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1 Introduction

Fixed Effects (FE) are frequently used to obtain identification of the causal impact of an at-

tribute, intervention, or policy – the “treatment” of interest. This class of models has been used to

identify the impact of academic peers (school-grade FE; Hoxby, 2000; Carrell and Hoekstra, 2010);

criminal peers (facility-offense FE; Bayer, Hjalmarsson and Pozen, 2009); the local health care envi-

ronment (individual FE; Finkelstein, Gentzkow and Williams, 2016); participation in means-tested

programs (family FE; Currie and Thomas, 1995; Garces, Thomas and Currie, 2002; Deming, 2009;

Rossin-Slater, 2013); neighborhood quality (family FE; Chetty and Hendren, 2018a); and minimum

wage laws (county-pair-year FE; Dube, Lester and Reich, 2010), to give a few examples. Many of

the estimates in these studies are naturally read as the average effect for a policy-relevant popu-

lation (e.g. participants or those eligible for treatment). However, in contrast with other common

estimators, there is not yet a comprehensive framework for considering the external validity of FE

estimates.

In this paper, we show that FE can induce a special type of (non-random) selection in estimation,

which we term “selection into identification” (SI). Broadly speaking, SI results from the fact that FE

estimates are identified from FE groups (e.g. families, in the case of family FE) that have variation

in treatment (“switchers”), which may exclude some groups.1 In the contexts we examine, switchers

are (i) a subset of the sample and (ii) systematically different than the overall population. This

is a distinct problem from whether within-group comparisons are internally valid, which has been

the typical subject of debate for FE estimators,2 and which is not the focus of this paper. It is

also different from the issue of conditional variance weighting of switcher treatment effects, which

can also create external validity concerns (Gibbons, Suarez and Urbancic, 2018). We show that in

the presence of heterogeneous treatment effects, SI causes FE to deviate from the ATE, and we

develop reweighting-on-observables methods that can be used to recover the ATE for the overall

population or for target populations (such as program participants). We apply these methods to

revisit prior FE estimates of the long-run impact of Head Start.

We begin by presenting four facts that illustrate the empirical relevance of SI, in the context

of a family fixed effects (FFE) model with a binary treatment. In particular, we examine patterns

of within-family variation in participation Head Start, a federally-funded preschool program, using

the Panel Study of Income Dynamics (PSID), as in Garces, Thomas and Currie (2002) (hereafter

GTC).3 First, relative to an estimation model without fixed effects, FFE uses substantially fewer

identifying groups, more so than is commonly noted in work on this topic. Among the 5,355 children

1 In the presence of control variables that vary within a group, then there may be variation among non-switchers
“net of controls.” We focus on cases where this phenomenon is small in magnitude, and formalize this extension in
Section 5.2.

2See Bound and Solon (1999).
3Similar FFE models have been used to evaluate many other treatments; for public housing, see Andersson et al.

(2016); for WIC, see Chorniy, Currie and Sonchak (2018); Currie and Rajani (2015); for health, see Almond, Chay
and Lee (2005); Figlio et al. (2014); Abrevaya (2006); Black, Devereux and Salvanes (2007); Xie, Chou and Liu (2016),
among others. We summarize the prevalence of this design in Section 2.
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in the sample with siblings, only 1,098 children reside in switcher households. Second, the loss of

sample variation is systematically related to observables. The likelihood of being a switcher – and

thus being included in the FFE estimation – increases as the probability of treatment approaches

0.5, and with the number of units per group (children in a family). Third, since these factors vary

across subgroups, SI does as well. The FFE identifying sample misses 93% of the sibling sample

for white children, but only 62% of the sample for black children. Fourth, as a result, switchers

are not representative of the overall sample along many dimensions. The most striking imbalance

is along family size, but differences in income and parental education are also apparent.

Next, we show that under heterogeneous treatment effects, SI can meaningfully change the esti-

mated treatment effect. The consequence of this is that the FFE estimate is no longer representative

of the sample Average Treatment Effect (ATE), let alone the treatment effect for a policy-relevant

population, such as program participants. This also implies that the difference between the OLS

estimate and FE estimate can no longer be interpreted as solely reflecting OLS bias, even after

accounting for conditional variance weighting among switchers. We show that this is a quantita-

tively more imporant source of bias in our applications than the bias from conditional variance

weighting.4 Because FE groups are less likely to be switchers when they are defined over a smaller

groupings, the impact of SI may be stronger in those cases. Hence, in some settings standard FE

methods may lead to a tradeoff between external and internal validity.

To address this, in Section 4 we take advantage of the insight that switching is a form of

selection to develop a novel reweighting approach that can recover the ATE of policy-relevant

“target” populations. Building on extrapolation methods designed to address non-representative

experimental participants and IV compliers,5 we show that the appropriate group-level weight for

FE is proportional to the ratio of two propensity scores: (i) the propensity to be in the target

population (e.g. program participants) and (ii) the propensity to be in the switcher population.

Under the additional assumptions that these propensity scores can be estimated using observable

covariates, and that unobservable determinants of switching are not correlated with treatment

effects, we can then obtain the desired ATE.6

We demonstrate the performance of our reweighting using Monte Carlo simulations in a set-

ting with naturally-occurring SI, which allows us to test the feasibility of our baseline modeling

assumptions. We find that reweighting reduces or eliminates bias relative to FE in the presence

of covariate-based treatment heterogeneity. In Section 5, we discuss several extensions of our ba-

sic setup, such as how the inclusion of covariates that vary within a group can create additional

“residual switchers,” and show how reweighting can be applied to a non-linear model.

Based on these findings we propose new standards for practice when presenting results using FE

4This is consistent with Gibbons, Suarez and Urbancic (2018), whose findings suggest that the bias from conditional
variance weighting is less than 5% for 75% of estimates.

5See Angrist and Fernandez-Val (2013) for extrapolation from IV, and Stuart et al. (2011) and Andrews and Oster
(2019) for extrapolation from experiments.

6In some settings, this assumption can be tested by comparing treatment effects across target and non-target
populations within the switching sample, as we discuss in Section 4.
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research designs: (i) clearly show the sample size when limited to switcher families and quantify

the contribution of “residual switchers”; (ii) show the balance of covariates across switcher and

non-switcher families (e.g. Table 2); (iii) reweight FFE estimates for a representative population

(e.g. Table 6). Reweighted estimates can be presented either as an additional diagnostic tool or as

an alternative measure of treatment effects. We are not the first to use the more rigorous reporting

standards in (i) and (ii), but in our survey of the FFE literature the vast majority do not discuss

either of these issues (e.g. one paper out of 35 included (ii).)7

In Section 6, we apply these methods to quantify the importance of selection into identification

for FFE estimates of the long-run impact of Head Start. Head Start has a budget of $8.6 billion

dollars and annually enrolls roughly 60% of the number of 3 and 4 year old children in poverty,

which makes it a quantitatively important intervention for this population (Carneiro and Ginja,

2014).8 FFE have been used to identify the long term impacts of Head Start in many of the

foundational studies of this program (Currie and Thomas, 1995; Deming, 2009, GTC), which find

positive impacts on economic and non-cognitive outcomes of participants measured in adulthood.

We provide new evidence of these effects, and also for the first time estimate the average long term

effects for the Head-Start-eligible and Head-Start-participant populations.

Using data from the PSID and the Children of the National Longitudinal Study of Youth

(CNLSY) (as in GTC and Deming (2009)), we newly document that, across multiple human capital

measures, there are patterns consistent with greater returns to Head Start in larger families. This

might result from the fact that parental time investment in children’s human capital is spread more

thinly in larger families, which in turn could lead to greater returns to alternative investments,

such as Head Start.9 Since these families are upweighted in FFE models, it is intuitive that the

FFE estimate is likely to be upward-biased.

We illustrate the impact of reweighting first using the PSID and the largest sample of siblings –

three times as large as the analysis in GTC – used to investigate this question. The FFE estimate in

the PSID suggests that Head Start leads to a statistically significant 12 p.p. increase in attendance

of some college. Using our reweighting methods, however, we find more modest and less-precisely-

estimated benefits of the program.

Reweighting the estimates, we find that Head Start leads to a 2.6 percentage point (p.p.)

increase in the likelihood of attending some college for Head Start participants (s.e. = 6.2 p.p.),

and a 6.8 p.p. (se = 6.0 p.p.) increase for the Head Start eligible population. The ATE for Head

Start participants estimate is 78% smaller than the FFE estimate, a difference which is significant

7Important exceptions include Finkelstein, Gentzkow and Williams (2016) and Wiswall (2013), who include a
substantive discussion and examination of external validity concerns, as well as Currie and Rossin-Slater (2013). GTC
report the number of identifying observations used to identify Head Start for the entire sample (not for subsamples),
and Deming (2009) reports the aggregate number of identifying observations used to identify the pre-school, Head
Start, and no-formal-care coefficients, but not for each coefficient.

8See Gibbs, Ludwig and Miller (2013) for an overview of the Head Start program.
9In Section 6, we show that this heterogeneity by family size is not explained by other covariates or by larger

families having longer sibling cohort spans. Instead it appears that there is something important about family size
per se.
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at the 5 percent level. It is also 91% smaller than the estimated effects on college-going in GTC

for this population; 45% to 91% smaller than unadjusted estimates for all participants from other

FFE studies (Bauer and Schanzenbach, 2016; Deming, 2009); and 51% smaller than estimates from

the county roll-out of Head Start (Bailey, Sun and Timpe, 2018), although the lower end of the

confidence intervals for the latter estimates include our ATE.

Reweighting similarly attenuates the FFE estimate of the impact of Head Start in the CNLSY

(Deming, 2009). While the FFE estimate suggests that Head Start leads to an 8.5 p.p.increase in

high school completion, the reweighted estimate for Head Start participants is 44% smaller and not

statistically significant. The FFE and reweighted estimates are statistically different at the 10%

level. Reweighting also attenuates the previously-estimated impact of Head Start on idleness and

having a learning disability and, to a lesser degree, the impact on poor health, relative to the FFE

estimates.

We present our results primarily in the context of FFE and Head Start, but they apply to any

panel fixed effects model, with special relevance for those with short panels and “lumpy” treatment

variables (e.g. binary treatments). For instance, we use data from Collins and Wanamaker (2014) to

demonstrate similar patterns of selection into identification in the estimation of returns to migration

with FFE.

In Section 7, we discuss three additional potential applications of our methods to FE estimation

of peer effects (school-grade FE; Carrell, Hoekstra and Kuka, 2018; Carrell and Hoekstra, 2010),

the minimum wage elasticity (county-pair-year FE; Dube, Lester and Reich, 2010), and responses

to environmental shocks (district FE; Shah and Steinberg, 2017). We identify features within each

of these settings that make the estimates potentially subject to selection into identification. As a

result, we recommend careful investigation of these issues in future research using FE strategies.

The core contributions of this paper are first to provide guidelines that can be used to charac-

terize the likelihood of being a non-switcher (based on the probability of treatment or the number

of units in a group); and second to show the importance of heterogeneity in treatment effects across

switching and non-switching groups. While it is well-known that the FE estimator is only identified

from switchers, we document in a review of the literature that the number of switchers and their

characteristics is not commonly discussed in applied work. We show in our applications that non-

switching is common, and that switching groups are not randomly distributed in the population.

This has a meaningful impact on the external validity of estimates.

Further, the prevalence of non-switching stands in contrast to a commonly-held assumption of

positive within-group variance of treatment used for theoretical findings; such as in the translation

from FE to IV (Loken, Mogstad and Wiswall, 2012), and in the reweighting of OLS (Angrist, 1998),

IV (Angrist and Fernandez-Val, 2013; Aronow and Carnegie, 2013) and FE (Gibbons, Suarez and

Urbancic, 2018) for external validity.

Third, we provide a reweighting estimator that allows for the recovery of ATE for policy-relevant

populations. This is different from strategies that employ reweighting for internal validity, such as
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traditional propensity score estimation methods, and from recent works on the validity of difference-

in-difference and other two-way FE strategies, where the empirical specification ensures that SI is

unlikely to be a concern.10

Our reweighting solution is broadly related to a growing literature that identify and correct

for the discrepancy between “what you want” and “what you get” from common estimators, such

as Lochner and Moretti (2015), who reweight OLS with IV weights for greater comparability;

Sloczynski (2018), who reweights OLS to obtain the ATE; and Stuart et al. (2011) and Andrews

and Oster (2019) who propose reweighting experiments to account for selection into participation.

Closest to the current work are reweighting strategies for quasi-experimental estimates, includ-

ing Angrist and Fernandez-Val (2013), who reweight IV using discrete covariates, and Gibbons,

Suarez and Urbancic (2018), who reweight FE using inverse-conditional-variance weights to obtain

the switcher ATE. Unlike Angrist and Fernandez-Val (2013), we focus on the external validity

of FE and reweight using a propensity score, which allows for greater flexibility in conditioning

variables. Further, our reweighting method relaxes the assumption of positive-conditional-variance

in Gibbons, Suarez and Urbancic (2018), and provides a means for extrapolating from switchers

to a policy-relevant target population. This should be informative for treatment estimates, since

switchers are not typically a population of interest.

Finally, we contribute to a growing body of work investigating the long term effects of Head Start

using quasi-experimental methods (Ludwig and Miller, 2007; Carneiro and Ginja, 2014; Thompson,

2017; Bauer and Schanzenbach, 2016; Johnson and Jackson, 2017; Bailey, Sun and Timpe, 2018;

Pages et al., 2019; Barr and Gibbs, 2018, in addition to the FFE papers above). These studies

typically present LATE or ITT estimates, and find improvements in childhood health, reductions

in adolescent behavioral problems and obesity, and increases in adult educational attainment and

earnings.11 Relative to most of these studies, we evaluate the effect of Head Start on longer-

run outcomes; show that these effects vary significantly by family size; and also adjust estimates

using covariate re-weighting to get closer to the ATE for Head Start participants. We show that

incorporating this adjustment lowers the estimated long term effect of Head Start.

2 A Survey of FFE Applications

Since our application focuses on a FFE model, we focus on applications of this particular method

in the literature. This focus will lead us to undercount the prevalence of FE more broadly, but

provides an unambiguous example of a short-panel setting which is susceptible to SI concerns.

We surveyed publications from January 2000 to May 2017 in 11 leading journals that publish

applied microeconomics articles. We include all studies that use family fixed effects as a primary

10See, e.g. Goodman-Bacon (2018); Borusyak and Jaravel (2017); Callaway and Sant’Anna (2018); Chaisemartin
and D’Haultfoeille (2019). We discuss SI in two-way FE designs in Section 5.2.

11 One exception to this is Pages et al. (2019), who suggest that the effect of Head Start may be negative for recent
cohorts, although the identifying sample is not discussed.
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or secondary strategy.12

Our literature review yields 55 papers published from 2002 to 2017. We provide descriptive

statistics of these articles in Table 1, including statistics by journal. Overall, these articles account

for less than 1 percent of the papers published in our sample of journals, but this varies from 0

to 3 percent of each journal. The first panel tabulates the frequency of binary treatments and

binary outcomes across the sample of papers, the focus of our methodological insights. Nearly

two-thirds (35) of the papers have a binary treatment of interest and 23 have a binary outcome.

The second and third panels show the varied topics that appear in the sample, spanning health,

public, education, and labor fields.

The final panel of the table summarizes the distribution of sample sizes used with FFE. The

samples are frequently not limited to families with variation in the treatment variable; therefore,

the sample size in the table is an upper bound on the number of observations used for identification.

The median number of sibling observations is 6,315, or roughly 85% of the sample in our analysis.

We note that there is a high variance in sample size across samples, indicating that there is not a

threshold for FFE analyses. The bottom 25% of papers have fewer than 1,200 observations, while

the top 25% have over 160,000 sibling observations.

