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ABSTRACT

We report results from a large field experiment that with a few hours prior notice provided Danish
residential consumers with dynamic price and environmental signals aimed at causing them to shift
their consumption either into or away from certain hours of the day. The same marginal price signal
is found to cause substantially larger consumption shifts into target hours compared to consumption
shifts away from target hours. Consumption is also reduced in the hours of the day before and after
these into target hours and there is weaker evidence of increased consumption in the hours surrounding
away target hours. The same into versus away results hold for the environmental signals, although
the absolute size of the e˙ects are smaller. Using detailed household-level demographic information
for all customers invited to participate in the experiment, both models are re-estimated accounting
for this decision. For both the price and environmental treatments, the same qualitative results are
obtained, but with uniformly smaller quantitative magnitudes. These selection-corrected estimates
are used to perform a counterfactual experiment where all of the retailer’s residential customers are
assumed to face these  dynamic price signals. We find substantial wholesale energy cost savings for
the retailer from  declaring into events designed to shift consumption from high demand periods to
low demand perio ds within the day, which suggests that such a pricing strategy could significantly
reduce the cost  of increasing the share of greenhouse gas free wind and solar electricity production
in an electricity supply industry.

Laura Mørch Andersen
Institute of Food and Resource Economics
Rolighedsvej 23, DK-1958
Frederiksberg
Copenhagan
Denmark
lma@ifro.ku.dk

Lars Gårn Hansen
Institute of Food and Resource Economics
Rolighedsvej 23, DK-1958
Frederiksberg
Copenhagan
Denmark
lgh@ifro.ku.dk

Carsten Lynge Jensen
Institute of Food and Resource Economics
Rolighedsvej 23, DK-1958
Frederiksberg
Copenhagan
Denmark
clj@ifro.ku.dk

Frank A. Wolak
Department of Economics
Stanford University
Stanford, CA 94305-6072
and NBER
wolak@zia.stanford.edu



1. Introduction

An increasing number of jurisdictions have implemented policies to increase significantly the
share of renewable energy serving their electricity demand. These goals are being met primarily
with wind and solar energy. Depending on availability of the underlying wind or solar resource, the
amount of electricity produced by these generation units can change dramatically throughout the
day. In contrast, the aggregate demand for electricity typically follows a smooth pattern throughout
the day, starting at its lowest point in the early morning and steadily increasing during the daylight
hours and eventually peaking during the late afternoon or early evening, depending on the season
of the year. This difference between the pattern of aggregate demand and the pattern of renewable
energy production throughout the day can create a substantial imbalance between the hourly supply
and demand of electricity, particularly as the share of intermittent renewable generation capacity
in a region increases.

This potential for significant positive and negative supply-demand imbalances substantially
changes the role of active participation of consumers in wholesale electricity markets. Historically,
the role of demand response in regions dominated by dispatchable thermal generation units was
to reduce aggregate demand below the available supply of electricity. However, in regions with
significant intermittent renewable generation capacity, there can be many hours when the amount
of energy produced by these resources can exceed system demand. For example, if there is enough
wind capacity that produces primarily during hours of the day when demand is low, some of the
energy produced may need to be curtailed or exported outside the region in order to maintain
system balance. Even a region that primarily relies on solar energy that produces during the high
demand hours of the day, as appears to be the case in California, could face the same challenge if
there is enough solar generation capacity. These reliability challenges imply a new role for active
demand-side participation in shifting demand from hours with less renewable energy production
to hours with more renewable energy production.

This paper presents the results of a field experiment aimed at exploring the economic potential
of this new role for active participation of final consumers in wholesale electricity markets.
We provided residential consumers from SE, a large Danish retailer, with dynamic price and
environmental signals aimed at causing them to shift their consumption into certain hours of the day
or away from certain hours of the day. Consumers were notified of these price and environmental
signals through text messages to their cell phones. The amount of prior notification typically varied
from 2 hours to 5 hours. For price signals, customers were offered rebates on their electricity bill
that depended on the total amount of electricity they moved either into or away from the targeted
hours. Specifically, customers could receive a 5 percent, 20 percent, or 50 percent rebate off of
the price they paid for electricity for each kWh of energy they managed to either shift away from
the target hours or shift into the target hours. For the purely environmental motivation signals,
customers were told that SE would ensure greenhouse gas (GHG) emissions-free production of all
electricity consumption that they shifted, but were not offered any financial compensation.

Although a random sample of SE’s residential consumers were invited to participate in
each of the experiment treatments, only those that accepted the invitation actually participated
in the experiment. Consequently, we employ a version of the Ahn and Powell (1993)
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semiparametric estimator of the single index selection model to account for the joint determination
of customer’s decision to participate in the experiment and their willingness to shift their demand
in response to text messages during the experiment period. We estimate a nonparametric
conditional mean function for a customer’s decision to participate in the experiment using
household-level demographic data from Statistics Denmark and this conditional mean function
enters nonparametrically in the customer’s electricity consumption equation in order to recover
selection-corrected estimates of the impact of into and away notifications during our experiment
period.

For both the empirical analysis that conditions on participation in the experiment and the
empirical analysis that accounts for self-selection into experiment, we find that the same marginal
price signal produces a two to three times larger in absolute value estimated load shift into target
hours relative to the absolute value of the estimated load shift away from target hours. We also
find strong evidence that load shifts into a set of target hours significantly reduces consumption
in the hours of the day before and after these target hours. For the away-from target hours,
we find some evidence of slight increases in consumption in hours of the day that surround the
target hours. The purely environmental signals produced qualitatively similar results. The absolute
value of the shift-into effect is significantly larger in absolute value than the shift-away effect and
there is stronger evidence that shifting consumption into a time interval reduced consumption in
surrounding time periods than is the evidence that shifting consumption away from a time-interval
increased consumption in the surrounding time periods. Accounting for the decision of each invited
SE household to accept the invitation to participate in the experiment yields absolute magnitudes
for each of the effects that are smaller in absolute value. This result is consistent with the logic
that the households that accepted the invitation to participate in the experiment, are those among
the population of invited households that expected to derive the greater economic or environmental
benefits from participation in the experiment.

We perform a counterfactual analysis using our selection-corrected estimates to assess the
wholesale energy purchase cost savings to the retailer from declaring an into or away event for
all of its residential customers. We then take the estimated aggregate residential demand change
for each hour impacted by the into or the away event and shift the aggregate hourly day-ahead
market demand curve in the Nordpool wholesale electricity market by this amount and compute a
counterfactual market price by intersecting it with the aggregate hourly offer curve in the day-ahead
market in the Nordpool. We then compute the wholesale energy cost savings as the difference
between the sum of the original day-ahead price times the utility’s residential demand during each
affected hour less the sum of the counterfactual market price times the counterfactual residential
demand (both of which reflect our estimated demand response) during the same hours. We find that
assuming the estimated demand changes for a 20 percent rebate into event, daily wholesale energy
purchase cost saving can be as high as 100,000 Euros. Because the demand changes associated
with away events are significantly smaller in absolute value, the potential daily wholesale energy
cost savings from away events can be significantly smaller for the same day. These results
emphasize the cost-effectiveness of into events in maintaining real-time system balance in regions
with significant intermittent renewable generation units.

Finally, we present a simple model of household electricity demand under uncertainty that can
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explain the difference in the magnitude of the average consumption shift in response to into versus
away events. This model exploits the “option to quit” identified in Wolak (2010) associated with
rebate-based dynamic pricing plans relative to pure dynamic pricing plans. Specifically, under
a rebate-based dynamic pricing plan if the customer is unable to reduce her consumption below
the level necessary to receive a rebate during a shift-away period then she can pay for all of the
electricity she consumes at the standard fixed retail price. In contrast, a customer on a traditional
dynamic pricing plan pays the higher dynamic price for all consumption during a shift-away period
and does not have the option to avoid paying this higher marginal price. This “option to quit” is
far less relevant for into events, because customers are more likely to be able to exceed the level
of consumption necessary to receive a rebate with some advance notice than they are to be able to
reduce their consumption below the level necessary to receive a rebate during away events. As the
model demonstrates, this ”option-to-quit” can explain the larger in absolute value treatment effect
for into events versus away events for both the price and environmental motivation treatments.

The remainder of the paper proceeds as follows. The next section presents two examples of
the economic benefits of both into and away load-shifting in regions with significant renewable
intermittent generation resources. Section 3 places the present paper in the context of the
existing literature on dynamic pricing. Section 4 describes the experimental design and the data
collection process for the experiment. Section 5 presents our econometric modeling framework and
estimation results. Section 6 presents the results of our counterfactual analysis of the wholesale
purchase cost savings from SE adopting these dynamic pricing plans for all of their residential
customers. Section 7 presents our model of customer demand under uncertainty that rationalizes
the difference in our empirical results for into versus away events. Section 8 discusses possible
extensions and implications of these results for the active involvement of final demand in regions
with significant intermittent renewable generation capacity.

2. The Economics of Load-Shifting with Significant Renewable Generation Capacity

This section motivates our experiment by describing two examples, one from Denmark and one
from California, of how significant amounts of renewable generation capacity in a region increases
the need for the load-shifting actions of electricity consumers both into and away from certain
hours of the day. As we demonstrate in Section 6, different from the case of regions with only
dispatchable thermal generation, increasing electricity consumption during certain hours of the
day can reduce the cost of meeting a given renewable energy goal, particularly if this increase in
consumption reduces consumption during other hours of the day, as is the case with our into events.

Figures 1(a) and 1(b) illustrate the challenges facing Denmark in managing a grid with more
than 30 percent of the electricity coming from intermittent wind generation units. Figure 1(a)
displays the pattern of wind generation and aggregate electricity consumption and Figure 1(b)
the Danish wholesale price in Euros per megawatt-hour (MWh) for the period January 13 to 19,
2014, right before the start of our experiment. Figure 1(a) shows the smooth pattern of aggregate
consumption throughout the day and across days of the week. In contrast, the total output of wind
generation units is extremely irregular both within the day and across days of the week. There are
hours when almost no wind energy is produced and hours when wind energy production exceeds
Denmark’s electricity consumption.
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Wholesale prices in Denmark are typically negatively correlated with the amount of wind
energy produced. This relationship occurs because the difference between total consumption and
renewable energy production must be met with dispatchable generation that is costly to operate,
typically because it requires burning an input fossil fuel to produce electricity. This logic implies
that increasingly expensive fossil fuel-fired generation units must operate the larger the difference
is between system demand and renewable energy production. Therefore, shifting demand into
hours with high levels of wind generation and away from hours with low wind generation has
the potential to reduce wholesale energy purchase costs because customers would be buying more
energy in low-priced hours and less energy in high-priced hours. Our counterfactual analysis
reported in Section 6 finds that these actions can yield significant wholesale purchase cost savings
for consumers and the retailer that serves them.

