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Abstract (287 words) 

Cost-effectiveness analysis (CEA), despite its known limitations, continues as the 

primary method used for health technology assessment (HTA) both officially (UK, Australia and 

Canada) and less formally elsewhere.  Standard CEA models compare incremental cost increases 

to incremental average gains in health, commonly expressed in Quality-Adjusted Life Years 

(QALYs).  Our research generalizes earlier CEA models in several ways. First, we introduce risk 

aversion in Quality of Life (QoL), which affects willingness to pay (WTP) for health care, 

leading to WTP thresholds that rise with illness severity.  Ignoring risk aversion in QoL over-

values treatments for minor illnesses and under-values treatments for highly severe illnesses, 

perhaps by an order of magnitude.  We call our generalized WTP threshold the Risk-Aversion 

and Severity-Adjusted WTP (RASA-WTP).  Unlike traditional CEA analyses, which 

discriminate against persons with disabilities, our analysis implies that the marginal value of 

improving QoL rises for disabled individuals. Our model can also value the uncertain benefits of 

medical interventions by employing well-established analytic methods from finance.  We 

develop a certainty-equivalent quality of life measure that we call the Risk-Adjusted QALY 

(RA-QALY), which accounts for consumer preferences over risky health outcomes.  Finally, we 

show that traditional QALYs no longer serve as a single index of health, when consumers are 

risk-averse.  To address this problem, we derive a generalized single-index of health outcomes—

the Generalized Risk-Adjusted QALY (GRA-QALY).  The GRA-QALY reinstates the 

equivalence between health gains from quality of life and gains from life extension, even in the 

presence of risk-aversion and treatment outcome uncertainty. Earlier models of CEA that 

abstract from risk-aversion nest as special cases of our more general model. We discuss new data 

necessary to implement our model and standard analytic methods by which the necessary 

parameters can be obtained. 

  



1 

1. INTRODUCTION 

For decades, economists have studied how consumers trade off mortality risk and money 

(Murphy and Topel, 2006; Rosen, 1988).  These analyses guide policymakers in addressing 

incomplete markets for life-extension investments, e.g., by determining optimal investments in 

safer transportation infrastructure or optimal environmental standards.  In the healthcare context, 

economic theories of mortality risk-reduction help determine how much third-party payers and 

social planners should spend on extending life.  However, they do not determine how to allocate 

resources among competing interventions.  The related theory of cost-effectiveness, of roughly 

the same vintage as the theory of mortality risk-reduction, addresses these gaps (Weinstein and 

Stason, 1977).  

Cost-effectiveness has long been used in Britain, Canada, and Australia to determine 

coverage and reimbursement of new medical technologies by health insurers and to evaluate 

medical technologies in the US and elsewhere.  The Institute for Clinical and Economic Review 

(ICER), a US nonprofit organization, routinely conducts and releases cost-effectiveness studies 

for use by American healthcare payers and providers.1  Nearly 60% of US payers have consulted 

cost-effectiveness analyses in their price negotiations or reimbursement decisions (Lising et al., 

2016).  In 2018, a large Pharmacy Benefit Manager (CVS Caremark) proposed a health plan that 

limits payment for prescription drugs to a maximum of $100,000 per estimated Quality Adjusted 

Life Year (QALY) gained.2  Growing reliance on and interest in cost-effectiveness analysis 

raises the importance of assuring that CEA methods are robust. 

Innovations in our Model.  Standard CEA models assume that consumers are risk-

neutral in health (Garber and Phelps, 1997), which simplifies analyses but risks misrepresenting 

true consumer preferences.  We introduce risk aversion in Quality of Life (QoL), a generalization 

with significant implications for the conduct of CEA.  First, this approach shows that a uniform 

CEA Willingness to Pay (WTP) threshold should be replaced by thresholds that grow as disease 

severity increases.  Risk-averse consumers derive greater value from health improvements when 

they face bleaker health prospects.  Therefore, ignoring risk aversion over-values treatments for 

minor illnesses and under-values treatments for highly serious ones.  Our empirical calibrations 

                                                 

1  https://icer-review.org 
2
 https://www.forbes.com/sites/joshuacohen/2018/09/20/will-cvs-caremark-make-icer-the-american-

nice/#1cb23a8b6173  last visited May 20, 2020.  

https://www.forbes.com/sites/joshuacohen/2018/09/20/will-cvs-caremark-make-icer-the-american-nice/#1cb23a8b6173
https://www.forbes.com/sites/joshuacohen/2018/09/20/will-cvs-caremark-make-icer-the-american-nice/#1cb23a8b6173
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suggest that mild illness treatment might be over-valued by a factor of two or three, while severe 

illness treatment could be under-valued by up to an order of magnitude.  Importantly, this 

approach also helps mitigate the discrimination against disabled persons that is embedded in 

current CEA methods. The Affordable Care Act forbids use of CEA methods in Medicare and 

PCORI that so discriminate.  

Second, we incorporate random health endowments in future periods, thereby allowing 

both ex ante perspectives for formulating health insurance coverage decisions and ex post 

analyses for patients with realized medical disorders to select specific therapies. 

Third, our approach expands the valuation of medical care to account for the variability 

in treatment outcomes, just as the world of finance has understood the importance of variability 

for nearly three quarters of a century.  We connect measures of uncertainty in treatment 

outcomes to standard parameters measuring risk attitudes to quantify the importance of 

uncertainty.  

Fourth, introducing risk aversion in QoL breaks the traditional equivalence between 

health gains in life years (LY) and QoL, central to current models.  Without that equivalence, 

researchers can no longer conclude that “a QALY is a QALY.” To rebuild a tractable framework 

for decision making, we develop a generalized single index of value (the Generalized Risk-

Adjusted Quality Adjusted Life Year, or GRA-QALY) that restores the equivalence between 

health gains in LY and QoL.  

Uncertainty is increasingly salient with the rise of personalized and targeted therapies and 

the value of “companion diagnostics” that help predict when a given technology will or will not 

assist any specific patient. Technologies (including diagnostic tests) that reduce variances of 

health outcomes generate value to risk-averse consumers, even if average outcomes remain fixed 

(Lakdawalla et al., 2017). Further, technologies that increase variance may still have incremental 

value to risk-averse consumers if they sufficiently increase the positive skewness in distributions 

of variable health outcomes (Eeckhoudt et al., 1995)— e.g., the “value of hope” exhibited by 

cancer patients (Lakdawalla et al., 2012).   

A recent economic task force report called for methods to monetize the values of risk 

reduction and of hope, and the influence of illness severity in value assessment (Garrison et al., 

2020; Lakdawalla et al., 2018).  Our approach provides direct solutions to all three of these 

issues using standard expected-utility maximization methods.  
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The Relevance of Uncertainty. A wide variety of diseases exhibit variable treatment 

responses (Alatorre et al., 2011), including highly prevalent diseases like depression (Carter et 

al., 2012), rheumatoid arthritis (Goetz et al., 2011), diabetes (Cantrell et al., 2010), and cancer 

(Yu and Cui, 2018).  While continued progress in diagnostics might eventually improve the 

ability to forecast which patients will respond to particular treatments, there remains a 

considerable amount of variability in treatment response that is unknown before treatments 

begin.  Until accurate forecasting of treatment success is ubiquitous, value assessment methods 

should incorporate practical strategies for quantifying effects of uncertainty. 

Multi-dimensional Value.  Health outcomes may have multiple dimensions of value.  

For example, the widely used European Quality of Life (EQ-5) measure has five dimensions.  

The Health Utility Index 3 (HUI3) captures 8 dimensions: vision, hearing, speech, ambulation, 

dexterity, emotion, cognition, and pain (Maxwell et al., 2016).  Judging from the frequency of 

Direct to Consumer advertisements on TV and elsewhere, one might readily add dimensions 

such as “physical appearance” and “sexual function.”  Whatever the total number of elements, 

our model presumes a scalar measure of QoL, which could (for example) use multi-criteria 

decision analysis (MCDA) methods to combine vectors of quality measures into scalars, along 

with associated variances, skewness, and other higher-order moments from the distributions of 

these combined measures. 

Limitations.  Our approach assesses the effects of risk aversion in QoL and uncertainty 

in treatment outcomes for a representative utility-maximizing consumer.  Since our work 

generalizes traditional CEA, it (like traditional CEA) cannot resolve issues arising in some public 

policy decisions that involve inter-personal comparisons (equity and fairness) (Asaria et al., 

2015), nor can it address issues such as externalities arising from scientific spillovers, contagious 

disease spread or herd immunity against infectious diseases.  Nevertheless, we believe that a full 

understanding of the effect of risk aversion in QoL and uncertainty in the benefits of medical 

interventions can improve decision-making at all levels, just as traditional CEA has informed 

numerous private and public policy decisions.  
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2. THEORETICAL DEVELOPMENT 

2.1. Reviewing the Foundations of Cost-Effectiveness Analysis   

We begin with the familiar theoretical framework for cost-effectiveness analysis of 

Garber and Phelps (1997), hereafter GP.  Consider a representative consumer choosing 

consumption and medical spending over two periods.3  Define 𝑌 as exogenous income that 

arrives each period.  Define 𝑀𝑖 as composite medical spending in period 𝑖, and 𝐶𝑖 ≡ 𝑌 −𝑀𝑖 as 

non-medical consumption in period 𝑖.  Define 𝐻𝑖 ∈ [0,1] as QoL in period 𝑖.  Period i utility is 

given by 𝑈(𝐶𝑖)𝐻𝑖, and the probability of survival to period 1 is 𝑝1.  Expected utility is 

𝑈(𝐶0)𝐻0 + 𝑝1𝑈(𝐶1)𝐻1.  Note the key assumption that utility is linear in QoL.  

In GP, the optimal cost-effectiveness threshold is given by:4 

 𝐾 ≡
𝑈(𝐶1)

𝑈′(𝐶0)
[
1

𝐻0
] (1) 

𝐾 reflects the value of future QoL gains paid for today, measured as consumption 

willingly foregone in exchange for one unit of QoL.  GP sets baseline QoL to unity, in the sense 

that 𝐻0 ≡ 1.  Cost-effectiveness is measured from the perspective of a consumer with “perfect” 

or “excellent” baseline health.  We start by following this convention and generalize it later (in 

Section 3.3.2) to allow for the possibility that 𝐻0 < 1. As things stand, 𝐾 is the WTP for one 

QALY.  

𝐻1 reflects the health status of patients when they need treatment. We assume that 𝐻1 

incorporates the effects of the illness in question and, possibly, other unrelated disabilities or 

illnesses.  For example, physically disabled patients with diabetes would have lower values of 𝐻1 

than patients with identical diabetes status but no physical disabilities.   

If individuals choose medical spending optimally, then 𝐾 represents the cost-

effectiveness ratio that leads to the first-best allocation of medical consumption.  If instead the 

individual faces an arbitrarily fixed budget – e.g., fixed by a government payer – then the 

resulting 𝐾 produces suboptimal allocations, but they are second-best optimal conditional on the 

chosen budgetary level (Phelps, 2019b). 

                                                 

3 GP use three-periods, but in our setting, the final period adds no insight. 
4 GP omit 𝐻0 in their formulation because they set 𝐻0 = 1. They also use 𝑈(𝑌) instead of 𝑈(𝐶1) in the 

numerator. When 𝑈(𝑌) = ln⁡(𝑌), 𝐾 differs proportionately from our definition by the budget share of medical care.   
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For technologies that add Δ𝑝1 in survival probability and Δ𝐻1 in QoL, QALY gains are 

defined as Δ𝑄𝐴𝐿𝑌 ≡ Δ𝑝1𝐻1 + 𝑝1Δ𝐻1.  GP prove the legitimacy of guiding decisions by 

comparing costs per quality-adjusted life-years (QALYs) to 𝐾.  In addition, their framework 

implies that the value of a technology equals the value of QALYs gained through it.  This is a 

non-trivial result, because health has two dimensions—QoL and LY – and they distill its value 

into one dimension, namely the QALY improvement.   

The QALY as a single index of health improvement rests crucially on the assumption that 

marginal utility equals average utility in both QoL and LY.  Elaborating, consider a 

representative consumer’s willingness to increase annual health insurance premiums by the 

expected cost of a new medical technology.  The marginal utility of QoL⁡is 𝑈(𝐶1), and WTP for 

this QoL gain in terms of baseline consumption (𝐶0) units is  𝐾 =
𝑈(𝐶1)

𝑈′(𝐶0)
.  Therefore, the period 

zero WTP for an expected QoL gain of 𝑝1Δ𝐻1 is 𝐾𝑝1Δ𝐻1.  Since 𝑝1Δ𝐻1 is the QALY gain 

associated with Δ𝐻1 additional QoL units, it follows that 𝐾 yields the value per QALY gained 

via QoL improvement.  At the same time, the period zero WTP for a marginal gain in survival 

probability, Δ𝑝1, is  
𝑈(𝐶1)𝐻1

𝑈′(𝐶0)
Δ𝑝1 = 𝐾Δ𝑝1𝐻1.  Since Δ𝑝1𝐻1 is the QALY gain associated with this 

gain in LY, it follows that 𝐾 measures value per QALY gained regardless of whether it is gained 

via life-extension or QoL improvement.  

