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In a typical research setting, when an estimate is found to be statistically indistinguishable from
zero, a researcher may conclude that a studied treatment has no apparent effect or that there is a
wide confidence interval. Similarly, when the estimate is large enough to be deemed statistically
different from zero, a researcher may report that there is a treatment effect, providing their point
estimate as a best guess of its magnitude. However, without considering statistical power, both of
these seemingly reasonable conclusions are incomplete.

Statistical power is the probability that an estimate will be found to be statistically significant
when the true treatment effect is non-zero. A conventional measure of whether an analysis has
sufficient power is whether the study—if repeated many times across different samples—would
detect an effect at least 80% of the time using a two-sided test with a 5% threshold for significance.

Power is an important consideration whenever a treatment induces small changes in an outcome
relative to its underlying variation. If the underlying variation is large, a small treatment effect may
not be large enough to be considered sufficiently rare to be statistically significant. Thus, analy-
ses with low statistical power are unlikely to produce convincing evidence of a treatment effect
even when one exists. Of greater concern, a statistically significant estimate from a low-powered
analysis is likely to overstate the magnitude of the true effect size, and can lead to estimates of the
wrong sign or with magnitudes that are several times too large (Gelman and Carlin, 2014). This
occurs because tail estimates that are much larger than the true effect are more likely to overcome
underlying noise to be considered significant. Thus, without considering statistical power, it is
difficult to interpret both insignificant and significant estimates.1

Despite this importance for inference, estimates of statistical power are rarely reported in pub-
lished economics work. This is in part due to the difficulty in measuring power. For the simplest
statistical models, power can be calculated using formulae and canned statistical software. How-
ever, as the complexity of a statistical model grows, the corresponding power formula must also
grow more complex and a closed formula is not available for many contemporary research de-
signs (e.g., synthetic controls). For example, only recently did Burlig et al. (2020) derive a power
formula for the common experimental setting of difference-in-differences with serial correlation
robust standard errors.

Power analyses are most commonly conducted when designing an intervention where the re-
searcher has control over many parameters that affect power (e.g., size of treatment effect, number
of treated and control subjects, and covariates collected). These settings are conducive to the use
of simple formulae to estimate power before the intervention occurs. However, much of modern
applied work studies observational settings, where the researchers may not know—and usually

1The potential for underpowered studies to produce misleading results is exacerbated by file-drawer bias, in which
insignificant results are less likely to be published, and by non-pre-specified research designs, in which researchers
may inadvertently explore different sample and regression specifications and are more likely to report those producing
statistically significant results (Ioannidis, 2005).
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have no ability to manipulate—the true treatment effect or other parameters important for power.
Observational settings are less likely than experimental settings to have clean research designs,
as concern for identification often requires a complex design for which a power formula may not
exist.

Observational settings present other challenges for power as well. Consider the common re-
search objective of estimating the effect of a geography and time based policy (e.g., a state policy
passed in a certain year) that affects some individuals but not others. In many cases the researcher
will only have access to aggregate population-level rather than the underlying individual-level data.
Population aggregates may lump together treated and untreated individuals, groups, or time peri-
ods. If individuals within each aggregated unit differ in treatment status or there is heterogeneity
in treatment intensity, aggregation will introduce noise that reduces statistical power. It does so by
adding variation that any treatment effect would need to “overcome” to be statistically significant.
This is particularly relevant in observational settings where researchers do not themselves assign
treatment, but are instead reliant on available aggregate data—perhaps at resolutions too coarse to
eliminate such measurement error in treatment.

To explore these issues, we examine an applied setting—the effect of gaining health insur-
ance on mortality. Mortality is a rare event; even large changes in the probability of death—from
changing insurance status or any other policy—may not be detectable at the population level. Most
sources of U.S. mortality data do not contain information on the decedent’s health insurance status
or income. To overcome this data limitation, researchers often exploit policy changes that affect
health insurance status at an aggregate level (e.g., state-by-year Medicaid expansion under the Af-
fordable Care Act). Since treatment is not uniform across all individuals within a state (e.g., some
already have health insurance) there is measurement error in treatment status. Recent research
using detailed individual data and strong research designs has provided robust evidence that health
insurance decreases mortality (Miller et al., Forthcoming; Goldin et al., 2021) In this paper we ask
the question, can this true effect be detected using aggregate rather than individual data, and if
so how large would the effect need to be to yield sufficient statistical power in the aggregate data
setting?

