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1 Introduction

Market design research usually focuses on designing the best possible market mechanism for a given
problem.1 This paper concerns a different, complementary, question. Suppose researchers have already
designed an attractive mechanism—will it actually get adopted?

The context of the study is market design for financial exchanges. Financial exchanges are clearly
important—they serve vital roles in the global economy generating price signals, helping companies
and governments raise capital, and sharing risk. Stock exchanges alone execute over $200 trillion
of transaction volume per year. Recent research has shown that the predominant financial exchange
design used around the world, called the continuous limit order book, has an important design flaw. By
treating time continuously, the market design gives rise to a phenomenon called “latency arbitrage,”
or arbitrage rents from symmetrically disseminated public information—rents that in principle are not
supposed to exist in an efficient market, as opposed to the rents from asymmetric private information
that are at the heart of classic models of market microstructure (Kyle, 1985; Glosten and Milgrom,
1985). These latency arbitrage rents, in turn, cause a socially wasteful arms race for speed and harm
market liquidity. Latency arbitrage races are currently measured in millionths and even billionths of
seconds, and have been estimated as generating about 20% of all trading volume and harming liquidity
by from about 17% to 33% depending on the measure used. A simple (in theory) market design reform,
that puts time into small discrete increments and batch processes trade requests that arrive at the
“same time,” would solve the problem.2

To date, while there has been a fair amount of innovative activity that is in some way related to
latency arbitrage, it is fair to say that large incumbent financial exchanges have not embraced the new
market design reform.3 This paper tries to understand how financial exchanges compete and how this
shapes their incentives to innovate—and ultimately whether exchanges’ private incentives for market
design innovation align with what is socially efficient. Will the market fix the market?

As is well known in the fields of industrial organization and innovation economics, there is no
one answer to whether private and social innovation incentives align. The usual case, of course, is
that if there is a large inefficiency in a market, and a private-sector innovation could address the
inefficiency, then the private sector will innovate in a way that aligns with social welfare (Griliches,
1957). But there are many cases where private and social innovation incentives might diverge (Arrow,
1962; Nordhaus, 1969; Hirshleifer, 1971; Mankiw and Whinston, 1986). We will ultimately find that
private and social incentives to innovate diverge here as well, for a mix of classical and novel reasons.

To analyze our questions, we build a model that is closely tailored to the institutional details of
modern electronic financial exchanges. Some aspects of the model are tailored specifically to regula-

1For recent surveys of the market design literature, see Roth (2018), Milgrom (2021) and Agarwal and Budish (2021).
2See Budish, Cramton and Shim (2015) for the definition of latency arbitrage and the market-design reform of frequent

batch auctions. Another market-design reform that can solve the latency arbitrage problem is an asymmetric speed bump;
see Baldauf and Mollner (2020). See Aquilina, Budish and O’Neill (2022) for empirical magnitudes of latency arbitrage.
See Indriawan, Pascual and Shkilko (2022) for an empirical comparison of continuous- and discrete-time trading.

3See discussion of innovation activity to date in Section 4.1 and Appendix H.
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tions for the U.S stock market, which is both a canonical financial market and has been at the heart
of the controversy around latency arbitrage. The players in our model are exchanges and three kinds
of market participants: trading firms, informed investors and uninformed investors. Exchanges make
a market design decision and set prices—prices for trading per se and prices for what we call speed
technology. The trading firms decide whether to pay for speed technology and the market participants
play a trading game. Two important details of the trading game are that stocks are fungible across
exchanges (due to regulation called Unlisted Trading Privileges), and market participants are able to
engage in frictionless search across exchanges (due to regulations such as Regulation National Mar-
ket System in the U.S.). As will become clear, these details make stock exchange competition very
different from other familiar forms of platform competition.

We start by studying equilibrium in the subgame where all exchanges choose the status quo market
design (“Continuous”). We find that trading fees are perfectly competitive but that exchanges are able
to extract rents from speed technology. The reason why trading fees are competitive is that frictionless
search leads to Bertrand-like competition over the net price of a trade, and hence on trading fees. This
stands in contrast to many other platform markets, which have network effects and supra-competitive
transaction fees. The intuition for why speed technology fees are not competitive is that, if there is a
speed-sensitive trading opportunity on a particular exchange, only that exchange’s speed technology
is useful for the opportunity. For example, Nasdaq speed technology is not useful for latency-arbitrage
opportunities on the New York Stock Exchange, and vice versa. This creates market power. These
outcomes of our theory model align with empirical facts that we document about trading fees and
speed-technology revenues. The average trading fee in the U.S. stock market is just $0.0001 per-share
per-side, or just 0.0001% of a $100 share of stock.4 Further, speed technology revenues are several
times larger than trading fee revenues and have been growing rapidly in the modern electronic era.

We then study equilibria in subgames where one or more exchanges use a market design that
addresses latency arbitrage (“Discrete”). We obtain two sets of results. If there is a single exchange
that adopts Discrete, then this exchange would win share and be able to charge supra-competitive
trading fees, in any equilibrium. The same frictionless search that caused trading fees to be brutally
competitive under the status quo enables an exchange with a better market design to get off the
ground in any equilibrium. This too is in sharp contrast to many other platform settings, where
there are chicken-and-egg equilibria in which the new market design can stay stuck with zero share,
even if in principle it is better designed. Moreover, the exchange can charge a supra-competitive
fee commensurate with the latency-arbitrage savings it creates. Intuitively, the innovator is getting
compensated for solving the problem, as in the classic case where private and social incentives align.

However, if multiple exchanges use the new market design—as would be the case if there were a
regulatory mandate or if the initial innovator is imitated—then trading fees become perfectly compet-

4This is significantly different from other platform markets with even modest search frictions. For example, internet-
enabled platform markets for items such as tickets, ride-sharing, food delivery, and vacation rentals commonly have fees
of about 10-30%, or about 100,000 times higher on a percentage basis. While there are many reasons why this comparison
is not apples-to-apples (e.g., fraud costs), the contrast is nonetheless striking.
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itive again, like under the status quo, but now exchanges no longer capture speed technology rents.
Therefore, all exchanges are worse off than under the status quo.

This set of results has two major implications for the question of whether the market will fix the
market. First, it implies that incumbent exchanges strictly prefer the status quo to a counterfactual
in which they all use a market design that addresses latency arbitrage. Moreover, the structure of
payoffs in the market-design adoption game is a prisoner’s dilemma—a single Discrete exchange profits
unilaterally, but if there are multiple Discrete exchanges they earn zero profits, and hence are worse off
than under the status quo. We show formally that incumbent exchanges can maintain “cooperation”
at Continuous as an equilibrium of the repeated game. This finding accords with the record to date.

Second, it implies that if there is an innovator, it would actually work. The new market design
would gain share and help the market fix the market. The difficulty is not that the new market design
would not get off the ground, as in other platform environments, but the lack of economic incentive.
The same frictionless search that helps the innovator overcome the chicken-and-egg problem and get off
the ground also makes the innovator very vulnerable to imitation and with that perfect competition.

This in turn has an important implication for policy. A natural prior coming into this analysis is
that the relevant question for policy is whether (i) there will be a private-market solution to latency
arbitrage and the arms race, or (ii) would some sort of market-design mandate be required to fix the
problem. This is how the SEC Chair framed the issue in a 2014 speech, and the SEC Chair expressed
reticence to impose a mandate.5 In our analysis, a mandate to “fix the market” would certainly work,
but there is a third option: a regulatory push. By mandate we mean requiring exchanges to play
Discrete. By push we mean any policy that tips the balance of incentives sufficiently to entice a first
adopter to choose to play Discrete. Two specific pushes we discuss are a modest exclusivity period or
reducing risk-adjusted entry costs. Back-of-the-envelope calculations suggest that the magnitude of
the push could be very modest relative to the stakes.

Zooming out, we emphasize novel insights from our study for three broader literatures. For the
platforms literature, our contribution is the idea that market participants can stitch together multiple
exchanges into a “virtual single platform” when there is frictionless search. This insight has important
implications for other platform markets where search frictions could, in principle, be eliminated by
regulation or technology. For the innovation literature, our study identifies a novel wedge between
private and social innovation incentives: incumbent rents that arise from inefficiency in the status quo
(cf. Bryan and Williams, 2021). For the market design literature, our study opens new ground by
studying the question of whether a new market design will actually get implemented by the private
sector. Our study also brings to the market design literature some classical themes from economics,
such as incumbents protecting rents and issues of concentrated versus dispersed interests (Olson, 1965).

The remainder of this paper is organized as follows. Section 2 describes the empirical facts and
5SEC Chair Mary Jo White, in a 2014 speech, said: “I am personally wary of prescriptive regulation that attempts

to identify an optimal trading speed, but I am receptive to more flexible, competitive solutions that could be adopted by
trading venues. These could include frequent batch auctions or other mechanisms designed to minimize speed advantages.”
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Table 2.1: Estimate of Average Regular-Hours Trading Fees, U.S. Equities
Exchange Group f

BATS $0.000089

NASDAQ $0.000105

NYSE $0.000128

Notes: The table reports our estimate of the average regular-hours trading fee per share per side for each of the three major
exchange families in the U.S. stock market. Data are exchange financial filings and fee schedules from fiscal-year 2015. Please
see Appendix A.1 and the associated spreadsheet for supporting details.

regulations that motivate the theoretical model. Section 3 presents the theoretical analysis. Section 4
discusses policy implications. Section 5 concludes.

2 Institutional Background and Motivating Facts

This section documents three stylized facts about the economics of modern electronic stock exchanges:
trading fees are small; exchanges earn significant and growing revenue from co-location and propri-
etary data feeds, which are forms of speed technology; and exchange market shares are interior and
relatively stable over time. Together, these facts are at odds with exchange competition models, such
as the seminal contribution of Pagano (1989), in which liquidity externalities can lead traders to ag-
glomerate on a single exchange with supra-competitive trading fees. This section then discusses two
key regulations that underlie modern stock exchange competition and are central to our theoretical
model: Regulation National Market System (Reg NMS) and Unlisted Trading Privileges (UTP).

