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This paper discusses two simple decompositions for aggregate productivity analysis
in the presence of distortions and in general equilibrium. The first is a generalization of
Baqaee and Farhi (2017) and the second is due to Petrin and Levinsohn (2012). In the
process, we propose a new “distorted” Solow residual which, contrary to the traditional
Solow residual, accurately measures changes in aggregate productivity in disaggregated
economies with distortions. These formulas apply to any collection of producers ranging
from one isolated producer to an industry or to an entire economy. They can be useful
for empiricists and theorists alike. Potential applications of these formulas include: (1)
decomposing aggregate productivity into its microeconomic sources, separating technical
and allocative efficiency; (2) aggregating microeconomic estimates (for example, from
natural experiments) to assess macroeconomic effects; (3) constructing and interpreting
aggregate counterfactuals. Despite their simplicity, the formulas are general, allowing
for production networks, multi-product firms, and non-constant returns. They are also
entirely nonparametric. They only assume market clearing and cost minimization.

1 Introduction

A group of producers receives external resources (that it does not produce) and produces
final resources (that it does not use). Changes in final outputs produced by the collective
depend not only on the amount of external inputs, but also on the technology and the dis-
tribution of resources amongst the firms in the group. At any point in time, the allocation

∗We are grateful to Natalie Bau for comments.
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of resources across producers is determined through general equilibrium with arbitrary
distortions captured as wedges.

In this context, we discuss two formulas for changes in aggregate output in terms of
microeconomic sufficient statistics. The first formula is a generalization of Baqaee and
Farhi (2017), and the second is a re-expression of Petrin and Levinsohn (2012). In the
process, we propose a new “distorted” Solow residual which, contrary to the traditional
Solow residual, accurately measures changes in aggregate productivity in disaggregated
economies with distortions.

These formulas can be used to measure and decompose the sources of aggregate pro-
ductivity. They can also be used to go from microeconomic information up to the behavior
of the aggregate. Finally, they can be used to derive and gain intuition for counterfactuals
in structural models. Despite their simplicity, the formulas are general, allowing for pro-
duction networks, multi-product firms, and non-constant returns. They are also entirely
nonparametric. They only assume market clearing and cost minimization.

First, and foremost, this paper relates to the literature on growth accounting. The
measurement of aggregate productivity dates back at least to Solow (1957), who used an
aggregate production function and perfectly competitive markets to measure changes in
technical efficiency over time. Domar (1961) and Hulten (1978) extended Solow’s result
to perfectly competitive economies with many producers and intermediate inputs. On
the other hand, Hall (1990) extended Solow’s result to imperfectly competitive economies
with a single producer and an aggregate production function. The closest to this pa-
per is Baqaee and Farhi (2017), who extended the Solow-Hulten-Hall results to closed
economies with multiple producers allowing for both intermediate inputs and imperfect
markets, and Petrin and Levinsohn (2012), who provided a decomposition of the Solow
residual in inefficient economies. This paper goes beyond the results in Baqaee and Farhi
(2017) by generalizing that analysis to subsets of the economy (for instance, a single in-
dustry, country, region, time period, etc.) and not just to the economy as a whole. This
paper also relates to the growing literature on production networks in closed and open
economies, see for example Carvalho and Tahbaz-Salehi (2018) and the references therein.

Second, these results are related to classic results in welfare economics, like Hotelling
(1938), Hicks (1965), and Meade (1962), who derived measures of societal welfare. In par-
ticular, the second decomposition relates to the formula proposed by Harberger (1964) for
cost-benefit analysis. In these papers, to measure the effects of a policy change on societal
welfare, Kaldor-Hicks transfers are assumed to operate that neutralize the distributional
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consequences of the policy change. The second decomposition validates and nests the
formula proposed by Harberger (1964), and shows that it can be used to study purely
positive questions rather than normative ones — questions like how should we measure
and predict aggregate productivity growth in an industry.

The outline of the paper is as follows. In Section 2, we describe the environment and
define our notation. In Section 3, we define the notion of aggregate productivity, which
can be broken down into technical productivity and allocative efficiency. In Section 4,
we state and discuss the first decomposition, showing how it can be used to measure
and decompose aggregate productivity. In Section 5, we state and discuss the second
decomposition, showing how it can be used to combine producer-level estimates to esti-
mate changes in aggregate output and the Solow residual. The two decompositions have
very different data requirements, which means that each can be useful depending on the
availability of data and the context. We conclude in the final section.

