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1 Introduction

A patient arrives in the emergency room complaining of chest pain and nausea.

Should she be tested for a heart attack (technically, a new blockage in the coronary

arteries)? A missed heart attack can have catastrophic consequences, but testing for

it is costly and invasive. So the choice is not easy, particularly since many benign con-

ditions (like acid reflux) share symptoms with heart attack. To make the choice, the

physician must integrate a diverse set of data to predict the risk a patient is having

a heart attack. We use machine learning to study these choices, and the predictions

on which they are based. Though we focus on heart attack, our approach applies

more broadly, as all testing decisions can be similarly cast as prediction problems

(Kleinberg et al., 2015; Kleinberg et al., 2017; Agrawal, Gans, and Goldfarb, 2019).

Our sample spans all 246,265 emergency visits over 2010–2015 at a large, top-

ranked hospital.1 For each of these, we track tests given, resulting treatments, and

subsequent health outcomes, encompassing most (though not all) of the data available

to physicians. On a random 2/3 sample of these data, we train an ensemble machine

learning model to predict the outcome of testing, using only information available

at the time of the testing decision. We do not naively benchmark physician choices

against these algorithmic predictions, assuming that they are accurate. Instead, we

use the algorithm only to identify (in the remaining 1/3 hold-out sample) patient sub-

groups with potential inefficiency, where physicians might have made mistakes. We

then look at actual health outcomes for these subgroups to test whether errors were

made, or whether physicians correctly relied on data unavailable to the algorithm.

This approach reveals two kinds of allocative inefficiency in how physicians test.

First, many patients who predictably will not benefit from testing are nevertheless
1We also repeat much of our analysis in a large sample of nationally representative Medicare claims.
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tested. We quantify the value of a test here using the treatment benefits it produces

(allowing for the fact that the test itself is imperfect), expressed in cost per life-year

saved. By this measure, 62% of tests cost more than $150,000 per life year. Algo-

rithmic predictions are crucial in uncovering these low-yield marginal tests. Had

we instead followed the usual approach of using overall average yields to assess effi-

ciency, we would have concluded that testing as whole is cost-effective, at $89,714 per

life year (Weinstein et al., 1996; Sanders et al., 2016). Machine learning is useful for

capturing such patient-level heterogeneity.

Second, at the same time, many patients who predictably would benefit from test-

ing nevertheless go untested. One hint of this problem, resembling Abaluck et al.

(2016)’s earlier work, is that physician choices deviate from a structural risk model:

we too find that physicians fail to test many apparently high-risk patients. By them-

selves, though, such deviations do not establish error, as we do not know what the

test results would have been. Physicians may have valid reasons for leaving these

patients untested, some of which may be unobserved in our data (and thus to the al-

gorithm): how the patient looks, what they say, the results of x-rays or electrocardio-

grams (ECGs). The problem cannot be solved by imputing outcomes to the untested.2

Health outcomes in the untested provide a way to empirically assess these choices.

In the thirty days after their visit, high-risk untested (and thus untreated) patients

exhibit the well-known signs of missed heart attack: ‘major adverse cardiac events’

at rates well above existing clinical guideline thresholds for heart attack.3 A third of
2We illustrate using ECGs, typically missing from research datasets and effectively an unobserved

variable to our algorithm: we only have them for a subset of patients (and so do not use them in
the main analyses). But for this subset, incorporating waveform data via deep learning decreases
predicted risk for 97.5% of patients, and 100% of the highest-risk untested, suggesting predictions are
confounded for the untested. Despite growing attention to the ‘selective labels’ problem, similar biases
pervade much of machine learning (Kleinberg et al., 2017; Kallus and Zhou, 2018; Rambachan, 2018).

3Such decision rules (e.g., TIMI, GRACE, HEART) are commonly implemented in emergency
medicine. We do not take a stance on whether they are physiologically optimal, only that they rep-
resent current physician understanding of who should be tested. If physicians use private information
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these events lead to death. So these patients appear to have indeed been high risk.

Still, it is possible physicians recognize this risk, but choose not to test because they

deem patients unsuitable for invasive treatments. We find evidence to the contrary.

For example, a large fraction do not even receive an ECG, or other very low-cost,

noninvasive tests given to any patient with even a small suspicion of heart issues.

Physicians simply seem to overlook the risk for these patients.

For more direct evidence of under-testing, we rely on a natural experiment: a pa-

tient’s arrival time determines which staff see them, and staff vary in their tendency

to test for heart attack. Conditioning on the visit’s hour and day, this provides plau-

sibly exogenous shift-to-shift variation in testing rates.4 We find that higher-testing

shifts do not show statistically significant effects on health outcomes on average, indi-

cating so-called ‘flat of the curve’ health care: more testing yields little return (Fisher

et al., 2003). But as before, averages obscure heterogeneity. Predicted high-risk pa-

tients benefit from more testing: in the subsequent year, those who arrive during

the highest-testing shifts have significantly lower mortality (2.5 percentage points, or

32%), making these additional tests highly valuable.5 Under-testing is also quanti-

tatively important: we simulate a range of policy counterfactuals that put the size of

the under-tested set between 15.6% and 99.5% of the currently tested set.

Why do physicians both over- and under-test? Comparing physician decisions to

algorithmic predictions suggests several sources of error. We first find evidence of

bounded rationality: limits in cognitive resources such as attention, memory or com-

putation (Simon, 1955; Gabaix, 2014; Sims, 2003; Gabaix, 2017; Mullainathan, 2002;

in deciding not to test apparently high-risk patients, adverse event rates should be low.
4Patients’ observable characteristics appear largely balanced across shifts. In addition, realized

yield does not meaningfully relate to shift test rates, suggesting unobservables may also be balanced.
5These direct results on health rule out an additional concern: our very definition of risk has so far

rested on the assumption that treatments following positive tests are useful. But if physicians over-
treat, some of those treatments may fail to improve health, inflating our perceptions of under-testing.
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Bordalo, Gennaioli, and Shleifer, 2017). The risk model that best predicts physician

testing is much simpler than the one which best predicts true test outcome. By way of

analogy, physicians seem to ‘over-regularize’ (Camerer, 2018). We also find evidence

that physicians over-weight salient risks (Tversky and Kahneman, 1974; Bordalo,

Gennaioli, and Shleifer, 2012), such as those due to demographics and symptoms.

Finally, they over-weight symptoms that are representative (stereotypical) of heart

attack (Kahneman and Tversky, 1972; Bordalo et al., 2016). For example, patients

with chest pain, a salient and representative symptom, are particularly over-tested.

Health care models have long emphasized moral hazard: paying for tests, rather

than outcomes, results in too much testing (Arrow, 1963; Pauly, 1968). Recent work

has broadened this perspective to include skill differences, comparative advantage,

and error as sources of inefficiency (Abaluck et al., 2016; Chan, Gentzkow, and Yu,

2019; Chandra and Staiger, 2020; Currie and MacLeod, 2017).6 We extend this lit-

erature by providing evidence of substantial under-testing, methodologically showing

an important role for machine learning, and by uncovering potential sources of error.

Our results imply that a core prescription of moral hazard models—incentivizing

high-testers to act like low-testers—can have perverse effects. Low-testing regimes

do test fewer low-risk patients (less over-testing), but at the same time they also test

fewer high-risk patients (more under-testing). When physicians make systematic pre-

diction errors, incentives that address one inefficiency can exaggerate the other. Mod-
6Abaluck et al. (2016) and Currie and MacLeod (2017) highlight how errors may produce both under-

and over-use. Our results could readily be viewed as providing behavioral foundations to the central
perspective in Currie and MacLeod (2017), that emphasizes the need to incorporate diagnostic quality
into health care models. Chan, Gentzkow, and Yu (2019) show how differences in skill alone, absent
incentives, can produce what appears to be over-use. Chandra and Staiger (2020) focus on comparative
advantage: because some health systems specialize and focus on certain tests and conditions, they may
appear to over-treat those. show that doctors both over-treat low risk patients, and under-treat high
risk patients, in a way that suggests errors in diagnostic judgment. There is also a large clinical
literature on error and its behavioral sources (Ægisdóttir et al., 2006; Dawes, Faust, and Meehl, 1989;
Elstein, 1999; Redelmeier et al., 2001).
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els and policies must account for such systematic mistakes, analogous to ‘behavioral

hazard’ models of patient errors (Baicker, Mullainathan, and Schwartzstein, 2015).

2 Context and Framework

2.1 Medical Context

The coronary arteries provide blood flow to the heart, allowing it to pump. A block-

age in those arteries abruptly reduces blood flow and kills a patch of heart muscle,

an event termed an acute coronary syndrome (ACS).7 Its consequences can be imme-

diate (e.g., arrhythmia, sudden death) and longer-term (e.g., fatigue, heart failure).

Randomized control trials have shown two treatments greatly improve mortality and

morbidity if delivered promptly: inserting a flexible metal tube into the blocked artery

to restore flow (‘stenting’), and for severe cases, bypassing the blockage through open-

heart surgery.8 Timely treatment, though, requires timely diagnosis, a challenging

task in the emergency department (ED). Even life-threatening blockages have sub-

tle symptoms, e.g., a mild squeezing in the chest, shortness of breath, nausea, or

weakness—symptoms that also arise from more benign conditions such as acid re-

flux, viral infections, and muscle strain. Any suspicion of blockage triggers two sim-

ple, non-invasive tests: first the ECG, which measures the electrical activity of the

beating heart, and can diagnose acute disturbances. Second, a laboratory test called

troponin, a component of heart muscle that, when detected in the bloodstream, im-

plies the death of heart muscle cells. Both help estimate the likelihood of blockage

and the urgency of the problem. But no test done in the ED can actually diagnose a
7This is colloquially called ‘heart attack.’ But we will use ‘blockage’ to refer to ACS, to distinguish

it from a broader category of problems involving damage to the heart from any cause.
8See Amsterdam et al. (2014) for a review. Of note, the emergency treatment we study is distinct

from the practice of treating patients with more stable, long-standing coronary artery disease, which
does not appear to improve either mortality or morbidity (Al-Lamee et al., 2018).
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blockage.

The definitive test for blockage is cardiac catheterization, an invasive procedure

carried out in a dedicated laboratory, separate from the ED. A cardiologist inserts

an instrument into the coronary arteries, squirts in dye, and visualizes the presence

and location of blockages via x-ray. If a blockage is found, a stent is inserted to open

it, during the same procedure. An alternative testing pathway adds a step before

catheterization: ‘stress testing.’ This increases patients’ heart activity (e.g., by exer-

cising on a treadmill or with a drug). If supply is limited by a blockage, this excess

demand will be detected via heart monitoring. The advantage of stress tests is that

they are less expensive and non-invasive: if negative, an invasive catheterization can

be avoided. The disadvantage is that, if positive, the patient still needs catheteriza-

tion to deliver the stent, and precious time has been wasted.