2.1 Exchange Trading Fees

Exchange trading fees are notoriously complicated.6 Underneath this complexity, however, we find
that exchange trading fees are economically small. The average regular-hours trading fee is just
$0.0001 per share per side (Table 2.1). For a $100 share of stock, this average fee in percentage terms
is just 0.0001%. We reach this conclusion using a combination of historical exchange fee schedules
and exchange company financial filings. A challenge in this analysis is that each of the main exchange
companies controls multiple exchanges. Appendix A.1 details how we use the financial filings and fee
schedules to obtain an overall average fee for each exchange company.

Moreover, most exchanges charge fees that on average are slightly negative to participants with
high-enough trading volume. This is consistent with exchanges being willing to lose money on trading
fees to make money from other sources such as speed technology. That said, trading fees are not
negative enough so that a market participants can extract revenue from the exchange by trading at
the negative fee, once one accounts for regulatory fees charged by the SEC and FINRA. Appendix A.2

6Figure A.1 in the Appendix, from an investment bank research report, presents a tongue-in-cheek visualization of
this complexity by depicting the hundreds of different fee scenarios that are possible for a particular trade.
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Table 2.2: Estimate of Exchange Speed-Technology Revenue, U.S. Equities
($ millions, fiscal year 2015)

BATS NASDAQ NYSE Total

Market Data Revenue 114.1 222.4 – 267.3 218.9 – 241.5 555.4 – 623.0

Co-Location/Connectivity Revenue 64.3 121.0 – 139.0 251.6 – 281.5 436.8 – 484.8

Market Data + Co-Location Revenue 178.4 343.3 – 406.4 470.5 – 523.0 992.2 – 1107.8

CTA/UTP Tape Revenue 317.0

Market Data + Co-Lo Revenue net of Tape Revenue 675.2 – 790.8

Notes: The table reports speed-technology revenue for each of the three major exchange families in the U.S. stock market. Data
are financial filings that cover fiscal-year 2015 and a CTA fee-change filing to the SEC. We estimate Nasdaq and NYSE revenue
and report a range (BATS revenue comes directly from filings). Please see Appendix B.1 for supporting details.

provides further details.
Many models of platform competition have high fees in equilibrium reflecting market power from

network effects. These data suggest a different model is needed.

2.2 Exchange Data and Co-Location Revenue

Exchanges earn revenue from selling proprietary fast data feeds and from selling a service called “co-
location,” which provides the right to locate one’s own computer servers near the exchange’s computer
servers. These services provide a speed advantage to speed-sensitive traders.

Intuitively, exchanges have some market power over these services because the speed advantage
is specific to a particular exchange. For example, only Nasdaq can sell the right to co-locate next to
Nasdaq’s servers, and Nasdaq co-location only provides a speed advantage for trading opportunities
on Nasdaq. We will call these services “speed technology.”

Public reporting about exchange speed-technology revenues is opaque.7 We used a variety of
sources of information, including exchange company 10-K filings, BATS’s April 2016 initial public
offering filing (form S-1), documentation related to NYSE’s acquisition by ICE, and data from the
entity that reports revenues from slower non-proprietary data feeds to obtain an estimate of overall
exchange speed-technology revenues and their growth over time. Data availability are best for fiscal
year 2015 because of the timing of BATS’s initial public offering and NYSE’s acquisition. We estimate
that 2015 exchange speed-technology revenues across the three main exchange families were between
$675-$790M (Table 2.2). We are also able to build meaningful time-series for some components of
speed-technology revenue (Figure 2.1). We compute annual revenue growth rates of 16% for Nasdaq
co-location/connectivity (2006-2017), 11% for Nasdaq proprietary market data (2006-2017), and 40%
for BATS co-location/connectivity (2010-2017).8 If we utilize 10% as a conservative overall growth
rate since 2015, this implies annual exchange speed-technology revenues of $1.3-$1.5B in 2022.

7Jackson, Robert J., Jr., "Unfair Exchange: The State of America’s Stock Markets," September 19, 2018.
8See Appendix B.2 for supporting details.
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Figure 2.1: Growth in Exchange Speed-Technology Revenue: 2006-2017

Notes: Nasdaq data come from 2006-2017 10-K filings. BATS co-location/connectivity revenue data come from the 2012 S-1 filing
(years 2010–2011), the 2016 S-1 filing (2012–2015), the 2016 CBOE/BATS Merger Proxy and the CBOE 2017 10-K. We omit
BATS proprietary market data revenue from the figure because BATS only started charging for proprietary data in Q3 2014. For
each time series we use the reporting category that contains U.S. equities revenue for that revenue source and make consistent
assumptions over time to isolate estimated revenues from U.S. equities. Please see Appendix B.2 for further discussion of the data
and methodology.

Overall, these data are suggestive of exchanges discovering a new source of revenue related to speed-
sensitive trading. This new source of revenue plays an important role in our theoretical analysis.

2.3 Exchange Market Shares

Figure C.1 in Appendix C shows that exchange market shares are interior and relatively stable over
time. There are 8 exchanges with meaningful market share, with the highest among them at 25%. As
one simple measure of stability, if we regress the market share of each exchange-date on only a set of
exchange fixed effects, the R2 is 0.97. In the Appendix, we also show that exchange market shares are
interior and relatively stable over time at the individual symbol level too.

While many models of platform competition have “tipping” (aka “winner take all”) as a potential
equilibrium outcome, it is clear from these data that this is not the case for U.S. stock exchanges.

2.4 Key Regulations

There are two key sets of regulations that help make sense of these empirical patterns and are central
to our model. We describe them briefly here and provide further details in Appendix D.

The first set of regulations, Unlisted Trading Privileges (UTP), has its roots in the 1934 Exchange
Act and in its modern incarnation enables all stocks to trade on all exchanges, essentially independently
of where the stock is technically listed, with the exception of the opening and closing auctions which
are proprietary to the listing exchange. For the purposes of our theoretical model, we incorporate UTP
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in its current form by assuming that the security in the model is perfectly fungible across exchanges.
This captures that regardless of where a security is listed, was last traded, etc., it can be bought or
sold on any exchange.

The second, Regulation National Market System (Reg NMS), is a long and complicated piece of
regulation implemented in 2007. For the purpose of the present paper, however, there are two core
features to highlight. The first is the Order Protection Rule, or Rule 611. The Order Protection Rule
prohibits an exchange from executing a trade at a price that is inferior to the best price on another
exchange (called a “protected quote”). The second is the Access Rule, or Rule 610. Intuitively, in
order to comply with the Order Protection Rule, exchanges and market participants must be able
to efficiently obtain the necessary information about quotes on other exchanges and efficiently trade
against them (“access” the protected quote). The Access Rule, and related rules that affect information
provision, ensures that such efficient search and access is feasible. For our theoretical model, we capture
these key provisions of Reg NMS by assuming what we will call frictionless search and access, on an
order-by-order basis. That is, there is zero marginal cost of search across all exchanges, and there are
zero additional marginal costs (beyond per-share trading fees) of accessing liquidity on a particular
exchange or exchanges.

Intuitively, the combination of fungibility of assets across exchanges and frictionless search across
exchanges nullifies the market power traditionally associated with network effects and platform mar-
kets. This provides some intuition for the low trading fees and interior market shares that we observe
above and will capture in our model. Any model that does not take these key regulations seriously
will misunderstand the industrial organization of the market.

3 Theoretical Analysis

The goal of the model is to illuminate the economic forces that underlie exchanges’ incentives for market
design innovation. What are the incentives to adopt a market design that addresses latency arbitrage
and the arms race for trading speed? Also of theoretical interest is our model’s characterization of the
economics of exchange competition under the status quo market design.

The model consists of four kinds of players, all strategic: exchanges, trading firms, investors, and
informed traders. They play a game with the following timing. First, exchanges choose their market
designs. Next, exchanges set prices for trading and for speed technology. Third, trading firms decide
from which exchanges, if any, to purchase speed technology. Last, the trading firms, investors, and
informed traders play a repeated trading game.

The trading game played in the last stage of the model is a generalization of the Budish, Cram-
ton and Shim (2015) model. The primary generalization is to multiple exchanges, in a competitive
environment shaped by the key regulations discussed in Section 2. The trading game model also adds
a stylized version of informed trading, in the spirit of Copeland and Galai (1983) and Glosten and
Milgrom (1985), to parsimoniously incorporate adverse selection alongside latency arbitrage.
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The section is organized as follows. Sections 3.1 and 3.2 present the formal description of the model
and equilibrium solution concept. Section 3.3 provides a brief overview to the equilibrium analysis.
Sections 3.4-3.5 analyze equilibria under subgames corresponding to various combinations of market
design decisions. Section 3.6 synthesizes the results.

3.1 Formal Description of the Model

We describe the players, their actions, and payoffs in Section 3.1.1. We describe the formal game
timing in Section 3.1.2, and how the game incorporates key institutional details in Section 3.1.3.

3.1.1 Players

Exchanges. There are M ≥ 2 exchanges, indexed by j. Exchanges are ex-ante undifferentiated
and each make three strategic choices: (i) their market design, (ii) their trading fees, and (iii) their
exchange-specific speed technology fees.

For the choice of market design, we focus on two options: the continuous limit order book (Contin-
uous) and frequent batch auctions (Discrete). The continuous limit order book represents the status
quo market design. At a high level, the continuous limit order book processes “limit orders”—i.e.,
messages specifying a price, quantity, and whether to buy or sell—or cancellations of previously sub-
mitted limit orders in a serial fashion, i.e., one at a time in order of their receipt.9 The frequent
batch auctions design is similar to the Continuous design in many respects, with the key difference
being the way that it processes new messages. Instead of processing new messages (including cancel-
lation requests) serially, frequent batch auctions process new messages in a batch process, in frequent
pre-specified discrete-time intervals, using a uniform-price auction. We provide further details and
formalize this difference in the description of the trading game below.