Volatility in the difference between total electricity consumption and total renewable energy
production is not unique to Denmark. California has a renewables portfolio standard (RPS) that
requires 33 percent of the state’s electricity consumption to come from qualified renewable sources
- primarily solar, wind, biomass, geothermal, and small hydro - by 2020. This share is required
to increase to 50% by 2030. Solar generation capacity is currently thought to be the primary
technology that will be used to meet these renewable energy goals. There is currently more
than 11,000 MW of grid-scale solar capacity in California and almost 8,000 MW of distributed
solar capacity.2 This has given rise to Figure 2, which shows the expected net-of-renewables load
curve–total system demand for the California Independent System Operator (ISO) control area
less expected total renewable energy output in the California ISO control area for each hour of the
day–for different amounts of solar generation capacity in California. This net-of-renewables load
curve is called the “Duck Curve” because of its shape within the day. Both the morning ramp up
and evening ramp down of solar production are increasingly steep as the amount of solar generation
capacity in the state has increased over time.

The right panel of Figure 2 shows the magnitude of net load changes during four periods of
the day. The net load changes in the 7 am to 10 am and 5 pm to 8 pm time periods have grown
substantially as the amount of solar generation capacity in California has increased. This figure
shows the increasing potential economic benefit from shifting consumption into the 10 am to 5 pm
time period as California continues to increase its solar generation capacity. Shifting consumption
into the daylight hours and away from the evening and early nighttime hours can save consumers
on their wholesale energy purchases, by the same logic as described above for Denmark. Hours
with high renewable energy production typically have low wholesale prices and hours with low
renewable energy production typically have higher wholesale prices.

In 2020 and beyond, during the hours when California’s solar generation capacity is producing
a substantial amount energy, there is a significant risk that total renewable energy production will
exceed electricity consumption in the California ISO control area. When this happens, real-time
prices are likely to be negative. Consequently, further wholesale energy cost savings are possible if
consumers are able to shift their consumption into the hours of the day when this over-generation
condition occurs. Consumers could even be paid to consume electricity during periods with

2California Energy Commission–Tracking Progress, December 2018, available at https://www.energy.ca.gov/

renewables/tracking_progress/documents/renewable.pdf
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negative prices.

Sustained periods of renewable energy production in excess of system demand are very likely
to occur in California given its ambitious renewable energy goals. A simple rule of thumb is
that if the RPS share exceeds the capacity factor of the renewable generation technology used
to meet it, then there is a potential for an over-generation condition that could be addressed by
customers shifting their demand into hours when renewable energy production is likely to be the
highest. To illustrate this point suppose that demand in a region is 100 MWh every hour of the
year. Obtaining the mandated 33 percent annual renewable energy share from a technology with
a 20 percent capacity factor will require at least 33 MW/0.20 = 165 MW of solar PV capacity,
assuming no curtailment of renewable energy production during the year.3 This means all hours in
the year with an hourly capacity factor for all solar PV units over 0.606, 100 MWh = 165 MWh
x 0.606, will produce more solar energy than system demand. The fleet-wide capacity factor for
solar photovoltaic (PV) generation units in California is approximately 20 percent. This implies
that if solar energy is the major renewable generation source used to meet the 33 percent RPS, then
without significant investments in storage capacity there will be many hours of the year when total
solar PV production exceeds total electricity demand in California.4

There are three major factors motivating our real-time pricing and information provision
experiment to shift consumption with short notice via text messages. First, an increasing number
of countries and regions have the ambitious renewable energy goals. Consequently, real-time
pricing and information provision mechanisms to cause consumers to shift-their consumption both
into certain hours of the day and away from other hours of the day are likely to be part of a
cost-effective strategy for achieving these renewable energy goals. Second, because the amount of
energy produced by wind and solar generation units can change with little advance notice, to be
most effective at managing the supply and demand imbalances caused by intermittent renewable
energy production, customers on dynamic pricing or other load-shifting plans must respond with
short notice. Third, the popularity of rebate-based dynamic pricing plans with customers and
regulators emphasizes the need to understand the relative effectiveness of different rebate-based
dynamic pricing programs.

3. Relation to Existing Research on Dynamic Pricing and Load-Shifting

A number of studies have used randomized controlled experiments to investigate demand
effects of various dynamic pricing schemes (e.g. Ito et al. (2018), Jessoe and Rapson (2014),
Allcott (2011), Wolak (2010), Herter (2007), Lijesen (2007), Wolak (2006) and studies reviewed
in Kessels et al. (2016) and Faruqui and Sergici (2010)). The main focus of this literature is on
lowering peak load demand and the consensus is that critical peak pricing (CPP) schemes can
effectively reduce demand in peak periods. There are five ways that we believe our experiment
adds to this research.

3The annual capacity factor of generation unit is the ratio of annual MWh produced by the generation unit divided
by the capacity of the unit multiplied by the number of hours in the year.

4California has significant interconnection capacity with the rest of the western United States, so it can export
energy if in-state demand is less than in-state energy production up to the amount of this transmission capacity.
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First, most previous research studied day-ahead notifications of the need to reduce demand
with Jessoe and Rapson (2014) being an exception where a 30-minute prior notice is tested. Our
experiment uses text messages provided via a cell phone with short notice and so adds to the
literature on short notice effects. Short notice effects are especially relevant for evaluating the
potential of demand response to mitigate imbalances caused by variations in renewable energy
production.

Second, we focus on explicit incentives to consume more electricity during certain time
periods. Virtually all previous research on variable pricing schemes focuses on reducing demand
during certain critical time periods. We are not aware of any other studies of incentives to
increase electricity consumption during certain time periods. This approach to dynamic pricing
and load-shifting is directly relevant to addressing periods of over-supply likely to occur because
of large amounts of intermittent renewable generation capacity in a region.

Third, we study the question of how incentives to move electricity consumption into and away
from target hours affects consumption in neighboring hours both between the time a customer
is notified of an intervention and the target time period, as well as a period of time after the
target period. This pre- and post-event load-shifting turns out to be important for calculating the
overall benefits and costs of different approaches to managing renewable energy supply and system
demand imbalances during the day.

Fourth, peak period rebate schemes are popular with consumers and utilities as an alternative to
traditional dynamic pricing schemes, most likely because of the fear among regulators that dynamic
pricing schemes can imply substantial wealth transfer among electricity consumers (Borenstein,
2007). Yet, only a few studies have investigated rebate schemes (e.g. Wolak (2006) and Wolak
(2010)). Our experiment implements load-shifting (both increases and decreases) incentives using
rebates.

Finally, we consider both financial incentive and environmental motivation interventions to
move electricity consumption into and away from the target time intervals. We add to the literature
where Ito et al. (2018) as far as we know is the only other study comparing the effects of financial
incentives on electricity demand with the effects of pro-social motivation.

4. Description of Experiment and Data Collected for Empirical Analysis

The experiment was conducted in collaboration with the energy company SE5 one of the largest
electricity retailers in Denmark. Participants were recruited through e-mails sent to customers that
had given SE permission to contact them by e-mail6. In April 2015, an e-mail informed these
customers of a new SE program called MOVEPOWER. In the e-mail a randomly selected set of
customers were told that they could earn a rebate if they moved their energy consumption into or
away from particular time slots and that information about the relevant time slots would be sent to
them though a text to their cell phone (see an English translation of e-mail text in Appendix B-2).

5SE, https://www.se.dk/
6For this part of the experiment, e-mail invitations were sent to the 23,935 customers randomly selected from SE’s

database identified as residential households. This e-mail contact database contains 36,083 residential households out
of SE’s more than 247,000 residential customers in southern Denmark.
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The remaining randomly selected customers were told that SE would ensure GHG emissions-free
production of the energy they moved in accordance with the text messages they received (see
e-mail text in Appendix B-3).

The SE-customers contacted by e-mail were randomized across seven different treatments.
The customers receiving the financial incentive e-mail were randomly offered a 5% , 20% , or
50% rebate on all energy moved in accordance with the text messages (calculated based on SEs
wholesale electricity price regardless of the price paid by the customer). Customers receiving
the GHG emissions-free production e-mails, were randomly assigned to four types of messages
promising that all energy moved in accordance with the text messages led to a commitment by
SE to increase investments in GHG emissions-free energy production that matched the amount
of energy moved. The four environmental motivation treatments only reflect slight differences in
the wording of how this information was conveyed to the consumers. Consequently, which of the
three rebate groups or the four environmental motivation treatments a customer is assigned to is
the result of the initial invitation to participate in the experiment they were sent and their decision
to accept or reject this invitation.

To participate in the experiment, customers were asked to click on a link in the e-mail to a
dedicated SE-website where they were asked to inform SE of the cellphone number to which text
messages should be sent and given additional information (see Appendix B-4 to B-6 for more
details). Here they were also told that the program would be evaluated by researchers after the first
year and that rebate payment and GHG-free energy investments for the first year would be made
at that time. In total, 735 customers signed up for the rebate-based program and 1,061 customers
signed up for the GHG emissions-free energy program.

The first text messages were sent on the June 4, 2015 and the experiment was terminated on
February 7, 2016.7 Customers were prompted via text messages to their cell phones a few hours
in advance on the same day they were supposed to move energy. Customers were notified an
average of 1.2 times per week of the three-hour time slots in which a rebate could be earned. The
text message notified them of the target time slot and whether they should move energy into or
away from the target time slot that day in order to earn the rebate or ensure GHG emissions-free
electricity production. The text message also reminded them of the rebate percent on the standard
rate that they would earn or the GHG emissions-free energy production they would ensure by
moving energy in accordance with the text message (see the Appendix C. for English translations
of sample text messages).

The target time slots for into and away from events for each participating customer varied
randomly across the days of the week, between different 3 hour time slots (10 am to 1 pm; 3 pm to
6 pm; 6 pm to 9 pm; 9 pm to 12 am, and 12 am to 3 am). The amount of prior notification typically
varied from 2 hours to 5 hours in advance of the target 3-hour time slot. All peaks were randomly
assigned to require moving consumption into or moving consumption away from the target 3-hour
time slot. All consumers had interval meters that recorded their hourly consumption each day,

7The part of the experiment we report results for here was terminated at this date and the dataset used in our
empirical analysis ends on this date. After this date some participants were subject to other interventions before the
overall experiment was terminated in May of 2016.
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making it possible to calculate their consumption during the relevant into and away time slots.

Each month customers received an e-mail with feedback comparing their performance at
moving their consumption with that of other participants (see Appendix D). However, it was not
possible for customers to deduce how much energy they had actually moved during a given month
from this relative feedback. Customers were not informed of their actual rebate earnings nor of
the actual quantity of energy moved prior to February 7, 2016. They were also not informed about
precisely how SE would calculate how much energy they had moved or how much rebate they had
earned8.