This implication holds because, under utility that is linear in QoL, the marginal rate of 

substitution between QoL and survival gains happens to be 
𝑈(𝐶1)𝐻1

𝑈(𝐶1)
= 𝐻1. To appreciate the 

importance of this condition, recall that the QALY gain is defined as 𝑝1Δ𝐻 + Δ𝑝1𝐻1.  The two 

terms in this QALY formula compactly express the value of a two-dimensional gain in health in 

the common units of QoL improvement.  The first term is literally the expected gain in QoL 

units. The second is the gain in survival multiplied by the marginal rate of substitution; this 

product equals the expected QoL units the consumer will give up in return for Δ𝑝1 more survival 

probability.   

This result produces strong decision-analytic implications.  Consider a technology that 

increases survival probability by Δ𝑝1, QoL by Δ𝐻1, and incremental costs by Δ𝐶0.  Based on the 

arguments above, the net value of such a technology is 𝐾Δ𝑝1𝐻1 + 𝐾𝑝1Δ𝐻1 − Δ𝐶0.  It improves 

consumer welfare if and only if: 
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Δ𝐶0

Δ𝑝1𝐻1+𝑝1Δ𝐻1
≤ 𝐾 (2) 

This proves—in the risk-neutral world of GP—that the cost per QALY gained, regardless 

of how the QALY was gained, represents a sufficient index of welfare when compared to the 

threshold 𝐾.   

This “QALY is a QALY” conclusion serves as a fundamental result in CEA 

methodology.  However, it rests somewhat precariously on the assumption that expected utility is 

linear—not concave—in QoL, or equivalently that consumers are risk-neutral in QoL.  While 

linearity of expected utility in QoL provides strong and helpful implications, it also places the 

cost-effectiveness literature out of step with the foundational literature on health production and 

health human capital within health economics (Ehrlich and Chuma, 1990; Galama and Kapteyn, 

2011; Grossman, 1972; Muurinen, 1982).   In this respect, the cost-effectiveness literature on 

valuing health investment is incompatible with the economics literature that explains those health 

investment decisions.  Other well-known studies assuming concavity in health-related QoL 

include Arrow’s (1976) work on health insurance benefit design,  Cutler et al’s (1998) study of 

medical care price indices, and Hall and Jones (2007) on the macroeconomic determinants of 

medical spending.  From an empirical standpoint, linearity of utility in QoL is also hard to 

reconcile with survey-based studies finding preferences for treating more severe diseases, 

holding cost-effectiveness fixed (Green and Gerard, 2009; Linley and Hughes, 2013; Nord et al., 

1995).   
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Figure 1: Indifference curves for constant and diminishing marginal utility of QoL. 

 

Figure 1 illustrates the challenges that linear QoL utility poses to intuition.  In Figure 1a, 

utility is concave in QoL, while in Figure 1b, it is linear.  Starting in Figure 1a, from point A on 

indifference curve 𝑈1, a fixed health gain of Δ𝑄𝑜𝐿⁡puts the consumer on indifference curve 𝑈2.  

The vertical distance 𝑊𝑇𝑃1— the compensating variation—returns the consumer to 𝑈1 and 

measures (in LY) the value of this QoL gain.  The same exercise conducted at point B (starting at 

a lower QoL) gives 𝑊𝑇𝑃2.  Because of diminishing marginal utility of QoL, 𝑊𝑇𝑃2 > 𝑊𝑇𝑃1 for 

the same Δ𝑄𝑜𝐿. 

In contrast, Figure 1b illustrates preferences when utility is linear in both LY and QoL, as 

GP assume.  In this case, LY and QoL are perfect substitutes (hence the conclusion that “a 

QALY is a QALY”), and thus indifference curves are straight lines.  Thus, WTP for 

improvement in QoL is the same for all values of QoL. 

The familiar curvature in Figure 1a reflects the preference for variety that 

microeconomists typically assume.  Equating apples and oranges, consumers endowed with 10 

oranges and 1 apple are more eager to trade an orange for an apple, than when endowed with a 

balanced bundle of fruit.   

The preference for variety in health bundles is similarly intuitive.  Imagine Consumer A, 

with nearly perfect QoL, but with only 6 months left to live. Consumer B has 5 years to live, but 

at QoL level 0.1.  The linear indifference curves of GP imply that these two consumers have 

identical willingness to trade away longevity in exchange for QoL.   However, introspection 
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suggests that Consumer B—blessed with significantly greater longevity but hampered by very 

low QoL—will have much greater interest in making such a trade.  The survey-based evidence 

cited earlier suggests that most real-world respondents agree, in the sense that health 

improvements are viewed as more valuable for the severely ill (Green and Gerard, 2009; Linley 

and Hughes, 2013; Nord et al., 1995). 

In light of our discussion about concavity in QoL, readers might wonder why we still 

maintain that expected utility is linear in survival probabilities.  Our reasoning corresponds to 

that of the QoL case: The vast majority of the theoretical literature in health economics, and 

indeed economics more generally, assumes that expected utility is additively separable across 

periods of time and thus linear in survival probability.  This applies to the health human capital 

literature spawned by Grossman (1972), the CEA analysis of GP (Garber and Phelps, 1997), 

theoretical cost-effectiveness papers by Meltzer (Meltzer, 1997; Meltzer and Smith, 2011), and 

the value of statistical life literature following Rosen (1981, 1988). 

Formal justification for additive time-separability in economics generally traces back to 

Koopmans (1972), who shows how additive time separability follows from two relatively 

intuitive axioms.5  While the intellectual history is useful and interesting, it is not our goal to 

mount a renewed defense of additively separable utility over time.  We merely follow the bulk of 

the economics literature in this respect.6 In any event, our key observations about the fragility of 

QALYs would carry through even if utility were concave in survival, as long as the concavity in 

QoL differed meaningfully from concavity for survival.  

Concavity of utility in QoL undermines the traditional equivalence between survival 

gains and QoL gains, and it simultaneously undermines the rationale for use of the QALY as a 

single index of health improvements.  We will propose a solution and use it to build a framework 

that properly values health gains when individuals are risk averse in QoL, and when treatment 

benefits are uncertain.  

                                                 

5 Bleichrodt et al. (2008) provide intuitive explanations for the two Koopmans axioms: 1) the marginal rate 

of substitution between today and tomorrow is unaffected by consumption levels on the day after tomorrow and 

beyond; and 2) if consumers prefer the consumption sequence 𝑥 to the sequence 𝑦, they will harbor the same 

preferences if those sequences started tomorrow and we hold their consumption level today fixed. 
6
For analysis departing from this tradition, see Córdoba and Ripoll (2016). 
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2.2. Incorporating Risk-Aversion and Uncertainty 

GP abstracted from health risk in three ways.  We relax all three of these restrictions and 

explore their implications for value assessment.   

First, we first define utility as 𝑉(𝐶, 𝐻) = 𝑈(𝐶)𝑊(𝐻) and we allow 𝑊 to exhibit 

concavity and thus risk-aversion. While we could use an even more general form of utility, 

additional interaction terms between 𝐶 and 𝐻 bring little insight into our central issue and further 

complicate presentation of our model.   

Second, to introduce uncertainty over untreated health state, we assume that consumers 

are either sick (with probability 𝜙) or well (with probability (1 − 𝜙)) in period 1, with 

corresponding QoL levels of 𝐻1𝑠 and 𝐻1𝑤, respectively.  This allows consideration of value from 

an ex ante perspective, as when considering health insurance benefit structure.  One can return to 

the deterministic valuation framework of traditional CEA modeling simply by setting 𝜙 = 1, and 

a fully deterministic framework by setting 𝑝1 = 1. 

Third, we introduce uncertainty in outcomes of medical treatments and consider the 

expected utility of QoL, 𝐸[𝑊(𝐻)]. This is analogous to introducing uncertainty in financial 

transactions, a common practice in economic evaluations involving risky assets or income 

streams.  We assume non-medical consumption is equal across the healthy and sick states in 

period 1, to avoid randomness in 𝑈(𝐶1).
7   

As we will show, introduction of risk aversion in QoL has two distinct effects on Health 

Technology Assessment (HTA).  First, it affects the WTP for health gains, both by introducing 

diminishing marginal utility in health and by highlighting that marginal values of health gains 

rise with illness severity and/or permanent disability.  Second, it provides a way to incorporate 

variability in treatment outcomes that has been ignored in standard HTA practices.  

Valuation of risk-reduction in economics and finance began with Markowitz (1952), Pratt 

(1964) and Arrow (1965).  These early studies led to the now-classic “mean-variance” tradeoff in 

                                                 

7 In other words, we assume consumers can purchase insurance against healthcare expenditures, but cannot 

purchase pure health indemnity insurance that enables transfer of consumption across health states.  Such insurance 

would require perfect identification of health states to avoid fraudulent claims against the insurer, a technology that 

does not currently exist except in the imaginings of Star Trek “tricorders.”  Therefore, it sacrifices little salience, but 

conserves notation, if we eliminate markets for pure consumption insurance.  Some firms do offer modest quantities 

of “critical illness insurance,” which provides income transfers for a set of precisely defined diagnoses, including 

cancers, accidents, and heart attacks, but this set omits major portions of the potential illness spectrum. Indeed, the 

fact that consumers still seek to prevent illness provides prima facie evidence that financial markets are not 

completely insuring them against illness risk (Lakdawalla et al., 2017).  
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financial economics, extended by Kimball (1990) to include higher-order risk attitudes.  From 

this background, we develop a framework that incorporates mean, variance, skewness, and (if 

desired) kurtosis into the valuation of stochastic health improvements. While we focus on cost-

effectiveness analysis in healthcare, these methods could potentially apply to other human capital 

investments, e.g., vehicle safety and environmental quality.    

Define 𝑝1𝑇 and 𝑝1𝑁𝑇 as the probability of survival with and without treatment.  Since 

expected utility is additively separable over time, it is also linear in survival. As a result, there is 

no need to consider the distribution of survival improvements; average improvements are 

sufficient.8  Therefore, expected utility with treatment (T) is: 

𝐸[𝑉(𝐶,𝐻)𝑇] = ⁡𝑈(𝐶0)𝑊(𝐻0) + 𝑝1T𝑈(𝐶1){𝜙𝐸[𝑊(𝐻1𝑠 + 𝐵)] + (1 − 𝜙)𝑊(𝐻1𝑤)} (3) 

Similarly, expected utility with no treatment (NT) is: 

 𝐸[𝑉(𝐶,𝐻)𝑁𝑇] = ⁡𝑈(𝐶0)𝑊(𝐻0) + 𝑝1NT𝑈(𝐶1){𝜙𝐸[𝑊(𝐻1𝑠)] + (1 − 𝜙)𝑊(𝐻1𝑤)} (4) 

The difference between these two measures gives the expected incremental value of 

treatment 𝑇.  As previously noted, traditional ex post evaluation perspectives coincide with the 

special case of ⁡𝜙 = 1. 

Before proceeding to value assessment, it helps to define and discuss consumer risk 

preferences, which play substantial roles in valuation of risky technologies.  Define the 

coefficient of relative risk-aversion in QoL as 𝑟𝐻
∗ ≡ −

𝑊′′(𝜇𝐻)

𝑊′(𝜇𝐻)
𝜇𝐻.  To the best of our knowledge, 

there are no extant empirical estimates of relative risk-aversion over QoL, a gap in the literature 

that could fruitfully be addressed.9  Lacking direct estimates of health-related risk preferences, 

we suggest the interim approach of assuming that relative risk parameters are similar for both 

QoL and consumption, and conducting sensitivity analyses around this baseline. 

Following Kimball (1990), we also define “relative prudence” as 𝜋𝐻
∗ ≡ −

𝑊′′′(𝜇𝐻)

𝑊′′(𝜇𝐻)
𝜇𝐻.  

Consumers with greater prudence are more likely to invest additional resources in QoL today in 

                                                 

8 We leave to future research the questions of whether and how health technology assessment ought to 

depart from the conventional assumption of additively time-separable utility and the implied risk-neutrality over 

survival.   
9 Córdoba and Ripoll (2016) estimate a lifetime expected utility model that separates intertemporal 

substitution (the inverse of the coefficient of relative risk-aversion) and a “mortality aversion,” which differs from 

risk aversion over QoL, as our model requires.   
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anticipation of future QoL risks (e.g., more vaccines), or changes in lifestyle that affect health 

risks (e.g., smoking cessation).  Box A further discusses these higher-order risk terms. 