Exchange trading fees, denoted fj , are assessed per share traded and are paid symmetrically by
both sides of any executed trade. In practice, exchanges often charge different fees depending on
whether the order was the one resting in the limit order book (“making” liquidity) or the order was
the one that executed against a resting order (“taking” liquidity).10

Exchange-specific speed technology (abbreviated ESST) fees, denoted Fj , represent the price for
technology that allows a particular market participant to trade faster at a particular exchange. In
the trading game stage of our model, we treat ESST as a tie-breaker meaning that if multiple market
participants submit messages to the same exchange at the same time, and the exchange processes
messages serially, then the ones with ESST are processed first. If the exchange processes messages
in batch, ESST does not provide any advantage.11 In practice, speed technology includes co-location

9Please see Harris (2002) for further details regarding the continuous limit order book design.
10The assumption of symmetric fees is without loss of generality since we assume that prices are continuous. Under

this assumption, only the net trading fee matters for determining equilibrium behavior (see Chao, Yao and Ye (2019)).
11Practically, we have in mind that frequent batch auction exchanges would allow market participants to co-locate their

servers and subscribe to proprietary market data, but would not be able to charge prices commensurate with their role,
on continuous exchanges, in extracting sniping rents. For example, as of a few years ago Nasdaq offered four different
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(the right to locate one’s own servers next to an exchange’s servers), access to fast exchange-specific
proprietary data feeds, and connectivity/bandwidth fees. ESST fees are modeled as a rental cost paid
per trading game, capturing that in practice exchanges typically assess these fees on a rental basis.

We require that each exchange sell speed technology to at least two trading firms or not sell it at
all. This is a modest fair access requirement which prevents an exchange from auctioning off exclusive
access to fast trading on its exchange.12

Market Participants. There are three other kinds of players in the model—investors, informed
traders, and trading firms—whom we collectively refer to as market participants. Market participants
play a repeated trading game that builds off of the Budish, Cramton and Shim (2015) model. Though
the trading game is described in full below, we describe some aspects here to define market participants’
payoffs. In the trading game there is a single security, x, and the fundamental value of the security is
given by y. We make the purposefully strong assumption that x can always be costlessly liquidated
at this fundamental value. The value y evolves across trading games as a discrete-time jump process,
where in each trading game there is a probability of a jump in y and the value of jumps is drawn from
a symmetric distribution with bounded support and zero mean. What will matter economically is
the distribution of the absolute value of jumps, represented by random variable J . The same security
trades on all M exchanges, and its value does not depend on the exchange on which it is traded. We
assume that prices are continuous and that shares are perfectly divisible.13

An Investor arrives stochastically with probability λinvest in each trading game, with an inelastic
need to buy or sell one unit of the security. Needing to buy or needing to sell are equally likely.14 The
investor trades a single time, potentially across multiple exchanges, and then exits the game. If an
investor buys a unit of x at price p on an exchange with trading fee f , and the fundamental value is
y, then her payoff is v + (y − p− f), where v is a large positive constant that represents her inelastic
need to trade. If she needs to sell a unit and does so at p when the fundamental value is y, her payoff
is v + (p− y − f).15

An Informed Trader observes private information about the fundamental value of x. We assume
that in each trading game, the probability that there is a jump in y that is public information and

levels of co-location services, with the most expensive version about 2 microseconds (0.000002 seconds) faster than the
least expensive version, and about 10 times the price (IEX, "Re: Investors’ Exchange LLC Form 1 Application (Release
No. 34-75925; File No. 10-222),” 2015). A frequent batch auction exchange might be able to sell something akin to
the cheapest version, but would not be able to extract rents from latency arbitrage by selling an ever-so-slightly faster
connection.

12For example, former SEC Chair Jay Clayton emphasized that it has long been required, under the [1934] Exchange
Act, that exchange fees be “fair and reasonable and not unreasonably discriminatory.”

13Assuming continuous prices allows us to abstract from the queueing dynamics that are present in markets with
binding tick-size constraints. Assuming that shares are perfectly divisible allows for any agent to split his desired order,
regardless of size, across multiple exchanges. It is substantively important for the analysis, and also realistic, that agents
can split orders across multiple exchanges.

14As in Budish, Cramton and Shim (2015, pgs. 1583-1586), it is straightforward to generalize the model to investors
with varying-sized demands, as long as all investors trade a single time upon arrival.

15If an investor transacts strictly less than one unit, she receives v times her quantity traded; if an investor transacts
strictly more than one unit, she receives v only for the first unit. In equilibrium, investors transact exactly one unit.
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seen by all players at the same time is λpublic and the probability that there is a jump in y seen by
an informed trader is λprivate. For simplicity, both public and private jumps have the same jump-size
distribution J . If an informed trader observes a jump in y, he can trade on that information in the
current trading game; regardless of the informed trader’s actions, at the conclusion of the trading
game any privately observed information becomes public. The informed trader’s payoff, if he buys
a unit of x at price p on an exchange with trading fee f and the (new) fundamental value is y, is
y − p− f ; if he sells at price p his payoff is p− y − f .

Trading Firms, abbreviated as TFs and present throughout all iterations of the trading game, have
no intrinsic demand to buy or sell x; rather they seek to buy x at prices lower than y and vice versa. If
they buy (or sell) a unit of x at price p on an exchange that charges trading fee f , and the fundamental
value is y at the end of the trading game, their payoff is y − p − f (or p − y − f). Their objective is
to maximize per-trading game profits. We assume that there are N “fast” TFs and a continuum of
“slow” TFs, where the difference reflects how messages are processed by the Continuous market design
in a manner we formalize below.16

3.1.2 Formal Game Timing

Our game has four stages.
First, in Stage 1 (Market Design Choice), all M exchanges simultaneously choose whether to

operate a Continuous or Discrete market design.
Second, in Stage 2 (Exchange Price Setting), all M exchanges simultaneously choose per-share

trading fees f = (f1, . . . , fM ), and per-trading game ESST fees F = (F1, . . . , FM ).
Next, in Stage 3 (Speed Technology Adoption), all N TFs with general speed technology simulta-

neously decide from which exchanges, if any, to purchase ESST.
Last, in Stage 4 (Repeated Trading Game), the following two-period trading game is played re-

peatedly T times, where T is a large, finite number. We interpret each trading game as lasting a very
short amount of time (e.g., 1 millisecond).17

The Trading Game. In period 1 of each trading game, trading firms observe the public state,
which consists of the current fundamental value of the security (y), and the current outstanding bids
and asks in each exchange’s limit order book (ω = (ω1, . . . , ωM ), where ωj is also referred to as
the state of exchange j’s order book).18 TFs then simultaneously submit message sets to exchanges,

16Note, practically, that what we mean by a slow trading firm is best interpreted as a sophisticated algorithmic trading
firm not at the very cutting edge of speed, but still fast by non-high-frequency trading standards.

17We initially analyze a single play of our game—i.e., Stages 1, 2 and 3 are played once, and then the trading game in
Stage 4 is played T times. Later, in Section 3.6, we examine repeated play of all four stages—i.e., after T iterations of
the Stage 4 trading game are played, play returns to Stage 1 and the game repeats. When our game is repeatedly played,
we interpret T to be large enough so that it captures the appropriate time horizon for relatively slower-moving decisions
about market design and trading fees; e.g., T represents the equivalent of several months worth of millisecond-long
trading games. Unlike in many other economic environments, stock exchange fee changes and market design changes
require regulatory rule filings, so they cannot adjust without delay.

18Each exchange’s order book is initially empty.
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where µij ∈ S represents the messages that TF i submits to exchange j, and S denotes the set of all
potential combinations of messages. Denote by µi ≡ {µij}j∈M the message sets submitted by TF i to
all exchanges, whereM represents the set of all exchanges.

Messages sent to each exchange j can affect that exchange’s order book ωj after they are processed
by each exchange in a manner that we describe below. We allow for three types of messages that TFs
can send to a particular exchange j: (i) standard limit orders, which take the form (qi, pi) and indicate
that the TF is willing to buy (if qi > 0) or sell (if qi < 0) up to |qi| units at price pi; (ii) cancellations
of existing limit orders in ωj ; and (iii) immediate-or-cancel orders (IOCs), which are standard limit
orders that, if not fully executed in a given period, have any portion that is remaining cancelled by the
exchange at the end of the period. Standard limit orders remain in an exchange’s order book across
trading games until they are fully executed (i.e., all units qi are traded against), or they are cancelled
by a cancellation message in which case they are removed. A TF is also allowed to send no messages
to a particular exchange j in a given period, in which case the TF simply maintains its existing limit
orders in ωj , if any exist.

We say that a TF provides liquidity if it offers to buy (or sell) some positive quantity at a price
less than (or greater than) the current value of y and within the support of J . Since investors are
equally likely to arrive needing to buy or sell and the distribution of jumps in y is symmetric about
zero, it is convenient to focus on the provision of liquidity via pairs of limit orders: that is, for a given
quantity q and fundamental value y, an order to buy quantity q at y− s

2 and an order to sell quantity
q at y + s

2 , where s ≥ 0 represents the bid-ask spread.
After Period-1 message sets are submitted by TFs, they are are processed by each exchange and

each exchange j’s updated order book ωj is publicly observed. Next, in period 2, nature moves and
selects one of four possibilities:

1. With probability λinvest: an investor arrives, equally likely to need to buy or sell one unit of x.
The investor has a single opportunity to send IOCs to all exchanges.

2. With probability λprivate: an informed trader privately observes a jump in y. The informed
trader has a single opportunity to send IOCs to all exchanges.

3. With probability λpublic: there is a publicly observable jump in y. All TFs have a single oppor-
tunity to submit message sets consisting of IOCs and cancellation messages to each exchange.

4. With probability 1− λinvest − λprivate − λpublic ≥ 0: there is no event.

Period-2 messages are then processed, exchanges’ order books are updated, and trading game payoffs
are realized.

How the Continuous and Discrete Market Designs Process Messages. At the end of period 1
and period 2 of each trading game, each exchange j’s order book ωj is updated to reflect the processing
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of messages received by each exchange during that period. The difference between Continuous and
Discrete exchanges is how they process messages that are received in the same period. For an exchange
that uses Continuous, all message sets sent to that exchange in the same period are serially processed
by the exchange in a random sequence, with TF speed serving as a tie-breaker (as in Baldauf and
Mollner, 2020). What this means is if multiple firms submit messages to an exchange in the same
period of a trading game, the messages that are processed first are those from fast TFs with ESST on
that exchange; next are messages from fast TFs without ESST on that exchange; and last are messages
from slow TFs.19 Within each group, the processing order is uniformly random.