The Affordable Care Act (ACA) substantially expanded health insurance coverage for the low-
income, non-elderly adult population through both expanding Medicaid and creating marketplaces
with private insurance subsidies. While every state created a subsidized marketplace, only some
states chose to expand Medicaid eligibility. This setting provides an opportunity to study the link
between health insurance and mortality, as well as to examine issues of statistical power in natural
experiment studies of low-frequency outcomes. We focus on near-elderly (55-64) mortality, both
because this age group is more likely than younger persons to have health conditions for which
healthcare is important for survival, and because this provides a comparable group in the young-
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elderly (65-74), who did not experience an insurance expansion. We consider two natural research
designs. First a difference-in-differences (DD) comparison that estimates how the gap between
the non-elderly mortality rate in Medicaid expansion versus non-expansion states changed before
and after Medicaid expansion. Second, a triple-difference design that incorporates an additional
comparison between the near-elderly and young-elderly, and can control for state-specific mortality
trends, not captured in the DD design.

For each research design, our empirical strategy proceeds in three stages. First, we examine
the reduced form relationship between Medicaid expansions and insurance coverage, which will
be used to help interpret aggregate treatment effect estimates of mortality. Second, we obtain
point estimates of the relationship between Medicaid expansion and mortality. Finally, we conduct
a simulated power analysis, in which we impose known treatment effects of varying sizes and
measure how power varies with the imposed effect, to demonstrate the smallest imposed effect
size that could be detected with sufficient power using our data and research designs.

We illustrate the statistical challenges of studying our research question using this design in a
way that is intended to be broadly applicable to other questions and designs. In particular, we use a
simulation-based approach to obtain estimates of statistical power and minimum detectable effect
sizes that can be adapted to a variety of settings. Traditional power analyses rely on closed form
mathematical solutions and are only available for the simplest statistical models. Many modern,
complex research designs have no corresponding power formula. In situations where a researcher
does not have access to or cannot derive the closed form solution, they must choose between not
conducting a power analysis, conducting a power analysis for a different, simpler model with
the hope that the results are informative for the actual, more complex model, or performing a
simulation. The steps to perform a simulated power analysis are not identical across every setting
and the most appropriate simulation will be idiosyncratic for each project. A goal of this paper
is to serve as a guide for other applied researchers seeking to conduct their own simulated power
analysis by outlining how we determined and conducted a suitable simulation for our research
design.

We conduct our simulated power analysis by artificially introducing treatment effects of differ-
ent sizes into untreated, but real data, drawn from the pre-Medicaid expansion period. We do this
many times, randomly assigning treatment at the state-level in each iteration. After imposing each
pseudo-treatment effect, we run both the DD and triple difference specifications, recording the co-
efficient and p-value for the artificial treatment effect estimate. For each imposed effect size, we
use this information to compute the percent of times a treatment effect is found to be statistically
different from zero (i.e., power) and the minimum effect size that has 80% power at the 5% signif-
icance level. Conditional on an estimate being significant, we record the rate of severe magnitude
errors (i.e., estimate more than twice the imposed effect size) and sign errors (i.e., estimate with
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the wrong-sign). We also examine how power and the minimum detectable effect size vary as we
perform the same analysis on subgroups of interest that may be more affected by the intervention.
Finally, we demonstrate how particular simulation choices (e.g., the use of real vs. simulated data
for this exercise, the geographic level of clustering, how treatment is assigned, and the length of
the pre-treatment period) affect our power estimates.

There is no uniform method for conducting a power simulation. However, a key goal of this
manuscript is to highlight issues that will appear in many efforts to use simulation to conduct a
power analysis and to guide researchers in constructing analyses suitable for their research set-
tings. Consider just a few decisions that a project may face: 1) the choice between using real, but
untreated data, or entirely artificial data; 2) how to select untreated units to be pseudo-treated—
should they be drawn from the pre-treatment period or from never-treated units? and 3) how to
impose the treatment effect—should all units receive an identical treatment or should it follow
some realistic structure? It general, it is important to understand how such decisions affect power
estimates. When possible we present power estimates that show the effect of varying each of these
choices.

