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1. Introduction

In recent years, Robert Barro's [1974] version of "Ricardian
equivalence" has stimulated much controversy concerning the effects of
government budget deficits and social security programs. In his well-
known paper, Barro supplemented the traditional overlapping generations
nodel with intergenerational altruism, and argued, in essence, that
voluntary transfers between parents and children cause the represen-
tative family to behave as though it is a single, infinite;lived
individual~-a "dynéstic" unit.  From the péint of view of the family,
neither debt nor social security aiters available alternatives; both are
therefore neutral. Thus, Barro's analysis identifies the strength of
intergenerational altruism as a key factor in determining the effects of
government bond issues and public pension programs.

Recently, Bernheim and Bagwell [1988] have argued against the
applicability of Ricardian equivalence by demonstrating that Barro's
assumptions guarantee the irrelevance of all redistributional policies,
distortionary. taxes, and prices--the neutrality of fiscal policy is only
the "tip of the iceburg." Their results rely on the existence of
intrafamily linkages, which arise whenever two unrelated individuals
produce a common child. Bernheim and Bagwell concluded that, since
these other propositions do not hold even approximately, one cannot
agsert that the world is approximately dynastic. Accordingly, all
conclusions following from the dynastic framework {including Ricardian
equivalence)} are suspect,

Bernheim and Bagwell also noted that it might be possible to
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reinstate approximste Ricardian equivalence without generating untenable
consequences by introducing a small amount of "friction"., Intuitively,
friction would cumulate with each link and would become substantial for
long chains. Since Ricardian equivalence {for debt redeemed within a
few generations) presumably depends on short chains while the Bernheim-
Bagwell results presumably depend on long ones {(we note that these
presunptions may be erronecus--see section 7}, the introduction of
friction might just do the trick.

The purpose of this papér is to evaluateithe preceding argument b&
formaliy infroduafng various forms of friction into a model with
altruistically motivated intergenerational transfers. We focus on
frictions arising from three sources: the derivation of pleasure
directly from the act of giving: incomplete information about others’
preferences; and egalitarian scecial norms that constrain parents to

ivide transfers evenly between children. The first two sources of
friction turn out to be quite similar analytically, and give rise to
qualitatively similar results. In particular, one can obtain
spproximete Ricardian equivalence by introducing a sufficiently small
amount of friction. Furthermore, for any given amount of friction, one
can reinstate the relevance of other redistributional policies by taking
the population tc be sufficiently large {it follows from this that taxes
will distort behavior, and prices will play an important allocational
role). However, there is a hitch: by simultaneously taking friction to
be small and population toc be large, one drives each individual's

marginal propensity to consume out of wealth to zero. In resolving



several paradoxes posed by Bernheim and Bagwell, one therefore merely
encounters another.

The introduction of egalitarian constraints generates some
intruiging results. Most importantly, one obtains exact Ricardian
equivalence in a world where other redistributional policies have
significant allocative effects. Since there is no need to assume that
this source of friction is "small,'" one does not encounter the own-
wealth effect puzzle noted above. We are trpubled, however by the
raéher ad hoc nature of this constraint. In addition, its imposition
generates a new paradox: we show that an exogenous increase in the
wealtn of any given individual is never Pareto improving. Consequently,
we conclude that the thecretical case for Ricardian equivalence remains
tenuous even when one explicitly recognizes sources of economic
friction.

We organize our discussion as follows. Section 2 lays out the
basic model, describes an appropriate notion of equilibrium, and
presents some technical results which facilitate. the analysis of
subsequent sections. In’sections 3 through © we consider, respectively,
specialized cases in which a) there is no friction, b} altruists derive
utility in part directly from the.act of giving, c} agents have
incomplete information about each: others' preferences, and d) parents
are constrained to divide transfers equally between their children.
Section 7 contains some concluding remarks. We defer all technical
mnipulations and proofs. to the appendices. Appendix A contains a

complete treatment of comparative statics for cases b and c above, while



Appendix B treats case d. We present proofs of specific results in

Appendix C.

2. The Model

We consider an economy comprised of 2K households. Despite the
fact that we treat each household as if it consists of a single
individual, one should for the purpose of interpretation think of
households as married couples, The population is evenly divided between
two groups of households, heneefortﬁ'refer;ed to as "parents" and
“children.” Thus, tbe;e are N parents {labelled pi, i=1,...4N),
and N children {labelled ki, i=1,...,N). Every parent has two
children, and every child has two parents {reflecting the fact that
spouses originally come from different househclds). We assume in

particular that pi’s children are ki and K;+1 {where, by

convention, k = kq). It is therefore appropriate to think of

N+1
intrafamily relations as a kind of circle {pictured in figure 1),
consisting of an outer layer (parents) and an inner layer {children).
This representation of intrafamily relations is unquestionably
highly stylized, and does not reflect the full complexity of family
networks, particularly in cases where these networks span more than two
generations (see Bernheim and Bagwell [1588]). On the other hand, this
framework has the advantage of rendering our current analytic objectives
tractable, while in all likelihood doing very little vioclence to the
underlying economic issues. We return to this point in section 7, and

argue that more realistic modelling of family networks would only tend

to strengthen our conclusions.



Parent pi is endowed with wealth, Wi; similarly, child ki is
endowed with LI Parent pi divides his wealth between consumption

(C.), a transfer to child k. {T.J), and a transfer to child k, (t ),
i i i 1+1 i
(1) C, =W, -T -t

subject, of course, .to non-negativity constraints (C,. >0, T, >G,

t, » 0). Child i receives transfers from parents Py and P,

i 1

(where, by convention, 1 = pN), and consumes all available resources:.

2 o= T .
(2) R S SR S t1-1

We suppose that children are completely selfish, so that the well-

being of child ki is given by

u = u(ci) .

With probability m, parent pi is also completely selfish, so that his

well being is given by

(note that the felicity function for parents is identical to that for
children--this restriction is inessential). With probability

{1 - n), parent Py is altruistic; this entails non-paternalistic
altruism for his child (as in Barrc [1974]), and possibly some concern

for the magnitude of his bequests (as in Andreoni [1386]):

Ui = u(Ci) + B[u(ci) + u(ci+1)] + a[v(Ti) + v(ti)]
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(a¢,8 > 0)., For simplicity, we assume that the random events that
determine parental preferences are distributed independently over
parents. Throughout, we alsc assume that uf(e) and v{+) are twice
continuously differentiable and strictly concave.

The final allocation of rescurces is determined through a
simultaneous move game, in which each parent chooses his own
consumption, as well as intergeﬁerational transfers. BEach parent's

preferences are private infermation; while parent p, knows whether or
Py

not he himself is altrﬁistic, his’infsrmation ccdcerning others is
limited to kno#ledge of thé distribution of preferences deécribed
above. It is therefore necessary to employ a sclutioﬁ concept that
allows for incomplete information. The natural choice is to focus
attention on Bayesian Nash Equilibria (see Harsanyi [1567-68]).

In a Bayesian Nash Fquilibrium (hencefort BHE), we assign to each
parent a function mapping his preferences into decisions. These
decisions must maximize his expected utility given associated
preferences, and given the distribution of other parents' decisions
induced by their assigned functions. In the current context, a BNE has
e particularly simple form. When parent i 1is selfish, he will

obviously set T ti = 0, regardless of what other parents do. Thus,

i’
% *
we need only describe the choices, (Ti’ti)’ which are contingent upon
* * N
parent i Dbeing altruistic. Accordingly, (Ti’ti)i=1 is & BNE if for

* *
all i, (Ti’ti) solves
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* *
-T. - 1 - 1)
(3} ;\axt u(wi Ti ti) + 3{( )LU(Wi + Ti + ti-T) + u(wiﬂ + T.
1771

+ n[u(wi +# T wulu o+ ti)}} + G[V(Ti) vt )]

+1

{subject to non-negativity constants). We note in passing that when 7

equals either O or: 1 {so that information is complete),  this

definition reduces to the more standard notion of a Nash equilibrium.
Throughout much of our analysis, we will assume that resources are

initially distributed evenly within generations. That is,

for all  i.  When we. assume symmetric endowments, we will also focus
attention on symmetric equilibria, which have the property that the

magnitudes of all transfers (conditional upon the parent being
* * *

altruistic) are identical (i.e., ’I‘i = ti = T for all i =1,...,N}.

We now present three technical results which justify the
comparative statics rformed in subsequent sections. The first of
pe
these establishes existence.

N

Theorem 1:. For all endowment profiles (Wi,wi)l

=1' a BNE exists.

Next, we show that symmetric equilibria do indeed exist when

endowments. are symmetric.

Theorem 2: If endowments are distributed symmetrically, then

*
there exists a symmetric BNE. Furthermore, the associated transfer, T,
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is independent of N.

The second portion of this result establishes that the allccation of
resources is in some important sense independent of population size.
This conclusion will feature prominently in the ensuing analysis.

Finally, we establish a uniqueness result.

Thecrem 3: ;ﬁ_ a >0 or mW> 0, then there is a unique BNE. If

% =0 and 7w = 0, then all BNE yield the same allocation of consumptiocn.

When altruism is imperfect {a or n positive), equilibrium is unique.
In particular, we lose nothing at all by focusing on symmetric
equilibria for the case of symmetric endowments. In a frictionless
world, there mey indeed be a multiplicity of egquilibria (more on this
later), but all such equilibria are equivalent, so once again our
analysis involves no loss of generality.

Throughout the following sections, we will focus on interior
equilibria {i.e., parents make positive transfers to their children).
Since we will be primarily concerned with environments that are "almost"

symmetric and frictionless, it is sufficient to assume that
1 1
u (W) < Bu (w)

Az a final preliminary step, we describe two types of "fiscal"
policies of particular interest. The first of these corresponds to the
use of government debt. The level of debt, 5, affects endowments as

follows:



M,
ag =
dwi

@ =

for all i. That is, the government redistributes resources from the
younger generation to the older generation, presumably by deferring
taxes into the future. Note that this experiment is a pure case of
intergenerational redistribution, since all members of the same
generation are affectedvidehtically.