The proliferation of both tests has been part of the dramatic reductions in rates of

missed blockages in the ED. Before widespread testing, miss rates were substantial:

between 2% and 11% of blockages went undiagnosed in the ED (see for example Pope

et al. (2000)). Both tests, though, are costly: thousands of dollars for stress tests

and tens of thousands for catheterization, plus overnight observation and monitoring

before testing. They also have health risks, particularly catheterization, which is

invasive. In addition to a large dose of radiation, it involves injection of dye that can

cause kidney failure, a risk of arterial damage, and stroke (Hamon et al., 2008). The

decision to test must weigh potential treatment gains against these costs.

2.2 Framework

In our model, patients are characterized by a feature vector (X,Z) and drawn from

a fixed distribution over (X,Z). Both X and Z are observed by the physician, but

only X is recorded in the data. A blockage B = 1 occurs with probability b(X,Z),
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and a test T for blockage yields a positive outcome with Pr(Y = 1|B,X,Z) = Pr(Y =

1|B) = p+B(q− p), where p and q are the false and true positive rate respectively and

q > p. Stenting S can treat the blockage, but since the procedure requires knowing

where to place the stent, we assume it can only be done on patients with a positive

test Y = 1.9 Moreover, medical ethics would make treatment without testing dubious.

(More details are in Appendix 1.3.) B, T , Y , and S are all binary variables, and testing

and stenting cost cT and cS, respectively.

Using potential outcomes notation, a patient’s health is a continuous variable W S

whose value depends on stenting:

W S = W −B(η − SτK),

with E[W |X,Z,B] = w(X,Z). A blockage harms health by η; stenting partially off-

sets this harm by τK . The binary variable K denotes patients who benefit less from

treatment than others (e.g. the frail); they are said to be ‘contraindicated.’ We as-

sume τK = τ − θK, where τ is the baseline treatment effect and the constant θ

captures the diminished benefits for contraindicated patients due to their particular

health risks from invasive treatment.10 Patients are contraindicated with probability

k(X,Z); physicians know k(X,Z) because it captures known risks, based on current

medical knowledge. We define τ̃K = E[W 1 − W 0|Y = 1, K], the average benefit of

treating everyone in the population with a positive test. It differs from the average

benefit of treating everyone with a blockage, τK = E[W 1 −W 0|B = 1, K], because the

test has false positives and negatives. Randomized trials of stenting, because they

enroll only those who show no contraindications and test positive, estimate τ̃ 0. Based

on those results, we assume that τ̃ 0 > 0. Finally, an untreated blockage can lead to
9For simplicity, we use stenting, the most common method, to denote all treatments. Note that

open-heart surgery also requires prior catheterization, to identify suitability and anatomy for surgery.
10Practically, those with K = 1 may also have higher (health) costs of testing itself, but we omit this

for simplicity; it does not change our core empirical results, which focus only on the K = 0 population.
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adverse events after the visit, denoted by a binary variable A. Adverse events occur

with probability µ+B(ζ − Sφ), so that if φ > 0 stenting reduces their occurrence.

For a patient with characteristics (X,Z), socially optimal testing and treatment

would maximize expected health (E[W S|X,Z]) net of costs:

max
S,T

w(X,Z)− b(X,Z)(η − SτK)− cTT − cSS,

subject to the constraint that only tested patients with a positive test can be stented.11

Physicians, however, may have a different objective. They maximize

max
S,T

w(X,Z)− h(X,Z)(η − SτK)− (cT − ν)T − cSS.

Physician objectives deviate from social objectives in two ways. First, they derive

additional benefit ν > 0 from testing, e.g., they are paid by the test. Second, they may

mis-estimate the probability of a blockage as h(X,Z) rather than b(X,Z). Given these

differing objectives, the socially optimal and the physician testing rule differ:

Socially optimal testing: Test iff b(X,Z) >
cT + pcS

qτK − cS(q − p)
,

Physician testing: Test iff h(X,Z) >
cT − ν + pcS

qτK − cS(q − p)
.

Private benefits from testing and mis-estimation of risk both produce clear inefficien-

cies: ν lowers the threshold for testing; and h(X,Z) distorts who is perceived as above

that threshold.12

To empirically test for such distortions, note that any subset of patients defined

by (X,Z) is either above or below the threshold for efficient testing. Those above the

threshold should always be tested, and their yield rate should be sufficiently high;
11Notice in this setup, testing only benefits health by affecting treatment; it has no other indirect

health benefits (such as through information generated for later use). We discuss in greater detail how
testing affects stenting in Appendix 1.3.

12These two equations characterize testing. Treatment is more straightforward: both the physician
and socially optimal rules treat all patients with a positive test result.
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those below the threshold should never be tested, and they should have few adverse

events. To establish inefficiencies, therefore, we only need to find patient pools that

are either (i) tested, but have low average yield; or (ii) untested, but have high adverse

event rates. The following Lemma formalizes this logic.

Lemma 1. Consider any set of patients defined by a set of characteristics V.

Suppose the tested patients in this set have lower than average yield, E[Y |(X,Z) ∈

V , T = 1] < E[Y |T = 1], and their testing and yield rates further satisfy:

E[T |(X,Z) ∈ V ] > 0︸ ︷︷ ︸
tested

and E[Y |(X,Z) ∈ V , T = 1] <
cT

τ̃ 0 − cS︸ ︷︷ ︸
but low yield

,

then V is called over-tested and eliminating all testing in V increases efficiency.

Suppose instead the testing and adverse event rates in V satisfy:

E[T |(X,Z) ∈ V , K = 0] < 1︸ ︷︷ ︸
untested

and E[A|(X,Z) ∈ V , K = 0, T = 0] > µ+ ζ

(
cT + pcS

qτ 0 − cS(q − p)

)
︸ ︷︷ ︸

but high adverse events

,

then V is called under-tested and testing all K = 0 patients in V increases efficiency.

If physician judgments are erroneous, h(X,Z) 6= b(X,Z), then there can simulta-

neously be both under-tested and over-tested patient subsets. If accurate, h(X,Z) =

b(X,Z), there can only be over-tested subsets, and this happens only if ν > 0.

Proof. Consider a set of patients V, and define T̄V = E[T |(X,Z) ∈ V ], ȲV = E[Y |(X,Z) ∈

V , T = 1], and ĀV = E[A|(X,Z) ∈ V , T = 0, K = 0]. First, suppose V satisfies the con-

ditions for being over-tested. If we were to stop testing all tested patients in V, we

would save cT T̄V per test. But we would no longer get the benefits of the resulting

treatments. Since the Y = 1 patients (and only those) get treated, these gains come

from fraction T̄V ȲV of patients. The net benefit of treating these patients is equal to

T̄V ȲV(xτ 0 − cS) where x is the fraction of these patients that have a blockage. Tests
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are wasted if this is less than cT T̄V or equivalently if ȲV < cT
xτ0−cS

. We can upper bound

xτ 0 with τ̃ 0, the average benefit of treating all positive patients, because we have as-

sumed that tested patients in V have lower than average yield; thus they have lower

than average rates of blockage. As such, we can say that the tests in V are wasted if

ȲV <
cT

τ̃0−cS
, which is true given the definition of over-tested.

Now suppose that V satisfies the conditions for being under-tested, and we were

to test all K = 0 untested patients in V. Given the optimal testing rule, for the

K = 0 patients, it is optimal to test these patients if b(X,Z) > cT+pcS
qτ0−cS(q−p)

Given that

ĀV = µ+ ζb(X,Z), it is optimal to test these patients if ĀV > µ+ ζ
(

cT+pcS
qτK−cS(q−p)

)
, which

is the condition for being under-tested.

Finally, if we assume b(X,Z) = h(X,Z) the physician testing rule above becomes

Test iff b(X,Z) >
cT + pcS

qτK − cS(q − p)

and if ν > 0, it can only produce over-testing. If h(X,Z) 6= b(X,Z), it is clear that any

kind of over- or under-testing is possible since h(X,Z) can be set to any value.

Several points are worth noting about this Lemma. First, it illustrates the role

of machine learning in our analysis: it serves to identify candidate subsets V where

inefficiencies might be present. Second, once identified, inefficiencies are evaluated

using observed outcomes: there is no imputation of outcomes. Instead, the key cal-

culations rely only on measured quantities: yield Y for the tested and adverse events

A for the untested. Similarly, the relevant thresholds are defined using the clinical

literature, as we describe in detail below.13 Third, it allows physicians to have access

to information Z that the algorithm does not: it holds for subsets V identified using

only X. One crucial bit of information, though, must be treated carefully: to identify
13The adverse event threshold in the Lemma cannot be easily stated in terms of model primitives

(i.e., the risk of blockage, the imperfect performance of testing, the impact of treatment on the health)
because several key parameters (i.e., p, q, µ, ζ, φ) are unknown.
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under-testing, we must know K = 0. To do so, in the empirical work, we will initially

assume that k(·) depends only on X, but weaken this assumption in Section 4.3, to

allow for it to depend on X and Z. Finally, the Lemma links the evidence to an under-

lying model of physician behavior. Moral hazard alone (bad incentives) can produce

over- but not under-testing; mis-prediction, however, can produce both.

It is useful to contrast this model with two others. Chan, Gentzkow, and Yu (2019)

model radiologists who receive a noisy signal about patient risk and choose a diagnos-

tic threshold.14 While superficially analogous to h(X,Z) and ν, a crucial difference is

that in their model physicians are aware their signal is noisy (and compensate for it,

e.g., by testing more to reduce their miss rate). Physicians in our model are unaware

of their errors and view their predictions as correct. Our model is closest to Abaluck

et al. (2016), who also model physician error. The key difference with them is in

how we characterize under-testing: we do not assume b(X) = b(X,Z), i.e., that the

econometrician can recover an accurate model of the risk of blockage with respect to

the physician’s information, nor define under-testing as deviations of decisions from

predicted risk. Instead, we assume measured health outcomes reflect undiagnosed

blockage and use these to characterize under-testing.

3 Data and Methods

Our primary data come from the electronic health records (EHRs) of a large urban

hospital from January 2010 to May 2015. It is an academic medical center, con-

sistently ranked in the top 10 best in the country and affiliated with a top-ranked

medical school, thus widely believed to provide high-quality care. We begin with all

visits to the ED in that period, then exclude patients 80 years or older, those with
14Norris (2019) makes similar points in a model of judicial decision-making.
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poor-prognosis like known metastatic cancer or dementia, those with hospice or nurs-

ing home care, those with a known recent blockage (or treatment of one), and those

who died in the ED before they could be sent for testing.15

We observe the patient’s main symptom, but do not exclude those with apparently

obvious non-cardiac problems, to avoid potentially arbitrary judgments. While some

cases seem clear (e.g., an ankle sprain), many are not: blockage can present in diverse

ways. Worse, we do not observe all of a patient’s symptoms, only the one judged most

important by the triage nurse.16 Instead, we use the full sample, and include recorded

symptoms in our predictor to make it an empirical question. By including cases highly

unlikely to be a blockage, the algorithmic prediction task does become harder: very

high-risk cases are comingled with (effectively) zero-risk patients. If it fails, it will

appear as an inability to separate high-risk patients from less risky ones. Our final

sample has 246,265 ED visits (indexed by j), by 129,859 patients (indexed by i).