After the experiment was terminated, rebates were calculated and the amount of kWhs of GHG
emissions-free energy production due each customer. Rebates were then paid to costumers and
earned GHG emissions-free kWh reported. We estimated energy movement for each customer
using a variant of the model estimates described below. However, because these estimates for
individual households were based on a statistical model, we rounded up rebate refunds and credited
GHG emissions-free kWh so that most people were actually paid or credited GHG emissions-free
energy in excess of what they rationally would have expected. However, this (positive surprise)
was not announced to them before or during the experiment and so it could not have affected the
participant’s behavior during the experiment. All communication with customers from the initial
recruitment e-mail to text messages and feedback was done by SE through their mail server and
text message service using their letterhead and logo.9 At the end of the experiment customers were
informed that the MOVEPOWER program would not be continued.

Table 1 presents summary statistics on the number of households participating in the three
rebate treatments and the average number of treatment and non-treatment days for each of three
different rebate level treatment groups.10 Table 2 presents the same summary statistics for the
four environmental motivation treatment groups11. As shown in Appendices B-5 and B-6, these
groups differ only slightly in wording of the supplementary information provided just after the
initial invitation, whereas all of the initial e-mail invitations were identical for the groups 31, 34,
35, and 36.

5. Estimation Procedure and Empirical Results

In this section we estimate a number of average treatment effects for each of the three rebate
groups and the four environmental motivation groups. We first estimate the average treatment
effect for the population of customers that decided to participate in our experiment. We then

8Customers could contact SE’s help desk who had dedicated service personal who had been instructed about the
experiment who registered all questions and answers. No one contacted the help desk about the size of their earned
rebates or GHG-free energy production or how these magnitudes were calculated.

9All communications with SE’s costumers were approved by the marketing division of SE. Customers with
questions could contact SE’s help desk, which had dedicated customer service personal who were familiar with the
experiment. As noted above, customers were informed that the scheme would be evaluated by researchers and possibly
discontinued after the first year.

10The number of participants in these treatments–624–is lower than the 735 who signed up because we randomly
selected some of these customers for other interventions.

11The number of participants in these treatments–792–is lower then the 1,061 who signed up because we randomly
assigned some of these customers to other interventions.
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examine the extent to which our results change when we account for the self-selection of SE
customers to participate in the experiment using the semimparametric Ahn and Powell (1993)
estimator. We estimate both models separately for the sample of rebate customers and the sample
of environmental motivation customers.

The average treatment effect for the populations of customers that decided to participate in
our experiment can be recovered from a difference-in-difference estimator because customers in
each of the three rebate treatment groups are randomly assigned to receive treatments (via text
messages) across and within days and customers in each of the four environmental motivation
treatment groups are randomly assigned to receive treatment (via text messages) across and within
days. This implies that customers in each of the two samples not experiencing a treatment event in
that time interval or day are serving as the “control” group used to estimate the treatment effect for
that day. This logic implies that these difference-in-difference estimation procedures are recovering
the average treatment effect for customers receiving rebates and the average treatment effect for
customers receiving the environmental motivation intervention for the population of customers that
participated in the two experiments.

To estimate the selection-corrected estimates of the treatment effects for the population of SE
residential customers for an into or away event for the rebate and environmental treatment groups
we estimate a flexible model for the conditional mean of the binary decision of an invited household
to participate in the experiment as a function of a variety of household-level demographic
characteristics compiled by Statistics Denmark. Following the procedure outlined by Ahn and
Powell (1993), we use the fitted value of this conditional mean function and the assumption
of continuity of the underlying selection function in this conditional mean of the decision
to participate in the experiment to estimate six into and away coefficients nonparametrically
controlling for the selection mechanism. As discussed in the following section, the six coefficients
are the away and into effects and the before and after effects for both away and into events.

5.1. Treatment Effects for Rebate Experiment Population

Because we are interested in quantifying whether into events cause reduced consumption in
periods that surround a treatment period and whether away events cause increased consumption
in periods that surround a treatment period, for each rebate group we define six indicators, three
for the into-treatment and three for the away-treatment. The first variable, Awayritd, is equal to 1
for rebate level r (r = 5 percent, 20 percent and 50 percent), if customer i in time period t, of day
d received an away notification for that time period and day, and the variable is equal to zero for
all other time periods in the sample. The second variable, Be f oreAwayritd, is equal to 1 for all
time periods after an away notification was sent to consumer i with rebate level r and before the
actual away time period occurred for this customer and is equal to zero for all other time periods
in the sample. The third variable, A f terAwayritd, is equal to 1 for as many hours after the away
event as the associated Be f oreAwayritd variable is equal to 1 and it is equal to zero for all other
time periods in the sample. The idea of including the Be f oreAwayritd and A f terAwayritd variables
in the regression is to determine if shifting energy consumption away from a given time period
during an away event within the day leads to higher or lower consumption immediately after being
notified of the event up to the event time period and after the away event for a time period equal to
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the same length of time as the amount of advance notice the customer received for this away event.

Three analogous variables are defined for the into events. The variable, Intoritd is equal to 1 for
rebate level r if customer i in time period t of day d received an into notification for that time period
and day and equal to zero for all other time periods in the sample. Be f oreIntoritd is equal to 1 for
all time periods after an into notification was sent to consumer i with rebate level r and before the
actual into time period occurred for this customer and is equal to zero for all other time periods in
the sample. A f terIntoritd is equal to 1 for as many hours after the into event as the Be f oreIntoritd
variable was equal to 1 for the same into event and is equal to zero for all other time periods in the
sample. Again, these variables are included to determine if shifting energy into a given time period
leads to lower or higher consumption immediately after being notified of the event up to the event
time and after the into event for a period of time equal to amount of advance notice the customer
received for this into event.

For the purposes of the experiment, the day is divided into 9 time periods, t = 1, 2, ..., 9. They
are: 3 am to 6 am, 6 am to 7 am, 7 am to 10 am, 10 am to 1 pm, 1 pm to 3 pm, 3 pm to 6 pm, 6 pm
to 9 pm, 9 pm to 12 am, and 12 am 3 am. Treatment events for both the rebate and environmental
motivation samples were only declared during the 10 am to 1 pm period and the last four 3-hour
time periods.

Let yitd equal the natural logarithm of electricity consumption in kilowatt-hours (kWh) by
customer i during period t of day d. In terms of this notation, we estimate the following regression
for each of the three samples of rebate customers, r = 5%, 20%, and 50%:

yitd = µt + νi + ηd + β1Be f oreIntoritd + β2Intoritd + β3A f terIntoritd

+ α1Be f oreAwayritd + α2Awayritd + α3A f terAwayritd + εitd

where the µt (t=1,2,...,9) are period-of-day fixed effects, the νi (i=1,2,. . . ,I) are customer
fixed effects, the ηd (d=1,2,..,D) are day-of-sample fixed effects, and the εitd are mean zero
regression disturbances that are independently distributed of the randomly assigned regressors,
Be f oreIntoritd, Intoritd, A f terIntoritd, Be f oreAwayritd, Awayritd, and A f terAwayritd because both
away and into events are draw randomly both across customers and over time.

The first column of numbers in Table 3 presents the estimates of (β1, β2, β3, α1, α2, α3)’ for
the 5 percent rebate level intervention. The second column presents the 20 percent rebate level
estimates and the third column presents the estimates for the 50 percent rebate sample. To account
for arbitrary forms of autocorrelation in the εitd across time periods and days in the sample for a
customer and the possibility that this pattern of autocorrelation could differ across customers, we
report the Arellano (1987) standard errors that are robust to this form of heteroscedasticity and
autocorrelation in the values of εitd. The bottom row of each column lists the total number of
combined time period, day, and customer observations used to estimate each regression.

The first result of note is the uniformly two to three times larger in absolute value coefficient on
Intoritd versus Awayritd. The into average treatment effect ranges from a 8.5 percent to 13.5 percent
increase in consumption during the treatment period, and is significantly larger for the 50 percent
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rebate level relative to the 5 percent and 20 percent rebate level. The away average treatment
effect is between 3.2 and 4.4 percent for all rebate levels, with the highest percentage reduction
occurring for the 20 percent rebate level. A second result is the fact that both before and after
an into event, consumption is significantly lower relative to the control group. These two results
are very encouraging for using into treatments to achieve targeted demand reductions as well as
a targeted demand increases. For the 5 percent rebate sample, there appears to be some evidence
that before and after an away event demand increases. The imprecisely estimated coefficients on
Be f oreAwayritd and A f terAwayritd for the 20 percent and 50 percent rebate samples could be the
result of the significantly smaller samples sizes available for these regressions relative to the 5
percent rebate sample.

To investigate whether the results for the Be f oreAwayritd and A f terAwayritd for the different
rebate levels is due to the sample size differences shown in Table 3, we also estimate a pooled
version of the model which imposes the restriction that all three rebate groups have the same
time-period-in-the-day fixed effects and the same day-of-sample fixed effects. Specifically, we
estimate the following pooled regression across the three rebate groups:

yitd = µt + νi + ηd +
∑

r=5,20,50

[
β1rBe f oreIntoritd + β2rIntoritd + β3rA f terIntoritd

+ α1rBe f oreAwayritd + α2rAwayritd + α3rA f terAwayritd

]
+ εitd

Table 4 reports the results of estimating this regression along with Arellano (1987) standard error
estimates. The major change in the results from rebate-level-specific regressions is the larger
in absolute value coefficients on Intoritd for the 20 and 50 percent rebate levels and the smaller
in absolute value coefficient on Awayritd for the 50 percent rebate level. Otherwise, the same
qualitative conclusions from the results in Table 3 hold for Table 4. For the same rebate percentage,
the absolute value of the treatment effects for the into interventions are significantly larger than the
corresponding value for the away interventions. A significant fraction of the energy that shifts
into a treatment period comes from reductions in consumption during periods after the customer
is notified and the into treatment periods occurs, as well as immediately after the into period. To
lesser extent, the energy that is shifted away from the away period results in increased consumption
during periods after the customer has been notified and the away treatment period occurs. There is
evidence of increased consumption after the away event only for the 5 percent rebate group.

We now turn to the environmental motivation treatment sample. We first estimate a pooled
version of the model that allows for different values of (β1, β2, β3, α1, α2, α3)’ for each of the
four treatments.12 These results are given in Table 5 along with the Arellano (1987) standard error
estimates. The same qualitative results appear to hold for environmental motivation treatments
as for rebates. The absolute value of the estimated impact of an into environmental motivation
treatment is significantly larger than the estimated impact of an away event. In addition, there
is stronger evidence that shifting consumption into a time period leads to lower consumption in

12In this case "r" in the definition of Be f oreIntoritd, Intoritd, A f terIntoritd, Be f oreAwayritd, Awayritd, and
A f terAwayritd denotes the one of the four environmental motivation treatments.
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the time periods that surround that period than there is evidence that shifting consumption away
from a time period leads to higher consumption in the surrounding periods. However, because
many of the coefficients in Table 5 are not very large relative to their standard errors and the point
estimates for the same element of (β1, β2, β3, α1, α2, α3)’ are not significantly different across
the four environmental motivation treatments, in Table 6 we present estimates of this regression
that impose the restriction that the elements (β1, β2, β3, α1, α2, α3)’ are the same across the four
environmental motivation treatments.