2 Setup

In this section, we introduce the setup and define the primitives of the model.

Group: Let I be a set of firms producing different goods and interacting with the rest of
the economy and with each other. For convenience, we refer to I as a group of producers.
Each producer i ∈ I produces gross output yi using intermediate inputs yij with j ∈ I
produced inside the group as well as external inputs li f with f ∈ F , where F denotes the
set of external inputs. The technology of producer i is described by a constant-returns
gross production function Fi(·, Ai) indexed by a productivity shifter Ai. Without loss of
generality, we assume that ∂ log F/∂ log Ai = 1 at the initial equilibrium. As we describe
below, the assumption of constant-returns is also made without loss of generality.

The gross output yi of a producer i ∈ I is used as an intermediate input by other
producers j ∈ I in the group and as by “final” users outside the group in respective
amounts ∑j∈I yji and ci. The the total quantity of external inputs used by all firms in I by
L f for each f ∈ F .

We keep the amount of structure to a minimum. We impose two fundamental as-
sumptions. The first assumption is that for all i ∈ I , producer i minimizes its cost, taking
prices as given, and charges a price pi given by a markup µi times its marginal cost. The
second assumption is market clearing: yi = ci + ∑j∈I yji for all i ∈ I , and L f = ∑i∈I li f
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for each f ∈ F .
For example, for the neoclassical growth model, in a given period, external inputs are

labor and capital; for an open economy, they are labor, capital and imported intermediate
goods; for an industry, they are labor, capital, and intermediates from other industries,
and so on.1

Generality: This setup is very general. It does not require that technical change be
Hicks-neutral and allows for arbitrary biased technical change at the producer level. The
setup allows for decreasing returns at the producer level via the introduction of producer-
specific quasi-fixed factors earning each producer’s decreasing-returns profits.2 It can
handle multi-product producers by choosing, for each producer, an arbitrary product as
the output, and treating the other products negative inputs.

Finally, the setup allows for arbitrary wedges other than markups. Such wedges can
always be modeled as markups via the introduction of “fictitious producers” as explained
in Baqaee and Farhi (2017). For example a wedge τij in the use of some good or factor j
by producer i can be captured by introducing a fictitious producer transforming good
or factor j into good or factor j for producer i and charging a markup τij. We use the
terminology markups/wedges throughout to remind the reader of this observation.

Shocks: We consider a perturbation of equilibrium outcomes. This perturbation changes
productivities d log A, external inputs d log L, markups/wedges, d log µ , and the com-
position of final demand. These changes may arise due to some deep endogenous mech-
anism or they may be exogenous. Our two theorems will hold regardless of the origin
or cause of the perturbation. An example would be a change in foreign preferences that
increases the flow of external inputs d log L a small open economy I , and that the flow
of foreign inputs endogenously changes d log A the productivity of producers in I , and
these firms then adjust their markups d log µ.

Aggregate (group) output: The final output ci of each producer i is the quantity of goods
produced by i which leaves I . We denote nominal aggregate group output by PY =

1We can also consider dynamic closed economies whose only external input is labor (for instance, by
including capital accumulation as part of the group).

2Increasing returns can also be accommodated, but only to some limited extent, by allowing these quasi-
fixed factors to be local “bads”, i.e. to receive negative payments over some range. However, care must be
taken because increasing returns introduce non-convexities in the cost minimization over variable inputs,
and our formulas only apply when variable input demand changes smoothly.
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∑i∈I pici. Final expenditure shares are given by bi = pici/(PY). For a perturbation of an
initial equilibrium, we define the log change in aggregate output at constant prices as the
final-expenditure-weighted log change in final output:

d log Y = ∑
i∈I

bi d log ci. (1)

This is a first-order approximation (in the shocks) to the chain-weighted log change in
aggregate output. Since our results will provide first-order approximations (for small
shocks) to the log change in group output at constant prices, they will by implication also
provide first-order approximations to the chain-weighted log change in group output.3

Accounting definitions: The sales shares of producer i is λi = piyi/(PY) and the sales
share of external input f is Λ f = p f L f /(PY). Sales shares are also called revenue-based
Domar weights. The revenue-based input-output matrix is denoted by Ω, where Ωij =

(pjyij)/(piyi) is the expenditure of i on j as a fraction of the revenues of i, where j can be
a good in I or an external input from F . The revenue-based Leontief-inverse matrix is
define by Ψ = (I −Ω)−1, where Ψij captures the direct and indirect exposures of i to j
in revenues. It follows from market-clearing identities that the vector of sales shares (or
Domar weights) is given by λ′ = b′Ψ.