3.1 Definitions of Key Variables

In this sample, we define testing Tij = 1 if patient i has procedure codes for either

stress testing or catheterization in the 10-day window (inclusive) following visit j.17

We define treatment Sij = 1 if there is a procedure code for stenting or open-heart

surgery (CABG) in the 10-day window following the visit.

To define test yield Yij, we rely on the principle that a positive test implies stenting:

a cardiologist should not subject a patient to the risks of emergency catheterization

unless she has already decided the patient would benefit from a stent if a blockage is
15See Shanmugam et al. (2015) and Obermeyer et al. (2017) for rationale and details.
16Appendix Table A.17 shows the presenting symptom for those ultimately found to have blockage.

Non-obvious symptoms (e.g., foot and ankle complaints, nose bleed) are rare but present.
17We collapse these two tests into one for simplicity (as is reflected in our model). Treating the two

tests separately does change our results materially. In Appendix 3, we show the results of performing
counterfactuals for each test separately, e.g., eliminating all stress tests.
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detected. So we set Yij = Sij for the tested. As we discuss further in Appendix 1.3,

physicians may over-treat conditional on test results (e.g., because of moral hazard,

or false-positive tests). One might worry this by itself could artificially produce the

results we find. It does not for two reasons. First, over-testing is established through

low yield. If physicians over-treat, yield will be too high, making it less likely we find

over-testing. Second, establishing under-testing does not use information on the yield

of testing—only health outcomes—and hence is unaffected.

To flag patients with contraindications Kij = 1, we first observe whether they

show evidence of poor health prior to visit j (as described above). Second, we observe

whether they show evidence of damage to heart muscle by the end of visit j18: physi-

cians can note such diagnoses, which is financially incentivized; or we can observe a

positive troponin laboratory test suggestive of such problems. If either is present, we

assume the physician was aware of possible blockage, but decided not to pursue it fur-

ther because of a contraindication. This assumes all contraindications are measured

in our data. In Section 4.3, we explore a broader set of contraindications unobserved

in our data but observed by the physician.

Cost-effectiveness is calculated using parameters and assumptions from the liter-

ature, summarized in Mahoney et al. (2002) and described in more detail in Appendix

2. Estimates of the benefit of treatment are drawn from clinical trials, which provide

estimates of average gains from timely treatment. These trials estimate short-term

(e.g., annual) benefits in terms of mortality and morbidity, but total benefits depend

on life expectancy. In our model, we abstracted from these considerations for simplic-

ity. Here, to account for actual welfare gains over the lifespan, we estimate a patient’s

life expectancy based on their age and individual basket of pre-visit observed chronic
18We use this term to denote the medical concepts of infarction and ischemia, a broad category of

heart problems including blockage.
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illnesses. We then calculate the life-years a patient would lose from a blockage, both

fatal and non-fatal (the latter using a standard discount rate for quality of life losses).

Finally, we assume stenting produces a 25% relative reduction in the impact of a

blockage; this estimate comes from the most relevant trials, those that randomize

testing pathways, e.g., immediate vs. delayed catheterization. We conduct a sensi-

tivity analysis using a wide range of plausible estimates in Appendix 2. This yields

individual-level estimates of the gains from timely treatment, based on the average

effect of treatment and the patient’s idiosyncratic medical history.

We form an indicator Aij = 1 if a patient i experiences a ‘major adverse cardiac

event’ after visit j within a short time window (30 days). The intuition is that block-

ages have consequences—indeed, this is why we test and treat blockages—that man-

ifest shortly after onset. We draw on clinical literature that defines these events us-

ing the EHR, in a way that shows good agreement with expert judgment after chart

review (e.g., Wei et al. (2014)). These events fall into three categories: (i) delayed di-

agnosis and treatment of blockage and diagnosed damage to heart muscle, which we

confirm with laboratory biomarkers (positive troponin); (ii) malignant arrhythmia,

which we measure using diagnosis codes and cardiopulmonary resuscitation proce-

dures; and (iii) mortality, which we obtain via linkage to Social Security Death Index

data. Importantly, apart from mortality, adverse events are only measured if the pa-

tient returns to the same health system we study for care. So Aij may be a lower

bound on true adverse event rates, relative to widely accepted thresholds from stud-

ies that perform active follow-up of enrolled patients. To define objective thresholds

for levels of risk that would mandate consideration of testing for blockage, we rely

on widely implemented decision rules (e.g., the HEART score of Backus et al. (2010)),

supported by recommendations from professional societies: 2% over the 30 days af-

ter visits. We do not assume such thresholds are optimal; rather, we assume that

15



physicians believe them to be optimal, and thus would not knowingly leave high-risk

patients untested. More details are in Appendix 1.3, and additional justification of

this threshold based on cost-effectiveness is in Appendix 2.2.

Table 1 shows that the overall rate of testing is 2.9% of all visits (1.3% with

immediate catheterization and 2.0% with stress tests, of which 0.3% subsequently

had catheterization, implying a positive stress test). Table 2 shows that, among the

tested, the rate of treatment is low: 14.6% (12.9% with stents and 1.8% via open-

heart surgery). Among the untested, 27.5% and 11.1% have an ECG and troponin

performed, respectively, indicating some suspicion for blockage; 1.2% and 1.9% have

explicit evidence of damage to the heart, via the physician’s diagnosis ex post and a

positive troponin test, respectively. 1.1% had 30-day adverse events.

3.2 Algorithm Design

Our machine learning estimator of risk m̂(·) is an ensemble model that combines gra-

dient boosted trees and LASSO. It takes as its input vector Xij, 16,405 characteristics

of patient i, observable at the start of visit j.19 This includes patient demograph-

ics; diagnoses, procedures, laboratory results, and quantitative vital signs, measured

over the two years prior to the visit; and the symptom recorded at the ED triage desk

at the start of the visit. We train estimator m̂(Xij) to predict the yield of testing Yij

among the tested, as a close proxy for risk of blockage at the time of an ED visit.20 To

leverage risk information contained in the much larger set of untested patients, we

also use predictions on adverse events Aij = 1 among untested patients as inputs to

the model predicting Yij. Training happens in a random 75% sample of patients, and
19We carefully define Xij to contain only information known to be available to the physician at the

time of the decision. We exclude information acquired after triage (i.e., on arrival to the ED): physician
notes (which can be completed after the visit) or any data (e.g., ECGs, labs) collected during the visit.

20To streamline terminology, we will refer to this quantity as ‘predicted risk.’
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all results below are shown in the remaining 25% hold-out set, except where noted.

We split our dataset at the patient, not the observation, level, so that all visits from

a given patient are assigned to either the training or hold-out set. More details can

be found in Appendix 4. While we cannot share patient-level information to protect

privacy, our code repository is publicly available on GitLab (linked [here]).

We emphasize that Lemma 1 is valid even if the algorithm is inefficient (or even

inconsistent) since it applies to any subset, however identified. Inefficient algorithms

may fail to find under- or over-tested subsets if they do exist. But if they find one that

satisfies the inequalities, then it will be an inefficiency, irrespective of the algorithm’s

accuracy. It should be added that even a ‘perfect’ algorithm where m(X) = E[Y |X]

may fail to find all inefficiencies because it does not have access to Z and so may (for

example) miss physician errors involving Z.

4 Results

4.1 Over-testing

The top panel of Figure 1 shows how well our risk model predicts the yield of testing.

In the hold-out set, we sort tested patients into decile bins based on predicted risk.

For each bin (x-axis), we calculate the yield of testing (y-axis). Comfortingly, realized

yield rises with predicted yield. The algorithm also produces a wide dispersion in

realized yields—from 0.01 in the lowest decile to 0.55 in the highest decile.

The bottom panel of Figure 1 converts these yields into cost-effectiveness. As in

the top panel, patients are sorted by predicted risk, but this time into quintile bins

(x-axis).21 The y-axis now shows the implied cost-effectiveness of testing patients in a
21We use larger bins here because the denominator depends on the yield rate, which approaches zero

in the lowest risk patients, leading to noisy estimates in smaller bins.
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bin, in units of thousands of dollars per life year. The y-axis shows a commonly used

threshold for judging cost-effectiveness, $150,000, as well as the cost-effectiveness

of selected other procedures for comparison. This illustrates a great deal of ineffi-

cient testing. The bottom bin of tests is extremely cost-ineffective: $1,352,466 per life

year. For comparison, biologics for rare diseases (some of the least cost-effective tech-

nologies that health systems sometimes pay for) are typically estimated at around

$300,000 per quality adjusted life year.22 Even the second-lowest bin is very cost-

ineffective at $318,603 dollars per life year.

With these data, we can calculate a precise policy counterfactual as described in

Lemma 1: dropping individual tests whose cost effectiveness predictably falls below

a threshold. For example, at a $150,000 life-year valuation, we would drop 62.4% of

the lowest-value tests, with a combined cost-effectiveness of $265,114 per life-year.23

These results only deal with one kind of counterfactual: eliminating the particular

tests physicians decided to do (i.e., stress tests or catheterizations) on patients in a

given risk bin. Since we have two types of tests, Appendix 3 also explores other coun-

terfactuals. A notable finding is that stress testing (as opposed to catheterization) is

so low-value that eliminating it altogether would improve welfare, as has been pre-

viously suggested (Prasad, Cheung, and Cifu, 2012). Taken together, the results in

Figure 1 and these policy counterfactuals suggest a great deal of over-testing.

4.2 Under-testing

At the same time, testing in the high-risk bins appears very cost effective. Table 3

Column (2) shows that in the highest-risk quintile bins, tests cost only $46,017 per life
22Appendix (2) shows that these estimates are not sensitive to the particular choice of parameters in

our analysis, and in particular hold over wide ranges of possible treatment effect sizes.
23In Lemma 1 establishing that a set of patients were over-tested also required that this set had

lower than average yield. That condition also holds here as is seen in Table 3, where the bottom 6
deciles have yield well below the average of 0.146.
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year, comparable to cost-effective interventions like dialysis. In Column (3), we show

testing rate by predicted risk for all patients (for comparability, these bins are formed

using the same bin cutoffs used in the tested set, so they are not equally sized). We

see that physicians do test higher-risk patients more. But strikingly, many high-risk

patients go untested—only 38.3% in the top bin are actually tested.

Of course, this only tells us that the physician and the model disagree, not who is

right.24 The physician has access to a host of information unavailable to the model:

how the patient looks, what they say, or crucial data in the ED such as x-rays or

electrocardiograms (ECGs). These data elements are likely to be predictive of yield; if

they are also predictive of testing, this private information will create selection bias:

untested patients will have far lower yield than predicted based on observables.