The second type of fiscal policy considered here amounts to a pure
redistributions within the parents' generation. In particular, Ti

represents a transfer to parent P> financed out of "general revenues":

i -1/(N - 1) otherwise

It would also be natural %o analyze a third type of policy,
consisting of redistributions within the children's generation.
Analytically, such policies are extremely similar to redistributions
within the parent's generation, so we do not consider them explicitly.
Note that, taken together, these three sets of instruments are
comprehensive, in the sense that they allow the government to achieve
any conceivable distribution of resources.

Throughout the rest of this paper, we focus on the extent to which
fiscal instruments redistribute consumption in equilibrium. For each
policy p (where p  is either public debt, 8, or an intragenerational

transfer, ti), we define a distributional index:
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N dcC dc%
p : i oL odny
RY = Jé1 ldp i + idp {}/2

The logic of this index is straightforward. If the policy p has no

effect on the consumption of any individusl, then Rp = 0. Thus,

R = 0 corresponds to the Ricardian equivalence hypothesis, and

T .

R Y -0 forall i corresponds to the Bernheim-Bagwell neutrality

proposition, Note also that, in the absence of operative

intergenerational linkages, for each of the policies described

above, R® = 1 ({(redistributing endowments leads to a one~-for-one

redistribution of consumption). ' Thus, a value of aP" petween 0 and

1 tells us how closely behavior conforms to each of the polar cases.

3. Perfect Altruiasm

We begin oy considering a frictionless world, in which altruism is
perfectly nonpaternalistic (¢ =1 = 0). Since such environments have
received much prior attention (see Barro [1974] and Bernheim and Bagwell
[1988]), this section contains no new results as such. Rather, we
restate known neutrality results within the context of our current model
in order to provide a "base case" with which to compare the results of
subsequent sections.

Under the assumptions specified in section 2, an interior

equilibrium must satisfy

(44) u’(C:) = ﬁu‘(c;)
(48) a'(c]) = Bu (e),)
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where

* * *
(54} C, =W, =T, =t
and

%* #* *
(5B) o, =W, o+ 'I‘i + ti—1

for all i.: Given our concavity assumptions, these conditions are also
sufficient to establish an equilibrium. Note that (4A){ (AB), (54}, and
(SBj form a system of 4N equationsrin 4N unknowns. Ordinafily, one
would think that the system would be fﬁlly determined., However, brief
inspection reveals that one of the equations given in {4A} and (4B) is
redundant (recall that CN+1 = C1). Thus, the system is under-

determined.

This does not, however, reflect real indeterminancy of resource

allocation. To see this, we sum (54} and (5B) over i to obtain
N
A *
6 - - =
(6} % (Ci * oy W, wi) o]

Note that (44}, (4B); and (6) {omitting the redundant equation) form a
system of 2N equations in 2N unknowns. Accordingly, it seems likely
that consumption is fully determined. - In fact, we have already
established that there is a unique solution to this system of equations
(Theorem 3).

In contrast, transfers are indeterminant. To understand this
point, refer again to figure 1. Suppose that an equilibrium prevails.

1f every parent simply increases 'I'i by $1 and decreases ti vy $1,
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the allocation of real resources remains unchanged. Thus, the new
profile of transfers is alsc an equilibrium. Equilibrium transfers are
therefore defined only up to an additive constant, with the sole
restriction that all transfers must be positive.

Accordingly, we may ignore transfers completely, and describe the
equilibrium consumption profile directly through equations {(44), (4B),
and (6). Simple inspection of these equations reveals that the

allocation of resources depends only upon total wealth,

Changes in the distribution of wealth have no effect on the consumption
of any individual.

Several neutrality results follow immediately from this
observation. We begin with Barro's [1974] well-known version of

Ricardian equivalence:

1
Proposition 1: If a =% = 0, then R = 0.

The proof simply consists of noting that

=

d N
—d—g(ii‘.l(wi +“i)) =0 ,

and invoking the preceding observations.
Bernheim and Bagwell [1988] have criticized Barro's analysis on
two grounds. First, they argue that, in a world with intrafamily

linkages, Barro's assumptions_(perfect non-paternalistic altruism
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coupled with operative transfers) imply that all redistributional
policies are neutral. In the current context, we obtain
T

Proposition 2: If @ =% =0, then R~ =0 for all i

This result fellows directly from the observation that

analogously to Propos%tion 1. - )

Proposition 2 indicates that policies that redistribute resources
between apparently unrelated members of the same generation have no
effects on resource allocation. Using this result, one can also show
that, in somewhat more elaborate environments, apparently distortionary
taxes have no effects on behavior, and that prices are not only
indeterminate, but also play no role in the resource allocation process
(see Bernheim and Bagwell {1988] and Bernheim [1986]).

Bernheim and. Bagwell alsc.offered, but did not emphasize, a second
criticism of the dynastic framework: - as the population size increases,
each individual's marginal propensity to consume out of his own.wealth
falls to zero. As we shall see, this observation turns out to be
particularly important in models that incorporate small amounts of
friction.: In the current context, we have

*

dc,
Proposition 3: If « = m =0, then 1lim Eii = o for all i.
N> i

To establish Proposition 3, we argue as follows. By Proposition 2

(along with a similar result for children), equalizing the distribution



of resources within generations has no effect on consumption. Thus, we
can invoke Theorem 3, to conclude that the distribution of consumption
is symmetric both before and after the incremental infusion of wealth.
It is trivial to check that C (= Ci for all i) and ¢ (= e, for
all i) are both increasing in aggregate resources. Thus,

dCi/dWi < 1/N, from which the result focllows immediately.

Empirically speaking, Proposition 2 {along with its corcllaries)
and Proposition 3 are both untenable. Indeed, since these properties do
Vnot hold eQen as an approximation in the real,world; reality is in sSome
critical sense>not even approxinateiy like  the model descriged hére.
Accordingly, Bernheim and Bagwell conclude that it is inapropriate to
take the Ricardian equivalence result even as a 'rule of thumb" guide to

policy, without first specifying the nature of the approximaticn in

great detail. We undertake this task in subsequent sections.

4. Joy of Giving

In this section we analyze the case in which all parents are
altruistic and, in addition, care directly about the size of the
transfers they make. Formally, ¢ > 0 and n = 0. Parent i chooses

to satisfy

the transfers Ti and ti

{(74) u'(Ci) 5U‘(ci) + GV'(Ti)

(7B) u'(Ci) 6u’(ci+1) + av'(ti)

In deciding on the optimal transfers, parent i considers reducing his

own consumption, Ci, by one unit. If he transfers this unit to child
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i, the parent's utility is increased by Bu’(ci) + av‘(Ti); if he
transfers this unit of consumption good to child i + 1, then the
parent's utility is increased by Bu'(ci+1) + av'(ti). The first-order
conditions (7A) and (7B) show that a consumer chooses T; and t; so
that the marginal utility loss from decreasing his own consumption is
equal to the marginal utility gein from increasing either Ti or ti.
To obtain comparative static results for this model, one
differentiates the entire system formed by equations (74} and K?B) (for
each i), along with the budget<const;aints. The following result ig

extremely helpful for evaluating the effects of specific'policy

exercises.

Theorem 4: If =n =20, a > U, and the initial distribution of

endowments is symmetric, then

IC* . . . 1 N n{
i {k]‘]—ki N KN-]J—kI}{1 _ }\'n)-'](}\-ﬂ _ )\)-1 ay (T}
dwk u"{C
. av"{T}
[2 + BU"(C)}
where X  solves
2
=1 _ 4 av"(T) ay"(T) av"(T)
Ao+ A = 2‘.1 + BU"(C) + uu(c) :{ + BU"(C)U"(C)

Since the formula for  k  is quadratic, there are, of course, two
solutions. Given the nature of this formula, one root is simply the
inverse of the of the other. If  a > 0, then the expression on the

right hand side strictly exceeds 2, so that one solution. exceeds unity,
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while the other lies between 0 and 1. It is easy *to check that the
value of dC;/dwk does not depend upon whether one uses the larger or
smaller root. For convenience, we henceforth adopt the convention that
0 <A< 1.

Now consider the effects of a Ricardian‘redistribution in which
wi ig increased by one unit and Wy is decreased by one unit for all
i. It is of course feasible for all (4 and = to remain unchanged

in the face of this experiment. However, this invariance of consumption

is not, in general, optimal-as afgued belo#.r

Suppose that all parents meintain their own censumption unchanged
and increase T; and ti each by 1/2. In this case all oy will be
unchanged, - However, the first-order conditions {74) and {7B) will fail
to be satisfied because the increase in transfers leads to a reduction
in av'(Ti) and av'(ti}. Therefore, the marginal utility of parent i's
consumption, u'(Cj), would exceed the right-hand sides of (7A) and (7B),
which represent the marginal utility associated with an additional
transfer. To re-establish optimality, parent i1 would increase his own
consumption and decrease his transfers. Therefore, the Ricardian
experiment increases the consumption of parents and reduces the
consumption of children.

