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1 Introduction

Asset owners often need to identify and choose between potential contracting partners to

monetize their asset’s value. For example, companies that are the target of acquisition may

have multiple potential acquirers, and research institutions looking to commercialize intel-

lectual property often decide among several interested parties. Many land transactions also

look like this. How should an owner go about this process? Decades of economic theory

have characterized the relative performance of different formal transaction mechanisms, like

simultaneous bidding in auctions, bargaining following an auction, and pure sequential bar-

gaining (Bulow and Klemperer, 1996, 2009; Roberts and Sweeting, 2013). However, in the

real world, many important assets are allocated via informal, unstructured processes, and

little is known about how they perform relative to theoretical benchmarks.

In this paper, we directly measure the gains from using a centralized, theoretically high-

performing mechanism, relative to using informal, decentralized transactions, in the market

for mineral leases in Texas. We study a large class of lands initially set aside for public

use under the Texas Constitution, on which legislative decisions made nearly one hundred

years ago determined whether leases signed during the recent shale boom transacted using

an auction or an informal “negotiation.”1 All of the minerals within these lands belong to

the State. On some of these parcels, the State allocates mineral leases using a first price

auction. However, on other parcels, the Texas Relinquishment Act of 1919 grants today’s

private surface owners the right to negotiate terms with oil and gas companies on behalf

of the State, in exchange for half of the revenues they generate. Conversations with many

parties involved in Texas leasing confirm that these negotiated leases for public minerals

represent a useful analogue to the broader universe of negotiated leases for private minerals

in the United States.

Our empirical strategy compares auctioned and negotiated leases that lie in narrowly

defined geographic areas, which transact at approximately the same time. Within these

location and time bins, the resource quality is the same, the information about its production

potential is constant, and, as we argue in Section 4, the allocation mechanism is as good

as randomly assigned. Using detailed data from almost thirteen hundred leases for publicly

owned minerals in Texas between 2005 and 2016, we find that auctioned leases sell for 36

log points more than similar negotiated leases do. This result is robust to a wide range

of controls and sample restrictions, and is not caused by differences in the likelihood that

auctioned and negotiated parcels have a successful transaction. The economic significance

1Throughout the paper we use the term negotiation to refer to the informal search, bargaining and
solicitation process that lessors use to award drilling rights on private land. We describe what is known
about this process in Section 2.
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of these results is large: on average, negotiated lesses would have generated $133,000 more

up front revenue had they transacted using an auction.

In principle, this improvement in up front seller revenues could simply reflect a transfer

from buyers to sellers. However, one theoretically appealing feature of a well designed auction

is that it should allocate an asset to its highest value user. Using the same empirical strategy,

we look for evidence of such allocative efficiency gains by comparing subsequent output across

auctioned and negotiated leases. We find that auctioned leases produce 46 log points more

output than negotiated leases. Combined with the fact that they also have slightly higher

royalty rates, we estimate that, on average, auctions increase total seller revenue by about

$351,000 per lease. Moreover, we show that while auctions allocate minerals to different

firms, both the payment and output differences hold within firm, suggesting that firm-lease

“match” plays an important role in determining lease outcomes, and that auctions generate

better matches than negotiations do. As we discuss in Section 7, the fact that the optimal

partner varies from lease to lease implies that the gains from attracting additional bidders

and from using a formal mechanism to select between them are large in this setting.

These results contribute to a small empirical literature which compares the performance

of auctions to alternative mechanisms in real world settings. Roberts and Sweeting (2013)

find that a sequential mechanism performs better than a simultaneous bid auction in tim-

ber sales, and Gentry and Stroup (2018) find that the two mechanisms perform similarly

in corporate takeovers.2 Salz (2017) estimates large returns from the use of intermediaries,

who organize auctions on their client’s behalf, in the highly decentralized market for waste

collection in New York City. In each of these papers, only one mechanism is observed in the

data. To predict what would happen under a different mechanism, the authors estimate the

distribution of preferences and costs using a structural model, and then compute counter-

factual market outcomes under alternative mechanisms. In contrast, we observe the results

of auctions and informal negotiations on otherwise identical objects, transacting at the same

time. As a result, we can estimate the causal effects of mechanism choice on welfare relevant

outcomes by directly comparing observable measures of these outcomes, like seller revenue

and lease output.

A direct comparison between auctions and negotiations is useful because real-world nego-

tiations are messy. Conversations with industry participants suggest that informal mineral

lease transactions are heterogenous, with aspects of sequential negotiation coexisting with

2There is also a corporate finance literature on mergers and acquisitions comparing auctioned and nego-
tiated outcomes. Subramanian (2007) finds that “Go-shop” deals, in which private equity target firms are
explicitly allowed to solicit outside bids following a negotiated acquisition offer, sell at higher prices than
“No-shop” deals do. In contrast, Boone and Mulherin (2007) find that auctioned takeover deals transact at
roughly the same prices as negotiated deals do.
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costly landowner search effort (Hortaçsu and Syverson, 2004; Allen et al., Forthcoming;

Cuesta and Sepulveda, 2018), bilateral bargaining (Backus et al., 2015, 2018; Larsen, 2018)

and even take-it-or-leave-it behavior on the part of some buyers. The informality and hetero-

geneity in this market make it unlikely that the forces driving our results would be captured

by any specific formal model of negotiations. Thus, we do not interpret the evidence in this

paper as validating or rejecting any existing theoretical comparisons between auctions and

specific alternative mechanisms.3 Instead, our contribution is to demonstrate the magnitude

of the gains from using a formal, implementable, theoretically attractive mechanism, in a

real world setting. In that sense our paper is similar to Larsen (2018). Using data from

bilaterally bargained vehicle transactions, he finds that the difference in welfare between

actual bargaining behavior and “second best” mechanisms achievable under incomplete in-

formation is much larger than the Myerson and Satterthwaite (1983) welfare loss arising

from incomplete information itself.

We also contribute to the large literature on the economics of oil and gas leasing in the

United States. Early work by Kenneth Hendricks and Robert Porter on the performance

of auctions for mineral leases in the US Gulf of Mexico focused on the empirical relevance

of common values and information asymmetries (Hendricks and Porter, 1996, 1988). They

showed that US government auctions captured approximately 100% of the ex ante surplus in

symmetric information environments, but considerably less in asymmetric information envi-

ronments. Recent work on mineral lease auctions has sought to separately identify affiliation

from synergies between neighboring parcels (Kong, 2017), measure bidder uncertainty about

competition (Kong, 2016), and evaluate the choice of “security” sold by the winning bidder

to the auctioneer (Bhattacharya et al., 2018). An important distinction between this paper

and the existing literature is that our results speak to the performance of the private leasing

market, which constitutes approximately three quarters of all mineral rights in the United

States (currently worth over $3 trillion).

Finally, our paper contributes to a large literature on the costs and benefits of the shale

boom. There is now robust evidence of large negative externalities from fracking (Muehlen-

bachs et al., 2015; Currie et al., 2017). These costs, most of which are local, must be evaluated

against the (ideally local) benefits generated by the use of fracking. Previous literature on

the landowner benefits of fracking were limited to analyzing partial or indirect measures of

landowner revenues, due to the fact that bonus payments are not publicly recorded (Brown

et al., 2016; Feyrer et al., 2017; Bartik et al., 2017). In our setting, we directly observe the

full set of payments received by mineral owners, including bonus payments and royalty rev-

3Indeed, our results are consistent with a variety of theoretical comparisons between simple auctions and
more complicated alternatives. We explore these interpretations in Section 7.
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enue. We find that bonus payments represent more than seventy percent of total landowner

revenue earned to-date for the average lease, and by construction, they are the entirety of

landowner revenues for the two thirds of leases that are never drilled. The fact that local

payments could be made substantially larger through a more formal allocation process sug-

gests that feasible changes to the way this market operates could meaningfully shift the local

cost-benefit ratio of this technology shock.

The rest of the paper proceeds as follows. In Section 2, we describe the mineral leasing

process and provide background information on our natural experiment in Texas. Section 3

discusses the data we use and the filtering criteria we apply to it. Section 4 describes our

empirical strategy and identification argument, and Sections 5 and 6 present the results. In

Section 7 we discuss possible mechanisms for our results, before concluding in Section 8.

2 Background

In this section, we first describe the contract structure of a mineral lease, the market institu-

tions for leasing, and the dimensions along which some leases may end up being more or less

productive (Section 2.1). Then, in Section 2.2, we describe the history of land and mineral

ownership in Texas, where a unique natural experiment motivates our empirical strategy.

2.1 Mineral Exploration and Production in the United States

The US Energy Information Administration estimates that at the end of 2017, oil and gas

companies in the United States had proved reserves of 42 billion barrels of oil and 464 trillion

cubic feet of natural gas. As of December 31, 2017, these reserves were worth more than

$4.5 trillion.4 Although more than three quarters of these deposits lie in land owned by

private individuals (Fitzgerald and Rucker, 2016), landowners must partner with oil and gas

exploration and production companies (E&P) to transform their reserves into revenue.

Partnerships between land owners and E&P companies are formalized through mineral

lease agreements, which are contracts with three key elements: a primary term before which

the lessee (the E&P company) must begin drilling; a royalty rate providing the lessor (the

landowner) with a share of any realized drilling revenues; and an upfront bonus payment to

secure the right to explore.5 Many leases also include delay rentals, which are payments the

4According to EIA data, oil prices were $66.73 per barrel (Brent) and natural gas prices were $3.69 per
million BTU (Henry Hub).

5This contract structure has important incentive implications, as positive royalty rates provide incentives
for lessees to drill later in the contract, and finite primary terms provide incentives for lessees to drill earlier
in the contract. See Herrnstadt et al. (2018).
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lessee must make to the landowner in the event that drilling has not begun by the start of

intermediate milestone events during the primary term. Finally, some leases have additional

contractual clauses regarding operations, cleanup and other landowner protections (Vissing,

2017).6

Lessees frequently elect not to drill any wells before the conclusion of the primary term,

and even when they do, realized drilling does not always result in economically viable quan-

tities of production. As a result, most leases never receive any royalty revenues, so bonus

payments are a particularly important aspect of landowner welfare. Despite their conceptual

importance in this market, little is known about the distribution of bonus payments, because

they are usually not recorded in the mineral leases filed in county registries.

Mineral leases are typically initiated by E&P companies, rather than by landowners. An

E&P company will conduct background research and decide to acquire drilling rights in a

particular geographic location. During this acquisition phase, E&P’s often work through

intermediaries known as “landmen.” One reason that E&P companies use landmen is that

a given firm’s need for new mineral leases may vary over time, and the skills necessary to

find landowners, verify their claim to mineral interests, and convince them to lease can be

too expensive for an E&P company to consistently maintain in-house. E&P companies can

also use landmen to sign leases on their behalf, keeping the E&P company’s identity secret

from potential lessors and from competing firms.

In addition to negotiating leasing terms, the decision of which firm to partner with is

important. During the recent shale boom, there were thousands of E&P companies operating

in Texas, including more than 100 that drilled at least 1 well per month. Compared to other

capital intensive businesses, the oil and gas industry in America is not concentrated, with

the 50 largest firms drilling about half of all wells drilled in Texas. The largest firm, XTO

Energy, drilled fewer than 5% of all new wells.7 Given the large number of firms, one might

expect a fairly homogenous industry. However, there are many reasons why a landowner

might expect different E&P companies to produce substantially more or less output, and

royalties, than others.

