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1 Introduction

The United States has experienced a deterioration in maternal pregnancy- and childbirth-related

health over the last several decades (Kassebaum et al., 2016), and the burden of health complications

is not borne equally by all mothers. For instance, black women are 3.3 times more likely to die from

a pregnancy-related cause than their white counterparts (Petersen et al., 2019). Most discussions

about maternal health have focused on the role of the health care system, but we know much

less about other—environmental—determinants of maternal health and the racial disparities in it.1

This paper studies the impact of an environmental factor that is becoming increasingly relevant

due to the growing consensus that climate change is contributing to a gradual warming of the earth

(NASA, 2013): exposure to extreme heat.

Specifically, we estimate the effect of exposure to extreme temperature during pregnancy on

maternal hospitalizations, using the universe of administrative inpatient discharge records from

three U.S. states: Arizona, New York, and Washington. In addition to providing us with rich

data on maternal health and health care utilization during pregnancy, at childbirth, and in the

postpartum period, these states vary in their historical weather patterns, allowing us to examine the

role of adaptation in mitigating the potential health impacts of temperature shocks. As individuals

in historically hotter places may adapt to high temperatures through the adoption of mitigating

technologies such as air conditioning and behavioral responses such as spending more time indoors

(Graff Zivin and Neidell, 2014), the health costs of extreme heat may be disproportionately borne

by individuals residing in historically cooler areas. Consistent with this notion, several studies have

documented such geographic heterogeneity in the relationship between temperature and elderly

mortality (Deschênes and Greenstone, 2011; Barreca et al., 2015; 2016; Carleton et al., 2018).

To identify the causal effects of extreme temperature, we leverage arguably exogenous temporal

variation within narrowly-defined geographic and demographic cells. Our preferred models control

for a full set of birth-county×birth-month×race fixed effects, birth-state×birth-year fixed effects,

and a quadratic time trend interacted with birth-county×birth-month indicators. As a concrete

example, consider a black woman giving birth in Queens county, New York, in August 2010 and a

black woman giving birth in the same county in August 2011. Our empirical strategy leverages the

difference between these women in the temperature deviation during their pregnancies from the

Queens-specific quadratic trend among all August births, while controlling for the average difference

in pregnancy temperature exposure between all New York state births in 2010 and 2011.

We find that exposure to extreme heat has adverse impacts on women’s health during pregnancy,

and that this health cost is not distributed equally across mothers. We estimate that an additional

1For examples of these discussions in the press, see: https://www.vox.com/science-and-health/2017/6/26/

15872734/what-no-one-tells-new-moms-about-what-happens-after-childbirth

https://www.npr.org/2017/05/12/528098789/u-s-has-the-worst-rate-of-maternal-deaths-in-the-

developed-world

https://www.npr.org/2017/05/12/527806002/focus-on-infants-during-childbirth-leaves-u-s-moms-in-

danger.
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day during the first trimester with an average temperature above 90◦F increases the likelihood that

a woman is hospitalized during pregnancy by 0.03 percentage points, which represents a 0.8 percent

effect at the sample mean. This effect is driven by hospitalizations for emergency or urgent reasons,

suggesting that it represents a deterioration in underlying maternal health rather than a change in

women’s ability to access health care.

When we examine the timing of prenatal hospitalization, we find that extreme heat in the first

trimester has both immediate and latent impacts, as measured by heightened risks of hospitalization

both in the first and third trimesters. Analysis of diagnosis codes further indicates that this effect

is driven by hospitalizations due to a variety of pregnancy complications, including hemorrhage

in early pregnancy, antepartum hemorrhage, excessive vomiting, early or threatened labor, and

infectious and parasitic conditions. Several of these conditions are serious and potentially deadly—

Kuriya et al. (2016) report that hemorrhage is the third leading cause of maternal pregnancy-related

death, while infections can result in sepsis, which is the top cause of maternal pregnancy-related

death in the United States.

We next document that the aggregate effect on pregnancy hospitalizations is entirely driven by

women residing in historically cooler counties with below-median daily mean temperatures. For

these women, we observe a 0.1 percentage point increase in the likelihood of an emergency or

urgent hospitalization during pregnancy (4.4 percent at the sample mean). This pattern suggests

that because historically cooler places are likely less adapted to extreme heat than historically

hotter areas, mothers residing in cooler places bear a disproportionate cost to their pregnancy

health.2

We also show that the effects on prenatal hospitalizations are much more pronounced for black

than for white mothers. For black women, an additional day during the first trimester with average

temperature above 90◦F increases the likelihood of first and third trimester hospitalization by

0.04 and 0.08 percentage points, respectively, representing 3.2 and 2.3 percent effect sizes at the

sample means. By contrast, for white women, the corresponding coefficients are much smaller and

statistically insignificant.

Lastly, we estimate that an additional day with above-90-degree heat in the first trimester raises

maternal length of hospital stay at the time of childbirth by 0.006 days (0.2 percent). Similar to the

findings on prenatal hospitalizations, the increase in length of stay at childbirth is greater in cooler

than in hotter counties. However, we find that the effect on length of hospital stay at childbirth

is driven entirely by white rather than black mothers. We further show that, for white mothers,

prenatal heat exposure reduces the likelihood of postpartum hospital readmission. These results

may reflect widely documented racial disparities in the types and quality of health services received

2We have also considered modeling differences in effects based on air conditioning (AC) adoption rates. However,
AC data, available from the Residential Energy Consumption Survey (RECS), only exist in three years over our sample
period (2001, 2005, and 2009) and are aggregated to the Census region level. Given that we only use inpatient data
from three states in our analysis, we do not have sufficient variation to estimate heterogeneous effects based on AC
adoption rates.
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by women (Nelson, 2002; Hostetter and Klein, 2018)—compared to black mothers, white mothers

may be more successful in compensating for prenatal health shocks by staying longer at the hospital

when giving birth, thus averting future hospital readmissions in the postpartum period.

Our study contributes to a burgeoning literature, which has identified adverse short-term im-

pacts of extreme temperature on several outcomes, including elderly mortality (Deschênes and

Moretti, 2009; Deschênes and Greenstone, 2011), population-level emergency department visits and

hospitalizations (Green et al., 2010; White, 2017), and cognitive performance (Cho, 2017; Garg et

al., 2018; Goodman et al., 2018; Graff Zivin, Hsiang, and Neidell, 2018). Multiple studies have

further documented negative effects of in utero heat exposure on birth outcomes—including birth

weight, gestation length, and the probability of stillbirth (e.g., Deschênes et al., 2009; Dadvand

et al., 2011; Schifano et al., 2016; Auger et al., 2017; Ha et al., 2017a,b; Kuehn and McCormick,

2017; Barreca and Schaller, 2019)—highlighting the sensitivity of the prenatal period to extreme

heat.3 To the best of our knowledge, only one prior study has analyzed the relationship between

prenatal heat exposure and maternal health, using information on mothers’ pregnancy risk factors

and labor/delivery complications reported on birth certificates (Cil and Cameron, 2017). However,

as multiple validation studies indicate that maternal pregnancy risk factors, obstetric procedures,

and complications of labor and delivery are heavily under-reported on birth certificates (Parrish

et al., 1993; Buescher et al., 1993; Piper et al, 1993; Dobie et al., 1998; Reichman and Hade,

2001; DiGiuseppe et al., 2002; Roohan et al., 2003; Lydon-Rochelle et al., 2005), and the degree of

under-reporting varies with maternal demographic characteristics and birth outcomes (Reichman

and Schwartz-Soicher, 2007), analyses of maternal health based on birth records data are likely

subject to bias from non-random measurement error. We address this issue by instead using inpa-

tient discharge records that provide more accurate information on maternal health at each hospital

visit, and allow us to examine diagnoses and the timing of prenatal health insults.