We define the cost-based input-output matrix Ω̃ by Ω̃ij = µiΩij, the cost-based Leontief-

3To deal with chain-weighted log changes in output, we can proceed as follows. All the primitives of the
economy and all the equilibrium variables are indexed by a shifter/shock t. This dependence is recorded
with a superscript t. The initial equilibrium corresponds to t = 0, for which the superscripts are suppressed
for expositional convenience. An equilibrium with t > 0 is a perturbed equilibrium. For example, then an
infinitesimal shock ds shifts group wedges by d log µs

i , group productivities by d log As
i , external input uses

by d log Ls
f , group final uses by d log cs

i , etc. In general, group output cannot be defined in levels, but only
in changes along a path s ∈ [0, t] of intermediate equilibria connecting the initial equilibrium indexed by
s = 0 to the final equilibrium indexed by s = t:

∆ log Y =
∫ t

0
∑
i∈I

bs
i d log cs

i . (2)

When final demand is homothetic, group output can be defined in levels. The change in group output
∆ log Y in equation (2) is then independent of the specific integration path between the initial and final
equilibria. When final demand is not homothetic, group output cannot be defined in levels but only in
changes via equation (2). The change in group output ∆ log Y in equation (2) then depends on integration
path. As is well known, this undesirable property is unavoidable. All the results in the paper can be
interpreted as first-order approximations in the shifter/shock t, assuming that the equilibrium changes
smoothly with it. The path-dependence considerations that we just discussed do not pose problems for
these approximations. For example equation (1) is a first-order approximation of equation (2).
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inverse matrix by Ψ̃ = (I − Ω̃)−1, and the cost-based Domar weights by λ̃′ = b′Ψ̃. The
quantities Ω̃ij and Ψ̃ij, capture the direct and direct and indirect exposures of i to j in costs.
They measure the direct and direct and indirect elasticity of the cost of i to the price of j,
keeping the price of external inputs constant. The cost-based Domar weight λ̃i captures
the direct and indirect exposure of final users to i.

The difference between the cost- and revenue-based Domar weights of a good or exter-
nal input is due to multiple marginalization of markup/wedges in supply chains leading
to the final sales.

Allocation Rule: We define the allocation matrix X , where X ij = yij/yj is the share of
the physical output of producer j used by producer i. Unlike the input-output and Leon-
tief inverse matrices, this matrix does not make any use of prices and simply describes
how the output of each producer j is allocated across the different producers i. It is a
compact way of summarizing the physical allocation of resources in the group.

The level of aggregate output (at constant prices) can be written as a functionY(L, A,X )

of the vector L of external input quantities, of the vector A of group productivities, and
of the allocation rule X . By varying the allocation matrix, we can map out every feasible
allocation the set of producers I can attain.

3 Decomposing Changes in Aggregate Output

Following Baqaee and Farhi (2017), we decompose the change in output as

d log Y =
∂ logY
∂ log L

d log L︸               ︷︷               ︸
∆Inputs

+
∂ logY
∂ log A

d log A︸               ︷︷               ︸
∆Technical Efficiency

+
∂ logY

∂X dX︸           ︷︷           ︸
∆Allocative Efficiency

. (3)

The first term corresponds to the increase in output due to changes in external inputs
d log L which are being brought into I . The second term is the change in output due
to changes in the production functions d log A inside I . The final term corresponds to
changes in output due to a reallocation of resources across producers in I . In equilib-
rium, the allocation rule may change due to a variety reasons, including changes in the
composition of final demand, changes in productivities, changes in wedges, or changes
in external inputs.

The decomposition in equation (3) leads to a natural definition of changes in aggregate
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productivity, denoted by d log AI as4

d log AI = d log Y− ∂ logY
∂ log L

d log L︸               ︷︷               ︸
∆Inputs

=
∂ logY
∂ log A

d log A︸               ︷︷               ︸
∆Technical Efficiency

+
∂ logY

∂X dX︸           ︷︷           ︸
∆Allocative Efficiency

.