The estimation results in Table 6 confirm the qualitative results in Table 5 with significantly
more statistical precision. The absolute value of the into treatment effect is 6.73 percent, whereas
the absolute value of the away treatment effect is less than half that magnitude at 2.66 percent. The
Be f oreIntoitd and A f terIntoitd coefficients are negative, which is consistent with the energy shifted
to the into period coming from these periods. Although the point estimates of the Be f oreAwayitd
and A f terwayitd coefficients are positive, which is consistent with the energy shifting away going
to these periods, these coefficients are not nearly as precisely estimated or as large in absolute value
as the coefficients on Be f oreIntoritd and AwayIntoritd.

We now report the results of several placebo regressions to investigate whether our into and
away interventions actually caused the consumption changes presented in Tables 3 to 6. We create
the following two indicator variables, both covering periods which were NOT treated, and therefore
should have no effect: IntoPitd equals 1 in time period t of day d if this time period is immediately
before notification of an into event given to customer i with any rebate level and zero in all other
time periods and (2) AwayPitd equals 1 in time period t of day if this time period is immediately
before an away notification is presented to customer i with any rebate level and zero in all other
time periods.

For each rebate level sample and the pooled rebate sample, we estimate the following
regression:

yitd = µt + νi + ηd + βIntoPitd + αAwayPitd + εitd

For each regression we would not expect either α or β to be nonzero because customers have no
economic or environmental incentive to shift their consumption into or away from time periods
when either IntroPitd or AwayPitd is equal to 1. Table 7 reports these results with Arellano (1987)
standard error estimates. In all cases, as expected, the null hypothesis α = 0 and β = 0 cannot
be rejected. The last column of Table 7 presents estimates of these coefficients that pool the
data for all of the rebate levels. In this case as well, the null hypothesis that α = 0 and β = 0
cannot be rejected. These results are consistent with our into and away events actually causing the
consumption changes that we estimate before, during, and after these events.

Table 8 reports the results of estimating this same regression for the pooled environmental
motivation intervention sample with Arellano (1987) standard estimates. The variable IntoPitd now
equals 1 in time period t of day d if this time period is immediately before notification of an into
event is given to customer i for any environmental motivation treatment and zero in all other time
periods and AwayPitd equals 1 in time period t of day if this time period is immediately before an
away intervention is given to customer i for any environmental motivation treatment and zero in
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all other time periods. In this case as well, the null hypothesis α = 0 and β = 0 cannot be rejected.

The results in Tables 7 and 8 are consistent with the into and away consumption shifting
estimates presented in the previous section being caused by our rebate and environmental
motivation treatments.

5.2. Selection Corrected Estimates of Experimental Results

This section presents estimates of the models in Tables 3 to 8 that correct for the decision of
SE households to participate in the experiment. The first step in computing selection-corrected
estimates is to estimate the conditional probability of participating in the experiment as a function
of characteristics of the invitation sent to the customer and demographics and home characteristics
for the customer obtained from Statistics Denmark. The next step takes the value of this
conditional probability of participating in the experiment for each customer and uses it to construct
a nonparametric (in the sense described below) selection-corrected estimate of the parameters of
the models presented in Tables 3 to 8.13

The first-step in estimating the semiparametric selection model is an estimate of the conditional
mean of the decision of a customer to participate in the experiment. To do this, we first match each
SE customer that was invited to participate in our experiment to the set of demographic and home
characteristics from Statistics Denmark. Out of the 23,935 customers invited, 23,089 could be
matched with data from Statistics Denmark, which implies our estimation sample size is 23,089.

Empirical evidence that selection may be an issue can be obtained from comparing the mean
characteristics of the invitation for those that participated in the experiment and those that did not.
Table 9 gives these sample means, the difference between these sample means, and the estimated
standard error of the difference.14 Appendix B-1 gives the variable definitions for each variable in
Table 9. For the majority of the variables, the means are statistically different between customers
that did and did not participate in the experiment. For instance, customers offered higher rebates
were more likely to participate in the experiment. We also performed a multivariate difference of
means test for the joint null hypothesis that all nine means are equal and obtained a test statistic
equal to 151.6, which is substantially larger than the critical value for virtually any nonzero size
test of this null hypothesis.15

Table 10 reports the same four magnitudes for each of the customer demographic and home

13For these models, there are 611 individuals from the experiment in the rebate sample and 784 in the
environmental motivation sample. Experiment participants were removed from each of these samples because they
could not be matched with the household-level demographic data from Statistics Denmark necessary to compute our
selection-corrected estimates. This explains the smaller number of observations in Tables 11 to 16 relative to Tables 3
to 8.

14The estimated standard error of the difference in means is equal to SE(Diff) =

√
(sParticipate)2

NParticipate
+

(sNot Participate)2

NNot Participate
, where

(sk)2 is the sample variance of the variable and Nk is the number of observations used to compute this sample variance
for group k = Participate or Not Participate.

15The test statistic is equal to (X̄Participate− X̄Not Participate)′[ Σ̂Participate

NParticipate
+

Σ̂Not Participate

NNot Participate
]−1(X̄Participate− X̄Not Participate), where

X̄k is the sample mean and Σ̂k is the sample covariance matrix of the vector X for group k = Participate or Not
Participate. This statistic is asymptotically distributed as a χ2

j , where j is the dimension of X, under the null hypothesis.
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characteristics variables for customers that participated in the experiment and those that did not.
Appendix B-1 gives the variable definitions for each variable listed in Table 10. For virtually all of
the variables, the mean for those who participated is statistically different from mean of those who
did not participate. A joint test that all 31 means are equal yields a test statistic equal to 554.6,
which is much larger than the critical value for virtually any nonzero size test of the null hypothesis.
A joint test that the means of all 40 invitation and customer demographic and home characteristics
are jointly equal yields a test statistic 713.0, which is larger than the critical value for virtually any
size test of the null hypothesis. The results in Tables 9 and 10 provide strong evidence that selection
into the experiment was not independent of the values of invitation variables and demographic and
home characteristics variables.

Let gi equal E(Di = 1|wi) where Di = 1 if customer i chose to participate in the experiment
and wi is a K-dimensional vector of invitation and customer and home characteristics for customer
i listed in Tables 9 and 10. Although we focus on rebates for energy moved and green energy
investment commitments for energy moved during into and away events, our conditional mean
of participation estimation procedure accounts for all possible inducements. We employ a
multivariate kernel regression to estimate gi:

E(Di = 1|wi) = gi =

∑N
i=1 yikH(w − wi)∑N

i=1 kH(w − wi)

where kH(s) is the multivariate normal kernel kH(s) = (2π)−K/2|H|−1/2exp(− 1
2 s′H−1t) for s ∈ RK

and H is a (K×K) diagonal matrix of smoothing parameters that we estimate using cross-validation.
Let ĝi equal the estimated value of this conditional mean from our kernel regression estimation for
the cross-validated value of H. Figure 3 plots the histogram of values ĝi for yi = 1 and yi = 0.
There is some overlap in the supports of the histograms of the ĝi for yi = 1 and yi = 0. As a
robustness check of our kernel regression procedure, we also estimated a flexible probit including
wi and squares and interactions of the elements of wi and obtained histograms of ĝi for yi = 1 and
yi = 0 with more support in common, although the estimation results reported in this section did
not change significantly if we used this estimate of ĝi instead of the one obtained from our kernel
regression.

The Ahn and Powell (1993) estimator relies on continuity of the selection function λ(·) in the
conditional mean function, gi, to effectively difference out the unknown selection function in the
regression equation. Selection-corrected estimates of the coefficients of the original model are
obtained from a regression involving all pairwise differences of observations.

To operationalize this intuition consider the following observation for time period t of day d of
the selection-corrected equation for our rebate sample:

yitd = µt + νi + ηd + X′itdΓ + λtd(gi) + uitd (1)

where Xitd contains the six into and away regressors. The vector Γ is the associated vector
regression coefficients. The function is λtd(·) is unknown, but is assumed to be continuous in
its argument. Note that this function is allowed to vary across both time periods, t, and days in the
sample, d, to account for the fact that the dependence between a customer’s decision to participate
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in the experiment and their consumption during the experiment can differ across time periods and
days.

To account for the presence of customer specific fixed-effects we compute the mean of each
variable over all time periods and days in the sample to obtain:

ȳi = µ̄ + νi + η̄ + X̄i
′
Γ + λ(gi) + ūi (2)

where Z̄ ≡ 1
9D

∑D
d=1

∑9
t=1 Ztd for any variable Ztd to account for the fact that there are D days in our

sample and 9 consumption periods in each day. Subtracting equation (2) from (1) yields:

(yitd − ȳi) = (µt − µ̄) + (ηd − η̄) + (Xitd − X̄i)′Γ + (λtd(gi) − λ(gi)) + (uitd − ūi) (3)

Define y∗itd ≡ (yitd − ȳi). Equation (3) can be re-written in this notation as:

y∗itd = µ∗t + η∗d + X∗
′

itdΓ + λtd(gi)∗ + u∗itd (4)

Taking the difference between the observations of equation (4) for the same day and period of
the day for customer i and customer j, for individuals with gi ≈ g j yields:

y∗itd − y∗jtd = (X∗
′

itd − X∗
′

jtd)Γ + [λtd(gi)∗ − λtd(g j)∗] + [u∗itd − u∗jtd]

≈ (X∗itd − X∗jtd)′Γ + [u∗itd − u∗jtd]

The second ≈ follows from the fact that the λtd(g) are assumed to be continuous in g, that if gi = g j

then λtd(gi)∗ = λtd(g j)∗ for all t and d. As discussed by Ahn and Powell (1993), this result is also
the reason that the estimator provides a nonparametric selection correction, because the functional
form for λtd does not need to be specified, in order to obtain a consistent estimate of Γ.

The estimator of the elements of Γ assigns weights to each pair of observations in the sample
that participated in the experiment, with a smaller weight given to pairs of observations with larger
values of |ĝir − ĝ jr|. Let the weight assigned to the (i, j) pair of observations equal

ω̂i j ≡
1
hS

K(
ĝi − ĝ j

hS
)DiD j

where K(s) = 3
4 (1− s2) for |s| ≤ 1 is the Epanechnikov kernel, and hS > 0 is a smoothing parameter.

The smoothing parameter, hS , is chosen to be consistent with the rate restrictions in Assumption
3.6 in Ahn and Powell (1987) as ten percent of σĝ, the sample standard deviation of the ĝi.16

Our estimate of Γ is equal to:
Γ̂ = [Ŝ xx]−1Ŝ xy,

where the (6 × 6) matrix

Ŝ xx =
1

9D

D∑
d=1

9∑
t=1

Ŝ xx(t, d)

16We experimented with values as large at fifty percent of σĝ for hS and obtained similar estimates of the elements
Γ.
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and the (6 × 1) vector

Ŝ xy =
1
T

D∑
d=1

9∑
t=1

Ŝ xy(t, d).