The argument that consumption would not remain unchanged in the
face of a Ricardian experiment was based on the fact that increased
transfers would reduce av'(Ti) and av‘(ti) and therefore violate the
first-order conditions (7A) and (7B). However, if a is small, then

this effect will be small and the impact on consumption will be minimal.
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Thus, we would expect the effect of deficits on consumption to be
continuous in a. Likewise, one would expect to obtain a similar
continuity property with respect to the effect of transfer policies on

consumption. Formally, we have

Proposition 4: If n = 0 and the initial distribution of

T

endowments is symmetric, then lim R5 =limR* =o0.
a*C a*0

Proposition-4 tells us that by taking friction to be small we can_
obtain both Ricardian equivalence and the stronger neutrality ér;pertiés
as arbitrarily good approximations. By itself, this result does‘not
bolster the Ricardian position. However, the key point is that for Ti
the quality of the approximation depends: upon N, whereas for & it
does not. - Indeed;. since public debt does not alter the symmetry of
endowments, then by Theorem 2 Ré is completely independent of N. In

T

contrast, R Y varies with systematically with N,

In keeping with the intuition given in the introduction to this
T

paper, we wish to explore the behavior of R i as N Dbecomes very
large. .We therefore consider in detail the effect of Ti on the
distribution of consumption in large economies. Note that dCi/dri is
the sum of two components: (1) the direct effect of the increase in
parent i's wealth, dci/dwi; and (2) the effect on parent i's
consumption of the reduction in parent j's wealth by (N - 1)-1 units,
for all j # i, To evaluate these components in a large economy, we

take the limit of the formula given in Theorem 4 (recalling that, since

endowments are symmetric, C, ¢, and T . do not depend on N):
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dc* X
11 1. 03=k] -1 AT av'(T) , . av"(T),
T o R T eS LA
N GH u Bu(c)

Thus, an increase in Wy has a positive effect on Cj but the
magnitude of the effect declines geometrically as gj-kl increases~-
friction dissipates the effect on more distant relatives., We depict
this pattern graphically in figure 2,

Consider now the two component effects of Ti. For a large
economy, the effgct on parent j's wealth is negligible. 1Indeed, it
“follows from Theorem 4 that even summiné over all j # i, there is no
effect on parent i‘s conéumption {i.e. effect {ii) above is equal to
zero). Intuitively, in large economies almost all j are only
distantly related to i, so that the friction in any chain linking  j
to 1 almost completely dissipates the effects of changes in j's
wealth. Thus, in a large economy, the effect on parent i's consumption
of the redistributive transfer Ti is the same as the effect on parent
i's consumption of an increase in parent i's wealth (effect {i) above).
Inspection of Theorem 4 reveals that, even in a large economy, dCi/dWi
is positive. This follows from the fact that if parent i received an
additional unit of wealth and did not increase his own consumption, then

he would increase his transfers T, and t thereby increasing

i i’

¢, and ¢ In this case, the mrginal utility of his own

i i+1”
consumption, u’(Ci), would exceed the right-hand sides of the first-
order conditions (74) and {7B). In order to satisfy the first-order

conditions, parent i would increase his own consumption.



-19-

Finally, since the effects of wealth injections are localized, in

large economies we would expect ti to redistribute consumption from

the general population to the close relatives of i, so that in the
T,
limit R ! + 1, We sunmrize these conclusions in Proposition 5.

ProEosition 5:¢ If ==0, a> O, and the initial distribution

T,
of endowments is symmetric, then 1lim R o, Furthermore,
N>
dC? dC; N
lim —= = lim -7 > 0.
o 375 e Wy .

Taken together, Propoéitions 4 and 5 may well appear to resolve
the difficulties raised by Bernheim and Bagwell. Specifically, one can
obtain Ricardian equivalence to an arbitrarily good approximation by
taking . @ sufficiently small. If for a given @ the population is
sufficiently large then, as in a model with no altruistic linkages, a
one dollar intragenerational transfer will redistribute one dollar of

T,
. . Sy B i
consumption in equilibrium (l.e. R

+ 1). The recipient of such a
transfer will act as though he has received an injection of new wealth--
that is, he will completely ignore the fact that the government acquired
these resources by levying taxes on individuals to whom the recipient is
operatively linked. Taking the population. to. be large does not,
however, affect the approximate validity of Ricardian equivalence. Thus,
with « small and N large relative to a-1, deficits are approximtely

neutral, but intragenerational redistributions are not. Formally, we

have
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Proposition 6: There exists a decreasing function ¥ such that

®

+ l. N = @ )
Kat with lim (ak, k} {0,2} and

k¥

£ ny segu <

or any guence ak,Nk>
~ 6 T;

N 2 N(a ) forall k, linR =0 and lim R o1,

k+= P
8 s
Note that one does not obtain R + 0 and R + 1 for all
sequences (ak,Nk} + (0,=). N must be sufficiently large for each

«  for the argument to work. More generally, <ak’Nk) > (0,=) is

T,
: . PR P :
consistent with any limiting value for g including 0. Thus, one

’
cannot justify Ricardian equivalence simply by arguing that ffictiqﬁ is
small and the population is large. However; the logical puzzle posed by
Bernheim and Bagwell appears for the moment to be mitigated. It seems
that one must turn to empirical evidence in order to determine whether
the actual values of « and N are consistent with approximate
Ricardian equivalence, but inconsistent with the collateral neutrality
results.

Yet this resolution is unsatisfactory. If one simultaneously
takes a small {so that Ricardian equivalence is approximetely true)
and N large {so that intragenerational transfers remain relevant),

then in the limit each individusl'’s consumption is necessarily unrelated

to his own wealth. More precisely,

Proposition 7: Suppose =% = 0, and that the initial distribution

of endowments is symmetric. Let ¢ g be such that

N

kK’ Tk >k=1
lim {a ,N ) = (0,®). Then
Ko LS ’ E—
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*
(5
lim o .
e AW, K

Thus, by introducing friction through - a, one cannot simultaneously
resolve the difficulties raised by Propositions 2 and 3 of section 3:
if one takes friction to be small without letting the population get
very large, then in the limit everything is neutral; if one takes
friction to be small while letting the population grow, then in the

limit each individual's marginal propensity to consume out of wealth

falls to zero.
Propositions 6 and 7 may at first appear to be inconsistent.

Suppose we take some segquence (ak,Nk} »> (0,=) with N_> N(ak) for

i
each k. By proposition 7, we know that in the limit consumption does
not depend upon an individual's own wealth. This seems to imply that
consumption depends upon aggregate wealth, from which it would follow
that all redistributive policies are neutral. Quite to the contrary,

T,
proposition 6 tells us that R~

+ 1. .The key to this puzzle is the
fact that, in the limit, consumption is-a function of local aggregates,
rather than global aggregates, That is, the consumption of individual
i depends only upon the wealth holdings of i's "close" relatives. In
the limit, i has an infinite number of close realtives (even though
these relatives form a& negligible subset of the entire population), and
so 1's own wealth is irrelevant. However, a redistribution of one
dollar from i . to j (where i and j are only very distantly

related) will transfer one dollar of consumption from. i and his close

relatives to j and his close relatives.
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In summary, we find that one can simultaneocusly take friction
small {a + 0) and population large {N * =} such that Ricardian
equivalence holds arbitrarily well, and such that redistributions have
real effects (changes in wealth only affect consumption locally).
However, in doing so one necessarily produces an untenable result: each

individuals' consumption is unrelated to his own wealth.

Se Incomplete Information

Now consider an economy in which a fraction % of the parenté are
selfish and the remaining fraction 1-m ofvthe parenté are altruistic.
Each parent knows whether he is altruistic or selfish, and knows the
fraction T of selfish parents, but does not know whether any other
particular parent is selfish or altruistic. For simplicity, we assume
that there is no joy of giving motive (a = 0).

Rather than treat this case in detail, we will simply indicate its
formal similarity to the joy of giving model. Specifically, if a > 0

and m = 0, the utility of each parent is given by
(8) u(c,) + Bluly,) +uly )i+« [v(ty) + v(t)]

where

and

yi = wi + Ti + ti—1 .
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Alternatively, when. @ = 0 and ® > 0, parent i's expected utility

(given that he is altruistic) reduces to
} 3
(9) u(C) +B(1 - ﬂ)[u(yi) +uly, 400+ ﬁﬂ[u(wi + 1) wulwy o+ t.)]

(recall that, with incomplete information, we interpret Tj and tj as
choices .conditional upon. j being altruistic, with the understanding
that j  transfers nothing if he is completely selfish).

We note four differences between (8) and (). First, in (9) the
second term is muitipliéd by (1 - ). Cleariy, this differen;e in
scale cag have no qualitative conéequences; andveven gquantitative
differences disappear as 1n goes to 0. Second, in (9) the third term
is multiplied by m rather than <. Yet both #© and a  are measures
of friction. Merely changing tge index is inconsequential. Third, in
(9)  ul{+) appears in place of v{+). 3Since we never ruled out the
possibility that u(') and. .v{*). are identical, this: too is
irrelevant. Finally, in (9) wi + Ti appears in place of Ti
(likewise wi+1 + ti in place of ti)' Clearly, this cannot affect
comparative statics for the instruments Ti' since wj in independent
of ri.

Given the strong similarities between (8) and (9), it should not
be surprising that formal analysis of the two models is virtually
identical. We therefore treat these models simultaneously in Appendix A
by analyzing a slightly more general formulation that subsumes both

specifications. Since Appendix 4 gives a complete characterization of

comparative statics for the general formulation, it is possible to



—24 -

obtain direct analogs of Propositions 4 through 7 for the case of
a =0, n >0 by mimicking the proofs in Appendix C. We leave details

tc the interested reader.

6. Egalitarianisa

Despite its apparent promise, the introduction of friction does
not appear to resclve successfully all of the puzzles posed in Bernheim
and Bagwell's analysis. Wg now turn to a less cbviocus alternative,
wgiéh is motivated by the empir{cal observation t%at testators often
choose to divide bequests equéllyramong'their heirs {see Menchik
[15801). This phenomenon has puzzled previous analysts, in that i
appears to contradict the implicaticns of all widely subscribed theories
concerning bequest motives {see the discussion in Bernheim, Shleifer and
Summers [1965]). We offer no new explanation of equal division here,
but rather simply assume that altruistic parents maximize utility
subject to an egalitarian constraint. Like the introduction of friction
in section 4, the constraint itself is somewhat ad hoc, but, as we shall
see, its introduction generates some intruiging implications. We leave
the task of justifying the equal division assumption for future work.