Our findings suggest that, in the absence of mitigating interventions, the projected increase in

exposure to extreme heat over the next century may contribute to further worsening of maternal

health. This deterioration in maternal health is likely to be greater in historically cooler areas, which

have had less scope for adaptive responses. Moreover, since black women are both more likely to

be exposed to extreme heat (due to differences in residence locations and in access to mitigating

technologies such as air conditioning, see O’Neill et al., 2005; Gronlund, 2014) and experience larger

adverse impacts of heat exposure on pregnancy-related health, our estimates imply that climate

change could further exacerbate racial disparities in maternal health.

3Fetuses and infants are sensitive to extreme heat due to their developing thermoregulatory and sympathetic
nervous systems; see Young (2002); Knobel and Holditch-Davis (2007); Xu et al. (2012). Two recent studies have
also shown that early life heat exposure has lasting negative effects on long-term cognitive ability (Hu and Li, 2019)
and adult earnings (Isen, Rossin-Slater, and Walker, 2017).
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2 Data

Our data comes from the State Inpatient Databases (SID) from the Healthcare Cost and Uti-

lization Project (HCUP). The SID are state-specific files that contain the universe of inpatient

records from participating states. Since the availability of variables varies across states and years,

we focus on three states that contain all three of the key variables necessary for our analysis: (1)

patient county of residence, (2) admission month, and (3) encrypted person identifiers to track

patients over time in the same state. Our resulting sample consists of 2.72 million inpatient records

of 2.24 million mothers from Arizona (2003 to 2007), New York (2003 to 2013), and Washington

(2003 to 2013).

We use diagnosis codes to identify inpatient visits associated with childbirth.4 Since less than

two percent of all births occur outside of hospitals during our analysis time period, we observe the

near-universe of all mothers giving birth in our analysis states.5 We also identify maternal hospi-

talizations during pregnancy (i.e., those occurring in the 9 months before delivery) and postpartum

hospital re-admissions using patient identifiers.

To measure temperature exposure, we obtain data from the National Oceanic and Atmospheric

Administration (NOAA). We have information on the mean, maximum, and minimum daily ground

temperature and precipitation levels for every county and year-month during our analysis time

frame. We then merge these data to the maternal inpatient records, using information on the

mother’s county of residence at the time of delivery. We use the mother’s year and month of

delivery to assign exposure to temperature during pregnancy by assuming a 40-week pregnancy

duration for all observations.6

Distribution of Temperature Exposure. Figure 1 shows the distribution of daily average

temperature in Arizona, New York, and Washington during our sample period. We compute the

average number of days per year falling into each of the 10 temperature bins expressed in Fahrenheit

degrees. When we measure temperature exposure during pregnancy for each woman, we find that

five percent of observations in our data have non-zero exposure to above-90-degree heat.

Summary Statistics. Panel A of Table 1 shows the average number of days per year with

mean temperature falling in different bins in each of our three analysis states. Arizona on average

4We use DRG 370-375 or 765-768 & 774-775, depending on the version of DRG.
5See https://www.cdc.gov/nchs/products/databriefs/db144.htm for statistics on out-of-hospital births in the

U.S.
6We have information on gestational age for only about 10 percent of our HCUP sample, which comes from

diagnosis codes. It appears that gestational age is only recorded in cases where there are health complications,
and we find that children with gestational age information have lower birth weight, longer length of stay, and
higher likelihoods of readmission and death than those without gestational age information. Moreover, using actual
pregnancy duration to assign exposure can be problematic due to the possible endogeneity of gestational age with
respect to the in utero shock (Currie and Rossin-Slater, 2013).
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experiences 17 days per year with mean temperatures above 90◦F. By contrast, New York and

Washington have substantially fewer days with above 90◦F mean temperatures. These differences

underscore the importance of examining heterogeneity across local areas with different historical

climates.

Panel B of Table 1 provides means of maternal health outcomes that we analyze (expressed as

rates per 100 mothers). Approximately four percent of women get hospitalized during pregnancy,

with the most common diagnosis being a pregnancy-related complication. Overall, 0.5, 1.2, and 2.6

percent of women are hospitalized in the first, second, and third trimesters, respectively. There are

some meaningful differences in the maternal health outcomes across the three states, highlighting

an additional reason for including state×year fixed effects in all our regression models, which we

describe in more detail next.

3 Empirical Strategy

A robust medical literature discusses the biological mechanisms through which extreme heat

could be damaging to human health, and highlights that exposure to extreme temperature can be

particularly risky for pregnant women. The underlying issue is that pregnant women are not able

to regulate temperature as efficiently as non-pregnant individuals due to the physiologic changes

they undergo during gestation (Schifano et al., 2016), which means that elevated body temperature

during pregnancy can lead to various complications. Heat exposure can alter placental blood flow

patterns, which can reduce the integrity of the placenta and increase the chance of abruption (He

et al., 2018). Heat could further raise the likelihood of other serious pregnancy complications,

including hypertension, preeclampsia, and prolonged premature rupture of membranes (Beltran et

al., 2014, Yackerson et al., 2007). In addition, elevated temperature can increase the fetal heart rate

and lead to uterine contractions (Vaha-Eskeli and Erkkola, 1991). All of these issues can translate

into women needing to be hospitalized during pregnancy and experiencing complications at and

even after childbirth.

The goal of this paper is to quantify the causal relationship between extreme heat and ma-

ternal health. A central challenge is that exposure to hot days is not randomly assigned. For

instance, several studies have documented differences in the health and human capital outcomes

of children born in different months of the year due to selection into conception based on parental

characteristics and differential exposure to seasonal factors such as the influenza virus (Buckles

and Hungerman, 2013; Currie and Schwandt, 2013). In addition, there is non-random sorting of

families into hotter and colder regions of the country based on incomes, preferences, and other

characteristics, suggesting that cross-sectional comparisons between mothers residing in different

regions are unlikely to isolate the causal effects of temperature exposure from the influences of

other factors.

To address this challenge, we follow the prior literature by leveraging temperature variation
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within narrowly defined geographic and demographic cells, and flexibly accounting for local outcome

trends. We first collapse our data into cells defined by all possible combinations between the

mother’s county of residence at delivery, the year-month of childbirth, and race/ethnicity categories

(White, Black, Hispanic, Asian American, and other). We then use the following regression model

to estimate the effects of exposure to extreme temperature during pregnancy:

Yc,y,m,r = α+
3∑

t=1

10∑
j=1,j 6=7

βt,jTemp
t,j
c,y,m+

3∑
t=1

f(Preciptc,y,m)+θc,m,r+ηy,s(c)+δc,m×f(y)+εc,y,m,r (1)

Yc,y,m,r is an outcome for a mother residing in county c, giving birth in year y and month m, of

race/ethnicity r, and we rescale the outcomes by multiplying by 100 (e.g., the number of mothers

admitted to the hospital during pregnancy per 100 mothers). The variables Tempt,jc,y,m represent the

number of days in trimester t falling into each (j) of the 10 bins of temperature, ranging from less

than 10◦F to 90◦F or more, as illustrated in Figure 1.7 The bin representing temperatures in the

[60oF , 70oF ) range is omitted as the reference group. Thus, the βt,j coefficients can be interpreted

as estimates of the impact of an additional day in a given temperature range (j) relative to a day in

the [60oF , 70oF ) range in trimester t. We are particularly interested in the coefficient βt,10, which

measures the effect of an additional above-90-degree day in each trimester t.