These these components of Γ̂ depend on:

Ŝ xx(t, d) =

(
ntd

2

)−1 ntd−1∑
i=1

ntd∑
j=i+1

ω̂i j(X∗itd − X∗jtd)(X∗itd − X∗jtd)′

Ŝ xy(t, d) =

(
ntd

2

)−1 ntd−1∑
i=1

ntd∑
j=i+1

ω̂i j(X∗itd − X∗jtd)(y∗itd − y∗jtd),

where ntd is the total number of customers in our sample during time period t of day d. Following
the logic of Ahn and Powell (1993), we can prove that

√
n(Γ̂ − Γ) converges in distribution to a

N(0,Σ−1
xx Ωxx[Σ−1

xx ]′) random variable where n =
∑D

d=1
∑9

t=1 ntd, the total number of observations in
our sample. Appendix A derives expressions for consistent estimates of Σxx and Ωxx for our setting
that are used to construct our standard error estimates.

We estimate the models in Tables 3 to 8 using this estimator and the values of ĝi from our
kernel regression estimate of E(Di = 1|wi) = g(wi).

A consistent result across all of the selection-corrected estimates in Tables 11 to 14 is a smaller
in absolute value coefficient estimate for the three Into coefficients and the three Away coefficients
relative to the corresponding coefficients in Tables 3 to 6. This result is consistent with the logic
that those customers invited to participate in the experiment that accepted are those best able to
benefit from it. There is also a remarkable degree of agreement between our original results and
the selection-corrected results for both the three rebate level and four environmental motivation
treatments both in terms of the relative magnitude and precision of the three Into parameter
estimates relative to the Away parameter estimates. The Into coefficient estimates for both the
price and environmental treatments are at least two to three times the absolute value of the Away
coefficient estimates for the same rebate level or environmental incentive. For both treatments, the
Be f oreInto and A f terInto coefficient estimates are significantly larger in absolute value and more
precisely estimated than the Be f oreAway and A f terAway coefficient estimates.

Our selection-corrected placebo estimates using the variables IntoP and AwayP are also not
statistically different from zero for all rebate samples and the pooled rebate sample shown in Table
15. The same is true for the environmental sample in Table 16.

6. Customer-Level and Firm-Level Benefits of into versus away Events

This section first assesses the net impacts of into and away events for our selection-corrected
estimates in Table 11. We compute net impact of each type of intervention as well the
decomposition of this net impact into the Before, During, and After periods. These results reveal
that for most customers and rebate levels, both into and away events imply net increases in daily
electricity consumption, although during all away events there is a reduction in consumption during
the specified target period. The sum of the increases in consumption before and after the away
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events, can be larger than the reduction in consumption during the away event. For the case of into
events, both the ”Before” and ”After” periods imply significant reductions in consumption, which
suggests that with careful timing, the declaration of into events can save SE significant wholesale
energy costs in serving its customers.

We investigate this hypothesis using our selection-corrected parameter estimates to compute
the potential wholesale energy cost savings to SE from implementing coordinated away and into
events for all of its residential customers. Using hourly prices from the Nordpool, the wholesale
electricity market operating in the Nordic countries, we select days when SE declaring an into event
or away event for all of its residential customers could significantly reduce its cost of purchasing
the wholesale energy necessary to serve these customers.

We find that the daily wholesale energy cost savings to SE of more than 100,000 Euros can be
obtained from careful timing of away and into events. It would be relatively straightforward for
SE to declare these events based on day-ahead forecasts of renewable energy production and load
in the Nordpool. The expected change in the demand each hour of the day associated with an into
or away event could be offered into the day-ahead market in the same manner that we do in our
counterfactual analysis. SE would face the residual risk that the actual demand reduction does not
equal what the reduction it offered in. However, given the magnitude of the wholesale purchase
cost savings that we find, there is little risk that SE would not realize significant cost savings from
these actions. We close this section with a discussion of why we believe these results are likely to
carry over to places like California because of the pattern of net load shown in Figure 2.

6.1. Net Impacts of into versus away Events

To estimate the net impacts of the into and away treatments, we compute the following. For
the net impact of into treatments, compute

φ1id =
∑

t∈Be f oreInto

(1 − exp(−γBe f oreInto))Citd

φ2id =
∑

t∈Into

(1 − exp(−γInto))Citd

φ3id =
∑

t∈A f terInto

(1 − exp(−γA f terInto))Citd

for each consumer i where Citd is customer’s i’s actual consumption during time period t of day d.
γx is the coefficient on the regressor x, estimated in the censored selection models described above.
Note that although summations over time periods in Before and After an event can be over multiple
periods, depending on the length of these time periods, Into is for a single time period in the day.
For each customer, i, the net impact of an Into event at day d is then φ2id + (φ1id + φ3id).

For the net impact of the away treatments, we compute

ψ1id =
∑

h∈Be f oreAway

(1 − exp(−γBe f oreAway))Citd
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ψ2id =
∑

h∈Away

(1 − exp(−γAway))Citd

ψ3id =
∑

h∈A f terAway

(1 − exp(−γA f terAway))Citd

for each consumer i. The net impact for each i is then ψ2id + (ψ1id + ψ3id).

Figure 4 plots the average hourly consumption in kilowatt-hours for each of the nine daily time
periods. Figures 5 to 7 plot the kilowatt-hour net impacts for into and away treatments for samples
with a 5%, 20%, and 50% rebate, respectively. Figures 8 to 10 plot the histogram of kilowatt-hour
impacts for Before these events for a 5%, 20%, and 50% rebate, respectively. Figures 11 to 13
plot the histogram of kilowatt-hour During impacts for a 5%, 20%, and 50% rebate, respectively.
Figures 14 to 16 plot the histogram of kilowatt-hour impacts for After an event for a 5%, 20%, and
50% rebate, respectively. In all cases, the support of Into kilowatt-hour changes is significantly
larger than the support for Away kilowatt-hour changes. Consistent with the coefficients in Table
11, the absolute values of the kilowatt-hour changes for Into events many times larger than the
absolute of the kilowatt-hour changes for Away events.

6.2. Potential Wholesale Cost Savings of into versus away Events

Using the estimates of the impact of into and away events from the cesored selection model in
Table 11, we can estimate what would happen to aggregate hourly demand if the SE population
of residential customers all received an into or away signal. Plugging this estimated aggregate
demand reduction (or increase) into a model for setting wholesale prices in the Nordpool each
impacted hour, we re-compute the hourly price for each hour that is impacted by the event. The
total wholesale energy cost savings associated with this price reduction is equal to:

H(E)∑
h=1

PW(actual, h) ×CS E(actual, h) − PW(new, h) ×CS E(new, h) − Rebate Paid

where CS E(actual, h) is SE’s residential consumption in hour h and CS E(new, h) is SE’s residential
consumption with the impact of the into or away event accounted for, PW(actual, h) is the
Nordpool wholesale price during hour h and PW(new, h) is the Nordpool price during hour h
accounting for the impact of the into or away event during that hour, and H(E) is the number of
hours impacted by the into over away event.17

The rebate is paid per kWh of energy moved for into and away events based on the average
residential price of 27.35 Euro cents per kWh. For example, a 5% rebate would pay 1.37 Euro cents
per kWh moved, 20 % rebate would pay 5.47 Euro cents per kWh moved and finally a 50 % rebate
would pay 13.68 Euro cents per kWh. Note that the payment is made only for the amount moved
into the designated period for an into event and the amount moved away from the designated period
for an away event.

17For example, if notification occurs five hours before an into or away event that occurs within a three hour period,
the total number of hours of the day impacted is 13: 5 hours before the event, 3 hours during the event, and 5 hours
after the event.
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For the into simulations, a notification is assumed to be sent at 8:00 am asking all customers
to shift usage shift into the hours of 13:00 to 15:00 for a 5%, 20%, or 50% rebate. The five hours
preceding that window constitute the ”Before” period, and the five hours following it constitute
the ”After” period. We chose this time period for our into event based on the pattern of average
daily demand in Figure 4 and the pattern daily average hourly wholesale prices in Figure 17. The
time period 13:00 to 15:00 has the lowest average demand relative to the surrounding periods and
the average wholesale prices are lower than the periods that surround this time period. This means
that consuming more during 13:00 to 15:00 time is unlikely to significantly increase wholesale
prices, but consuming less during the 5 hours before and after this into period should reduce
wholesale prices in these periods and the quantity of energy demanded, resulting in a net reduction
in wholesale energy purchase costs for SE.

Our assumed away events are also based on the pattern of average daily demand in Figure 4
and the pattern of daily average hourly wholesale prices in Figure 17. We chose the time period
8:00 to 10:00 for away events because it has the highest average demand relative to the surrounding
periods and average wholesale prices are higher in that period. In this case, we also assumed the
event was called 5 hours before at 3 am.18 Our parameter estimates imply more consumption
during the 3:00 to 8:00 period and less during the 8:00 to 10:00 period. We also examined the
period 17:00 to 19:00 for an away event because of high average demand and high average prices
in this period. The event was assumed to be called 5 hours in advance at 12 pm. Declaring away
events during these high demand and high price periods will lower SE’s demand and the Nordpool
price during these hours and increase SE’s demand 5 hours before and after this time period and
increase the Nordpool prices during these hours as well.

Table 17 shows wholesale energy purchase cost saving from the one into event and the two
away events for several days during 2014 with high day-ahead prices in the Nordpool for a 5
percent rebate event. Table 18 repeats these calculations for a 20 percent rebate event and Table 19
repeats them for a 50 percent rebate event.

Are the wholesale energy cost savings associated with into events in Tables 17, 18, and 19
unique to Denmark? The ”Duck Curve” graph in Figure 2 provides strong evidence they are
not. In fact, the approximately 19,000 MW of grid-scale and distributed solar generation capacity
in California suggests that the pattern of net demand (system demand less the production of
intermittent wind and solar generation) during the day yields wholesale prices that are lower during
the middle of the day when the solar facilities in California are producing significant amounts of
energy and higher in the early morning hours and late evening when there is no solar energy
being produced. This result implies that declaring into events for customers in California during
the middle of the day is likely to yield wholesale purchase cost saving similar to those that were
found for Denmark. Moreover, the increasing amount of solar capacity being built in California
should only increase the financial viability of declaring into events during the middle of the day in
California.

18Assuming that that a household would respond to text message send at 3 am to reduce consumption may be
unrealistic, but we wanted to give away events the best chance of having the largest possible wholesale energy cost
savings to SE.
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The declaration of into events in California need not require an net increase in electricity
production from thermal generation units if there is a sufficient amount of storage capacity within
the state. During the into event these units could be storing energy to be used during and after the
into event or the following day.