This measures changes in aggregate output that are not directly accounted for by purely
technological impact of the change in external inputs. In other words, the change in aggre-
gate productivity is the combination of the effects of changes in technical and allocative
efficiency.

4 First Decomposition: Extending Baqaee and Farhi (2017)

We can now state the first decomposition and discuss its relationship to equation (3).

Theorem 1. The following first-order approximation holds:

d log Y = ∑
f∈F

Λ̃ f d log L f︸               ︷︷               ︸
∆Inputs

+ ∑
i∈I

λ̃i d log Ai︸             ︷︷             ︸
∆Technical Efficiency

−∑
i∈I

λ̃i d log µi − ∑
f∈F

Λ̃ f d log Λ f︸                                      ︷︷                                      ︸
∆Allocative Efficiency

,

where the different terms correspond to the partial derivatives of the function Y(L, A,X ), so that
∂ logY/∂ log L f = Λ̃ f , ∂ logY/∂ log Ai = λ̃i, and (∂ logY/∂X )dX = −∑i∈I λ̃i d log µi −
∑ f∈F Λ̃ f d log Λ f .

Theorem 1 generalizes Baqaee and Farhi (2017) to open systems. In other words, the
decomposition offered there can be applied not just to entire closed economies (closed
systems), but also to open subparts of such economies (open systems): a region in a coun-
try, a country in the world, an industry within a country, or even the set of producers in a
given period of time or state of nature.

Theorem 1 can be used to separate changes in technical productivity from changes in
allocative efficiency. For instance, Baqaee and Farhi (2017) use it to decompose changes
in technical and allocative efficiency for the US using firm-level markup data. Theorem
1 also shows that the effect of endogenous reallocation dX on output can be deduced
purely from changes in the expenditure share on external inputs d log Λ.

4Note that just like for aggregate output, we only define the changes in aggregate productivity. In
general, the level of aggregate productivity cannot be defined unambiguously except in special cases with
a particular structure.
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To unpack the intuition for Theorem 1, it is useful to start by considering the special
cases when there are no markups/wedges in the group I so that the allocation of re-
sources within the group is efficient. Importantly, there could still be markups/wedges
outside of the group.

No Markups/Wedges: When there are no markups/wedges inside I , there are no changes
in allocative efficiency. Indeed, it follows from the envelope theorem that ∂ logY/∂X = 0,
so that changes in the allocation of resources dX have no first-order impact on the group’s
output (∂ logY/∂X )dX = 0. This in turn implies that output changes are only due to
changes in external inputs and changes in technical efficiency (∂ logY/∂ log L)d log L +

(∂ logY/∂ log A)d log A. Moreover, the group’s output elasticities to external input quan-
tities and productivities are given by the Domar weights ∂ logY/∂ log L f = Λ f and
∂ logY/∂ log Ai = λi, so that

d log Y = ∑
f∈F

Λ f d log L f + ∑
i∈I

λi d log Ai.

This is, of course, the decomposition due to Solow (1957), Domar (1961), and Hulten
(1978). Although, in this case, we have a slight generalization of these results, since the
equation above implies that shocks to markups/wedges d log µi have no effect on aggre-
gate output when we start from a position with no markups/wedges.

Markups/Wedges: In general, in the presence of markups/wedges, there are nonzero
changes in allocative efficiency. Indeed, the envelope theorem logic fails and ∂ logY/∂X ,
0. Changes in the allocation of resources dX have a first-order impact on industry output
given by (∂ logY/∂X )dX = −∑i∈I λ̃i d log µi −∑ f∈F Λ̃ f d log Λ f .

Changes in allocative efficiency are positive when resources are reallocated to pro-
ducers that are “too small” from a social perspective. Producers are “too small” when
there are relatively higher markups/wedges placed on their goods, either directly by the
producer itself or indirectly via double-marginalization. Such virtuous reallocation pat-
terns are detected by average reductions in the revenue shares of the external inputs so
that −∑ f∈F Λ̃ f d log Λ f > 0. Changes in markups/wedges induce direct changes in the
group profit share (the share of revenues collected by the markups/wedges) ∑ λ̃i d log µi

which are unrelated to these patterns of reallocation and must therefore be netted out.
Furthermore, the purely technical output elasticities with respect to inputs and pro-
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ductivity are the cost-based Domar weights ∂ logY/∂ log L f = Λ̃ f and ∂ logY/∂ log Ai =

λ̃i and not the revenue based Domar weights Λ f and λi that would be predicted by Hul-
ten’s theorem.