We control for indicators for the bottom and the top terciles of mean precipitation in each

trimester, f(Preciptc,y,m). θc,m,r are fixed effects for every birth-county×birth-month×race cell.

ηy,s(c) are birth-state×birth-year fixed effects, which account for differential outcome trends across

states, any state time-varying policies, and the fact that we observe states in different sets of years

in the HCUP data. δc,m×f(y) are county-by-calendar-month-specific trends (e.g., Queens-County-

by-August-specific trends), which we model with a quadratic polynomial. To further account for

differential population sorting based on temperature, we control for the average number of mothers

per 100 residing in zip codes in different quartiles of the median income distribution. We weight

all regressions by cell size.8 Because weather is highly spatially correlated, we cluster our standard

errors on the commuting zone level.9

Identifying Assumption. Our model identifies the effects of extreme heat exposure using year-

to-year deviations in temperature from the county-month trend within each cell. Thus, our esti-

mates of βt,j represent causal effects of pregnancy exposure to temperature under the assumption

that the within-cell variation in temperature (conditional on birth-state×birth-year fixed effects and

7In some specifications, we examine the effect of the number of days during the entire period of preg-
nancy falling into each temperature bin. That is, we replace

∑3
t=1

∑10
j=1,j 6=7 βt,jTemp

t,j
c,y,m in equation (1) with∑10

j=1,j 6=7 βjTemp
j
c,y,m.

8Results based on collapsed data with cell size weights are identical to those using the underlying individual-level
data, since we do not have any other individual-level controls.

9Our results are also robust to using an alternative adjustment of standard errors to reflect spatial dependence,
as modeled by Conley (1999) and implemented by Hsiang (2010). Results available upon request.
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county×calendar-month trends) is uncorrelated with other determinants of maternal health. While

this assumption is inherently untestable, we present some indirect tests to assess its plausibility.

First, we check whether there is any systematic relationship between temperature variation

and population demographic characteristics. We collapse our data to the birth-county×birth-

year×birth-month level, and estimate a version of equation (1), excluding controls for demographic

characteristics and zip code income quartiles. As outcomes, we consider the number of mothers

who are of different races/ethnicities and the numbers of mothers residing in zip codes in different

quartiles of the median income distribution per 100.

Panel A of Appendix Table A.1 shows that our measure of extreme heat exposure is not cor-

related with the shares of mothers who are white, black, or Asian. However, we do find a positive

correlation between the number of mothers who are Hispanic and the number of days above 90

degrees during pregnancy, suggesting the importance of examining the effects of heat exposure

within cells defined by different race/ethnicity subgroups.10

In panel B of Appendix Table A.1, we find a marginally significant positive correlation between

heat exposure during pregnancy and the share of mothers residing in zip codes in the third quartile

of the median income distribution (but not with the shares of mothers in other quartiles). To

address the concern that differential trends in exposure to heat are correlated with income, we

include controls for zip code level income quartiles in all of our regression models.

Second, we test the robustness of our results to including hypothetical exposure to temperature

assuming a mother gave birth two years prior to her actual delivery year-month. As we show below,

we find that our main effects of exposure during pregnancy remain strong and significant even when

we add two-year leads in temperature exposure.

4 Results

Table 2 and Figure 2(a)-(c) show that extreme heat exposure during the first trimester raises the

likelihood that a mother is hospitalized during pregnancy. Specifically, we find that an additional

day with above-90-degree heat during the first trimester raises the likelihood that a mother is

hospitalized during pregnancy by 0.03 percentage points, which translates into a 0.8 percent effect

size when evaluated at the sample mean.11 In column (2) of Table 2, we show that the increase

10In supplementary analyses, we have also examined the relationship between extreme heat and the sex ratio at
birth, finding no significant effects (results available upon request). The lack of relationship between extreme heat
exposure and infant sex suggests that there is no significant effect on miscarriages, as changes in the sex ratio at birth
are often used as proxies for changes in miscarriage rates (e.g., Sanders and Stoecker, 2015; Halla and Zweimüller,
2013).

11Appendix Table A.2 shows how the estimates change as we add in different fixed effects and trends. Adding in
race×birth-county×birth-month fixed effects substantially changes the estimates on heat exposure during the first
trimester, highlighting the importance of controlling for differences in maternal outcomes across counties and birth
months. Further adding in state×year fixed effects and quadratic county×month trends increases the precision and
the magnitudes of the estimates slightly. However, the estimates on heat exposure during the first trimester in
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in prenatal hospitalizations is driven entirely by visits for emergency or urgent reasons rather than

scheduled appointments, which implies a deterioration in underlying maternal health as opposed

to an improvement in health care access or utilization.

In Figure 3, we present estimates and 95% confidence intervals from regression models that

use indicators for various diagnoses codes associated with prenatal hospitalization as outcomes.

We find that the increase in maternal hospitalizations in response to extreme heat during the first

trimester is driven by a range of pregnancy complications (ICD-9 codes 640-649). Specifically, these

include hospitalizations due to hemorrhage in early pregnancy (ICD 640), antepartum hemorrhage

(ICD 641), excessive vomiting (ICD 643), early or threatened labor (ICD 644), and infectious and

parasitic conditions (ICD 647). Several of these conditions can be life-threatening—hemorrhage is

the third leading cause of maternal pregnancy-related death, while infections can result in sepsis,

which is the number one cause of maternal pregnancy-related death (Kuriya et al., 2016).

Next, we examine heterogeneity in the effect on maternal hospitalizations during pregnancy by

geography, timing of the hospitalization, and maternal race.

Adaptation and Heterogeneity Across Historically Cooler and Hotter Counties. To

examine the role of adaptation to extreme heat, we study differences between mothers residing

in counties with below- and above-median daily mean temperatures averaged over the whole data

period. Table 3 and Figure 2(d)-(i) show that the effect of extreme heat on maternal pregnancy

hospitalization is driven entirely by women residing in cooler rather than hotter counties. Specifi-

cally, an additional day with above-90-degree temperature increases the likelihood of an emergency

or urgent hospitalization during pregnancy by 0.11 percentage points (or 4.4 percent) for mothers in

below-median counties. For mothers in above-median counties, the corresponding estimate is much

smaller and statistically insignificant. Moreover, the difference in the effects on emergency/urgent

hospitalizations between mothers in below-median and above-median counties is statistically signif-

icant (p-value: 0.009). Further, in Appendix Figure A.1, we show that the effect sizes for different

diagnosis categories are larger in cooler than in hotter counties.

Timing of Hospitalization and Differences by Maternal Race. We investigate the timing

of prenatal hospitalization in Table 4 and find that extreme heat exposure during the first trimester

has both immediate and latent effects on prenatal hospitalization for mothers. Specifically, Panel

B of Table 4 suggests that additional day with above-90-degree heat in the first trimester increases

the likelihood of hospitalization in the first trimester by 0.01 percentage points and hospitalization

in the third trimester by 0.02 percentage points.