[BOX A GOES HERE] 

Consistent with much of the applied literature in public economics, we treat 𝑟𝐻
∗ ⁡and⁡𝜋𝐻

∗  as 

roughly constant empirically (Chetty, 2006; Noussair et al., 2013).  The evidence supports this 

assumption directly in the case of risk-aversion over consumption, but future research must 

quantify relative risk preferences over QoL empirically. Our task is to explain how to value 

medical technology for consumers who are risk averse in QoL. 

2.2.1. Quality of Life (QoL) Gains 

We begin by focusing on the QoL gains produced by the technology, 𝑇.  Therefore, 

assume that 𝑝1𝑇 = 𝑝1𝑁𝑇 = 𝑝1 for the moment, and compute the difference in utility between (3) 

and (4). To monetize this utility difference, we normalize by the marginal utility of baseline 

period consumption, 𝑈′(𝐶0) ∗ 𝑊(𝐻0).   

Suppose that 𝐻1𝑠 is a random variable measuring the untreated QoL level of a sick patient 

in period 1.  Next, consider a treatment that produces a random QoL benefit (𝐵) for patients in 

the sick state.  𝐻1𝑠 and 𝐵  have means 𝜇𝐻 and 𝜇𝐵, variances 𝜎𝐻
2 and 𝜎𝐵

2, and Pearson skewness 

coefficients 𝛾𝐻 ≡
𝐸(𝐻−𝜇𝐻)

3

𝜎𝐻
3  and 𝛾𝐵 ≡

𝐸(𝐵−𝜇𝐵)
3

𝜎𝐵
3 .  Finally, define 𝜎𝐻+𝐵

2  and 𝛾𝑆+𝐵 as variance and 

skewness coefficients of 𝐻 + 𝐵, the QoL in the treated state.  For easy reference, Box B 

summarizes the relevant parameter definitions.  

Box B about here. 

We now have: 

 𝐸𝑉(𝐵) = [
𝑈(𝐶1)

𝑈′(𝐶0)
]
𝑝1𝜙𝐸[𝑊(𝐻1𝑠+𝐵)−𝑊(𝐻1𝑠)]

𝑊(𝐻0)
= 𝐾𝑝1𝜙

[𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑⁡𝑢𝑡𝑖𝑙𝑖𝑡𝑦⁡𝑔𝑎𝑖𝑛⁡𝑓𝑟𝑜𝑚⁡𝑇]

𝑊(𝐻0)
 (5) 

Using Taylor series methods10 to expand 𝐸[𝑊(𝐻1𝑠 + 𝐵)] and 𝐸[𝑊(𝐻1𝑠)] around 𝜇𝐻 and 

taking their difference gives:11 

                                                 

10 For the salient case of utility functions in the Hyperbolic Absolute Risk-Aversion (HARA) family, 

Appendix 7.1 proves that this Taylor Series expansion converges. 
11 The fourth derivative, 𝑊′′′′(𝐻), could readily be added here, introducing kurtosis and, following 

Kimball (1990, 1992, 1993),  relative  “temperance” = 𝜏𝐻
∗ = 𝜇𝐻

𝑊′′′′(𝐻)

𝑊′′′(𝐻)
.  For compactness, we omit these terms. 



12 

 𝐸𝑉(𝐵) =
𝐾𝑝1𝜙

𝑊(𝐻0)
{𝑊′(𝜇𝐻)𝜇𝐵 +

1

2
[𝑊′′(𝜇𝐻)[𝜎𝐻+𝐵

2 −𝑊′′(𝜇𝐻)𝜎𝐻
2] +

1

6
[𝑊′′′(𝜇𝐻)𝛾1(𝐻+𝐵)𝜎𝐻+𝐵

3 −𝑊′′′(𝜇𝐻)𝛾1𝐻𝜎𝐻
3] + ⋯ } (6) 

Collecting terms and recognizing that 𝑟𝐻
∗ = −𝜇𝐻

𝑊′′(𝜇𝐻)

𝑊′(𝜇𝐻)
⁡and⁡⁡𝑟𝐻

∗𝜋𝐻
∗ = 𝜇𝐻

2 𝑊′′′(𝜇𝐻)

𝑊′(𝜇𝐻)
 gives:12 

𝐸𝑉(𝐵) ≈ 𝐾
𝑊′(𝜇𝐻)

𝑊(𝐻0)
𝑝1𝜙𝜇𝐵 {1 + [

1

𝜇𝐵
] [−

1

2
(
1

𝜇𝐻
) 𝑟𝐻

∗Δ𝜎2 +
1

6
𝜋𝐻
∗ 𝑟𝐻

∗ (
1

𝜇𝐻
)
2

Δ(𝛾𝜎3) + ⋯ ]} 

  (7) 

Note that the term outside the curly braces in Equation (7) has 𝑊′(𝜇𝐻) in the numerator 

and⁡𝑊(𝐻0) in the denominator—evaluated at different levels of QoL.  We return to this issue in 

Section 3.1.1.  

Equation (7) contains two new expressions:  Δ𝜎2 ≡ (𝜎𝐻+𝐵⁡
2 − 𝜎𝐻

2) and Δ(𝛾𝜎3) ≡

(𝛾𝐻+𝐵𝜎𝐻+𝐵
3 − 𝛾𝐻𝜎𝐻

3).   These expressions (respectively) reflect the difference in variances 

between treated and control populations, and the difference in the comparable values of 

Pearson’s skewness (𝛾) times 𝜎3 in treated and control populations.13  As we discuss later, these 

parameters are readily estimated in standard Randomized Controlled Trials (RCT) and in 

comparable non-randomized comparisons of treatments and control therapies (either “no 

treatment” or “standard of care” as appropriate).  

Several things become apparent from this formulation.  First, when treatment effects (𝜇𝐵) 

are large, the stochastic terms become relatively less important in overall incremental valuation 

of medical interventions.  Conversely, as average treatment gains become smaller, the stochastic 

terms rise in importance.  Over time, we expect stochastic terms to become steadily more 

important, since the general progress of research will typically have already found any easy and 

large gains in average treatment efficacy (Jones, 2009).  Low-hanging fruit is usually picked 

                                                 

12 Appendix 7.2 discusses convergence properties of these Taylor Series estimates.  In general, convergence 

should be relatively rapid for 𝜇𝐻 > .2⁡to⁡.3. Even for most people with fatal disease diagnoses and only a few 

months to live, 𝜇𝐻 will generally exceed these levels.  
13  With no covariance, 𝜎𝐻+𝐵⁡

2 − 𝜎𝐻
2 = 𝜎𝐵

2,⁡and with perfect negative covariance (treatments fully restore all 

treated individuals to baseline health, no matter how large the acute illness severity), then 𝜎𝐻+𝐵⁡
2 = 0.  
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first.  In parallel, from equation (7), given our standard assumption that relative risk parameters 

are approximately constant, we can see that the stochastic terms grow in importance as 𝜇𝐻 falls.14   

Our framework incorporates two kinds of generalizations:  1) Diminishing marginal 

utility to QoL gains; and 2) stochastic gains in health.  We next explore the independent effects 

of these phenomena on the value of QoL improvement. 

The Consequences of Diminishing Marginal Utility of W 

To focus on the implications of diminishing marginal utility alone, assume for the 

moment that QoL levels and improvements are entirely non-stochastic. Conditional on survival, 

the individual becomes sick with probability 𝜙 = 1.  Treatment benefits are also known, so that 

𝜎 = 0.  Equation (7) then implies that the value of non-stochastic QoL improvements is 𝑉(𝐵) ≈

𝐾
𝑊′(𝜇𝐻)

𝑊(𝐻0)
𝑝1𝜇𝐵, not simply 𝐾𝑝1𝜇𝐵.  The difference is due entirely to concavity in 𝑊, since it 

persists even when health is deterministic.   

To explore the difference further, define two terms, first the elasticity of 𝑊 with respect 

to H, 𝜔𝐻 ≡
𝑊′(𝐻0)𝐻0

𝑊(𝐻0)
,⁡which equals 

𝑊′(𝐻0)

𝑊(𝐻0)
 when 𝐻0 = 1.  Next, define 𝑅 ≡

𝑊′(𝜇𝐻)

𝑊′(𝐻0)
, the “severity 

ratio,” reflecting how severity of illness alters the marginal utility of QoL relative to baseline 

health 𝐻0. Given these definitions,  𝑉(𝐵) = 𝐾𝜔𝐻𝑅𝑝1𝜇𝐵.  In GP, the marginal value per unit of 

expected QoL improvement equals 𝐾.  With concavity in 𝑊(𝐻), this generalizes to 𝐾𝜔𝐻𝑅.  

Thus—as a result of introducing risk aversion over QoL—the WTP threshold 𝐾 of GP is 

adjusted by two multiplicative factors, 𝜔𝐻 and 𝑅.  Diminishing marginal utility of 𝐻 implies 0 <

𝜔𝐻 < 1 and 𝑅 > 1, where 𝑅 grows for more severe illnesses.  In GP, on the other hand, both 

𝜔𝐻⁡and⁡𝑅⁡equal 1.0 as a result of utility’s linearity in QoL.  In subsequent sections, we calibrate 

𝜔𝐻 and 𝑅, and we discuss their operational significance for HTA.  

Our WTP threshold can be expressed as: 

 𝐾𝜔𝐻𝑅 =
𝑈(𝐶0)

𝑈′(𝐶0)

𝑊′(𝜇𝐻)

𝑊(𝐻0)
 (8) 

                                                 

14
  Alternatively, if we were to assume that absolute (instead of relative) risk parameters were constant, this  

1

𝜇𝐻
 effect would vanish, but the  

1

𝜇𝐵
 effect remains. While we currently have no evidence on how risk parameters in 

health behave over different levels of H, the vast bulk of data regarding consumption (C) suggest that constant 

relative risk parameters are much closer to reality than constant absolute risk parameters.  For example, for CRRA, 

𝜋∗ = 𝑟∗ + 1, whereas with CARA,  𝜋∗ = 𝑟∗.  Estimates generally show that 𝜋∗ ≈ 𝑟𝐻
∗ + 1, suggesting that CRRA 

approximately applies (Noussair et al., 2013).  
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For more severe illnesses, as 𝜇𝐻 falls, 𝑊′(𝜇𝐻) rises, and thus 𝐾𝜔𝐻𝑅 rises.  Therefore, 

WTP for QoL improvements is higher for patients with disabilities and/or more severe illnesses.  

This finding resolves a long-standing question in CEA, posed most recently by the ISPOR Task 

Force on economic evaluation of medical technologies (Lakdawalla et al., 2018): “Does 

untreated health status affect the value of health gains?”   By introducing risk aversion over QoL, 

we demonstrate that the answer is unequivocally “yes.”  𝑅 and hence 𝐾𝜔𝐻𝑅 rise as untreated 

QoL worsens. Later, we will show that 𝐾𝜔𝐻𝑅 functions as the cost-effectiveness threshold, 

analogous to the role of 𝐾 in GP.  Therefore, 𝑅 also captures the effect of illness severity on the 

proper cost-effectiveness threshold.   

The Consequences of Uncertain Treatment Outcomes 

To address how stochastic QoL modifies values of QoL improvements, we turn to the 

portion of equation (7) in curly braces and define: 

 𝜖 ≡ {1 + [
1

𝜇𝐵
][−

1

2
𝑟𝐻
∗ (

1

⁡𝜇𝐻
)𝛥𝜎2 +

1

6
𝜋𝐻
∗ 𝑟𝐻

∗ (
1

⁡𝜇𝐻
)
2

𝛥(𝛾𝜎3) + ⋯ ]} (9) 

In Equation (7), expected QoL gains are 𝑝1𝜙𝜇𝐵.  Therefore: 

 𝐸(𝑉(𝐵)) = [𝐾𝜔𝐻𝑅][𝑝1𝜙𝜇𝐵𝜖] (10)  

We describe [𝐾𝜔𝐻𝑅] as the Risk-Aversion and Severity Adjusted Willingness to Pay 

(RASA-WTP), and [𝑝1𝜙𝜇𝐵𝜖] as the Risk-Adjusted QALY (RA-QALY).  The former affects the 

value per unit of health gain, and the latter represents the “certainty-equivalent” amount of QoL 

gained from a medical treatment. Thus  

 𝐸(𝑉(𝐵)) = RASA-WTP ∗ RA-QALY (11) 

This generalizes the traditional value measure, which states that 𝐸(𝑉(𝐵)) = 𝐾 ∗ 𝑄𝐴𝐿𝑌. 