Because we lack test results on the untested, we have no way to quantify the

magnitude of the problem. But a simple calculation suggests a large bias. The hold-

out set has 266 positive tests. Taking model predictions at face value would imply ten

times as many positives (2,738) were we to test the predicted high-risk untested—

implausibly large. To show the role of private information more directly, Appendix 5

incorporates data from ECGs, observed by the physician but not routinely observable

in health datasets, into risk predictions.25 For patients with ECG data available, we

show that several ECG features (e.g., ST-elevation, ST-depression) predict both the

physician’s test decision and the yield of testing, conditional on m̂(X): physicians are

using these data effectively. We then directly incorporate the ECG waveform into

new risk predictions, via a deep learning model. This decreases model-predicted risk
24To some extent, any two models of risk—even very good ones—may differ due to noise. So perhaps

any discrepancies we see between the physician and the model could simply be the consequence of com-
paring two well-fit models to each other. In Appendix Figure A.11, we compare two machine learning
models fit on separate samples of our training set, and find these correlate much more strongly than
the model and the physician do. More importantly, we perform a variety of tests below, that directly
test for error, both in the sense of welfare-enhancing counterfactuals, and specific behavioral errors.

25Since not all patients have ECGs, even in our data it cannot be used in our main algorithm.
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for 97.5% of patients, and 100% of the highest-risk untested. So the model without

the ECG was significantly over-estimating the risk of the untested patients. And of

course, the ECG is just one of many critical variables we do not (and cannot) observe.

So following Lemma 1, we look for evidence of under-testing in the form of adverse

events resulting from untreated blockages, in the 30 days after visits. Among all eli-

gible untested patients, the rate of adverse events is 1.1%, well below the 2% clinical

threshold, implying (reassuringly) that testing all untested patients does not make

sense.26 Figure 2 shows these adverse event rates (y-axis) by decile bins of predicted

risk. Again for comparability, we use bin cutoffs defined in the tested, meaning bins

are of unequal sizes in the untested: in particular, because the untested are lower-risk

than the tested, bin size decreases in risk. Panel (a) shows that patients in high-risk

bins have very high 30-day adverse event rates. For example, the highest-risk bin

contains 0.15% of the untested, 15.6% of which go on to have an adverse event. The

second-highest-risk bin contains 0.75% of the untested and has adverse event rate of

6.81%; together the top two bins have an adverse event rate of 8.26%. In fact, the

crossover point where the adverse event rate becomes statistically indistinguishable

from the 2% threshold is the sixth risk bin, which means that the top four bins—

which comprise 6.9% of the untested—all have high enough adverse event rates to

merit consideration for testing under current guidelines.

These adverse events are not simply billing codes, which might exaggerate the

incidence of actual health problems, due to incentives to over-test or treat. Panel

(b) shows the subset of adverse events related to diagnosed blockage, all confirmed

with biomarker evidence of damage to the heart muscle (positive troponin laboratory
26In Appendix Figure A.2 we show that the 2% adverse event threshold used here in the untested

aligns (approximately) with the cost-effectiveness thresholds we used in the tested: patients whose
predicted risk gave them a cost-effectiveness of $150,000 per life year when tested have an adverse
event rate of at least 3.4% when untested.
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results), as well as dangerous arrythmias (ventricular fibrillation and tachycardia,

or procedure codes for defibrillation or CPR). In the highest-risk bin, 4.9% have one

of these events. Panel (c) shows 30-day mortality. The highest-risk bin experiences

death at a rate of 3.3%, comprising nearly half (45%) of all adverse events in this bin.

These data alone suggest a great deal of under-testing. However, there is a potential

confound, which we address next.

4.3 Accounting for Differences in Treatment Benefits

These high adverse event rates establish that predicted high-risk patients who go

untested are indeed high-risk. But it does not establish that failing to test them was

a mistake. Adverse events rule out private information by physicians about risk,

but not private information about the suitability of treatment. It is possible that

physicians recognized these patients as being high-risk, but also recognized them as

having lower return to treatment, and chose not to test them for that reason. In

particular, we may have mismeasured Kij. In excluding patients Kij = 0 from our

sample (by excluding those with prior ill health, and by excluding untested patients

in whom the physician appears to suspect heart problems), our measure Kij may have

failed to capture other elements of K that the physician observes. One fact provides

prima facie evidence that these unobservables are not large: the average age of the

untested we flag for testing is 58.5 (close to the mean age of the tested, 57.8), while the

average age of those with observed contraindications is 68.5. At least on this crucial

observable, the high-risk untested look more like the tested than the too-frail to test.

To address this problem more thoroughly, we use a clinical fact. When physicians

suspect a blockage, even if the patient is ineligible for testing or treatment, there are

still important actions they can and must take. At a minimum, everyone the physi-

cian suspects of a blockage will be given an ECG—a low-cost, non-invasive test. Even
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for treatment-ineligible patients, the ECG guides medications (e.g., blood-thinners)

and decisions about intensity of monitoring (e.g., whether to admit to the ICU). Sim-

ilarly, the troponin blood test will also be checked, as it provides critical information

on the nature and extent of any blockage. So if we remove patients with an ECG or

troponin from our calculations, we will have removed all patients in whom physicians

had even the slightest suspicion of a heart problem, leaving us with a pool of unsus-

pected patients.27 Within the remaining unsuspected pool, we then recalculate the

adverse event rate. If the high adverse event rates in the whole population are due

to physicians knowingly leaving some high-risk patients untested, because they are

unsuitable for treatment, then this unsuspected pool should have a very low adverse

event rate, and specifically the rates should be below the clinical threshold for testing.

The top two panels of Figure 3 first show the fraction of all patients who are both

untested, and did not receive an ECG (Panel a) or troponin (Panel b), by quartile

bin of predicted risk. As expected, higher-risk patients are on average perceived as

such by physicians: they are less likely to be untested and lack one of these tests.

Though decreasing, the fractions nonetheless remain substantial in the highest-risk

bin: 19.1% are untested and lack an ECG (vs 77.7% in the lowest-risk bin), and 41.2%

are untested and lack a troponin result (vs 93.3% in the lowest-risk bin). The bottom

two panels show the adverse event rates in only these untested patients without an

ECG or without troponin. For the highest-risk untested patients without such sus-

picion for heart attack, adverse event rates remain high: 4.3% in those without an

ECG, and 6.6% in those without a troponin. These rates are 3.2 percentage points

(SE: 1.3) and 1.2 percentage points (SE: 1.1) lower than the 7.5% rate in the full pop-

ulation above, respectively; but they still significantly exceed the clinical threshold
27Because some patients are given ECGs and troponins for other reasons, this approach produces a

lower bound on the extent of under-testing (it removes treatment-ineligible patients but also others).
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for testing of 2%.28 Together, these results suggest that physicians do have private

information both about the risk of blockage and about suitability for treatment—but

that even after accounting for them, there is still substantial under-testing.

4.4 Natural Experiment

While these data provide clear evidence of under-testing, this evidence is indirect,

based on clinical thresholds. It would be reassuring to have more direct evidence

that testing these untested high-risk patients would impact their health. Ideally, we

would measure the impact of testing some high-risk patients at random, and see if in

fact mortality and long-term adverse event rates decrease significantly. While such

an experiment is beyond the scope of this paper, we can exploit natural variation in

our data that might serve as a (limited) proxy for it.29

When a patient arrives at the ED, they are seen by a team of providers, largely

nurses, at the triage desk. As Chan and Gruber (2020) note, the triage process can

influence many downstream decisions by physicians, including testing. For example,

a nurse can notice that a patient with chest pain is sweaty, or not; he can ascribe

it to the hot and humid weather, or not; and he can share his impressions with the

physician when he brings the patient back into the room, or not. As a result, we

hypothesized that the testing rate, while ultimately determined by the physician,

could be affected by the particular make-up of the team working the triage desk.
28Appendix 6.3 describes another sensitivity analysis, in which we eliminate patients who were

admitted to the hospital with an uncertain diagnosis (e.g., those with a symptom-based diagnosis
code like ‘chest pain,’ as opposed to a specific disease), in whom physicians may have latent concern
for blockage. When we calculate adverse event rates in the remaining patients—those in whom the
physician felt sure enough to assign an alternative diagnosis other than blockage, and those discharged
home from the ED and thus at very low risk of serious problems—we find similar results: a rate of
adverse events 8.43% in the highest-risk bin, as opposed to 8.26% in the full population.

29In the context of the framework, the natural experiment measures the health impact of testing due
to the treatments that result from that testing. As such, it measures the joint effect of the increased
propensity to test and the treatment effect conditional on a positive test. This will tell us whether the
resulting health benefits are above or below what would merit testing.
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As who is present varies over time, this creates a ‘natural experiment’ based on the

exact time a patient showed up; and as shifts are not perfectly synchronized with the

calendar, we can additionally control for day of week and hour of day.

Our data do not track the exact identity of the triage team, but we do know the

times at which shifts begin and end. This lets us calculate the average testing rate

of all other patients seen on a shift, T̄−j, to instrument for whether patient-visit j

is tested. For this to be a valid instrument, we assume that (i) the triage shift af-

fects long-term health outcomes only through testing, and (ii) that patients are bal-

anced on unobservables across shifts; we discuss both assumptions below. We per-

form this analysis on a slightly different sample than used so far. To maximize power,

we use the full dataset, not just the hold-out. To avoid over-fitting, we use 5-fold

cross-validation to predict risk. In addition, to address non-independence of health

outcomes across visits, we restrict the sample to each patient’s first visit.30

Overall, there is reasonable variation in likelihood of testing across shifts: for

example, a patient in the highest-risk bin arriving on a Monday evening is 18% more

likely to be tested by the highest- (19.9%) vs. lowest-decile (16.8%) shifts. Regressing

a visit’s test (Tj) on the leave-one-out shift testing rate (T̄−j), controlling for time fixed

effects (year, week of year, day of week, and hour of day) and patient risk, we find

that a one-standard-deviation increase in shift testing rate (2.3 percentage points)

increases individual testing probability by 0.19 percentage points (SE: 0.06), or 6.7%

of the base test rate (see Appendix Table A.12).31

Figure 4 shows how patient observables compare across shifts. The top Panel
30Results restricted to the hold-out are very similar, just less precise as we would expect given the

sample size. We also check that results are similar if we include all visits and cluster standard errors,
but prefer this first-visit specification for its transparency.

31In Appendix Table A.11, we also rule out that hospital capacity constraints on testing facilities
might be reducing the likelihood of testing, by showing that a visit’s likelihood of testing is not affected
by the number of tests done in the 12-28 hours before the visit.
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shows the results of regressing a pre-triage variable Xj on the shift testing rate. We

do find statistically significant differences in predicted risk across triage testing rates

(p=0.051), but they are very small in magnitude: a 1 SD increase in T̄−j implies a 0.007

SD difference in predicted risk. But reassuringly, we find no statistically significant

difference when we test for differences in predicted risk non-linearly (by risk bin),

nor in age, sex, self-reported race, income, or risk factors for heart disease. Together,

these results suggest that observables are (largely) balanced across shifts. In the

bottom panel, we plot for each shift, the average testing rate for all patients who

arrive in that shift (in percentile terms, x-axis) and the average predicted risk of those

patients (y-axis). We see that at every level of testing rate, there is large variability

in predicted risk.