Further, we find that the effect of exposure to extreme heat is much more pronounced for black

than for white mothers. Table 5 shows that an additional day with above-90-degree heat increases

columns (3) and (4) are within the confidence interval of our main estimate in column (5), [0.009, 0.053], suggesting
that our main results are not driven by a particular choice of fixed effects and trends.

9



first trimester hospitalizations by 0.04 percentage points (or 3.2 percent) and third trimester hos-

pitalizations by 0.08 percentage points (2.3 percent) for black mothers. By contrast, we find no

significant relationship between heat exposure and prenatal hospitalizations in any trimester for

white mothers. The differences in effects are statistically significant (p-values are 0.014 and 0.077,

respectively, for first and third trimester hospitalizations).12 Appendix Figure A.2 also shows that

the coefficient magnitudes for effects on various diagnosis categories are larger for black than for

white mothers (although the differences here are not always statistically significant, due to reduced

power when focusing on specific diagnosis codes).

Lastly, Table 6 demonstrates that the increases in prenatal hospitalizations for black mothers

are much larger in historically cooler counties for all three trimesters, highlighting once again the

importance of adaptation. The differences in estimated coefficients are statistically significant with

p-values close to zero.

On the whole, these results suggest that temperature exposure may be an important determinant

of the widely documented black-white gap in maternal pregnancy-related health. In particular, as

black mothers are on average exposed to more days with extreme heat than white mothers, our

estimates imply that disparities in both the levels of extreme heat exposure and the magnitudes of

the effects of exposure could help explain the racial gap in maternal health.

Maternal Health at and after Childbirth. Table 7 presents results for maternal length of

hospital stay at the time of childbirth and readmission to the hospital after childbirth. Column (1)

of Table 7 shows that an additional day with above-90-degree heat in the first trimester leads to a

significant 0.006 day increase in the average length of stay (0.2 percent). Consistent with our results

on prenatal hospitalizations, Table 8 shows that the increase in maternal length of stay is larger

in historically cooler than in hotter counties, and the difference is marginally significant (p-value:

0.063). However, unlike the results for pregnancy hospitalizations, Table 9 shows that the effect

on maternal length of stay is larger for white than for black mothers (although the difference is

not statistically significant at conventional levels). This pattern provides suggestive evidence that

white mothers may be better able to compensate for adverse health effects by staying longer in the

hospital at childbirth, reflecting racial disparities in women’s ability to access health care resources

(Nelson, 2002; Hostetter and Klein, 2018).

We do not find any evidence that prenatal heat exposure raises the likelihood that a mother

is readmitted to the hospital in the postpartum period. If anything, Table 7 shows that third

trimester exposure to extreme heat reduces the risk of postpartum readmission on average. That

said, the negative effect on postpartum readmission is driven entirely by white mothers (Table

9), while the coefficient for black mothers is positive (albeit insignificant). This pattern is again

consistent with the idea that white mothers are able to compensate for prenatal health insults by

12When we estimate our models separately for black and white mothers, we drop counties that have fewer than
50 black or white mothers. This sample restriction allows us to identify the effects for each subgroup by providing
sufficient variation in temperature exposure conditional on a large set of fixed effects and trends.
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staying longer at the hospital at the time of childbirth, which may avert the need for postpartum

hospital readmission.

4.1 Additional Results

Placebo Temperature Exposure. To assess the possibility of bias due to differential trends

in temperature exposure that are not controlled for in our main regression models, we test the

robustness of our results to including two-year leads of temperature exposure. In particular, for

every birth-county×birth-year-month, we calculate the hypothetical exposure to temperature as-

suming that the child had been born two years prior. We use a two-year (instead of a one-year) lead

to avoid confounding our estimates with possible effects of temperature on conception or fertility

(Lam et al., 1994; Barreca et al., 2015; Wilde et al., 2017). Appendix Table A.3 shows that our

main results are robust to the inclusion of this placebo control.

Controlling for Air Pollution. Further, since prior research shows that pollution is highly

correlated with weather and affects population health (e.g., Ye et al., 2012), we estimate our main

models, controlling for the air quality index (AQI) as measured by the Environmental Protection

Agency. Since AQI is not available for all counties and year/months in our analysis sample, we also

re-run our main specifications using a subsample of the data with non-missing AQI measures. We

find that our estimates are similar and robust to including pollution controls (see Appendix Table

A.4).

Alternative Relative Temperature Exposure Measure. Lastly, as an alternative way of

examining the role of adaptation to extreme heat, we estimate models that analyze the relationship

between maternal hospitalizations and temperature deviations from the historical county-month

mean. We calculate the average temperature for every county-month (e.g., July in Queens county,

NY), using data from all available years. Then, for every month in all county-year combinations

(e.g., July 2012 in Queens county, NY), we calculate the difference between the given month’s mean

temperature and the overall average for that county-month, and divide by the standard deviation

(SD). We thus obtain a z-score that allows us to classify each month in any given county-year

based on its deviation from the overall county-month average. We then estimate a regression model

analogous to equation (1), except that instead of measuring the number of days that fall into each

of the ten bins of temperature in absolute terms (◦F), we use eight bins of SDs of temperature from

the county-month average, ranging from less than −3 SDs to at least 3 SDs or more. We report the

coefficient on the number of days with “above-3-SD” heat during pregnancy in Appendix Table A.5.

If anything, using the relative measure of temperature exposure strengthens our results. We find

that an additional day with “above-3-SD” heat is associated with a larger increase in the likelihood
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of maternal hospitalization during pregnancy than an additional day with above-90◦F.13 These

results underscore the role of adaptation and indicate that extreme heat is particularly damaging

when it is a relatively rare event.

5 Conclusion

Scientists predict that global average temperatures will rise over the next 50 to 100 years, mostly

due to a shift to the right in the upper tail of the temperature distribution. For instance, the number

of days with mean temperature above 90◦F in the average American county is forecasted to increase

from about 1 to approximately 43 per year by 2070-2099 (Intergovernmental Panel on Climate

Change, 2014). Understanding the health consequences of this increase in extreme heat is critical

for informing discussions about the costs of climate change and the possible benefits of mitigating

policies. Moreover, the growing literature that demonstrates heterogeneity in effects of heat across

regions with different average temperatures and the importance of adaptation (Deschênes and

Greenstone, 2011; Graff Zivin et al., 2014; Barreca et al., 2015; Barreca et al., 2016; Carleton et

al., 2018) suggests that extreme deviations from typical weather may be particularly damaging.

In this paper, we contribute to the evidence on the costs of exposure to extreme heat by

documenting maternal health impacts. We use the universe of inpatient discharge records from three

states and find that exposure to extreme heat in the first trimester of pregnancy leads to an increase

in women’s emergency and urgent prenatal hospitalizations for pregnancy-related complications

that are potentially life-threatening. The fact that the increase in hospitalizations during pregnancy

is larger in historically cooler than hotter counties highlights the importance of adaptation, and

the larger effects for black than for white mothers suggest that climate change may exacerbate the

already substantial racial gap in maternal health.