Many sources of heterogeneity among E&P companies are “vertical” in nature, in that

some firms have either consistently lower costs or higher productivity than others. There

are wide differences in firm size and observable measures of firm sophistication among the

set of active firms in the US onshore E&P business. Indeed, some of the largest companies

in the world, like Exxon and Chevron, compete for leases against thousands of privately

held E&P companies with fewer than 500 employees. Beyond observable differences in firm

6We study these “lease addenda” formally in Appendix C.
7XTO Energy is a subsidiary of Exxon Mobil, acquired in 2010.
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size and sophistication, there is heterogeneity across E&P companies in their decisions to

hire external service contractors to perform drilling and completion services or to maintain

these capabilities in house. There is also evidence for heterogeneity across firms in their

engineering designs of hydraulic fracturing treatments, which are necessary for all leases in

this setting (Covert, 2015). Finally, it is possible that some firms may simply be able to

process post-acquisition lease information more effectively, and in doing so, more efficiently

select which of their leases to drill.

In addition to these vertical differences in E&P company quality, there are also many

potential sources of horizontal heterogeneity across firms, which may make some better at

developing a particular piece of land than others. For example, firms who already control

acreage in one area may be able to develop drilling plans that minimize the number of wells

necessary to extract minerals, relative to firms who have less existing nearby acreage hold-

ings. Firms who own hydrocarbon transportation infrastructure close to a given parcel may

experience cost advantages in developing that specific parcel, but not other parcels further

away from this infrastructure. Similarly, firms with formation-specific knowledge about ge-

ology or efficient engineering choices will be able to produce more (or less expensively) than

firms with less context-specific knowledge.

2.2 Texas Permanent School Fund

Private mineral rights are a uniquely American phenomenon. When individuals outside of

the United States purchase surface rights to a piece of land, local or central governments

retain ownership and authority over the minerals underground. Because Texas was originally

a Spanish colony, early land transactions in Texas followed a similar pattern: when a private

individual bought land, the King of Spain retained the mineral rights.

After declaring independence in the mid 19th century, the Republic of Texas appropriated

millions of acres of unsettled land for public use and the Texas Constitution of 1876 allocated

half of this land to benefit public schools. The rules for transactions on the 8 million acres

of land, largely in West Texas, contained in this “Permanent School Fund” (PSF), were

formalized in 1895. When PSF land was sold to private citizens, Texas, following its colonial

tradition, retained the rights to exploit minerals beneath the surface. The surface owner’s

remedy for damages resulting from any mineral exploration and development was a payment

of just $0.10 per acre, per year.

When oil was discovered in Texas at the turn of the 20th century, surface owners on PSF

land argued that this compensation was inadequate.8 To stave off “armed rebellion” by these

8Although small quantities of oil were observed in Texas prior to that point, recovery in large quantities
had proved elusive prior to the massive gusher well at Spindletop in 1901. This well is largely cited as the
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surface owners against state lessees, the Texas legislature passed the Relinquishment Act of

1919 (Shields, 1981). This law, amended and reinterpreted through more than a decade of

subsequent litigation, appointed the surface owner as the minerals leasing agent of the State.

The arrangment continues to this day, provided that the surface owner’s parcel had been

acquired from the PSF by 1931.9 As a result, when an E&P company wants to develop a

Relinquishment Act (RAL) parcel, it must negotiate a lease with the surface owner, as if the

surface owner owned the minerals outright. Once the surface owner and the E&P company

reach an agreement, they submit the lease to the Texas General Land Office (GLO) for final

approval. If approved, the lessee remits half of the bonus and royalty payments to the State.

In exchange for acting as the State’s agent, the surface owner gets to keep the other half.

Concurrent with the settlement of the Relinquishment Act, Texas passed the Sales Act

of 1931. Under this Act, subsequent land sales out of the PSF transferred nearly all mineral

rights to the surface owner, under what became known as the “Free Royalty” system. When

an E&P company wants to develop a Free Royalty parcel, it negotiates directly with the

parcel’s owner, and neither party needs to seek State approval for the lease. While the

surface owner keeps all of the bonus and royalty payments that she is able to bargain for,

the firm must make an additional royalty payment, equal to a 1/16th share of output, to the

State. Because the State doesn’t retain any bonus interest, administrative bonus data for

Free Royalty leases do not exist.

The State continued to sell PSF land under the Free Royalty system until the 1970’s,

when the OPEC oil embargo and federal oil regulations prompted wide ranging changes to

mineral management in Texas. Beginning in 1973, the State explicitly retained full mineral

interests in all remaining PSF lands. The State continued to sell surface rights to PSF land,

but the Texas General Land Office (GLO) manages mineral leasing in these and other unsold

PSF parcels. Unlike leases on RAL parcels, or leases on the broader population of private

land, the state awards leases on PSF parcels in which it has retained full mineral rights using

an auction. Bidders compete for leases with a fixed primary term and royalty rate, so the

cash bids are analogous to the bonus payment on a negotiated lease.

3 Data

From the Texas General Land Office, we obtained data on the universe of oil and gas leases

signed between 2005 and 2016 on PSF lands where the State of Texas retained full or partial

mineral rights. This includes leases on RAL parcels, sold by the State prior to 1931, and

advent of the oil age in the United States (Yergin, 2008).
9The Texas Supreme court finalized their interpretation of the Relinquishment Act on June 29, 1931.
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parcels that were sold after 1973 or still belong to the State.10 Our initial dataset includes the

shape, location, size, effective date, bonus payment, primary term and royalty rate for 4,071

RAL leases and 646 State auction leases. For all leases that eventually result in drilling, we

observe monthly payments for gas and oil royalties remitted to the state, up through March,

2019. We use this royalty payment data to both measure the output that a lease generates,

and also determine which leases were drilled, without having to spatially match drilling data

to leases. We combine the royalty revenue data with output price11 information to infer

monthly oil and gas production for drilled leases.

We spatially intersect this lease-level dataset with a parcel map of all lands in the PSF. We

acquired this map from P2Energy Solutions, a private contractor hired by the State of Texas

to match historical records of PSF parcel information to GIS representations of those parcels.

The map identifies which mineral category each PSF parcel belongs to: Relinquishment Act,

Free Royalty or minerals fully retained by Texas. We use this map of parcels to measure

differences in the likelihood of a successful lease across negotiation (RAL) and auction (non-

RAL) parcels in Section 5.2.

The GLO uses first price, sealed bid auctions to allocate its non-RAL leases. GLO

conducts two to four centralized auctions per year, each of which includes hundreds of parcels

from the PSF and other publicly owned land funds in Texas. For every parcel that is

nominated by an E&P company, we observe a “bid notice” describing the parcel itself, the

date that the auction will be held, and the reserve price. Following the auction, we observe

the name of each bidder who bid above the reserve, as well as their bid.

3.1 Sample Selection and Initial Comparisons

We impose a number of restrictions on these data to obtain our final sample. First, we restrict

the sample to leases lying on top of a shale formation, as our empirical strategy leverages

the unexpected shock to the value of land from the fracking boom which occurred decades

after the Relinquishment Act.12 We then exclude leases smaller than 10 acres or bigger

than 1,000 acres, as parcels in the original Texas Permanent School Fund are never more

than 1,000 acres, and GLO rarely auctions leases that cover more than one parcel. We also

remove leases where the minerals are negotiated by multiple parties, due to bequeathment

subsequent to privatization. Finally we exclude a small number of leases with missing or

inconsistent information. We provide additional information on these restrictions, as well

10The State did not retain primary mineral ownership on Free Royalty lands sold between 1931 and 1973.
As a result, the state does not track full payment information on these parcels.

11We use the Henry Hub price for natural gas royalties and the WTI price for oil royalties.
12We use the EIA’s definition of shale formations in Texas, shown shaded in yellow in Figure A.1.
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as an associated waterfall table with the number of leases surviving each cut, in Appendix

B.1. The resulting dataset of 846 negotiated leases and 428 auctioned leases is summarized

in Table 1. Figure 1 demonstrates the distribution of lease types over time.

Table 1: Lease Summary Statistics by Type

Negotiation (N = 846) Auction (N = 428)

Variable mean sd min max mean sd min max Difference p-value

Land Characteristics
Acres 0.28 0.26 0.01 0.99 0.36 0.24 0.01 0.73 -0.08 0.00
Shape Quality 0.94 0.14 0.10 1.00 0.96 0.10 0.28 1.00 -0.01 0.05
Multiple Parcels 0.05 0.22 0.00 1.00 0.03 0.16 0.00 1.00 0.03 0.02
Shale Thickness 3.18 1.27 0.15 5.98 3.79 1.21 0.10 5.84 -0.60 0.00

Lease Characteristics
Bonus 1.10 1.19 0.04 10.41 2.19 2.64 0.02 15.40 -1.09 0.00
Term 3.85 1.16 1.00 5.00 4.75 0.66 3.00 5.00 -0.90 0.00
Contracted Rentals 0.22 0.47 0.00 2.82 0.32 0.54 0.02 2.27 -0.10 0.00
Royalty Rate 0.24 0.02 0.19 0.25 0.25 0.01 0.20 0.25 -0.01 0.00

Lease Outcomes
Drilled 0.38 0.49 0.00 1.00 0.33 0.47 0.00 1.00 0.06 0.05
Output 0.22 0.53 0.00 4.67 0.23 0.51 0.00 3.17 -0.01 0.72
Lease Production Revenue 7.93 18.95 0.00 153.49 8.76 20.61 0.00 169.18 -0.83 0.49
Realized Rentals 0.08 0.21 0.00 2.25 0.15 0.33 0.00 2.27 -0.07 0.00
Total Seller Revenue 3.13 5.03 0.04 43.37 4.49 5.83 0.03 44.44 -1.37 0.00

Units: acres are reported in thousands; shale thickness is reported in thousands of feet and is not available for
leases overlying the parts of the Eagle Ford shale, nor for any leases overlying the Haynesville and Barnett shales
(176 negotiation leases and 28 auction leases); bonus, lease revenue, and total seller revenues are all reported in
thousands of nominal dollars per acre; output is reported in thousands of barrels of oil equivalent per acre; term
is reported in years; contracted delay rentals and realized delay rentals are reported in thousands of dollars per
acre. Definitions: shape quality is the ratio of the lease’s size to the size of the convex hull containing it; we
define a lease as “drilled” if it ever reports a royalty payment; output is the BTU-weighted discounted sum of oil
and gas production observed on the lease, through March 2019, lease production revenue is the monetary value
of this production at contemporaneous prices, and seller revenue is the sum of bonus payments, realized delay
rentals, and the mineral estate’s royalty share of lease revenues.
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Figure 1: Sample Leases by Year and Type

In the cross section, auctioned leases are larger, have slightly “more convex” shapes, and

are less likely to cover more than one legally defined piece of land, although the differences in

these measures are small. They also generate substantially higher bonus payments (per acre)

and pay slightly higher royalty rates and delay rentals, while auctioned leases have longer

primary terms. Auctions are slightly less likely to be drilled, produce equivalent amounts

of output and associated lease revenue, and the difference in total revenues (the sum of

bonus payments, royalty income on production, and realized delay rentals) is slightly larger

than the difference in bonus payments. Figure 1 shows that auctions are not consistently

prevalent over time. In particular, there are relatively few auctions in 2009 (when oil prices

temporarily crashed during the financial crisis) and in 2012 (when gas prices reached lows

not seen in a decade). Appendix Figure A.1 shows that auctioned and negotiated leases are

also not evenly distributed across space, except possibly in West Texas, where the Permian

Basin shale play has recently experienced a surge in leasing activity. These differences in

timing and location underscore the importance of flexibly controlling for these factors in our

empirical specifications below.