Accordingly, we set a = % = 0, and modify our basic model by

assuming that parent pi maximizes utility subject to the constraint

that

Formally, Theorems 1 through 3 do not apply to this case. We therefore
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provide the following result:

Theorem 5: Suppose @ = % = 0, and that parents face egalitarian

N

constraints. For every endowment profile (W,,wi)i
i

there exists a

=1'

unique equilibrium. Furthermore, if endowments are distributed

symme trically, then the equilibrium is symmetric, and the associated

*
equilibrium transfer, T , is independent of N.

As in section 4, it is useful to derive some preliminary
comparative static results that allow us to compute the,éffects of

various policy experiments. We therefore provide the following theorem:

Therem 6: Suppose - a@ = © = O, and that parents face egalitarian

constraints. Let initial endowments be distributed symmetrically. Then

N, -1 N, -1 -1
dc* 201 o+ A 1 - A (1 - A for j =k
( 7o ) ) for

dw
-1

_(xij'kl + kN_lj-kl)(1 + M) (1 - XN) (1 - K)—1 otherwise

where A solves

=1 _ u"(C)
K o+ A = . =2 =4 But(c) °

Once again, the formula for A 1is quadratic. Since the right
hand side is strictly less than -2, one solution is less.than -1,
while the other lies between O and -1 {(one is simply the reciprocal
of the other). For convenience, we chcose the second root (both yield
the same value of dC;/de), and adopt the convention that C > k> =1,

We begin our analysis of egalitarian altruism by noting that



~26-

Ricardian equivalence holds exactly (i.e., not approximately, as in the
preceding sections). To establish this property, we need not assume
that endowments are distributed symmetrically--the result obtains even

when the financial status of children differs within families.

Proposition 8: Suppose a = n = 0, and that parents face

§
egalitarian constraints. Then R = 0,

It is impqrtant to qualify Proposition & in the fclléwing way.,

The previous models yielded Ricaréiad equivalence {or approximaté
equivalence} for ail transfers involving avparent and his children.
Here, that is not the case. Policies that entsil differential treatment
of children within the same family may well have real effects, since the
egalitarian constraint prevents parents from offsetting such redistri-
butions.

This observation leads naturally into our next result. Just as
the equal division requirement prevents parents from offsetting
redistributions within the family, it precludes private individuals from
offsetting more complex transfer policies. Suppose for example that the
government taxes parent pi, and distributes the procedes to pi+1. In
the absence of egalitarianism, Py will decrease ti by the amount of
his incremental tax, and Py will raise Ti+1 by his incremental
subsidy. In the presence of an egalitarien constraint, these
alternatives are proscribed. Instead, the actual responses of p, and

i

P41 will offset the policy only partially.

Accordingly, one might well suspect that egalitarianism introduces
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a kind of friction, which attenuates the effects of a perturbation as
one moves further from its source. In large populations, one might once
again find that policies of intragenerational redistribution lead to
sensible consequences. : Taking limits. of the formulas in theorem & {and
recalling that, with symmetric endowments, * and the equilibrium

allocation are independent of ¥N), we obtain

dc* 4
—L - on(1 - A)7 , and

"

—l 2 -xlj’klm + A1 - 7\)'1 for. j. #k ..

As expected, the effect of pi's wealth on pj's consumption declines
geometrically as . j becomes "distant" from i. However, the most
striking feature of these formulas follows from the fact that A is
negative. Accordingly, a windfall for parent pi raises the
consumption of pj (i # j} when i - j  is odd, and lowers it when
i - j. is even (see figure 3).

A moment's reflection suggests that this pattern is quite natural.
In response to an infusion of wealth, parent pi increases both his

consumption and his transfers. . Upon seeing that cne child (ki’ki+1)

is better off, parents Py and P, choose to consume more and

-1 1

transfer less., As a result, the resources of children ki-1 and ki+2
fall. Parents P o and Py, respond by choosing to consume less,
and transfer more. The pattern then repeats.

From these results it is easy to establish the relevance of



intragenerational redistributions in large economies. In fact, parent
pi will respond to a transfer funded from general revenues (7T ) Just
i

as he would to an injection of new wealth; furthermore, the pure wealth

affect does not vanish as the population grows.

Proposition 9: Suppose a = % = 0, and that parents face

egalitarian constraints. Let initial endowments be distributed

dcx dc¥ T,
symmetrically. Then 1im E;L = lim Eﬁi >0, and lim R ~ > 1,
Doee TN yee Oy B ]

consumption if there are egalitarian intergenerational transfers, than
T,
if there are no private transfers at all {i.e. g !

> 1). That is,
contrary to the implications of previous analyses, private transfers
serve to magnify rather than dampen the redistributive effects of
government policies,

Even so, it might appear that egalitarianism provides the ideal
resolution to the paradoxes raised by Bernheim and Bagwell. After all,
one obtains exact Ricardian equivalence without assuming that this
source of friction is small. In contrast to previous sections, one need
not pass to two limits simultanecusly, thereby producing a paradoxical
wealth effect.

Tet this conclusion is premature, for the imposition of egalita-
rianism produces a paradox of its own. Specifically, consider the

welfare effects of an exogenous increase in the wealth of some

consumer. Ordinarily, we would think of this occurrence as
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unambiguously desirable. . Not so within the context of the current
model! Indeed, roughly speaking, only one half of the population would

benefit, while the other half would lose. Formally,

Proposition 10: Suppose @ = % = 0, and that parents face

egalitarian constraints. Let initial endowments be distributed

symmetrically.
a) If N is even and j # 1, then ciuj/dw1 <0 iff j is odd.

b) If N is odd and 1 # min(j, N - j + 2) < N/2, then

duj/dw1 <0 iff min(j, N~ F.+ 2) is odd.

Thus, an exogenous increase in the wealth of any given consumer is
never a. Pareto improvement. The intuition for this result follows
directly from. our discussion of figure 3; if parents ~ j - 1 and J + 1
consume more (and, accordingly, give less to their children), then the
resources of j's family have declined, and  J must be worse cff even
after adjusting his own behavior optimally.

The reader may well feel that the implications of Proposition 10,
while surprising, are not obviously counterfactual.  We do not deny
this. We merely note that one cannot accept the egalitarian framework

without reexamining the validity of some very basic premises, and

abandoning most simple guides to welfare analysis.

7. Closing Remarks

In closing, it is important to emphasize that we have conducted
this analysis in a way that is likely to significantly overstate the

plausibility of approximately Ricardian worlds. More generally, the
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case for Ricardian equivalence is even less compelling for two reasons.

First, our model spans only two generations. While it is
therefore adequate for analyzing the effects of deferring taxes to the
next generation, it is unsuited for drawing inferences about the impact
of longer term debt. Just as friction compounds through successive
linkages between families, it will also compound as intergenerational
chains lengthen. Accordingly, in a more general model, we would expect
to find that relatively temporary deficits are‘app?oximately neutral,
while relatively pegmanent ones are not. 7 |

Zecond, intrafamily linkages are actually much more complicated
than the network modelled here.  As we extend consideration toc a larger
number of generations, we generate a proliferation of paths linking
different members of the same generation (see Bernheim and Bagwell,
section 4, for a detailed discussion). Linkages actually form a "web",
rather than the circle illustrated in figure 1. As a result, the
"distance" between %*wo arbitrarily selected individuals may be quite
small on average, even when the population is quite large. Suppose, for
example, that we add one more generation, maintaining ocur assumption
that every parent has two children, and every child two parents. Then,
ignoring redundancies {i.e., sibling don't have the same in-laws), each
grandparent is directly linked through his grandchildren to 10 other
grandparents, who are in turn linked to 10 others, and so forth., This
suggests that each household is connected through chains involving L
or fewer links to on the order of 1OL other households, rather than to

only 2L households, as in the current model.:- Formal analysis of
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random graphs indicates that this intuition is essentially correct (see
Bollabas [1981]).

These observation suggest that, in a more realistic model, the
Bernheim~Bagwell puzzles would be much more robust. If most individuals
are connected through relatively few links, then it may be very
difficult to eliminate the approximate neutrality of intragenerational
transfers without assuming @ or T very large. Sihilarly, each

individual would in such a world have a tremendous number of "close"

relatives so that, once again, the marginal propehsity to consume out of
own wealth might be extremély small in the absence of large friction.
Overall, it is very difficult to see how one could introduce just
enough friction in a model with a realistic pattern of interfamily
linkages to produce approximate Ricardian equivalence. without also
generating untenable results as in Bernheim and Bagwell. While one can,
perhaps, avoid these problems by invoking an egalitarian constraint,
+his alternative seems very ad hoc, and in addition generates some
disturbing welfare results. Consequently, the theoretical case for

Ricardian equivalence remains: tenuous at best.



Appendix A

Complete Comparative Statics for Joy of Giving
and Incomplete Informetion Models
This appendix presents the comparative statics analysis of a model
that nests the joy of giving model in Section 4 and the incomplete
information model in Section 5. Recall that
C. = consumption of adult i
¢: = consumption of child i

W, = wealth of adult i

w, = wealth of child i
Ti = transfer from adult i to child i
t, = transfer from adult i to child i + 1.

Also recall that
(A1) Ci = wi - Ti - ti

Let y; denote the consumption of child i if he receives transfers from

adults i and i -1,

(a2) yyo= oWt T, + ¢t

i i i-1
Let
(A3) Z, = bW, + T,
(44) Zgo= b gt Yy

where ¢ 1is a dummy wvariable. In particular, if ¢ = 0, then Z; 1is

the transfer from adult i to child i and 2z; is the transfer from
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adult i to child i + 1. Alternatively, if ® =1, then Z; 1is the
consumption of child: i if he does not receive a transfer from adult

i =13 z,  is the consumption of child i + 1 if he does not receive a
transfer from adult ir+ 1.

Now suppose that adult i chooses T.1 and ti to maximize

(45)  w(c;) + wlu(yy) + uly; )]+ a(2)) + u(z))]

The equations (A1.- A5) contain both the joy of giving model and the
incomplete information model. To obtain the -joy of givingAhodel, set
W8, n=g, =0 and w(*) = v(+). Alternatively, o obtain the
private information model, set u = 8(1 - 7n), n = fxn, ¢ = 1, and
w(e) = u(+).