In contrast, Discrete exchanges first process all cancellations received in a period of the trading
game, and then process any new limit or IOC orders received in that period, along with outstanding
orders from previous periods, using a uniform-price auction, with price then discrete-time priority
used to break any ties.20

Information policy is analogous between the Continuous and Discrete markets. In both cases,
after any market participant actions, the exchange publicly announces (i) any trades that occurred
(quantities and prices), and (ii) the updated state of the order book, reflecting any new orders and
order cancellations.

3.1.3 Additional Modeling Details

Batch Interval on Discrete. Our model of the trading game is only appropriate if the Discrete
market’s batch interval is very short. A very short batch interval makes it reasonable to assume that
in each trading game, either 0 or 1 exogenous events occur. In practice, this amount of time is likely
less than 1 millisecond (0.001 seconds).21 In empirical evidence on races in Aquilina, Budish and
O’Neill (2022), the modal latency arbitrage race lasts between 5-15 microseconds (0.000005-0.000015
seconds).

A very short batch interval also makes it reasonable for investors and informed traders to synchro-
nize their orders across Continuous and Discrete exchanges, meaning that they can execute trades
across multiple exchanges before other market participants can react. The model allows for this by
assuming that an investor or informed trader can trade on all exchanges in period 2 before TFs see

19For simplicity, slow TFs cannot purchase ESST. In the equilibria that we characterize, they would not want to.
20More specifically, at the end of each time interval, the exchange aggregates all outstanding orders to buy and sell—

both new orders submitted in that interval and orders that remain outstanding from previous intervals (i.e., neither
executed nor canceled)—into demand and supply curves, respectively. If demand and supply cross, then trades are
executed at the market-clearing price. In case there is an interval of market-clearing prices the midpoint of this interval
is utilized; this case is not relevant for our analysis. If necessary to break ties on either side of the market, priority is
based first on price, then discrete time (i.e., orders that have been present in the book for strictly more intervals have
higher priority if at the same price), with any remaining ties broken randomly.

21Even for the highest activity symbol in all of US equity markets, SPY, on its highest-volume day of 2018 (February
6th), 95.2% of milliseconds have neither any trade nor change in the national best bid or offer (price or quantity). On an
average day for SPY, 97.6% of milliseconds have neither a trade nor change in the national best bid or offer, and 99.4%
of milliseconds have no trades. On an average day for GOOG, 99.6% of milliseconds have neither a trade nor change
in the national best bid or offer, and >99.9% of milliseconds have no trade. These averages are computed based on a
sample of 12 randomly selected trading days in 2018.
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the updated state and respond in the following trading game.22

Key Regulations. Our trading game incorporates the key regulations described in the previous
section as follows. First, we incorporate UTP by having the same security trade on all exchanges, and
by having the value of the security be completely independent of the exchange on which it is bought or
sold.23 Second, we capture key aspects of Reg NMS by assuming that all market participants observe
the current state of the order book on all exchanges at zero cost prior to taking any action (frictionless
search), and that the marginal cost of sending any message to any exchange is zero so that the only
per-order cost of transacting on any exchange is the per-share trading fee (frictionless access).

3.2 Equilibrium Concept

For Stages 1, 2, and 3, our equilibrium solution concept is subgame perfect Nash equilibrium.
For Stage 4, we restrict market participants to use pure Markov strategies and condition their

actions only on y and the publicly observable state of every exchanges’ order book ω. We assume that
in Period 1, market participants play what we refer to as an order book equilibrium (OBE) which we
define below. In Period 2, we assume that market participants employ the following optimal (weakly
dominant) strategies:

• Investors: upon arrival, an investor sends IOCs to trade up to one unit in their desired direction,
prioritizing their demand across exchanges based on the net price including trading fee; if there
are any remaining orders that are profitable to trade against based on the publicly observed
state, the investor trades against those as well.24

• Informed traders: upon a privately observed jump in y, an informed trader sends IOCs to trade
against any orders that are profitable to trade against based on their privately observed y.25

• Trading firms: when there is a publicly observed jump in y, there are two cases to consider.
First, if y jumps to a value at which it is not profitable for any TF to trade given the state of
any exchange’s order book and its trading fees, then TFs submit no messages.26 Second, if y

22Our impression, both from discussions with industry practitioners and our understanding of the relevant engineering
details, is that while the ability to synchronize orders in this manner was pretty variable in the early days of Reg NMS,
it is now widespread and commodified. Difficulty with such synchronization was at the heart of the narrative in Michael
Lewis’s book Flash Boys, and is modeled carefully in Baldauf and Mollner (2020).

23Our model is not designed to study the interesting and important role of the opening and closing auctions, which
are proprietary to the exchange on which the stock is listed, and which are not subject to the market design criticism in
Budish, Cramton and Shim (2015). Rather, our model is of regular-hours stock exchange trading (about 90% of exchange
volume), for which UTP makes the listing exchange irrelevant.

24When there is greater than one unit of liquidity offered across different exchanges at the best price (accounting for
trading fees), investors use what we refer to as routing table strategies which dictate how they split their orders across
exchanges (see Appendix E.3.3).

25Our assumption that informed traders act immediately if profitable to do so is in the spirit of Copeland and Galai
(1983) and Glosten and Milgrom (1985); we abstract away from more sophisticated informed trading as in Kyle (1985).

26Any TF that wishes to cancel a limit order on any exchange’s order book is indifferent between canceling that order
immediately and waiting until period 1 of the following trading game to do so.
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jumps to a value at which it is profitable to trade given the state of some exchange j’s order
book and its trading fees, then any TFs that are providing liquidity at unprofitable prices send
cancellation messages to try to cancel their unprofitable (“stale”) quotes, while at the same time
all TFs send IOCs to try to trade against (“snipe”) stale quotes offered by others.

This behavior by TFs in period 2 when y jumps to a value at which it is profitable to trade is described
as a “sniping race” in Budish, Cramton and Shim (2015). If there are K fast TFs with ESST on a
Continuous exchange attempting to snipe a stale quote, each “wins” the race with probability 1

K

(because a Continuous exchange processes messages serially in a uniformly random sequence). Hence,
if a TF providing liquidity is fast and also has ESST on an exchange, then it is sniped with probability
K−1
K ; if a TF providing liquidity is slow (or does not have ESST and another TF does), then it is

sniped with probability 1. On a Discrete exchange, on the other hand, any TF wishing to cancel
its order can do so without being traded against. It is in this sense that Discrete eliminates latency
arbitrage in our model.27

Period 1 Equilibrium Play and Order Book Equilibrium. In Period 1, TFs simultaneously
submit message sets µ∗ ≡ {µ∗i } given the current state (y,ω). A natural solution concept would be
pure strategy Markov perfect equilibrium (MPE) (or equivalently pure strategy Nash equilibrium for a
single play of our trading game). However, because of adverse selection, a pure-strategy MPE (or Nash
equilibrium for a single play of our game) does not exist. The key intuition is that if there is some TF
providing a single unit of liquidity at a bid-ask spread that equates the benefits of liquidity provision
(realized when an investor arrives seeking to trade one unit) to its costs (from being traded against by
an informed trader or being sniped), then on the one hand, other TFs do not have incentive to offer
additional liquidity at this spread (because they would suffer adverse selection or latency arbitrage
costs without adequate compensation), but on the other hand, this leaves the TF who is providing
liquidity incentive to deviate by widening its spread.28

To handle this non-existence issue, we introduce and employ an alternative equilibrium solution
concept, order book equilibrium. OBE strictly weakens MPE by allowing for profitable unilateral
deviations to exist, as long as they are rendered unprofitable by one of two specific reactions by rivals:

27On a Discrete exchange without trading fees, there are also Nash equilibria for Period 2 in which trading firms who
are providing stale quotes do not cancel their orders upon the arrival of public information; in any such equilibria, if trade
occurs on the Discrete exchange, it must be at the price p = y as TFs competing to snipe stale quotes drive the price
of the security to its fundamental value. Hence, if there were a TF with a stale quote that did not try to cancel, price
competition in the auction would protect it from latency arbitrage as well. For expositional simplicity, we assume that
liquidity providers on both Discrete and Continuous attempt to cancel any unprofitable quotes when there is a publicly
observed jump in y in Period 2 (as doing so does not affect any of our economic conclusions).

28For the standard model of undifferentiated Bertrand competition without adverse selection, a pure-strategy equilib-
rium exists with marginal-cost pricing: “excess liquidity provision” by any firm willing to sell as much as the market
demands at marginal cost is riskless and constrains the price that other firms can charge. In contrast, in our environ-
ment the expected cost of providing liquidity depends on the mix of trading counterparties, which in turn depends on
the liquidity provided by rivals. Hence, TFs are not willing to provide excess liquidity in the order book to constrain
others’ spreads, as they would be exposed to adverse selection and sniping risk without the full benefit of being filled by
uninformed investors. (Equilibria in mixed strategies can exist when participants are able to provide liquidity at random
prices (Baruch and Glosten, 2019).)
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withdrawals of liquidity, or safe profitable price improvements. Withdrawals are message sets that
strictly reduce the amount of liquidity provided relative to a particular candidate equilibrium message
set µ∗; that is, withdrawals only add cancellation messages to or eliminate limit orders from µ∗. Price
improvements are message sets that, relative to µ∗, do not increase the cost of trading any quantity
q ∈ (0, 1] on any exchange j ∈ M, but make it strictly cheaper to trade some quantity q ∈ (0, 1] on
some exchange j. For example, a price improvement may involve messages that offer liquidity at a
narrower bid-ask spread on exchange j than what would be provided given ω and µ∗. A safe profitable
price improvement is a price improvement that is strictly profitable for a TF to engage in given the
message sets submitted by other TFs and the state ω, and remains strictly profitable even if some
other TF withdraws liquidity in response.

Definition 3.1. An order book equilibrium (abbreviated OBE) of our trading game is a set of message
sets µ∗ ≡ {µ∗i } submitted by all TFs in Period 1 given state (y,ω) that satisfies the following two
conditions:

1. No TF i has a safe profitable price improvement.

2. No TF i has any other strictly profitable deviation (i.e., not a price improvement) that remains
strictly profitable if, in response to TF i’s deviation, some other TF engages in a profitable
reaction that is either: (a) a withdrawal of liquidity; or (b) a safe profitable price improvement.