4 Empirical Strategy

We use the variation in leasing mechanisms employed on parcels initially placed in the

Permanent School Fund in 1895 to measure how auctions affected lease outcomes, relative

to informal negotiations, during the recent fracking boon. In the ideal experiment, we would

have randomized mechanism type, auction or informal negotiation, among a population of

11



private mineral owners on top of shale formations, on the eve of the fracking boom. In

practice, our sample consists of leases signed between 2005 and 2016 on PSF lands where

the State retained a mineral interest. Within this sample, mechanism type is determined not

by randomization, but by the date on which the parcel underlying each lease was first sold

by the State. As we argue below, variation in privatization dates is unlikely to be correlated

with unobservable determinants of lease outcomes in the modern shale era.

In addition to the fact that leases are quasi-experimentally assigned between the two

mechanisms, our comparison of auctioned and negotiated leases in PSF lands is appealing

because the two types of leases are similar on all other important contracting dimensions.

Both types of leases are buyer initiated, with an E&P company approaching a landowner or

nominating a parcel to the State. The language in the two types of contracts is extremely

similar because the State requires RAL surface owners to use a standard lease document,

whose structure is nearly identical to the lease contract the State uses in its auctions.13

Finally, on RAL leases, the State of Texas, rather than the private surface owner, represents

the mineral estate in legal matters against lessees. Thus, contractual disputes that occur

after a firm signs a lease are between that firm and the State, regardless of which leasing

mechanism is used. For these reasons, the property right that E&P companies buy in RAL

leases is effectively identical to what they buy in auctioned leases.

With that background in mind, we estimate several versions of the following regression,

Yi = τAuctioni +Xiβ + δLi,Ti + εi (1)

where Yi is a lease outcome of interest and Auctioni is an indicator that is equal to one if the

lease was allocated by auction. Xi includes controls for the lease’s size and contract details.

In some specifications, we also condition on detailed information about how the surface is

used, how far the lease is from other potentially valuable features like water and roads, and

the quality of the shale rock underlying the lease.

All of our specifications include direct controls for the two primary determinants of lease

outcomes: where leases are and when they transact, which we write as δL,T in equation 1.

Leases on parcels with better mineral resources may transact at higher prices, attract more

investment and produce more output. Similarly, leases that transact during periods of high

output prices or increased technological progress may earn higher prices or generate better

post-leasing outcomes. To ensure that differences in resource quality across space do not

13This is in stark contrast to the broader private mineral leasing market, where contractual terms vary
considerably (Timmins and Vissing, 2017). Bajari et al. (2009) suggest that for complex projects, negotiation
may allow flexible contracts that improve ex post value generation. Here, the standardized nature of the
lease contracts limits scope for this channel to generate differences across the two mechanisms.
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confound our comparisons, we include fixed effects for 10 mile by 10 mile square “grids” that

contain a lease’s centroid. Figure 2 provides a map with hundreds of leases in one of the

most concentrated regions of our data, in the southwest portion of the Permian Basin shale

play. Dotted lines show the boundaries of the 10 mile by 10 mile grids we use in many of

our fixed effect specifications. Most of the grids shown in this map contain both kinds of

leases, and in many grids, auctioned and negotiated leases are direct neighbors. To account

for time varying unobservable determinants of lease outcomes, we also include fixed effects

for the year-quarter of a lease’s transaction. In some specifications, we restrict comparisons

to leases in the same grid and year-quarter.

Figure 2: Example of Sample Lease Type Overlap

There is no a priori sense in which a given fixed effect specification correctly controls for

the effects of location and time on lease outcomes, and, as Figure 2 demonstrates, the grid

boundaries we draw are quite arbitrary. We thus estimate several fixed-effects specifications

which vary the size of the grids and the extent to which we interact the fixed effects for time

and space. We also non-parametrically control for location and time using a novel application

of the double/debiased machine learning techniques (DML) developed in Chernozhukov et

al. (2018).14 Both of these strategies ensure we are making comparisons between leases with

14Specifically, we estimate a Robinson (1988) style partially linear specification of equation 1. We follow
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similar mineral quality that transact at similar times. To interpret estimates of τ in equation

1 as the causal effect of auctioning vs. negotiating a lease, we must thus assume that the

allocation mechanism is independent of any residual determinants of lease outcomes, those

that remain after conditioning on location, time, and other observable characteristics.

To understand this assumption, recall that the transaction mechanism for a lease is de-

termined by the time at which the State of Texas sold the PSF parcel beneath it. Figure 3

shows a timeline of this process. All parcels sold out of the PSF prior to 1973 transferred

mineral negotiating rights to the buyer: Relinquishment Act lands until 1931, and Free Roy-

alty lands thereafter. However, the state only retained an interest in the minerals underlying

Relinquishment Act parcels. Because we observe the full payment structure on present day

leases on these lands, but not for leases on parcels sold under the Free Royalty system, leases

on Relinquishment Act parcels represent our “control” group. By 1973, the State of Texas

ended the practice of selling the rights to minerals when it sold PSF land. Leases on these

subsequent land sales, as well as leases on parcels that still belong to the PSF, are awarded

using a formal auction, and thus make up our “treatment” group. In light of this history,

our identification assumption thus requires that whether or not a parcel was sold before 1973

(so that its leases are negotiated), and, conditional on that, whether it was sold before 1931

(so that we observe those leases), are both uncorrelated with residual determinants of value

in the shale era.

Figure 3: Lease Assignment Timeline

PSF created
(1896) RAL

(negotiated)

Relinquishment
Act finalized (1931)

Free Royalty
(negotiated)

Free Royalty
sales end (1973)

Assignment Period

Auctions

Shale boom
(late 2000’s)

Sample Period

One threat to the validity of these assumptions is the possibility that the State of Texas

and/or buyers of PSF land had knowledge about which parcels, within narrowly defined

geographic areas, would be better or worse for eventual shale development. For example, if

land buyers prior to 1973 knew where the “good” parcels were, they might rationally have

the procedures recommended in Chernozhukov et al. (2018) (equation 3.5, theorem 3.2, definition 3.3, and
equation 4.4), finding the value of θ = (τ, β) that minimizes the “cross-fitted” empirical analogue of

E [(Y − γ(L, T )− θ(D − δ(L, T ))) (D − δ(L, T ))]

where D = (Auction, X), γ(l, t) = E [Y | L = l, T = t], δ(l, t) = E [D | L = l, T = t] and we estimate the
functions γ(·) and δ(·) using random forests. For more details, see Appendix A.7.
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acquired them quickly, leaving only “bad” parcels for future auctions. Similarly, if the State

of Texas had equivalent knowledge and wished to retain “good” parcels for their eventual

participation in mineral lease auctions during the shale era, RAL and Free Royalty parcels

would be worse, on average. We view both of these scenarios as unlikely. The primary

determinants of better vs. worse parcels in the modern shale era are characteristics of the

shale rock beneath these parcels, including how thick the rock is and the concentration of

hydrocarbons within it. However, the assignment process is complete by 1973, decades before

even the approximate locations of major shale deposits were known or the technology capable

of exploiting it was invented. For this reason, it is reasonable to assume that negotiated and

auctioned leases overlie rock that is similarly valuable in the modern shale era. Moreover,

since the RAL to Free Royalty transition occurred in 1931, decades before the negotiation

to auction transition in 1973, the fact that we can’t observe leases on Free Royalty parcels

is similarly innocuous.

Though we can’t directly test assumptions about the distribution of unobserved quality,

we can test whether land sold during the different eras depicted in Figure 3 is similar on

observable measures of quality. Table 2 presents a series of balance tests using the entire

sample of parcels that overlie shale formations in the PSF. We begin by projecting the best

available measure of shale resource quality, shale thickness, onto indicators for whether the

parcel was sold during the Free Royalty period or whether the minerals were retained by

the State, along with location fixed effects. The excluded category is RAL parcels. The

small point estimates and precise standard errors in this first regression suggest that within

a geographic area, the three types of parcels overlie similarly thick shale rock. This is not

surprising, since the locations of thicker vs. thinner parts of shale plays were not known

until long after 1973.

We also check whether the three parcel types differ on surface characteristics that are

useful for oil and gas development and were known at the time that the mechanism type

was determined. Unlike shale rock quality, it is possible that parcels would differ along

surface dimensions, because RAL and Free Royalty purchasers explicitly acquired surface

rights for economic use during the pre-shale era. Some surface characteristics might be

simultaneously valuable to both pre-shale surface use and shale-boom drilling. For example,

bigger parcels or parcels with more convex shapes could be more valuable to agriculture, by

making mechanical plowing more efficient, as well as shale development, by making efficient

well spacing easier. Similarly, parcels with better access to water could be more valuable

in irrigated agriculture, and also more useful in shale development, because water is a key

input in the hydraulic fracturing process. The next four models in Table 2 estimate similar

regressions, using parcel size, shape and distance to water as the outcome variable. Both
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Table 2: Parcel comparison: Land in the PSF Overlying Shale Formations

Thickness Acres Shape Water Rivers

0.013 -0.087 -0.011 0.184 0.051
Auction

(0.055) (0.016) (0.006) (0.413) (0.073)
-0.013 -0.077 0.000 -0.177 0.001

Free Royalty
(0.041) (0.016) (0.005) (0.374) (0.057)

Average 3.147 0.296 0.960 12.089 0.621
N 2,461 3,488 3,488 3,488 3,488
R2 0.895 0.441 0.416 0.812 0.543

Definitions: Thickness is the thickness of the shale formation in thousands of feet, and is
not available for parts of the Eagle Ford shale, nor for any of the Barnett and Haynesville
shales. Acres is the size of the parcel, in thousands of acres. Shape Quality is the ratio
of parcel size to the size of the convex hull containing the parcel. Water is the distance
in thousands of meters from the parcel’s centroid to the nearest freshwater lake, pond,
marsh or reservoir and Rivers is the distance in thousands meters to the nearest river or
stream. All models include fixed effects for the 10 mile grid containing the centroid of
the parcel, and standard errors are clustered at the grid level.

auction and Free Royalty parcels are smaller than RAL parcels. Because of this, all of our

lease level regressions flexibly control for lease acreage. Auctioned parcels are also somewhat

less convex than Free Royalty and RAL parcels, but the difference is small relative the average

PSF parcel shape and unlikely to be economically significant. Finally, all three parcel types

are similarly close to standing sources of water and to rivers and streams.

5 Seller Revenue Results

We begin by investigating the impact of auctions on seller revenues, estimating several ver-

sions of equation 1 with the natural logarithm of bonus payments as the dependent variable.

Table 3 presents the results. All models include controls for primary term, royalty rate and

acres.15 In column 1, we include fixed effects for the year-quarter of the lease’s effective date

and for the 10-mile square grid containing the lease’s centroid. The interpretation of this

estimate is that auctioned leases generate 36 log points more in bonus payments than similar

negotiated leases, and this difference is precisely estimated.16 In column 2, we interact the

15Note that we do not condition on contracted delay rental payments here because they are mechanically
correlated with bonus payments for both types of leases. Instead, we include realized delay rental payments
as a component of total seller revenues in Section 6. In Appendix A.5 we also formally measure the differences
in contracted and realized delay rentals using the framework in equation 1.

16Note that in percentage terms, this difference considerably larger than 36%, as exp(0.36)− 1 ≈ 43%. In
appendix A.3, we repeat these regressions in levels, with the dollar value of the bonus payments (per acre)
as the left-hand side variable.

16



grid indicators with year of sample indicators, to account for the fact that different locations

in Texas were developed at different times in our sample. Even with these interactive fixed

effects, the estimated auction coefficient is stable, with auctions paying 36 log points more,

and is still precisely estimated. This model, which compares leases for minerals that are

located at roughly the same place and which transact at roughly the same point in time, is

our main specification.