The first-order conditions are obtained by substituting (A1 - A4)

into (AS5) and differentiating with respect to Ti and ti:

(46a}) (Ti) : -u'(Ci) + 4u’{yi) + nw'(Zi) =0
(A6b) (ti) : —u‘(Ci) + uu'(yi+1) + nw'(zi} =0

Now totally differentiate the first-order conditions with respect to

Ti, ti’ Wi and W to obtain

" - - ]
(A7a) u(C,){dW, - dT, - dt ] + pu'(y,){dw, + dT, + at, ]
+ nw"(Zi)[¢dwiu+ dTi} =0

-yt [ - - I3
(A7b) u (ci)dei dT; dti] + pu (yiﬂ)[dwi+1 +dT, o+ dti]

p " -
+ (2 )(edw, o+ dt ] =0
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We assume that initially Wi = W and W= W for all i, and we

restrict our attention to symmetric equilibria. Let

a = u"(Ci) + uu"(yi} + nw”(zi) <0
b = u"(Ci) <0
e = put(y,) €0
f?nw%ﬂ)<0

and observe that a'=b + e + £ < 0. Using the definitions of a, b, e

and f we can rewrite {(A7a, b) as

(A8a) a dT, + b dt, + e dt, b dW. - {e + fo)dw,
1 1 1~ 1 1

1

(48b) b dTi +adt +e dTi+1 b dwi - (e + f@)dwi

+1

Let x; be a 2 X 1 column vector such that x; = [dTi, dti]. The linear

difference equation system in (A8) can be written as

b dW, - (e + £4)dw
a i i
(A.9) [xi] = [xi-1} +

e 0 -b -a b dW, , - (e + £fo)dw,
i-1 i

Now observe that

0 1
a b {-1 e
(410) =
e 0 1 -
b be
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and then pre-multiply both sides of (A9) by the metrix on the right-hand

side of (A10) to obtain

>
W

(A1) Mx, ., + g,

J J-1 J
where
_b _a
e e
M= .
2
a e ,8a
€ b be
and
S-S U 3 P
e 3=1 e 3
gj:

The behavior of xé = [dT,, dtj] is governed by the linear difference
3

equation in (A11) and the boundary condition that
(a12) X, = MxN + gy

The boundary condition in (412} exploits the fact that the N adults
are located around a circle and adult 1 is formally the same as adult
N+ 1.

For the purposes of our analysis, it is sufficient to allow g4
and g, to be nonzero and to restrict gj =0 for j = 3,4,5,..., Nu

In this case, it follows from (A11) and (A12) that

(a13) e M
3 X, =Mooy + Mgy v 8
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and
(A14) Xy = M X

Substituting (A14) into (A13) yields an expression for x, in terms of

the exogenous changes g4 and £
o N, -1
(a15) x, = (I -m) (Mg, +g,]
Using the boundary condition in (A12), the expression for x, in {A15)

=2,
%2

and the fact that x. =X " for j=2,...,8 we have a complete

solution for xqse«+sXy-

(&16a) x

1

N-1 N, -1
Moo(T-m) (Mg, + g+ g

j-2
w

N, -1
(1 -M) (Mg, +g,] 5 §=2,...,0

(A16b) x

Let R1 < KZ be the two characteristic roots of the matrix M. Observe

that

az - b2 e2
(A17a) x1 + xz = tr M = ———_—EZ__—_— >0
(A17Db) A, * A, =det M =1

It follows from (A17b) that h1 and A_ are reciprocals of each

2

other. Let A denote the smaller root x1. It follows from {A172)
: -1

that both roots, A and A , are positive.

It can be directly verified that the matrix M can be written as

-1
(A18a) M = PAP



-37-

where
T~ 1 1 I
(a18b) P =
—(b+er} —(b+er )
~ 6 T
(A18c) A = 1
Lo x
and
_ ] _
4 4 -{b +. ek ) -a
(A184) F =
e(h = A7) (b +er) a

Now observe that

j=2 N =1 N, -1 —1
(a139) PRSI S R O SO

Substituting {418b) and (418c) into (A19) yields

!- \3-2 \ N-e2
SRS S A tel R S
(A20) M )= B
- Lorernd=? Lorer=ta-(3-2)

We are now prepared to analyze two comparative statics
exercises. First, we examine the effects of an increase in the wealth
of parent 1. In particular, we let d”1 > 0 and

W, = . . . = de =dw, = . . . = dwN = 0. In this case we have



b
e
{ =
(4210} g, = aw,
-3
e 4
and
b -8
e
(422) Mg1 + 8 = dw1
2 2
a_-e =-ab
_ be
Using (A17a) we can rewrite (A22) as
b -a
e
(423) Mg1 + g, = . s y dw1
— + A+ A
e
Now cbserve that
b= -1 -1
-(b+a)—ei-(b—a}?\ +a()\+>\l)
(a24) 9—1[Mg 2, = ! dw
T e{h - )\—1) b-a -1 !
(b+a) =24+ (b-a)h+ald+r )
e e
Cbserve from {A17a) that
=1
(425) (b +a)(b-a)fe==b(A+r ) -e

Substituting (A25) into (A24) yields

-1
(426) PT (Mg, + gy] =
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Pre-multiply (426) by (420) and use (416b) to obtain

-1 j=2 N-j+2 b-a N-j+1

+ k $ — (kJ-1 + k

x=(1-2") (- A 5 )
(427) - i [(b + en)(1 + 2220972 aw
v (o o+ er (1 ¢ ?—g—é K_1ij_j+2]_J
J = 2,000 ,N.

To simplify (A27) recallrthat the roots A, = A and kz . satisfy the
characteristic equation kf - K;tr M + det M = 0 which can be written as
(428} bekf = (az - b2 - ez)ki - be
Now observe that
(429) (b + e%i){T ¥ b -2 ki} = é’{(be - ae}Kf + (e2+ bz - ab))xi + be}
Substituting (A28) into the right-hand side of (A29} yields
(a30) (b .+ exi)(1 .2 ; 2 xi) = -axiﬂg—iii + xi} , i=1,2
Substituting (A30) into (A27) yields

x. = (1= kN)-1(K _ k—T)—T Kj—Z . KN-3+2 . b -a (k3—1 N-j+1)

(A31) aw,
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\ ’ N-1
To calculate xq, observe from (A12) and (A14) that x, = o Xy + g
Formally, x4 can be written as x + g, where &' = {0,dW j.
N+1 1 1 1
Therefore
v = (1 - N I BN I = LI
(832) an
A+ AN LR =2 Ny

Now we consider the alternative exercise of increasing the wealth

of chilﬁ t by dw1 > 0.- In this case- B

(433) gy = (14 iﬁ) dw.,

d =, ., .= =0,
an 82 gN o]

. j-2 N, -1 . . .
In this case, xj =M (I-M) Mg1 which can be written as

) -1

(a34) x5 = i 73(r - aY) p7learg, 5 =2, N
Equation (A34) can be rearranged to yield

. j-1 N -1 -1
(435) x, = PAY (I - AP 3 5= 2,... N
It follows from {A18d) and (A33) that

; 2
f b+ er” 42 + ae
6) -1 1 + ;— b
(43 P g1 - _______:?_ dw1
e(h = A" ) 2
a - ae

! ~-{(b + er) +
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Now observe that ek, + b + —o r 28 _ eh, - a_ -5 -ae so that in
i b i b
light of (A17a);,
a2 + ae { (=4 ae
A A b e & rae _ g -~aey X -
(437 ek, + + - e‘Ki (Xi + kj) o i# ]
Simplifying (A37} yields
2
(A 3 W o . - ae [ a-e
(A38) eh, + D - = e| Aj Al
-1 R
Recalling that k1 = X and kz = k", we can use (A38) to rewrite (A436) as
Moa-e 1
¢ - - A
» 1+ g* b
{439} P g, = dw
SN -1 1
A - _a-e | k_1
_ b
Now use (419}, (A20}, (435) and {439) to obtain
p £o- N, - “1.-1 [ .3 N-3, - =1
c=(1+ 2y AN T oah IE TN Gt M- S YO
PSR b
(ad0) - Yo s eny[B2 A
a b
+ (b + ek T)Ea g e a7
j =2, s« N
To simplify {A40) observe that
a -e 1 2 2 2
- = = - ( - - - A
(A41) (b =+ eki)( - ki) b{ab be + (ae ~ e 5 )X, - be i}

Substituting (A28) into (A41) yields

(a42) (b s er )BT - n) = alt « S520)
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Substituting (442) into {440) yields

[e%
x

Y

£ N, -1 1=t [, 5 N=3 - =1 N-j+1
%, = (1 +;9)(1 AT o -0 +a—be— S e ﬂ,
\ i
(443) 5
IECRLITC NS TOR IPELR DR
b .
3= 2,400,
To calculate x4, note that formally x, = X, , *+ & - Using (A43) and
(433) we obtain ‘ ]
\ N, -1 11 N-1 - N,
x1={1+§-){1-x)'(x_x) s ) 4 B e(wm&,‘-—g
(h44) | aw
I
—
Appendix B

Egalitarianism
This appendix presents the comparative statics analysis of the
economy in which all parents divide their estates equally among their

children. Recall that

Ci = consumption of adult i

ey = consumption of child 1

W; = wealth of adult 1

LI wealth of child i

T; = transfer from parent i to child 1, which equals transfer

from parent i to child 1 + 1.