Appendix Figure B.1 illustrates the popularity of this estimation strategy over time. It shows

a steady stream of FFE papers over the past 15 years; and that these papers have an impact on

the literature, with a mean 233 citations per article (Google Scholar citations as of May 2019).

Moreover, since the survey was completed, additional FFE studies have been published (see e.g.

Chetty and Hendren (2018a,b)).

3 Fixed Effects and Selection into Identification

We employ the FE research design to address the concern that Head Start treatment may be

correlated with some fixed characteristics of a family that also determine outcomes. For example,

the decision to participate in Head Start of siblings is influenced by low parental income — a

requirement for eligibility — and availability of an alternative source of care, which may indepen-

dently influence long-term outcomes. As a result, in our setting – as well as in many other settings

– the cross-sectional estimate of the effect of treatment is likely to be biased.

To formalize our setting, let Di ∈ {0, 1} indicate whether an individual i participates in treat-

ment (e.g. Head Start) and g(i) be the relevant group (e.g. family) for i of the set of groups G in the

sample, and let potential outcomes in the untreated and treated states be Yi(0), Yi(1), respectively.

12We surveyed: AEJ: Applied Economics, AEJ: Economic Policy, AER, AER P&P, Journal of Health Economics,
Journal of Human Resources, Journal of Labor Economics, Journal of Political Economy, Journal of Public Economics,
QJE, Review of Economics and Statistics. To identify these articles, we used the search terms “family,” “within-
family,” “sibling,” “twin,” “mother,” “father,” “brother,” “sister,” “fixed effect,” “fixed-effect,” and “birthweight”
using queries on journal websites. We then searched within articles to see whether FFE was used in the analysis.
Finally, we added some additional papers to the list that we are aware of and did not satisfy these search terms. The
resulting list is fairly comprehensive, but still likely to be a slight undercount of FFE articles in these journals.
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We observe for each i one outcome, Yi = Yi(Di), treatment, Di, and group membership, g(i). For

brevity, we will frequently write this simply as g. We refer to groups for whom V ar(Di|i ∈ g(i)) > 0

as “switchers,” and denote switching status with a binary variable Sg = 1, and the set of switchers

as GS ⊆ G.

We assume that treatment may be correlated with group characteristics, e.g. mean family

income, but is randomly assigned within groups:

Assumption 1 (Group ID Conditional Independence):

Yi(0), Yi(1) ⊥⊥ Di|g(i) = g (1)

Assumption 1 encompasses the standard FE specification assumpton in linear models. It rules

out Roy (1951)-type selection into treatment within groups, in which the probability of receiving

treatment is correlated with treatment effects, Yi (1) − Yi (0)).13 In the context of Head Start,

treatment has been shown to be uncorrelated with most observable characteristics of children

(Deming, 2009, GTC, 2002), suggesting the assumption is reasonable.

Under this assumption, estimated treament effects δ̂g are an unbiased estimate of group-level

treatment effects, δg ≡ E[Yi(1)−Yi(0)|g(i) = g]. The FE estimate averages δ̂g for the g ∈GS , using

weights that are proportional to the within-group variance of Di and the number of observations

in g (Angrist, 1998; Angrist and Pischke, 2009, eqn. 3.3.7), as follows:

δFE =
∑
g∈GS

δg,FE · ωg,FE (2)

where

ωg,FE =
V ar(Di|g(i) = g) · Pr(g(i) = g|Sg = 1)∑

g∈GS
V ar(Di|g(i) = g) · Pr(g(i) = g|Sg = 1)

We examine two methodological issues that arise from the FE research design: (i) reduction in

identifying variation moving from G to GS ; and (ii) a change in the composition of the identifying

sample. Issue (i) is well understood in principle, but the degree to which GS is smaller than

G is often underappreciated, not reported in empirical practice, and implicitly assumed to be

negligible in theoretical results. Issue (ii) is more novel, and should cause researchers to update the

interpretation of the population for which these estimates are relevant.

3.1 Empirical Relevance

To illustrate ideas, we provide an empirical example - for more detail, see Section 6. The

sample consists of 2986 white children born in the years 1954-1987. The regression of interest

13Some recent FE strategies explore relaxation of this assumption. For example, in a two-period person-level FE
design, Lemieux (1998) estimates union wage returns to both observed and unobserved skills. This approach is
extended (with application to farmer adoption of HYV seeds) in Suri (2011) and Verdier and Castro (2019).
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estimates the effect of ever having attended Head Start on a dummy for ever having attended

college. The coefficient on Head Start in a cross-section regression is 0.049 (s.e. = 0.044). When

mother fixed effects are added, the coefficient becomes 0.120 (s.e. = 0.053). This result indicates

that the impact of Head Start participation on college attendance is meaningful in magnitude, and

statistically significantly different from zero.

We illustrate the identifying variation for the FFE regression of some college on Head Start

attendance in Panel (a) of Figure 1, which shows a scatterplot of the deviation in Head Start

attendance for each individual i from the mean attendance in his or her family, g(i), HeadStarti-

HeadStartg(i), against the within-family deviation in attainment of some college for the sample,

AnyCollegei-AnyCollegeg(i).
14 Strikingly, the largest mass of observations is at (0,0): the majority

of families have no variation in Head Start participation and no variation in the college attendance

of their children. Individuals in families with no variation in Head Start account for 96% of the

sample – removing these leaves us with 213 individuals in switching families.

This reduction in identifying observations could result in a selected sample if switching is corre-

lated with family characteristics. To gain intuition about which variables might determine switching

we build a simple model of the Head Start participation decision within families. If the probability

of attending Head Start is a constant, π, and independent across siblings in a family, then the

probability of switching, P (Sg = 1) is simply a function of π and family size, ng:

Pr(Sg = 1) = 1− (1− π)ng − πng

According to this formula, the probability of switching has an inverse-U-shaped relationship

with π, peaking at π = 0.5. Further, for a given level of π, the likelihood of being in a switching

family is increasing with family size. We illustrate these features in Appendix Figure B.2.

The markers in Figure 2 show the actual probability of attending Head Start and of being in a

switching family for each family size by black/white race and by whether the mom has some college

or not. As in the stylized model, the likelihood of switching is increasing with family size for each

of these subgroups.15 This could reflect the fact that over time, across children, parents are more

likely to be exposed to the program, or are more likely to experience a change in family income,

which alters eligibility for the program.

We also observe that switching increases with π, following the inverse-U. The probability of

Head Start attendance among black families and families with low-educated moms is much higher

and closer to 0.5, compared to white families and families with high-educated moms; and the

switching probability is correspondingly larger for black and low-educated families. As a result, the

14The size of each symbol is weighted by the number of individuals. A value of 0.5 along the horizontal axis, for
example, means that a person went to Head Start in a family where half the children attended Head Start. Values
other than 0.5 and -0.5 indicate that the share of children that attended Head Start was different than 0.5; e.g. a
value of -0.75 means that a person did not go to Head Start in a family where three quarters of the children did.

15Appendix Table B.1 shows that this pattern is driven by a much larger incidence of no Head Start participation
among smaller families. For example, 78% of 2-child families have no Head Start participants, compared with 48%
of families with 5 or more children.
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sample used for FFE identification is comprised of 7% of the sibling sample for whites, and 38%

of the sibling sample for blacks. Note that while we are focusing on race and maternal education,

this notion can be generalized to any other family characteristic, such as SES, that determine π.

This pattern is not unique to the PSID or to Head Start. Panels (b) and (c) of Figure 2 show this

relationship using data from two other FFE papers, Collins and Wanamaker (2014) and Deming

(2009). In both papers, the treatment variable of interest is binary; migration to the North and

Head Start participation, respectively. In each of these samples, the probability of being a switcher

is increasing in family size.

3.1.1 Selection into Identification Driven by Many Variables

Since SI is likely to affect the balance of characteristics other than family size, we now examine

a large number of observable characteristics of switcher families and non-switcher families. Panel A

of Table 2 indicates that in addition to having a larger family size, children in switcher families tend

to have parents with significantly less education than children in non-switcher families (column 3).

These differences in parental education are significant even in a regression framework where we

control for differences in family size and the other covariates in the table, though only at the 10

percent level (columns 4 and 5). Family income during preschool of children in switcher families

is significantly lower than non-switcher families overall (some of which may have incomes too high

to ever qualify for Head Start).16 These patterns are consistent with switching increasing with the

probability of Head Start participation.

Next, we examine a one-dimensional summary of how much overlap there is in the character-

istics of switchers and non-switchers. We do so by constructing a propensity-score-type summary

measure,
Pr(Sg(i)=1|Xig)

Pr(HeadStarti=1|Xig)
, which gives a measure of how aligned the characteristics (vector Xig)

of switchers are with the characteristics of Head Start participants, the population of interest. An

average value of 1 implies perfect alignment, while a higher value implies that the characteristics

of switchers are over-represented relative to the characteristics of Head Start participants. We

estimate the elements of this ratio using a multinomial logit.

Panel B of Table 2 shows that this measure is between 1.9 and 2.9 for the switchers sample,

which is 0.3 SD larger than for non-switchers. This indicates that the observables of switchers are

not aligned with our population of interest, and that this misalignment is worse for switchers than

non-switchers.17

16If we limit ourselves to families with Head Start participants, we obtain qualitatively similar results, but the
differences are somewhat smaller and sometimes less precisely estimated.

17As a benchmark, Stuart et al. (2011) suggest that a 0.1 to 0.25 SD difference in propensity scores between the
experimental and non-experimental population may be too large to rely on extrapolation without further adjustments.
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3.2 Consequences for Estimation: Effective Number of Identifying Observa-

tions

A convenient way to summarize the amount of variation used in FE is by the number of individ-

uals in switching families. However, since not all switchers provide the same amount of identifying

variation, this can be a misleading measure. For example, a 4-sibling family with 1 treated and 3

untreated individuals has an ωg,FE that is 25% smaller than the ωg,FE of a family with 2 treated

and 2 untreated (0.25 · 0.75 = 0.1875 < 0.25 = 0.5 · 0.5).

We develop a formula for the “effective number of observations,” which captures this idea by

(i) quantifying the total amount of identifying variation and (ii) converting this into standardized

units (person-equivalents).

Neff =

∑
g∈GS

V ar(Di|g(i) = g) · (ng − 1)

V ar(Di,reference)
(3)

The numerator quantifies the “total amount of variation” identifying δFE . Different from the

FE formula, family size is adjusted for the fact that group-level fixed effects remove one degree

of information from each family, (ng − 1). The denominator provides a translation from “total

variation” to “person-equivalents” of variation by normalizing by the variation contributed by an

individual observation in a fixed, researcher-determined group, V ar(Di,reference).

In our application, we report effective observations using as reference (i) the variation in a cross

section regression after controlling for reasonable g-level covariates, V ar(Di,reference) =V ar (Di|Wg);

and (ii) the variation from individuals in groups in two-child families.18

3.3 Consequences for Estimation: Bias

Under homogeneous treatment effects (δg = δ), SI has no effect on expected bias in estimation

of Equation 2, and the FE estimate trivially is unbiased for the ATE for the sample and the

population. There is only a loss of precision that accompanies the overall reduction in sample size.

The more interesting case is when treatment effects are heterogeneous. In that case, SI will lead

the FE estimate to provide a biased estimate of the ATE, even if one corrects for the conditional

variance weighting of FE among switchers. To be concrete, let Z be a discrete covariate that varies

at the group level, such as family size, that determines the magnitude of the effect of treatment.

We allow for a different treatment effect for eachvalue of Z: δg = f(zg) = δz, and define Z as the

set of values of zg present in the samples of siblings and switchers. The treatment effect estimated

without FE using a sample of groups with ng ≥ 2, e.g. siblings, is:

δOLS =
∑
z∈Z

δz,OLS · ωz,OLS (4)

18V ar(Di|g(i) = g) is calculated using the population formula for variance, V ar(Di|g(i) = g) =

1
ng

∑
i∈g

(
Di −

∑
i∈g 1(Di=1)

ng

)2
, rather than the sample formula (which would divide by ng − 1).
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where

ωz,OLS =
(V ar(Di|ng ≥ 2, zg = z) · Pr(zg = z|ng ≥ 2)∑

z′∈Z(V ar(Di|ng ≥ 2, zg = z′) · Pr(zg = z′|ng ≥ 2)

and δz,OLS is the OLS estimate without FE of the treatment effect for groups with zg = z, and

V ar(Di|ng ≥ 2, zg = z) is the conditional variance of treatment among the sample with ng ≥ 2 and

zg = z.

The FE estimator for the same sample is:

δFE =
∑
z∈Z

δz,FE · ωz,FE (5)

where

ωz,FE =
(V ar(Di|FE, zg = z) · Pr(zg = z|Sg = 1)∑

z′∈Z(V ar(Di|FE, zg = z′) · Pr(zg = z′|Sg = 1)

and δz,FE is the FE estimate of the treatment effect for groups with zg = z, V ar(Di|FE, zg = z)

is the conditional variance of treatment among the sample for groups with zg = z, net of family

fixed effects.

Moving from OLS to FE, the δ’s change and also the ω’s change. The change in the δ’s is how

we usually interpret the move from OLS to FE: the change is from “between” (bad) variation to

“within” (good) variation. But the full change also incorporates the different weightings of different

values of zg. If the OLS sample and the FE sample overlap in the covariates, we can decompose

the difference between OLS and FE to identify how much is caused by the change in weights, ωz,

and how much is driven by the change in identification, δz, as:

δFE − δOLS =
∑
z∈Z

(ωz,FE − ωz,OLS) · (α · δz,FE + (1− α) · δz,OLS)︸ ︷︷ ︸
Impact of ∆ weighting

(6)

+
∑
z∈Z

(δz,FE − δz,OLS) · (α · ωz,OLS + (1− α) · ωz,FE)︸ ︷︷ ︸
OLS Bias

with α ∈ [0, 1] a researcher-determined weight. The impact of SI is captured in the first

summation of Equation 6, which is a function of the disparity in regression weights ωz between

OLS and FE, multiplied by an α-weighted average of the δz,OLS and δz,FE . Setting α = 0 in this

term uses cross-section coefficients to assess the importance of changing the regression weights from

OLS to FE. Setting α = 1 uses the FE coefficients to assess this. If there is important heterogeneity

among both wz and δz, these two extremes can provide useful benchmarks to compare against the

OLS and FE estimates, as we do in Section 4.3.19

19This decomposition is similar in form to Equation 13 in Loken, Mogstad and Wiswall (2012), which uses α = 1/2.
However, we sum over a group-level covariate that is distinct from the treatment of interest, while Loken, Mogstad
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Since SI impacts the probability of each family size appearing in FE and OLS and possibly

the conditional variance as well, existing methods to reweight FE estimates (Gibbons, Suarez and

Urbancic, 2018) can at best recover the ATE for switchers. Since switchers are typically not a

population of interest, this raises concerns for the external validity of the FE estimator.

Illustration of Consequences: Greater Returns to Head Start in Larger Families

We use data from our empirical example to illustrate the change in the components of ωz across

OLS and FE. Panel A of Table 3 shows that the proportion of 5+-child families in the switching

sample is roughly twice the proportion in the overall sample, while the share of 3 and 4-child families

is roughly similar. The variance in Head Start, shown in Panel B, is higher, roughly double, in

the switching sample relative to the sibling sample, however this is relatively similar across family

sizes. This suggests that the change in the conditional variance across OLS and FE plays a minor

role in our setting.20 We then calculate ωz,OLS and ωz,FE . Going from the sibling sample to the

switchers sample, ω2−child declines by over 25% and ω3−child declines by 15%. Conversely, ω5−child

nearly doubles from 0.134 to 0.243, and ω4−child families increases by over 25%.

The effect of Head Start also varies by family size in our applications. The first two columns of

Panel A of Table 4 shows the estimated effects of Head Start on the likelihood of completing some

college by the number of children in a family for our illustrative sample. We show the results with

and without family fixed effects. In both specifications, the effect of Head Start is significantly

higher among white children in families with 5 or more children and, once fixed effects are added,

the effect of Head Start is monotonically increasing with the number of children in a family.