Table 3: Bonus Payments and Mechanism Type

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

0.36 0.36 0.37 0.37 0.52
Auction

(0.07) (0.08) (0.12) (0.08) (0.05)

Grid 10 10 10 20 DML
Time Q GY,Q GYQ GY,Q DML
N 1,274 1,274 1,274 1,274 1,274
R2 0.866 0.953 0.973 0.917

The dependent variable in each regression is the natural logarithm of the
bonus payment per acre. In columns 1-4, the size of the location bins,
in miles, are indicated in the “Grid” row, while the structure of the time
controls (“Q” for quarter of sample, “GY,Q” for grid-by-year plus quarter
of sample, and “GYQ” for grid-by-quarter of sample) are indicated in the
“Time” row. Standard errors are clustered by grid in columns 1-4. Column
5 uses a double/debiased machine learning routine, as recommended in
Chernozhukov et al. (2018). All models include a spline in acres and linear
terms for term length and royalty rate. The average negotiated bonus
payment is $1,096 per acre.

In the remaining columns we investigate the sensitivity of these results to alternative

time-space controls. In column 3, we include location-quarter-of-sample fixed effects to

impose more stringent limits on which leases can be compared over time. To ensure that

our results are robust to different choices of spatial controls, in column 4 we use 20 mile

grids instead of 10 mile grids. In both cases, the resulting estimates are nearly identical

to the results in column 2. Finally, in column 5, we replace the grid and time fixed effects

with a non-parametric control for the lease’s location and time using random forests in a

double/debiased machine learning model (DML). Across all of these specifications, we find

consistent evidence that bonus payments are substantially larger in auctions than they are in

negotiations. Even at the lower end of these estimates, the implications for seller revenue are

large. For an RAL lease of average size, switching to an auction would generate a $133,000

larger up-front bonus payment.
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5.1 Robustness

As we discussed in Section 4, our key identifying assumption is that land that was initially

owned by the state but sold by 1931 is similarly valuable for today’s hydrocarbon exploration

as land from the same allocation that was not sold as of 1973. While we believe it is

unlikely that the timing of early land transactions would be correlated with the productivity

of shale formations that were unknown until the early 2000’s, our empirical specifications

include flexible spatial controls to account for any differences in geology across leases governed

by the two mechanisms. Moreover, Table 2 shows that the two types of land are also

indistinguishable along observable measures of quality that were known at the time the

mechanism type for a parcel was determined. However, even if the two parcel types were

similar at the time the mechanism type was determined, by construction, they have been

exposed to a different history of surface ownership. RAL surface owners have had at least

85 years to develop their surface rights, while State auction parcels were privatized no more

than 40 years ago, if ever. To the extent that surface investments help or hinder shale

development, they would generate differences across parcel types in their value during shale

boom, even if a parcel’s leasing mechanism (negotiation or auction) was as good as randomly

assigned.

To ensure that such differences do not confound our estimates, we estimate a series

of additional specifications that include measures of surface quality related to subsequent

surface investment. Using our lease shape files, we compute the quality of the lease’s shape

as the ratio of its area to the convex hull containing it and determine whether the lease

spans more than one distinct parcel. Next, we measure the distance of each lease to road

infrastructure using GIS data from the Texas Department of Transportation. Finally, we

compute the most common surface coverage characteristics of a lease using the National

Land Cover Database.17 In Table 4, we confirm that the bonus results above are robust to

including these characteristics as controls at the lease level. Model 1 repeats the grid-year

fixed effect model from Table 3, with additional controls for measures of surface quality, like

the convexity of the lease’s shape, an indicator for whether the lease spans multiple parcels,

the distance from the lease to roads and water infrastructure, and satellite measures of the

lease’s landcover. Column 2 estimates the same specification using the DML method to

control for location and time. Columns 3 and 4 repeat these specifications, but include the

thickness of the shale underlying the parcel as well. Across all of these specifications, we

continue to find that auctions pay significantly more than negotiations do.18

17Appendix Table A.1 demonstrates that leases the parcels underlying our sample leases are statistically
indistinguishable along these surface measures.

18We also estimate overlap-weighted treatment effects in Appendix A.4.
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Table 4: Bonus Payments and Mechanism Type: Robustness

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.37 0.51 0.37 0.45 0.47 0.62
Auction

(0.08) (0.05) (0.08) (0.05) (0.11) (0.07)

Estimate G10Y DML G10Y DML G10Y DML
Surface Controls Yes Yes Yes Yes No No
Thickness Controls No No Yes Yes No No
Private Only No No No No Yes Yes
N 1,274 1,274 1,070 1,070 1,073 1,073
R2 0.954 0.954 0.956

The dependent variable in each regression is the natural logarithm of the bonus payment. Surface
controls include shape regularity, a dummy variable for whether the lease spans multiple parcels,
surface cover measures, and distance to roads and water sources. In columns 3 and 4, the sample
excludes leases overlying parts of the Eagle Ford Shale and leases overlying the the Haynesville
and Barnett shales, for which there is no thickness information available. In columns 5 and 6,
the sample is restricted to leases with private surface ownership. Columns 1, 3, and 5 use fixed
effects for year-by-10-mile grid, as well as quarter of sample, with standard errors clustered by
grid. Columns 2, 4 and 6 use a double/debiased Machine Learning routine to control for location
and time, as recommended in Chernozhukov et al. (2018). All models include a spline in acres,
and linear terms in term length and royalty rate.

One remaining potential confounder, which is observably different across the two groups

of leases, is surface ownership. The Relinquishment Act specifically allows a subset of private

surface owners to perform negotiations, so all of our negotiated leases have private surface

ownership. In contrast, some auctions occur on PSF parcels that were never sold, and as a

result, have state surface ownership. Private surface ownership itself could reduce the value

of a negotiated lease if, for example, private surface owners have houses or livestock on their

property, or if E&P companies simply face additional constraints on drilling near private

citizens, relative to leases where the state controls the surface. If these constraints made

negotiated leases more difficult to develop, E&P companies would rationally pay less to lease

them, but this difference in payment would not be caused by the difference in mechanisms.

If this were the case, it would violate our exclusion restriction, as the difference in bonuses on

RAL lands would come from the fact that they have private surface owners, not the manner

in which they were allocated.

To ensure that our results are not driven by differences in private surface rights, we

restrict our analysis to parcels where the state does not own surface rights. This constitutes

leases on land that the State sold to private individuals after 1973, and excludes leases on

land that still belong to the PSF. If there are additional costs to developing leases with

private surface ownership, we would expect the difference in bonus payments between these
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leases and leases on RAL parcels to be smaller than the overall difference we observe, when

including the full set of auction leases. Columns 5 and 6 of Table 4 present our main

bonus regressions specifications re-run on this restricted sample. Despite the fact that these

regressions exclude slightly more than half of all auctioned leases, the estimates are still

consistent with the results in Table 3: both point estimates are statistically significant at

conventional levels, and they comfortably lie within the confidence intervals for the estimates

in columns 2 and 5 of Table 3. We therefore reject the concern that negotiated leases earn

lower bonus payments because they are associated with private surface ownership.

Finally, surface owners of RAL parcels sometimes negotiate additional contractual pro-

visions which deviate from the standard RAL lease, and it could be the case that these

additional contractual demands compensate RAL lessors for the lower bonus payments they

receive. To test this hypothesis, we collected and digitized data on the auxiliary clauses

embedded in each RAL lease. As we document in Appendix C, we find no evidence that

variation in the number of additional contractual demands or the relative landowner vs. E&P

company “friendliness” of those contractual demands can explain the differences in bonus

payments that we observe. Even after conditioning on these additional contractual char-

acteristics, auctioned leases still pay considerably higher bonus payments than negotiated

leases do.

5.2 Extensive Margin Considerations

The results in Table 3 show that auctioned transactions occur at substantially higher prices

than negotiated transactions. However, this is a comparison between successful transactions,

and not all attempted transactions are successful: auctions fail if they attract no bids at or

above the posted reserve price, and negotiations analogously fail when surface owners demand

lease terms that exceed the willingness to pay of their contracting partners. When attempted

transactions fail, the short-run welfare of landowners and their potential contracting partners

is effectively zero. If failures are common, and differentially likely across the two mechanisms,

the true seller gains from auctions could be quite different from the observable revenue

difference conditional on leasing. Thus, to correctly interpret our revenue differences, we

must first check for the presence of differences across mechanisms in the probability of a

successful transaction.

For auctioned leases, we can directly compute the probability of a successful transaction,

because we observe the list of parcels that go up for auction, as well as the subsequent bids.

Among GLO auctions on PSF land, 44% of nominated parcels failed to receive a qualifying

bid. So on a per potential transaction basis, failure is quite common. The GLO often offers
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to sell these failed parcels again in future auctions, to the point that 73% of all observed

nominated parcels transact at some point in our sample. Given that auctions don’t always

clear, even after repeated attempts at transaction, it could be the case that the difference in

seller revenues we observe on successful transactions could be offset by a higher likelihood

of transaction among RAL negotiations.

Unlike auctions, we don’t observe attempted RAL negotiations that fail, so we observe

neither the likelihood of “nomination” nor the probability of successful transaction, condi-

tional on being nominated. However, we can still characterize the total extensive margin

differences between auctions and negotiations, inclusive of both differences in nomination

and transaction success, by comparing the number of parcels that could ever have a trans-

action under a given mechanism, with the number of those parcels on which we actually

observe a lease.

We first visualize the rate at which auction and negotiation parcels are leased over time

in Figure 4. Using the same sample as Table A.1, we compute the fraction of auction and

negotiation parcels within each 10-mile grid that have been leased at least once by the start

of a given month, and plot the average across grids for each month between January 2005

and December 2016. Visually, the arrival rate of a parcel’s first successful transaction is

comparable across the two mechanisms, providing initial evidence that differences in the

nomination process or probability of a successful transaction are unlikely to be important.

To ensure that differences across parcels in size, shape quality, land cover characteristics,

or distance to infrastructure don’t mask differences in the likelihood of a successful lease, we

also report estimates of parcel-level regressions in Table A.6. The left-hand-side variable is

a dummy indicating that at least one lease occurs during our sample period (2005-2016). In

the first four columns, which compare auctioned and negotiated parcels in our entire sample

using both fixed-effect and DML methods, we find no evidence that parcels which lease by

negotiation are any more likely to lease than parcels which lease by auction, consistent with

Figure 4. In columns 5 and 6, we restrict to the sample of parcels over which we have

shale thickness information, and in this subsample, there is a small but precisely estimated

difference in the likelihood of leasing, but it favors auctions, not negotiations. Given these

results, it does not appear that the larger seller revenues we observe in successful auctions

are offset by a lower likelihood of transaction. If anything, parcels governed by auctions are

somewhat more likely to transact.
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Figure 4: Time to First Lease for Auction and RAL Parcels

Average across 10 square mile grids of the fraction of parcels that have leased at least once since January

2005, by parcel type.

Table 5: Likelihood of Leasing and Mechanism Type

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.008 0.007 0.010 0.009 0.033 0.031
Auction

(0.019) (0.015) (0.018) (0.016) (0.017) (0.015)

Grid 10 DML 10 DML 10 DML
Surface Controls No No Yes Yes Yes Yes
Thickness Controls No No No No Yes Yes
N 1,763 1,763 1,763 1,763 1,202 1,202
R2 0.810 0.813 0.537

The dependent variable equals 1 if a parcel was ever leased and 0 otherwise. Surface controls
include shape regularity, a dummy variable for whether the lease spans multiple parcels, surface
cover measures and distance to roads and water sources. In columns 5 and 6, the sample excludes
parcels overlying parts of the Eagle Ford shale and parcels overlying the Haynesville and Barnett
shales, for which there is no thickness information available. Columns 1, 3 and 5 use fixed
effects for 10-mile grids with standard errors clustered by grid, while columns 2, 4 and 6 use a
double/debiased machine learning routine, as recommended in Chernozhukov et al. (2018). All
models include a spline in the size of the parcel in acres.
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6 Allocative Efficiency Results

One potential explanation for the large difference in bonus payments between auctions and

negotiations is that auctions select more productive firms, and these firms are correspond-

ingly willing to pay more for the option to drill. As we discussed in Section 2.1, there are

many sources of productivity differences across E&P companies. Auctions could select better

firms by attracting more bidders than negotiations do, or by simply better identifying the

best bidder from the same set that participate in negotiations. 19 Alternatively, auctions

and negotiations might select equally productive firms, but the absence of formality in the

negotiation process allows negotiation winners to pay less than they would in an auction.