Note that 𝜇𝐵𝜖 yields the “certainty-equivalent” gain in QoL associated with the medical 

technology.  That is, a technology that produces 𝜇𝐵𝜖 units of QoL with certainty is equal in value 

to the technology producing the stochastic gain, 𝐵, with average gain, 𝜇𝐵.  The term, 𝜖, measures 

the certainty-equivalent QoL units the consumer requires in exchange for each additional unit of 

average QoL gain.  For this reason, we call 𝜖 the “certainty-equivalence ratio.”   

Among its other functions, 𝜖 quantifies the importance of stochastic terms in value 

assessment.  With entirely deterministic QoL, 𝜖 = 1.  Analogously, when 𝜖 ≈ 1, the stochastic 
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terms are easily ignored, and average QoL gains are largely sufficient metrics of benefit.  As 𝜖 

departs from unity, in either direction, the stochastic terms become relatively more important.   

Variance and skewness have opposing effects on 𝜖.  Increases in variance reduce 

expected utility, and vice-versa.  If a treatment increases the variance of QoL (i.e., 𝜎𝐻+𝐵
2 > 𝜎𝐻

2), 

any given average gain in QoL will be worth less.  For sufficiently small 𝜇𝐵⁡ and increase in 

variance, 𝜖 might even become negative, so that positive average gains in QoL could in fact be 

costly, when considering expansions in variance.  In contrast, treatments that reduce variance 

augment the value of the average QoL improvement.  The latter gives an example of “insurance 

value” from medical technology by reducing the uncertainty surrounding health outcomes 

(Lakdawalla et al., 2017). 

Conversely, increases in positive skewness add value.  If 𝛾1(𝐻+𝐵)𝜎𝐻+𝐵
3 > 𝛾1𝐻𝜎𝐻

3, this 

increase in positive skewness augments average values of QoL improvements.  This effect has 

not previously been formalized in the literature, but it seems related to empirical findings that 

patients value therapies providing modest chances of a very large health improvement.  Prior 

research has referred to this as the “value of hope” associated with, for instance, 

immunotherapies treating metastatic cancer (Lakdawalla et al., 2012).  Risk-averse consumers 

dislike variance in treatment outcomes.  However, to the extent variance exists in competing 

treatments, consumers will prefer those with variance that has greater positive skewness.  Table 1 

summarizes various combinations of changes in variance and skewness and their effects on 

medical technologies’ value.  

[INSERT TABLE 1 HERE] 

When 𝜖 < 1, gains in average QALYs are less valuable than corresponding gains in 

certain QALYs.  This will be true if the technology increases the variance of QoL.  In contrast, if 

𝜖 > 1, consumers would rather take one unit of average QoL gain instead of a sure one-unit gain 

in QoL.  This could occur for technologies with lower variance and/or highly positively skewed 

treatment benefits. 

2.2.2. Longevity Gains 

Next, we generalize our analysis to consider technologies that produce both random QoL 

benefits 𝐵, and average survival increases of 𝜇𝑝.  Building upon equation (5), the technology’s 

expected value is given by: 
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 𝐸𝑉(𝜇𝑝, 𝐵) = 𝐾
𝜇𝑝[𝜙𝐸(𝑊(𝐻1𝑠+𝐵))+(1−𝜙)𝑊(𝐻1𝑤)]+𝑝1𝜙𝐸[𝑊(𝐻1𝑠+𝐵)−𝑊(𝐻1𝑠)]

𝑊(𝐻0)
     (12)  

The first part of the health-related numerator component (involving 𝜇𝑝) describes gains in 

expected utility from increased survival, and the second part restates the gains arising from 

improved QoL, holding survival constant.  Section 2.2.1 characterized the second part of this 

expression by proving that 𝐾
𝑝1𝜙𝐸[𝑊(𝐻1𝑠+𝐵)−𝑊(𝐻1𝑠)]

𝑊(𝐻0)
= [𝐾𝜔𝐻𝑅][𝑝1𝜙𝜇𝐵𝜖].  We now characterize 

the first part of this expression, which corresponds to the contributions of survival gains, 

𝐾
𝜇𝑝[𝜙𝐸(𝑊(𝐻1𝑠+𝐵))+(1−𝜙)𝑊(𝐻1𝑤)]

𝑊(𝐻0)
.   

To relate this to our earlier analyses of GP, define 𝛿, the marginal rate of substitution 

between survival and QoL, (with dimension of H).15  

 𝛿 ≡
[𝜙𝐸(𝑊(𝐻1𝑠+𝐵))+(1−𝜙)𝑊(𝐻1𝑤)]

𝑊′(𝜇𝐻)
 (13) 

Here, the numerator describes the marginal expected utility from gains in survival (Δ𝑝1) 

and the denominator describes the marginal utility of gains in QoL.16 Recall that this marginal 

rate of substitution equals 𝐻1 when 𝑊 is linear, a result that undergirds the equivalence of 

survival and QoL gains in traditional CEA, per GP. 

This definition of 𝛿, coupled with our earlier analysis of QoL improvements, allows 

rewriting (12) as: 

 𝐸𝑉(𝜇𝑝, 𝐵) = 𝐾𝜔𝐻𝑅{𝜇𝑝𝛿 + 𝑝1𝜙𝜇𝐵𝜖} (14) 

Recall that  𝐾𝜔𝐻𝑅 measures the value of gains in QoL, either through survival 

improvement or quality-adjusted life improvement.  Define the term in curly braces as 

“generalized risk-adjusted-quality-adjusted life-year” (GRA-QALY): 

 𝐺𝑅𝐴-𝑄𝐴𝐿𝑌(𝜇𝑝, 𝐵) = {𝜇𝑝𝛿 + 𝑝1𝜙𝜇𝐵𝜖} (15) 

The GRA-QALY can be used in place of the QALY in decision analysis and value 

assessment.  To see why, observe that increases in the GRA-QALY are always worth 𝐾𝜔𝐻𝑅 on 

the margin, regardless of whether generated by survival gains, QoL gains, or some combination 

                                                 

15  A later section discusses methods to estimate 𝛿.  

16 This is the “ex post” rate of trade, just as in GP, so 𝑝1 = 1.. 
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of the two.  It functions as a “single index of value,” just like the QALY in GP’s framework.  

The GRA-QALY generalizes the RA-QALY further by incorporating longevity-extending 

benefits.  In addition, it transforms the average QoL gain, 𝑝1𝜙𝜇𝐵, into the certainty-equivalent 

gain in QoL, 𝑝1𝜙𝜇𝐵𝜖.   

2.2.3. Implications for Cost-Effectiveness Analysis 

We now turn to cost-effectiveness analysis for medical technologies with uncertain 

benefits.  Building upon equation (2), the technology is welfare-improving if 

 𝐾𝜔𝐻𝑅{𝜇𝑝𝛿 + 𝑝1𝜙𝜇𝐵𝜖} ≥ Δ𝐶0 (16) 

or 

 
Δ𝐶0

𝜇𝑝𝛿+𝑝1𝜙𝜇𝐵𝜖
≤ 𝐾𝜔𝐻𝑅 (17) 

The left-hand side of (17) is the ratio of incremental medical spending to units of certainty-

equivalent QoL improvement. The right-hand side of (17) is the Risk-Aversion and Severity 

Adjusted WTP (RASA-WTP).   

This generalizes the standard incremental cost-effectiveness ratio (ICER), by accounting 

for stochastic changes in QoL, diminishing returns to QoL improvement, and the severity-of-

illness adjustment 𝑅.  It also permits application of traditional ICER-based decision analyses as 

carried out in current CEA studies.  Once the new parameters 𝛿, 𝜖, 𝜔𝐻, and 𝑅 are estimated (see 

Section 3), these cost-effectiveness ratios are straightforward to obtain for a given technology. 

Note that, if important, differences in variability of treatment cost (Δ𝐶0) could readily be 

introduced at this point with similar Taylor Series estimates using financial risk measures such as 

relative risk aversion and relative prudence.  Since cost-effectiveness analysis typically assumes 

risk-averse consumers are insured against healthcare spending, and since third-party payers are 

typically thought of as risk-neutral, risk-aversion over costs is likely to be a more specialized 

matter than over QoL.  Therefore, we leave this analysis to future research and focus on the 

particular issues of risk aversion in QoL.  

Our framework nests the traditional GP decision rule as a special case.  By assuming 

linearity in the utility of QoL, traditional cost-effectiveness analysis imposes functional form 

restrictions that imply 𝛿 = 𝐻1 and 𝜔𝐻 = 𝑅 = 1.  By abstracting from the effects of uncertainty, 
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traditional analyses also presume that⁡𝜖 = 1.  For these parameter values, Equation (17) 

collapses down to the GP decision rule, where 
Δ𝐶

Δ𝑄𝐴𝐿𝑌
≤ 𝐾. 

Our analysis also shares with GP the applicability either to welfare-maximizing social 

planners or budget-constrained payers seeking second-best allocations conditional on fixed 

budgets.  The risk-aversion and severity adjusted threshold, 𝐾𝜔𝐻𝑅, depends on the chosen levels 

of consumption.  Budget-constrained payers will have smaller 𝐾𝜔𝐻𝑅 thresholds than 

unconstrained welfare-maximizing decision makers (Phelps, 2019a).  However, within such 

budget-constrained environments, better resource allocation occurs using our model by 

incorporating both severity of illness and uncertain treatment outcomes rather than by ignoring 

these fundamental issues brought about by risk aversion in QoL.  

3. CALIBRATION AND ESTIMATION 

Incorporating risk-aversion and uncertain treatment benefits requires additional 

parameters. We now turn to calibrating several of these parameters and providing guidance for 

the estimation of others.  We begin by discussing the calibration of the cost-effectiveness 

threshold, 𝐾𝜔𝐻𝑅.  We then discuss calibration of 𝛿, the marginal rate of substitution between 

survival and QoL, and finally, the certainty-equivalence ratio, 𝜖. 

3.1. Calibrating 𝑲𝝎𝑯𝑹 

Some existing estimates for the value of QoL improvements may remain viable as 

estimates of 𝐾𝜔𝐻.  Suppose we have empirically valid17 reduced-form estimates for the value of 

a quality-adjusted life-year.18  By nature, reduced-form estimates do not specify underlying 

utility functions, but instead yield atheoretical estimates of willingness to pay.  Assuming such 

estimates come from a population of people with diminishing marginal utility in QoL, then 

𝐾𝜔𝐻𝑅 more naturally describes these estimated parameters, presumably at average values of 

𝑅.19 In contrast, studies that take structural approaches estimating only the component where 

                                                 

17 As Phelps (2019a) has emphasized, care must be taken in assessing and interpreting estimated values of a 

QALY from VSL studies. 
18 See Hirth et al. (2000) for a review of the literature.  
19 We are aware of no analyses that directly measure severity of illness effects (𝑅) when estimating WTP in 

such studies.   



19 

𝐾 =
𝐶

𝜔𝐶
 or equivalently  

𝐾

𝐶
=

1

𝜔𝐶
 (Phelps, 2019a) must be adjusted by the factor 𝜔𝐻𝑅.  

Regardless, more can be said about the calibration of 𝐾𝜔𝐻𝑅 from a theoretical perspective.  

3.1.1. Calibrating 𝑹 

We begin by calibrating 𝑅 ≡
𝑊′(𝜇𝐻)

𝑊′(𝐻0)
, the disease severity ratio. The full Taylor Series 

expansion for 𝑊′(𝜇𝐻) has a convenient structure.  First, define the average health loss ℓ∗ ≡

𝐻0 − 𝜇𝐻⁡.⁡⁡We can expand 𝑊′(𝜇𝐻) around 𝐻0:20 

𝑊′(𝜇𝐻) = {𝑊′(𝐻0) +𝑊′′(𝐻0)(𝜇𝐻 − 𝐻0) +
1

2
𝑊′′′(𝐻0)(𝜇𝐻 −⁡𝐻0)

2 +

1

6
𝑊′′′′((𝐻0)(𝜇𝐻 − 𝐻0)

3 +⋯ . } = 𝑊′(𝐻0) {1 + 𝑟𝐻
∗ℓ∗ +

1

2
𝑟𝐻
∗𝜋𝐻

∗ ℓ∗2 +
1

6
𝑟𝐻
∗𝜋𝐻

∗ 𝜏𝐻
∗ ℓ∗3 +⋯ . } (18) 

Thus,  

 𝑅 =
𝑊′(𝜇𝐻)

𝑊′(𝐻0)
=⁡ {1 + 𝑟𝐻

∗ℓ∗ +
1

2
𝑟𝐻
∗𝜋𝐻

∗ ℓ∗2 +
1

6
𝑟𝐻
∗𝜋𝐻

∗ 𝜏𝐻
∗ ℓ∗3 +⋯ . } (19) 

This expansion simplifies further for any CRRA utility function, wherein 𝜋𝐻
∗ = 𝑟𝐻

∗ +

1, 𝜏𝐻
∗ = 𝑟𝐻

∗ + 2, …. (see Appendix 7.3).  Thus, with CRRA utility, the disease severity ratio, R, 

becomes simply a function of the CRRA parameter, 𝑟𝐻
∗ .  Since it is common in applied 

economics to calibrate utility functions using the CRRA assumption, this approach provides a 

well-established strategy for calibrating 𝑅.   