We refer the reader to Baqaee and Farhi (2017) for more detailed intuitions, illustrative
examples, and precise guidance for mapping the theoretical results to the data.

“Distorted” Solow Residual: These considerations have important implications for the
measurement of aggregate productivity since

d log AI = d log Y− ∑
f∈F

Λ̃ f d log L f ,

where the right-hand side is a generalization to open systems of the “distorted” Solow
residual introduced in Baqaee and Farhi (2017).

Because the traditional Solow residual d log Y−∑ f∈F Λ f d log L f uses revenue-based
Domar weights Λ f instead of cost-based Domar weights Λ̃ f for the change d log L f of
external inputs f ∈ F , it does not correctly net out the pure technological impact of the
change in external inputs. It is therefore not an appropriate measure of the change in
aggregate productivity.

Hall (1990) showed that when the economy consists of a representative producer, in
order to correctly pick up the change in the exogenous productivity shifter, the Solow
residual should weigh factor growth by factors’ share of costs rather than share of rev-
enues. Under these restrictive assumptions which do not allow for any misallocation of
resources given factor supplies, our proposed “distorted” Solow residual coincides with
Hall’s residual. However, in the more general disaggregated environments that we con-
sider where there is misallocation given factor supplies, aggregate productivity is endoge-
nous and instead captured by the “distorted” Solow residual and not by Hall’s residual.5

5 Second Decomposition: Petrin and Levinsohn (2012)

The downside of Theorem 1 is that it leans heavily on knowledge of the input-output
network structure inside I (except in the case where there are no wedges). Unfortunately,
this information is often unavailable or of poor quality. Theorem 2 instead decomposes

5Basically, in disaggregated environments, it is possible to show that the distorted Solow residual only
coincides with Hall’s residual when there are no intermediate goods.
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output changes in a way that does not require knowledge of the input-output structure,
but does require detailed knowledge of the gross quantity of production. This theorem is
due to Petrin and Levinsohn (2012), although we express it differently here.

Theorem 2. The following first-order approximation holds:

d log Y = ∑
f∈F

Λ f d log L f + ∑
i∈I

λi d log Ai + ∑
i∈I

λi(1− µ−1
i )(d log yi − d log Ai).

Theorems 1 and 2 have different advantages and disadvantages at a conceptual level
and in terms of their data requirements. Depending on the question at hand and the
available data, Theorem 1 or 2 may be more convenient or relevant.

On a conceptual level, Theorem 1 has the advantage of isolating aggregate produc-
tivity and of producing the decomposition into external inputs, technical efficiency, and
allocative efficiency defined in equation (3). These desirable properties are not shared by
Theorem 2 except in special cases where either (1) there are no distortions, or (2) there are
distortions, but no (micro) productivity changes. If there are both distortions and changes
in productivities, then this decomposition cannot be interpreted in terms of changes in
technical and allocative efficiency. We discuss these issues in more detail below.

The theorems have different data requirements, and so depending on data availability,
one or the other may be easier to operationalize. The main drawback of Theorem 1 is that
it requires information on input-output linkages. The main drawbacks of Theorem 2 are
that it requires knowing the change in every quantity d log yi for every producer i ∈ I
and that it requires the separation of prices from quantities.6

By rearranging Theorem 2, we can write

d log Y− ∑
f∈F

Λ f d log L f = ∑
i∈I

λi d log Ai + ∑
i∈I

λi(1− µ−1
i )(d log yi − d log Ai). (4)

The left-hand side of this equation is the traditional Solow residual, which, even though
it is not an appropriate measure of aggregate productivity in the presence of wedges,
remains an interesting and prominent object. Equation (4) can be used to aggregate the
effects of a shock in inefficient environments using firm-level data from knowledge of the
level of wedges µ, sales shares λ, and changes in output d log yi.

6Even when price and quantity data are available, the “price” is often measured by unit cost and the
“quantity” is measured by the ratio of sales to unit costs. However, in Theorem 2, the relevant notion of
quantity d log yi needs to be quality-adjusted, which, for non-homogeneous goods and services, can be
challenging.
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For example, Bau and Matray (2019) use our derivations to estimate the effect of FDI
liberalization in India on the Solow residual of different industries. Briefly, they use
reduced-form firm-level regressions to identify d log yi and d log Ai due to the policy
change, and aggregate firm-level outcomes using equation (4).