To understand the role that Condition 1 plays by ruling out safe profitable price improvements,
consider the following example. Suppose the value of the security y is 10, and that in equilibrium a
liquidity provider offers a single unit of liquidity at a bid-ask spread of 2 (i.e., limit orders to buy at 9
and sell at 11) when there is no other liquidity being offered. Suppose that it is strictly profitable for
another TF to engage in a price improvement, and offer an additional unit of liquidity at a narrower
bid-ask spread—say by offering to buy at 9.1 and sell at 10.9, equivalent to a bid-ask spread of 1.8.
By imposing the safe requirement, Condition 1 of OBE requires that for such a price improvement to
challenge equilibrium existence, it must remain strictly profitable due to the act of liquidity provision
alone, and not from also continuing to snipe any liquidity that is no longer profitable to offer. In
the example, it means that offering a unit of liquidity at a spread of 1.8 is strictly profitable even
if the original unit of liquidity were withdrawn. We believe that the absence of safe profitable price
improvements (and not just strictly profitable price improvements) is a necessary condition for an
exchange’s order book to be at a rest point, whereby no TF wishes to modify or adjust its outstanding
orders given the anticipation of likely reactions by rivals, and captures the spirit of competitive liquidity
provision as discussed and assumed in Glosten and Milgrom (1985).29

Condition 2 of OBE imposes the additional requirement that there are no other strictly profitable
deviations (i.e., not price improvements) that remain strictly profitable even if another TF profitably

29The concept also captures the spirit of “immediate responses” to deviations as assumed in the continuous-time model
of Budish, Cramton and Shim (2015).
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reacted with either (a) a withdrawal, or (b) a safe profitable price improvement. By allowing for safe
profitable price improvements as reactions to other strictly profitable deviations (e.g., deviations that
worsen liquidity), OBE requires that for all other deviations to challenge equilibrium existence, they
must not incentivize the provision of new liquidity at more competitive prices. In our example, a
deviation by the liquidity provider to widen its spread—say to 2.2, with an offer to buy at 8.9 and
sell at 11.1—would not challenge OBE if the deviation would be rendered unprofitable by another TF
engaging in a safe profitable price improvement (e.g., offering a unit of liquidity at a spread of 2.1).
We believe this additional requirement is also a necessary condition for an exchange’s order book to be
at a rest point, and further captures the idea of competitive liquidity provision whereby equilibrium
spreads are disciplined even without excess liquidity being present in exchanges’ order books.

Our concept is related to, and borrows inspiration from, alternative solution concepts used by
Wilson (1977) and Riley (1979) to study insurance markets. In these alternative concepts, deviations
must remain profitable to the withdrawal (Wilson) or addition (Riley) of certain insurance policies to
rule out equilibria. Our relation to the insurance literature is not accidental: both settings feature
adverse selection, and firms that are “undercut” by a rival may wish to withdraw from the market
rather than face an adversely selected set of trading partners.

In Appendix E.2, we provide additional details and an example that illustrates why OBE helps to
ensure equilibrium existence.

3.3 Overview of Equilibrium Analysis

In Section 3.4, we first analyze the subgame where all exchanges have chosen Continuous in Stage
1. This subgame represents “the status quo.” We prove that there exist equilibria where exchanges
maintain positive market shares, trading fees are competitive (i.e., zero), and, importantly, exchanges
capture and maintain economic rents obtained through supra-competitive fees for ESST. We discuss
how our model’s predictions fit many of the empirical patterns documented in the previous section,
providing support for the use of our model to predict equilibrium outcomes for novel market designs.

In Section 3.4.1, we then analyze the subgame where only one exchange has chosen Discrete in
Stage 1, while the others have all chosen Continuous. We show that in any equilibria, all trading
activity occurs on the sole Discrete exchange, and the Discrete exchange earns positive profits. In
essence, the Discrete exchange is compensated for eliminating the tax that latency arbitrage imposes
on trading.

In Section 3.5, we consider subgames where there are multiple Discrete exchanges. Here, we prove
that in any equilibria, again trading activity occurs only on Discrete exchanges, but now all exchanges
earn zero profits.

The results from Sections 3.4-3.5 are used to establish our main results in Section 3.6. We show
that when exchanges choose market designs in Stage 1, the payoffs from their choices comprise a
Prisoner’s Dilemma: each exchange earns positive profits if all exchanges choose Continuous, but any
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single exchange has a unilateral incentive to deviate (if the game is played once) to choose Discrete.
However, if more than one exchange chooses Discrete, all exchanges earn zero profits and are worse off
than under the status quo. We then use this result to examine the market design adoption incentives
facing exchanges when Stages 1–4 are played repeatedly, and derive a necessary and sufficient condition
for the status quo—in which exchanges always choose Continuous—to persist.

3.4 Equilibrium Analysis: All Exchanges Continuous (“The Status Quo”)

In the subgame following Stage 1 where all exchanges have chosen Continuous, we will show that there
exist equilibria with the following properties. First, all exchanges charge zero trading fees (i.e., trading
fees are competitive). Second, ESST fees are strictly positive and fast TFs purchase ESST from all
exchanges with positive market shares. Even so, ESST fees are bounded above, and exchanges cannot
fully extract all latency arbitrage rents from fast TFs. Last, in Period 1 of each trading game, a single
unit of liquidity is provided at an equilibrium spread denoted s∗continuous across multiple exchanges,
according to an arbitrary vector of market shares denoted σ∗; and in period 2 of each trading game,
investors route their orders across exchanges according to σ∗. That is, the exchange market share
vector coordinates the liquidity provision actions of TFs and the routing decisions of investors.

The equilibrium spread s∗continuous is given by the solution to:

λinvest ·
s∗continuous

2 = (λpublic + λprivate) · L(s∗continuous). (3.1)

At this spread a sole liquidity provider would be indifferent between offering a unit of liquidity on an
exchange with zero trading fees, and choosing to snipe a rival offering liquidity at the same spread.30

To see this, note that the left-hand side represents per-trading game expected benefits earned from
liquidity provision on an exchange with zero trading fees; such benefits arise whenever an investor
arrives with probability λinvest and trades, paying half the spread s∗continuous. The right-hand side
represents the expected costs of liquidity provision, which arise from the following three sources. First,
there is traditional adverse selection whenever an informed trader arrives with private information.
Per trading game, this cost is λprivate · L(s∗continuous), where L(s) ≡ Pr(J > s

2) · E(J − s
2 |J > s

2) is
the expected adverse selection loss to a liquidity provider upon arrival of a privately observed jump
in y. Second, there are latency arbitrage costs whenever there is a publicly observed jump in y and a
resulting sniping race. Per trading game, this cost is λpublic · N−1

N ·L(s∗continuous), where the N−1
N term

reflects the probability that a fast TF loses the sniping race (assuming that all N TFs on the exchange
are equally fast), and the L(s∗continuous) term is the same because we have assumed for convenience
that private and public information jumps have the same distribution. Third, there is the opportunity
cost of not sniping a rival liquidity provider, equal to λpublic · 1

N · L(s∗continuous).31

30Equation (3.1) has a unique solution since the left-hand side is strictly increasing, the right-hand size is strictly
decreasing in s∗continuous, and the left-hand side is less than the right-hand side when the spread is 0.

31This same bid-ask spread s∗continuous also leaves a slow TF with zero profits from liquidity provision—i.e., a slow
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Proposition 3.1. Consider the subgame following Stage 1 in which all exchanges have chosen Con-
tinuous. For any vector of market shares σ∗ = (σ∗1, . . . , σ∗M : ∑j σ

∗
j = 1), and for any vector of ESST

fees F ∗ = (F ∗1 , . . . , F ∗M ) that satisfies the condition given by (3.2) below, there exists an equilibrium of
this subgame where:

(Stage 2): Each exchange j charges F ∗j for ESST, and charges zero trading fees (f∗j = 0);
(Stage 3): All N fast trading firms purchase ESST from every exchange j where σ∗j > 0;
(Stage 4): The following occurs in every iteration of the trading game given state (y,ω). At the

end of period 1, σ∗j quantity of liquidity is provided on each exchange j at spread s∗continuous (defined
in (3.1)) around y. In period 2: an investor, upon arrival, immediately transacts σ∗j at the best bid or
offer on each exchange j; an informed trader, upon arrival, immediately transacts σ∗j at the best bid
or offer on each exchange j if their privately-observed jump in y exceeds s∗continuous

2 ; and if there is a
publicly-observed jump that exceeds s∗continuous

2 , a sniping race occurs on all exchanges, in which all fast
trading firms attempt to trade against all stale quotes provided by trading firms other than themselves,
and all fast trading firms providing any liquidity on any exchange attempt to cancel their stale quotes.

The condition on ESST fees is:

Π∗continuous
N

−
∑

j:σ∗j>0
F ∗j ≥ max(0, πlone-wolf

N −min
j
F ∗j ), (3.2)

where Π∗continuous ≡ λpublic · L(s∗continuous) denotes the total “sniping prize” (i.e., the expected amount
of latency arbitrage rents), and πlone-wolf

N is a constant discussed below and defined in Appendix E.3.1,
equation (E.3).