Observe that

(B1) C, = W, - 2T,
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and
(B2} c. =w. + T, + T,
Parent i chooses T; to maximize

y ) [ b+ ul ]
(B3) u(C )+ Blu(e,) + ule, 1))

and the first-order condition for this maximization problem is
(B4) —2u'(C.) + Bu'(c, ) + Bu'lc. ,J =0 -
i )

Totally differentiating this first-order condition with respect to Ty,

wi and = W; ylelds

- nc“'H_ 1 w(e +
2u( i)dei ZdTiJ + Bu( i)[dwi dTi + dTi-

41

+ Bu"(c ]
{B5) gu"( i+1>£dwi+1 + dTi + dTi+1j

We assume that initially W; = W and W, o= oW for all i, and we

3
3

restrict our attention to symmetric equilibria. Let

= nir "
a T 4u {ui) + 28u (ci) <0
b = 2u"(C,) <0

= il
e = Bu (ci) <0

and observe that a = 2{(b + e¢). Using the definitions of a, b, and e,

we can write {(BS5) as

(86)
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The second-order linear difference equation in {B6) can be written
in companion form by defining the 2 x 1 column vector X, as

x, = [dTi’ dTi-ijl' Therefore,

(B7) X, = Mxi_1 + hi , 1 = 2,...,N
Wwhere
P -1
e
M= _ -
1 0
and
= - 3
e ., {dw oty
hi =
0 i

The behavior of x; 1is governed by {B7) and the boundary condition

(B8) X, = Mx, + h
The boundary condition in (BE8) reflects the fact that formally adult
may be represented as adult N + 1.

For the purposes of our analysis, it is sufficient to allow hy

and h, to be nonzero and to restrict hi =0 fori=3,4,5,...,N. In

this case, it follows from {B7) and (B8} that
(B9} x, =M x

(B10) x
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j-2
Using the fact that x. = MJ

o

to obtain a2 complete solution for KiseeerXye

N=1 N, -1 ;
(B11a) Xy =M (I - M) {MhT + 0] + hy
i-2 N -1 .
(B11b) X, = MDD - M) {Mh1 + by ] i=2, ..., N.

Let A, » A_ be the two characteristic roots of the matrix M.

1
Observe that

N

(B12a} ' A4 Al = tr M= -

[

1
[oR
@
<t
=
n
-

(B12b) Ao X

It follows from (B12b) that the roots are reciprocals of each other.

Let - A be the larger rcot k1; therefore XZ = k—ﬁ. It follows from

-1
(B12a) that. & . < =1 <X <O,

It can be directly verified that the matrix M can be written as

-1
(B13a) M = PAP
where
1 1

(B13b) P =

A A

A 0
(B13c) A =

o A7

and

X, for j =2,...,N, we can use (B8 - B10j



1 1 [ * -1
(B13d) P s —
o= A e 1]
Now observe that
i-2 N, -1 i-2 N, =1 -1
(B14) ML - )T =TT -8 p

Substituting {B13b, ¢, d} into (B14} and performing the matrix

multiplication yields

i-2 N
)

o UN -1 . 1 i-1  H-i+1
i I-M) . = {1=x .

- P

1(')\-7\ ) - A
{B15)

kl—2+xN-1+2 -(Kl-3+kk’l+3)

L.

We are now prepared to analyze two comparative statics exercises.
First, we examine the effects of an increase in the wealth of adult 1.

In particular, let dW1 >0 and dW2 = y.e. = dWN = dw1 = ... dw? = 0.
|

In this case h, = and h, = . It follows from {B11b)
1 0 2 0

and (B15) that

N, -1 -1.-1 v, i-1 N-i+1, |
x = (1 =27 = AT)TH 2 T e T

(B16) : aW, 1 =2,...,N
b (kl—ﬁ . AN-1+2)
e

Therefore,

4T, ) )
(B17) =20 NTo - T LN
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TyeveesN o

Now consider the alternative exercise of increasing the wealtn

of child 1. In particular, let dw

cee = dHN = 0. In this
_ - Nl e .

h, = [-1 ol dw,, so

(B18) Mh, +

It follows from (B11b),

A

case,

that

i-1

4 > 0 and
n, = [-1 o} -
a - e_j

KN—1+1)

i-1 N-i+1,
(K + J
,ki—Z "i+2n
ey N

. (kl-Z ‘ kN-l+2

)

¥, -1

Xi = (1—K ) (K—k
(B19)
Therefore,

a - e
dT: e (
(B20) — =
1

N -
(1 - AN -

T

dW =

“«
i
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Appendix €

Theorem 1: Let S, = {(T,e)]T + ¢t ¢ Wooand T, t3 o}. S, is

1

pi's strategy space; let s, denote an element of 5.. Note that

is compact and convex. Further, pj*s utility is by assumption
continuous in s = (ST"°"SN)’ and {it is easy to verify) quasi-concave
in sj. Thus, by Debreu's {1952] Social Equilibrium Existence Theorem,

* *
there exists a profile of strategies (51,...,SN) which satisfies our

<]

definition of equilibrium. i - Q.E.D.

*

Theorem 2: In a symmetric equilibrium with transfer level T ,

* %
(T ,7 ) must satisfy

- %, ) % -
mx u(W ~T=-1%) +8{(1 - m){ulw + T+ T ) +ulw+t+T)]

T,t i
+ afulw + T) + ulw + )]} + alvw(T) + v(t)]
subject to T > 0, t > 0, and T + t <W. By concavity of u and v,

we know that the solution always entails T = t, so we simply require

*
that T solves

max u(W = 2T) + 28{(1 - mulw + T + T*) +mulw + T)} + 2av{T)
T

subject to 0 < T < W/2. Let vy: [0,W/2] » [0,4/2] ©pe defined as

7(%) = arg max u(W - 2T) + 2ﬁ[(1 - mjulw + T + E) + mulw + T)} + 2av(T)
0T<H/2

Since this objective function is continuous and strictly concave,

Yy 1is a continuous function. By the intermediate value theorem, there
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* * *
exists T such that T = v(T ), as required. Finally, note that the
*
equilibrium condition is independent of N, so T remains a symmetric

equilibrium independent of N. Q.E.D.

Theorem 3: For any BNE (T;,ti ey let
6]
C., =W, =T, -t,,
1 L 1 z
c, =w, + T, +t .

) . o . . . . s s
That is, C. 1is p.'s consumption contingent upon p, -~ being altruistic,
i i i

o. . . .
and ¢, is Ki'S consumption contingent upon p, -and P 4 being

O
| Sl 4

o] R
altruistic. We will first establish that (Ci,c ) -1 must be identical

in all BNE.

Suppose this claim is false. Then there are two BNE which give

. s . -0 -o N 0 "oN .
rise to distinct profiles ({_ ,c.), and  {(C ,c.). ..  Without loss
17717i=1 i’7i%1i=1
. . -0 . ‘o -0 "o
of generality, we may suppose that either Cj 2 Cj or Cj > cj for
some . j.

Take first the case of 6; > C?. Through pj’s budget constraint,
we see that either fi < Tj’ or Ej < tj' Without loss of generality,
we assume t, < t,.

3 J .
=0 o

Now we use induction. Suppose that for some 1 >.0, C, >C. .,

= j+i J+1i

-~ N

and t, , < t. .. Since it must then be the case that t, . > 0, we
j+i j+i j+i

have

- -

lAO - tAO ' '
u (Cj+i) ¢ Bl - mu (cj+i+1) + Bru (“j+i+1 ttgg) v (tj+i)

N N

: ; : o -0 <]
(inequality may oceur if Cj+i = 0).. Now we argue that cj+i+1 > cj+i+1'
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For suppose not. Using strict concavity of u and v, along with

- e - o
C? . > C, . and t, < t, ., we would have
J+i J+i J+i J+i

o+ Bmut{w

(7° - =0
u (Cj+') < B(1 u' (c, S4141

- . LT .
i J+i+t * tj+i} * o (tj+i)

But this implies that pj+i could increase his utility by transfering

more to k'+i+1’ which is a contradiction.

J
. - " -0 )
Next, since t, , < %. . and c, ., >c, . .5 then, from
j+i j+i J+i+ J+it
k., . .'s budget constraint, we must have_ T, . >T, . .- Since it
JEi+l . h J+i# AESERAS
must then be the case that T, . . > 0, we have
J+i+ .
1(g° 7 < 81 - ﬂ)u’(so Yo+ Brut(w + T ) o+ avi (T 3
P+l = T J+i+ J+i+ J+i+t Ui+
Now w r that c© > e For su e not Usi strict
e argue 341+ Lj+i+1' F ppose not. sing i
-0 “o - ~
concavity of u and v, along with ¢, . >c. .. T, . P
J+i+ J+i+1 J+i+ J+1+1

we would have

1AO “Q_\f"o 1 - sA ‘a
b (Cj+i+1) <R T (cj+i+1> + P (wj+i+1 * Tj+i+‘1> + v (Tj+i+1’

But this implies p could increase his utility by transferring

J+i+l
more to k., : which is a contradiction.
J+i+
Finally, if T > T a 2 > & then by P '
inally, 1 G+i+1 geier B0 Yaiia geie1? RELBY O Faliig
budget constraint, %. . <%, . .. This completes the induction step.
J+i+1 J+iet

-~ ~

o o -0
Note that induction implies Ci > Ci and ¢, > cz for all 1.
-
This violates the aggregate budget constraint. Accordingly, we have a
contradiction for the first case.

-

-0 o \ .
Now turn to the second case (cj > cj for some j). By Kj*s
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- N

budget constraint, either Tj > Tj’ or tj 4 > t, 4t dithout loss of
— J—-
generality, assume T, > Tj' We have already demonstrated above that
-0 %o -~ - ) . -0 "o
cj > . and Tj > T, 1implies C_. > Cj. This returns us to the first
v o

case, which yields a contradiction.
The preceding argument suffices to establish that if a = O and

n = 0, all BNE yield the same allocation of consumption.  Now suppose

o o,N
that @ >0 or m> 0. Let (Co,cl).

). denote thne unigue BNE
i7i%i=1 ’

consumption profile.