We further find that prenatal exposure to extreme heat raises maternal length of hospital stay

at the time of childbirth and reduces the likelihood of postpartum hospital readmission, which may

in part represent a compensatory response for prenatal health insults. The fact that these effects

are only observed for white and not black mothers is consistent with the widely documented racial

disparities in the amount and quality of health care services received by patients, possibly due to

factors including implicit bias and structural racism (Hostetter and Klein, 2018).

One limitation of our study is that we are not able to measure health impacts not captured by

the hospitalizations data. Just like measures of maternal health in birth records may miss effects

on other aspects of health that we do measure, our estimates based on hospitalizations cannot

capture potential impacts on more minor health insults that do not lead to hospital encounters.

Future research may expand our understanding of these effects with better data on other health

13Appendix Table A.6 summarizes the temperature cutoffs for our relative measure of extreme heat (i.e., above-
3-SD heat). It shows that the relative measure covers a larger range of temperature than the absolute measure of
above 90◦F, which explains the discrepancy in the estimates between the two measures.
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conditions.
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6 Figures
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Figure 1: Distribution of Daily Average Temperature

Sources: NOAA weather data.

Notes: This figure shows the overall average number of days per year falling into each of the temperature bins (◦F)

denoted on the x−axis. We compute daily average temperature by taking the average of minimum and maximum

temperature in a given day measured at weather stations in Arizona 2003 to 2007, New York 2003 to 2013, and

Washington 2003 to 2013.

19



−
.0

4
−

.0
2

0
.0

2
.0

4
.0

6

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(a) Hospitalization during
pregnancy, trimester 1 exposure

−
.1

−
.0

5
0

.0
5

.1

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(b) Hospitalization during
pregnancy, trimester 2 exposure

−
.0

5
0

.0
5

.1

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(c) Hospitalization during
pregnancy, trimester 3 exposure

−
.2

−
.1

0
.1

.2

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(d) Hospitalization during
pregnancy, trimester 1 exposure,

colder counties

−
.3

−
.2

−
.1

0
.1

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(e) Hospitalization during
pregnancy, trimester 2 exposure,

colder counties

−
.2

0
.2

.4
.6

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(f) Hospitalization during
pregnancy, trimester 3 exposure,

colder counties

−
.1

−
.0

5
0

.0
5

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(g) Hospitalization during
pregnancy, trimester 1 exposure,

hotter counties

−
.1

5
−

.1
−

.0
5

0
.0

5
.1

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(h) Hospitalization during
pregnancy, trimester 2 exposure,

hotter counties

−
.1

−
.0

5
0

.0
5

.1

<10 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 >90

Temperature bins

(i) Hospitalization during pregnancy,
trimester 3 exposure, hotter counties

Figure 2: Effects of Temperature During Pregnancy on Any Prenatal Hospitalization

Notes: The figures plot regression coefficients, βt,j , from equation (1) for each temperature bin (j) for each trimester

(t) with 95% confidence intervals. Outcome is rescaled by multiplying by 100. Standard errors are clustered by the

commuting zone level. All regressions control for mother’s race/ethnicity×birth-county×birth-month fixed effects,

zip code level income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month

level, and a series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the

race×birth-county×birth-year-month level. Cell size weights are used.
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Figure 3: Effects of Temperature Above 90 Degrees During the First Trimester on
Diagnoses at Prenatal Hospitalization

Notes: The figure plots separate regression coefficients, β1,10, from equation (1) for temperature above 90-degrees for

the first trimester with 95% confidence intervals for each diagnosis category. Outcomes are rescaled by multiplying

by 100. ICD codes 640-649 indicate “complications mainly related to pregnancy.” The definition of each sub-

category is as follows. ICD 640: Hemorrhage in early pregnancy; ICD 641: Antepartum hemorrhage abruptio

placentae and placenta previa; ICD 642: Hypertension complicating pregnancy childbirth and the puerperium; ICD

643: Excessive vomiting in pregnancy; ICD 644: Early or threatened labor; ICD 645: Late pregnancy; ICD 646:

Other complications of pregnancy not elsewhere classified; ICD 647: Infectious and parasitic conditions in the mother

classifiable elsewhere but complicating pregnancy childbirth or the puerperium; ICD 648: Other current conditions in

the mother classifiable elsewhere but complicating pregnancy childbirth or the puerperium; ICD 649: Other conditions

or status of the mother complicating pregnancy, childbirth, or the puerperium. Standard errors are clustered by the

commuting zone level. All regressions control for mother’s race/ethnicity×birth-county×birth-month fixed effects,

zip code level income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month

level, and a series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the

race×birth-county×birth-year-month level. Cell size weights are used.
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7 Tables

Table 1: Summary Statistics

(1) (2) (3) (4)

Combining
three states

Arizona New York Washington

A. Exposure to temperature extremes

Annual days with mean temperature
[80oF, 90oF ) 5.206 38.907 3.324 1.612
≥ 90oF 1.178 16.533 0.046 0.003

B. Maternal health outcomes (per 100 mothers)

Any hospitalization during pregnancy 3.995 3.645 4.032 4.022
Emergency/urgent hospitalization during pregnancy 2.571 2.945 2.601 2.335

Diagnoses at prenatal hospitalization
Pregnancy-related complication (ICD 640-649) 3.722 3.501 3.771 3.659
Hemorrhage in early pregnancy (ICD 640) 0.048 0.043 0.053 0.035
Antepartum hemorrhage (ICD 641) 0.284 0.270 0.294 0.257
Hypertension complications (ICD 642) 0.489 0.526 0.464 0.551
Excessive vomiting in pregnancy (ICD 643) 0.227 0.154 0.251 0.184
Early or threatened labor (ICD 644) 1.451 1.654 1.437 1.415
Late pregnancy (ICD 645) 0.239 0.105 0.255 0.243
Other complications (ICD 646) 0.869 0.961 0.855 0.876
Infectious and parasitic conditions (ICD 647) 0.158 0.112 0.151 0.197
Other current conditions (ICD 648) 2.031 1.778 2.129 1.837
Other conditions (ICD 649) 0.273 0.032 0.279 0.351

Timing of prenatal hospitalization
Trimester 1 0.546 0.279 0.606 0.468
Trimester 2 1.212 0.880 1.261 1.195
Trimester 3 2.562 2.685 2.505 2.683

Maternal outcomes at and after childbirth
Length of stay at childbirth 2.691 2.568 2.819 2.354
Any readmission 1.979 1.518 1.973 2.174
Readmission within 28 days 1.144 0.908 1.157 1.198

Observations 44349 3902 30347 10100

Sources: NOAA weather data and HCUP databases.