Under this explanation, we’d expect auctioned and negotiated leases to produce at similar

levels, and the difference in bonus payments that we observe would simply reflect a shift in

the division of surplus. To distinguish between these two theories, we measure the differences

in realized output between auctioned and negotiated leases.

We begin by looking at differences in production revenues, as recorded in GLO ad-

ministrative data. Lessees make monthly royalty payments to the GLO. We divide these

payments by the associated royalty rate to infer the total revenues generated by a lease

during a month, then discount the observed stream of monthly revenue back to the lease’s

effective date. Though our data covers all production between January, 2005 and March,

2019, leases are expected to produce output for 20 years or more, so the discounted sum of

realized revenue is right censored, even for the earliest cohort of leases. To limit the bias

generated by this censoring, we focus on leases whose primary term has concluded by the

end of our royalty data, so that all leases are at least properly categorized as having drilling

or not. We also include the same temporal controls as in the bonus regressions, to ensure

that we are making comparisons between auctioned and negotiated leases that are similarly

censored.

The first row of panel (a) in Table 6 presents these results. The model specifications

in each column are identical to those in Table 3, showing the effects of mechanism type on

each output measure, under various spatial, temporal, and surface characteristic controls.

Across these specifications, auctioned leases produce $3,500 to $6,100 more in discounted

lease production revenue, per acre. Though the point estimates are somewhat imprecise in

specifications with finer fixed effects or additional covariates, they are consistently large, and

represent an economically significant difference in output, relative to the average discounted

production revenues from negotiated leases of $8,308 per acre.

19Initial misallocation may not be remedied through subsequent reassignment due to assymetric informa-
tion (Brehm and Lewis, 2019).
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Table 6: Lease Output, Lease Revenue and Mechanism Type

(a) Linear Regression Models

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

4.54 3.52 4.07 3.85 6.13 3.68
Auction - Lease Revenue

(1.81) (2.05) (3.81) (1.82) (1.84) (2.13)
R2 0.524 0.766 0.853 0.612 0.749

0.12 0.11 0.12 0.12 0.15 0.11
Auction - Output

(0.04) (0.05) (0.10) (0.04) (0.04) (0.05)
R2 0.512 0.752 0.833 0.598 0.711

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,175 1,175 1,175 1,175 1,175 974

(b) Pseudo-Poisson Regression Models

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.44 0.46 0.48 0.36 0.60 0.46
Auction - Lease Revenue

(0.16) (0.18) (0.26) (0.20) (0.19) (0.16)

0.48 0.55 0.56 0.46 0.60 0.54
Auction - Output

(0.15) (0.19) (0.27) (0.22) (0.17) (0.18)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,093 738 613 944 1,175 618

The dependent variables are the discounted sum of oil and gas production revenue (Lease Revenue) and
discounted barrels of oil equivalent (Output), both in thousands. In the top panel, the estimates come
from linear regression models, while in the bottom panel, they come from pseudo-poisson quasi-maximum
likelihood models. In both panels, the estimates use fixed effects in columns 1-4 and 6, where the size of
the location bins, in miles, are indicated in the “Grid” row, and the structure of the time controls (“Q”
for quarter of sample, “GY,Q” for grid-by-year plus quarter of sample, and “GYQ” for grid-by-quarter of
sample) are indicated in the “Time” row. For these models, standard errors are clustered by grid. In both
panels, column 5 uses a double/debiased machine learning routine, as recommended in Chernozhukov et
al. (2018). All models except for column 5 in the bottom panel include a spline in acres, and linear terms
in term and royalty rate. The DML models in the bottom panel include acres, term and royalty rate as
covariates in the random forest routines. “Extra” controls include shape regularity, a dummy variable
for whether the lease spans multiple parcels, surface cover measures, distance to roads and water sources,
and the thickness of the shale formation. The sample includes all leases whose primary term ends before
March, 2019. In the fixed effect models of columns 1-4 and 6 in the bottom panel, the leases from grids
and/or time periods with no variation in output are dropped, as the outcome is completely determined.
The average negotiated lease generates $8,308 in lease revenue per acre, and 233 of discounted barrels of
oil equivalent per acre.
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Although landowners ultimately care about production revenues (the product of quan-

tities and prices), E&P companies have little ability to influence the prices at which these

commodities sell. As a result, variation in output may better capture the traditional no-

tion of productivity differences between auction and negotiation winners than variation in

revenues does.20 In consideration of this, we divide our product specific production revenue

data by contemporaneous oil and gas prices, and define output as the sum of these two

series, weighing gas production by its energy content in barrels of oil equivalent terms.21

We then estimate the same set of specifications using output per acre as the left hand side

variable, which we report in the second row in the top panel of Table 6. Across specifica-

tions, auctioned leases produce 110 to 150 additional discounted barrels of oil equivalent,

per acre. These estimates are also more precise than the revenue estimates, because they do

not include the variation coming from variation in prices over time.

The statistical imprecision in some of these estimates may be driven by the fact that the

distribution of both output and revenue, even normalized by lease size, is incredibly skewed.

For leases that are ever drilled, the difference between the 10th and 90th percentiles of output

per acre spans more than three orders of magnitude. If all leases were drilled, a natural

solution to this skewness would be to estimate differences in revenue and output across leases

in relative terms, by using the natural logarithm of these terms as the dependent variables.

However, as described above, fewer than half of leases are ever drilled, and as such generate

zero revenue and output in the real sense (i.e., this is not just a selection problem).22 In this

situation, adding a small constant to these zeros to facilitate the logarithmic transformation

is unlikely to be innocuous. To make relative comparisons which respect this skewness, and to

control for variation across cohorts in the extent of right-censoring, which we expect to have

proportionate effects,23 we also estimate pseudo-poisson regression models, which effectively

project the logarithm of the expected value of revenue (or output) onto mechanism type,

covariates, and location and time:

logE [Y | Auctioni, Xi, Li, Ti] = τAuctioni +Xiβ + δLi,Ti .

The bottom panel of Table 6 presents the same specifications estimated using pseudo-

poisson regression models. Because pseudo-poisson models are not identified within grids

20For a review of this literature, see Syverson (2011).
21We assume 1 thousand cubic feet of natural gas production is equivalent to 0.1767 barrels of oil produc-

tion, per EIA guidelines here: https://www.eia.gov/tools/faqs/faq.php?id=45&t=8
22Appendix Table A.7 estimates the effects of mechanism type on the likelihood that a lease is drilled.

The results are noisy, but suggest large increase on this extensive margin.
23Log or poisson style models will exactly control for censoring under an assumption that lease output

declines at a constant proportional rate over time, a common assumption in petroleum engineering called
“Arps decline curve analysis.”
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and grid-time combinations that have no variation in output, the fixed-effect estimates drop

data from some grids and times. As a result, the pseudo-poisson estimates in different fixed

effect specifications are derived from slightly different samples, most of which are smaller

than what we report in the top panel. In spite of this, across specifications, we find consistent

and mostly precisely estimated evidence that auctioned leases produce more than negotiated

leases do. Whether we use lease revenue or output as the outcome, auctions produce 36 to

60 log points more than negotiated leases do. These results do not depend on how we control

for location and time, nor whether we include additional covariates.

The combined effects of higher bonus payments and more production imply that auctions

generate substantially more net benefit for sellers than negotiations do. We measure this in

Table 7, which shows regressions of the sum of bonus payments, realized delay rentals and

discounted royalty revenues onto the same right hand side variables as in Table 6. Auctions

generate $1,200 to $2,200 more revenue per acre for landowners than the negotiations do.

Under our main specification (column 2), this difference is worth about $351,000 for the

average RAL lease. These results show that auctions have an economically enormous impact

on sellers.

Table 7: Total Seller Revenue and Mechanism Type

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

1.49 1.24 1.53 1.39 2.25 1.27
Auction

(0.47) (0.57) (1.04) (0.49) (0.47) (0.58)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,175 1,175 1,175 1,175 1,175 974
R2 0.568 0.795 0.873 0.653 0.780

The dependent variable is the discounted present value of the sum of bonus payments,
delay rentals paid, and production royalties, per acre. In columns 1-4 and 6, the size
of the location bins, in miles, are indicated in the “Grid” row, while the structure of
the time controls (“Q” for quarter of sample, “GY,Q” for grid-by-year plus quarter
of sample, and “GYQ” for grid-by-quarter of sample) are indicated in the “Time”
row. Standard errors are clustered by grid in columns 1-4, and 6. Column 5 uses
a double/debiased machine learning routine, as recommended in Chernozhukov et al.
(2018). For estimation details, see A.7. All models include a spline in acres, and linear
terms in term length and royalty rate. “Extra” controls include shape regularity, a
dummy variable for whether the lease spans multiple parcels, surface cover measures,
and distance to roads and water sources. The sample includes all leases whose primary
term ends before March, 2019.
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6.1 Unpacking the Productivity Results

Table 6 provides evidence that auctions allocate leases to users who are more likely to drill

them, and who produce more output with them. In this section, we provide statistical ev-

idence regarding the relative contribution of vertical or horizontal productivity differences

between firms in generating these results. The motivation for this decomposition is to un-

derstand whether or not auctions are necessary to deliver the gains we estimate above. If

the gains from auctions come primarily from identifying persistently productive firms (in

the vertical sense), one can imagine relatively light-handed policy interventions which would

steer landowners towards better firms (or away from worse firms). However, if the latent firm

productivity ordering varies from parcel to parcel, it is difficult to imagine a way to achieve

higher allocative efficiency without widespread adoption of some auction-like mechanism.

As we discussed in Section 2, there are a number of reasons to suspect that some E&P

companies are persistently more productive than others. Since the identity of the winning

firms is easily observable, we first check whether auctions and negotiations pick different

firms.24 We do this by tabulating auction and negotiation “market shares” for each of the

ten most active lessees, as shown in Table 8.25 For these especially active lessees, a firm’s

share of leases in the auction market is quite different than its share in the negotiation

market. The data soundly reject a Chi-squared test of the hypothesis that a firm’s auction

market share is the same as its negotiation market share (p < 2× 10−16).26

The net result of these differences is differential concentration in lease ownership across

the two mechanisms. Table 8 suggests that the auction market is more concentrated than

the negotiation market: the top 10 auction winners won 56% of all auctions, while the top

10 negotiators won just 45% of all negotiations. If these firms at the top are also persistently

more productive, then it would be consistent with the idea that auctions generate more

output because they select better firms.

Having established that auctions allocate to different firms, we next ask whether vertical

differences between firms can explain our results. If auctions produce more because the

firms that win auctions produce more on both types of leases, then comparisons of output

24Note that the comparison here is the frequency with which firms win, not whether some firms only
participate in auctions and others only use negotiations, as in Bajari et al. (2009). Auctions are a small
fraction of the broader minerals market in Texas, which is all negotiated and in which all auction participants
are also active.

25Firm identities in our data are recorded with some error (typos, etc). We describe our process for
cleaning these names in Appendix B.