(All proofs are contained in the Appendix.)
To prove the Proposition, we first prove that in any Stage 4 subgame where (i) all exchanges

have chosen Continuous, (ii) all N fast trading firms purchase ESST from the same set of exchanges,
and (iii) all exchanges set zero trading fees, any order book equilibrium has exactly one unit of
liquidity at spread s∗continuous provided across exchanges according to some vector of market shares
σ∗ = (σ∗1, . . . , σ∗M ), and such an equilibrium exists (Lemma E.1). In such an equilibrium, investors
upon arrival in period 2 route their demand across exchanges according to this same vector of market
shares σ∗. Economically, this means that the marginal unit of liquidity provided is equally profitable
across all exchanges, because each exchange’s share of liquidity provided (“depth”) matches its share

TF is indifferent between providing liquidity and doing nothing. A slow TF who provides liquidity at (3.1) gets sniped
with probability 1 in the event of a public jump as opposed to probability N−1

N
for a fast TF, but the slow TF does not

need to be compensated in equilibrium for the opportunity cost of not sniping. Evidence in Aquilina, Budish and O’Neill
(2022) suggests that both fast and slow TFs providing liquidity that sometimes gets sniped are empirically relevant. In
equilibrium as described below, there can be a mix of fast and slow TFs providing liquidity at s∗continuous, and there can
be multiple TFs each providing a fraction of the aggregate liquidity—e.g., one TF provides 0.6 at s∗continuous while a
second provides the remaining 0.4. A fast TF who provides a fraction of the aggregate liquidity earns liquidity provision
profits on whatever they provide and sniping profits on whatever others provide.
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of trading volume from investors.
We next examine behavior in Stage 3, and prove that if each exchange j charges F ∗j for ESST fees

and zero for trading fees, there is a subgame equilibrium for all fast TFs to purchase ESST from all
exchanges in M∗ ≡ {j : σ∗j > 0} as long as condition (3.2) is satisfied. This condition imposes an
upper-bound on ESST fees, and is key to our finding that exchanges do not extract all sniping rents.
To derive this condition, we analyze a specific deviation for fast TFs (which we refer to as a lone-wolf
deviation), and show that because it is the most attractive deviation for TFs to consider, ruling it out
is sufficient for establishing equilibrium existence.32 We prove that condition (3.2) ensures this lone
wolf deviation is not profitable, as each fast TF earns more in expectation by purchasing ESST from
all exchanges in M∗ and earning Π∗continuous

N per trading game (gross of ESST fees) than purchasing
ESST from just a single exchange and earning deviation profits of πlone−wolfN per trading game.

Last, we turn to behavior in Stage 2. Given equilibrium strategies that we construct in Stages 3
and 4, no exchange j has an incentive to adjust ESST fees from F ∗j : as all TFs are already purchasing
ESST from j, lowering F ∗j does not affect the amount of trading volume that j receives in Stage 4 and
strictly reduces profits; and raising F ∗j induces TFs to no longer purchase from, or provide liquidity
on, exchange j. Last, trading fees are zero because any exchange that raises its trading fee from zero
receives zero share in all subsequent trading games.33

3.4.1 Features of the Status Quo

The equilibria described in Proposition 3.1 have the following features, which are consistent with the
empirical facts presented in Section 2 and in Appendix F.

Virtual Single Platform. Due to frictionless search and access, market participants can “stitch”
together multiple exchanges into what we refer to as a virtual single platform. By this, we mean
the following. First, in every trading game, all exchanges with positive depth have the same bid-ask
spread s∗continuous, resulting in a common market-wide best bid and offer. Second, each exchange’s
share of market depth at this spread is equal to its equilibrium share of market volume. Last, multiple
exchanges are able to maintain positive market shares without the market tipping to any one exchange
(consistent with exchange market shares shown in Section 2.3).34

The intuition is that as long as depth and volume are equivalent across all exchanges, the equi-
librium bid-ask spread (3.1) applies equally to all liquidity on all exchanges. As long as the depth to

32In a lone-wolf deviation, instead of purchasing ESST from all exchanges inM∗, a fast TF purchases ESST from just
a single exchange. The lone-wolf then becomes the sole liquidity provider on this single exchange at a spread that is
strictly narrower than s∗continuous (which we prove to be an equilibrium of the trading game; Lemma E.2).

33In the Appendix, we show that an exchange’s losses from negative trading fees can be arbitrarily large without TFs
engaging in any self-dealing. For this reason, we assume that exchanges cannot charge negative trading fees.

34Our model does not yield much insight into the determination of equilibrium exchange market shares. That said, it
does provide some insight into why they might be interior and relatively stable over time. In the equilibria described in
Proposition 3.1, investors break ties when indifferent across exchanges using what we refer to as routing table strategies
(see Appendix E.3.3). Such strategies, in turn, coordinate where TFs provide liquidity. Thus, if investor routing tables
are relatively stable over time, then exchange market shares will be as well.
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volume ratio is the same across all exchanges, the marginal unit of liquidity is equally well off across
all exchanges. If some exchange has too much depth relative to its volume, liquidity providers will
suffer too much adverse selection and sniping relative to the benefits of liquidity provision. If some
exchange has too little depth relative to its volume, the reverse is true.35 In Appendix F we show
that exchanges with positive depth have the same bid-ask spread, and the depth-volume relationship
obtains robustly in the data.

Competitive Trading Fees. Trading fees are competitive and zero on all exchanges. Any exchange
j, given that all other exchanges set zero trading fees, cannot charge a positive trading fee and attract
positive trading volume due to frictionless search. This is true even if investors broke ties in j’s favor
(all else equal), and even if j charged lower ESST fees than other exchanges.36

ESST Fees and the Division of Latency Arbitrage Rents. In contrast to competitive pricing
models where add-on rents are dissipated in competition to sell the pre-add-on good (cf. Ellison,
2005; Gabaix and Laibson, 2006), here exchanges do not compete away rents earned from the sale of
ESST (an add-on service that is only valuable if an exchange has positive trading volume) by charging
lower trading fees in competition for transaction volume. This is the case even though exchanges
are assumed to be symmetric and undifferentiated, search is frictionless, and market participants can
costlessly participate on any exchange. The reason is that trading fees are zero across all exchanges.
Any dissipation of ESST rents via trading fees in order to attract trading volume would require such
fees to be negative, which in turn would create an incentive for market participants to execute an
unlimited number of trades and make unlimited profits.37

Moreover, even though exchanges are able to “post prices” and make take-it-or-leave-it offers to
TFs, they cannot capture all latency arbitrage rents: fast TFs have bargaining leverage with exchanges
because they can steer liquidity provision, and hence trading volume, to rival exchanges. This gives
rise to the condition on ESST fees given by (3.2).38 Using the analysis behind this bound, we are able
to show that the proportion of sniping rents that TFs obtain is economically significant:

35These results are closely related to Glosten (1994) and Ellison and Fudenberg (2003). Glosten (1994) models multiple
limit order book exchanges under the assumption that “an investor can costlessly and simultaneously send separate
orders to each exchange” (pg. 1146), i.e., frictionless search and access. Ellison and Fudenberg (2003) study a model
of platform competition for single-homing buyers and sellers that encompasses elements of the classic Pagano (1989)
exchange competition model. Ellison and Fudenberg show there can exist a “plateau” of equilibria with interior market
shares, where all platforms with positive market share in these equilibria have the same seller-buyer ratio.

36In a supporting Lemma for Proposition 3.1, we prove that in any equilibrium of a Stage 3 subgame where trading
fees are zero for some exchanges and strictly positive elsewhere (and where all TFs purchase ESST from the same set of
exchanges), no trading volume occurs on any exchange with positive trading fees (see Lemma E.1 in Appendix E.3).

37Although exchanges theoretically could dissipate rents via fixed payments to investors or broker-dealers for trading
volume, our understanding is that this would not be legal.

38As with equilibrium exchange market shares, our model does not deliver a prediction for how ESST revenues are
split across exchanges. In the equilibria described in Proposition 3.1, ESST fees are not required to be proportional to
the volume traded at an exchange as long as condition (3.2) is satisfied.
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Proposition 3.2. In the equilibria described by Proposition 3.1, exchanges’ total rents from ESST
fees, N ×

∑
j:σ∗j>0 F

∗
j , are strictly less than M

(M−1)(N−1)Π∗continuous.

Proposition 3.2 implies that if M ≥ 3 and N ≥ 6, then exchanges in total are able to extract at
most 30% of sniping rents, with the remainder accruing to fast trading firms.39

Sources of Deadweight Loss. In our model, there are N “fast” TFs (who can be thought of as
exogenously endowed with “general-purpose” speed technology that makes them faster than “slow”
TFs), and M exchanges exogenously present in the market and able to sell ESST to TFs. TFs’
payments to the exchanges for ESST are transfers as opposed to deadweight loss.

We emphasize that, outside of the model, there is significant deadweight loss associated with the de-
velopment of both general-purpose and exchange-specific speed technology. This includes investments
in communications links between exchanges, proprietary speed-optimized hardware and software, and
significant high-skilled human capital.

Moreover, standard excess entry and business stealing incentives (Mankiw and Whinston, 1986)
may also be present in our environment. Specifically, if a potential entrant exchange has a way to ob-
tain positive market share, then it has incentive to enter to capture ESST rents, even if it is completely
undifferentiated from incumbent exchanges, including using the same market design.Equilibrium Anal-
ysis: A Single Discrete Exchange

We next examine the subgame following Stage 1 where there is a single Discrete exchange.
First, suppose that trading fees on all exchanges are set to zero, and all TFs have purchased ESST

from the same set of Continuous exchanges. A reasonable prior might be that there are multiple
equilibrium outcomes for the Stage 4 trading game: for example, there might be an equilibrium where
all liquidity is provided and taken from Continuous exchanges, and another where all liquidity is
provided and taken from the Discrete exchange. However, this is not the case:

Proposition 3.3. Consider the repeated Stage 4 trading game with a single Discrete exchange, as-
suming that in Stage 2 all exchanges set trading fees to zero and in Stage 3 all fast trading firms
have purchased ESST from the same set of Continuous exchanges. Any equilibrium has the following
properties. In period 1 of each trading game: exactly one unit of liquidity is provided on Discrete at
bid-ask spread s∗discrete, which solves:

λinvest
s∗discrete

2 = λprivate · L(s∗discrete) , (3.3)

around the value of y, and no liquidity is provided on any Continuous exchange. In period 2 of each
39In our empirical setting there are 12 exchanges in total, of which 8 have significant market share and are owned by

3 exchange families (see Section 2.3). Aquilina, Budish and O’Neill (2022) found that the top 6 trading firms win over
80% of latency arbitrage races in the UK equities market in data from 2015; this number is consistent with our anecdotal
understanding of the rough magnitude for N in U.S. equities. For example, the CEO of one of the largest high-frequency
traders in the U.S. described in a conversation with two of the authors that there are 7 firms in the “lead lap” of the
speed race in the U.S. equities market.
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trading game: an investor, upon arrival, immediately transacts one unit at the best bid or offer; an
informed trader, upon arrival, immediately transacts one unit at the best bid or offer if their privately-
observed jump in y exceeds s∗discrete

2 ; if there is a publicly-observed jump in y that exceeds s∗discrete
2 , either

all TFs with stale quotes cancel their stale quotes, or if the auction results in trade the auction price
is the new value of y. Such an equilibrium of the trading game exists.