Notes: We use the data collapsed at the race×birth-county×birth-year-month level.
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Table 2: Effects of Exposure to Above-90-Degree Heat on Prenatal Hospitalization

(1) (2)

Prenatal hospitalization

Any Emergency/urgent
Panel A. Exposure during pregnancy

# Days above-90-degree during pregnancy 0.021 0.010
(0.021) (0.014)

Observations 44336 44336
Adjusted R2 0.465 0.489
Mean 3.995 2.571

Panel B. Exposure separately by each trimester

# Days above-90-degree in trimester 1 0.031∗∗∗ 0.032∗∗∗

(0.011) (0.008)

# Days above-90-degree in trimester 2 0.018 0.001
(0.029) (0.024)

# Days above-90-degree in trimester 3 0.004 -0.007
(0.030) (0.023)

Observations 44342 44342
Adjusted R2 0.466 0.490
Mean 3.995 2.571

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust stan-
dard errors, clustered by commuting zone, are in parentheses. Each outcome is rescaled
by multiplying by 100. All regressions control for mother’s race/ethnicity×birth-
county×birth-month fixed effects, zip code level income quartiles, birth-state×birth-
year fixed effect, a quadratic time at the county×calendar month level, and a series of
indicators for terciles of precipitation in each trimester. We use the data collapsed at
the race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10,
** p<0.05, *** p<0.01.
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Table 3: Effects of Exposure to Above-90-Degree Heat on Prenatal Hospitalization, by Historic
Average Daily Mean Temperature

(1) (2)

Prenatal hospitalization

Any Emergency/urgent
Panel A. Below median counties

# Days above-90-degree during pregnancy 0.073 0.109∗∗∗

(0.051) (0.038)

Observations 21816 21816
Adjusted R2 0.204 0.181
Mean 3.876 2.476

Panel B. Above median counties

# Days above-90-degree during pregnancy 0.019 0.006
(0.021) (0.013)

Observations 22520 22520
Adjusted R2 0.573 0.595
Mean 4.111 2.663

P-value from testing the difference 0.297 0.009

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust stan-
dard errors, clustered by commuting zone, are in parentheses. Each outcome is rescaled
by multiplying by 100. All regressions control for mother’s race/ethnicity×birth-
county×birth-month fixed effects, zip code level income quartiles, birth-state×birth-
year fixed effect, a quadratic time at the county×calendar month level, and a series of
indicators for terciles of precipitation in each trimester. We use the data collapsed at
the race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10,
** p<0.05, *** p<0.01.
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Table 4: Effects of Exposure to Above-90-Degree Heat on the Timing of Prenatal Hospitalization

(1) (2) (3)
Trimester 1 Trimester 2 Trimester 3

Panel A. Exposure during pregnancy

# Days above-90-degree during pregnancy 0.001 0.007 0.017∗∗

(0.005) (0.013) (0.008)

Observations 44336 44336 44336
Adjusted R2 0.225 0.327 0.324
Mean 0.546 1.212 2.562

Panel B. Exposure separately by each trimester

# Days above-90-degree in trimester 1 0.009∗∗ 0.007 0.023∗∗

(0.005) (0.008) (0.009)

# Days above-90-degree in trimester 2 0.003 -0.001 0.015
(0.010) (0.021) (0.011)

# Days above-90-degree in trimester 3 -0.006 0.004 0.009
(0.007) (0.019) (0.007)

Observations 44342 44342 44342
Adjusted R2 0.225 0.327 0.324
Mean 0.546 1.212 2.562

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust
standard errors, clustered by commuting zone, are in parentheses. Each outcome is
rescaled by multiplying by 100. All regressions control for mother’s race/ethnicity×birth-
county×birth-month fixed effects, zip code level income quartiles, birth-state×birth-year
fixed effect, a quadratic time at the county×calendar month level, and a series of indi-
cators for terciles of precipitation in each trimester. We use the data collapsed at the
race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10, **
p<0.05, *** p<0.01.

Table 5: Effects of Exposure to Above-90-Degree Heat on the Timing of Prenatal Hospitalization,
by Race

(1) (2) (3)
Trimester 1 Trimester 2 Trimester 3

Panel A. White mothers

# Days above-90-degree during pregnancy 0.007 -0.004 0.030
(0.007) (0.010) (0.018)

Observations 9835 9835 9835
Adjusted R2 0.242 0.315 0.328
Mean 0.514 1.146 2.489

Panel B. Black mothers

# Days above-90-degree during pregnancy 0.035∗∗∗ 0.055 0.084∗

(0.009) (0.066) (0.043)

Observations 4923 4923 4923
Adjusted R2 0.162 0.369 0.273
Mean 1.093 2.246 3.637

P-value from testing the difference 0.014 0.288 0.077

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust
standard errors, clustered by commuting zone, are in parentheses. Each outcome is
rescaled by multiplying by 100. All regressions control for mother’s race/ethnicity×birth-
county×birth-month fixed effects, zip code level income quartiles, birth-state×birth-year
fixed effect, a quadratic time at the county×calendar month level, and a series of indi-
cators for terciles of precipitation in each trimester. We use the data collapsed at the
race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10, **
p<0.05, *** p<0.01.
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Table 6: Effects of Exposure to Above-90-Degree Heat on the Timing of Prenatal Hospitalization,
by Historic Average Daily Mean Temperature & Race

(1) (2) (3)
Trimester 1 Trimester 2 Trimester 3

Panel A1. Below median counties, white mothers

# Days above-90-degree during pregnancy -0.062∗∗ 0.046 0.067
(0.021) (0.038) (0.054)

Observations 5602 5602 5602
Adjusted R2 0.220 0.173 0.225
Mean 0.546 1.111 2.426

Panel A2. Above median counties, white mothers

# Days above-90-degree during pregnancy 0.011 -0.008 0.030
(0.009) (0.006) (0.021)

Observations 4233 4233 4233
Adjusted R2 0.275 0.451 0.399
Mean 0.471 1.193 2.574

P-value from testing the difference 0.003 0.160 0.513

Panel B1. Below median counties, black mothers

# Days above-90-degree during pregnancy 0.560∗∗ 0.703∗∗∗ 0.892∗∗∗

(0.192) (0.220) (0.079)

Observations 2250 2250 2250
Adjusted R2 -0.001 0.154 0.137
Mean 1.156 2.081 3.106

Panel B2. Above median counties, black mothers

# Days above-90-degree during pregnancy 0.033∗∗∗ 0.053 0.086∗

(0.009) (0.066) (0.048)

Observations 2673 2673 2673
Adjusted R2 0.270 0.461 0.316
Mean 1.040 2.384 4.083

P-value from testing the difference 0.008 0.007 0.000

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust
standard errors, clustered by commuting zone, are in parentheses. Each outcome is
rescaled by multiplying by 100. All regressions control for mother’s race/ethnicity×birth-
county×birth-month fixed effects, zip code level income quartiles, birth-state×birth-year
fixed effect, a quadratic time at the county×calendar month level, and a series of indi-
cators for terciles of precipitation in each trimester. We use the data collapsed at the
race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10, **
p<0.05, *** p<0.01.
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Table 7: Effects of Exposure to Above-90-Degree Heat on Maternal Health at and after Childbirth

(1) (2) (3)

Length of stay at
childbirth

Any readmission Readmission
within 28 days

Panel A. Exposure during pregnancy

# Days above-90-degree during pregnancy 0.003∗∗ -0.009 -0.008∗∗∗

(0.002) (0.007) (0.003)

Observations 44336 44336 44336
Adjusted R2 0.551 0.086 0.056
Mean 2.691 1.979 1.144

Panel B. Exposure separately by each trimester

# Days above-90-degree in trimester 1 0.006∗∗∗ -0.008 -0.007
(0.001) (0.007) (0.005)

# Days above-90-degree in trimester 2 0.005 -0.005 -0.009
(0.003) (0.009) (0.006)

# Days above-90-degree in trimester 3 -0.001 -0.020∗∗∗ -0.010∗∗∗

(0.002) (0.007) (0.002)

Observations 44342 44342 44342
Adjusted R2 0.551 0.086 0.055
Mean 2.691 1.979 1.144

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust standard errors, clus-
tered by commuting zone, are in parentheses. Each binary outcome is rescaled by multiplying by 100.
All regressions control for mother’s race/ethnicity×birth county×birth month fixed effects, zip code level
income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month level,
and a series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the
race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10, ** p<0.05, *** p<0.01.