7. Explaining Results Using A Model of Household-Level Demand under Uncertainty

This section presents a simple model of household-level demand under uncertainty that
rationalizes our empirical results. The model builds on the “option-to-quit” property of rebate
schemes versus dynamic pricing schemes discussed in Wolak (2010). Under an away rebate
scheme, such as the one used in our experiment, if a household does not consume below the level
necessary to receive a rebate, that customer only pays the usual fixed price for its consumption
during the event. The same logic applies for the into scheme. If the household does not consume
more than the level necessary to receive a rebate, the household pays for consumption at the usual
fixed price.

Figure 18 considers the behavior of a household that has received an into signal. However, at
the time the into signal occurs, the household does not know if their demand for electricity will be
low(DL(p)) or high (DH(p)) during the coming into event. By assumption DL(p) < DH(p) for all
prices, p and ProbL is the probability that DL(p) occurs and ProbH is the probability that DH(p)
occurs. Figures 18(a)-(c) shows the reference level relative to which a rebate is issued as QR.
Figure 18(a) shows the customer’s demand if it faces, PN , the normal fixed retail price, and PN − r,
the price less the rebate amount. In this case DL(PN) < QR, but DL(PN − r) > QR, so the household
would receive a rebate in the low demand state for consuming more than QR.

Figure 18(b) repeats Figure 18(a), for DH(p). In this case the household would also receive
a rebate because DH(PN − r) > QR, Figure 18(c) presents the average treatment effect for the
customer by computing the difference between the household’s consumption in the low demand
state if an into event has been declared less the household’s consumption if an into event has not
been declared times the probability of the low demand state plus the same difference for the high
demand state times the probability of the high demand state. In this case,

AT Einto = ProbL(DL(PN − r) − DL(PN)) + ProbH(DH(PN − r) − DH(PN)).

Figure 19 repeats Figure 18 for the case of an away event. Figure 19(a) shows that the customer
will receive a rebate under the low demand state, because DL(PN +r) < QR. However, the customer
will not receive a rebate under the high demand state at the price, (PN +r), because DH(PN +r) > QR

in Figure 19(b). Here is where the option to quit comes into play. The customer can obtain a higher
level of utility in the high demand state by continuing the consume at PN and purchase DH(PN).
Figure 19(c) shows what this utility-maximizing action under the rebate scheme does to the average
treatment effect of an away event. It becomes,

AT Eaway = ProbL(DL(PN)−DL(PN +r))+ProbH(DH(PN)−DH(PN)) = ProbL(DL(PN)−DL(PN +r)),

Figure 20(a) compares the into and away average treatment effects in Figures 18 and 19 and shows
that because of the option to quit being exercised in the high demand state under the away event,
the absolute value of the ATE under the away event is significantly smaller than the absolute value
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of the ATE for the into event. Figure 20(b) shows that if the reference level is increased, this
result could be ambiguous because the customer will not get a rebate during an away event in the
low demand state and will therefore find it utility-maximizing to consume DL(PN) under the low
demand state, so that the away average treatment effect becomes,

AT Eaway = ProbH(DH(PN − r) − DH(PN)).

However, because the away event ATE in Figure 20(b) is based on the change in demand in the low
demand state under PN versus PN + r, and the into ATE in Figure 20(b) is based on the change in
demand in the high demand state under PN − r and PN , it seems very likely that the absolute value
of the ATE for the into event will still be higher than the ATE for the away event. Consequently, the
differential impact of the option to quit under the into rebate dynamic pricing plan versus the away
dynamic pricing plan rationalizes the significantly smaller in absolute value average treatment
effect for away versus into interventions that we find in our empirical work.

8. Conclusions

The results of this experiment suggest an alternative more cost-effective mechanism for active
participation of the final consumers in managing the real-time supply and demand balance in
regions with significant intermittent renewable generation. For the same rebate percentage,
load-shifting into a time period induced a two to three times larger percent increase in demand than
that rebate percent induced for load-shifting away from that time period. A significant amount of
the energy that shifted into the time period also resulted in reductions in consumption during time
periods before and after the event period. The evidence for load-shifting away from the period
finds mixed evidence that this led to increased consumption in neighboring time periods.

The purely environmental motivation interventions produced analogous results: Significantly
larger in absolute value average load-shifting into time periods relative to shifting away from
time periods and evidence that load-shifting into a time period led to lower consumption during
neighboring time periods, but load-shifting away from a time period did not consistently lead to
increases in consumption in neighboring periods.

Both sets of qualitative results continue to hold for the into and away treatment effect estimates
that account for the decision of customers to participate in the experiment, although the quantitative
magnitude of all of these coefficient estimates is significantly smaller in absolute value than the
corresponding estimates from just the sample of experiment participants. This result is consistent
with the logic that the SE customers that selected to participate in the experiment are those that
expected to benefit the most from their participation.

A counterfactual experiment with these selection-corrected estimates shows that substantial
daily wholesale energy purchase cost savings are possible from declaring into events designed
to shift consumption from high to low demand periods and that the overall wholesale energy
cost savings can be larger than for an away event during the same day. Given popularity of
rebate-based dynamic pricing programs with consumers and regulators, a more cost-effective
approach to implementing these programs may be to use into rather than away rebate schemes,
particularly in regions with significant intermittent renewable generation capacity shares such as
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California. Thus giving incentives to increase electricity use in certain time periods is a pricing
strategy that could reduce the cost of - and therefor help increase the share of - greenhouse gas
emissions-free wind and solar electricity production.
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Table 1. Summary Statistics for Rebate Participants.

5% rebate 20% rebate 50% rebate
Number of customers 323 183 118
Average number of time slots per customer
With into-treatmenti 45.19 43.95 44.14
With away-treatmentii 21.22 19.80 19.91
With no treatmentiii 898.84 891.11 901.26

i 27% of the into treatments are in the time slot 10-13, 23% are 15-18, 23% are 18-21, 19% are
21-24 and 8% are 24-3.

ii 20% of the away treatments are in the time slot 10-13, 30% are 15-18, 30% are 18-21, 14% are
21-24 and 6% are 24-3.

iii All potential treatment periods in the timeslot 10-13, 15-18, 18-21, 21-24 and 24-3 on days with
no treatments. Twenty percent of the potential treatments are in the time slots 10-13, 15-18, 18-21,
21-24, and 24-3.

Table 2. Summary Statistics for Zero-GHG Emissions Energy Participants

Group: Group: Group: Group:
31 34 35 36

Number of customers 319 256 133 84
Average number of time slots per customer
With into-treatmenta 45.07 45.73 44.56 44.76
With away-treatmentb 20.68 21.36 20.93 20.32
With no treatmentc 904.80 901.39 911.05 882.14

a 27% of the into treatments are in the time slot 10-13, 23% are 15-18, 23% are 18-21, 19% are
21-24 and 8% are 24-3.

b 20% of the away treatments are in the time slot 10-13, 30% are 15-18, 30% are 18-21, 14% are
21-24 and 6% are 24-3.

c All potential treatment periods in the timeslot 10-13, 15-18, 18-21, 21-24 and 24-3 on days
with no treatments.
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Table 3: Separate Estimation Results for 5 Percent, 20 Percent and 50 Percent Rebate Levels

Dependent Variable is Natural Logarithm of Customer i’s Consumption in Time Period t
5% Rebate 20% Rebate 50% Rebate

Regressor
BeforeInto -0.0259 -0.0154 -0.0178

(0.0056) (0.0080) (0.0107)
Into 0.0849 0.0916 0.1354

(0.0084) (0.0115) (0.0180)
AfterInto -0.0106 -0.0085 -0.0006

(0.0042) (0.0070) (0.0071)
BeforeAway 0.0141 0.0002 0.0250

(0.0080) (0.0111) (0.0127)
Away -0.0374 -0.0444 -0.0323

(0.0084) (0.0107) (0.0137)
AfterAway 0.0080 -0.0112 0.0093

(0.0062) (0.0087) (0.0114)
Number of Observations 705,792 389,672 258,313

a Standard errors computed using the heteroscedasticity and autocorrelation-consistent covariance matrix
for two-way panel data models presented in Arellano (1987) are in parentheses below coefficient
estimates.

Table 4: Pooled Estimation results for 5 percent, 20 percent and 50 percent rebate levels

Dependent Variable is Natural Logarithm of Customer i’s Consumption in Time Period t
5% Rebate 20% Rebate 50% Rebate

Regressor
BeforeInto -0.0320 -0.0057 -0.0148

(0.0063) (0.0093) (0.0126)
Into 0.0796 0.0959 0.1444

(0.0093) (0.0131) (0.0202)
AfterInto -0.0114 -0.0052 -0.0021

(0.0050) (0.0080) (0.0088)
BeforeAway 0.0111 0.0053 0.0274

(0.0085) (0.0120) (0.0140)
Away -0.0393 -0.0467 -0.0228

(0.0093) (0.0132) (0.0156)
AfterAway 0.0105 -0.0131 0.0064

(0.0065) (0.0089) (0.0120)
Number of Observations 1,353,777

a Standard errors computed using the heteroscedasticity and autocorrelation-consistent covariance matrix
for two-way panel data models presented in Arellano (1987) are in parentheses below coefficient
estimates.
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Table 5: Separate Estimates of Impact of Four Environmental Motivation Treatments

Dependent Variable is Natural Logarithm of Customer i’s Consumption in Time Period t
Group 31 Group 34 Group 35 Group 36

Regressor
BeforeInto -0.0199 -0.0196 -0.0107 -0.0116

(0.0073) (0.0087) (0.0112) (0.0129)
Into 0.0664 0.0589 0.0771 0.0815

(0.0095) (0.0097) (0.0157) (0.0192)
AfterInto -0.0042 -0.0029 -0.0054 -0.0078

(0.0061) (0.0064) (0.0079) (0.0115)
BeforeAway 0.0024 0.0040 -0.0037 0.0040

(0.0081) (0.0097) (0.0130) (0.0161)
Away -0.0298 -0.0220 -0.0203 -0.0388

(0.0098) (0.0117) (0.0164) (0.0183)
AfterAway -0.0010 0.0108 0.0090 0.0020

(0.0067) (0.0088) (0.0116) (0.0128)
Number of Observations 1,732,391

a Standard errors computed using the heteroscedasticity and autocorrelation-consistent covariance matrix
for two-way panel data models presented in Arellano (1987) are in parentheses below coefficient
estimates.