One possible explanation for this heterogeneity is that children with higher initial endowments

receive greater parental investments in larger families, and also benefit more from Head Start (Aizer

and Cunha, 2012). Another possibility is that Head Start substitutes for parental time, which is

more scarce in larger families. Another interpretation is that this heterogeneity reflects the fact that

other covariates correlated with family size, such as income, mediate the impacts of Head Start.

This final explanation seems less likely, as we find that the heterogeneity in family size survives the

inclusion of other interactions, as we discuss in Section 6.

The bottom of Panel A shows the number of Head Start switcher observations and effective

observations in terms of cross-sectional and two-sibling switcher individuals.21 It shows that a total

of 213 individuals are used to identify these coefficients, less than one tenth of the total sample,

and that the variation is equivalent to 236 individuals in 2-person switching families. Hence, by

including families with three or more children, on average, each observation is providing more

and Wiswall (2012) sum over values of an individual covariate (that varies within families), which is also the treatment
of interest.

20We provide additional evidence that “undoing” the conditional variance weighting makes little difference in this
application in Section 6.

21For effective cross-sectional individuals, the denominator of Equation 3 is the variance of Head Start, residualized
by the family mean of the covariates in the analysis For the effective number of two-person switcher individuals, the
denominator is [V (Di|g) · (ng − 1)] /ng = [0.52 · (2− 1)]/2 = 0.125.
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variation than in a similar-sized sample of 2-child families. Further, the variation is equivalent to

731 individuals in a cross-sectional regression. This is because there is relatively little variation in

Head Start in the full sample.

Like with SI, the larger Head Start effects we document for big families is not specific to the

PSID. Columns (3) to (5) of Table 4 show the CNLSY FFE estimated effects of Head Start by

family size for idleness, having a learning disability, and being in poor health.22 For each of these

outcomes, the impact of Head Start for 5+ child families is at least twice as large as the impact

for 2 or 3 child families. For high school graduation, we also see a large impact for 4-child families,

roughly double the impact for 2 and 3 child families. This implies that we should expect an

increase in the coefficient going from OLS to fixed effects due to the change in weighting across the

identifying samples, even without a change in the source of identification.

The number of switchers in the CNLSY sample is 581, less than half of the total number

of observations. As in the PSID, the variation in this sample is equivalent to a larger sample

of 2-person families (648 individuals.) However, the corresponding cross-sectional observations is

smaller (438.7). These two examples illustrate that there are multiple forces driving the effective

number of observations calculation: lost information from the group FEs drives down variation; but

moving toward larger conditional variance of treatment increases variation. In the PSID example

the second effect dominates; in the CNLSY case the first effect dominates.

4 Extrapolating from Identifying to Target Population

The difference between OLS and FE in implicit weighting of heterogeneous treatment effects

leads us to consider translating the FE estimates into an ATE for a (researcher-determined) popu-

lation of interest. We propose a method to flexibly obtain the ATE for such populations of interest,

which we refer to as “target” populations, and denote by an indicator Tg. Commonly, the target

population in applied work is the ATE for a nationally representative sample, which may be a

reasonable starting place for most researchers. For some treatments, like means-tested programs,

one might be interested in the ATE for eligible families, or families with a participating member.

4.1 Assumptions and Proposition

The methods rely on four key assumptions. which are variants of those used for extrapolation

from IV (Angrist and Fernandez-Val (2013); Aronow and Carnegie (2013)). First, we assume that

Group ID conditional independence (Assumption 1, Equation 1) holds.

Assumption 2 (Conditional Fixed Effect Ignorability (CFEI)):

22We focus on these outcomes because individuals that attended Head Start were found to fair significantly better
on each of these outcomes in Deming (2009).
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E[Yi(1)− Yi(0)|Sg, Px, Qx] = E[Yi(1)− Yi(0)|Px, Qx] (7)

E[Yi(1)− Yi(0)|Tg, Px, Qx] = E[Yi(1)− Yi(0)|Px, Qx] (8)

Second, we assume that conditional on observables, the true treatment effect is independent

of a group’s switching or target status, which we refer to as conditional fixed effect ignorability

(CFEI).23 We use two propensity scores constructed from the vector of group characteristics, Xg,

as the conditioning variables: Px := Pr [Sg = 1|Xg = x] is the propensity to be a switching group,

and Qx := [Tg = 1|Xg = x] is the propensity to be in the (researcher-determined) target group.

CFEI eliminates, for example, a second type of Roy (1951)-type selection, whereby switchers have

an unobserved quality that increases the effectiveness of treatment.

In the Head Start application, the key determinants of Pr[Sg = 1] are family size and the under-

lying probability of Head Start participation. Family size is observable, and observable covariates,

such as family income, can take us a long way in predicting program participation. Likewise, the

family-level determinants of Pr[Tg = 1] for a target such as Head Start participants will be largely

tied to observable eligibility requirements for the program, such as income and household size,

which together determine the income-to-poverty ratio.

Assumption 3 (Correct Propensity Score Specification):

Pr(Sg = 1|Xg) = F (θg; Xg) (9)

Pr(Tg = 1|Xg) = G (χg; Xg) (10)

Third, we assume that the propensity scores that we estimate have the correct functional form,

with F (·) and G (·) known, and θg and χg parameters to be estimated. In our application, we

model F (·) and G (·) as a multinomial logit.

Assumption 4 (Overlap in Px):

If Qx > 0, then Px > 0,∀Xg (11)

Fourth, we require a positive probability of being a switcher for each value of Xg in the target

group, which ensures that we can use the switcher sample to recover the distribution of treatment

effects in the target sample. Since some covariate values may not be observed in the switcher

sample, this assumption implicitly places some restrictions on the relationship between treatment

effects and these covariates. For example, since we do not observe 1-unit groups (“singletons”) in

the switcher sample – they are “never-switchers” – but they are present in some of our application

target populations,24 we cannot allow treatment effects for singletons to be outside the support of

23We considered using CoFEfe as the acronym for this assumption. This would provide a novel candidate inter-
pretation of US President Donald Trump’s enigmatic tweet of May 31, 2017.

24Singletons comprise 6% of Head Start participants in the CNLSY, and 18% of Head Start participants in the
PSID.
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the treatment effects of switchers. This also precludes us from including an indicator for singletons

in Xg.

In our application we preserve overlap by assuming that treatment effects are the same for all

groups with 2 or fewer units, which allows us to extrapolate treatment effects for singletons from

2-unit groups.25 An alternative approach is to extrapolate treatment effects for never-switchers

using functional form assumptions, which we discuss under extensions below.

Proposition 1. Define the re-weighted FE estimator for target population t as

δ̂t :=
1∑

i 1(Sg(i) = 1)

∑
i|Sg(i)=1

ŵt
g(i) · δ̂g,FE , (12)

with ŵt
g(i) our estimate of wt

g(i),

wt
g(i) :=

Qx · Pr [Sg = 1]

Px · Pr [Tg = 1]
(13)

Under Assumptions 1 through 4, δ̂t is consistent for the ATE of the target population,

E [Y (1)− Y (0)|Tg = 1].

The proof is in Appendix A. Intuitively, the weights are increasing in Qx and decreasing in Px,

such that we upweight observations that are more similar to the target, and downweight observations

that are overrepresented in the switching population. The treatment estimate for each switcher

group g is weighted proportionately to match the share of the target population with observable

characteristics matching g, which gives the ATE under the assumptions above.26

Testable Implication

CFEI requires that treatment effects should be balanced across Tg, conditional on Px and Qx.

This is potentially testable if some switchers are not in the target population – for instance, if

the target population is families that participate in a safety net program, groups that live in rural

areas, or firms that are in a particular industry. We implement this in Section 6.2.1. This test can

not be used, however, if the target is “everyone,” “multi-unit groups,” or otherwise contains the

set of switchers GS .

4.2 Reweighting Methodology

In order to implement this reweighting strategy, we first need to obtain estimates of Px and Qx.

When the identifying sample is a subset of the target population, Qx = 1, and Px can be estimated

by a logit or probit model. Otherwise, these elements can be calculated by using a multinomial logit

25We implement this by including an indicator for “1 or 2 child families” in Xg together with indicators for other
family sizes. Alternatively, the target group can be defined to only include families that are ever switchers, such as
“siblings” or “multi-child Head Start families.”

26See Appendix A for a simple derivation of the weights.
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model to estimate the probability of each of the four possible combinations of having Sg = 1/Sg = 0

and Tg = 1/Tg = 0. Qx is then constructed as the sum of the predicted Pr(Tg = 1, Sg = 0) and

the predicted Pr(Tg = 1, Sg = 1) for each unit; and Px is constructed as the sum of the predicted

Pr(Tg = 1, Sg = 1) and the predicted Pr(Tg = 0, Sg = 1) for each unit. 27

With these weights in place, the ATE for the target population can be estimated in one of

two ways. The first is a two-step “post-regression weighting” of δ̂g, where δ̂g is estimated from a

regression of the outcome on interactions between Di and group-specific dummies. Then aggregate

ŵt
g(i) to the group-level and perform a normalization to obtain the final estimation weights, ŝtg =

ŵt
g(i)
·ng∑

g′∈Gs
ŵt

g(i)′ ·ng′
=

Qx
Px
·ng∑

g′∈GS

Qx
Px
·n′g

. The 2-step ATE combines these using:

δ̂t2step =
∑
g∈GS

ŝtg · δ̂g (14)

Under the standard cluster-robust assumption that model errors are independent across groups,

δ̂t2step is a weighted average of independent variables, and we can obtain a cluster-robust variance

estimate as:

V̂ ar(δ̂t2step) =
∑
g∈GS

(ŝtg)2 ·
(
δ̂g − δ̂t2step

)2
(15)

A second approach is to obtain the ATE in a single step using “in-regression weights.” For this,

we need to adjust for the fact that the FE estimator uses weights ωFE rather than population shares.

We address this by incorporating inverse conditional variance weights, as vg = (V ar(Di|g(i) = g)−1

(Gibbons, Suarez and Urbancic, 2018).28 Then, the ATE can be estimated by δ̂t1step from a one-step

regression using ŵt
g(i) · vg as regression weights, and computation of cluster-robust standard errors

is straightforward.29

4.3 Special Case: Univariate Heterogeneity

If the source of heterogeneity in estimates is a single, discrete covariate, we can obtain further

insight from performing the decomposition captured in Equation 6. Taking the OLS family-size-

specific coefficients from column (1) of Table 4 and reweighting by the fixed-effects regression

weights (α = 0 in Eq. 6), we obtain a weighted coefficient of 0.069, shown in the bottom row

of Table 4. This implies that approximately 1/3 of the change from OLS to FE (0.069−0.049
0.12−0.049 ) is

driven by the change in family size weights; with the other 2/3 driven by change in identifying

27ŵt
g(i) can also be multiplied by survey weights, as we do in our PSID example.

28This variance is computed using the population formula, (dividing by ng), rather than the sample formula
(dividing by ng − 1). As with the two-step estimator, these weights can also be multiplied by sample weights.

29As Gibbons, Suarez and Urbancic (2018) note, we cannot estimate cluster-robust standard errors in the estimation
step of the two-step equation: there are fewer clusters than the sum of the count of fixed effects and covariates.
However the standard cluster-robust assumptions imply that the δg are independent of one another. This enables
Equation 15.
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variation. Further, reweighting the FE estimates using the OLS weights (α = 1 in Eq. 6) produces

a coefficient is 0.083. This implies that the imbalance in family size alone causes the FFE estimate

to be 50% higher than the estimates without FE.

4.4 Monte Carlo Experiments

We perform a Monte Carlo analysis to examine the properties of our proposed reweighting

estimators. We use naturally occuring selection into identification from our PSID application and

model treatment effects for three settings, allowing the true ATE to be known. Each setting has a

different model of heterogeneity in treatment, which determines the covariates that the researcher

uses to generate the propensity score.

We generate the data for the Monte Carlo as follows: To construct baseline outcomes (i.e.

without treatment), we run a linear probability model predicting attainment of “some college or

more” with demographic variables, income during childhood, and parental education. From this

model we construct a one-dimensional covariate, Xig, which is a continuous probability that an

individual completes some college.30 All simulations start with this constructed variable Xig and

the variable HeadStartig from the original data. We then construct latent outcomes inclusive of

treatment as Y ∗ig = Xig +βigHeadStartig, where βig is the treatment effect of Head Start. We scale

Y ∗ig to ensure that these probabilities lie within the range [0, 1]. We then randomly generate the

binary outcome variable as Pr (Yig = 1) = Y ∗ig.

We consider three models of heterogeneity in treatment effects. First, βig = 0.08. We use

the variable Xig to generate propensity scores. Second, βig = 0.192 for large families (with 4 or

more siblings) and βig = 0 for small families (3 or fewer children). We use a dummy variable for

“large family” to generate propensity scores. Third, we allow the treatment effect heterogeneity

to vary smoothly: βig = 0.08 ·
(

1− Xig−X̄ig

s.d.(Xig)

)
· 1

3 , with X̄ig and s.d. (Xig) the sample mean and

standard deviation of Xig. This produces a treatment effect that is larger for lower-baseline-

probability individuals and ranges from 0.01 to 0.15 for most of the population. For this more

complex treatment effect, we generate propensity scores in two ways: using Xig and, more flexibly,

using a spline in Xig, with knots at the 5th, 20th, 50th, 80th, and 95th percentiles of Xig. The latter

model presumes that the researcher has some intuition that the treatment effect or selection into

identification may vary non-linearly with baseline outcomes.

We run 3,000 replications of our Monte Carlo simulation. In each replication, we keep track of

the true ATE for each target population of interest, the FE estimate of the treatment effect, and

the reweighted regression estimate of the treatment effect for each target population.31 The FE

estimate is the same for all target populations. We consider four target populations: (i) individuals

in Head Start switching families;32 (ii) all siblings; (iii) all individuals in the sample (including

30For simplicity, we restrict the sample to those with Xig ∈ [0, 1] at baseline.
31Both post-regression and in-regression reweighting produce the same results.
32This will not necessarily be the same as the FE estimate because of differences in the conditional variance across

families.
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singletons); and (iv) all Head Start participants. We multiply all estimates by 1,000 for easier

readability.

Panel A of Table 5 presents results for the model with constant treatment effects. In this setting,

the average treatment effect is the same for all target populations, all estimators are unbiased, and

the FE model is the minimum variance estimator. The reweighting estimators have mean squared

errors 3 to 20% larger than for OLS.

Panel B of Table 5 presents results for the model with zero treatment effect for small families, and

large treatment effects for large (4+ children) families. It shows that for every target population,

FE is biased, while the reweighting estimator is always unbiased. This improvement in bias over

FE leads to much better mean squared error results for the reweighting estimator.33

Panels C and D of Table 5 examine the third model with heterogeneous treatment effect that

varies with Xig. Here the FE model has relatively little bias for the switcher and Head Start

participant targets (-0.2 p.p, and -0.08 p.p. on a base of 9 p.p.), but has much larger bias for the

remaining targets. Panel C shows that the regression reweighting estimator which uses Xig in the

propensity score estimation has less bias than FE for all target populations, with no detectable

bias for the switcher, or Head Start populations. The small bias for the reweighting estimator

for the other target populations results from an imperfect balance in the Xig variable, even after

reweighting.34

Panel D shows that when we re-estimate the model including a spline in Xig in the propensity

score estimation, the reweighting estimator has no detectable bias for any of the target groups. This

suggests that allowing for greater flexibility in the functional form relationship between covariates

and the propensity score can achieve greater reductions in bias.

Overall, the results of this exercise show that that the reweighted estimator has significantly less

bias than FE for the types of treatment effect heterogeneity we consider, and can be successfully

targeted toward different target populations. Consistent with the conditioning on observables

requirements of this estimator, its performance is best when it is given the appropriate covariates

for the particular type of heterogeneity, and when the model for the probability of switching is

correctly specified.