When 𝑟𝐻
∗ = 1, Equation (19) further collapses to the familiar value of a perpetuity, since 

the products of the relative risk parameters in the numerator of each term involving 𝑟𝐻
∗  just 

cancel the factorial terms in the denominator, leaving a value of 𝑅 = 1 + (
ℓ∗

1−ℓ∗
) = (

1

1−ℓ∗
).  Thus, 

for a small health loss, ℓ∗ = .1, we obtain the severity ratio 𝑅 = 1.11.  For the moderate health 

loss, ℓ∗ =
1

2
, we see 𝑅 = 2.  For a very large health loss, ℓ∗ = 0.9, we obtain 𝑅 = 10. 

Evaluating 𝑅 becomes slightly more complex when 𝑟𝐻
∗ ≠ 1.⁡⁡Using Equation (19), which 

applies to all utility functions (not just CRRA), Table 2 shows values of 𝑅 across a range of 

values for ℓ∗ and 𝑟𝐻
∗ .21  QoL loss, ℓ∗, runs from 0 to 0.9.  Relative risk-aversion varies from zero 

                                                 

20 The signs in each term are all positive because of alternating powers of ℓ̅ = −(𝜇𝐻 − 𝐻0). 
21 For non-CRRA utility functions, the values of 𝑟𝐻

∗  are assumed to obtain locally. 
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(to incorporate the GP case) to 1.5, which lies beyond consensus estimates of consumption risk-

aversion, 𝑟𝐶
∗ (Chetty, 2006; Phelps, 2019a). 

Two general results emerge.  First, the multiplier 𝑅 rises with 𝑟𝐻
∗ .  In the extreme case of 

𝑟𝐻
∗ = 0, the total multiplier is 1, and 𝑊′(𝜇𝐻) = 𝑊′(𝐻0), the (nested) result from GP.  Second, 𝑅 

rises with ℓ∗, increasingly so as ℓ∗ rises.  

[INSERT TABLE 2 HERE] 

To provide readers with context, Table 3 reports example diseases across various values 

of ℓ∗.  Examples with ℓ∗ at or below 0.1 include peptic ulcer disease and benign prostatic 

hyperplasia.  At the other end of the spectrum, with ℓ∗ greater than 0.7, examples include 

Alzheimer’s disease and metastatic colorectal cancer.22   

[INSERT TABLE 3 HERE] 

For average values of 𝑟𝐻
∗  near 𝐻0, it can also be shown that when utility is DRRA 

(IRRA), 𝑅 will be larger (smaller) than shown in Table 2.23  For 𝑟𝐻
∗  in the vicinity of 1, 𝑅 is 

roughly unity for very mild diseases with 𝐻1𝑠 ≈ 1, roughly equal to 2.0 for diseases with 𝐻1𝑠 ≈

0.5, just over 3.0 for 𝐻1𝑠 ≈ 0.3, and over 4.5 for 𝐻1𝑠 ≈ 0.2.   

Finally, we note that this discussion does not preclude the possibility of estimating 𝑅 in 

the usual stated preference fashion.  The term 𝑅 ≡
𝑊′(𝜇𝐻)

𝑊′(𝐻0)
 represents WTP for QoL 

improvements in the sick state, in terms of foregone QoL in the baseline healthy state.  The 

question is how many units of sick state QoL would be required in order to compensate a 

consumer for one unit of lost QoL in the healthy baseline.  

3.1.2. Calibrating 𝑲𝝎𝑯 

We now turn to the other part of the cost-effectiveness threshold expression, 𝐾𝜔𝐻 ≡

[
𝑈(𝐶1)

𝑈′(𝐶0)
][
𝑊′(𝐻0)

𝑊(𝐻0)
].  Define 𝐺 ≡

𝑈(𝐶1)

𝑈(𝐶0)
 as the relative growth in period consumption utility and 𝜔𝐶 ≡

𝑈′(𝐶0)
𝐶0

𝑈(𝐶0)
 as the elasticity of period consumption utility with respect to consumption.  The 

                                                 

22 The example diseases and associated untreated baseline QALYs are taken from cost-effectiveness studies 

reported in the Tufts Cost-Effectiveness Analysis Registry (as updated in February 2014). 
23 Suppose  utility is DRRA.  Appendix 7.3 shows that 𝜋∗ >⁡𝑟∗ + 1  so the product 𝜋∗𝑟∗ is larger than 

when utility is CRRA and similarly for all successive higher levels of risk parameters.  Thus, the Taylor series sum 

is larger with DRRA than with CRRA.  The reverse holds when utility is IRRA. The spreadsheet that created Table 

2 demonstrates this phenomenon when the gap between 𝑟∗𝑎𝑛𝑑⁡𝜋∗(and successive higher order terms) is allowed to 

differ from 1.0.  
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term 𝜔𝐶 is analogous to 𝜔𝐻, the elasticity of W(H) with respect to QoL.  Some algebraic 

manipulation reveals that:  

 𝐾𝜔𝐻 = 𝐶0 (
𝜔𝐻

𝜔𝐶
)𝐺 (20)  

In most applications, analysts presume little or no change over time in consumption, 

implying 𝐺 ≈ 1 and 𝐾𝜔𝐻 ≈ 𝐶0 (
𝜔𝐻

_𝜔𝐶
).  Thus, 𝐾𝜔𝐻 is proportional to⁡𝐶0 where the factor of 

proportionality is approximately (
𝜔𝐻

𝜔𝐶
).   

While utility elasticities like 𝜔𝐻 and 𝜔𝐶 are not commonly estimated in the literature,24 

we can characterize them for the salient case in which 𝑈(𝐶) and 𝑊(𝐻) are Hyperbolic Absolute 

Risk-Aversion (HARA) utility functions.   HARA functions include constant, increasing, and 

decreasing relative risk-aversion cases, along with many commonly used functions – exponential 

utility, power utility, linear utility, quadratic utility, and logarithmic utility, and are commonly 

used in the finance literature studying risk aversion (Merton, 1971). 

To pursue this point further, note that for 𝑧 ≡
𝑎𝐶

1−𝛾𝐶
+ 𝑏 > 0, HARA utility is: 

 𝑈(𝐶) ≡ [
1−𝛾𝐶

𝛾𝐶
] 𝑧𝛾𝐶 , (21) 

Relative risk-aversion over consumption is defined as 𝑟𝐶
∗ =

𝑎𝐶

𝑧
, and the elasticity with respect to 

consumption is 𝜔𝐶 = [
𝛾𝐶

1−𝛾𝐶
] [

𝑎𝐶

𝑧
] = [

𝛾𝐶

1−𝛾𝐶
] 𝑟𝐶

∗.   Similar relationships hold for 𝑊(𝐻), so that 

𝜔𝐻 = [
𝛾𝐻

1−𝛾𝐻
] 𝑟𝐻

∗ .  Thus, 
𝜔𝐻

𝜔𝐶
 moves with changes in 𝑟𝐶

∗ (inversely) or 𝑟𝐻
∗  (directly), as modified by 

the ratios involving the respective 𝛾 values.  Further, if 𝑈(𝐶) and 𝑊(𝐻) exhibit identical 

(similar) relative risk preference parameters, 𝑟∗⁡and⁡⁡𝜋∗, they will have identical (similar) values 

of  𝛾.25  This similarity in both 𝑟∗⁡and⁡⁡𝜋∗ suffices to make the relationships between 𝑟∗⁡and⁡⁡𝜔 

similar for 𝑈(𝐶) and 𝑊(𝐻).26 

                                                 

24 A distinct approach arises from the literature using reported “happiness” measures, as developed 

originally by Easterlin (2004).  
25  Phelps and Cinatl (2020) prove that for HARA utility, 𝛾 = (𝜋∗ − 2𝑟∗)/(𝜋∗ − 𝑟∗), so 𝛾 can be recovered 

from 𝜋∗⁡and⁡𝑟∗.  
26 In the special case of CRRA, 𝜔𝐶 = 𝛾𝐶 = (1 − 𝑟𝐶

∗)  and⁡𝜔𝐻 = 𝛾𝐻 = (1 − 𝑟𝐻
∗), so 

𝜔𝐻

𝜔𝐶
=

(1−𝑟𝐻
∗ )

(1−𝑟𝐶
∗)
=

𝛾𝐻

𝛾𝐶
.  
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Lacking direct measurement of risk attitudes in health in the current empirical literature, 

an interim approach is to assume similar risk attitudes in 𝐻 and 𝐶, i.e., 
𝜔𝐻

𝜔𝐶
≈ 1, and to conduct 

sensitivity analysis around this placeholder assumption.  As new evidence emerges on its actual 

value, the 
𝜔𝐻

𝜔𝐶
 ratio can easily be adjusted appropriately. 

In sum, the WTP threshold can be approximated as 𝐾𝜔𝐻𝑅 ≈ 𝐶0 (
𝜔𝐻

𝜔𝐶
) 𝐺𝑅.  This 

expression is a multiple of base period consumption, 𝐶0, where the multipliers are 𝐺 ≈ 1, 𝑅 

(values of which can be read off Table 2), and (
𝜔𝐻

𝜔𝐶
).  𝑅 specifies how the optimal WTP increases 

with untreated illness severity.  𝐺 reflects the growth in the value of QoL that results from 

consumption growth over time.  The ratio ⁡(
𝜔𝐻

𝜔𝐶
) illuminates how WTP changes with risk 

aversion in 𝑊(𝐻) and 𝑈(𝐶).   

3.2. Estimating the GRA-QALY 

The GRA-QALY associated with a technology that increases QoL by 𝐵 and survival by 

an average of 𝜇𝑝 is given by 𝐺𝑅𝐴-𝑄𝐴𝐿𝑌(𝜇𝑝, 𝐵) = {𝜇𝑝𝛿 + 𝑝1𝜙𝜇𝐵𝜖}.  This requires estimates of 

𝛿, the marginal rate of substitution between survival and QoL, and of 𝜖, the certainty-

equivalence ratio. 

3.2.1. Marginal rate of substitution between survival and QoL 

Recall the definition 𝛿 ≡
[𝜙𝐸(𝑊(𝐻1𝑠+𝐵))+(1−𝜙)𝑊(𝐻1𝑤)]

𝑊′(𝜇𝐻)
, which represents the ratio between 

the marginal utility of survival gains and the marginal utility of QoL improvement.  In 

equilibrium, this marginal rate of substitution will also satisfy 𝛿 =
𝑑𝐻

𝑑𝑝𝑆
, which measures the units 

of QoL that an individual will give up in exchange for a unit gain in survival probability.  Using 

this latter representation, 𝛿 can be recovered via standard time tradeoff (TTO) approaches to 

valuing different health states: specifically, one needs to estimate the rate of trade between 

survival and expected quality of life, holding consumption fixed.  TTO methods rely on the 

concept of compensating variation (see Figure 1a).  Consumers are given a choice between one 

fixed alternative (baseline survival probability and expected QoL) and another with less 

remaining survival probability but perfect health (QoL = 1).  They are asked to state what 
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survival probability they would give up to move from their current health condition to perfect 

health, thus representing WTP in the same way that Figure 1a considers.27 

To illustrate how a TTO study would estimate 𝛿, define the baseline expected QoL in the 

study as 𝐸(𝐻𝐵). Define the survey respondent’s “stated” change in the survival probability as 

|Δ𝑝𝑆|.  Based on the results of the TTO study design above, 𝛿 could be estimated as, 𝛿 =

1−𝐸(𝐻𝐵)

|Δ𝑝𝑆|
.   For example, suppose survey respondents were asked to consider end-stage 

osteoarthritis of the knee, which presents with 𝐻1𝑠 ≈ 0.75.⁡⁡We would then ask how much 

survival probability they would give up in exchange for restoring perfect QoL.  Suppose they 

state a willingness to reduce survival by 5 percentage points in exchange for this increase in 

QoL.  In this case, therefore, we would estimate 𝛿 =
1−𝐸(𝐻𝐵)

|Δ𝑝𝑆|
=

1−0.75

0.05
= 5.0.28 

As Figure 1 illustrates, 𝛿 varies with disease severity, and thus is essentially a disease-

specific parameter.  Health states involving high longevity but low QoL will likely result in 

lower values of 𝛿, because individuals in such states are more willing to trade away longevity in 

exchange for QoL.  As an example, suppose we surveyed respondents about severe Alzheimer’s 

disease rather than osteoarthritis, so that 𝐻1𝑠 ≈ 0.25.  The QoL loss is three times what it was in 

the osteoarthritis example.  Therefore, if diminishing marginal utility of QoL holds, we expect 

that respondents will give up more than three times the survival reduction they agreed to in the 

osteoarthritis case, or more than 3 ∗ 5% = 15% points of survival. 