Table 6: Pooled Estimates of Impact of Environmental Motivational Treatments

Dependent Variable is Natural Logarithm of Customer i’s Consumption in Time Period t
Regressor
BeforeInto -0.0174

(0.0039)
Into 0.0673

(0.0052)
AfterInto -0.0043

(0.0031)
BeforeAway 0.0021

(0.0047)
Away -0.0266

(0.0054)
AfterAway 0.0049

(0.0043)
Number of Observations 1,732,391

a Standard errors computed using the heteroscedasticity and autocorrelation-consistent covariance matrix
for two-way panel data models presented in Arellano (1987) are in parentheses below coefficient
estimates.
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Table 7: Placebo Estimates of Impact of Rebate Treatments

Dependent Variable is Natural Logarithm of Customer i’s Consumption in Time Period t
5% Rebate 20% Rebate 50% Rebate Pooled Sample

Regressor
IntoP -0.0146 -0.0189 0.0020 -0.0126

(0.0083) (0.0120) (0.0161) (0.0073)
AwayP 0.0091 -0.0032 -0.0270 -0.0013

(0.0112) (0.0143) (0.0158) (0.0078)
Number of Obs 708,688 391,291 259,366 1,359,345

a Standard errors computed using the heteroscedasticity and autocorrelation-consistent covariance matrix
for two-way panel data models presented in Arellano (1987) are in parentheses below coefficient
estimates.

Table 8: Placebo Estimates of Impact of Environmental Motivation Treatments

Dependent Variable is Natural Logarithm of Customer i’s Consumption in Time Period t
Regressor
IntoP -0.0094

(0.0059)
AwayP -0.0008

(0.0071)
Number of Observations 1,739,476

a Standard errors computed using the heteroscedasticity and autocorrelation-consistent covariance matrix
for two-way panel data models presented in Arellano (1987) are in parentheses below coefficient
estimates.

Table 9: Summary Stats for Invitation Variables

Mean(Participate=0) Mean(Participate=1) Diff. Std. Error
Second Wave 0.5028 0.4506 0.0522 0.0123
5% Rebate 0.1714 0.2391 -0.0676 0.0104
20% Rebate 0.0758 0.1027 -0.0269 0.0074
50% Rebate 0.0408 0.0662 -0.0254 0.0060
Foot in the Door with Price Motive 0.1423 0.2155 -0.0732 0.0100
Foot in the Door with Envi Motive 0.3550 0.3008 0.0542 0.0114
Offered Device 0.3296 0.3300 -0.0004 0.0116
There are 1,782 observations who participated, and 21,307 who did not.
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Table 10: Summary Stats for Demographic and Home Variables

Mean(Participate=0) Mean(Participate=1) Diff. Std. Error
# of men 21+ in house 0.8964 0.8743 0.0221 0.0102
# of men 21+ in house, sq 0.9875 0.9349 0.0526 0.0165
# of women 21+ in house 0.8707 0.8984 -0.0277 0.0091
# of women 21+ in house, sq 0.9105 0.9411 -0.0306 0.0138
# of kids 15-20 0.2015 0.1706 0.0309 0.0115
# of kids 7-14 0.2709 0.1863 0.0846 0.0131
# of kids 0-6 0.2096 0.1195 0.0901 0.0110
# of kids 15-20, sq 0.2890 0.2447 0.0443 0.0217
# of kids 7-14, sq 0.4630 0.3075 0.1555 0.0270
# of kids 0-6, sq 0.3521 0.2026 0.1496 0.0229
Household disposable income 7.7540 7.5653 0.1888 0.0907
Household disposable income squared 78.0228 70.3972 7.6255 2.4678
Income < 0 0.0013 0.0006 0.0008 0.0006
Income ∈ [0, 50, 000) 0.0036 0.0022 0.0013 0.0012
Income ∈ [50, 000, 150, 000) 0.0589 0.0432 0.0157 0.0051
Income ∈ [150, 000, 250, 000) 0.2022 0.2043 -0.0021 0.0099
Income ∈ [250, 000, 350, 000) 0.2052 0.2329 -0.0277 0.0104
Income ∈ [350, 000, 450, 000) 0.1943 0.2183 -0.0239 0.0102
Income ∈ [450, 000, 550, 000) 0.1605 0.1543 0.0062 0.0089
farmhouse 0.0405 0.0387 0.0018 0.0048
terraced_or_double_house 0.1188 0.1296 -0.0108 0.0083
storey_bld 0.1412 0.0763 0.0649 0.0067
single_fam_house 0.6976 0.7536 -0.0561 0.0107
# of rooms 4.5180 4.5999 -0.0819 0.0368
Total area of home 135.0484 137.9972 -2.9488 1.1594
Construction Year 1954.1063 1955.9641 -1.8578 1.1080
district_heat 0.5579 0.5224 0.0354 0.0123
Central heating 0.3374 0.3333 0.0040 0.0116
Electric oven 0.0626 0.0898 -0.0272 0.0070
Heating pump 0.0278 0.0426 -0.0149 0.0049
Individual Owns Home 0.7051 0.7755 -0.0704 0.0104
num_employed 1.0980 0.9293 0.1687 0.0220
hh_unemployed 0.3137 0.4108 -0.0971 0.0121
# of Retired in HH 0.4319 0.6235 -0.1915 0.0191
# of High-skill employees 0.1635 0.1409 0.0226 0.0099
# of Mid-skill employees 0.2160 0.1835 0.0325 0.0105
# of low-skill employees 0.4539 0.3760 0.0779 0.0150
HH state scholarship funds 4787.8427 2719.4484 2068.3943 344.9879
HH pension income 95841.6083 145206.3681 -49364.7599 4213.0859
Married couple in HH 0.5626 0.6156 -0.0530 0.0120
# of immigrants in HH 0.1495 0.1027 0.0468 0.0115
There are 1,782 observations who participated, and 21,307 who did not.
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Table 11: Replication of Table 3 Using Censored Selection Method
(1) (2) (3)

log(kwh/hr) log(kwh/hr) log(kwh/hr)
Regressor
BeforeInto -0.0076 -0.0111 -0.0091

(0.0010) (0.0017) (0.0018)
Into 0.0306 0.0289 0.0505

(0.0025) (0.0021) (0.0053)
AfterInto -0.0027 -0.0028 0.0004

(0.0011) (0.0011) (0.0017)
BeforeAway 0.0042 -0.0007 0.0026

(0.0015) (0.0019) (0.0024)
Away -0.0108 -0.0106 -0.0055

(0.0016) (0.0022) (0.0031)
AfterAway 0.0015 -0.0037 -0.0024

(0.0013) (0.0019) (0.0033)
N 704,484 388,269 252,153

Columns 1, 2, and 3 are results for 5%, 20%, and 50% rebates, respectively

Table 12: Replication of Table 4 Using Censored Selection Method
(1) (2) (3)

log(kWh/hr) log(kWh/hr) log(kWh/hr)
Regressor
BeforeInto -0.0094 -0.0087 -0.0072

(0.0013) (0.0029) (0.0024)
Into 0.0288 0.0295 0.0560

(0.0024) (0.0025) (0.0082)
AfterInto -0.0025 -0.0021 -0.0018

(0.0010) (0.0016) (0.0021)
BeforeAway 0.0026 0.0004 0.0061

(0.0018) (0.0023) (0.0028)
Away -0.0124 -0.0118 0.0034

(0.0019) (0.0027) (0.0043)
AfterAway 0.0019 -0.0041 -0.0041

(0.0012) (0.0022) (0.0030)
N 1,344,906

Columns 1, 2, and 3 are results for 5%, 20%, and 50% rebates, respectively
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Table 13: Replication of Table 5 Using Censored Selection Method
log(kWh/hr) log(kWh/hr) log(kWh/hr) log(kWh/hr)

Group 31 Group 34 Group 35 Group 36
Regressor
BeforeInto -0.0054 -0.0049 -0.0038 -0.0059

(0.0019) (0.0019) (0.0029) (0.0025)
Into 0.0250 0.0182 0.0200 0.0304

(0.0033) (0.0030) (0.0034) (0.0036)
AfterInto 0.0001 0.0034 0.0003 -0.0002

(0.0020) (0.0019) (0.0017) (0.0021)
BeforeAway 0.0018 -0.0011 -0.0013 0.0058

(0.0022) (0.0024) (0.0028) (0.0033)
Away -0.0032 -0.0037 -0.0069 -0.0033

(0.0029) (0.0022) (0.0031) (0.0019)
AfterAway 0.0008 0.0045 0.0033 0.0028

(0.0029) (0.0017) (0.0019) (0.0023)
N 1,736,111

Heteroscedasticity consistent standard errors

Table 14: Replication of Table 6 Using Censored Selection Method (npregress)
log(kWh/hr)

Regressor
BeforeInto -0.0051

(0.0007)
Into 0.0227

(0.0021)
AfterInto 0.0011

(0.0007)
BeforeAway 0.0008

(0.0015)
Away -0.0040

(0.0016)
AfterAway 0.0026

(0.0014)
N 1,736,111
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Table 15: Replication of Table 7 Using Censored Selection Method
log(kWh/hr) log(kWh/hr) log(kWh/hr) log(kWh/hr)
5% Rebate 20% Rebate 50% Rebate Pooled Sample

Regressor
IntoP -0.0030 -0.0043 0.0035 -0.0023

(0.0017) (0.0027) (0.0025) (0.0016)
AwayP -0.0011 0.0023 -0.0039 -0.0005

(0.0019) (0.0025) (0.0028) (0.0014)
N 707,346 389,880 253,179 1,350,405

Table 16: Replication of Table 8 Using Censored Selection Method
log(kWh/hr)

Regressor
IntoP 0.0009

(0.0014)
AwayP 0.0014

(0.0019)
N 1,743,167

Table 17: Total Wholesale Cost Savings (EUR); 5% rebate
Day Into Signal Away Signal Away Signal

(13:00) (8:00) (17:00)
January 14, 2014 18,902.16 52,668.70 -6,068.05
January 15, 2014 39,084.92 72,125.45 12,171.64
January 21, 2014 28,280.46 55,660.59 19,415.90
January 22, 2014 41,059.58 80,610.57 -20,918.28
January 23, 2014 3,416.99 12,716.84 -465.48
January 24, 2014 75,079.54 83,449.95 5,219.41
January 31, 2014 1,452.31 824.10 6,899.82

April 1, 2014 -3,474.61 -2,233.61 -1,253.00
April 2, 2014 17,614.12 15,967.71 -1,107.94
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Table 18: Total Wholesale Cost Savings (EUR); 20% rebate
Day Into Signal Away Signal Away Signal

(13:00) (8:00) (17:00)
January 14, 2014 44,652.41 73,126.01 11,890.53
January 15, 2014 66,778.13 91,417.40 26,250.35
January 21, 2014 100,440.30 88,190.25 35,655.95
January 22, 2014 87,448.47 102,736.94 31,788.63
January 23, 2014 14,855.12 32,045.77 19,818.83
January 24, 2014 104,055.05 105,787.09 21,124.51
January 31, 2014 3,505.74 8,858.92 12,788.63

April 1, 2014 -1,173.19 7,926.95 6,040.92
April 2, 2014 27,265.75 31,137.76 5,015.49

Table 19: Total Wholesale Cost Savings (EUR); 50% rebate
Day Into Signal Away Signal Away Signal