In Appendix Table A.12, as another test for balance, we regress test Tj on predicted

risk and its interaction with T̄−j. If patients in high-testing shifts are riskier on

unobservables, they should have higher yield than expected based on risk, leading

the interaction term to be positive. In fact, there is no significant interaction. While

estimates are imprecise, they do argue against large imbalance on unobservables.

We then measure the overall impact of testing on health, as measured by long-

term adverse events A`j, by estimating32:

A`j = β0 + T̄−jβ1 + m̂(Xij)β2 + TimeControlsjβ3 + εj. (1)

That is, we regress adverse events in the year after visits on shift testing rates, con-

trolling for time fixed effects (year, week of year, day of week, and hour of day) and

patient risk. Panel (a) of Table 4 shows that, on average, we find no statistically

significant effects on health outcomes. Neither diagnosed adverse events from day
32We measure some outcomes over the 30–365 days after ED visits because tested patients are me-

chanically more likely to be diagnosed with heart problems than untested patients, simply by virtue of
being in the hospital for testing. By contrast, our mortality data come from linkage to Social Security
data, and so do not suffer from this difference in ascertainment.
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31–365 after visits (Column 1) nor death, whether measured over the same period as

diagnosed events (Column 2) or over the full year after visits (Column 3) are affected.

As before, however, the average effect may conceal a great deal of heterogene-

ity: under-testing is not universal, but rather only in high-risk patients. So we re-

estimate (1), but include an interaction term T̄−j × m̂(Xj) to Equation 1 to allows the

effect of testing to vary by predicted risk. Table 4 Panel (b) shows this interaction

term to be large, negative, and significant, indicating lower rates of diagnosed events

and death in higher-risk patients. To scale this coefficient, the implied reduction in

one-year mortality for the highest-risk quintile is 2.6 p.p. (34%) if they arrive on the

highest- vs. lowest-testing shifts. This confirms that physician private information

about treatment heterogeneity cannot account for our findings: increased testing im-

proves health in high-risk patients. It also provides some reassurance regarding the

exclusion restriction in our experiment: if triage affected long-term outcomes in ways

unrelated to testing for blockage, we would expect to see broader effects, not just

among the predicted high-risk for blockage. We emphasize that this does not imply

that all high-risk untested patients would benefit from testing: we are constrained by

the extent of variation in testing rates in our quasi-experiment, and can say nothing

about patients who are never tested (i.e., even in the highest-testing shifts).

We use these estimates to simulate counterfactuals that bound the extent of under-

testing. We first estimate a random-effects model of a shift’s testing rates and group

shifts into quartiles based on its random effect.33 Suppose we know a predicted risk

bin has positive benefits from testing. Our counterfactual assumes all such patients

are assigned to the highest-testing shifts: so the difference between a patient’s actual

shift testing rate and highest-quartile shift test rate is counted as under-testing. The
33The leave-one-out shift testing rate, while useful for identification of the effect of testing, does not

capture the full variation in observed testing rate across shifts. Appendix 7.3 contains more details on
the model, which controls for the same vector of time variables and patients’ predicted risk as above.
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key assumption is which risk bins have positive benefits from testing.

We take two approaches. First and most conservative, we assume only those with

significant one-year mortality reductions from testing qualify, which based on Ta-

ble 4 includes only the top risk quintile. (Recall that bins are defined using bins in

the tested, so the top quintile is far less than 20% of the whole population.) Reas-

signing all patients in this bin from their actual shift (mean 18.1% test rate) to the

highest-quartile shift (32.3% test rate), generates additional tests equal to 0.48% of

all untested patients, or 15.6% of the tested set. A second approach allows for other

testing benefits beyond decreasing one-year mortality; for example, reductions in im-

mediate heart attack (size and extent) as well as longer-term outcomes. To simulate

this, for each risk bin, we take the cost-effectiveness estimates from the tested and

(naively) apply them to the untested. By testing patients who appear to be cost-

effective based on risk, we would add new tests equal to 3.0% of all untested set, and

99.5% of the current tested set.34

Taken together, the evidence tells us three facts about high-risk untested patients,

all suggesting they ought to have been tested. First, they go on to have high adverse

event rates of the kind that suggest undiagnosed blockage. Second, physicians do not

appear to have recognized their risk: many were not screened with simple tests given

to everyone suspected of any heart problems (ECG or troponin), but nonetheless had

high adverse event rates. Finally, plausibly exogenous increases in testing improve

their health, but not the health of lower-risk patients. Each finding has its limita-

tions, but together, they make the case that testing high-risk untested patients would

increase welfare as strongly as possible without a randomized trial.
34Note that, irrespective of the risk threshold we choose, this strategy still respects the large amount

of physician private information we document: we do not propose that 100% of patients in a high-
benefit risk bin should be tested. The never–tested—even those in high-risk bins—may have unob-
servables that lead them to be lower risk. Our strategy simply shifts the testing rate from the current
rate to the maximum rate we observe for a given risk bin.
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4.5 Nationally Representative Data

These results come from a single hospital. To check their generality, we replicate

them in a nationally representative 20% sample of Medicare fee-for-service patients,

from January 2009 through June 2013. These data are limited in several impor-

tant ways. Because they are based on insurance claims, not EHR data, they contain

very limited patient information. For example, we do not have ECGs, lab values, or

other biomarkers, nor do we have arrival time and shift timing data that would let us

recreate our natural experiment. These caveats aside, these data do let us replicate

our estimates of over- and under-testing from Sections 4.1 and 4.2. Applying similar

exclusions to those used in the single-hospital data, we arrive at a final sample of

4,425,247 Medicare visits by 1,602,501 patients, of whom 4.4% were tested. Of the

tested, 12.4% received treatments. Of the untested, 5.3% had 30-day adverse events.

This higher rate reflects the older and sicker Medicare population, but also our in-

ability to confirm diagnosis codes with biomarker evidence of heart attack as above.

Figure A.7 shows that yield of testing and cost-effectiveness both increase in pre-

dicted risk (as in Figure 1), with many tests being predictably cost-ineffective. We also

find many high-risk untested patients with adverse event rates above clinical thresh-

olds. Figure A.8 shows that 3.8% of the highest-risk patients are diagnosed with an

adverse event, and an additional 1.5% die (as in Figure 2). In summary, we find both

over-testing (52.6% of all tests) and under-testing (at least 17.9% of the tested).35

35Lacking a credible quasi-experiment in these data, we instead rely on a conservative lower-bound
for under-testing: we assume that the realized adverse events in predictably high-risk untested pa-
tients lower-bounds the under-tested population. We consider this conservative because it assumes
that under-testing is concentrated in the smallest possible number of patients, all of whom would have
ex ante probability 1 of an event. This may be one reason that the level of under-testing here is closer
to the lower bound estimated in the hospital data. Another may be the nature of claims data: low-risk
tests may be easy to identify with claims, while high-risk misses may require the richer EHR data. An
important caveat to all these results is that we do not observe ECG or troponin testing, so we do not
have the same ability to identify contraindicated patients on the basis of observables.
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5 Why do Physicians Make Testing Errors?

We have shown that physicians mis-predict: they test predictably low-risk patients

and fail to test predictably high-risk patients. In this section, we try to better under-

stand the nature of physician mis-prediction. To do so, we examine how physician

testing decisions deviate from predicted risk. Our approach builds on a long tradi-

tion of research comparing clinical judgment to statistical models as a way to gain in-

sights into decision making, often amongst physicians (Ægisdóttir et al., 2006; Dawes,

Faust, and Meehl, 1989; Elstein, 1999; Redelmeier et al., 2001), as well as the clinical

literature on diagnostic error (Croskerry, 2002; Graber, Franklin, and Gordon, 2005;

IOM, 2015). We view this as exploratory: a way to shed light on potential psychology

at work, rather than to structurally estimate a specific model of physician decisions.

5.1 Boundedness in Physician Judgments

One reason physicians may make errors is that the optimal risk model is quite com-

plex: our own machine learning model uses 16,405 variables. Bounded rationality

may lead them to use a simpler approximation. Such simplification is analogous to

regularization in machine learning (Camerer, 2018). To avoid over-fitting, algorithms

do not pick the model that fits best in sample. Instead they estimate a best-fit model

for each level of complexity, then choose a complexity level by asking which of these

best-fit models produces best out-of-sample fit. To study physicians, we use this same

set of best-fit models for each complexity. But we now ask which model complexity

best predicts physician choices, not out-of-sample risk. If physicians are boundedly

rational, the model that best predicts physician choices should be simpler than the

one that best predicts actual risk, measured by yield of testing.

We implement this procedure using the LASSO model of risk, one component of
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our full ensemble model, because it has a straightforward measure of complexity: the

number of non-zero coefficients included in its linear model.36 For k ∈ [0, 1500] we train

and retain the set of best-fit LASSO models that has exactly k non-zero coefficients.37

In our hold-out set, we correlate each of these models with both test outcomes and

testing decisions. Two caveats are worth noting. First, we do not assume anything

about the model selection properties of LASSO: the particular variables the LASSO

chooses is somewhat arbitrary in the setting of correlated, noisy input variables. We

are interested only in the complexity of these models, which is likely a more stable

quantity (Mullainathan and Spiess, 2017). Second, we can only focus on the variables

in our data: so we only test hypotheses related to boundedness on observables, not on

the variables physicians may use that are unobservable to us.

Figure 5 visually displays the results of this exercise. On the x-axis is k, the mea-

sure of complexity. On the y-axis isR2, a measure of goodness of fit (though our results

are not specific to this setup: Appendix Figure A.12 shows similar results with AUC

instead of R2, trees instead of LASSO, and the Medicare population). The gray line

shows, at each level of complexity, how well a model predicts out-of-sample risk: R2 in-

creases at first, then decreases as additional variables lead to over-fitting. The yellow

line shows how well the same model predicts physician testing decisions. Here we see

in part a similar pattern: R2 increases with complexity, then decreases. Importantly,

however, the two curves hit their peaks at very different levels: for physicians, the

empirical optimum is at 49 variables, while for risk it is at 224 variables. The model

that best predicts actual risk is much more complex than the one that best predicts

test decisions.

This figure motivates a statistical test. We define two risk predictors: m̂simple(Xij)

36Though this is a suitable ex-post measure, ex ante this is produced by using L1 regularization.
37We chose this range because the training set contains only 5, 188 tested visits, so we cannot esti-

mate models that use anywhere near the full set of k = 16, 405 variables.
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which uses the 49 variables above and m̂complex(Xij) which uses the 224. We will focus

on [m̂complex(Xij)−m̂simple(Xij)], the additional risk information provided by the complex

model, which we will call ‘complex risk.’ We then estimate:

Tij = β0 + β1m̂simple(Xij) + β2[m̂complex(Xij)− m̂simple(Xij)] + εij (2)

Yij = γ0 + γ1m̂simple(Xij) + γ2[m̂complex(Xij)− m̂simple(Xij)] + εij. (3)

If physicians rely only on a simple model of risk, we expect two things to be true.

