely ϕ and the collateral
constraint. Credit is constrained at the deterministic steady state, since βR < 1, but ϕ is set low enough so that
the collateral constraint binds first.
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Table 6: Long-run Moments: Sudden Stops model

GLB DynareOBC-βR < 1 DynareOBC-DEIR

Averages
E(y) 393.619 391.390 395.230
E(c) 274.123 269.610 279.970
E(i) 67.481 66.714 67.897
E(nx/y) 0.015 0.025 0.000
E(b/y) 0.015 -0.100 0.206
E(lev.rat.) -0.102 -0.157 -0.011
E(υ) 42.617 42.263 42.712
E(L) 18.426 18.364 18.469

Variability relative to variability of GDP
σ(y) 0.039 0.032 0.032
σ(c)/σ(y) 1.023 0.937 1.207
σ(i)/σ(y) 3.383 3.492 3.777
σ(nx/y)/σ(y) 0.746 0.927 1.262
σ(b/y)/σ(y) 4.980 3.703 9.595
σ(lev.rat.)/σ(y) 2.340 1.705 4.498
σ(υ)/σ(y) 1.495 1.632 1.612
σ(L)/σ(y) 0.599 0.571 0.569

Correlations with GDP
ρ(y, c) 0.842 0.823 0.557
ρ(y, i) 0.641 0.309 0.224
ρ(y, nx/y) -0.117 0.176 0.223
ρ(y, b/y) -0.120 0.027 -0.054
ρ(y, lev.rat.) -0.111 0.008 -0.056
ρ(y, υ) 0.832 0.777 0.775
ρ(y, L) 0.994 0.987 0.986

First-order autocorrelations
ρ(y) 0.825 0.752 0.754
ρ(b) 0.990 0.980 0.995
ρ(c) 0.829 0.826 0.910
ρ(i) 0.500 0.470 0.502
ρ(nx/y) 0.601 0.456 0.651
ρ(lev.rat.) 0.992 0.988 0.996
ρ(υ) 0.777 0.753 0.756
ρ(L) 0.801 0.761 0.774
Prob.(µ>0) 2.58 51.80 71.06

Performance metrics
Time in sec. 268.0 243.5 187.4
Max. Abs. b Euler eq. error 2.62E-04 na na
Max. Abs. k Euler eq. error 4.25E-16 na na

Note: See note to Table 3.
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Figure 1: The first-order coefficient of NFA decision rules as the elasticity of the DEIR function varies

0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.9
0.4

0.46

0.52

0.58

0.64

0.7

0.76

0.82

0.88

0.94

1

ρb ψ 0.51( )

ρb ψ 0.41( )

ρb ψ 0( )

ψ

Note: This figure shows how the first-order coefficient of the NFA decision rules, ρb(ψ, b∗), varies with ψ for
three values of b∗: -0.51 (deterministic steady state), -0.41 (risky steady state) and zero.

Figure 2: Average NFA in the endowment economy as the variability of output rises
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Note: GLB refers to global solution, 2OA refers to second-order solution, RSS refers to risky-steady state solution.
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Figure 3: Endowment Model Impulse Response Functions to a Negative Income Shock
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Note: GLB, 1OA, 2OA and RSS denote global, first-order, second-order and risky-steady state solutions,
respectively. GLB impulse responses are forecast functions of the equilibrium Markov processes of the
endogenous variables with initial conditions set to E[b] and a value of z equal to a one-standard-deviation shock.
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Figure 4: DynareOBC Solution for Endowment Economy

Note: The top row plots one draw of the stochastic simulation (“stoch sim”) from period 90 to 250 and plots
corresponding perfect foresight (“perf fore”) paths for select periods. The bottom row focussed on period 140 to
180 and plots both the constrained and unconstrained perfect foresight path from period 141.
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Figure 5: Sudden Stops Model: Impulse Response Functions to a Negative TFP Shock
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