A good way to understand Theorem 2 is to consider some special cases of it.

No Markups/Wedges: When there are no markups/wedges inside I , it is immediate
that

d log Y = ∑
f∈F

Λ f d log L f + ∑
i∈I

λi d log Ai,

which again coincides with Hulten (1978). In the case where there are no wedges, the first
and second decompositions coincide.

No Productivity/External Input Changes: Consider the case where the physical envi-
ronment is not changing, so that neither changes in external inputs nor in technologies
d log L = d log A = 0. Then

d log Y = ∑
i∈I

λi

(
1− µ−1

i

)
d log yi. (5)

Intuitively, output changes are entirely due to changes in allocative efficiency. The en-
velope theorem logic fails and changes in the allocations of resources dX in response to
shocks to markups/wedges, or due to changes in final demand, have a non-trivial first-
order impact on group output d log Y = (∂ logY/∂X )dX . These changes in allocative
efficiency are expressed as the weighted sum of the output changes d log yi of the differ-
ent producers, where the weight λi(1− µ−1

i ) on producer i is increasing in the size λi and
in the markup/wedge µi of the producer.

For each i ∈ I , we have λi(1− µ−1
i )d log yi = [pi(1− µ−1

i )/(PY)]d yi, which mea-
sures the gap between the social marginal benefit pi of an additional unit of good i to its
users and the social marginal cost piµ

−1
i of producing this unit to its producer, expressed

in the numeraire of nominal group output PY, multiplied by the change d yi in the units
of good i.7

7When there are no markups/wedges (µ = 1), social marginal benefits and social marginal costs are
equalized for all producers, there are no changes in allocative efficiency, and no first-order changes in group
output.
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The formula fully accounts for the presence of joint distortions. The output log yi

of producer i changes not only because µi changes but because all markups/wedges as
well as final demand change. Because there is a markup/wedge µi on producer i, these
changes in output translate into changes in aggregate output and productivity.

Harberger (1964) uses a version of equation (5), without proof, to study how the unob-
servable change in total welfare d log W changes in response to policy changes in a closed
system where Kaldor-Hicks transfers are made across consumers to neutralize distribu-
tional effects. Equation (5) validates Harberger (1964) and shows that it can be used to
predict or unpack observable changes in aggregate output in open or closed-systems in
general equilibrium. This justifies using formulas from welfare economics in a positive,
rather than a normative, way.

Productivity/External Input Changes with Markup/Wedges: Note that when there are
simultaneous changes in productivities d log A, external inputs d log L, and markups/wedges
d log µ, then technical efficiency changes due to d log A and d log L must be weighted by
their cost-based Domar weights and not the revenue-based ones.

This means that we cannot interpret ∑i∈I λi d log Ai as the change in technical effi-
ciency, or ∑i∈I λi(1− µ−1

i )(d log yi − d log Ai) as the change in allocative efficiency due
to reallocation. Baqaee and Farhi (2017) contains examples of economies that, despite
having wedges, are efficient because they have only one feasible allocation of resources.
In such economies, there should not be any changes in allocative efficiency due to reallo-
cation, and yet, the second summand on the right-hand side of (4) is nonzero.

Single Producer: Another interesting case is when the group consists of a singleton I =

{i} which does not use its own output as an input. Then d log Y = d log yi, and the
aggregate Solow residual coincides with the Solow residual of producer i

d log Y− ∑
f∈F

Λ f d log L f = d log yi − ∑
f∈F

Ωi f d log li f .

Theorem 2 becomes

d log yi − ∑
f∈F

Ωi f d log li f = d log Ai + (1− µ−1
i )(d log yi − d log Ai).

This equation replicates the formula derived by Hall (2018) for estimating markups. Hall’s
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method for estimating the markup supposes that we are in possession of an instrument
Z which is correlated with output d log yi (relevance), but not with productivity d log Ai

(exclusion). For example, supply or demand shocks external to producer i might satisfy
these conditions. Then, if we regress the Solow residual d log yi − ∑ f∈F Ωi f d log li f on
gross output d log yi instrumented by Z, the coefficient will recover (1− µ−1

i ).
Theorem 2 shows how Hall’s observation can be aggregated across a set of producers

(say, an industry). Theorem 2 also shows that once aggregated over several producers,
then the identification strategy outlined above can fail. Intuitively, once there are wedges
inside the industry, changes in the allocation of resources dX inside the industry caused
by supply and demand shocks outside the industry can lead to endogenous changes in
the industry’s aggregate productivity d log AI . This violates the exclusion restriction at
the industry level, creating correlation between the instrument and the industry’s pro-
ductivity, even if the instrument is uncorrelated with every individual producer’s pro-
ductivity d log Ai.