First, β2 = 0: complex risk should not predict testing decisions. Second, γ2 > 0: com-

plex risk should predict yield. Table 5, Columns (1) and (3), show how the simple

risk model alone predicts both test and yield; Columns (2) and (4) show the addi-

tion of complex risk. In Column (2), as expected, complex risk is not predictive of

testing conditional on simple risk—the coefficient is both very small and statistically

insignificant. In Column (4), by contrast, complex risk is predictive of yield and highly

significant. So physicians do in fact appear to rely on too simple a model of risk.38

These results provide suggestive evidence that physicians are boundedly atten-

tive: they only pay attention to some variables. But how accurately do they weigh they

variables they do attend to? Figure 6 shows, for each of the 49 variables in m̂simple(Xij),

their correlation with both test outcome (x-axis) and test decision (y-axis).39 We see

a tight, strongly positive relationship (R2: 0.433). While far from proof of rationality,

this does suggest that physicians (mostly) correctly weight the variables they do use.

To assess how important boundedness is in explaining under- and over-testing,

we look at how much riskier (or less risky) a patient appears if only simple risk is

accounted for. We measure this with m̂simple(Xij)−(m̂(Xij), and inspect its distribution

for both low-risk tested patients (the ‘over-tested’) and high-risk untested patients
38Appendix Figure A.12 shows similar results with decision-tree models of risk rather than LASSO

models, as well as showing the same result in the nationally representative Medicare claims data.
39We standardize test, yield, and predictor variables, and run test and yield on predictors via uni-

variate regressions. So each regression coefficient gives us the correlation and its standard error.
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(‘the under-tested’). As shown in Appendix Figure A.13, a full 35.5% of the over-tested

come from the top quintile of m̂simple(Xij)− (m̂(Xij), meaning their simple risk is much

larger than their actual risk (compared to 14.5% in the lowest quintile). Likewise,

among the under-tested, 74.2% come from the bottom quintile, meaning their simple

risk is much smaller than their actual risk (compared to 7.4% in the top quintile).

Boundedness thus appears to be quantitatively important as well for mis-prediction.

Physicians identify a handful of good risk predictors that they use if not perfectly, at

least modestly well; but at the same time, they neglect many other variables that,

while individually small, together provide much explanatory power.

Our evidence on boundedness deviates from the traditional perspective of Dawes,

Faust, and Meehl (1989), who suggest that people use too complex a model: a sta-

tistical model does better by being simpler. In contrast, we find physicians use too

simple a model: a statistical model does better by being more complex. The difference

may arise because modern statistical tools can better fit complex natural phenomena,

echoing recent findings that sparse models, despite their appeal (to humans), fit eco-

nomic phenomena poorly (Gabaix, 2014; Giannone, Lenza, and Primiceri, 2021). In

both cases, reality is complicated, while human judgments are simple.

5.2 Biases in Physician Judgments

Figure 6, while largely consistent with bounded rationality, also hints at another

phenomenon: physicians might over- or under-weight specific variables. In particular,

a suggestive example is ‘Reason for visit: chest pain,’ a clear outlier: a complaint of

chest pain does correlate with risk, but it correlates even more with testing. This

indicates that those with chest pain may be tested at rates above and beyond what is
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justified by their (heightened) risk.40

Chest pain has two features that make it particularly interesting from a behav-

ioral point of view, suggesting two broader behavioral hypotheses for why an input

might be over-weighted. First, it is highly salient (Tversky and Kahneman, 1974; Bor-

dalo, Gennaioli, and Shleifer, 2012). Second, it is highly representative of blockage: it

is a (perhaps the) stereotypical symptom, both in textbooks and in public understand-

ing (Bordalo et al., 2016). This motivates our exploration of bias: we ask whether

variables that are either salient or representative are generally over-weighted.

We study each of these hypotheses in turn, using a similar empirical approach.

To assess whether physicians are biased in their use of some subset of variables W,

we first create a new risk predictor which uses only those variables in W. Except

for the restriction on input variables, this estimator, m̂W , is built in the training set

exactly the same as the original risk predictor, and for simplicity of notation takes the

same input Xij but ignores the variables not inW. In the holdout set, we first regress

yield on ‘full risk’ (our usual risk predictor m̂(Xij)) as well as this limited risk model

m̂W(Xij), analogous to Equation 2 above.41 We do this to verify that, as expected,

conditional on full risk, m̂W does not provide additional information. Then, as our

test of whetherW is misused, we regress the test decision Tij on both full risk m̂(Xij)

as well as m̂W(Xij). If physicians over-weight the variables in W, the coefficient on

m̂W(Xij) should positive; if they under-weight, it should be negative.42

40Conditional on predicted risk, patients with chest pain are 16 percentage points (578%) more likely
to be tested. Appendix Table A.15 shows that for the 10 most common symptoms, nine significantly
predict testing after conditioning on predicted risk, including chest pain and shortness of breath (large
and positive), and several other smaller negative predictors (e.g., abdominal pain).

41All regressions control for a vector of risk bins, as well as linear risk, to account for non-linearity
of risk in predicted risk. We show the linear coefficient but omit the others for simplicity.

42In this exercise, by ‘risk’ we mean predicted risk. So a bias occurs when an observed variable
predicts physician deviations from algorithmic predictions; as the focus is on observed variables, we
are less prone to confounding. But still, given the potential for complex relationship between observed
and unobserved variables, these results must be taken as suggestive.
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5.2.1 Symptom Salience

Building on the chest pain insight above, we implement this procedure first for symp-

toms: the most salient and immediate thing the physician sees about a patient, often

stressed in medical education and vignettes. Column (1) of Table 6 shows the re-

sults of regressing testing on the full risk predictor; Column (2) then adds the new

symptom-only risk predictor.43 We see here that the risk from symptoms is addition-

ally predictive of testing, suggesting symptoms as a category are over-weighted.44

We then expand this exercise to the entire universe of inputs. We form a set of risk

predictors, one for each subset of variables, grouped into the following categories: de-

mographics; prior diagnoses; past procedures done on the patient; and prior labs and

vital signs. The categories are formed to reflect coherent types of inputs physicians

may treat differently. For example, medical case reports and pedagogy use a stan-

dard structure, stressing age, sex, and symptoms (e.g., “A 43 year old man with chest

pain,” as in the NEJM’s Case Records). So we conjectured that demographics and

symptoms would be highly salient and thus over-weighted. By contrast, the com-

plex, quantitative time series contained in past laboratory studies and vital signs are

harder to process and likely less salient. Finally, while some prior diagnoses (e.g.,

diabetes, prior blockage) and procedures (e.g., prior stenting) relevant to blockages

may be salient, these categories are far broader, including hundreds of other types of

information that we also expect to be less salient.

Column (3) shows how these risk predictors correlate with the testing decision.

Even after including risk from all other variable subsets, risk from symptoms stays

positive (i.e., over-weighted), as is risk from demographic information: a patient in
43For space we have left out the yield regressions. These are in Appendix Table A.18 and verify that

the symptom-only risk predictor does not predict yield, conditional on full risk.
44Abaluck et al. (2016), while they lacked data on symptoms at the visit itself, found that patients

with past symptom-based diagnoses were over-tested, consistent with a similar bias.
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the top quartile of symptom risk is 5.26 percentage points more likely to be tested,

relative to other patients, and 0.78 p.p. for demographic risk.45 This is equivalent

to a patient moving from the 50th percentile of true (full) risk to the 89th and 62nd

percentile, respectively. Prior quantitative information from laboratory studies and

vital signs, though, has a negative sign, suggesting physicians under-weight or ne-

glect this information. Finally, diagnoses are slightly over-weighted while procedures

are slightly under-weighted. Taken together, these results are generally support-

ive of the salience model: risk signals from clearly salient inputs—demographics

and symptoms—are attended to more than they should be, while more complex, less

salient information—past quantitative vital signs and labs—are neglected.

5.2.2 Representativeness

We use the same method to explore representativeness (Tversky and Kahneman,

1974), as formalized in the model of stereotyping of Bordalo et al. (2016). This pre-

dicts that in estimating the probability of blockage for a patient with symptom M ,

physicians will not use Pr(B = 1|M = 1). Instead they will estimate

Pr(B = 1|M = 1)× g

(
Pr(M = 1|B = 1)

Pr(M = 1|B = 0)

)
,

where g(·) is monotone. Symptoms more common in patients with blockage, relative

to others, will be weighted more heavily than they ought to be.

This model has a crisp empirical prediction: at the same predicted risk, patients

with more (less) representative symptoms are more (less) likely to be tested. We

investigate this by first identifying the set of symptoms that are potentially repre-

sentative of blockage. To make this list, we identify those tested patients ultimately
45Appendix Table A.14 further investigates patient demographics, and finds small but significant

relationships of specific demographic factors with testing: older patients and women appear to be
tested more than their risk merits, while self-reported Hispanic patients are under-tested.
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found to have blockages after testing, and look back at their presenting symptom

(limiting to 16 symptoms with frequency over 0.5% in this population; see Appendix

Table A.16). For each symptom M , we calculate its representativeness for blockage:
Pr(M=1|B=1)
Pr(M=1|B=0)

. Nine symptoms have a ratio over 1, which we consider representative of

blockage. Some are very common in the general population (e.g., chest pain, short-

ness of breath) and others are quite rare (e.g., presenting to the ER after a referral

for a concern of possible blockage, or because they were found unresponsive or in car-

diac arrest by paramedics). The remaining seven symptoms are more common in the

general population than in those with blockage (e.g., dizziness, nausea).

This allows us to build yet another risk predictor, restricting to representative

symptoms. Column (4) of Table 6 shows the results of adding this to the regression we

described previously (Column 2) with the predictor formed from all symptoms. With

representative symptoms included, the all-symptom-based predictor becomes small

and insignificant. And the coefficient on the representative symptom-based predictor

in Column (4) is nearly double the magnitude of the all-symptom-based predictor in

Column (3).46 This argues that, while symptoms as a whole may be salient, represen-

tative symptoms drive physicians to test far more: they effectively cue the physician’s

mind to consider blockage. This effect is quantitatively large: the 7% in the high-

est quintile of representative symptom risk are 16.2 p.p. more likely to be tested,

corresponding to an increase from the 50th to the 98th percentile of true risk.