26Chi-squared tests of equal proportions for the top 20 and 40 most active lesses are similarly rejected.
Moreover, these differences in market shares across the mechanism types do not simply reflect differences in
the distribution of a firm’s “interest” across basins. We replicate this exercise within leases overlying the
two largest shale basins in Texas, the Permian and the Eagle Ford, and can similarly reject a null hypothesis
of equal proportions for the top 10 most active lessees in each basin.
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Table 8: Top 10 Auction Winners and Negotiators

Firm Leases Auction Share Negotiation Share

CHESAPEAKE 112 0.192 0.035
ENERGEN 78 0.065 0.059
LEWIS OPERATING 73 0.005 0.084
PETROHAWK 71 0.091 0.038
PETRO HUNT 68 0.007 0.077
CIMAREX 59 0.042 0.048
ANADARKO 53 0.044 0.040
DEVON 31 0.061 0.006
BP PRODUCTIONS 30 0.000 0.035
RANGE PRODUCTION 30 0.047 0.012

ALL OTHERS 669 0.446 0.565

within a firm should reveal no difference between auction and negotiations. Table 9 reports

estimates of our main regressions, with and without fixed effects for the identity of the firm

that wins the lease. Even after conditioning on firm identity, bonus payments, output and

lease revenue are all still larger, by a similar magnitude, on auctioned leases than negotiated

leases. If anything, these within-firm comparisons are even larger than than our baseline

comparisons.

Table 9: Effects of Firm Composition and Mechanism Type on
Lease Outcomes

Bonus Bonus Output Output Revenue Revenue

0.36 0.39 0.107 0.182 3.52 5.30
Auction

(0.08) (0.11) (0.049) (0.106) (2.05) (3.41)

Firm FE No Yes No Yes No Yes
N 1,274 1,274 1,175 1,175 1,175 1,175
R2 0.953 0.970 0.752 0.831 0.766 0.854

The dependent variable is the natural logarithm of the bonus payment
(columns 1 and 2), discounted barrels of oil equivalent per acre (columns
3 and 4), or discounted lease revenue per acre (columns 5 and 6). In columns
2-6, the sample includes all leases whose primary term ends before March,
2019. All specifications include fixed effects for 10-mile grids-by-year and
quarter-of-sample, as well as controls for royalty rate, term, and a spline in
acres.

Given that the differences between auctions and negotiations exist in comparisons within

the same firm, we conclude that the source of the output effect must be due to horizontal
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differences, or “match.” How plausible are idiosyncratic match shocks, which vary across

potential firm-lease combinations, as a determinant of differences between auctioned and

negotiated leases? While we are not aware of a direct test for this hypothesis, we can use

the auction bid data to verify that the magnitude of firm-lease shocks must be large, relative

to vertical differences among firms. If a firm’s value for a parcel was mostly vertical, in the

sense that some firms were inherently more productive than others, we’d expect to see a

consistent ranking of bids between firms, across auctions. In particular, when two firms bid

in the same set of auctions, we’d expect the higher productivity firm to bid more than the

lower productivity firm in every auction. We check this in the bid data, by looking at all

pairs of firms who bid in the same auction ten or more times. Table 10 lists these pairs and

tabulates the probability that the alphabetically earlier firm (Firm A) bids higher than the

later firm (Firm B). If vertical differences across firms were more important than firm-lease

match, we’d expect to see that one firm consistently bids higher than the other. What we

observe is the exact opposite: for 11 of the 13 pairs, the fraction of the time that one firm

wins more than the other is statistically identical to a coin toss.

Table 10: Bid ranking for top auction pairs

Firm A Firm B Auctions Share A > B p-value

CIMAREX ENERGEN 31 0.52 1.000
CIMAREX CONOCO PHILLIPS 19 0.79 0.019
CIMAREX RESOLUTE 19 0.53 1.000
CONOCO PHILLIPS ENERGEN 19 0.37 0.359
ENERGEN RESOLUTE 19 0.42 0.648
COG RANGE PRODUCTION 17 0.41 0.629
CONOCO PHILLIPS RESOLUTE 17 0.53 1.000
CIMAREX MARSHFIELD OIL AND GAS 12 0.67 0.388
ENERGEN MARSHFIELD OIL AND GAS 12 0.67 0.388
299 PRODUCTION THREE RIVERS 10 0.70 0.344
ADESCAPE ENERGEN 10 0.00 0.002
ADESCAPE SEMEION 10 0.30 0.344
ENERGEN SEMEION 10 0.80 0.109

p-value from a two-sided exact test of the hypothesis that the share of auctions in which Firm A bids
more than Firm B is equal to 0.5, at a 95% level.

7 Discussion

Mineral leases that are allocated by auction generate more seller revenue and are matched

to more productive firms than otherwise identical leases that transact informally under the
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Relinquishment Act. What features of the two transaction processes are responsible for

these differences? Unfortunately, we cannot answer this question directly. While the auction

process is comprehensively documented by an administrative body, with public records of

all submitted bids on all potential transactions, there are no records of the circumstances

that lead up to a successful negotiated transaction, nor are there any records of initiated

but failed negotiations. In lieu of sufficient transaction level detail to quantitatively evaluate

the negotiation process, we instead discuss how institutional features of this market and the

resulting differences in outcomes fit within existing mechanism comparisons considered by

the literature.

One possibility is that transactions on RAL parcels actually use a similarly formal and

simultaneous mechanism, but these RAL “auctions” simply attract fewer bidders than GLO

auctions do. This is roughly the “non-sequential” search mechanism considered by Salz

(2017). In our setting, increased demand for GLO auctions would arise from the fact that

they are centralized. State auctions are widely publicized and routinely held, whereas a

central challenge for firms in acquiring negotiated acreage (both in RAL and private land

writ large) is identifying which land is leasable, and performing title research to determine

who actually owns it. It is thus likely that the latter mechanisms would result in fewer

participants. Note that while reduced competition in a hypothetical RAL auction would

generate a reduction in seller revenues by itself, the fact that match quality, as defined in

Section 6, also declines, suggests that the subset of bidders that participate in negotiations

must exclude the highest value buyer with positive probability.

What little we know about the private leasing process suggests that the mechanism

is more sequential than simultaneous. The theory literature offers conflicting opinions as

to whether a sequential mechanism will perform better than a simultaneous auction. If

participation is costly, a sequential mechanism saves real resources by allowing bidders to

observe existing bids before deciding to incur entry costs. Bulow and Klemperer (2009) show

that while a sequential mechanism is thus always more efficient, an auction is usually more

profitable for the seller. However, the latter result is predicated on their assumption that a

bidder’s entry choice is independent of its value for the lease. Roberts and Sweeting (2013)

demonstrate that a similar sequential mechanism can outperform auctions if this entry choice

is instead selective, in the sense that better users of a lease are more likely to participate than

worse users. Thus, if the only difference between the informal process for RAL negotiations

and the GLO’s auctions was that auctions considered bids simultaneously, while negotiations

reviewed offers from the same set of bidders sequentially, then the increased revenues auctions

generate in our setting suggests that entry choices by E&P companies are not especially

selected.
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While it is possible to rationalize our empirical results by assuming that negotiations

are simply auctions with fewer bidders or by assuming that negotiations follow a formal

sequential process, it is important to note that neither assumption perfectly fits this setting.

In the primary market for oil and gas leases, offers to mineral owners are initiated by the

buyer, and, anecdotally, we know that many transactions conclude before other parties

even have the opportunity to participate. Savvy leasing agents, cognizant of the relative

unsophistication of their counterparts, likely use a variety of persuasive techniques which do

not fit well within a formal mechanism design framework. Relatedly, it seems intuitive that

landowners would have a difficult time committing to (and executing) a more formal process.

In the most extensive survey of private mineral rights owners to date, only 21% of lessors in

Pennsylvania reported ever consulting with a lawyer before transacting.27 Conversely, GLO

rules require that all parcels to be auctioned be announced via public notice, with clearly

posted reserve prices. The requirement that the lease go to the high bidder is codified in

state law and easily enforceable and observable.

How feasible would it be for landowners to hold an auction? While it is possible that the

costs associated with organizing an auction may have been large prior to the Internet era,

today there are electronic mineral auction platforms whose fees are 10% or less of the final

transaction price. Indeed, the Texas GLO now uses one such platform, EnergyNet.com, that

explicitly advertises its availability to private landowners. Given our main treatment effect

estimate in Table 3 implies a greater than 40% increase in bonus payments, this gain from

using an auction appears to far exceed the cost.28 In this specific context, it’s also possible

to imagine the Texas GLO performing these auctions on the surface owner’s behalf, and

presumably internalizing some scale economies while doing so.29

7.1 External Validity

How generalizable are these results to the broader population of mineral leases on private

land in the United States, which are also allocated in an informal, decentralized fashion?

One possible concern about predicting that the returns to auctions would be similar in other

locations is that the negotiations in our sample are particularly inefficient or uncompetitive.

If that were the case, the true causal effects of auctions, relative to negotiations, in other

27Survey conducted by the Penn State Extension Marcellus Education Team and summarized in “Natural
Gas Lessors’ Experiences in Bradford and Tioga Counties, 2010” [Online version available here, accessed
3/15/2018].

28Note that RAL landowners only have a 50% claim to the gain from auctions. So unless the state bore
half the costs, the effective fee from the RAL landowners perspective would be 20%, which is still far below
the estimated auction gain.

29Indeed, GLO already does this when E&P firms wish to lease minerals in RAL parcels in which ownership
cannot be established, due to inheritance or property title issues.
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mineral leasing settings would be smaller than the effects we estimate here.

We begin by noting that the auctions against which these negotiated leases are com-

pared are not particularly competitive. In Appendix Table A.11, we tabulate the number

of auctions with 1, 2, 3, 4, 5, or 6+ bidders, and within those groups, compute the average

bonus payment per acre and the median reserve margin. More than half of all GLO auctions

receive only 1 successful bidder, and this fact seems to be known to potential bidders, as

auctions that do receive more bids have substantially higher winning bids. The fact that

reserve margins are much lower for the vast majority of auctions with 1 or 2 realized bidders,

relative to auctions with more, suggests that either GLO has set reserve prices relatively low

or that bidders expect a low, but positive probability of competition, a phenomenon studied

in Kong (2017).

Similarly, it is unlikely that RAL negotiations are especially bad. Although data on the

quality of negotiations in other settings is hard to come by, what little information is available

suggests that private landowners are not particularly savvy. For example, the aforementioned

Pennsylvania survey found that 79% of lessors only spoke to one E&P company before signing

a lease. They also appear relatively uninformed, with only 32% reporting to have consulted

any educational materials prior to signing.

In contrast, Relinquishment Act lessors are likely better informed than the general private

mineral rights owner population. Although the process for RAL leasing initially mirrors that

of private leasing, with a landman approaching the surface owner with an offer and the two

parties coming to a private agreement, these agreements must be approved by the GLO

before they are finalized. During this approval process, the terms of the agreement may be

improved, with the GLO requesting, for example, a higher bonus payment or shorter primary

term. In our sample, 19% of RAL leases show some type of improvement during this approval

period: the median improvements for bonuses and royalties are 50% and 17%, respectively.

Throughout this paper, we compare realized lease terms from RAL negotiations, rather

than what the landowners would have negotiated absent state intervention, so the treatment

effects we estimate are likely to be lower bounds on the difference in revenues and allocative

efficiency we would expect from replacing informal negotiations with centralized auctions in

the broader private leasing population.

8 Conclusion

At current prices, proved US oil and gas reserves are worth approximately $4.5 trillion, and

the vast majority of these resources are owned, and managed, by private individuals. While

this arrangement has delivered substantial wealth to countless landowners, the informal
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mechanisms they use to find and bargain with their contracting partners may generate less

revenue and less efficient matches to E&P companies than would be possible under a more

formal mechanism. In this paper, we directly quantify this loss. Using rich data on a large

number of leases affected by a natural experiment, we compare outcomes under unstructured

“negotiations” to formal auctions. Our results show that auctions generate 36 more log points

in up front payments, and that auctions produce 46 more log points in output, suggesting

that auctions facilitate better matches between land and the firms that can use it most

productively. Given that landowners in this setting often have assistance from an informed

third party (the Texas GLO), these results likely provide a lower bound on the prospective

gains from using auctions in the private mineral leasing population writ large.