Table 8: Effects of Exposure to Above-90-Degree Heat on Maternal Health at and after Childbirth,
by Historic Average Daily Mean Temperature

(1) (2) (3)

Length of stay at
childbirth

Any readmission Readmission
within 28 days

Panel A. Below median counties

# Days above-90-degree during pregnancy 0.016∗∗ -0.059 -0.004
(0.007) (0.044) (0.030)

Observations 21816 21816 21816
Adjusted R2 0.280 0.040 0.015
Mean 2.691 1.979 1.155

Panel B. Above median counties

# Days above-90-degree during pregnancy 0.003∗∗ -0.009 -0.007∗∗

(0.001) (0.007) (0.003)

Observations 22520 22520 22520
Adjusted R2 0.590 0.129 0.092
Mean 2.691 1.979 1.134

P-value from testing the difference 0.063 0.229 0.908

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust standard errors, clus-
tered by commuting zone, are in parentheses. Each binary outcome is rescaled by multiplying by 100.
All regressions control for mother’s race/ethnicity×birth county×birth month fixed effects, zip code level
income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month level,
and a series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the
race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10, ** p<0.05, *** p<0.01.
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Table 9: Effects of Exposure to Above-90-Degree Heat on Maternal Health at and after Childbirth,
by Race

(1) (2) (3)

Length of stay at
childbirth

Any readmission Readmission
within 28 days

Panel A. White mothers

# Days above-90-degree during pregnancy 0.005∗∗ -0.019∗∗∗ -0.014∗∗

(0.002) (0.005) (0.006)

Observations 9835 9835 9835
Adjusted R2 0.719 0.079 0.036
Mean 2.565 1.894 1.068

Panel B. Black mothers

# Days above-90-degree during pregnancy -0.001 0.014 0.004
(0.005) (0.019) (0.027)

Observations 4923 4923 4923
Adjusted R2 0.324 -0.009 0.028
Mean 2.879 3.069 1.900

P-value from testing the difference 0.352 0.096 0.386

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust standard errors, clus-
tered by commuting zone, are in parentheses. Each binary outcome is rescaled by multiplying by 100.
All regressions control for mother’s race/ethnicity×birth county×birth month fixed effects, zip code level
income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month level,
and a series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the
race×birth-county×birth-year-month level. Cell size weights are used. * p<0.10, ** p<0.05, *** p<0.01.
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Appendix A. Appendix Figures and Tables
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Figure A.1: Effects of Temperature Above 90 Degrees During Pregnancy on Diagnoses
at Prenatal Hospitalization by Historic Temperature

Notes: The figure plots separate regression coefficients, β1,10, from equation (1) for temperature above 90-degrees for

the first trimester with 95% confidence intervals for each diagnosis category. Outcomes are rescaled by multiplying

by 100. ICD codes 640-649 indicate “complications mainly related to pregnancy.” The definition of each sub-

category is as follows. ICD 640: Hemorrhage in early pregnancy; ICD 641: Antepartum hemorrhage abruptio

placentae and placenta previa; ICD 642: Hypertension complicating pregnancy childbirth and the puerperium; ICD

643: Excessive vomiting in pregnancy; ICD 644: Early or threatened labor; ICD 645: Late pregnancy; ICD 646:

Other complications of pregnancy not elsewhere classified; ICD 647: Infectious and parasitic conditions in the mother

classifiable elsewhere but complicating pregnancy childbirth or the puerperium; ICD 648: Other current conditions in

the mother classifiable elsewhere but complicating pregnancy childbirth or the puerperium; ICD 649: Other conditions

or status of the mother complicating pregnancy, childbirth, or the puerperium. Standard errors are clustered by the

commuting zone level. All regressions control for mother’s race/ethnicity×birth-county×birth-month fixed effects,

zip code level income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month

level, and a series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the

race×birth-county×birth-year-month level. Cell size weights are used.

29



ICD 640−649

ICD 640

ICD 641

ICD 642

ICD 643

ICD 644

ICD 645

ICD 646

ICD 647

ICD 648

ICD 649

−.2 0 .2 .4
Estimates, white mothers

(a) White mothers

ICD 640−649

ICD 640

ICD 641

ICD 642

ICD 643

ICD 644

ICD 645

ICD 646

ICD 647

ICD 648

ICD 649

−.2 0 .2 .4
Estimates, black mothers

(b) Black mothers

Figure A.2: Effects of Temperature Above 90 Degrees During Pregnancy on Diagnoses
at Prenatal Hospitalization by Race

Notes: The figure plots separate regression coefficients, β1,10, from equation (1) for temperature above 90-degrees for

the first trimester with 95% confidence intervals for each diagnosis category. Outcomes are rescaled by multiplying

by 100. ICD codes 640-649 indicate “complications mainly related to pregnancy.” The definition of each sub-

category is as follows. ICD 640: Hemorrhage in early pregnancy; ICD 641: Antepartum hemorrhage abruptio

placentae and placenta previa; ICD 642: Hypertension complicating pregnancy childbirth and the puerperium; ICD

643: Excessive vomiting in pregnancy; ICD 644: Early or threatened labor; ICD 645: Late pregnancy; ICD 646:

Other complications of pregnancy not elsewhere classified; ICD 647: Infectious and parasitic conditions in the mother

classifiable elsewhere but complicating pregnancy childbirth or the puerperium; ICD 648: Other current conditions in

the mother classifiable elsewhere but complicating pregnancy childbirth or the puerperium; ICD 649: Other conditions

or status of the mother complicating pregnancy, childbirth, or the puerperium. Standard errors are clustered by the

commuting zone level. All regressions control for mother’s race/ethnicity×birth-county×birth-month fixed effects,

zip code level income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month

level, and a series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the

race×birth-county×birth-year-month level. Cell size weights are used.
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Table A.1: Placebo Outcome: Race and Zip-Code-Level Income

(1) (2) (3) (4)
White Black Hispanic Asian

A. Race

# Days above-90-degree during pregnancy -0.025 -0.012 0.165∗∗ -0.008
(0.049) (0.013) (0.064) (0.028)

Observations 10121 10121 10121 10121
Adjusted R2 0.962 0.972 0.934 0.889
Mean 76.614 4.547 11.286 2.305

Q1 Q2 Q3 Q4

B. Zip-code-level income quartiles

# Days above-90-degree during pregnancy -0.223 0.144 0.291∗ -0.212
(0.387) (0.367) (0.147) (0.138)

Observations 8978 8978 8978 8978
Adjusted R2 0.958 0.919 0.915 0.985
Mean 25.033 41.301 22.978 10.688

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust standard errors,
clustered by commuting zone, are in parentheses. All regressions control for birth-county×birth-
month fixed effects, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month
level, and a series of indicators for terciles of precipitation. We use the data collapsed at the birth-
county×birth-month level. Cell size weights are used. * p<0.10, ** p<0.05, *** p<0.01.