3.2.2. Calibrating the certainty-equivalence ratio 

The certainty-equivalence ratio is defined as 𝜖 = {1 + [
1

𝜇𝐵𝜇𝐻
][−

1

2
𝑟𝐻
∗Δ𝜎2 +

1

6
𝜋𝐻
∗ 𝑟𝐻

∗ (
1

μH
) Δ(𝛾𝜎3) + ⋯ ]}.  Therefore, 𝜖 depends on consumer risk-attitudes (𝑟𝐻

∗ , 𝜋𝐻
∗ ) and 

differences in statistical risks between patients treated by 𝑇 and the relevant control group (𝐶).  

While 𝜖 is technically a disease-specific parameter, it can in practice be recovered quite readily 

                                                 

27  Earlier methods simply asked consumers for their estimated tradeoff value.  More modern approaches 

use discrete choice experiments to show subjects continuously modified pairs of choices until they reach the point of 

indifference.  This process is logically equivalent to  standard methods for selecting corrective lenses for eyeglasses, 

e.g. “Which do you prefer, A or B” with the pairs adjusted according to prior responses.  
28 For simplicity, we consider a deterministic example in which 𝜙 = 1 and 𝜎𝐻

2 = 𝜎𝐻+𝐵
2 = 0.  Stochastic 

cases would simply fold the relevant uncertainties into the problem.  E.g., one might ask, “suppose you have an X% 

chance of osteoarthritis,” or “suppose you have a Y% chance of mild osteoarthritis with QoL=0.85 and a 1-Y% 

chance of severe osteoarthritis with QOL=0.7,” and so on. 
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for each decision context.  First, risk attitudes over consumption are typically assumed to be 

constant and context-independent (Chetty, 2006; Noussair et al., 2013), and we would propose a 

similar approach to risk attitudes over health.  Second, the parameters 𝜇𝐵 and 𝜇𝐻 are already 

routinely estimated on a disease- and treatment-specific basis.  Finally, as we discuss below, 

changes in variance and skewness could be recovered from clinical trials or cost-effectiveness 

simulation models.   

Estimating risk-attitudes in health. 

To date, there are no estimates of relative risk-aversion and relative prudence over QoL 

or any measure of health.  Given the evident importance of risk preferences over health, we hope 

this deficiency will be remedied in the near future.  The current cost-effectiveness literature 

assumes 𝑟𝐻
∗ = 𝜋𝐻

∗ = 0.  As a placeholder, we suggest assuming that risk attitudes over QoL and 

consumption are similar and conducting sensitivity analyses that allow the ratio between the 

two⁡to vary.  In other words, the analyst can explore what happens if relative risk-aversion over 

QoL is X% higher or lower than relative risk-aversion over consumption, and so forth.   

Estimating variability in QoL benefits.   

The statistical parameters to calculate 𝛥𝜎2 and 𝛥(𝛾𝜎3) can be estimated from the data 

readily available in normal HTA studies, e.g., Randomized Controlled Trials (RCTs).  Such 

studies routinely measure average differences in QoL outcomes (𝜇𝐵) and the variance of these 

outcomes in treatment and control populations, in order to estimate standard errors of mean 

differences.  Thus, nearly all current HTA efforts have the data to incorporate the higher-order 

risk terms necessary for computing the certainty equivalence ratio, 𝜖.  To incorporate effects of 

changes in skewness will require (at a minimum) further data analysis to measure skewness of 

outcome distributions for alternative treatments and then their differences.  We leave to relevant 

experts (e.g., biostatisticians and statisticians) the proper study design and calculations for these 

parameter estimates.  We note, however, that if QALYs are not estimated in clinical trials, cost-

effectiveness studies will typically produce them via simulation models; in this case, the cost-

effectiveness researcher should estimate the variance and skewness in QoL benefits. 
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3.3. Consequences for CEA and HTA 

3.3.1. Implications for Cost-Effectiveness Thresholds 

GP assumed 𝑟𝐻
∗ = 0 and 𝜔𝐻 = 1, with the resulting value of QoL improvement 

approximately 𝐾 ≈ 𝐶0
1

𝜔𝐶
⁡, as long as 𝐶1 is sufficiently close to 𝐶0.  Once we allow for risk 

aversion over health, this approximation becomes 𝐾𝜔𝐻𝑅 ≈ 𝐶0
𝜔𝐻

𝜔𝐶
𝑅. 

Imposing the placeholder assumption that 
𝜔𝐻

𝜔𝐶
≈ 1, the cost-effectiveness threshold 

becomes 𝐾𝜔𝐻𝑅 ≈ 𝐶𝑅 .  For mild-severity diseases (where 𝑅 ≈ 1), this is approximately 𝐶
𝜔𝐻

𝜔𝐶
=

𝐶, well below common estimates in the current literature, which suggests 2𝐶 to 3𝐶 as 

appropriate values (Phelps, 2019a).  Therefore, our analysis suggests that the correct WTP 

threshold might fall for mild conditions, relative to current practice. 

However, for severe illnesses, the threshold might well be larger than current methods 

suggest, because the multiplier 𝑅 rises with illness severity.  For values of 𝑟𝐻
∗  meaningfully 

different from zero, R rises geometrically with illness severity (see Table 2). Instead of applying 

a single threshold 𝐾 to every illness condition, it will be necessary to evaluate the level of health 

for untreated patients in various health conditions, and to adjust the threshold as illustrated in 

Table 2.  

Using 𝑟𝐻
∗ = 1,

𝜔𝐻

𝜔𝐶
≈ 1, and using the diseases in Table 3 as examples, severe Alzheimer’s 

disease (𝐻1𝑠 ≈ 0.2, or ℓ∗ ≈ 0.8) calls for a threshold of 5 times annual consumption, pressure 

ulcers in nursing home residents (𝐻1𝑠 ≈ 0.35) calls for a threshold around 2.85 times annual 

consumption, acute lung injury (𝐻1𝑠 ≈ 0.6) calls for 1.67 times annual consumption, and peptic 

ulcers (𝐻1𝑠 ≈ 0.97) requires a threshold approximately the same as annual consumption.29   The 

severity gradient steepens as 𝑟𝐻
∗  increases, as Table 2 shows.  As more specific information 

becomes known about 
𝜔𝐻

𝜔𝐶
, these thresholds can be adjusted more precisely. 

Care must be taken to ensure objectivity in the evaluation of illness severity, and the 

associated computation of cost-effectiveness thresholds.  Both third-party payers and life 

sciences manufacturers benefit from changes in these severity estimates, but in opposite 

directions.  Similar tables of severity are in widespread use in hospital payment systems in the 

                                                 

29 For 𝑟𝐻
∗ = 1, these values can all be calculated from the perpetuity value given previously.  
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United States, such as the Diagnosis-Related-Groups (DRG) system in Medicare.  Creating such 

a table for general use would seem relatively straightforward.  Building upon registries of cost-

effectiveness analyses – e.g., the Tufts Cost-Effectiveness Analysis Registry, used for the 

examples in Table 3 – would seem a natural way to proceed. 

3.3.2. The Consequences of Permanent Disability 

Cost-effectiveness thresholds will also need to vary for those with permanent disability.  

To pursue this point, we now relax the assumption that 𝐻0 = 1.  Consider a permanent disability 

that reduces 𝐻0 to some other level.  Recall from Equation (1) that 𝐾 ≡
𝑈(𝐶1)

𝑈′(𝐶0)
[
1

𝐻0
]. When we 

allow for 𝐻0 < 1, 𝐾𝜔𝐻𝑅 =
𝑈(𝐶1)

𝑈′(𝐶0)
[
1

𝐻0
] 𝜔𝐻𝑅.  Relying on the arguments above, this can be 

rewritten as 𝐾𝜔𝐻𝑅 = 𝐺 [
𝜔𝐻

𝜔𝐶
] 𝑅 [

𝐶0

𝐻0
].  Assuming that consumption growth is approximately zero, 

𝐺 can be ignored, and 𝐾𝜔𝐻𝑅 ≈ [
𝜔𝐻

𝜔𝐶
] 𝑅 [

𝐶0

𝐻0
].  The value-per-QALY measure is a multiple of 

consumption units per QALY, 
𝐶0

𝐻0
, where [

𝜔𝐻

𝜔𝐶
] 𝑅 is the multiplication factor.   

To keep the key issue in focus, we assume for the moment that [
𝜔𝐻

𝜔𝐶
] remains constant 

across health and consumption levels; for instance, this would be true if both 𝑈(𝐶) and 𝑊(𝐻) 

exhibited constant relative risk aversion.  Under this assumption, permanent disability increases 

the cost-effectiveness threshold for two reasons.  First, since 𝐾𝜔𝐻𝑅 ≈ [
𝜔𝐻

𝜔𝐶
] 𝑅 [

𝐶0

𝐻0
], reductions in 

𝐻0 proportionally inflate WTP by reducing the denominator.  Second, permanent disability also 

increases 𝑅.  To see why, return to equation (19), which defines 𝑅.  Notice that the parameter ℓ∗ 

representing illness severity is normalized by 𝐻0.  As 𝐻0 shrinks from 𝐻0 = 1, therefore, ℓ∗ 

increases, and the Taylor series for 𝑅 grows.   

To give an example of the combined magnitudes of these effects, suppose that a 

permanent disability reduces 𝐻0 from 1 to 0.8.  Now introduce an acute illness that has ℓ∗ = 0.4 

when 𝐻0 = 1, but that results in ℓ∗ = 0.5⁡ when 𝐻0 = 0.8.  We can readily calculate the effect of 

disability by assuming CRRA for 𝑊(𝐻). Then, the perpetuity value of R increases from 
1

1−0.4
=

1

0.6
= 1.667 to  

1

1−0..5
=

1

0.5
= 2. This disability increases 𝐾𝜔𝐻𝑅 by a factor of [

2

1.667
] [

1

0.8
] = 1.5.  

This effect expands geometrically as the disability severity increases (𝐻0 falls).   
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Through this analysis, introducing risk aversion in QoL resolves a long-standing dilemma 

in the practice of CEA, wherein people with permanent disabilities are disfavored.  Indeed, the 

Affordable Care Act explicitly prohibits using any CEA model that discriminates against 

disabled persons.  Several “workaround” efforts have emerged to attempt to repair this problem 

(Basu et al., 2020; Nord et al., 1999), altering QALY equivalents received by persons with 

permanent disability.  Our approach shows that this may not be necessary.  Our model of value 

does not discriminate against disabled persons when valuing QoL improvements.  Rather, it adds 

value to curing their disabilities and makes it more (not less) valuable to cure them of any acute 

illness.   

Some complexities continue to arise in the valuation of survival gains for the 

permanently disabled.  Diminishing returns to QoL gains mean that rational consumers demand 

more QoL in exchange for a given gain in survival, when QoL falls.  Our model then implies that 

a unit change in survival is worth fewer QoL units to a disabled person. Theoretically, this is a 

fairly direct and uncontroversial implication of diminishing returns to QoL. 

To see this precisely, from equation (14), the component valuing survival gains is 

𝐾𝜔𝐻𝑅𝜇𝑝𝛿.  Looking at Equation (13) that defines 𝛿, define 𝐷 =
[𝜙𝐸(𝑊(𝐻1𝑠+𝐵))+(1−𝜙)𝑊(𝐻1𝑤)]

𝑊(𝐻0)
, i.e. 

the change over time in utility from health-related QoL.  Further, to emphasize the role of 

disability, consider the case where 𝜙 = 0, eliminating acute illnesses from the analysis.  Now 

define 𝐻1𝑊 = 𝐻0 − 𝑑, where 𝑑 is the QoL loss from disability.   

A bit of algebraic manipulation shows that 
𝛿

𝐻0
=

𝐷

𝜔ℎ𝑅
.⁡ Therefore, the expression for the 

value of survival improvement—𝐾𝜔𝐻𝑅𝛿𝜇𝑝—reduces to 𝐾𝐷𝜇𝑝  In the general evaluation of 

GRA-QALYs, the concavity effects of 𝑊(𝐻) are removed when evaluating the deterministic 

components of life expectancy gains.  This is intuitively plausible, since we have assumed risk 

neutrality in survival.  With these simplifying assumptions that remove acute illness from the 

picture, the WTP for survival becomes: 

 𝐾𝐷 = 𝐾
𝑊(𝐻0−𝑑)

𝑊(𝐻0)
 (22) 

WTP for survival declines as disability worsens.  This is wholly expected, as portrayed in 

Figure 1a.  People with lower QoL would be more willing to give up LY to gain QoL.  