Further, as shown in Appendix Figure A.14, patients whose risk comes dispropor-

tionately from representative symptoms (i.e., large [m̂represent(Xij) − m̂(Xij)]) are over-

represented in testing errors. Those in the top quintile of representativeness risk

(relative to true risk) make up 34.3% come of the low-risk tested; while the bottom

quintile makes up 99.4% of the high-risk untested.47

46Appendix Table A.18 confirms this new predictor has no incremental value for predicting yield.
47An important caveat is that the representative risk is built only on nine indicator variables and
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5.3 Implications for Incentive Policies

The simultaneous presence of over- and under-use suggests that simple views of

health care like ‘less is more’ or ‘more is more’ are insufficiently nuanced. Our re-

sults thus add to the growing body of work in health economics arguing for richer

models of physician behavior (Abaluck et al., 2016; Chan, Gentzkow, and Yu, 2019;

Chandra and Staiger, 2020; Currie and MacLeod, 2017; Kolstad, 2013). Policy mak-

ers have long viewed health care through the lens of misaligned incentives that make

physicians too eager to test. Implicit in this model is that physicians estimate risk

correctly, but simply set too low a threshold. This ‘less is more’ model, which sug-

gests that high-testing providers are wasteful relative to low-testing ones, has a clear

practical implication that drives much of health policy in the US and internationally:

create incentives to test less, for example, via reimbursement schemes or capacity

constraints. Yet, our finding of systematic biases by physicians calls this approach

into question: if physicians mispredict risk, incentives to cut care may do harm as

well as good.

We empirically examine these potentially perverse consequences by asking, when

physicians test less, which tests do they cut? The view of traditional models—and

the hope of health policy—is that they cut the low-value tests. The top panel of Fig-

ure 7 shows this is not the case. Here we graph the probability of testing against

predicted risk separately for each of the testing quartiles in our quasi-experiment

(using the random effects model described above). Low-testing shifts do cut back on

low-value tests: the lowest-risk patients are tested only 0.4% of the time, vs. 3.0%

on the highest-testing shifts. But they also cut back on high-value tests: the highest-

risk patients are tested 5.8% of the time, vs. 32.3% on the highest-testing shifts.

In absolute terms, high-value tests suffer the biggest decline—26.5% fewer in low-

thus does not have a wide range, so we view these results as limited.
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vs. high-testing regimes. In relative terms, low- and high-value tests fall by similar

amounts: 87% vs. 82%, respectively. In other words, less testing means less testing

for everyone, regardless of risk. The bottom panel replicates these results in our na-

tionally representative Medicare sample, where we sort hospitals into quintiles based

on their testing rate, and again graph testing vs. predicted risk for each quintile. We

see the same result: hospitals that test more test everyone more.48

These data provide a reminder that reducing care leads to cutbacks in what is per-

ceived to be low-value. But when there are prediction errors, what is perceived to be

low-value might in fact be extremely valuable. This idea builds on several existing

observations in recent literature. Most notably, a pair of recent papers shows that,

because doctors vary in diagnostic still, life-saving procedures—like treatment for

heart attack, or cesarean section for complicated births—can be mis-allocated away

from high-risk patients. This leads to over-treatment of low-risk patients and under-

treatment of high-risk patients (Currie and MacLeod, 2017; Currie, MacLeod, and

Van Parys, 2016), as we find in this study. In addition, errors in physician judg-

ment are in many ways analogous to ‘behavioral hazard’ in patient decision making,

where copays lead patients to cut back on both low- and high-value care (Chandra,

Gruber, and McKnight, 2010; Baicker, Mullainathan, and Schwartzstein, 2015; Brot-

Goldberg et al., 2015; Handel and Kolstad, 2015; Chandra, Flack, and Obermeyer,

2021). Incentives to reduce care can have perverse consequences throughout the

health care system.
48This exercise uses hospital referral regions to group hospitals, mirroring a large health policy liter-

ature that makes such cross-sectional comparisons. Naturally, these comparisons can be confounded.
While we lack the data to replicate the shift variation experiment, we do have an (albeit weaker)
alternative, described in Appendix 8.3. Testing typically requires an overnight stay after ED visits,
but since hospital staffing is limited on weekends, patients who come in the day before a weekend
are tested less. Figure A.10 shows that these reductions in testing reduce testing for all patients,
irrespective of their actual risk.
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5.4 The Role of Physician Experience

If incentives do not reduce inefficiency, what does? A natural candidate is physician

experience, which we observe in our data. Though we cannot causally identify the

effect of experience, correlations can be suggestive. In particular, we study how the

correlation between physician decisions and patient risk varies with physician ex-

perience (as measured by years since residency). In Table 6, we regress testing on

predicted risk, experience, and an interaction term between experience and patient

risk. Column (5) shows that more experienced physicians test less on average: 1.68

p.p. or 0.05% for every year since residency. At the same time, experienced physi-

cians are better able to match testing decisions to risk: with every year of experience,

they test the lowest-risk patients 0.04 p.p. (2.81%) less, and the highest-risk 0.58 p.p.

(1.06%) more.49 These correlations provide suggestive evidence that physicians may

learn over time, becoming more accurate with experience.

The results on experience in this Section and the results on high- versus low-

testing regimes tell distinct stories. On the one hand, experienced physicians both

test less and are more accurate. This echoes Chan, Gentzkow, and Yu (2019), who

show a negative relationship between skill and testing levels. On the other hand,

in Section 5.3, we saw that less testing was uncorrelated with accuracy: testing fell

across the risk distribution, including high-risk patients. This suggests that the re-

lationship between testing level and accuracy is complex, and that care is needed to

characterize it . Understanding what leads physicians to be more or less accurate—

and how that relates to testing level—is an important and open question that is only

beginning to be addressed. For example, Currie and MacLeod (2020) draw attention

to the role of learning: over time, physicians experiment with different strategies of
49We do not have experience data available for all physicians, so the sample size in this regression

decreases from 61,965 to 55,777. As usual, we verify that experience does not additionally predict the
yield of testing in Appendix Table A.18.
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allocating tests and treatments to patients, and are able to learn by observing the

results.

6 Conclusions

Much of machine learning applied to health care focuses on building tools to aid or

substitute for humans: for example, algorithms that can match radiologists’ perfor-

mance on x-rays. Our work suggests a very different use for machine learning in

health care: as a tool to understand humans, and the health systems they work in.

This approach allows us to precisely characterize inefficiencies. Current empiri-

cal approaches in health policy rely largely on aggregates: for example, do tests on

average yield enough positives to justify their costs (Weinstein et al., 1996; Sanders

et al., 2016)? By that metric, testing appears highly efficient, at only $89,714 per life-

year in our data. The granularity of algorithmic predictions, by contrast, reveals both

under- and over-use. This reframes the discussion away from how many people get

tested—too many, or too few?—to one about who gets tested. In a very conservative

simulation of optimal testing, total testing would drop by 47%, but the composition

of the tested would change radically: 29% of efficient tests would be new, in patients

physicians do not currently test; and tests would go from costing $89,714 to $59,390

per life year. The importance of composition in turn calls into question the central

role of incentives in policy. By changing the level of testing alone, they may improve

one inefficiency (over-use) while aggravating another (under-use).

Despite the great promise of algorithms for diagnosing and improving human inef-

ficiencies, great care is needed when comparing human decisions and algorithmic pre-

dictions. As we saw, when physician and algorithm disagree, we cannot just assume

the algorithm is correct: unobserved variables confound algorithmic predictions. This

40



selection bias pervades machine learning applications in health and elsewhere, ap-

pearing whenever algorithms are trained on data produced by the humans they seek

to influence.50 Once acknowledged, we show these problems can be tackled: by devel-

oping new labels grounded in domain expertise, and via quasi-experimental methods

from the causal inference toolkit. But ignoring this bias risks stacking the deck in

favor of algorithms: assuming away physician private information means algorithms

can, by construction, never do worse than the human—a misleading comparison.

Finally, our findings suggest a role for algorithmic predictions in interventions to

increase efficiency. Most obviously, because they are built on EHR data, our predic-

tions can be delivered to physicians in real time. Rather than replacing their judg-

ment, they can be combined with physician private information. At the payment level,

a system of ‘precision pricing’ could tie incentives and reimbursements for testing to

patient-level predicted risk and testing outcomes. Or predictions could be used as an

educational tool, during physician training or as continuing medical education. We

found accuracy improves with experience, but using algorithms to hasten the learning

process would be valuable: human trial and error is a costly way to learn in medicine.
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Figures and Tables

Table 1: Sample Summary Statistics

All Tested Untested

Patients 129,859 6,088 123,771
Visits 246,265 7,320 238,945
Demographics

Age (years) 42 58 42
(0.033) (0.146) (0.033)

Female 0.612 0.459 0.616
(<0.001) (0.006) (<0.001)

Black 0.262 0.216 0.264
(<0.001) (0.005) (<0.001)

Hispanic 0.237 0.145 0.24
(<0.001) (0.004) (<0.001)

White 0.436 0.588 0.431
(<0.001) (0.006) (0.001)

Heart Disease Risk
Past Heart Disease 0.122 0.393 0.114

(<0.001) (0.006) (<0.001)
Diabetes 0.142 0.294 0.137

(<0.001) (0.005) (<0.001)
Hypertension 0.253 0.517 0.245

(<0.001) (0.006) (<0.001)
Cholesterol 0.163 0.418 0.156

(<0.001) (0.006) (<0.001)
Any Risk Factor 0.361 0.626 0.352

(<0.001) (0.006) (<0.001)
Triage Shifts

Number of Shifts 3,951
Patients per Shift 62.3

Notes: Numbers are fractions unless otherwise noted, reported as mean (SE). As a measure
of heart disease, past heart disease is the fraction with any diagnosis of heart problems (is-
chemia), stroke, or peripheral vascular disease prior to the visit. Frequency of individual risk
factors (diabetes, hypertension, high cholesterol) is shown, along with the fraction with any
of these risk factors.
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Table 2: Testing Outcomes

All Tested Untested

Tested (10 days) 0.029 - -
(<0.001) - -

Catheterization 0.013 - -
(<0.001) - -

Stress Testing 0.020 - -
(<0.001) - -

Yield of Testing (10 days) 0.004 0.146 -
(<0.001) (0.004) -

Stenting 0.004 0.129 -
(<0.001) (0.004) -

Open-heart Surgery 0.001 0.018 -
(<0.001) (0.002) -

Adverse Events (30 days) 0.019 0.261 0.011
(<0.001) (0.005) (<0.001)

Diagnosed Event 0.016 0.253 0.008
(<0.001) (0.005) (<0.001)

Death 0.004 0.017 0.004
(<0.001) (0.002) (<0.001)

One-Year Mortality 0.016 0.048 0.015
(<0.001) (0.002) (<0.001)

Physician Suspicion (in-ED)
ECG Done 0.294 1.0 0.275

(<0.001) (0.004) (<0.001)
Troponin Done 0.131 0.792 0.111

(<0.001) 0.005 (<0.001)
Diagnosed Heart Damage 0.023 0.391 0.012

(<0.001) (0.006) (<0.001)
Positive Troponin 0.025 0.221 0.019

(<0.001) (0.005) (<0.001)
Troponin Result (ng/ml) 0.278 0.72 0.124
(if positive) (0.003) (0.005) (0.002)

Notes: Numbers are fractions unless otherwise noted, reported as mean (SE). ECG and tro-
ponin are low-cost screening tests, done for even a very slight suspicion of blockage. Diagnosed
heart damage reflects codes for infarction or ischemia assigned at the end of a visit, and posi-
tive troponin indicates damage to heart muscle; both are excluded from calculation of 30-day
adverse event rates in untested patients.
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Figure 1: Yield and Cost-Effectiveness of Testing in Tested Patients

(a) Realized Yield of Testing

(b) Cost-Effectiveness of Testing

Notes: Realized yield of testing (top) and cost-effectiveness (bottom) of tests (y-axis; sample
mean shown with an arrow) in the tested, by decile bins of predicted risk (x-axis). The cost-
effectiveness line shows our preferred specification, and the shaded interval shows sensitivity
to a range of estimated treatment effects from the literature. For comparison, we include
cost-effectiveness estimates of several other tests and treatments.