Table A.2: Effects of Exposure to Above-90-Degree Heat on Any Prenatal Hospitalization

(1) (2) (3) (4) (5)

Panel A. Exposure during pregnancy

# Days above-90-degree during pregnancy -0.015∗∗ -0.010 0.009 -0.002 0.021
(0.006) (0.006) (0.011) (0.014) (0.021)

Observations 44337 44337 44336 44336 44336
Adjusted R2 0.039 0.073 0.442 0.445 0.465
Mean 3.995

Panel B. Exposure separately by each trimester

# Days above-90-degree in trimester 1 -0.031∗∗∗ -0.025∗∗∗ 0.024∗ 0.016∗ 0.031∗∗∗

(0.007) (0.006) (0.012) (0.009) (0.011)

# Days above-90-degree in trimester 2 0.001 0.010 -0.007 -0.018 0.018
(0.010) (0.009) (0.009) (0.014) (0.029)

# Days above-90-degree in trimester 3 -0.016∗ -0.012 0.005 -0.012 0.004
(0.009) (0.008) (0.009) (0.018) (0.030)

Observations 44343 44343 44342 44342 44342
Adjusted R2 0.145 0.175 0.443 0.446 0.466
Mean 3.995

Precipitation Y Y Y Y Y
Zip code level income quartiles Y Y Y Y
Race×birth-county×birth-month fixed effects Y Y Y
Birth-state×birth-year fixed effects Y Y
Quadratic birth-county×birth-month trends Y

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust standard errors, clustered by commuting
zone, are in parentheses. Each outcome is rescaled by multiplying by 100. The bottom rows of the table shows the list of
control variables included in each regression in addition to the temperature exposure variables. ‘Precipitation’ includes a
series of indicators for terciles of precipitation in each trimester. We use the data collapsed at the race×birth-county×birth-
year-month level. Cell size weights are used. * p<0.10, ** p<0.05, *** p<0.01.
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Table A.3: Robustness to Including Two-Year Leads in Temperature Exposure

(1) (2)

Prenatal hospitalization

Any Emergency/urgent

Panel A. Main specification in the subsample with two-year leads

# Days above-90-degree during pregnancy 0.108∗∗∗ 0.069∗∗∗

(0.019) (0.021)

Observations 35775 35775
Adjusted R2 0.448 0.476
Mean 3.995 2.571

Panel B. Adding two-year leads

# Days above-90-degree during pregnancy 0.150∗∗∗ 0.100∗∗∗

(0.021) (0.021)

# Days above-90-degree during pregnancy (placebo) 0.046 0.068∗∗∗

(0.035) (0.012)

Observations 35775 35775
Adjusted R2 0.448 0.477
Mean 3.995 2.571

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust standard er-
rors, clustered by commuting zone, are in parentheses. Each outcome is rescaled by multiplying
by 100. All regressions controls for mother’s race/ethnicity×birth-county×birth-month fixed ef-
fects, zip code level income quartiles, birth-state×birth-year fixed effect, a quadratic time at the
county×calendar month level, and a series of indicators for terciles of precipitation. We use the
data collapsed at the race×birth-county×birth-year-month level. Cell size weights are used. *
p<0.10, ** p<0.05, *** p<0.01.

Table A.4: Effects of Exposure to Above-90-Degree Heat on Prenatal Hospitalization, Robustness
to AQI Controls

(1) (2) (3) (4) (5) (6)

Full sample Colder counties Hotter counties

Any Emergency/urgent Any Emergency/urgent Any Emergency/urgent

Panel A. Main specification in the subsample with AQI measures

# Days above-90-degree during pregnancy 0.022 0.011 0.129∗∗∗ 0.137∗∗∗ 0.021 0.008
(0.020) (0.014) (0.043) (0.042) (0.020) (0.012)

Observations 28717 28717 12450 12450 16267 16267
Adjusted R2 0.523 0.561 0.229 0.211 0.616 0.642
Mean 4.113 2.603 4.049 2.519 4.162 2.668

Panel B. Adding AQI measures

# Days above-90-degree during pregnancy 0.023 0.007 0.130∗∗∗ 0.140∗∗∗ 0.024 0.004
(0.019) (0.013) (0.041) (0.042) (0.019) (0.011)

Observations 28717 28717 12450 12450 16267 16267
Adjusted R2 0.523 0.561 0.229 0.211 0.617 0.643
Mean 4.113 2.603 4.049 2.519 4.162 2.668

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients, βt,10, from equation (1). Robust standard errors, clustered by commuting zone, are in parentheses.
Each outcome is rescaled by multiplying by 100. All regressions control for mother’s race/ethnicity×birth-county×birth-month fixed effects, zip code
level income quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar month level, and a series of indicators for terciles of
precipitation in each trimester. In panel B, we include a series of indicators for AQI categories (“good,” “moderate,” “unhealthy for sensitive groups,”
“very unhealthy,” with “hazardous” as a reference group) separately for each trimester. We use the data collapsed at the race×birth-county×birth-year-
month level. Cell size weights are used. * p<0.10, ** p<0.05, *** p<0.01.
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Table A.5: Effects of Exposure to Extreme Heat on Prenatal Hospitalization, Using a Relative
Temperature Measure

(1) (2)

Any Emergency/urgent

# Days above-3-SD heat during pregnancy 0.088∗∗∗ 0.056∗∗

(0.031) (0.024)

Observations 44336 44336
Adjusted R2 0.466 0.489
Mean 3.995 2.571

Source: HCUP SID merged with NOAA weather data
Notes: This table reports regression coefficients from a model analogous to equation (1),
except that instead of measuring the number of days that fall into each of the ten bins
of temperature in absolute terms (◦F), we use eight bins of standard deviations (SDs) of
temperature from the county-month average, ranging from less than −3 SDs to at least 3
SDs or more. The table reports the effect of the number of days at least 3 SDs above the
county-month mean temperature. Robust standard errors, clustered by commuting zone,
are in parentheses. Each outcome is rescaled by multiplying by 100. All regressions con-
trol for mother’s race/ethnicity×birth-county×birth-month fixed effects, zip code level in-
come quartiles, birth-state×birth-year fixed effect, a quadratic time at the county×calendar
month level, and a series of indicators for terciles of precipitation in each trimester. We use
the data collapsed at the race×birth-county×birth-year-month level. Cell size weights are
used. * p<0.10, ** p<0.05, *** p<0.01.

Table A.6: Temperature Cutoffs for Extreme Heat Exposure (oF )

(1) (2) (3)

Arizona New York Washington

A. Average cutoff for 2-SD above the county-month averages

January 46.3 41.8 43.2
February 49.3 37.5 41
March 53.8 48.5 45.9
April 57.8 57 50.7
May 68.0 67.8 60.3
June 96.8 74.5 64.5
July 74.5 75.5 68
August 70.5 75.5 66.5
September 72.2 71 64.3
October 60.8 62.5 55
November 63.4 52 46.3
December 44.6 43.2 37.9

B. Average cutoff for 3-SD above the county-month averages

January . 56.1 52.1
February . . .
March . 61.7 53.7
April . 67.5 58.4
May . 80 65.4
June . . 69
July . 84.1 71.8
August . 83 70.3
September . 82.5 68
October . . 65
November . . .
December . 56 52.5

Source: NOAA weather data
Notes: For each state, we calculate average temperature cutoffs for our measures
of extreme heat, 2 or 3 standard deviations above the overall mean temperature
for a given county and month. Arizona experiences no exposure to above-3-SD
heat during our study period. New York and Washington also do not experience
above-3-SD heat in some months.
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