That is, liquidity cannot be offered on any Continuous exchange in any equilibrium. To understand
why, note that if a trading firm was to provide liquidity on a Continuous exchange and not lose money,
it would have to charge at least a “zero-variable profit spread” on a Continuous exchange, denoted
s̄continuous, which we prove is strictly greater than s∗discrete.40 Since investor demand is perfectly elastic
with respect to the bid-ask spread, if any liquidity provider on a Continuous exchange was weakly
profitably offering liquidity at some spread s ≥ s̄continuous, that provider could be strictly profitably
undercut on Discrete at a strictly smaller spread s′ ∈ (s∗discrete, s). Furthermore, any liquidity cannot
be offered on Discrete at any spread other than s∗discrete in equilibrium: any greater, and it could be
profitably undercut by another TF; any lower, and the liquidity provider would be losing money and
be better off withdrawing.

These same arguments also imply that no liquidity can be offered on any Continuous exchange in
any Stage 4 trading game even if Discrete were to charge a strictly positive (but small enough) trading
fee. We thus obtain the following result, which characterizes equilibria in any subgame following Stage
1 with a single Discrete exchange:

Proposition 3.4. Consider the subgame following Stage 1 with a single Discrete exchange. Any
equilibrium has the following properties: (i) in period 1 of each Stage 4 trading game, exactly one unit
of liquidity is provided on Discrete and no liquidity is provided on any Continuous exchange; (ii) every
Continuous exchange earns zero profits; and (iii) Discrete charges strictly positive trading fees and
earns expected per-trading-game profits that exceed N−1

N Π∗continuous. Such an equilibrium exists.

In essence, when a single Discrete exchange competes against Continuous exchanges, the Discrete
exchange is compensated for the elimination of the tax that latency arbitrage imposes on trading: as
long as the Discrete exchange charges a trading fee that is less than this tax, by enough to account
for the zero-variable profit deviation described above, it tips the market.41

40The difference between (3.3) and the equilibrium spread on Continuous exchanges, given by (3.1), is the λpublicL(s∗)
term missing from the equation defining s∗discrete: this reflects that Discrete eliminates latency arbitrage rents, and hence
the associated cost for liquidity providers. For this reason, s∗discrete < s∗continuous.

41Propositions 3.3-3.4 may at first seem in tension with Glosten (1994) (Proposition 9), which finds that the limit
order book is in a sense “competition proof.” The explanation for this apparent contradiction is that the Glosten (1994)
model precludes latency arbitrage—traders arrive to market one-at-a-time, so it is not possible for there to be public
information that multiple traders try to act on at the same time. The reason Discrete “wins” against Continuous in our
model is precisely that it eliminates the latency arbitrage tax on liquidity.
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3.5 Equilibrium Analysis: Multiple Discrete Exchanges

Last, consider the subgame following Stage 1 where more than one exchange chooses Discrete and the
rest (if any) choose Continuous. When there are at least two Discrete exchanges and potentially one
or more Continuous exchanges, the resulting equilibrium has similar features to the equilibria with
only Continuous exchanges, described in Proposition 3.1:

Proposition 3.5. Consider the subgame following Stage 1 where there are at least two Discrete ex-
changes. Any equilibrium has the following properties: (i) at least one Discrete exchange charges zero
trading fees; (ii) in every iteration of the trading game, exactly one unit of liquidity is provided in
aggregate across only Discrete exchanges with zero trading fees at bid-ask spread s∗discrete around the
value of y following Period 1; (iii) no liquidity is provided on Discrete exchanges with positive trading
fees or on Continuous exchanges; (iv) all exchanges earn zero profits. Such an equilibrium exists.

Just as in the case of the status quo with only Continuous exchanges, multiple Discrete exchanges
also operate as a virtual single platform: a single unit of liquidity is always provided in each trading
game across only Discrete exchanges, the depth-volume relationship ensures that the marginal unit of
liquidity is indifferent across these exchanges, and equilibria differ from one another only in exchange
market shares. However, there are two key differences. First, the bid-ask spread is s∗discrete, not
s∗continuous, which is better for investors and informed traders because s∗discrete < s∗continuous. Second,
there are no longer latency arbitrage rents for exchanges or trading firms.

3.6 Market Design Choice

We have now analyzed subgames following Stage 1 when there are multiple Continuous exchanges
(Section 3.4), a single Discrete and one or more Continuous exchanges (Section 3.4.1), and multiple
Discrete exchanges (Section 3.5). Under the equilibria that we have described, we have shown that
for a single play of our overall game:

• If all exchanges are Continuous: each exchange j earns (per trading game) profits of NF ∗j
(Proposition 3.1).

• If there is a single Discrete exchange and all other exchanges are Continuous: the Discrete
exchange earns economic profits denoted ΠD, where ΠD ∈ (N−1

N Π∗continuous,Π∗continuous), and the
Continuous exchanges earn zero profits (Proposition 3.4).

• If there are multiple Discrete exchanges: all exchanges earn zero profits (Proposition 3.5).

Proposition 3.2 places an upper bound on exchange ESST revenues in {all Continuous}, while Propo-
sition 3.4 places a lower bound on the Discrete exchange’s profits in {a single Discrete, the remain-
der Continuous}. These bounds and some simple algebra (Lemma E.4 in the appendix) yields that
ΠD > NF ∗j for all exchanges j, for any equilibrium ESST revenues consistent with Proposition 3.2,
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and for ΠD as characterized in Proposition 3.4. Discrete is thus a dominant strategy, but all exchanges
prefer {all Continuous}, where they earn profits from speed technology, to {all Discrete} where they
do not. We summarize these results in the following Proposition.

Proposition 3.6. Assume that following Stage 1 market design choices, subgame equilibria are char-
acterized by either Proposition 3.1 for {all Continuous}, Proposition 3.4 for {a single Discrete, the
remainder Continuous}, or Proposition 3.5 for {multiple Discrete, the remainder Continuous}. Then
anticipated exchange profits in Stage 1 as a function of their market designs constitute a Prisoner’s
Dilemma: Discrete is a dominant strategy, but all exchanges make greater profits in the subgame in
which all exchanges are Continuous than in the subgame in which all exchanges are Discrete.

In our analysis Discrete is a weakly dominant strategy, because an exchange’s profits are zero if
they are Continuous while there are one or more Discrete exchanges, and are also zero if they are one
of many Discrete exchanges.

Last, with these results, we analyze infinitely-repeated play of our game: i.e., after Stages 1, 2, 3
and T iterations of our trading game are played, play returns to Stage 1.42 The following Proposition
states a necessary and sufficient condition for there to exist an equilibrium in which the status-quo
equilibrium described in Proposition 3.1 (with all exchanges choosing Continuous) is repeatedly played.

Proposition 3.7. All exchanges repeatedly choosing Continuous in Stage 1 and playing a subgame
equilibrium as described in Proposition 3.1 (in which each exchange j earns NF ∗j in ESST fees per
trading game) in Stages 2–4 is an equilibrium of infinitely-repeated play of our game if and only if:

ρΠD ≤ NF ∗j (3.4)

for all exchanges j, where ρ ≡ (∑T
t=0 δ

t)/(∑∞t=0 δ
t) represents the share of net present value represented

by the initial T trading games out of an infinite series and δ < 1 is the per-trading-game discount factor.

This result follows directly from the Prisoner’s Dilemma structure of Stage 1 established in Propo-
sition 3.6.43 Hence, as long as condition (3.4) holds and rents from the sale of ESST in perpetuity are
larger than the short-term gains from eliminating latency arbitrage, it is possible for all exchanges to
maintain the status-quo and repeatedly choose an inefficient market design.

42For notational simplicity, we assume that Stages 1, 2, and 3 are played sequentially but immediately after each other;
and that market participants only engage in discounting between trading games in Stage 4. As noted above, we interpret
trading games as each lasting a very short amount of time (e.g., one millisecond), whereas we interpret market design
choices and fee adjustments taking place on a much slower time horizon (e.g., on the order of months).

43For necessity, if condition (3.4) were violated for some exchange j, then that exchange would have a profitable
deviation to instead choose Discrete in Stage 1: doing so would earn it at least ΠD in profits for at least T iterations
of the trading game (Proposition 3.4), whereas in equilibrium it would earn NF ∗j in rents in perpetuity. For sufficiency,
since all exchanges choosing Discrete in Stage 1 is an equilibrium for a single play of our overall game (Proposition 3.6),
there exists a “grim-trigger” equilibrium whereby all exchanges choose Continuous in Stage 1 unless any exchange has
previously deviated in which case exchanges always play Discrete.
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4 Policy Implications

The question for policy is whether private-market forces will fix latency arbitrage and the arms race for
speed (i.e., “will the market fix the market?”), or would a regulatory intervention be necessary, and if
so, of what form. Section 4.1 synthesizes insights from the theoretical analysis for this policy question.
Our theory suggests that although regulatory intervention may be necessary, this intervention need
not take the form of a market design mandate: a regulatory “push” would be enough to induce private-
sector market design innovation, which our analysis shows would attract share and help the market
fix the market. Section 4.2 briefly discusses two potential forms such a push might take.

4.1 Insights from the Theory

Insight #1: Private innovation incentives may not be sufficient to induce market design
innovation, even if social incentives for market design innovation are high. Proposition
3.7 shows that innovation might not occur—and the inefficient status quo could persist—even if the
latency-arbitrage pie ΠD is large. This can occur if other exchanges are able to imitate an innovator
quickly (ρ is small) and/or speed-technology rents (represented by F ∗j ) are sufficiently large.