6 Conclusion

In this paper, we propose a definition of productivity for a group of producers in imper-
fect markets that we call the “distorted” Solow residual. We discuss two decompositions
of aggregate output into its microeconomic sources. The first decomposition, generaliz-
ing Baqaee and Farhi (2017), can be used to measure and separate the “distorted” Solow
residual into contributions due to technical efficiency and allocative efficiency. The sec-
ond decomposition, due to Petrin and Levinsohn (2012), can be used to aggregate up
firm-level outcomes up to group-level aggregate output without knowledge of the input-
output table. The two decompositions, by having different information requirements,
complement one another, and give two different theoretical perspectives on the determi-
nants of aggregate output in imperfectly competitive general equilibrium settings.
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7 Appendix

Proof of Theorem 1. The following equations are to be interpreted as exact differentials.
They can then be used to derive first-order approximations for small discrete changes.
We have

d log Y = d log PY− d log P,

where PYdenotes nominal industry output and d log P is defined in changes by

d log P = ∑
i∈I

bid log pi.

We use
d log pi = d log µi − d log Ai + ∑

j∈I∪F
Ω̃ijd log pj,

to get
d log pi = ∑

j∈I
Ψ̃ij(d log µj − d log Aj) + ∑

f∈F
Ψ̃i f d log p f .

Using
d log p f = d log Λ f + d log PY− d log L f ,

we can rewrite this as

d log pi = ∑
j∈I

Ψ̃ij(d log µj − d log Aj) + ∑
f∈F

Ψ̃i f (d log Λ f + d log PY− d log L f ).

Since ∑ f∈F Ψ̃i f = 1, this can be rewritten as

d log pi = d log PY + ∑
j∈I

Ψ̃ij(d log µj − d log Aj) + ∑
f∈F

Ψ̃i f (d log Λ f − d log L f ).

We then replace this expression in the expression for d log P = ∑i∈I bid log pi to get

d log P = d log PY + ∑
i∈I

∑
j∈I

biΨ̃ij(d log µj− d log Aj)+ ∑
i∈I

∑
f∈F

biΨ̃i f (d log Λ f − d log L f ).

We then use λ̃j = ∑i∈I biΨ̃ij and Λ̃ f = ∑i∈I biΨ̃i f to rewrite this as

d log P = d log PY + ∑
j∈I

λ̃j(d log µj − d log Aj) + ∑
f∈F

Λ̃ f (d log Λ f − d log L f ).

15



We plug this back in the expression for d log Y = d log PY− d log P to get

d log Y− ∑
f∈F

Λ̃ f d log L f = ∑
j∈I

λ̃j(d log Aj − d log µj)− ∑
f∈F

Λ̃ f d log Λ f .

�

Proof of Theorem 2. We prove Theorem 2. The results follow. The following equations
are to be interpreted as exact differentials. They can then be used to derive first-order
approximations for small discrete changes. We have:

d log ci =
yi

ci
d log yi −∑

j∈I

yji

ci
d log yji,

µ−1
j (d log yj − d log Aj − ∑

f∈F

p f yj f

pjyj
µjd log yj f ) = ∑

i∈I
Ωjid log yji = ∑

i∈I

piyji

pjyj
d log yji.

The first equation is simply an accounting identity. The second equation is a direct impli-
cation of cost minimization and constant returns to scale. We now use these two equations
to manipulate the expression for output growth and obtain the result. We then have

d log Y = ∑
i∈I

pici

PY
d log ci,

= ∑
i∈I

piyi

PY
d log yi −∑

i∈I
∑
j∈I

piyji

PY
d log yji,

= ∑
i∈I

piyi

PY
d log yi −∑

j∈I

pjyj

PY
µ−1

j (d log yj − d log Aj − ∑
f∈F

p f yj f

pjyj
µjd log yj f ),

= ∑
f∈F

Λ f d log L f + ∑
i∈I

λiµ
−1
i d log Ai + ∑

i∈I
λi(1− µ−1

i )d log yi.

�
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