5 Extensions

5.1 Projecting Treatment Effects for “Never-Switchers”

As noted above, the reweighting estimator in Proposition 1 only recovers the ATE for the target

population if (i) the target does not include never-switchers or (ii) if the treatment effects for never-

33In results not reported, we have examined adding Xig as a covariate to the propensity score estimation stage in
this model. This introduces a small amount of bias in the reweighting estimator (-0.1 p.p., relative to the 2 to 3 p.p.
bias in FE) for the “siblings” and “all” target groups.

34This is because Pr(Sg = 1) is misspecified as a linear function of Xig, which causes us to misassign the weight
for each treatment effect.
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switchers in the target can be assumed to be the same as some other target groups with Px > 0.

Otherwise, the reweighting estimator only obtains the ATE for the subset of the target with Px > 0,

for whom treatment effects are identified.

A slight variant of (ii) above which could also enables recovery of the full target ATE is to

extrapolate treatment effects for never-switchers. This requires a stronger form of CFEI: that

treatment effects are not only a function of observable characteristics, but that the researcher can

correctly specify the functional form of this relationship.35 This assumption may not be warranted

if heterogeneity is primarily driven by unobservable characteristics; in cases where there is support

in the data for such a relationship with observed covariates (e.g. increasing effects with group size),

this may be a reasonable way to proceed. The weighted average of estimated treatment effects for

Px > 0 and extrapolated effects for Px = 0 gives the ATE for the target group.

5.2 Unit i Covariates

We now consider FE models that include covariates Ci that vary across i units within a group.

Researchers may want to include Ci in their models in order to (i) make Assumption 1 more

reasonable; (ii) improve precision of estimates (iii) allow extrapolation to target groups defined at

the unit level.

Once these covariates are included, the typical intuition that “groups with variation in treat-

ment” provide identification breaks down. This is because for some groups, who we refer to as

“residual switchers,” there can be variation in the treatment residualized of Ci, even if there is no

within-group variation in Di.
36 Thus, treatment effects can also be estimated for residual switchers;

however, identifying variation comes from from within-family variation in Ci, not Di.

How much do residual switchers matter for estimates? We can quantify this by calculating the

share of variation in Di coming from residual switchers, using a formula similar to the calculation

of the effective number of observations.37 In our PSID application, residual switchers provide 3% of

the variation used for identification of the Head Start FFE coefficient. Therefore, this contributes

minimally to the FE estimate.

We can also consider incorporating residual switchers into the reweighting methods. For a

general discussion of how our key assumptions and proposition can be extended to accomodate Ci,

see Appendix A.3. The decision to include residual switchers can vary across contexts, and should

depend on the extent to which variation from residual switchers is valid for identifying treatment

effects. For example, in our application, residual switchers are primarily families where no children

attended Head Start. As a result, we believe that variation from these families is not aligned with

our desired thought experiment, which leads us to ignore these families in reweighting. In contrast,

35See Appendix A.1.1 for a formalization of this assumption and an extension of Proposition 1 using exrapolation.
36See Appendix A.3 for a formalization of this.

37In particular, the share of identification from residual switchers is equal to 1−
∑

g V ar(Di|Ci,g(i)=g)·(ng−1)·1(Sg=1)∑
g V ar(Di|Ci,g(i)=g)·(ng−1)

.

Alternatively, calculating the effective number of observations using Equation 3 (altering the variance to condition
on Ci) would produce similar results
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in a setting like difference-in-difference, untreated “residual switchers” can provide equal identifying

variation as the switchers, which makes it is appropriate to include variation from all groups.

5.3 Nonlinear Functional Form

Next, we relax the linear functional form assumption used to demonstrate SI in our Monte

Carlo simulations. One reason this may make a difference is that conditional or fixed effect logit

and probit models use only “double switchers,” families with variation in both the outcome variable

and the treatment variable, rather than “switchers”. In Appendix E, we show that the biases from

SI are similar in the linear probability model and conditional logit, and that the reweighting we

propose is equally effective at reducing bias in both cases.

5.4 Continuous Di

Finally, while we have focused on the case where Di is binary, it is worth noting that SI can

also be present when Di is continuous (since δ̂g,FE is still only estimated for switching families.) It

is not clear how frequently this will manifest in practice, however, since groups are more likely to

have variation in a continuous covariate. Even so, it may still be worthwhile to verify the number

of switchers, since there may be persistent bunching at one value of Di, such as at zero maternal

income or at zero instances of an uncommon event.

6 Effects of Head Start

6.1 Data and Replication of GTC and Deming (2009)

We now turn to examining the impact of Head Start on long run outcomes using the PSID and

CNLSY, which were used to analyze this question in GTC and Deming (2009).

6.1.1 PSID

The PSID sample includes the sample of individuals surveyed in the PSID by 2011. The PSID

began in 1968 as a survey of roughly 5,000 households and has followed the members of these

founding households and their children longitudinally. The longitudinal nature of the study allows

sibling comparisons during early adulthood as well as later in life.

We begin our analysis with a replication of GTC. The sample includes all black or white

individuals born between 1966 and 1977, and excludes Hispanic individuals.We provide a detailed

description of our replication of GTC in Appendix D. Despite some minor differences, the two PSID

samples are qualitatively similar. The summary statistics are often within a third of a standard

deviation of each other. Moreover, the estimated effects of Head Start in this sample are similar

to those estimated in GTC. We find large (23 p.p.) and significant effects of Head Start on the

probability that whites attain some college, and large point estimates (9.3 p.p.) for high school
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graduation, though in our case these are not statistically significant. We do not find that Head

Start meaningfully reduces the probability of committing a crime.38

For the remaining analyses from here, we use a sample that substantially expands and modifies

the GTC sample. First, we expand the sample to include individuals born between 1978 and

1987. The individuals in these cohorts were too young when the analysis in GTC was performed

to observe their education and early career outcomes. Second, we include older siblings of all

individuals, including those born prior to 1966. These early cohorts were typically too old to

benefit from the introduction of Head Start, and serve as a plausible control group for the early

cohorts.

In addition to modifications of the sample, we also expand the number of outcomes under

analysis in order to gain a more extensive understanding of the channels by which Head Start affects

children’s lives. We follow the established practice of distilling the measures to summary indices

to lessen problems with multiple hypothesis testing (see, e.g., Anderson, 2008; Kling, Liebman and

Katz, 2007; Hoynes, Schanzenbach and Almond, 2016). We create four indices to capture economic

and health outcomes observed for individuals at age 30 and 40. The “economic sufficiency index”

includes measures of educational attainment, receipt of AFDC/TANF, food stamps, mean earnings,

mean family income relative to the poverty threshold, the fraction of years with positive earnings,

the fraction of years that the individual did not report an unemployment spell, and homeownership.

The “good health index” summarizes the following component measures: non-smoking, report of

good health, and negative of mean BMI.39

The process of creating each index follows the procedure described in Kling, Liebman and

Katz (2007). In particular, we standardize each component of the index by subtracting the mean

outcome for non-treated children, defined as children that did not attend any form of preschool,

and then dividing the result by the standard deviation of the outcome for non-treated children. The

summary index takes a mean of these standardized measures.40 We also extract the first principal

component of the standardized variables for “economic sufficiency” and for “good health”. Later

we use these as alternative outcome variables.

Appendix Table B.2 reports sample descriptive statistics for the expanded sample we construct.

For ease of comparison with our earlier replication, we include means for the entire sample, the

subsamples of Head Start participants/non-participants, and for the sample of individuals with

siblings. We present the means of the analyzed outcomes in Appendix Table B.3.41

38In some subsamples, we even find an effect in the opposite direction. We believe these cases are driven by
situations where there are rather few observations identifying the coefficients, and that the lack of correspondence
may be driven by very minor (and un-diagnosable) differences in specification and/or dataset construction.

39 See Appendix Table B.4 for descriptive statistics of the inputs to the indices.
40Consistent with Kling, Liebman and Katz (2007), we generate a summary index for any individual for whom we

observe a response for one component of the index. Missing components of the index are imputed as the mean of the
outcome conditional on treatment status. For example, if a former Head Start participant is missing an outcome,
it is imputed as the mean outcome of other Head Start participants. Likewise for other preschool, or non-preschool
participants.

41Appendix Table B.4 includes summary statistics for the inputs to the summary indices. Appendix Tables B.5,
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6.1.2 CNLSY

We obtain the CNLSY sample from the Deming (2009) replication files, which ensures that the

samples are identical. The CNLSY is a longitudinal survey that follows the children born to the

roughly 6,000 women that took part in the NLSY79 survey. The sample we use includes all children

who were at least 4 years old by 1990.

6.2 Head Start Estimation

The empirical strategy takes advantage of within-family variation in participation in Head Start

to identify the long term impact of the program. Following GTC and Deming (2009), we estimate:

Yig = α+ β1HeadStartig + β2OtherPreSchoolig + Xigγ + δg + εig (16)

where Yig represents a long-term outcome for individual i with mother g. HeadStartig indicates

whether a child reports participation in the program, and OtherPreSchoolig indicates participa-

tion in other preschool (and no participation in Head Start). These two variables are in this way

defined so as to be mutually exclusive, with “neither Head Start nor other preschool” as the omit-

ted category.42 δg is a mother fixed effect which enables comparisons across siblings with a shared

mother. The vector Xig includes a large number of controls for individual and family characteris-

tics to absorb differences in personal and household characteristics which may be correlated with

one’s participation in Head Start and long term outcomes. These controls vary due to data avail-

ability across sources and specification used in earlier work, but fall into three broad categories:

demographics, family background, and family economic circumstances during early childhood.43

Missing control variables are imputed at the mean, and we include an indicator variable for these

imputed observations. We cluster standard errors on mother id, and use population-representative

weights where appropriate.44 When Yig is binary, we estimate linear probability models as a main

specification and check the sensitivity of our results to alternative models.

The coefficient of interest is β1, the impact of Head Start on long term outcomes compared to

no preschool. We generate propensity score weights to obtain the ATE for three target populations:

(1) Head-Start-eligible individuals, based on family income between ages 2 and 5;45 (2) all Head

B.6, and B.7 contain the number of observations for each outcome and control variable in the analysis .
42Since Head Start only became available in 1965, we recode Head Start attendance to be “other preschool” for

the 1961 and older cohorts.
43For the PSID, these include: individual’s year of birth, sex, race, and an indicator for being low birth weight,

mother and father’s years of education, an indicator for having a single mother at age 4, 4-knot splines in annual
family income for each age 0, 1, and 2, a fourth spline based on average family income between ages 3 and 6, indicators
for mother’s employment status at ages 0, 1, and 2, and household size at age 4. For the CNLSY, these include:
health conditions before age 5, PPVT test score at age 3, measures of birth weight, measures of mother’s health and
health behaviors, mother’s working behavior and income prior to age 4, indicator for being first born, participation
in Medicaid, relative care, and indicators for early care types.

44We follow our predecessors’ weighting practices: for the PSID, we generate representative population weights
from the 1995 March CPS, and for the CNLSY do not use weights.

45An individual is considered Head-Start-eligible if at any point between the ages of 2 and 5 her family income was
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Start participants; and (3) all siblings.46 For parsimony, we use a subset of the variables in Table 2

to generate the propensity score for each race: year of birth, gender, mother’s years of education,

income at age 3, and income at age 4, and indicators for family size (grouping together 1 and 2 child

families).47 We include results for the post-regression weighting method; results are qualitatively

similar when we use in-regression weighting.

6.2.1 Evidence on Model Assumptions: Identifying and Conditional Ignorability

The standard test of the identifying assumption (Assumption 1) is to look for balance in observ-

ables across siblings within families. Deming (2009) finds little evidence that Head Start attendance

is correlated with observable differences across siblings, which suggests that the magnitude of selec-

tion may be small. In Appendix Table B.8, we examine the plausibility of the identifying assumption

in the PSID by testing the correlation between participation in Head Start and observable pre-Head

Start individual and family characteristics. For the white sample which forms our focus, there are

few statistically significant correlations, which suggest that the assumption may be reasonable.48

As a test of CFEI, Appendix Table B.9 examines whether treatment effects vary by the share of

siblings in the target group. Specifically, we regress estimated family-specific treatment effects on

an indicator for whether an individual is a member of the target population, employing traditional

inverse propensity score weights to balance observables between target and non-target switchers.49

This test passes with no sign of systematic differences across target and non-target individuals

across all outcomes.50

Our reweighting procedure also relies on adequate overlap of Px across switchers and individuals

in the target population in the non-switching sample. In Appendix Figure B.3 we show the density

of the estimated probabilities of being a Head Start participant for the switching sample and

the non-switching Head Start participant sample. This figure shows that there is a good deal of

overlap across the two groups, but also that there are a few Head Start participants whose p-scores

lie outside the range of the switchers. These observations represent 4 individuals, 5% of the Head

Start non-switcher observations, and 2% of all Head Start participants. We interpret this magnitude

below 150% of the poverty level, to account for our imperfect ability to observe reportable income.
46 Propensity score weights are estimated using information on year of birth, maternal education, sex, and maternal

income at ages 3 and 4.
47Results are similar when we substitute family size indicators with linear and quadratic terms in family size.
48For the black sample, participation in Head Start is correlated with a greater likelihood of having higher income

at age 1, and lower income at age 2, which may raise concerns that black families may tend to send their children
to Head Start after a rupture in the family or after an income shock. However, given the many hypotheses being
tested in this table, these significant findings might be spurious; and these results are somewhat sensitive, becoming
insignificant when we drop observations with imputed controls.

49For target individuals the weights are 1/Pr [Ti = 1, Sg = 1|Xig], and for non-target individuals the weights are
1/Pr[Ti = 0, Sg = 1|Xig].

50When the target population is Head Start participants, this requirement forces a degree of balance across the
target and non-target groups. Another way of viewing this test is: do switching families with a greater share of
participants have different coefficients on Head Start than those with a smaller share of participants? We have run
analogous models at the family level, which give qualitatively similar results.
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of violation of the overlap assumption as mild enough to disregard in our subsequent analysis.51

6.3 Head Start Results

6.3.1 Reweighted Estimates

We begin by presenting results for our illustrative outcome, attainment of some college for whites

in the PSID, in Panel A of Table 6. Column (1) of the table presents the estimated impact of Head

Start on some college in GTC, column (2) presents the results using our expanded sample, and

columns (3) to (5) present reweighted estimates for the three target populations. As reported earlier,

we estimate that Head Start increases the likelihood of attaining some college by a statistically

significant 12 p.p. (se: 0.053) using the baseline FFE model. This estimate is 57% smaller than the

estimate reported in GTC, 0.281 (se: 0.108).52 The standard errors are also roughly 50% smaller,

corresponding to the roughly tripling of sample size (2,986 compared with 1,036).

As we foreshadowed earlier, these estimates are unlikely to represent the ATE for policy relevant

populations, such as the Head Start eligible population and Head Start participants. Figure 3 shows

a scatter of the FFE weights and the Head-Start-representative weights for each family in the white

sample, divided by 2 to 3 child families (Panel A) and 4 or more child families (Panel B). The larger

(smaller) markers signify that the estimated effect of Head Start on some college for the family is

above (below) median. We also include a 45 degree line for reference. The figure shows that, in

general, the Head-Start-representative weights are higher than the FFE weights for small families

that experience smaller impacts of Head Start. Conversely, the representative weights are lower

relative to the FFE weights for large families that experience larger impacts of Head Start. Hence,

we should expect the reweighted estimates to show a reduced impact of Head Start relative to FFE.

The reweighted estimate of the impact of Head Start for the eligible, participant, and sibling

populations is between 0.068, 0.026, and 0.079, respectively, and are all statistically insignificant.