We can capture formally that private and social incentives for innovation may diverge as follows.
Add another parameter to the model, DWL ≤ ΠD, that represents the portion of the latency-arbitrage
prize that is dissipated as deadweight loss in the arms race for speed.44 Sources of deadweight loss
are discussed in Section 3.4, and include investments in speed technology, communications links, and
specialized human capital. Social incentives for innovation are positive, but private incentives can be
negative—i.e., “the market will not fix the market”—if deadweight loss from the arms race for speed
is positive and the conditions of Proposition 3.7 obtain. Formally, if

Social incentives are positive: DWL > 0

Private incentives are negative: ρΠD < NF ∗j for all j.

We can distinguish two ways in which private and social innovation incentives diverge. The first
is that a private innovator only earns profits from their innovation temporarily, while society benefits
from it permanently. This difference is captured by the parameter ρ, which affects private innovation
incentives but not social innovation incentives—society enjoys the elimination of deadweight loss in
perpetuity. This is the same wedge between private and social innovation incentives as in standard
patent models (Nordhaus, 1969; Williams, 2017), though a difference here is that imitation may be
especially rapid, meaning ρ is very small.

The second way in which incentives diverge is that exchanges, by innovating to fix the arms race
for speed, lose the speed rents they currently enjoy. Formally, incumbent j would lose the net present

44In the Budish, Cramton and Shim (2015) model, the entire latency-arbitrage pie is dissipated by investments in
speed, i.e., DWL = ΠD. In richer models, inframarginal participants can earn economic rents—such as the incumbent
exchanges in our analysis. For this reason, it is possible that DWL < ΠD.
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value of their speed-technology revenues, NF ∗j
1−δ . This is the sense in which the the industry rents

from the speed race create a wedge between private and social innovation incentives. This wedge is
conceptually novel relative to the extant innovation literature (cf. Bryan and Williams, 2021).

SEC Chair White’s policy address on market design reform assumed that private and social in-
novation incentives align. In that case, the role of policy makers, as the SEC Chair described, is
simply to ensure that they do not inadvertently “stand in the way” of “competitive solutions” to the
problem.45 However, if private and social incentives are misaligned, then there is a potential role for
a policy intervention.

Insight #2: If an exchange adopts Discrete, it wins significant share in any equilibrium.
Propositions 3.3-3.4 shows that, if an exchange adopts Discrete, it wins significant share against
Continuous. The reason is the frictionless search environment under Reg NMS. Frictionless search
ensures that, if there are two markets running in parallel, one with a tax and one without, the one
without the tax wins in any equilibrium. This result is in contrast to many other models of platform
competition, in which there exist equilibria where a new platform fails to get any share even if in
principle it is better designed; the so-called “chicken-and-egg” problem (Farrell and Saloner, 1985;
Katz and Shapiro, 1986; Caillaud and Jullien, 2003).

Our theory also suggests, however, that frictionless search is a double-edged sword for the innovator:
it makes the innovator vulnerable to imitation, and, once imitated, fees are competed down to zero
(Proposition 3.5).

These results have an important implication for the form that a policy intervention might take:
a “push” might be a viable alternative to a “mandate.” By push, we mean any policy intervention
that tips the balance of incentives sufficiently that an exchange will choose to innovate, despite their
vulnerability to imitation and with that competitive pricing.

Insight #3: The incentives to adopt are highest for exchanges with low speed-technology
rents (potentially including entrants). In our model, with M exchanges exogenously present
in the market, the adoption incentives are largest for the exchange with the lowest speed-technology
rents NF ∗j . In a richer model that considers entry, potential de novo entrants would not face any
opportunity costs associated with losing speed technology rents, but they would face entry costs.

The policy implication is that the “push” implied by Insights #1-#2 could focus on either in-
cumbents with low speed-technology rents or de novo entrants. These are the parties with the lowest
opportunity cost of market design innovation.

Notably, the record of innovation attempts to date that relate to latency arbitrage lines up with
this insight of our theory. The one case of an exchange proposal that addressed latency arbitrage in
a theoretically comprehensive way came from an incumbent with very low market share and speed-
technology revenues: the Chicago Stock Exchange’s (CHX) proposal of an asymmetric speed bump in

45White, Mary Jo, "Enhancing Our Equity Market Structure," June 5, 2014.
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2017. CHX’s proposal generated significant opposition from larger incumbents. CHX was eventually
acquired by the New York Stock Exchange Group, which officially withdrew the proposal in 2018.46

4.2 Potential “Pushes”

One potential push would be for the regulator to provide innovators with a modest exclusivity period
— a ρ large enough to ensure that equation 3.4 does not hold. During this time, other exchanges would
not be allowed by the regulator to imitate the design (either identically or with designs judged to be
essentially similar). This policy could be modeled on a practice of the Food and Drug Administration,
wherein it grants a period of market exclusivity for certain kinds of drugs that are not patentable.47

In Appendix G, we provide a back-of-envelope calculation that suggests an exclusivity period on the
order of 1-2 years might be sufficient to induce entry. This exercise attempts to take into consideration
some frictions left out of the main analysis, namely tick-size constraints, a maker-taker fee structure,
and agency frictions between investors and brokers trading on their behalf.

A second potential push would be simply to reduce entry costs or otherwise subsidize entry. En-
try costs are meaningful in practice, and seem in large part to reflect legal costs related to gaining
regulatory approval.48 Moreover, an entrant proposing a new market design would face risk that its
design is not approved. Policymakers could encourage entry by either reducing or subsidizing the cost
of the regulatory approval process for useful new market designs, or by reducing risk of the regula-
tory approval process by proactively clarifying what kinds of exchange design innovations would be
welcomed. Formally, let c denote risk-adjusted entry costs—i.e., the dollar cost of the entry process
divided by the perceived probability of regulatory approval. If these costs can be lowered to the point
where c < ρΠD, then a de novo entrant has incentive to adopt. Propositions 3.3 and 3.4 then tell us
the better market design would take off.

4.3 Can Investors Fix the Market?

Another possibility is that the parties harmed by the current market design—investors, who ultimately
bear the cost of latency arbitrage—can find a market-based solution to the problem without a need

46Other innovative activity that relates to latency arbitrage has come from either entrants (most prominently IEX) or
incumbents with low share (most prominently BYX). In all of these cases, the proposed designs addressed just a subset
of latency arbitrage. While outside our model, this has the strategic flavor of the “puppy dog ploy” in Fudenberg and
Tirole (1984) or the “judo economics” in Gelman and Salop (1983)—purposefully being small enough to avoid provoking
a fierce competitive response. We discuss these proposals in detail in Appendix H.

47For legal reasons, patents do not seem a viable way to create market exclusivity in this context. First, the specific
market design of frequent batch auctions is in the public domain. Second, even if frequent batch auctions were patented,
to be effective the intellectual property protection would have to cover all possible market designs that eliminate latency
arbitrage. As evidence of the difficulty of this, consider that the Chicago Mercantile Exchange filed for a patent for a
market design that is in essence a form of batch auction without using the word “auction” (Hosman et al., “Mitigation
of Latency Disparity in a Transaction Processing System,” US Patent Application No. 14991654, 2017).

48The Investors’ Exchange (IEX) is estimated to have raised over $100M of venture capital in advance of its approval as
a stock exchange in June 2016 (see the IEX Group organization page on Crunchbase.com). The Chicago Stock Exchange
was acquired for $70M and many industry observers speculated that its main asset was its exchange license, i.e., that
it had paid the entry costs necessary to exist as a formal exchange (Michaels and Osipovich, “NYSE in Talks to Buy
Chicago Stock Exchange,” Wall Street Journal, March 30, 2018).
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for policy (Kilenthong and Townsend, 2021). For example, large institutional investors could fund a
frequent batch auction exchange. Speculatively, it seems to us that the most likely explanation for
why this has not happened is the nature of the magnitudes involved and the concentrated-dispersed
dynamics of the problem. Aquilina, Budish and O’Neill (2022) find that latency arbitrage imposes a
roughly one-half of one basis point tax on investors, i.e., roughly 0.005%. This certainly seems “small”
to a typical investor. Yet, it adds up to about $5 billion per year in equities markets alone. At a 5%
discount rate, this has a net present value of $100 billion. So, latency arbitrage is very important to
the concentrated parties that enjoy a share of the pie—high-frequency trading firms and exchanges—
but at the same time imposes only a modest tax on the widely-dispersed set of end investors. As
Olson (1965) emphasizes, it is precisely the role of policy to act on behalf of dispersed interests (while
resisting being co-opted by concentrated interests).

5 Conclusion

Our paper has put forth a theoretical model of stock exchange competition that clarifies why, even
if allowed, exchanges may not wish to innovate: they profit from the speed race generated by the
existing market design. Our story is not about new markets failing to gain traction if introduced, but
rather one of incumbents protecting rents. The modest policy proposals put forth in the last section
are designed with this perspective in mind. Rather than mandate a particular market design, these
proposals attempt to alter the incentives for private innovation to better align private incentives with
social interests, to encourage “the market to fix the market.”

A standalone contribution of this paper, separable from our motivating question about market
design innovation, is the development of an industrial organization (IO) model of the modern stock
exchange industry. This model may prove to be a useful starting point for other research on financial
exchange competition, and perhaps platform competition more generally. We also hope that future
research can take inspiration from the style of analysis in this paper, with a mix of theory and empirical
work guided by institutional and regulatory details.

The ideas in this paper are already having some modest policy impact. In October 2019, the SEC
issued a statement inviting market design proposals for the thinly-traded segment of the U.S. stock
market. In this proposal, the SEC explicitly points to batch auctions as a potential market design
alternative it encourages, and signals willingness to suspend Unlisted Trading Privileges for stocks
listed on exchanges that so innovate (thereby creating a form of exclusivity for the innovator).49 In
February 2020, the SEC issued a proposed reform to the market for exchange data. The proposed rule
cited our theoretical finding that each exchange has market power in the sale of proprietary market
data and related speed technology, as well as our empirical finding that exchanges earn significant

49U.S. Securities and Exchange Commission, "Commission Statement on Market Structure Innovation for Thinly
Traded Securities,” Release No. 34-87327 (2019).
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revenue from selling these products.50 In a policy address on the topic of market data and exchange
governance at around that time, Commissioner Robert J. Jackson Jr. cited our work and said “Without
changing [the] incentives, we cannot and should not expect the market to fix the market.”51
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