J

Suppoée first that C? > G- for some  j. Then either (i) T >0
o P

and
) o, .
u'(Cj) = B{1 - n)u'(cj) + Brut(w, + T.) + av'(Tj} ,
or {ii) Tj = G and
o . o . )
u'(Cj) > B(1 = mju'e ) + Bau'(w, ) + av'(0) .
- v o

By strict concavity of ~u and v, only one of these: conditions can

hold; furthermore, (i) can hold for at most. one value of Tj. Thus, Tj
is uniquely determined., We obtain tj from pj's budget constraint.

Now procede by induction. Suppose we know tm. Then we obtain TT+1

from km 's budget constraint. Knowing Tm+1' we can.calculate 't

+1 m+

from Pos 's budget constraint. Applying induction, we conclude that

1

all transfers are uniquely determined.

Mext, suppose that Cg = 0 for all j. Consider any 1. Since

T. +t, = W,, either (i) O < T, < W, and
i i i i i

}o+

(1 - n)u'(c?) + nu'(wi + Ti) + av'(Ti) = (1 - n)u'(cz“'1

+ Ttu'(wl+1 « W - Ti) + O:v'('a’l - Ti

)
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or (ii) Ti =0 and

(1= mur(ed) + mu(w) + v (0) (1 = mutle] )+

+ Tu' W + avi(W
(o g # 0 wavt (W),

or (iii) T, = W, and
i i

(1 - ﬂ)u’(ci) + ﬁu'(wi + wi) + av'(wi) > {1 - x)u'(c§+1} +
+ Tt -+ av'{(0) .

u ﬁwi+1) av>\ )
By strict concavity of u and>»v, only one of these three conditions

can hold; furthermore, (i} can hold for at most one value of T .
i

Thus, Ti is uniquely determined for each i, as is ti (ti = W - T;)-

Proofs of Propositions 1, 2, and 3 were given in the text.

-1
Theorem 4: The formula for A + A follows directly from

substitution into (A17a). Without loss of generality, take k = 1.

Then from {(A32),

dc dT dt,
_1_ 1 = 1 p——
o o, T W
N, -1 -1, =1 N-1 av" (1), N,
=1 =201 =A T =R )T e T - (1 EEFTET’<1 + A
- 1. - -1 -
=1-2(1 = xN) 1(x N 1) 1[x NP L (1 + xN)(x + A 1)/2

- (1 + %ﬁ%%%% - (N + k-1)/2)(1 + XN)

1
J

N 1. -1- - N~ I
=1 =201 =AY T -a™h 1£(K AT *h+1)/2
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2
avy"{(T} [av"(T)] .
(u"(c) + ZBU"(C)U" C))(‘t + A })J

1 o201 - AT x'1)'1{(1 Aoy

av"(T) « av"(T) N,

+ uu<c} \1 + 28u"(c)j<1 + h )j
N, N.=-1,. -1 1 ay™(T "(TT,
:<1+)~ )(1—K} (h _)\) aAv L }( +(1V (T)x

uu(c} L Su"(c)}

as desired. From (A31). we have

dc, dT dt,
BN S
" p
dW1 d 5 dﬁ1
N. - - -1 = -
- (1 - Kd} 1(k 1 o) 1 R XN i+2 et

+ Bu"(c)}‘ +
- N,-1, =1 1 -1 av"(T)\ . 3=1 N-j+1y
= (1= A (A MR e AT 2[4 ﬁu”(c))}hx + A )
j=1 N-j+1 N.=1,. -1 -1 av"(T) . av'(T),
= (K A )(1 - X ) A - K? u”<c> \2 + 5&"(C)l .

Finally, note that the labelling of parents is arbitrary, so that we can
always relabel to make any given parent Pqs and either. of the parents
With whom he shares his children p5. Relabelling produces the desired

formula.

Proposition 4: By Theorems 2 and 3, for all symmetric endowment

levels w and W, the unique equilibrium is symmetric. It can

therefore be characterized by the first order condition

(c1) w(c) - Bulwr -0 - (55 0 .
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Since u and v are concave, the equilibrium value of ( is alsoc the

solution to

A -C

max u(C) + Bulw + W - C) + 2av( > )

0<CKH

{note that this yields {(C1) as the first order condition). Since this
problem satisfies all the hypotheses of the maximum theorem, its

o
solution is continuous in «. Let C denote the equilibrium value for

@ =0 {by assumption 0 < c%¢ w); let ¢ 2w+ W -C° and
™ = (W - %)/2.

From {C1), it follows that

3.
2w

u(C) + Bu"(c) +

MR

V"(T)

o o)
Letting @« +» 0 and noting that C~+C , ¢+ ¢, and T =+ TO with
dc
CO, co, T0 > 0, we immediately have 1lim i 0. Since ¢ =w + W - C,
a0

d &
we also have 1lim E% = 0, Thus, lim R = 0.
a+*0 a*0

Next, from Theorem 4 we have

4c
lim Eﬁl = 1im [(1 - AT C07 e
a+0 i a+0
i- N-i "(T) av"(T)
[ai N-i+1, v"( ( N
( A uu(c) \2 + BU"(C)}]

We have written this as the limit of the product of two expressions.

Since 1lim A = 1, the limit of the second expression is 4v"(T)/u"{(C).
a+0
Note that this limit does not depend upon 1. Furthermore, the first
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As in the proof of Theorem 4, relabelling produces the desired formula

for the derivatives with respect to Nk.

Proposition 8: Equilibrium is characterized by the set of first

order conditions

[ e 1 vl -
Blu (wi + Ti+1 + Ti} rutlag o4 Ti+1 + Ti)j = 2u (Ji 2Ti/

Implicitly differentiating these conditions with respect to & yields
- n i 1 17 - 7
2u {Ci) + Blu (ci) +u (Ci+1)J

aT, r 4T, AT, aT, 4T p
- nic —L al,n Sl P ule \y— 1
4u(C,) g5+ BLutle oz » g3 )+ wle; (gE

There are N such equations in N  unknowns (the dTi/dé). One can

verify by inspection that

for all i satisfies these equations. From this, it is trivial to

verify the desired result. G.E.D,

Proposition 9

dc, dc,
Part 1: lim E?L = lim Eii >0
N+x i N-}w l
Recall that
dac dc
A n-ny=to &
at W, T aw



conclusion.

Proposition 5

T,
Part 1: lim R © = 1,

N+

Without loss of generality, fake 1

T
1

lim R > 1. For any sequence Nk + @ choose another sequence of

K+

1.

positive integers M > = with »Mk(Nk + 0. Define

Po={i]1<i<M or N -M
k C = = k k
Kk = {1 { q f i § Mk or Nk -
Note that
T N % dci
I i —t
R = AL"l\ at ) * i T i)/2
i=1 1
dCi - de
>y =+ L =2+
. dt , dt
ieP, "1 ieK igp
dci . dci
) i'gp ar, * ‘%K dr,
e %%

(where the final equality follows from the fact that

aggregate consumption). Noting that

ac,  dC; % 4 4C,
e = Ty - N—1) -
dt dw ( dwW
1 1 j=2 5
4. dc Nodc
-7 N
= W= T Lo
1 3=1 3

]

S"

<

-
A

Ty

First, we prove that

does not alter



dC c
-1 i d4Cy
- 0T g - Gl
de,
along with a similar expression for It and using symmetry around Pqs
1
we have
4
Ty ; rdC1 ® dCi dci
> (-~ 1) s - —=7]
2 W = lede vl g
1 1= 1 1
i i
- (oM - \(29 dey dC
M -2l v T !
. M
1 dC1 S {(dTi dti 1) (dTi dti_ i
= (N - 1) .n —+ 2 ] —} - (=2 + it
5 i 47 i
dw1 122 dw1 dw1 dw1 uN1
dc
- (2M . - - —
o 2 - |
dt
dc dt M
=1 1 1 K ; ac
= (N - 1j {|— — - - - ==
M =1 'NdeW r2g i b -2 -y {
1 1 1
e 1 dtmx dc
I - v Y -2 (- - - =
= [N, 1) !Nk 1 -2 e ) {ZMK 2} an ‘ y
dt1 dT1
where the last equality follows from the fact that —— = ——, and
dw1 dw1

Now we take limits.

allocation is independent of N,

Recall that the symmetric equilibrium

From {431), it is obvious that since

dtH
K : .
Mk +® and N & M k* = as k * @, then dw? + 0 (given O < Xk < 1).
Further, (N_ - 1)'1 + 0, N (N - 1)'1 > 1, and (N - 1)_1(Mk - 1) + 0.
We are therefore left with 1lim RT1 > 1, as desired.

N+
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T
Now we argue that 1lim R ! < 1.
N B
11 N dC dci
R = 2 (ldr id111)/2
N dc de
-1 i dc i degy /s
i=1 1 1
;. ¥ dac, de. 8 4
- ; 1 1 To(1E: pei=Nly
i=1 1 1 i=1
. - B dC - -
From Theorem 4, it is clear that NEW_ > O for all i. It follows that
dc, . . 1

i A- . : . P
w7 0" for all 1, otherwise the first order condition for some parent

1
would be violated. Furthermore, from the derivaticn in the proof of

dc
proposition 4, it is clear that — > 0 and %% > 0, Thus,

dW
1 N dc dec
1 -1 i iy rdC dey
R P — | e— — L —
<= DT D NGE e ) sl gl
i=1 1 !
- -1y
T4
From this, it is immediately clear that 1lim R <
N -
dCi dC
P : ‘—2‘——
art 2: 1lim e lim dw > 0.

N+® i N+

As before, without loss of generality, take 1 = 1, We know that
1 -1 dc
oos - -l
1 B

Since the symmetric equilibrium allocation is independent of N, the

second term disappears in the limit. The first term converges to
dc

Iw. s as desired. Finally, using Theorem 4,
1
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dc, -
i (K-1 _ X)_1 av" (T} (7 av”glz) > 0

lim —= = 2 .+ .
N u"(C) Bu"(c)
G.E.D.
‘r-
Proposition 6: Fix any 4. We know that lim R ' =1, so there
N

; i,

exists Na such that for all N >N , |1 -K | <ua,

N{a) = Na' Consider some seguence kak’ﬁk} » {0,®) as k * @ yith
T

N(ak) for all k. Then, for each k, |1 - R "] < a . Since

=
nw

T
i 5, . &
a + 0, R~ + 1. Further, RO is independent of N, so R > O follows

from proposition 4.