Setting aside the lack of precision in the estimates, these represent moderately large impacts relative

to the 43.7% average rate of college going among Head Start eligible children. But comparing to the

FFE coefficient, these effects imply a 34% to 78% smaller impact on college attendance. Putting

these estimates in broader perspective, they are 45 to 91% smaller than the unadjusted estimates

for all participants from other FFE studies (Bauer and Schanzenbach, 2016; Deming, 2009) and

51% smaller than the estimate from the county roll-out of Head Start (Bailey, Sun and Timpe,

2018), although the lower end of the confidence intervals for these estimates include our ATE.

Panel B of Table 6 presents results for the Economic Sufficiency Index in the PSID. Our FFE

estimate shows a statistically insignificant 0.023 SD decline in this index associated with Head Start.

When we reweight the effects, we find slightly larger negative effects for Head Start eligible children

51We provide the equivalent figure for the “Head-Start-eligible” target population in Appendix Figure B.4. For this
target group, the range of switching sample estimated p-scores encompasses that for non-switching target observations.

52We show in the appendix that this discrepancy is not due to faulty replication of the GTC estimates in a smaller
sample. We estimate a coefficient of 0.232 (se: 0.094) for this sample and outcome in our replication.

25



and Head Start participants, and a positive effect (0.03 SD) for siblings. It bears emphasizing,

though, that the results are not precisely estimated, such that the 95% confidence intervals allow

for a sizeable positive impact of Head Start in spite of the small or negative point estimate. For

example, the confidence interval for the economic index for whites allows for a Head-Start-induced

improvement of 0.16 SD or a reduction of 0.22 SD for Head Start participants. This limits our

ability to make firm conclusions about Head Start’s impact on this outcome.

The following four panels of Table 6 show the CNLSY FFE estimates, those reported in Deming

(2009) and our replication, and our reweighted estimates. The panels report effects for high school

graduation, idleness (not in school or at work), diagnosis of a learning disability, and poor health

(based on self-reported health status). The FFE estimates indicate that Head Start leads to an

8.5 p.p. increase in high school graduation (p < 0.01), a 7.2 p.p. decline in idleness (p < 0.10), a

5.9 p.p. decline in having a learning disability (p < 0.01), and a 6.9 p.p. decline in reporting poor

health (p < 0.01). The reweighted estimate for participants for high school is 44% smaller, and not

statistically significant. We also see substantial 24% and 28% declines in the estimated impact on

idleness and having a learning disability, respectively, when we consider the impact on participants.

The poor health estimates are relatively more stable; the reweighted impacts on participants are

just 3% smaller than the FFE estimate.

In the final column of the table, we test whether the difference between the reweighted estimate

for participants and the FFE estimate is statistically significant. We bootstrap the standard errors

for this difference by taking draws with replacement from the sample and performing the FFE

estimation and reweighting again. We do this 1,000 times and obtain the standard error of our

difference as the standard deviation of the 1,000 estimated FFE-reweighted differences. We find

that the reweighted estimates for some college (PSID) and high school graduation (CNLSY) are

statistically different from the FFE estimate at the 5% and 10% levels, respectively. The remainder

of the outcomes are more imprecisely estimated, and therefore we can not reject that the reweighted

estimate is the same as the FFE estimate.

Returning to the PSID, Appendix Tables B.10 and B.11 show the PSID FFE estimates and

reweighted results for high school and the good health index for whites, and the corresponding

results for blacks. Overall, the results suggest little support for a positive long term effect of Head

Start. This is true for the FFE estimates and the reweighted estimates. Nonetheless, the magnitude

of the estimates can vary importantly with reweighting, particularly for whites. This makes sense

since the identifying sample is a much smaller share of the overall sample for whites relative to

blacks. For example, the FFE estimate for the good health index for whites is -0.265 SD, but

reweighting for the Head Start participant population changes this estimate to -0.439. In contrast,

the coefficients are relatively stable for blacks.53

We explore other reweighting strategies in Appendix Tables B.12 and B.13. Reweighting using

53For the black sample, most estimates are also statistically insignificant. However, for the age 30 Economic
Sufficiency Index, the reweighted estimates indicate statistically significant negative impacts of Head Start. For
example, for a target population of participants the reweighted coefficient on Head Start is -0.211 (s.e. = 0.073).
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linear extrapolation of treatment effects to singletons in Table B.12 produces qualitatively similar

results to the baseline reweighting, although the point estimates for Head Start participants are

often smaller.54 Table B.13 presents the results when we reweight the FFE estimates using sample

shares instead of propensity score weights. Across all outcomes, these estimates are quite similar

to the FFE estimates, underscoring that the conditional-variance-weighting plays a minor role in

this setting.

6.3.2 More Evidence on the Role of Family Size

One key pattern in our findings is that larger families appear to have larger returns to Head

Start than smaller families. We believe this to be a new finding in the Head Start literature. We

note that this was not a pattern we initially set out to test in this study, so there is some chance

of this finding being inadvertently driven by chance and our limited sample sizes. However we

think that this may provide an interesting hypothesis for future studies. Also, we first observed

this pattern in the PSID data, and so our CNLSY results (see e.g. Columns 3, 4, and 5 of Table 4)

are to some degree an out of sample confirmation of this pattern.

We have examined whether the larger coefficients for larger family sizes in Table 4 are driven

by family size standing in for other covariates. In Appendix Table B.14 we perform a “horse race”

analysis, comparing whether heterogeneous coefficients load on to family size, or other covariates.

This table shows that the heterogeneity with family size is robust to also allowing for heterogeity

along other covariates. We have also experimented with specifications that test for whether larger

family size is merely proxying for “longer sibling cohort span,” and do not find evidence that this

is the case.

6.3.3 Additional FFE Estimates

Continuing our analysis of the PSID, we also investigate effects of Head Start on a variety of

additional short-term outcomes, outcomes at age 40, as well as heterogeneity by race, gender by

cohort in Appendix C. We do not find any systematic evidence of effects on any of these outcomes,

or important heterogeneity along these dimensions.

7 Other Applications

We have shown empirical evidence for selection into identification for three FFE applications

relating to the returns to human capital investment and returns to domestic migration. In each

of these contexts, there appears to be a mechanical relationship between Pr(Sg = 1) and group

size. In the Head Start setting, heterogeneity along these lines creates an upward-bias in the FE

54We have also explored excluding singletons altogether from the target. The estimates for non-singleton Head
Start participants and non-singleton Head-Start-eligible children typically lie between the reweighted estimates for
siblings and Head Start participants.
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estimate. Since returns to migration may also be heterogeneous by family characteristics, it may

be useful to also reweight the estimates from Collins and Wanamaker (2014) to obtain the ATE for

a representative set of migrants.

We now discuss three additional FE designs present in the education, labor, and environmental

literatures that illustrate settings where the tools that we have developed may apply. First, a

number of studies examine the effect of peers in the classroom within a school-grade (or school)

using school-grade FE (or school FE). For example, Carrell and Hoekstra (2010) and Carrell,

Hoekstra and Kuka (2018) examine the effect of having a peer exposed to domestic violence (DV)

using this strategy, finding large negative impacts on contemporaneous achievement that persist to

reduce long-term earnings. While the DV measure in these studies is continuous, it is reasonable

to think that this may be a “lumpy” variable in the sense that some schools (or school-grades),

which have a low probability of DV, will never have a student exposed to DV during the 8 year

window of observation, and some school-grades, which have a high probability of DV, may always

have a student exposed to DV. Given the likely correlation between Pr(DVg = 1) and Pr(Sg = 1),

non-switcher schools probably also have a different set of school resources (e.g. share of highly

experienced teachers) and student composition (e.g. mean family income) than switchers, which

could either exacerbate or mitigate the effects of DV. As a result, the effects estimated from

switching schools may not generalize to low-probability-DV non-switchers or high-probability-DV

non-switchers.

Second, a set of influential papers by Dube, Lester and Reich (2010, 2015) identify the impact

of minimum wage laws within border-county pairs (using border-pair-by-year FE). This strategy

produces bounds on minimum wage elasticities which are less negative than those estimated with

other strategies. The authors report that 91% of the county pairs in the data have variation in

the minimum wage at some point during the analysis, however states with more border counties

and who have more frequent changes to the minimum wage relative to neighboring states will

contribute more variation to the design. Hence, in practice, identification may be concentrated

among a subset of the 91%. At the same time, the characteristics of switching border counties

are likely to be different from interior counties, in terms of the education distribution, population

density, or industry composition, which could influence the response to minimum wage increases

(Cengiz et al., 2019). Thus, reweighting the estimates of switching border pairs to account for these

characteristics could yield a different estimate for the impact of the minimum wage.

Third, it has become common to estimate the effect of environmental shocks on health and

human capital using variation in temperature or rainfall within a local area (e.g. district FE). For

example, Shah and Steinberg (2017) employ this strategy and find that a positive rain shock (top

20% rainfall) reduces the likelihood that students attend school, and vice versa for droughts. Since

shocks are by definition infrequent events, it is likely that some districts that have more moderate

climates will have no shocks over the 4 years of analysis. These non-switching districts may be

located in a different geography, have distinct industrial composition, or population characteristics,
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which could in turn affect the elasticity of school attendance. Hence, extrapolating from switcher

to non-switcher districts may require reweighting strategies such as those we propose.

These applications highlight the fact that selection into identification is likely to be relevant

across the numerous domains where FE are applied. We leave it to future researchers to quantify

the role of this selection and apply reweighting techniques to test the sensitivity of the conclusions.

8 Conclusion

Fixed effects can provide a useful approach for treatment effect estimation. The internal validity

of this strategy, which has been the subject of much debate, relies on the assumption that treatment

is randomly assigned to units in a group. In this article, we show that an additional assumption is

needed for the external validity of results: that groups with variation (switchers) have comparable

treatment effects to groups without variation (non-switchers). In other words, fixed effects estimates

are generalizable only if there is no selection into identification.

We show that this assumption is not trivial in the context of family fixed effects. We document

across multiple settings that switching families are systematically larger and show that this can

induce bias in estimation. We develop a novel approach to recover ATE’s for representative popu-

lations, which upweights observations that are under-represented in the identifying sample relative

to the population of interest. We demonstrate that this reweighting approach performs well using

Monte Carlo simulations.

We apply these lessons to an analysis of the long term effects of Head Start in the PSID and

CNLSY using family fixed effects. Relative to prior evaluations of Head Start using FFE in the

PSID, we use a sample three times as large in size, include longer run (up to age 40) outcomes, and

expand the set of outcomes under consideration. Echoing prior findings, we find using FFE that

Head Start significantly increases the likelihood of completing some college and graduating from

high school, and decreases the likelihood of being idle, having a disability, or reporting poor health.

Using our reweighting methods, we estimate that Head Start leads to a 2.6 p.p. increase in the

likelihood of attending some college for Head Start participants, and a 6.8 p.p. increase for Head

Start eligible. The ATE estimate for participants is 78% smaller than the FFE estimate, a difference

which is statistically significant at the 5% level. We examine several other outcomes and find few

statistically significant results. In sum, the FFE results in the PSID indicate that Head Start has

little effect on many long term outcomes on average, with the exception of completing some college,

and perhaps even detrimental effects for men. In the CNLSY, for high school graduation we find

that the reweighted estimate for participants (4.8 p.p.) is 44% smaller than the FFE estimate, a

difference which is statistically different at the 10% level. We find relatively less change associated

with reweighting for other outcomes.

Overall, we interpret our findings as pointing primarily toward “increased uncertainty” and to

a limited degree toward “zero effects” of the Head Start program. This suggests that there is some
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discordance between the long-term results from the FFE design, and new estimates using other

designs, which generally produce larger and more robust effects of this intervention. Reconciling

these findings is beyond the scope of this paper, but would be a productive avenue for future work.

Based on our findings, we propose new standards for practice when using FE or similar research

designs to diagnose, and potentially correct for, the role of changes in sample composition in

explaining the gap between OLS and FE estimates.

1. First, analyses should report the switching sample size in addition to the total sample size,

including for relevant subsamples of the data (e.g. whites and blacks). It may also be useful

to calculate the effective number of observations and share of identifying variation from true

switchers to increase transparency into the variation among switchers.

2. Second, we suggest that researchers show a balance of observables across switching status

to complement evidence of within-sample balance across treatment status. These covariates

should include the number of units in a group (if there is imbalance) and correlates of treat-

ment. For example, in the case of movers, one might consider testing for balance of urbanicity,

age, and occupations. If there are differences in these covariates, researchers should examine

heterogeneity along these dimensions. These tests are likely to have limited power to detect

issues if there are interactions between covariates, but are a useful bellweather for important

external validity concerns.

3. As a subsequent step, we recommend using propensity-score reweighting of the FE estimates

to obtain estimates for a representative population or a policy-relevant population, such as

program participants. Since these methods can perform unevenly under some models of

heterogeneity, we suggest testing for sensitivity of results and reporting a range of estimates

where applicable.
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9 Figures

Figure 1: Within-Family Variation in Head Start and Attendance of Some College (PSID)
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Notes: This figure depicts the identifying variation used in a FFE regression of some college on an
indicator for participation in Head Start. Each marker represents the number of individuals that
exhibit a particular deviation from the mean Head Start attendance of their family and from the
mean attendance of some college of their family. Deviations are defined as the difference between
individual attendance of Head Start/some college (1 or 0) and mean of Head Start/some college of
one’s family. The marker size represents the unweighted number of individuals. We also include a
best-fit line, weighted by the number of individuals in each marker. Source: Panel Study of Income
Dynamics, 1968-2011 waves.
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Figure 2: Likelihood of Being a Switcher Family Increases with Family Size and P(treatment)
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(b) Head Start in CNLSY (c) Migration in Census
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Notes: This figure shows the probability of being in a switching family and the probability of “treat-
ment” by family size using three datasets and varying treatments. Panel (a) plots the probability of
being in a switching family and of attending Head Start by family size for the following groups in the
PSID: Whites, Blacks, children of mothers with at most a high school degree, and children of mothers
with at least some college. Figure (b) is a simplified version of (a) using data on Head Start participa-
tion and family size from the CNLSY. Figure (c) shows the probability of being in a switching family
and the probability of migrating to the northern US, using a linking of the 1910 to 1930 censuses used
in Collins and Wanamaker (2014).
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Figure 3: FFE Weights and Head-Start-Participant-Representative Weights by Family Size and
Some College β (PSID White Sample)
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(b) Families with 4+ Children
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Notes: Each marker in this figure indicates the FFE weights and Head-Start-participant-
representative (post-regression) weight for one white switching family. The color of the marker
indicates whether the family has 2-3 children or 4 or more children. The size of the marker indicates
the estimated family-specific beta from a regression of attainment of some college on interactions
between Head Start and family id fixed effects. A larger marker indicates an above median beta,
while a smaller marker indicates a below-median beta. The 45 degree line is included for reference.
Observations above (below) the line are overweighted (underweighted) in the FFE sample relative
to a representative Head Start sample. Source: Panel Study of Income Dynamics, 1968-2011 waves.39
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10 Tables

Table 1: Family FE Articles in Top Applied Journals, 2002 to 2017

Binary Indep. Binary Dep. Both Binary Total

AEJ: Applied 6 4 3 8
AEJ: Economic Policy 1 1 1 1
AER 3 1 1 5
AER Papers and Proceedings 2 2 1 3
Journal of Health Economics 5 3 2 7
Journal of Human Resources 7 2 2 12
Journal of Labor Economics 2 1 1 5
Journal of Political Economy 2 1 1 2
Journal of Public Economics 4 4 4 5
QJE 1 4 1 4
Review of Economics and Statistics 2 0 0 3
Total 35 23 17 55

Common Dependent Variables

Schooling/Attainment 23
Test Score 17
Employment/Earnings 15
Birth Weight 6
Health 6
Behavioral Issues/Crime 5