Preferences change as disability alters health status. 
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As logical as this conclusion is, decision makers might wish to remove permanent 

disability from evaluation of technologies that extend life expectancy.  For the sake of 

consistency, this would then imply that the WTP for QoL improvements is the same for the 

permanently disabled as the non-disabled, thus discarding our earlier conclusion at Equation (8) 

that value of QoL gains rises with disability severity.  The ethical question becomes whether or 

not to acknowledge the higher relative value of QoL improvements compared to survival gains 

among the disabled.  The answer to this question lies beyond the scope of economic analysis.   

3.4. Summary of Parameters to be Estimated 

Equation 17 provides the generalized ICER decision rule for our context: 

 
Δ𝐶0

𝜇𝑝𝛿+𝑝1𝜙𝜇𝐵𝜖
≤ 𝐾𝜔𝐻𝑅  

Leveraging the approximations in the prior section, we can rewrite this as: 

 
Δ𝐶0

𝜇𝑝𝛿+𝑝1𝜙𝜇𝐵𝜖
≤ [

𝜔𝐻

𝜔𝐶
] 𝑅 [

𝐶0

𝐻0
] (23) 

The parameters, Δ𝐶0, 𝜇𝑝, 𝑝1, and 𝜇𝐵 are routinely estimated in the current literature, and the 

probability of illness, 𝜙, is also widely available in burden of illness estimates.  Furthermore, 𝐶0 

and 𝐻0 can be taken from a variety of existing sources on income, consumption, and QoL for a 

subgroup of interest.  This leaves 𝛿, 𝜖, 
𝜔𝐻

𝜔𝐶
, and 𝑅 to be estimated.   

In summarizing the estimation approaches, we suggest restricting attention to the case of 

HARA utility, which covers a wide variety of common utility functions.  We also suggest 

borrowing from the empirical literature on consumption risk-aversion the assumption that 

relative risk-aversion over health, 𝑟𝐻
∗ , is roughly constant empirically.  This leads to the 

following estimation approaches. 

𝒓𝑯
∗ , 𝝅𝑯

∗ : Relative risk attitudes over health need to be estimated, if we are to measure 

accurately the costs and benefits of risky health outcomes.  These can be estimated using 

methods from the happiness economics literature (Easterlin, 2004) or discrete choice 

experiments (Dohmen et al., 2011; Ebert and Wiesen, 2011, 2014; Eckel and Grossman, 2008; 

Eisenhauer and Ventura, 2003; Harrison et al., 2007; Meyer and Meyer, 2006; Noussair et al., 

2013).  As an interim step, we recommend using the corresponding risk attitudes over 

consumption as placeholders, with appropriate sensitivity analysis around this benchmark. 
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𝑹: Under CRRA utility, 𝑅 depends entirely on 𝑟𝐻
∗ .  Thus, once 𝑟𝐻

∗  is known, so is 𝑅.  

More general estimates are possible when relative prudence, 𝜋𝐻
∗ , is also known, according to 

Equation 19 and with assumptions about whether 𝑟𝐻
∗  is constant, increasing or decreasing in 𝐻. 

𝝎𝑯

𝝎𝑪
:  Under HARA utility and constant relative risk-aversion, 𝜔𝐻 depends on 𝑟𝐻

∗  and the 

HARA utility parameter 𝛾𝐻.  Moreover, in this case, 𝛾𝐻 depends on 𝑟𝐻
∗  and 𝜋𝐻

∗  (see footnote 25).  

Analogous results hold for 𝜔𝐶.  Therefore, 
𝜔𝐻

𝜔𝐶
 is identified as soon as estimates of 𝑟𝐻

∗  and 𝜋𝐻
∗  are 

in hand. 

𝝐: The certainty-equivalence ratio depends on relative risk preferences, 𝑟𝐻
∗  and 𝜋𝐻

∗ , along 

with 𝜇𝐵, 𝜇𝐻, Δ𝜎2, and Δ(𝛾𝜎3).  As discussed earlier, the latter two parameters must be estimated 

in randomized trials or in cost-effectiveness simulation models that predict QoL improvements. 

𝜹: The marginal rate of substitution between longevity and QoL likely varies with disease 

severity, by the logic of Figure 1.  As discussed in Section 3.2.1, it can be recovered via time 

trade-off survey methods implemented in relevant patient populations. 

4. CONCLUSIONS 

Cost-effectiveness analysis has become one of the most successful economic methods in 

real-world applications to evaluate medical technologies, and its use continues to expand. 

However, standard CEA frameworks fail to adequately account for the role of risk aversion in 

QoL and attendant uncertainty in treatment effects.  This can lead to misallocation of resources 

by health insurers and/or health care systems that rely on it.  We develop a relatively 

straightforward and tractable way for analysts and real-world decision makers to account for 

these limitations.  While several new parameters are needed, once these estimates are in place, 

our method is no more taxing to carry out than current approaches. 

How often will our generalized methods matter?  Our calibration analysis provides some 

insight.  Momentarily ignoring changes in uncertainty of treatment outcomes, cost-effectiveness 

decision thresholds should be about 5 times higher for severe Alzheimer’s disease than for peptic 

ulcer disease.  Currently, these and every other disease are treated uniformly.  These adjustments, 

of course, vary with the degree of risk-aversion over health, 𝑟𝐻
∗ .  In addition, as we discussed, 

treatments with highly variable outcomes will have their values reduced from current levels.   
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Our analysis has implications for both public-sector and private-sector payers.  Public-

sector payers would benefit from more accurate assessments of value to avoid setting prices that 

are too high or low from the perspective of encouraging efficient innovation.  Private-sector 

payers could use our approach to match their coverage and reimbursement decisions more 

closely to the preferences of their beneficiaries.  Future research ought to consider how to 

aggregate our representative consumer model into a payer population of heterogeneous types.   

These issues regularly appear in real-world coverage determinations and other policy 

choices affecting people’s access to various healthcare innovations.  These appear most clearly in 

decision processes of the British National Health Service and NICE.  While they have an 

announced CEA threshold of ₤20,000 to ₤30,000 per QALY, they have formal exceptions for 

end of life care, rare diseases, and other circumstances.  A separate “Cancer Fund” was 

established in 2011 to provide access to new cancer drugs that did not meet NICE thresholds 

(Chambers et al., 2020).  These and related “adjustments” signal the inadequacy of the current 

model, wherein one threshold 𝐾 is applied to all diseases.  Our generalized model makes it 

abundantly clear why that approach is fundamentally flawed.  Severity of illness adjustments are 

necessary to align decision thresholds with preferences of risk-averse people.  

Finally, we note that these results could help to focus R&D efforts and guide design of 

new technologies in beneficial ways.  Different diseases have health consequences varying from 

relatively small to very large.  Interventions that affect the lower end of severity produce less 

total expected utility gain than those treating patients with the most severe disease, holding 

constant the magnitude of average improvement (𝜇𝐵).  A properly designed reimbursement 

system would alter incentives towards assisting those most-afflicted by illness or injury, whether 

through chronic disability or acute illness.  We believe that such an approach will improve 

population health efficiently and humanely.  
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BOX A:   THREE WAYS TO INTERPRET PRUDENCE AND TEMPERANCE 

Most economists are familiar with the standard measure of risk aversion (Arrow, 1965; 

Pratt, 1964), but less so (perhaps wholly unfamiliar) with the higher-order terms of prudence and 

temperance.  We discuss these further here.  

1.  Rates at which absolute and relative risk aversion change.  Consider the common 

question of whether absolute risk aversion is constant (CARA), decreasing (DARA) or increasing 

(IARA).  The economics literature widely assumes that utility is DARA (Gollier, 2001).  In parallel 

comes the question of whether relative risk aversion is constant (CRRA), increasing (IRRA) or 

decreasing (DRRA).  Here the literature is less settled (Meyer and Meyer, 2006).   Where relative 

prudence is 𝜋𝐶
∗ = −𝐶(

𝑈′′′(𝐶)

𝑈′′(𝐶)
), Appendix 7.3 proves that:  

If (𝜋∗ − 𝑟∗) = 1  then utility is CRRA,  

 (𝜋∗ − 𝑟∗) > ⁡1 then utility is IRRA, 

  (𝜋∗ − 𝑟∗) < ⁡1 then utility is DRRA. 

Concurrently, since 𝜖(𝑟,𝑀) = 𝜖(𝑟∗, 𝑀) − 1, 

If 𝜋∗ = 𝑟∗⁡  then utility is CARA, 

  𝜋∗ > 𝑟∗     then utility is DARA, 

  𝜋∗ < 𝑟∗    then utility is IARA. 

Similar relationships hold between 𝜋∗ and relative temperance, 𝜏∗ ≡ −𝐶(
𝑈′′′′(𝐶)

𝑈′′′(𝐶)
).   

As a useful benchmark, for iso-elastic utility where 𝑟∗ = 𝛾, we have that 𝜋∗ = 𝛾 + 1, 𝜏∗ =
𝛾 + 2,……  For example, when 𝑈(𝐶) = ln⁡(𝐶), 𝑟∗ = 1, 𝜋∗ = 2, 𝜏∗ = 3,… 

2.  Savings Behavior.  In his pioneering work on the concept, Kimball (1990) defines 

prudence as “the sensitivity of a decision variable to risk.”  An individual with positive prudence 

will respond to increases in the variance of future income by saving more today, known as 

“precautionary savings.”  Similarly, for 𝜏 ≡ −
𝑢′′′′(𝑌𝑇)⁡

𝑢′′′(𝑌𝑇)
 (Kimball, 1990, 1992),  individuals with 

positive temperance seek to moderate their total exposure to risk (Kimball, 1992).  In risk aversion 

in QoL, this involves investment in reductions of future risk (e.g., diet, smoking cessation). 

3.  Mean-Preserving Spreads in Risk.  The degree of absolute risk-aversion measures a 

consumer’s distaste for mean-preserving spreads in the distribution of consumption (Rothschild and 

Stiglitz, 1970).  As Eeckhoudt et al. (1995) show, risk-averse but prudent people dislike mean-

preserving spreads, but if they must accept one, they prefer that they occur in positive rather than 

negative outcomes.  Prudence represents the strength of their preferences in this respect (Eeckhoudt 

et al., 1995).  This links directly to skewness of outcomes’ distributions. 

Finally, temperate, prudent, and risk-averse people dislike mean-preserving spreads, prefer 

that any such spreads apply to more positive outcomes, but derive diminishing marginal utility from 

successive rightward shifts of mean-preserving spreads of positive outcomes (Eeckhoudt et al., 

1995).   This links to kurtosis, the “fatness” of tails of distributions compared with normal 

distributions. 
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BOX B: Summary of Parameter Definitions 

𝐻0 =  Health in base period 

𝐻1𝑤 = Health in period 1, no illness 

𝐻1𝑠 = Health in period 1, sick 

𝜙 =  probability of illness in period 1 

𝑝1 = probability of survival to period 1 

𝜇𝐻 =  mean health level in sick state (0 = death) 

𝜎𝐻
2 = variance of health in sick state 

𝛾1𝐻 = Pearson skewness of health in sick state 

𝜇𝑝 =   mean survival benefit (non-stochastic) 

𝜇𝐵 =   mean QoL treatment benefit 

𝜎𝐵
2 = variance of treatment benefit 

𝛾1𝐵 = Pearson skewness of treatment benefit 

𝑟𝐻
∗  = relative risk aversion in health 

𝜋𝐻
∗  = relative prudence in health  

𝜎𝐻+𝐵
2 = variance of treated patients 

𝛾𝑆+𝐵 = Pearson skewness for treated patients 
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6. TABLES 

Table 1: Summary of variance and skewness effects on economic welfare 

 Δσ2 > 0 Δσ2 < 0 

Δ𝛾1 > 0 

Uncertain 

Consumer dislikes 

higher variance but 

values higher skewness 

Good 

Consumer values 

lower variance and 

higher skewness 

Δ𝛾1 < ⁡0 

Bad 

Consumer dislikes 

higher variance and 

lower skewness 

Uncertain 

Consumer values 

lower variance but 

dislikes lower 

skewness 

   

 

Table 2: R-Multipliers for alternative values of 𝒓𝑯
∗  and 𝓵∗. 