(13:00) (8:00) (17:00)
January 14, 2014 -26,465.11 37,752.47 -2433.37
January 15, 2014 -8,339.11 56,859.14 6,396.53
January 21, 2014 -4,808.20 22,263.77 4,156.47
January 22, 2014 -9,540.09 28,766.65 -1,993.5
January 23, 2014 -63,627.44 16,550.52 1,350.93
January 24, 2014 28,516.81 62,497.95 3,046.81
January 31, 2014 -28,545.33 566.18 4,206.86

April 1, 2014 -31,696.24 2,142.64 4,210.74
April 2, 2014 -36,62.47 9,609.89 768.90
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Figure 1. Danish Electricity Consumption, Wind Energy Production, and Short-term Prices
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Figure 2: The Impact of Solar Generation Deployment on Net Load in California
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Figure 3: Histogram of Propensity Scores by Participation
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Figure 4: Average Hourly Energy Consumption (kWh per Hour)

Figure 5: Net Impact using Coefficients from Table 3 (with censored selection) and a 5% rebate
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Figure 6: Net Impact using Coefficients from Table 3 (with censored selection) and a 20% rebate
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Figure 7: Net Impact using Coefficients from Table 3 (with censored selection) and a 50% rebate
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Figure 8: φ1 and ψ1 using Coefficients from Table 3 (with censored selection) and a 5% rebate
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Figure 9: φ1 and ψ1 using Coefficients from Table 3 (with censored selection) and a 20% rebate
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Figure 10: φ1 and ψ1 using Coefficients from Table 3 (with censored selection) and a 50% rebate
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Figure 11: φ2 and ψ2 using Coefficients from Table 3 (with censored selection) and a 5% rebate
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Figure 12: φ2 and ψ2 using Coefficients from Table 3 (with censored selection) and a 20% rebate
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Figure 13: φ2 and ψ2 using Coefficients from Table 3 (with censored selection) and a 50% rebate
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Figure 14: φ3 and ψ3 using Coefficients from Table 3 (with censored selection) and a 5% rebate
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Figure 15: φ3 and ψ3 using Coefficients from Table 3 (with censored selection) and a 20% rebate

0
.5

1
1.

5
D

en
si

ty

-4 -3 -2 -1 0
Impact

Into Away

41



Figure 16: φ3 and ψ3 using Coefficients from Table 3 (with censored selection) and a 50% rebate
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Figure 17: Daily Average Hourly Wholesale Energy Prices in SE’s Zone in Nordpool in 2014 in Euros/MWh
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Figure 18(a): Into Rebate Pricing with Uncertain Demand

Figure 18(b): Into Rebate Pricing with Uncertain Demand
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Figure 18(c): Into Rebate Pricing with Uncertain Demand

Figure 19(a): Away Rebate Pricing with Uncertain Demand
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Figure 19(b): Into Rebate Pricing with Uncertain Demand

Figure 19(c): Into Rebate Pricing with Uncertain Demand
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Figure 20(a): Comparison of Rebate Pricing with Uncertain Demand

Figure 20(b): Comparison of Rebate Pricing with Uncertain Demand
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Appendix A: Standard Errors

We have the following asymptotically normal distribution for our selection-corrected estimates
of Γ:

√
n(Γ̂ − Γ)

d
−→ N(0,Σ−1

xx Ωxx[Σ−1
xx ]′)

1
2 Ŝ xx consistently estimates Σxx, where Ŝ xx = 1

9D

∑D
d=1

∑9
t=1 Ŝ xx(t, d) and

Ŝ xx(t, d) =

(
ntd

2

)−1 nt−1∑
i=1

nt∑
j=i+1

ω̂i j(Xi(t, d)∗ − X j(t, d)∗)(Xi(t, d)∗ − X j(t, d)∗)′

where n is the number of observations in the data, ntd is the number of observations in time period
t of day d, Xi(t, d)∗ is a vector of mean-differenced regressors for customer i during time period t
of day d. We define ω̂i j as

ω̂i j =
1
h

k
( ĝi − ĝ j

h

)
where k() is the Epanechnikov kernel defined earlier, h is the bandwidth chosen as described earlier,
and ĝi the propensity score of individual i (which does not vary with t).

An estimator of Ωxx is Ŵxx = 1
9D

∑D
d=1

∑9
t=1 Ŵxx(t, d):

Ŵxx(t, d) =
1

ntd

nt∑
i=1

[ψ̂i(t, d) + ξ̂i(t, d)êi][ψ̂i(t, d) + ξ̂i(t, d)êi]′

where

ψ̂i(t, d) =
1

nt − 1

nt∑
j=1

ω̂i j(v̂i(t, d) − v̂ j(t, d))(Xi(t, d)∗ − X j(t, d)∗)

v̂i(t, d) = yi(t, d)∗ − Xi(t, d)∗′Γ̂

êi = 1 − ĝi

ξ̂i(t, d) =
1

ntd

1
ntd − 1

ntd∑
j=1

ntd∑
l=1

[(1
h

)2
k′
( ĝi − ĝ j

h

)
(v̂ j(t, d) − v̂l(t, d))(X j(t, d)∗ − Xl(t, d)∗)

]
and k′(s) is the derivative of k(s).

The matrix Ŵxx takes the following form if we are willing to allow arbitrary autocorrelation in
the vi(t, d) over time periods and days and differences in this autocorrelation across customers.
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Ŵxx =
1

9D
1

nC

nC∑
i=1

[ D∑
d=1

9∑
t=1

ψ̂i(t) + ξ̂i(t)êi

][ d∑
d=1

9∑
t=1

ψ̂i(t) + ξ̂i(t)êi

]′
Where nC is the number of distinct individuals. These results imply that the approximately normal
distribution of β̂ is N(β, Σ−1

zx Ωzz[Σ−1
zx ]′

n ).
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Appendix B-1. Definitions of Invitation and Customers and Home Demographic Variables

Description Unit
Invitation variables, see
Summary Stats in Table 9
Second wave The invitations were issued in two waves, one on 14

April 2015, and one on 23 April
0 = 14 April
1 = 23 April

Env motive only The consumer is only offered GHG-free energy
investments, corresponding to the amount of energy
moved in accordance with the text messages

Dummy 0/1

5% rebate The consumer is offered a 5% rebate on the amount of
energy moved in accordance with the text messages

Dummy 0/1

20% rebate The consumer is offered a 20% rebate on the amount
of energy moved in accordance with the text messages

Dummy 0/1

50% rebate The consumer is offered a 50% rebate on the amount
of energy moved in accordance with the text messages

Dummy 0/1

Foot in the Door with Price
Motive

Before the actual invitation, the consumer received a
Foot In The Door with price motivation

Dummy 0/1

Foot in the Door with Env
Motive

Before the actual invitation, the consumer received a
Foot In The Door with environmental motivation

Dummy 0/1

Offered device In the invitation, the consumer is offered a device
which can switch the consumers refrigerator off - and
back on - so that it automatically follows the text
messages

Dummy 0/1

Demographics and Home
Variables, see Summary
Stats in Table 10
# of men 21+ in house Number of men 21 years or older in the household integer
# of women 21+ in house Number of women 21 years or older in the household Integer
# of kids 15-20 Number of children 15-20 years old in the household Integer
# of kids 7-14 Number of children 7-14 years old in the household Integer
# of kids 0-6 Number of children 6 years or younger in the

household
Integer

Household disposable
incomea)

Sum of all persons disposable income in the house,
using 50,000 DKK as unit

DKK/50,000

Income < 0 Disposable income less than 0 Dummy 0/1
Income ∈ [X, Y) Disposable income greater than or equal to X DKK,

and lower than Y DKK
Dummy 0/1

Income ∈ [550, 000, max] Greater than or equal to 550,000 DKK, and lower than
or equal to the highest amount which is 7,892,076
DKK

Dummy 0/1

# of Retired in HH Number of Early retirees or National pensioners in the
household

Integer
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Description Unit
# of High-skill employees Number of Top Leaders in Companies, Organizations

and the Public Sector or Employees in work requiring
skills at the highest level

Integer

# of Mid-skill employees Employee in work requiring intermediate level skills Integer
# of low-skill employees Employee in work requiring basic level skills Integer
HH state scholarship funds Total amount of state scholarships within the

household using 50,000 DKK as unit
DKK/50,000

HH pension income Sum of all National and early retirement pension,
and other pensions in the using 50,000 DKK as unit
household

DKK/50,000

Married couple in HH At least one married couple in the household Dummy 0/1
# of immigrants in HH Number of persons in household with reported origin

outside Denmark
Integer

HH unemployed Dummy indicating if ALL members of the household
are either unemployed at least half of the year,
retired or beneficiaries of sickness benefits, education
allowances, etc.

* Single Family Home House on single plot of land Dummy 0/1
Farmhouse House for living, related to agricultural property Dummy 0/1
Terraced or double house Terraced or Double house, single family houses

sharing a wall
Dummy 0/1

Storey building Storey building, combination of flats Dummy 0/1
other type of building None of the above types of buildings Dummy 0/1
# of rooms Number of rooms in the home Integer
Total area of home Square meter
Construction Year Integer
District heating Dummy 0/1
Central heating Dummy 0/1
Electric oven Dummy 0/1
Heating pump Dummy 0/1
Other heating Dummy 0/1
Individual Owns Home Home owner, as opposed to renting the home Dummy 0/1
a) Not part of the estimation, only descriptive table.
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Appendix B-2. E-mail invitation offering rebates of either 5%, 20% or 50% to customers
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Appendix B-3. E-mail invitation offering GHG-free production to costumers in group

31, 34, 35 and 36
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Appendix B-4. Supplementary information provided after accepting rebate invitations:

Terms of conditions to customers offered rebate (identical for all rebate levels.)
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Appendix B-5. Supplementary information provided after accepting GHG-free invitations:

Terms of conditions for costumers offered GHG-free production (group 35 and 36). *)

*) In the terms of conditions for the group 35 and 36, it was not implied that the costumers were
part of a team effort, which is in contrast to group 31 and 34 where this was implied.
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Appendix B-6. Supplementary information provided after accepting GHG-free invitations:
Terms of conditions for costumers offered GHG free production (group 31 and 34*)

*) It the terms of conditions for the group 31 and 34 it was implied that the costumers were part of
a team effort , which is in contrast to group 35 and 36 where this was not implied.
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.

Appendix C. Text Message Variations.

[X]: Treatment rebate groups 5%, 20% and 50%.

Treatment hours varied across time slots (10 am to 1 pm; 3pm to 6 pm; 6 pm to 9 pm; 9 pm to 24 pm, and
12 am to 3 pm).

Treatment day variations (Monday, Tuesday, Wednesday Thursday Friday, Saturday and Sunday)

The text messages to the GHG groups (31, 34, 35 and 36) are identical.
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Appendix D. An example of the monthly e-mail feedback

Page 1:

Page 2:
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