Common Independent Variables

Schooling 8
Birth Weight 5
Health 5
Parental Traits 4
Employment 3
Birth order 3
Means-Tested Public Program 2
Death of Family Member 2
Bombing/Radiation 2

Observations by Sample

Siblings N Total N
p10 469 1,212
p25 1,167 2,142
p50 6,315 17,501
p75 160,122 551,630
p90 750,697 1,582,142

Year Publication Min/Max 2002 2017

Articles with Balance Table if Binary Ind. 1

Notes: This table presents a summary of FFE articles published between January 2000 and May
2017 in 11 top applied journals, which are listed in the first panel of the table. For reference, be-
tween 2002 and 2017 the number of articles published in AEJ: Applied was 310; AEJ: Policy was
313; AER was 1722; AER P&P was 1676; JoLE was 434; Journal of Political Economy was 548;
QJE was 639; JHR was 543; JPubE was 1688; REStat was 1033; JHE was 1017. Articles were
initially idenitified using the search terms “family,” “within family,” “sibling,” “twin,” “mother,”
“father,” “brother,” “sister,” fixed effect,” “fixed-effect,” and “birthweight” using queries on jour-
nal websites. Siblings N is the number of observations reported for the sample of siblings, while
Total N represents the number of total observations reported. See text for details.
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Table 2: Switchers and Non-Switchers Vary Along Dimensions Other Than Family Size

(1) (2) (3) (4) (5)
Switch Non-Switch T-Stat. (1)=(2) Beta Switch T-Stat (4)

A. Individual Covariates
Fraction female 0.562 0.495 4.067 0.024 0.719

Fraction African-American 0.516 0.111 25.877 0.249 5.640

Mother’s yrs education 9.283 11.230 -21.590 -0.140 -0.751

Father’s yrs education 9.190 11.371 -19.594 -0.389 -1.784

Had a single mother at age 4 0.252 0.099 10.049 0.055 2.543

Family income (age 3-6) (CPI adjusted) 31809 52574 -24.735 -4759 -5.719

Mother employed, age 0 0.508 0.570 -3.099 0.055 2.339

Mother employed, age 1 0.517 0.543 -1.342 0.058 2.359

Mother employed, age 2 0.536 0.554 -0.951 0.118 3.565

Household size at age 4 5.487 4.451 12.343 0.755 4.936

Fraction low birth weight 0.077 0.058 1.971 0.010 0.702

Observations 1103 5500 6603 7372 7372

B. Inverse Selection into Identification Wts.

Pr(switch)/Pr(Head Start), Whites 2.976 2.318
(1.99) (1.98)

Pr(switch)/Pr(Head Start), Blacks 1.987 1.148
(1.21) (1.10)

Notes: Panel A of this table presents comparisons of the characteristics of individuals in switching families and non-
switching families. Columns 1, 2, and 3, respectively, show the mean characteristics of individuals in families that
are switchers; individuals in families that are not switchers; and individuals that attended Head Start (HS) in non-
switcher families. Column 3 presents the t-statistic for the test that columns 1 and 2 are equal. Column 4 shows the
estimates from a regression of each row heading on an indicator for being in a switcher family, with the corresponding
t-statistic shown in Column 5, with standard errors clustered on id1968. All controls from the main specification
are included excluding the variable shown in the row heading. All estimates are weighted to be representative of
1995 population; see text for details. Panel B shows the mean and standard deviation (in parenthesis) of the inverse
of the post-regression propensity score weights when the target is Head Start participants. This gives a measure of
how aligned the characteristics of switchers are with the characteristics of Head Start participants, the population
of interest. An average value of 1 implies perfect alignment, while a higher value implies that the characteristics
of switchers are over-represented relative to the characteristics of Head Start participants. Pr(switch) and Pr(Head
Start) are estimated from a multinomial logit model of these outcomes on family size and other covariates described
in the text. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table 3: Change in Weighting of Regression Estimates Across Sibling and Switcher Samples (PSID)

Number of Children in Family:

1 2 3 4 5 +

A. Share of Sample

All Sample 0.123 0.273 0.238 0.147 0.134

Siblings Sample 0.000 0.345 0.300 0.186 0.169

Switchers Sample 0.000 0.210 0.271 0.197 0.322

B. Variance in Head Start

All Sample 0.089 0.104 0.121 0.127 0.132

Siblings Sample 0.000 0.024 0.050 0.059 0.068

Switchers Sample 0.000 0.045 0.098 0.131 0.174

C. Regression weights

All Sample 0.171 0.257 0.284 0.117 0.101

Siblings Sample 0.000 0.338 0.374 0.154 0.134

Switchers Sample 0.000 0.256 0.307 0.190 0.248

Notes: This table shows the change in the composition of the PSID sample moving from
all individuals (“All Sample”) to individuals that have at least one other sibling in the
sample (“Siblings Sample”) to individuals in families that have variation in Head Start
attendance (“Switchers sample.”) Panel A shows the share of individuals in each sample
that come from a family with 1 child (zero siblings), 2 children, etc. Panel B shows the
variance in Head Start for each family size and sample. For switchers, this is calculated
net of family fixed effects. Panel C shows the ”regression weight” given to each family size
in a given sample, denoted as ωz and defined formally in Section 3. Source: Panel Study
of Income Dynamics, 1968-2011 waves.
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Table 4: Returns to Head Start by Family Size,

and Implications for Regression Estimates

PSID CNLSY

Some College HS Grad Idle Lrn. Disab.

CX FE FE FE FE
(1) (2) (3) (4) (5)

A. Effects by Family Size

Head Start x 1 child family 0.169∗

(0.091)

Head Start x 2 child family 0.038 -0.126 0.033 -0.067 -0.028
(0.079) (0.099) (0.042) (0.052) (0.025)

Head Start x 3 child family -0.030 0.152∗∗ 0.061 -0.038 -0.070
(0.087) (0.075) (0.060) (0.068) (0.043)

Head Start x 4 child family -0.053 0.251∗∗∗ 0.156∗ -0.002 -0.064
(0.100) (0.091) (0.086) (0.111) (0.049)

Head Start x 5+ child family 0.572∗∗∗ 0.348∗∗∗ 0.277∗∗∗ -0.306∗∗ -0.157∗

(0.119) (0.126) (0.097) (0.139) (0.081)

Head Start x Unknown child family -0.099
(0.108)

Observations 4258 2986 1251 1251 1247
Head Start Switchers 213 581 581 581
Effective Obs. (Indivs. 2-Person Fams) 235.9 647.9 647.9 647.9
Effective Obs. (CX Indivs.) 731.8 438.7 438.7 438.7

B. Simulated Estimates across Samples

using Family-Size Regression Weights

All 0.046
Siblings 0.037 0.083 0.074 -0.068 -0.053
Switchers 0.069 0.123 0.088 -0.073 -0.060

Notes: Panel A of this table shows the coefficients from a regression of some college on a series of indicators
for whether an individual attended Head Start interacted with an indicator for the number of children in one’s
family. The sample is composed of white individuals. Columns 1 include controls, but not mother f.e., and
standard errors are clustered at 1968 family id. Column 2 includes mother fixed effects, and standard errors
clustered by mother id. The number of Head Start switchers is equal to the number of individuals in families
that have variation in Head Start. “Effective Obs. (CX Indivs.)” is the equivalent number of cross-sectional
units that provide the same amount of variation as switchers. “Effective Obs. (Indivs. 2-Person Fams)” is
the equivalent number of individuals in 2-person switching families that provide the same amount of variation
as switchers. Both of these are calculated using Equation 3, where the denominator is the variance of Head
Start, residualized by the family mean of the covariates in the analysis, or 0.125, respectively.Panel B shows the
weighted average of the coefficients when using regression weights, ωz (defined in Section 3), determined by the
overall distribution of families (”All”), the distribution of 2+ child families (”Siblings”), and the distribution
of 2+ child families that have variation in Head Start attendance (”Switchers”). * p < .10, ** p < .05, *** p
< .01. Source: Panel Study of Income Dynamics, 1968-2011 waves and Children of the National Longitudinal
Study of Youth.
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Table 5: Monte Carlo Experiments: Bias of Reweighting and FFE Relative to True ATE,

and Efficiency of Reweighting Relative to FFE

Bias: MSE of Reweight

True ATE FE Reweight MSE of FE

A. Constant TE; p-score: Xig

Switchers 80 -0.3 -0.2 1.03
Siblings 80 -0.3 -0.5 1.19
All 80 -0.3 -0.5 1.20
HS Participants 80 -0.3 -0.3 1.04

B. Large family TE; p-score: large family

Switchers 83.0 -11.1∗ -0.6 0.92
Siblings 49.6 22.2∗ -0.1 0.70
All 40.3 31.6∗ 0.1 0.54
HS Participants 41.1 30.7∗ 0.1 0.55

C. TE linear in Xig; p-score: Xig

Switchers 94.2 -2.0∗ -0.6 1.03
Siblings 80.1 12.2∗ 1.6∗ 0.99
All 80.0 12.2∗ 1.7∗ 1.00
HS Participants 91.5 0.8 -0.2 1.03

D. TE linear in Xig; p-score: Xig spline

Switchers 94.2 -1.5∗ -0.3 1.04
Siblings 80.1 12.7∗ -0.4 1.08
All 80.0 12.8∗ -0.4 1.09
HS Participants 91.5 1.3 -0.2 1.09

Notes: This table shows the results from 3,000 Monte Carlo simulations. Each panel of the table shows
results from a different DGP and/or different covariates used in the p-score, and each row within panel is
for a different target population. The true DGP is linear, and is discussed in Section 4.4. The first panel
shows results where Head Start has a constant treatment effect (TE) for all individuals; the second shows
results where Head Start (HS) has no effect on individuals from small families (3 or fewer children) and
a large effect for families with many children (4 or more children); and the third and fourth panels show
results where treatment effects that are linear in Xig. Column 1, “True Beta,” presents the true average
increase in the probability of completing some college for participants in Head Start in the sample, which
is a function of the DGP and sample composition. Columns 2 and 3 present the bias of various estimation
strategies, defined as the difference between the estimated effects of Head Start and the true beta. The
estimated effects come from a LPM, propensity-score weighted LPM, respectively. Column 4 presents the
ratio of the mean squared error (MSE) of the reweighting estimators relative to LPM. Reweighted estimates
are obtained using in-regression weighting, with weights adjusting for the representativeness of switchers
(using the variable(s) indicated in each of the panel headings as predictors in the multinomial logit step)
and the conditional variance of Head Start within families. All betas are multiplied by 1,000. * p < .01.
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Table 6: Head Start Impact for Representative Eligible Children, Participants, and Siblings

Using Reweighting

FFE Reweighted ATE, Target = Diff. b/w

GTC/Deming Expand Sample/ HS Eligible Participants Siblings FFE and
Replicate Participant ATE

A. Some College (PSID)

Head Start 0.281∗∗ 0.120∗∗ 0.068 0.026 0.079 0.094∗∗

(0.108) (0.053) (0.060) (0.062) (0.056) (0.042)

Y Mean in Target – 0.556 0.387 0.437 0.556

B. Economic Sufficiency Index, Age 30 (PSID)

Head Start – -0.023 -0.038 -0.032 0.021 0.009
– (0.102) (0.086) (0.098) (0.088) (0.090)

Y Mean in Target – 0.213 -0.198 -0.485 0.213

C. High School Graduation (CNLSY)

Head Start 0.086∗∗∗ 0.085∗∗∗ 0.033 0.048 0.020 0.037∗

(0.031) (0.030) (0.034) (0.031) (0.036) (0.023)

Y Mean in Target – 0.776 0.734 0.766 0.776

D. Idle (CNLSY)

Head Start -0.071∗ -0.072∗ -0.061 -0.055 -0.067 -0.017
(0.038) (0.037) (0.040) (0.037) (0.043) (0.026)

Y Mean in Target – 0.197 0.221 0.201 0.197

E. Learning Disability (CNLSY)

Head Start -0.059∗∗∗ -0.059∗∗∗ -0.031 -0.042∗∗ -0.040∗∗ 0.017
(0.020) (0.021) (0.021) (0.018) (0.020) (0.015)

Y Mean in Target – 0.051 0.055 0.041 0.051

F. Poor Health (CNLSY)

Head Start -0.070∗∗∗ -0.069∗∗∗ -0.063∗∗ -0.067∗∗ -0.050∗ -0.003
(0.026) (0.026) (0.030) (0.028) (0.030) (0.020)

Y Mean in Target – 0.103 0.098 0.074 0.103

Notes: Column 1 of this table shows the FFE estimated impacts of Head Start for whites from GTC or for the whole sample from
Deming (2009). Column 2 shows the FFE estimate using our expanded sample for PSID outcomes and using our replication sample
for CNLSY outcomes. The outcomes in Panels A and B are taken from the PSID white sample, and the outcomes in Panels C to F are
taken from the CNLSY sample. Columns 3 to 5 present reweighted estimates of the effect of Head Start for three target populations
(shown in the column header) using the post-regression reweighting procedure, in which we multiply group-level estimates of the impact
of Head Start by the representative weight for the target population of interest. Column 6 presents the difference in the estimate in
column 2 (FFE) and column 4 (reweighted for participants), with the standard error obtained from a bootstrap procedure described
in the text. ”–” is used to indicate that the information is not available. Sample size is N=2,986 for the expanded sample, and 1,036
for GTC. Standard errors are clustered on mother id. * p < .10, ** p < .05, *** p < .01.
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A Derivations and Proofs

A.1 Proof of Proposition 1

The proof of Proposition 1 closely follows the proofs of Theorem 2 in Angrist and Fernandez-Val
(2013) and Theorem 1 in Aronow and Carnegie (2013). There are two key differences. First, we rely
on Group ID Conditional Independence (Assumption 1), instead of the IV exclusion restriction.
Second, we condition on two propensity scores, unlike Aronow and Carnegie (2013), who condition
on Pr(Di = 1), and Angrist and Fernandez-Val (2013), who condition on discrete covariates.

Recall that we define δ̂t := 1∑
i 1(g(i)∈GS)

∑
i

ˆwt
g(i) · δ̂g and wt

g(i) := Qx

Px

Pr(S=1)
Pr(T=1) .

By Assumptions 1 and 3,

δ̂t →p E
[
wt
g(i) · δ̂g|Sg = 1

]
(17)

By Assumption 1 and the law of iterated expectations,

E
[
wt
g(i) · δ̂|Sg = 1

]
=E

[
wt
g(i) (Yi (1)− Yi (0)) |Sg = 1

]
(18)

By the law of iterated expectations,

E[wt
g(i) · (Yi (1)− Yi (0))|S = 1] = E[E[wt

g(i)(Y (1)− Y (0))|S = 1, Px, Qx]|S = 1] (19)

= E[E[wt
g(i)(Y (1)− Y (0))|Px, Qx]|S = 1] (20)

= E[wt
g(i)E[(Y (1)− Y (0))|Px, Qx])|S = 1] (21)

= E[wt
g(i)∆(Px, Qx)|S = 1]

Line (20) follows from (19) from the CFEI assumption that E[Y (1) − Y (0)|S, Px, Qx] = E[Y (1) −
Y (0)|Px, Qx]. Line (21) follows from line (20) because wt

g(i) is a function of Px and Qx only, by
definition.

Now let F be the distribution of (Px, Qx), and let F (·|S = 1) be the distribution conditional on
S = 1. By Bayes rule,

ˆ
wt
g∆(Px, Qx)dF (Px, Qx|S = 1) =

ˆ
wt
g(i) ·∆(Px, Qx)

Pr(S = 1|Px, Qx)

Pr(S = 1)
dF (Px, Qx)

=

ˆ
wt
g(i) ·∆(Px, Qx)

Px

Pr(S = 1)
dF (Px, Qx)

=

ˆ
Qx

Px

P (S = 1)

P (T = 1)
∆(Px, Qx)

Px

Pr(S = 1)
dF (Px, Qx)

=

ˆ
∆(Px, Qx)

Qx

Pr(T = 1)
dF (Px, Qx)

=

ˆ
∆(Px, Qx)

Pr(T = 1|Px, Qx)

Pr(T = 1)
dF (Px, Qx)

=

ˆ
∆(Px, Qx)dF (Px, Qx|T = 1)
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By CFEI,
´

∆(Px, Qx)dF (Px, Qx|T = 1) =
´
E[Y (1) − Y (0) |T = 1, Px, Qx]dF (Px, Qx|T = 1) =

E[Y (1)− Y (0) |T = 1].