A natural direction for future work would be to investigate why informal mechanisms

perform so poorly. In this paper, we lack sufficient information on the process leading up to

informal transactions, and instead rely on credible identification of the net effect of formal

vs. informal mechanisms in the “reduced form.” One approach to gaining insight about

the causes of this difference would be to perform surveys of informal mechanism users or to

conduct experimental information interventions, in mineral leasing or other settings. An-

other would be to measure similar reduced form differences in other economically important

markets where formal and informal mechanisms coexist, such as real estate, construction

procurement, and used automobile sales. In these other settings, sellers may be more or less

informed, or have different abilities to attract potential buyers. Given the sheer size of these

other markets, if even a fraction of the estimated gains in this paper translate, the gains

from policy that encourages the use of formal mechanisms would be enormous.
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Appendix A Additional Tables and Figures

A.1 RAL vs State Lease Locations

Figure A.1: Map of Sample Leases by Type

A.2 Parcel Characteristics Within the Leaseable RAL And Auc-
tion Sample

Table A.1 estimates similar specifications as Table 2, but is limited to RAL and State auction
parcels that were leasable as of 2005. This is the set of parcels underlying our sample leases.
It also includes a variety of other surface characteristics that we use as “extra” covariates in
the lease regressions.
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Table A.1: Parcel comparison: Leasable Auction and RAL Land as of January 1, 2005

Thickness Acres Shape Water Rivers Roads Shrub Forest Cultivated Developed

-0.029 -0.069 -0.007 0.072 0.042 -0.038 -1.810 0.201 0.134 0.238
Auction

(0.061) (0.019) (0.006) (0.386) (0.089) (0.155) (1.050) (0.739) (0.575) (0.155)

Average 3.488 0.290 0.960 12.084 0.587 1.866 77.359 6.025 2.052 0.733
N 1,202 1,763 1,763 1,763 1,763 1,763 1,763 1,763 1,763 1,763
R2 0.895 0.454 0.469 0.824 0.531 0.426 0.913 0.793 0.627 0.897

Definitions: Thickness is the thickness of the shale formation in thousands of feet, and is not available for parts
of the Eagle Ford shale nor for any of the Barnett and Haynesville shales, Acres in thousands, Shape Quality is
the ratio of parcel size to the size of the convex hull containing the parcel, Water is the distance in thousands of
meters from the parcel’s centroid to the nearest freshwater lake, pond, marsh or reservoir, Rivers is the distance
in thousands meters to the nearest river or stream, Roads is the distance in thousands of meters to the nearest
road, and developed high and low, cultivated and forests are land cover measures listed as fractions. All models
include fixed effects for the 10 mile grid containing the centroid of the parcel, and standard errors are clustered
at the grid level.

A.3 Additional Bonus and Output Regression Results

Table A.2: Bonus Payments and Mechanism Type, per Acre

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

0.78 0.83 1.02 0.75 0.92
Auction

(0.20) (0.28) (0.47) (0.25) (0.13)

Grid 10 10 10 20 DML
Time Q GY,Q GYQ GY,Q DML
N 1,274 1,274 1,274 1,274 1,274
R2 0.711 0.869 0.891 0.789

The dependent variable in each regression is the the lease’s bonus payment
per acre. In columns 1-4, the size of the location bins, in miles, are indi-
cated in the “Grid” row, while the structure of the time controls (“Q” for
quarter of sample, “GY,Q” for grid-by-year plus quarter of sample, and
“GYQ” for grid-by-quarter of sample) are indicated in the “Time” row.
Standard errors are clustered by grid in columns 1-4. Column 5 uses a dou-
ble/debiased machine learning routine, as recommended in Chernozhukov
et al. (2018). All models include a spline in acres and linear terms for term
length and royalty rate.
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Table A.3: Bonus Payments and Mechanism Type, per Acre: Robustness

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.83 0.91 0.84 0.87 0.98 1.16
Auction

(0.28) (0.12) (0.28) (0.13) (0.49) (0.19)

Estimate G10Y DML G10Y DML G10Y DML
Surface Controls Yes Yes Yes Yes No No
Thickness Controls No No Yes Yes No No
Private Only No No No No Yes Yes
N 1,274 1,274 1,070 1,070 1,073 1,073
R2 0.870 0.863 0.880

The dependent variable in each regression is the lease’s bonus payment per acre. Surface controls
include shape regularity, a dummy variable for whether the lease spans multiple parcels, surface
cover measures, and distance to roads and water sources. In columns 3 and 4, the sample excludes
leases overlying parts of the Eagle Ford shale and all leases overlying the Haynesville and Barnett
shales, for which there is no thickness information available. In columns 5 and 6, the sample is
restricted to leases with private surface ownership. Columns 1, 3, and 5 use fixed effects for year-
by-10-mile grid, as well as quarter of sample, with standard errors clustered by grid. Columns
2, 4 and 6 use a double/debiased Machine Learning routine to control for location and time, as
recommended in Chernozhukov et al. (2018). All models include a spline in acres, and linear terms
in term length and royalty rate.

Table A.4: Log Total Seller Revenue and Mechanism Type

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.35 0.36 0.44 0.33 0.51 0.36
Auction

(0.10) (0.13) (0.24) (0.13) (0.09) (0.13)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,175 1,175 1,175 1,175 1,175 974
R2 0.687 0.856 0.913 0.753 0.853

The dependent variable is the natural logarithm of the discounted present value of the
sum of bonus payments, delay rentals paid, and production royalties. The estimates
use fixed effects in columns 1-4 and 6, where the size of the location bins, in miles, are
indicated in the “Grid” row, and the structure of the time controls (“Q” for quarter
of sample, “GY,Q” for grid-by-year plus quarter of sample, and “GYQ” for grid-by-
quarter of sample) are indicated in the “Time” row. For these models, standard errors
are clustered by grid. Column 5 uses a double/debiased machine learning routine, as
recommended in Chernozhukov et al. (2018). All models include a spline in acres, and
linear terms in term and royalty rate. “Extra” controls include shape regularity, a
dummy variable for whether the lease spans multiple parcels, surface cover measures,
distance to roads and water sources, and the thickness of the shale formation. The
sample includes all leases whose primary term ends before March, 2019.
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Table A.5: Log Bonus Results on the Poisson Samples

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.33 0.35 0.41 0.37 0.49 0.38
Auction

(0.06) (0.10) (0.16) (0.08) (0.05) (0.09)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,093 738 613 944 1,175 618
R2 0.855 0.951 0.971 0.910 0.953

The dependent variable is the natural logarithm of bonus payments, per acre. In
columns 1-4 and 6, the size of the location bins, in miles, are indicated in the “Grid”
row, while the structure of the time controls (“Q” for quarter of sample, “GY,Q” for
grid-by-year plus quarter of sample, and “GYQ” for grid-by-quarter of sample) are
indicated in the “Time” row. Standard errors are clustered by grid in columns 1-4,
and 6. Column 5 uses a double/debiased machine learning routine, as recommended in
Chernozhukov et al. (2018). For estimation details, see A.7. All models include a spline
in acres, and linear terms in term length and royalty rate. “Extra” controls include
shape regularity, a dummy variable for whether the lease spans multiple parcels, surface
cover measures, and distance to roads and water sources. In each column, the sample
is identical to the corresponding column in the bottom panel of Table 6.

Table A.6: Log Total Seller Revenues Results on the Poisson Output
Sample

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.33 0.39 0.60 0.32 0.51 0.38
Auction

(0.10) (0.18) (0.33) (0.13) (0.09) (0.18)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,093 738 613 944 1,175 618
R2 0.662 0.767 0.824 0.697 0.768

The dependent variable is the natural logarithm of the discounted present value of
the sum of bonus payments, delay rentals paid, and production royalties, per acre. In
columns 1-4 and 6, the size of the location bins, in miles, are indicated in the “Grid”
row, while the structure of the time controls (“Q” for quarter of sample, “GY,Q” for
grid-by-year plus quarter of sample, and “GYQ” for grid-by-quarter of sample) are
indicated in the “Time” row. Standard errors are clustered by grid in columns 1-4,
and 6. Column 5 uses a double/debiased machine learning routine, as recommended in
Chernozhukov et al. (2018). For estimation details, see A.7. All models include a spline
in acres, and linear terms in term length and royalty rate. “Extra” controls include
shape regularity, a dummy variable for whether the lease spans multiple parcels, surface
cover measures, and distance to roads and water sources. In each column, the sample
is identical to the corresponding column in the bottom panel of Table 6.
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Table A.7: Drilling

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.062 0.056 0.098 0.070 0.077 0.075
Auction

(0.040) (0.047) (0.075) (0.054) (0.038) (0.048)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,175 1,175 1,175 1,175 1,175 974
R2 0.407 0.672 0.761 0.518 0.660

The dependent variable is equal to 1 if a lease is drilled and 0 otherwise). In columns 1-4 and
6, the size of the location bins, in miles, are indicated in the “Grid” row, while the structure
of the time controls (“Q” for quarter of sample, “GY,Q” for grid-by-year plus quarter of
sample, and “GYQ” for grid-by-quarter of sample) are indicated in the “Time” row. Column
5 uses a double/debiased machine learning routine, as recommended in Chernozhukov et al.
(2018). Standard errors are clustered by grid in columns 1-4, and 6. All models include a
spline in acres, and linear terms in term length and royalty rate. “Extra” controls include
shape regularity, a dummy variable for whether the lease spans multiple parcels, surface cover
measures, distance to roads and water sources, and the thickness of the shale formation. The
sample includes all leases whose primary term ends before March, 2019.

A.4 Overlap-weighted ATEs

In Section 3, we describe our rationale for dropping (primarily) negotiated leases with espe-
cially large sizes or terms that are shorter than 1 year. Our goal in dropping these observa-
tions is to achieve balance between the observable characteristics of auctioned and negotiated
leases. Here we report the results that we obtain from measuring the causal effects of mecha-
nism type on lease outcomes using overlap-weighted treatment effect techniques described in
Li et al. (2018). These estimates do not require a priori choices about which comparisons are
sufficiently balanced, so the data for these calculations include leases we previously dropped
because they were too large or their terms were too short. We compute the estimates in
Table A.8 using the “causal forest” estimator from the grf R package, as described in Athey
et al. (2019). For each outcome, these results have the same sign as those in in Tables 3 and
6, though the magnitudes are larger.
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Table A.8: Overlap-weighted ATE Estimates

Bonus Bonus Output Output Revenue Revenue Drilled Drilled

0.56 0.52 0.236 0.232 13.15 14.05 0.100 0.068
Auction

(0.05) (0.05) (0.064) (0.070) (4.38) (5.54) (0.037) (0.035)

Extra No Yes No Yes No Yes No Yes

N 1,595 1,282 1,467 1,164 1,467 1,164 1,467 1,164

Overlap weighted average treatment effect estimates for the natural logarithm of the bonus payment
(columns 1 and 2), Output per acre (columns 3 and 4), Revenue per acre (columns 5 and 6) and
whether the lease is drilled (columns 7 and 8). Columns 3 through 8 are estimated using the subsample
of leases whose primary terms are not censored. The covariates used in determining the conditional
expectation and propensity functions include location, effective date, acres, term, royalty rate, as well
as shape regularity, surface cover, an indicator for leases spanning multiple parcels, shale thickness
and distance to roads and water sources for the “extra” columns 2, 4, 6, and 8. Shale thickness is not
available for leases in parts of the Eagle Ford shale nor for any leases in the Haynesville and Barnett
shales.