𝒓𝑯
∗

 

𝓵∗ 0 0.25 0.5 0.7 0.8 0.9 1 1.1 1.2 1.3 1.5 

0 1 1 1 1 1 1 1 1 1 1 1 

0.1 1 1.03 1.05 1.08 1.09 1.1 1.11 1.12 1.13 1.15 1.17 

0.3 1 1.09 1.2 1.28 1.33 1.39 1.43 1.48 1.53 1.59 1.71 

0.5 1 1.19 1.41 1.62 1.74 1.87 2 2.14 2.3 2.46 2.83 

0.7 1 1.35 1.83 2.32 2.62 3.01 3.33 3.76 4.24 4.78 6.09 

0.9 1 1.78 3.15 5.01 6.29 7.91 9.95 12.51 15.73 19.79 31.2 

 

Notes: These are estimates from a 50-term Taylor Series expansion.  They converge rapidly for values of ℓ∗ < 0.85 

and have small downward bias for the row for ℓ∗ = 0.9. For example, for rH
∗ = 1, the infinite series value is 10.  All 

relative risk aversion measures are constant, so 𝜋∗ = 𝑟∗ + 1, 𝜏∗ = 𝑟∗ + 2,… 
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Table 3: Baseline QoL levels for a set of example diseases. 

 

Notes: Example diseases are taken from the Tufts Cost-Effectiveness Analysis Registry.   
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7. APPENDIX  

Here, we discuss the convergence properties of Taylor Series expansions in our application. 

7.1. Convergence of Taylor Series for HARA Utility 

Proposition 1:  Suppose the health index has support on the interval [0,1], and the utility 

function takes the form 𝑉(𝑐, 𝐻) = 𝑈(𝑐)𝑊(𝐻), where 𝑊 belongs to the class of HARA 

(hyperbolic absolute risk-aversion) utility functions. If 𝐻 is a random variable with support [0,1] 

and mean 𝜇0, then the Taylor expansion of 𝑊(𝐻) around 𝜇0 converges. 

Proof:  Any utility function in the HARA family can be written as 𝑈(𝐻) =

1−𝛾

𝛾
(
𝛽𝐻

1−𝛾
+ 𝜂)

𝛾

 (Merton, 1971).  The Taylor expansion around the mean of 𝐻, 𝜇0, takes the form: 

𝐸𝑈(𝐻) ≈ 𝑈(𝜇0) + 𝑈′(𝜇0)𝐸(𝐻 − 𝜇0)) +
1

2!
𝑈′′(𝜇0)𝐸(𝐻 − 𝜇0)

2 +
1

3!
𝑈′′′(𝜇0)𝐸(𝐻 − 𝜇0)

3 +⋯ 

Since 𝐻 has support on the unit interval, it is evident that lim
𝑛→∞

𝐸(𝐻−𝜇0)
𝑛+1

𝐸(𝐻−𝜇0)𝑛
= 0.  Moreover, 

defining the nth derivative of 𝑈 as 𝑈(𝑛), we can write: 

𝑈(𝑛+1)

𝑈(𝑛)
=
𝛽𝑛+1(𝛾 − 2)…

𝛾 − 𝑛
(1 − 𝛾)𝑛−1

(
𝛽𝜇0
1 − 𝛾 + 𝜂)

𝛾−(𝑛+1)

𝛽𝑛(𝛾 − 2)…
(𝛾 − (𝑛 − 1))
(1 − 𝛾)𝑛−2

(
𝛽𝜇0
1 − 𝛾

+ 𝜂)
𝛾−𝑛

=
𝛽(𝛾 − 𝑛)

(
𝛽𝜇0
1 − 𝛾

+ 𝜂) (1 − 𝛾)
⁡⁡⁡⁡ 

Thus, L’Hôpital’s rule implies that lim
𝑛→∞

𝑈(𝑛+1)

(𝑛+1)𝑈(𝑛) = lim
𝑛→∞

𝛽(𝛾−𝑛)

(𝑛+1)(
𝛽𝜇0
1−𝛾

+𝜂)(1−𝛾)
=

−𝛽

(
𝛽𝜇0
1−𝛾

+𝜂)(1−𝛾)
.  

Since 𝛽 and 𝛾 are both finite scalars, since 0 ≤ 𝜇0 ≤ 1, and since lim
𝑛→∞

𝐸(𝐻−𝜇0)
𝑛+1

𝐸(𝐻−𝜇0)𝑛
= 0, it follows 

that: 

lim
𝑛→∞

𝑈(𝑛)𝐸(𝐻 − 𝜇0)
𝑛+1

(𝑛 + 1)𝑈(𝑛+1)𝐸(𝐻 − 𝜇0)𝑛
= 0 

This proves the claim. 

7.2. Assessing Convergence of the Taylor Series Expansion 

Next, we assess the convergence characteristics of our Taylor Series expansion using 

four-parameter Beta distributions with varying skewness and kurtosis.  We calculated the 

absolute value of the second, third and fourth-order Taylor series terms to compare various 

technologies (𝑇) with a common control (𝑆), where the control intervention always has a four 

parameter Beta distribution with parameters 𝛼 = 2, 𝛽 = 2 and support that is 0.5 units wide.  
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Similarly, the 𝑇 distributions feature 𝛼 = 2 and vary 𝛽 between 5 and 10 in increments of 1, with 

0.5-unit width of support.  Each increase in 𝛽 increases the skewness and alters the kurtosis in 

complex ways (since 𝛽 appears in both the numerator and denominator of the expression for 

kurtosis).  

We characterize speed of convergence by calculating ratios between the 3rd-order and 2nd-

order Taylor Series terms, and between 4th-order and 2nd-order Taylor Series terms.  Our 

simulations illustrate that the speed of convergence varies with the average level of health in the 

untreated sick state (𝜇𝐻).   

Figure A-2a shows the ratio of the 3rd to the 2nd order terms for distributions of T with 

successively increasing skewness (𝛽 ranging from 5 to 10 in increments of 1, with the lowest 

skewness in the bottom line, increasingly for higher lines).   

As predicted, convergence is always faster when average health in the untreated sick state 

is higher.  In Figure A-2a (the ratio of 3rd to 2nd order terms) the ratio is about 0.32 for 𝜇𝐻 =

0.1,⁡rapidly falling below 0.15 as 𝜇𝐻 exceeds 0.2.   

Figure A-2b similarly graphs the ratio of the 4th order (kurtosis-related) term to the 2nd 

order term.  There, the lines reverse in sequence, with the smallest 𝛽 parameters in the higher 

lines. The ratios are all below 0.75 and rapidly fall below 0.17 for values of 𝜇𝐻 exceeding 0.2.  

These simulations demonstrate a reasonably rapid rate of convergence with these specific 

parameters, particularly when we limit the analysis to values of  𝜇𝐻 ≥ 0.2.30  Since QALY 

values below 0.2 correspond to extremely poor health states, e.g., for a person with an 

untreatable and highly aggressive cancer, this is a helpful result. 

Figure A-2 also demonstrates that statistical moments produce uncertain effects on speed 

of convergence.  In our four-parameter beta distributions, higher positive skew (larger values of 

𝛽) results in slower convergence for a third-order Taylor expansion, but faster convergence for a 

                                                 

30 The width of the support interval affects  

Figure A-2.  As the support interval narrows for any 4-parameter Beta distribution, the variance falls with 

the square of that interval’s width. Since  

Figure A-2a contains  𝜎3 in the calculations of the 3rd moment (and similarly Figure 5b contains  𝜎4 to 

calculate the 4th moments), the ratios shown in these figures become smaller as the support interval narrows.  The 

effect is linear in the support width in  

Figure A-2a and quadratic in  

Figure A-2b.  The most pessimistic convergence would occur for support intervals near 1.0.   
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fourth-order expansion.  Nonetheless, our calculations illustrate how practitioners can readily 

calculate speed of convergence using their specific statistical moments and parameter values. 

Sensitivity analyses (not shown) identify situations where the higher-order terms have 

ratios of the 3rd to 2nd order terms exceed 1.0, indicating slower convergence.  The most 

important of these cases occurs when the two distributions have nearly identical skewness, so 

that their difference is very small, and hence the ratio of the 2nd order to the 3rd order term 

relatively large.  Even in these cases, it requires a relatively high degree of variance, which 

further increases the 3rd and 4th moment values.  A similar phenomenon occurs when the two 

distributions have nearly identical values of kurtosis.   

Figure A-2. Speed of convergence in Taylor Series approximation to value of technology. 

 Figure A-2a      Figure A-2b 

Notes: These figures demonstrate the rate of convergence of the Taylor series by taking 

the ratio of the 3rd-order to the 2nd-order Taylor Series terms (Figure A-2a) and the 4th-order to 

the 2nd-order terms (Figure A-2b).  Smaller ratios, and y-axis values, demonstrate faster 

convergence.  In both panels, the control group (S) outcomes have Beta distribution parameters 

of 𝛼 = 2; 𝛽 = 4.  In Figure A-2a, the topmost curve has the greatest skewness (𝛼 = 2; 𝛽 = 10), 

with the value of 𝛽 declining (serially) in the lower curves by one unit (10, 9, 8, 7, 6, 5) holding 

𝛼 constant at 2.  Therefore, the skewness declines as one moves from the top to the bottom 

curves.  In Figure A-2b, the sequence is reversed (following the formula for kurtosis in the 4-

parameter Beta distribution).  Apart from this difference, Figure A-2a and Figure A-2b share a 

similar structure. 
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7.3. Relative Risk Preferences and Income 

Consider the basic question of how 𝑟∗ changes with consumption—whether 𝑟∗ is IRRA, 

CRRA or DRRA.   And, consider the related question of how 𝑟𝐻
∗  changes with health.  Since the 

analysis for both these cases is identical, we will present only the case of 𝑟𝐶
∗ and consumption.  

Define the elasticity of 𝑟∗ with respect to consumption as 𝜖(𝑟𝐶
∗, 𝐶).  Following Kimball (1999): 

 𝑟𝐶 =⁡−
𝑈′′

𝑈′
 and 𝑟𝐶

∗ = 𝑟𝐶 

 (24) 

 𝜋𝐶 =⁡−
𝑈′′′

𝑈′′
, and 𝜋C

∗ = 𝜋𝐶 (25) 

Here, 𝑟𝐶
∗ is relative risk aversion and 𝜋𝐶

∗  is relative prudence, as defined by Kimball (1993).  

The derivative of 𝑟𝐶
∗ with respect to 𝐶 is: 

 
𝑑𝑟𝐶

∗

𝑑𝐶
= −

𝑈′′

𝑈′ + 𝐶[
[𝑈′𝑈′′′−𝑈′′𝑈′′]

[𝑈′𝑈′]
] = 𝑟𝐶 + 𝐶 (

𝑈′′′

𝑈′ + 𝑟𝐶
2) (26) 

Hence the elasticity of 𝑟𝐶
∗ with respect to 𝐶 is: 

 𝜖(𝑟𝐶
∗, 𝐶) = ⁡1 + 𝐶 [

𝑈′′′

𝑈′′ + 𝑟𝐶] = 1 − (𝜋𝐶
∗ − 𝑟𝐶

∗) (27) 

or 

 𝜖(𝑟𝐶
∗, 𝐶) = ⁡1 − (𝜋𝐶

∗ − 𝑟𝐶
∗) (28) 

From this, we can infer that if: 

 (𝜋𝐶
∗ − 𝑟𝐶

∗) = 1, then utility is CRRA (29) 

 (𝜋𝐶
∗ − 𝑟𝐶

∗) > 1, then utility is DRRA (30) 

 (𝜋𝐶
∗ − 𝑟𝐶

∗) < 1, then utility is IRRA (31) 

Similarly, since 𝜖(𝑟𝐶 , 𝐶) = 𝜖(𝑟𝐶
∗, 𝐶) − 1, if: 

 𝜋𝐶
∗ = 𝑟𝐶

∗,⁡then utility is CARA (32) 

 𝜋𝐶
∗ > 𝑟𝐶

∗, then utility is DARA (33) 

 𝜋𝐶
∗ < 𝑟𝐶

∗, then utility is IARA (34) 
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Condition (34) is widely considered as empirically implausible, all known estimates of  

𝜋𝐶
∗ ⁡and⁡𝑟𝐶

∗ indicate that utility is DARA (condition (33)).   

An identical relationship exists between relative prudence and relative temperance when 

the utility function is differentiable four times and similarly for all higher-order ratios of utility-

function derivatives.  Again following Kimball (1999), define relative temperance as  

 𝜏𝐶
∗ = 𝐶

𝑈′′′′

𝑈′′′  (35) 

 𝜖(𝜋𝐶
∗ , 𝐶) = ⁡1 − (𝜏𝐶

∗ − 𝜋𝐶
∗) (36) 

Following the same method used to derive Equation (27), we can solve Equation (36) for 

𝜏𝐶
∗ : 

 𝜏𝐶
∗ = 1 + 𝜋𝐶

∗ − 𝜖(𝜋𝐶
∗ , 𝐶) (37)  

Thus if 𝜋𝐶
∗  is constant (i.e., 𝜖(𝜋𝐶

∗ , 𝐶) = 0) then 𝜏𝐶
∗ = 1 + 𝜋𝐶

∗ .  The same relationships hold for all 

higher-order risk parameter similar to those defined by Kimball (1999).   
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