A.1.1 Extrapolating treatment effects to never-switchers

Note that the ATE for the target population can be written as a weighted average of the ATE
for switchers, δt,Px>0, and the ATE for never-switchers, δt,Px=0:

δt := Pr (Px > 0|Tg = 1) · δt,Px>0 + (1− Pr (Px > 0|Tg = 1)) · δt,Px=0 (22)

where δt,Px>0 = E[Y (1)− Y (0)|T = 1, Px > 0] and δt,Px=0 = E[Y (1)− Y (0)|T = 1, Px = 0].

Since we can not identify treatment effects for Px = 0 from the FFE design, we must impose
an additional assumption that allows extrapolation of treatment effects for this group.

Assumption 5 (Treatment Effect Functional Form):

E[Y (1)− Y (0)|Xg] = H (Φ; Xg)

with H (·) known, and Φ parameters that can be consistently estimated. Under Assumption 5,
Φ̂ can be estimated using e.g. the regression δ̂g = Φ′Xg+ug.

Proposition 2. Under Assumptions 1, 2, 3, and 5, and assuming Pr (Px > 0|Tg = 1) can be
consistently estimated, the ATE for the target t can be consistently estimated by

δ̂t = Pr (Px > 0|Tg = 1) · δ̂t,Px>0 + (1− Pr (Px > 0|Tg = 1)) · δ̂t,Px=0

where δt,Px>0comes from Equation 12 and δt,Px=0 is estimated from a projection of δ̂gon Xg.

Proof:

Define δ̂t,Px=0 := 1∑
1(Tg=1,Px=0)

∑
Tg=1,Px=0H

(
Φ̂; Xg

)
.

Assumptions 1, 3, and 5 imply that

plim δ̂t,Px=0 = E[Y (1)− Y (0)|T = 1, Px = 0] (23)

From the proof of Proposition 1, we have that

plim δ̂t,Px>0 = E[Y (1)− Y (0)|T = 1, Px > 0] (24)

Then,

plim δ̂t = Pr (Px > 0|Tg = 1) · E[Y (1)− Y (0)|T = 1, Px > 0] (25)

+ (1− Pr (Px > 0|Tg = 1)) · E[Y (1)− Y (0)|T = 1, Px = 0]

= E[Y (1)− Y (0)|T = 1] (26)

A speculative alternative approach would be to take a “double robust” estimation approach.
This is modeled after the double robust approach for estimating causal effects, as in Robins, Rot-
nitzky and Zhao (1995). The discussion in Chapter 17 of Imbens and Rubin (2015, pp. 399-400)
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notes that in the traditional setting, consistency of the estimated treatment effect requires either
correct specification of the propensity score, or of the regression model. In our setting, instead of
trying to model potential outcomes, we are estimating average treatment effects. Implementation

would proceed by (i) defining weights wt
g(i) as in equation (13); (ii) estimating δ̂g = H

(
Φ̂; Xg

)
using

these weights, and then predicting 1∑
1(Tg=1)

∑
Tg=1H

(
Φ̂; Xg

)
over the full target population.

A.2 Intuition for Propensity Score Weighting

In this section, we provide a simple derivation of the weighting scheme that we propose to obtain
the ATE from the switchers sample by introducing a concrete example in which the treatment effect
is determined by one discrete covariate, x, and in which there are only few groups in the switcher
sample. For ease of exposition, we refer to groups as families and units within groups as kids.

A.2.1 Thought Experiment

Suppose that the target population is comprised of 75% black individuals and 25% white indi-
viduals. The switchers sample has 1 white family with 3 kids and 2 black families with 3 and 5 kids,
respectively. Thus, to be representative of the target population, the white family should be given
a weight of 25%. The share for each black family is proportional to the number of individuals in
the family, normalized so that the total share across the two families is 75%. Thus, the first family
should be given a weight of 0.75 · 3

8 , and the second family should be given a weight of 0.75 · 5
8 .

A.2.2 Notation

Under the setup above, the weight that should be given to a switcher family g where all indi-
viduals have race xi = x, can be written as:

sgx =

∑
(1(xi = x)|Tg(i) = 1)∑

Tg(i)
·
∑

1(g(i) = g)∑
(Sg(i)|xi = x)

(27)

The first term,
∑

(1(xi=x)|Tg(i)=1)∑
Tg(i)

, gives the share of individuals in the target population with

race x. The second term,
∑

1(g(i)=g)∑
(Sg(i)|xi=x) gives the size of family g as a proportion of the switcher

sample with race x.
Equivalently,

sgx = Pr(xi = x|Tg(i) = 1) ·
∑

1(g(i) = g)

Pr(xi = x|Sg(i) = 1) ·
∑
Sg(i)

(28)

=
Pr(xi = x|Tg(i) = 1)

Pr(xi = x|Sg(i) = 1)
· Pr(g(i) = g|Sg(i) = 1) (29)

A.2.3 Estimation

1. We obtain an estimate of Q̂x = Pr(Tg(i) = 1|xi = x) as fitted values from a regression of T
on X.

This is equal to
Pr(xi=x|Tg(i)=1)·Pr(Tg(i)=1)

Pr(xi=x) by Bayes rule.
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2. We obtain an estimate of P̂x = Pr(Sg(i) = 1|xi = x) as fitted values from a regression of S
on X.

This is equal to
Pr(xi=x|Sg=1)·Pr(Sg(i)=1)

Pr(xi=x) by Bayes rule. The ratio of (1) and (2) is
Pr(xi=x|Tg(i)=1)

Pr(xi=x|Sg(i)=1) ·
Pr(Tg(i)=1)

Pr(Sg(i)=1) .

3. To get sgx, we need to multiply this ratio by Pr(g(i) = g|Sg(i) = 1) and divide by
Pr(Tg(i)=1)

Pr(Sg(i)=1) .

We then normalize the weights, which gives sgx =
Qx
Px
·ng∑

g∈GS

Qx
Px
·ng

A.3 Extension to Unit i Covariates

A.3.1 Modified Assumptions

We begin with a simplification of the model, in which outcomes are a linear function of treat-
ment, individual covariates, and additively separable individual error terms: Yig = δg · Di + β ·
Ci + αg + (uig ·Di + εig). We assume constant coefficients on Ci, and require the systematic
part of the treatment effect to be constant within a group. There can also be an idiosyncratic
component of the treatment effect, denoted by uig. We also now allow for individual covari-
ates to enter into the propensity to be in the switching or target populations, respectively, as:
PX,C = Pr

[
Sg(i) = 1|Xg, Ci

]
and QX,C = Pr [Ti = 1|Xg, Ci]. The IPW weights therefore vary at

the individual level: wt
i =

QX,C

PX,C
· Pr(S=1)
Pr(T=1) .

The assumptions from earlier now must now be modified slightly to recover the ATE. Assump-
tion 1, the conditional fixed effects assumption now requires εig, uig ⊥⊥ Di|Ci, αg. This gives that

E
[
δ̂g

]
= δg.

Assumptions 2--4 and Proposition 1 will carry forward with these redefined terms.
This model can be adapted to allow treatment effects to vary with individually-varying covari-

ates, such as gender of the treated individual. One approach is to re-write the treatment effects as
a function of a group-level measure of these covariates (e.g. the share of Head Start participants
in the group that are female). Then our main estimaton framework applies. These group-level
measures are included in the prediction of Px and Qx which should be sufficient to recover the
ATE.

An alternative approach is to add a βC · (CiDi) term to the estimating equation. Our principal
re-weighting method can be used to estimate the average of the δg for the target population; and this

average could then be added to β̂C times the average covariate Ci value for the target population
to arrive at an estimate for the ATE for this group.

A.3.2 Defining residual switchers

Consider the “deviations from group means” projection matrix, M = I −H (H ′H)−1H, with
H a matrix of dummy variables for group membership: H [i, j] = 1 if unit i is a member of
group j, and 0 otherwise. Let D̃ = M · D be deviations in treatment from group means. Basic
switcher groups (“true switchers”) are defined by having within-group variation in treatment: Vg :=

V ar
(
D̃i|g(i) = g

)
> 0. Next consider the residual-maker matrix projecting on covariates C after

taking deviations from group means, L = I − (M · C) (C ′ ·M · C) (C ′ ·M), and let D̈ = L ·M ·
D. With unit-varying covariates Ci, the variation that identifies the treatment effects is Vg,C :=
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V ar
(
D̈|g(i) = g

)
. For some groups g, it could be the case that Vg = 0, and also Vg,C > 0. We call

these groups residual switchers.
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B Supplementary Figures and Tables

Figure B.1: Popularity of Family Fixed Effects Articles
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Notes: These figures display the data from our survey of FFE papers
published from January 2000 to May 2017 in 11 leading journals that
publish applied microeconomics articles. Figure (a) plots the number of
FFE articles published in each year, and Figure (b) plots the average
number of Google Scholar citations, as of May 2019, among the articles
published in a given year.
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Figure B.2: Illustrative Model of the Role of Family Size in Switching

Pr(Sg = 1) = 1− (1− π)ng − πng
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Notes: This figure plots the theoretical function: P (HSSwitchingFamily) = 1− (1− π)ng − πng ,
where ng is the number of children in a family and π is the probability of attending Head Start,
for 2-, 3-, 4-, and 5 (plus)- child families.
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Figure B.3: Examining P-Score Overlap: Predicted Probability of Being in Head Start (PSID
White Sample)
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Notes: This figure shows kernel density plots (bandwidth = 0.01) of the predicted probability of
being a Head Start participant for switchers and non-switchers that are Head Start participants.
The sample consists of white individuals in the PSID. The are 4 non-switchers (5%) who have a
probability of being in Head Start that is outside of the support of the switcher sample.
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Figure B.4: Examining P-Score Overlap: Predicted Probability of Being Head-Start-Eligible (PSID
White Sample)
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Notes: This figure shows kernel density plots (bandwidth = 0.01) of the predicted probability of
being Head Start eligible for switchers and non-switchers that are Head-Start-eligible. The sample
consists of white individuals in the PSID.

Table B.1: Head Start Attendance and Within-Family Variation in Attendance by Family Size
(PSID)

Number of Children in Family:

2 3 4 5+ Total

Share of Family in Head Start (π) 0.157 0.222 0.195 0.206 0.182

Share with Switching 0.121 0.202 0.242 0.471 0.174

All Participants in HS in Family 0.096 0.125 0.093 0.049 0.102

No Participants in HS in Family 0.783 0.672 0.665 0.480 0.724

Notes: This table shows the sources of switching by family size. The first two rows show the
likelihood of attending Head Start by family size and the likelihood of having variation in Head
Start within a family (switching). The final two rows examines whether differences in rates of
switching across family sizes are attributable to variation across family sizes in having all children
attend Head Start (row 3) or variation in having no children attend Head Start (row 4).
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Table B.2: Demographic Characteristics of Head Start Sample (PSID)

All Head Start No Head Start Sibling Sample

Head Start 0.076 1.000 0.000 0.073

Other preschool 0.282 0.000 0.305 0.259

Fraction African-American 0.150 0.618 0.111 0.154

Fraction female 0.504 0.548 0.501 0.501

Fraction low birth weight 0.060 0.114 0.056 0.061

Had a single mother at age 4 0.112 0.296 0.091 0.103

Fraction whose mother completed hs 0.717 0.632 0.724 0.689

Fraction whose father completed hs 0.683 0.557 0.692 0.654

Fraction eldest child in family 0.368 0.341 0.371 0.339

Age in 1995 23.830 18.605 24.262 25.063
(9.84) (7.76) (9.87) (10.06)

Mother’s yrs education 11.116 10.208 11.190 10.942
(2.76) (2.32) (2.78) (2.81)

Father’s yrs education 11.238 10.159 11.314 11.076
(3.23) (2.70) (3.25) (3.35)

Family income (age 3-6) (CPI adjusted) 50339 28553 52719 50973
(35814.01) (17212.32) (36509.36) (37315.99)

Household size at age 4 4.535 4.814 4.504 4.778
(1.68) (2.06) (1.63) (1.64)

Observations 7363 1345 6018 5355

Notes: This table shows the mean demographic characteristics of the sample, weighted to be representative
of 1995 population; see text for details. Standard deviations, shown in parentheses, are omitted for binary
variables. CPI-adjusted income reported in 1999 dollars. Source: Panel Study of Income Dynamics, 1968-2011
waves.
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Table B.3: Outcomes of Interest for Head Start Sample (PSID)

All Head Start No Head Start Sibling Sample

Fraction completed hs 0.913 0.878 0.916 0.912

Fraction attended some college 0.531 0.428 0.539 0.532

Fraction not booked/charged with crime 0.899 0.889 0.900 0.898

Avg. Earnings age 23-25 (CPI adjusted) 20410 14391 20818 20633
(24927) (12000) (25517) (26547)

Economic Sufficiency Index at 30 0.094 -0.601 0.151 0.096
(1.03) (1.05) (1.01) (1.03)

Economic Sufficiency Index at 40 0.020 -0.532 0.053 0.025
(1.01) (0.95) (1.01) (1.04)

Good Health Index at 30 0.004 -0.558 0.050 0.017
(1.03) (1.26) (0.99) (0.99)

Good Health Index at 40 0.011 -0.486 0.033 0.015
(1.01) (1.25) (1.00) (0.96)

Observations 7363 1345 6018 5355

Notes: This table shows the means for the main outcomes of interest, weighted to be representative of
1995 population; see text for details. Note that the fraction not booked/charged with a crime restricted
to individuals that responded to the PSID in 1995 who were between the ages of 16 and 50 in that year.
CPI-adjusted income reported in 1999 dollars. Standard deviations, shown in parentheses, are omitted for
binary variables. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.4: Summary Statistics for Inputs to Summary Indices (PSID)

All Head Start No Head Start Sibling Sample

Inputs to Economic Sufficiency Index, 30

Ever on AFDC/TANF by age 30 0.062 0.220 0.049 0.060

Fraction of last 5 yrs on Food Stamps/SNAP, age 30 0.064 0.151 0.056 0.071
(0.20) (0.30) (0.19) (0.22)

ln(mean earnings in last 5 years), age 30 9.661 9.415 9.676 9.659
(1.06) (0.91) (1.07) (1.07)

Fraction of last 5 yrs with positive earnings, age 30 0.895 0.887 0.896 0.898
(0.25) (0.26) (0.25) (0.25)

Fraction of last 5 yrs ever unemployed, age 30 0.146 0.173 0.144 0.150
(0.24) (0.27) (0.23) (0.24)

Mean Inc. Rel. Pov. in last 5 years, age 30 385.831 233.796 396.729 385.933
(305.98) (155.44) (311.18) (291.36)

Fraction completed college 0.209 0.073 0.220 0.220

Inputs to Economic Sufficiency Index, 40

Ever on AFDC/TANF by age 40 0.068 0.163 0.062 0.067

Fraction of last 5 yrs on Food Stamps/SNAP, age 40 0.043 0.098 0.040 0.043
(0.16) (0.25) (0.16) (0.16)

ln(mean earnings in last 5 years), age 40 9.962 9.779 9.968 9.957
(1.15) (0.90) (1.16) (1.15)

Fraction of last 5 yrs with positive earnings, age 40 0.850 0.867 0.849 0.849
(0.31) (0.29) (0.31) (0.31)