50



Table 3: Realized Yield, Cost-Effectiveness, and Testing Rate

Yield Rate Cost-Effectiveness ($) Test Rate
(SE) (Lower–Upper Bound) (SE)
(1) (2) (3)

Full Sample 0.146 89,714 0.029
(0.004) (74,152–113,543) (<0.001)

By Risk Bin
1 0.011 1,352,466 0.012

(0.006) (1,034,814–1,951,515) (<0.001)

2 0.036 318,603 0.017
(0.01) (257,296–418,265) (0.001)

3 0.07 192,482 0.047
(0.014) (157,552–247,314) (0.002)

4 0.168 114,146 0.088
(0.02) (94,154–144,914) (0.004)

5 0.429 46,017 0.383
(0.026) (38,178–57,907) (0.016)

N 1,784 1,784 61,965

Notes: Yield of testing (1) and cost-effectiveness of testing (2) in the tested, and test rate across
all visits (3), by quintile bins of predicted risk. Risk bin cutoffs are defined in the tested pop-
ulation, so bins here are equally sized in Columns (1) and (2), but not in (3) (which describes
the entire population—tested and untested). Lower–upper bounds on cost-effectiveness are
defined by a range of plausible estimates of the effect of testing on health, from randomized
trials.
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Figure 2: Adverse Events in Untested Patients (30 Days After Visits)

(a) Any Adverse Event

(b) Diagnosed Blockage or Arrythmia (c) Death

Notes: 30-day adverse event rates among untested patients (y-axis), by decile bins of pre-
dicted risk (x-axis). Risk bin cutoffs are defined in the tested population, so bins here are not
equally sized: the percent in each bin is shown above the x-axis. Panel (a) shows the total
adverse event rate (the top of the highest 95% CI is truncated). The horizontal line shows
the 2% threshold above which testing is recommended by clinical guidelines; the highest-risk
14% (top 6 bins) have a rate significantly above 2%. The bottom panels show two subset
categories of adverse events that make up the total: (b) diagnosed adverse events (heart dam-
age, confirmed with laboratory biomarkers; and cardiac arrest) (c) death (via linkage to Social
Security data); bins here are quartiles of predicted risk (because outcomes are less frequent).
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Figure 3: Adverse Events in Untested and Unsuspected Patients

(a) Fraction Untested & No ECG (b) Fraction Untested & No Troponin

(c) Adverse Events, Untested & No ECG (d) Adverse Events, Untested & No Troponin

Notes: Top panels: fraction of patients in whom physicians do not appear to suspect blockage.
Panel (a) shows the fraction untested and lacking an electrocardiogram (ECG); and Panel (b)
shows the fraction untested and lacking a troponin laboratory test. Both ECG and troponin
are low-cost tests used to screen for blockage; they are done even in patients who may be
ineligible for invasive treatment. Fractions are shown by quartile risk bins, with bin cutoffs
defined in the tested population (so bins here are not equally sized). Bottom panels: rate of
30-day adverse events (diagnosed events and death) after visits (y-axis), by bin of predicted
risk (x-axis), among untested patients lacking (c) an ECG, and (d) a troponin. The horizontal
line shows the clinical threshold above which testing is recommended by clinical guidelines.
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Figure 4: Balance and Risk Variation Across Triage Shifts

(a) Variation in Testing Rate and Observables, by Shift Testing Rate

(b) Variation in Average Predicted Risk, by Shift Testing Rate

Notes: Panel (a) shows balance checks in a quasi-experiment, in which patients arriving
during different triage shifts are tested at higher or lower rates. Each point shows the
coefficient and confidence interval on leave-one-out shift testing rate (T̄−j), from a regression
of a given pre-triage variable on T̄−j . Panel (b) plots, for each shift, the average testing rate
for all patients who arrive in that shift (in percentile terms, x-axis) and the average predicted
risk of those patients (y-axis). Each point represents one of 3,951 shifts in our dataset, and
the density plot on the right shows overall distribution of mean risk. *Age is divided by 100
for scale.
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Table 4: Effect of Testing on Health, Using Shift Testing Variation

Diagnosed Event Death Death
(31-365) (31-365) (0-365)

(1) (2) (3)

Panel (a): Average Effect
Predicted Risk 0.05∗∗∗ 0.15∗∗∗ 0.25∗∗∗

(0.005) (0.01) (0.01)

Shift Test Rate 0.02 0.005 0.005
(0.01) (0.01) (0.02)

Observations 123,289 123,289 123,289

Panel (b): Heterogeneous Effect By Risk
Predicted Risk 0.06∗∗∗ 0.17∗∗∗ 0.27∗∗∗

(0.01) (0.01) (0.01)

Shift Test Rate 0.04∗∗ 0.04∗∗ 0.04∗
(0.02) (0.02) (0.02)

Predicted Risk −0.25∗ −0.49∗∗∗ −0.43∗∗
× Shift Test Rate (0.15) (0.17) (0.20)

Observations 123,289 123,289 123,289

Outcome Rate 0.018 0.012 0.016
Outcome Rate, Top Risk Bin 0.027 0.046 0.077

∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01

Notes: Panel (a): Regression of diagnosed adverse events (Column 1) and death over days
31–365 after visits (Column 2) on leave-one-out shift testing rate. We use 31–365 days be-
cause tested patients are mechanically more likely to be diagnosed with heart problems than
untested patients in the first 30 days. Our mortality data, by contrast, do not suffer from this
difference in ascertainment, so death over the full year after visits is also shown (Column 3).
Panel (b): The same regression, but with an additional interaction term that allows the effect
of testing to vary by predicted risk. Outcome rates, overall and in the top risk quintile, are
shown below. Controls for time (fixed effects: year, week of year, day of week, and hour of day)
and patient risk are included but not shown. This sample includes only patient i’s first visit
j, to address non-independence of outcomes across visits, so sample size is reduced.
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Figure 5: Explanatory Power of Simple vs. Complex Models of Risk

Notes: Using a LASSO model of predicted risk (part of our full ensemble risk model), we
preserve all risk models along the regularization path for k ∈ [0, 1500]: the best fit linear
model that uses at most k non-zero coefficients. The x-axis shows k, the number of variables
retained as the regularization penalty is decreased, moving from left to right. The y-axis
shows the explanatory power of these risk models of varying complexity for physician testing
decisions (dark gray line), and patient risk (yield of testing: light yellow line), measured by
R2. The 95% CI is the shaded intervals, calculated by bootstrapping. The two vertical lines
show the complexity of the model that explains the most variance in physician decisions (left,
at k = 49) and risk (right, at k = 224).
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Table 5: Evidence for Physician Boundedness

Test Yield
(1) (2) (3) (4)

Predicted Risk, Simple 1.357∗∗∗ 1.358∗∗∗ 1.528∗∗∗ 1.319∗∗∗
(k = 49) (0.015) (0.016) (0.068) (0.081)

Incremental Risk, Complex −0.005 1.099∗∗∗
(k = 224) (0.033) (0.236)

Observations 61,821 61,821 1,834 1,834
R2 0.111 0.111 0.218 0.227

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Tests of the explanatory power of two versions of predicted risk, for physician test-
ing decisions and patient risk (yield of testing). We first identify the simple risk model of
complexity that explains the most variance in physician decisions (with k = 49, here labeled
Predicted Risk, Simple). We then subtract this prediction from the risk model of complex-
ity that explains the most variance in patient risk (with k = 224, here labeled Incremental
Risk, Complex). Columns (1) and (3) show how the simple risk model predicts both test and
yield alone. Columns (2) and (4) then add the complex model’s incremental contribution to
predicted risk.
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Figure 6: Simple Risk Variables: Correlation with Testing and Predicted Risk

Notes: For the simple risk model (with complexity k = 49) that best predicts physicians’ test-
ing decisions, we show univariate correlations of each included variable with the physician’s
testing decision (y-axis) and patient risk (x-axis). Each point is one of the 49 included vari-
ables, with separate shapes denoting different categories of inputs. Some outlier points of
interest are labeled.
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Table 6: Symptom Salience and Representativeness

Test
(1) (2) (3) (4) (5)

Predicted Risk, Full 0.872∗∗∗ 0.715∗∗∗ 0.756∗∗∗ 0.619∗∗∗ 0.755∗∗∗
(0.053) (0.049) (0.061) (0.045) (0.066)

Predicted Risk, Subsets
All Symptoms 0.888∗∗∗ 0.860∗∗∗ 0.273∗∗∗

(0.052) (0.057) (0.061)
Representative 1.283∗∗∗

Symptoms (0.121)
Demographics 0.139∗∗∗

(0.031)
Prior Diagnoses 0.046∗∗

(0.021)
Prior Procedures −0.053∗

(0.030)
Prior Lab Results −0.209∗∗∗

and Vital Signs (0.019)
Physician Experience

Experience (years) −0.0005∗∗
(< 0.001)

Experience × Risk 0.011∗∗∗
(0.005)

Observations 61,938 61,938 61,938 61,938 55,777
R2 0.084 0.106 0.113 0.118 0.082

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Column (1) regresses testing on our usual predicted risk measure m̂(Xij). Column (2)
adds a risk predictor formed using only symptom inputs. Column (3) adds risk predictors to
(2), formed using other input categories. Column (4) adds another risk predictor to (2), formed
from only nine representative symptoms. Column (5) regresses testing on predicted risk and
physician experience (linear and interacted with risk). All models additionally control for
non-linear risk terms (not shown). Similar regressions with yield of testing as the depen-
dent variable are shown in Appendix Table A.18, confirming that none of these variables are
predictive over and above m̂(Xij).
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Figure 7: Variation in Testing Rates by Predicted Risk

(a) Hospital Sample

(b) National Medicare Sample

Notes: Panel (a) shows variation in testing rates by predicted risk, in our quasi-experiment
where patients are tested at higher or lower rates based on the triage staff working when
they arrive. Panel (b) shows variation in testing rate by predicted risk, across all hospitals in
the US. Hospitals are binned into quartiles based on the overall testing rate of the hospital
referral region in which they are located, to mirror cross-sectional analyses in the literature.
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