A.5 Delay Rental Statistics

Many leases also include delay rentals, which are payments the lessee must make to the
landowner in the event that drilling has not begun by the start of intermediate milestone
events during the primary term. Failure to drill a productive well before such milestones
or to make a required delay rental payment result in early termination of the lease. For
example, a lease may have a 5 year primary term, a 25% royalty rate, a bonus payment of
$1,000 per acre, and delay rentals of $200 per acre due at the start of the fourth year. Here,
we estimate the causal effect of transaction mechanism type on the magnitude of potential
delay rentals in a lease, as well as the portion of those contracted rentals that are ultimately
paid.
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Table A.9: Potential Delay Rentals and Mechanism Type

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

-0.07 -0.10 0.00 -0.09 -0.09 -0.11
Auction

(0.06) (0.10) (0.17) (0.05) (0.03) (0.10)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,274 1,274 1,274 1,274 1,274 1,070
R2 0.556 0.716 0.819 0.648 0.721

The dependent variable in the first two columns is potential discounted delay rentals,
in thousands of dollars per acre. The specifications in columns 1, 3, and 5 control
for location and time using 10-mile grid by year-quarter of sample fixed effects, with
standard errors clustered by grid, while columns 2, 4 and 6 use a double/debiased
machine learning routine, as recommended in Chernozhukov et al. (2018). All models
include a spline in acres and linear terms for term length and royalty rate.

Table A.10: Delay Rentals Paid and Mechanism Type

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

-0.07 -0.08 -0.04 -0.08 -0.07 -0.08
Auction

(0.03) (0.06) (0.09) (0.05) (0.02) (0.06)

Grid 10 10 10 20 DML 10
Time Q GY,Q GYQ GY,Q DML GY,Q
Extra No No No No No Yes
N 1,175 1,175 1,175 1,175 1,175 974
R2 0.371 0.593 0.754 0.515 0.598

The dependent variable in the first two columns is discounted delay rentals in thou-
sands of dollars per acre, that were actually paid. The specifications in columns 1,
3, and 5 control for location and time using 10-mile grid by year-quarter of sample
fixed effects, with standard errors clustered by grid, while columns 2, 4 and 6 use a
double/debiased machine learning routine, as recommended in Chernozhukov et al.
(2018). The sample includes all leases whose primary term ends before March, 2019.
All models include a spline in acres and linear terms for term length and royalty rate.
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A.6 Auction Statistics

Table A.11: Auction Results by Number of Bidders

Bids Auctions Fraction Avg. Bonus ($/Acre) Med. Bid/Reserve Med. Markup

1 235 0.55 1,337 1.62
2 88 0.21 1,945 2.08 1.39
3 35 0.08 3,014 3.61 1.40
4 30 0.07 2,743 3.26 1.12
5 21 0.05 6,418 3.61 1.10
6 + 19 0.04 6,027 4.71 1.14

This table summarizes the winning bids from GLO auctions. The fifth column contains the median
ratio of winning bid to the reserve price for each group, while the last column shows the median
ratio of winning bid to second highest bid.

A.7 Double/Debiased Machine Learning Estimation Details

To non-parametrically control for the effects of location and time on lease terms and lease
outcomes, we adopt the double/debiased machine learning framework of Chernozhukov et al.
(2018), which we refer to as “DML” models. In our partially linear DML models, we use the
partially linear model derived in equation 4.4 of that paper. In our pseudo-poisson models,
we derive a Neyman-orthogonal score for pseudo-poisson regression, documented below.

In all DML models, we implement the nuisance parameter estimation with random forests,
using the regression forest function from the grf package for the R language, as described
in Athey et al. (2019), with 1000 trees per forest. Following the suggestions in Chernozhukov
et al. (2018), we construct a single point estimate and covariance matrix of the relevant
parametric terms using 5-fold cross-validation, and report the “median” values of these
across 101 randomized cross-validation partitions, as in definition 3.3 of that paper.

To derive the Neyman-orthogonal moment for pseudo-poisson regression, we closely follow
the discussion following Lemma 2.5 of Chernozhukov et al. (2018). Let Y be a non-negative
outcome, D a binary covariate, and X a vector of controls that we wish to model non-
parametrically. Our goal is to pick the values of θ and β(X) that minimize a pseudo-poisson
quasi-log-likelihood criteria:

(θ0, β(X)0) = arg max
θ,β(X)

E [Y (Dθ + β(X))− exp(Dθ + β(X))]

Let βθ(x) be the best fitting value of β(x) for a given value of θ. For the above criterion,
we can find this implicitly by setting the gradient of the conditional expectation of the
criterion with respect to β(x) equal to 0, and re-arranging terms:

exp(βθ(x)) =
γ(x)

exp(θ)δ(x) + 1− δ(x)

where γ(x) = E [Y | X = x] and δ(x) = E [D | X = x]. The Neyman-orthogonal moment
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for pseudo-poisson regression is the total derivative of the quasi-log-likelihood criterion with
respect to θ, after we plug in the solution for exp(βθ(x)):

ψ(Y,D,X; θ, γ(x), δ(x)) =

(
Y − exp(Dθ)γ(X)

exp(θ)δ(X) + 1− δ(X)

)(
D − exp(θ)δ(X)

exp(θ)δ(X) + 1− δ(X)

)
.

This is the objective whose empirical average we set to 0 in our pseudo-poisson regressions.
Note that this objective only allows for a single binary covariate in D, so in the DML
pseudo-poisson regression in Table 6, we include lease size, royalty rate and term length in
X.

Appendix B Data Cleaning

B.1 Sample construction

Table A.12 presents the number of RAL and auction leases from original data provided to
us by GLO that survive each of our sample restrictions. We use the EIA’s definition of shale
formations in Texas, shown shaded in yellow in Figure A.1. “Undivided” ownership refers
to shared ownership of real property by two or more parties.30 A small number of non-RAL
leases are actually allocated via bilateral negotiation when it is situated in a position where
only one party can economically use it. Similarly, some RAL leases are allocated by auction
when the State is unable to determine who the rightful surface owner is.

Table A.12: Sample Construction

Drop Reason Negotiation Auction

All Leases 3,977 740
Not on Shale 2,350 528
Missing Value 2,305 528
Less Than 10 or Greater Than 1,000 Acres 1,832 476
Gross and Net Acreage Differ 1,327 474
Undivided Interest 870 460
Term Less Than 1 Year 860 460
Cancelled or Withdrawn 852 457
Negotiated State Lease 847 457
Auctioned RAL Lease 847 428
Lessee Owns RAL Surface 846 428

Final Sample 846 428

Additional discussion provided in Section 3.1.

30For example, if parents John and Mary bequeath their 640 acre parcel to their two children, Bob and
Jane, then Bob and Jane each have an undivided interest in the parcel. In principal, it is possible for Bob
and Jane to separately lease their respective undivided interests to different oil and gas companies.
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B.2 Firm Names

Though we observe the name of the firm on the lease, E&P companies sometimes use in-
termediaries to acquire land, and, in these cases, we might not observe the relevant firm.
One reason why a firm would do this would be to prevent its competitors from discovering
its interest in a particular play before it had had acquired enough land to develop it. This
“secrecy” motivation is probably relevant, because the presence of non-E&P company lessees
is much more common in the auction data than in the negotiated data. This is perhaps not
surprising, since the auction records are publicly released shortly after the auction, and eas-
ily observable. To partially overcome this challenge, we use data on lease assignments, legal
transactions which formally change ownership of a lease from one firm to another, to better
infer who the ultimate E&P company is on leases initially awarded to non-E&P company
lessees. We observe assignments on 18% of RAL leases and 33% of auction leases. For each
non-E&P company in our data who ever assigns a lease to an E&P company, we identify a
variety of “most common” assignees, using auction status, location and time. For non-E&P
company leases in which we do not observe an assignment, we characterize the “real” lessee
as this (conditional) most common assignee. Though this process is not perfect, it does
greatly reduce the number of leases that we believe are allocated to lessees that are not E&P
companies.
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Appendix C RAL Lease Addenda

In addition to specifying a bonus payments, royalty rate and primary terms, mineral leases
also specify how the contracting parties will resolve disagreements about issues related to
environmental impact, on-site water usage, and surface property disruptions, among other
things. These protective clauses are standardized in the GLO auction lease agreement, and
there are “default” values for them in the GLO’s required RAL lease agreement. However,
RAL surface owners and their contracting partners can optionally negotiate some deviations
from the standard lease. To the extent that RAL surface owners are willing to forego up-
front bonus payments for stricter surface protections during subsequent exploration and
production, we might be worried that the differences in bonus payments that we observe are
not caused by the mechanism itself, but rather by a compensating differentials story.

To determine the validity of this concern, we had a team of research assistants do a
dual-entry review of the text of these lease addenda for all RAL leases signed between 2005
and 2016. They characterized the extent to which each one improved or deteriorated the
surface owner’s rights along dimensions such as environmental impact, water usage, and
surface property disruptions. About 73% of RAL leases have one or more additional clauses
in their lease addenda. In Table A.13, we include measures of these protective clauses in
bonus regressions like those shown in Table 3. The first two columns mirror the result shown
in the main text: auctioned pleases pay 36 to 58 more log points in up-front bonus payments
than negotiated leases do. In the next two columns, we include covariates which measure
the number of pages in an RAL lease’s addendum, as well as the number of specific legal
clauses documented. Finally, in the last two columns we include covariates for each specific
kind of clause that occur in these addenda, coded as −1 if a lease’s addenda deteriorates the
surface owner’s rights, relative to the standard RAL lease, 0 if it is absent or does not affect
the surface owner’s rights, and +1 if it improves upon the surface owner’s rights. Across all
specifications, we find no evidence that variation between auctioned and negotiated leases
in protective clauses can “explain away” the observed differences in bonus payments.
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Table A.13: Bonus Payments and Mechanism Type: Robustness to RAL
Lease Addenda

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

0.36 0.52 0.40 0.58 0.39 0.57
Auction

(0.08) (0.05) (0.09) (0.05) (0.09) (0.05)
0.00 0.01

Pages
(0.01) (0.01)
0.01 0.01

Clauses
(0.00) (0.00)

0.03 -0.05
Surface Protection

(0.04) (0.05)
0.01 0.04

Payment Terms
(0.04) (0.03)
-0.05 -0.02

Location Requirements
(0.07) (0.07)
0.08 0.10

Pugh Clause
(0.04) (0.05)
0.05 0.14

Cleanup Terms
(0.05) (0.08)
-0.19 -0.16

Livestock Protection
(0.12) (0.09)
-0.09 -0.10

On-site Water Use
(0.05) (0.05)
0.03 -0.19

Waste Management
(0.07) (0.10)
0.02 0.01

Definitional Changes
(0.03) (0.04)
-0.08 0.15

Pollution Protection
(0.11) (0.10)
0.12 0.04

Infrastructure Constraints
(0.06) (0.06)
-0.14 0.20

Caliche Use
(0.12) (0.11)
-0.03 0.09

Additional Fees
(0.05) (0.07)
-0.01 -0.11

Time Constraints
(0.15) (0.10)
0.05 0.20

Miscellaneous
(0.06) (0.07)

Grid 10 DML 10 DML 10 DML
Time GY,Q DML GY,Q DML GY,Q DML
N 1,274 1,274 1,274 1,274 1,274 1,274
R2 0.953 0.953 0.954

Columns 1, 3, and 5 control for space and time using 10-mile grid by year of sample
fixed effects, as well as fixed effects for quarter of sample. Columns 2, 4, and 6 use
a double/debiased machine learning routine, as recommended in Chernozhukov et al.
(2018), with non-parametric controls for lease latitude, longitude and effective date.
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