Fraction of last 5 yrs ever unemployed, age 40 0.094 0.122 0.093 0.098
(0.20) (0.24) (0.19) (0.20)

Mean Inc. Rel. Pov. in last 5 years, age 40 436.769 281.489 443.338 434.280
(366.03) (183.89) (370.36) (361.58)

Fraction of last 5 yrs owned home, age 40 0.500 0.287 0.510 0.522
(0.44) (0.42) (0.44) (0.44)

Inputs to Good Health Index, 30

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 30 0.745 0.668 0.753 0.755
(0.41) (0.45) (0.41) (0.40)

Fraction of last 5 yrs reported good or better health, age 30 0.948 0.903 0.951 0.950
(0.17) (0.24) (0.17) (0.17)

Mean BMI in last 5 years, age 30 26.569 28.766 26.333 26.615
(6.68) (6.74) (6.63) (6.85)

Inputs to Good Health Index, 40

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 40 0.738 0.714 0.739 0.728
(0.42) (0.44) (0.42) (0.42)

Fraction of last 5 yrs reported good or better health, age 40 0.919 0.871 0.921 0.922
(0.22) (0.29) (0.22) (0.22)

Mean BMI in last 5 years, age 40 27.504 30.191 27.327 27.433
(5.92) (7.42) (5.77) (5.85)

Observations 7363 1345 6018 5355

Notes: Weighted to be representative of 1995 population; see text for details. SD, in parentheses, are
omitted for binary variables. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.5: N’s for Control Covariates (PSID)

All Head Start No Head Start Sibling Sample

Head Start 7372 1354 6018 5361

Other preschool 7372 1354 6018 5361

Fraction African-American 7372 1354 6018 5361

Fraction female 7372 1354 6018 5361

Fraction low birth weight 5366 970 4396 4555

Had a single mother at age 4 6678 1285 5393 4672

Fraction whose mother completed hs 7231 1332 5899 5360

Fraction whose father completed hs 6596 1034 5562 4875

Fraction eldest child in family 7372 1354 6018 5361

Age in 1995 7372 1354 6018 5361

Mother’s yrs education 7223 1331 5892 5356

Father’s yrs education 6596 1034 5562 4875

Family income (age 3-6) (CPI adjusted) 6086 1145 4941 4338

Household size at age 4 6251 1187 5064 4420

Observations 7372 1354 6018 5361

Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.6: N’s for Main Outcomes (PSID)

All Head Start No Head Start Sibling Sample

Fraction completed hs 7372 1354 6018 5361

Fraction attended some college 7372 1354 6018 5361

Fraction not booked/charged with crime 5005 802 4203 3591

Avg. Earnings age 23-25 (CPI adjusted) 4866 783 4083 3675

Economic Sufficiency Index at 30 7372 1354 6018 5361

Economic Sufficiency Index at 40 4085 613 3472 2845

Good Health Index at 30 4749 791 3958 3600

Good Health Index at 40 2228 312 1916 1673

Observations 7372 1354 6018 5361

Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.7: N’s for Auxiliary Outcomes (PSID)

All Head Start No Head Start Sibling Sample

Inputs to Economic Sufficiency Index, 30

Ever on AFDC/TANF by age 30 7372 1354 6018 5361

Fraction of last 5 yrs on Food Stamps/SNAP, age 30 4186 713 3473 2805

ln(mean earnings in last 5 years), age 30 4202 620 3582 3159

Fraction of last 5 yrs with positive earnings, age 30 4378 656 3722 3295

Fraction of last 5 yrs ever unemployed, age 30 4259 634 3625 3184

Mean Inc. Rel. Pov. in last 5 years, age 30 5293 891 4402 4068

Fraction completed college 7372 1354 6018 5361

Inputs to Economic Sufficiency Index, 40

Ever on AFDC/TANF by age 40 4085 613 3472 2845

Fraction of last 5 yrs on Food Stamps/SNAP, age 40 1972 250 1722 1423

ln(mean earnings in last 5 years), age 40 1695 221 1474 1266

Fraction of last 5 yrs with positive earnings, age 40 1829 236 1593 1369

Fraction of last 5 yrs ever unemployed, age 40 1825 236 1589 1365

Mean Inc. Rel. Pov. in last 5 years, age 40 2152 296 1856 1613

Fraction of last 5 yrs owned home, age 40 2292 290 2002 1625

Inputs to Good Health Index, 30

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 30 2267 385 1882 1742

Fraction of last 5 yrs reported good or better health, age 30 3763 579 3184 2806

Mean BMI in last 5 years, age 30 3248 587 2661 2528

Inputs to Good Health Index, 40

Fraction of last 5 yrs smoked less than 1 cigarette/day, age 40 1280 182 1098 930

Fraction of last 5 yrs reported good or better health, age 40 1463 182 1281 1116

Mean BMI in last 5 years, age 40 2037 307 1730 1486

Observations 7372 1354 6018 5361

Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.8: Effect of Head Start on Pre-Head-Start Outcomes (PSID)

All Sibs Mom FE Blk, FE Wht, FE

Low birth weight

Head Start 0.040∗ 0.045∗ -0.016 -0.018 -0.029
(0.021) (0.023) (0.026) (0.033) (0.042)

Other preschool 0.003 0.003 -0.012 -0.056∗∗ -0.003
(0.012) (0.013) (0.023) (0.027) (0.027)

Observations 5366 4555 4500 1872 2622

Disabled
Head Start -0.006 -0.017 -0.010 -0.016 -0.006

(0.027) (0.030) (0.030) (0.036) (0.051)
Other preschool 0.018 0.018 0.021 0.032 0.017

(0.019) (0.022) (0.028) (0.049) (0.032)

Observations 3516 2955 2661 1102 1555

Single mom at age 4

Head Start 0.020 0.025 0.027 -0.007 0.051
(0.015) (0.020) (0.024) (0.022) (0.040)

Other preschool 0.022∗∗ 0.020∗ 0.008 0.006 0.011
(0.009) (0.011) (0.017) (0.031) (0.018)

Observations 6678 4672 4467 1939 2522

Family income (age 1) (CPI adjusted)

Head Start 0.000∗∗ -0.000∗∗∗ 0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Other preschool -0.000∗∗∗ -0.000∗∗∗ -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 6219 4313 4023 1719 2298

Family income (age 2) (CPI adjusted)

Head Start 0.000 -0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Other preschool -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 6274 4391 4151 1757 2388

Mom working at age 1

Head Start 0.001 0.011 0.049 0.002 0.080
(0.018) (0.022) (0.039) (0.033) (0.073)

Other preschool -0.001 -0.002 -0.017 -0.078∗ -0.014
(0.013) (0.016) (0.030) (0.043) (0.034)

Observations 6219 4313 4023 1719 2298

Mom working at age 2

Head Start 0.025 0.028 -0.041 -0.008 -0.077
(0.021) (0.023) (0.040) (0.036) (0.073)

Other preschool 0.026∗ 0.032∗ 0.015 -0.013 0.017
(0.015) (0.018) (0.031) (0.044) (0.036)

Observations 6274 4391 4151 1757 2388

Notes: Weighted to be representative of 1995 population; see text for details. SE clustered at 1968
family id in columns 1 and 2 and at mother id level otherwise. * p < .10, ** p < .05, *** p < .01.
Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.9: Test of Conditional Ignorability Assumption:

Do Individuals in the Target Population Have Differential Treatment Effects?

Target= Target=
Eligible Participants

Some College (Whites, PSID)

In Target – -0.084
– (0.124)

Observations – 213

Economic Sufficiency Index (Whites, PSID)

In Target – 0.145
– (0.199)

Observations – 213

High School Graduation (NLSY)

In Target 0.014 -0.101
(0.069) (0.062)

Observations 467 581

Idle (NLSY)

In Target 0.036 0.033
(0.085) (0.097)

Observations 467 581

Learning Disability (NLSY)

In Target -0.025 -0.095
(0.046) (0.063)

Observations 467 581

Poor Health (NLSY)

In Target 0.015 -0.026
(0.068) (0.058)

Observations 467 581

Notes: Each cell of this table shows an estimate from a regression of the family-specific
impact of Head Start on an indicator for whether an individual is in the target population.
Regressions are weighted for balance on observables: target individuals are assigned a
weight of Pr(Tg = 1, Sg = 1|Xig) and non-target individuals are assigned a weight of
Pr(Tg = 0, Sg = 1|Xig). The first two panels use data from the PSID white sample, and
the final four panels use data from the CNLSY. There are no individuals in the PSID
white switcher sample that are ineligible for Head Start, which causes us to have missing
estimates (“–”).
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Table B.10: Additional Estimates for Representative White Populations (PSID)

Using Post-Regression Reweighting Method

FFE Reweighted, Target =

GTC Expand Sample HS Eligible Participants Siblings

A. High School Graduation

Head Start 0.203∗∗ -0.015 -0.034 -0.030 -0.029
(0.098) (0.045) (0.043) (0.049) (0.050)

Y Mean in Target – 0.921 0.852 0.848 0.921

B. Good Health Index, Age 30

Head Start – -0.265 -0.253 -0.439 -0.162
– (0.249) (0.263) (0.313) (0.316)

Y Mean in Target – 0.074 -0.061 -0.583 0.074

Notes: Columns 1 and 2 of this table show the FFE estimated impacts of Head Start from GTC (2002) and using
our expanded sample for completion of high school (panel A) and the Good Health Index at age 30 (panel B). The
remaining columns present reweighted estimates of the effect of Head Start for three target populations (shown in
the column header) using the post-regression reweighting procedure described in the text. ”–” is used to indicate
that the information is not available. Sample size is N=2,986 for the expanded sample in panel A, and 1,959 for the
expanded sample in panel B, and 1,036 for GTC. Standard errors are clustered on mother id. * p < .10, ** p < .05,
*** p < .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.11: Head Start Impact for Representative Black Eligible, Participants, and Siblings (PSID)

Using Post-Regression Reweighting Method

FFE Reweighted, Target =

GTC Expand Sample HS Eligible Participants Siblings

A. High School Graduation

Head Start -0.025 -0.024 -0.017 -0.014 -0.015
(0.065) (0.031) (0.025) (0.026) (0.024)

Y Mean in Target – 0.862 0.854 0.896 0.862

B. Some College

Head Start 0.023 -0.016 -0.031 -0.028 -0.032
(0.066) (0.036) (0.032) (0.034) (0.032)

Y Mean in Target – 0.396 0.376 0.423 0.396

C. Economic Sufficiency Index, Age 30

Head Start – -0.023 -0.190∗∗ -0.211∗∗∗ -0.167∗∗

– (0.102) (0.072) (0.073) (0.071)

Y Mean in Target – -0.552 -0.626 -0.674 -0.552

D. Good Health Index, Age 30

Head Start – -0.265 0.052 0.062 0.033
– (0.249) (0.146) (0.161) (0.133)

Y Mean in Target – -0.357 -0.381 -0.539 -0.357

Notes: Columns 1 and 2 of this table show the FFE estimated impacts of Head Start from GTC (2002) and using
our expanded sample for completion of high school (panel A) and the Good Health Index at age 30 (panel B). The
remaining columns present reweighted estimates of the effect of Head Start for three target populations (shown in
the column header) using the post-regression reweighting procedure described in the text. ”–” is used to indicate
that the information is not available. Sample size is N=2,369 for the expanded sample in panels A, B, and C, and
1,150 for the expanded sample in Panel D, and 762 for GTC. Standard errors are clustered on mother id. * p < .10,
** p < .05, *** p < .01. Source: Panel Study of Income Dynamics, 1968-2011 waves.
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Table B.12: Head Start Impact for Representative Eligible Children, Participants, and Siblings

Using Reweighting with Regression Extrapolation to Singletons

Reweighted ATE, Target =

HS Eligible Participants

A. Some College (PSID)

Head Start 0.083 0.009
(0.102) (0.109)

Y Mean in Target 0.387 0.437

B. Economic Sufficiency Index, Age 30 (PSID)

Head Start -0.056 0.003
(0.139) (0.229)

Y Mean in Target -0.198 -0.485

C. High School Graduation (CNLSY)

Head Start 0.041 0.047
(0.032) (0.030)

Y Mean in Target 0.734 0.766

D. Idle (CNLSY)

Head Start -0.059 -0.057
(0.038) (0.037)

Y Mean in Target 0.221 0.201

E. Learning Disability (CNLSY)

Head Start -0.034∗ -0.041∗∗

(0.020) (0.017)

Y Mean in Target 0.055 0.041

F. Poor Health (CNLSY)

Head Start -0.059∗ -0.065∗∗

(0.028) (0.030)

Y Mean in Target 0.098 0.074

Notes: Columns 1 and 2 present reweighted estimates of the effect of Head Start for the
Head-Start-eligible and Head-Start-participant target populations, where the treatment
effects for singletons are extrapolated from switchers using OLS. Sample size is N=2,986
for the expanded sample, and 1,036 for GTC. Standard errors obtained using bootstrap.
* p < .10, ** p < .05, *** p < .01.
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Table B.13: FFE Estimates Reweighted using Gibbons, Suarez, Urbancic (2018) Method

FFE GSU (2018) Reweight

Baseline Switchers

A. Some College (PSID)

Head Start 0.120∗∗ 0.134∗∗∗

(0.053) (0.053)

B. Economic Sufficiency Index, Age 30 (PSID)

Head Start -0.023 -0.081
(0.102) (0.094)

C. High School Graduation (CNLSY)

Head Start 0.085∗∗∗ 0.084∗∗∗

(0.030) (0.027)

D. Idle (CNLSY)

Head Start -0.072∗ -0.068∗∗

(0.037) (0.034

E. Learning Disability (CNLSY)

Head Start -0.059∗∗∗ -0.053∗∗∗

(0.020) (0.019)

F. Poor Health (CNLSY)

Head Start -0.069∗∗∗ -0.059∗∗

(0.026) (0.025)

Notes: Column 1 reprints the FFE estimate using our expanded sample for PSID outcomes and using our replication
sample for CNLSY outcomes. Column 2 presents the estimate weighting family-level estimates by the sample share,
as suggested in Gibbons, Urbancic, Suarez Serrato (2018). This “undoes” the conditional variance weighting of FFE,
and produces an estimate that is interpretable as the ATE for switchers. Sample size is N=2,986 for the expanded
sample. Standard errors are clustered on mother id. * p < .10, ** p < .05, *** p < .01.
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Table B.14: Horse Race between Family Size and Index of Non-Family-Size Covariates (PSID White
Sample)

x Fam Size x Index Horse Race

Index = Predicted Head Start
Head Start 0.025 0.073 0.008

(0.063) (0.069) (0.072)
Head Start x 4plus child family 0.281∗∗ 0.250∗∗

(0.112) (0.105)
Head Start x Tercile 1 Predicted Head Start -0.049 -0.116

(0.094) (0.101)
Head Start x Tercile 2 Predicted Head Start 0.212∗ 0.125

(0.113) (0.111)

Observations 2986 2986 2986

Index = Predicted Finish College

Head Start 0.025 -0.088 -0.130
(0.063) (0.083) (0.100)

Head Start x 4plus child family 0.281∗∗ 0.266∗∗

(0.112) (0.112)
Head Start x Tercile 1 Predicted Finish College 0.237∗∗ 0.155

(0.112) (0.121)
Head Start x Tercile 2 Predicted Finish College 0.260∗∗ 0.207

(0.131) (0.142)

Observations 2986 2986 2986

This table shows estimates from a FFE regression of attainment of some college on an indicator for attendance of
Head Start, and an indicator for having a family with 4 or more children (Column 1), dummies for terciles of an
index of predicted Head Start attendance (Column 2, Panel A), dummies for terciles of an index of the predicted
likelihood of finishing college (Column 2, Panel B), and the combination of family size indicator and terciles of the
index (Column 3). The predicted Head Start (finish college) index is created by regressing Head Start attendance
(finish college) on all of the control variables in the PSID analysis, except for the household size variable.
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