Proposition 7: By Theorem 4,

dc . 8
i1 - R I *gv" T 5 av”%T% Ny
dwl ._\1 AT (~A }\'} a_!:._un<c (— + Su" c )(1 + A J} .

From this formula, it is possible to deduce the following three

properties:
dc.
(i) Eﬁi >0
i
dc.
(iiy awi is decreasing in N
i
dcC.
(111) 1im ot < 8
a+0 i

Property (i) is straightforward to check. Propeerty (ii) follows from
N, -1 N
the fact that (1 - A ) {1 + A J 1is decreasing in N. We establish

property (iii) as follows.

In the proof of proposition 4, we showed that
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[P 1} <. - n Pl
1n [0 -T2 - But(e ] gy ¥HED )T
a+0 U“(CO) + ﬁu,,<00) u”(CO>
Thus,
ac
1im i _ 5U"(CO) J[AN V"(TO)]-1[4 V"QTOQJ
a0 i un(c®) + pun(e®) u(c®) un(€°)
o]
el " bl -—
=N sutle’) oyt

u'(c®) + Bu(c®)

/oo
i

Now suppose that the proposition is false. - Then by property (i),

- - @ -
there must exist a sequence <ak,Nk>k_1 converging to (0,2} such that

for all k. By Proposition 3, we can without loss of generality take

ak >0 for all k. Choose k* such that

-1
NK* (n - €
for some & > 0. Consider a subsequence kp such that Nk > Nk* for
P
all p. Then, by property (ii),
d_cl >& >n>\(-1 + £
N _,a dw_IN e Hiex '
dw1 k*’ Tk 117k "k
P P P
so
lim iEl >N e
-UT LI

=1
el

But this contradicts property (iii). Q.
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Theorem 5: ©Each player's strategy set is the interval [D,Hi/z}
(he chooses a transfer belonging to this interval).  Obviously, this is
compact and convex. Further, pi's utility is continuous, and concave in
Ti. As in Theorem 1, we immediately have existence.

Next, note that if we have an equilibrium where ti =T for
~all i without imposing this as a constraint, this configuration
remeins an equilibrium when the constraint is imposed, since the effect
of this is only to limit deviations. Thus, the existence of a symmetric
equilibrium when éndowments are symmetric is gmranteed by Theore& 2.

Finally, we come tovuniqueness. Throughout our argument, we will

refer to parents' first order conditions, which, for an interior

solution, can be written as

N

2u'{(C.} = {e.}) +u'{c.
u'{ 5/ Blu'( 3 J+1))

-

Now suppose, contrary to the theorem, that there are two distinct

= N SN
equilibria, (Ti);-1 and (Ti)£-1' Then, without loss of generality,

there exists some 1 for which fi > Ti' By Pi'S budget constraint,

~

Ci < Ci' Inspection of pi'S first order condition (recalling that  u

~

is strictly concave) reveals that either ci < ci, or ci+1 < ci+1.

Without loss of generality, assume the latter. Then by ki+1‘s budget

~ ~ ~

censtraint, Ti+1 < Ti+1’ and Ti - Ti < Ti+1 - Ti+1'

Now we procede by induction. Suppose first that m 1is odd,

~

T < Ti+ ;. and ¢ <c¢, -, Then, by P 's budget constraint,

i+m m i+m i+m i+m

-~ 1 : : : -

ci+m > Lm” By P.im S first order condition, i imet > Clomel” By
' i T T -

ki+m+1 s budget constraint, Ti+m+1 ? Ti+m+1’ and Ti+m+1 Ti+m+1
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T, - T, .
i+m i+m

~ ~

Suppose that m is even, Ti+m < Ti+m’ and l vm > Ci+m' Then, by

1 : - s
. s
$4m By pi+m first order condition,

A

p. _'s budget constraint C, > C
i+m i+m
c,

's pbudget constraint, T,

By i+m=1 < i+m+1’ and

- ) "
i+m+1 ? ci+m+1 i+m+1
: - T, > T, - T, .
i+m+1 i+m+1 i+m i+m

Applying induction, we see that

2Ti+m+1 - i+m+1i > 3Ti«rm - i+mi 2 e ? ITi - Tié
for éll m. takiné m = N yields a contradiction. Q.E;D
=1
Theorem 6: The formula for * + A follows directly from
substitution into (B12a). From {B17), we have
dC? ; ) dT1
dw1 dw1
) u"(C) N, =1 -1,-1 N
=1 - ERCIOS) (1 =Ry (=X ) {1 +xr)
I N LI TG I S R ¢ W S R SR
=1 -1 e s AHa o0 2N
-1 -1 N, -1
NG Sl TE R S LT
as desired. Also from {B17),
dc, dT,
S R G §
dw dWw
1 1
. u"(C) N, -1 -1, -1, 51 N-j+1
= -4 B (o) (1 -2 (v=-2 ) (x + A )
-1 H, - -1y~ - -3
S S T I U C A b R C I St

S s 0 = AT a7 eI Ll
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As in the proof of Theorem 4, relabelling produces the desired formula

for the derivatives with respect to Nk.

Proposition 8: Equilibrium is characterized by the set of first

order conditions

[ e 1 vl -
Blu (wi + Ti+1 + Ti} rutlag o4 Ti+1 + Ti)j = 2u (Ji 2Ti/

Implicitly differentiating these conditions with respect to & yields
- n i 1 17 - 7
2u {Ci) + Blu (ci) +u (Ci+1)J

aT, r 4T, AT, aT, 4T p
- nic —L al,n Sl P ule \y— 1
4u(C,) g5+ BLutle oz » g3 )+ wle; (gE

There are N such equations in N  unknowns (the dTi/dé). One can

verify by inspection that

for all i satisfies these equations. From this, it is trivial to

verify the desired result. G.E.D,

Proposition 9

dc, dc,
Part 1: lim E?L = lim Eii >0
N+x i N-}w l
Recall that
dac dc
A n-ny=to &
at W, T aw
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Since the distribution of endowments is symmetric before and after a
change in W, the equal division constraint is not tinding; thus, the
formula for dC/dW 1is exactly as in the proof of Proposition 4 {taking

a = 0):

ol gu"(e)fun(c) + ﬁu"(c)]_1

dC
Since 0 < —/— < 1 and since ¢ and C =are independent of N, the

dw
L. =1 4dC |
1imit of (N - 1) — is 0. Thus,
, T ; -
4ac. . . dc, ac,
P S (N -H_= —31 _
lim ax = lim (N 1) N Fr %im P
N+ i N+= i Ny i

=1
From Theorem 6, this last term equals -2i{1 - A) , which is strictly
positive as desired.
T,
Part 2: 1im R © > 1
T tee

For any N + =@ as k + @, define Mk, P, and Kk as in the
k

proof of Proposition 5. HNote that

N
R = %[ldrl*‘i |/2
(1 t D |k E)e ] S, Sy
> + 2 + —_— 4 2 .
= e ] 10K ife, 47, 1, az, '

=1
Consider some € satisfying 0 < e < =2A(1 = A} . By the argument in
dC1
Part 1, there exists Ng such that for all N > N4, — > e. By an

dr1

argument similar to that given-in Part 1, it is easy to show that
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dc dc
s 3 . 3 3% ~ -1
lim el lim ol AT+ (1 =N ¢co .

N+ 1 N+ 1

2 -1
Consider then some 7  satisfying 0 > n > -A (1 « A){(1 = A} . There

4c
exists N such that for all N > N_, 2 < n. Thus, for
2 2 df1
N> max{Nw,Nz},
T, _odc o de, qc, de,
RO> L ==+ 1 =/z+| ] ==+ [ =2|/2 + min{e,n}
= iee ¥ gk ¥ ife, ¥ idx 9T
k = Tk k

Proceding exactly as in the proof of Proposition 5, it then follows that

for N > max{N},N I

2
T
T M
1y iyt K1 (ow oy _ 4C , N
RO -7 N1 -2 £y ] (am, -2) - 45| + minfe,n} .
4T
M
From (B17), it is clear that K50 as k» =, Thus,
1
71 .
lim B > 1 + min{e,n} > 1. Q.E.D.

e

Proposition 10: MNote that

dT .

- -0 - AT oA T e e 37T NGy
;

First, assume that N 1is even. Then it is easy to check that

de/dH1 is positive if and only if j is odd. Now consider p , with
3

J #1 odd. Note that de_1/dW1 < 0, and de+1/dW1 < O+ Recall that

pj's well-being is given by
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max u(W - 2T,) + Blu(w + T, + T._1) +ulw + T, +7, 7]
. 3 iT 3 !
J

This is strictly increasing in T,

and T,
J=1 J+

4 Thus, pj’s utility

must decline as W1 rises. We reason analogously for J even.
Next, assume that N is odd. Then it is easy to check that if

j=1<N=(j=-1), de/dw1 >0 iff 3 1is odd. Further, if

N~ {(3=-1)<j~-1, then de/dw1 >0 iff N -J 1is odd. Accordingly,

if 1% 3 <N/2 then (j +1) =1 <N=[(3+1)-1], and so

de_1/dW1 and de+1/dW}~ areinegative iff 3 1is odd. As abov?; this

implies tbat pj is worse offj conversely if 3§  1is.even. If, on the

other hand, N = j + 2 < N/2, then N = [{(j - 1) = 1] < {5 -1

p—g

- 1, and
de 1/dW1 and dT,+1/dW are negative iff N - j 1is odd. Again, this
- J

implies pj is worse off; conversely if N - j 1is even. Q.E.D.
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Figure 1: The Structure of Intrafamily Linkages




Figure 2: Comparative Statics with Friction
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Figure 3: Comparative Statics with Egalitanarianism
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