In our research context, we find that Medicaid expansions resulted in average coverage gains of
around 2% for those aged 55-64, with some subpopulations (e.g., Hispanics) seeing larger gains.2

Using county-level specifications, we do not find a statistically significant relationship between in-
surance expansion and decreased mortality. However, with state-level data and a triple difference
specification, we find evidence that healthcare amenable mortality decreased for the newly insured
by around 1.53%.3 Moreover, we find that standard difference-in-differences and triple differences
analyses of Medicaid expansions using county or state mortality data would need to induce reduc-
tions in population mortality of at least 2% to be well powered. For example, power simulations
for the state-level triple difference specification show that when the true, imposed treatment ef-
fect is 1.53%, statistical power at the 5% significance level is around 51.2%. We also show that
when using our two research designs, focusing on sub-populations that were more affected by the
treatment does not improve statistical power. This is because the increased variance in mortality
for these groups offsets any power gains from greater treatment or a larger share of the population
gaining insurance. Finally, we show that if individual-level data reported both mortality and insur-
ance status, much smaller treatment effects (below 3% treatment on the treated) could be reliably
detected with sufficient power.

2This estimate of expanded insurance coverage could be attenuated due to documented under-reporting of Medicaid
enrollment in survey data and the availability of conditional/retroactive coverage (Davern et al., 2009; Marton and
Yelowitz, 2015).

3The county-level and state-level specifications produce different estimates due to different regression weights.
We use inverse propensity score weights so that weighted control observations will be similar to treated observations
on observable covariates. Weighting for balance on state—rather than county-level characteristics—leads to different
point estimates.
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We note several caveats related to our work. First, our analysis is primarily focused on the
subject of power analysis and does not examine whether insurance affects mortality; several recent
studies answer this question (Goldin et al., 2021; Miller et al., Forthcoming). Second, we caution
against the interpretation that a low-powered study contains no important information, instead
we suggest that significant results from a low-powered analysis should be interpreted with more
caution than those from an otherwise identical study with more power and that insignificant results
from a low-powered analysis should not be interpreted as clear evidence of no effect. A collection
of low or moderately-powered studies with different data and research designs may provide better
collective evidence of an effect than a single well-powered analysis. Third, we also caution against
using discrete thresholds to indicate whether or not a study has sufficient power. Estimates of
statistical power are an important piece of information that can be used to evaluate the strength
of an empirical result, but are only one metric. Results from a low-powered, but well-identified
study may be preferred over a well-powered but unidentified result. Fourth, we do not recommend
conducting post-hoc power analyses that use estimated treatment effects from regressions of the
actual treatment; instead we recommend estimating power by perturbing real, but untreated data
by imposing a known treatment effect.

Our paper proceeds as follows. Section 1 provides a background on statistical power, power in
the economics literature, and an introduction to simulated power analyses. Section 2 contains all
information unique to our idiosyncratic application: summarizing prior work examining the link
between health insurance and mortality, the data used in our study, and our estimates linking Med-
icaid expansion to insurance enrollment and mortality. Section 3 outlines details of our simulated
power analysis, results, and sensitivities to idiosyncratic choices. Section 4 concludes.

1 Background on statistical power

Power calculations can be useful in many settings. Discussions of power in economics typically
relate to one of two broad goals. The first is to determine statistical power for literatures or specific
questions of interest through the meta-analysis of already completed studies. The second—and
the one most related to this manuscript—is to assess the statistical power of a specific research
design for a given project. By definition, power for meta-analyses must occur after treatment has
occurred. However, power for a specific study can be assessed before or after treatment occurs.
The ability to conduct an ex ante power analysis can be valuable in planning a study design and
these analyses are often used in the design of randomized controlled trials (RCTs).

In this section, we first document the rarity of power in published economics work. We then
discuss attempts to estimate statistical power for studies within economics and outline differences
between ex ante and ex post estimates of statistical power. Next, we explore how observational

5



data introduces challenges to using closed form formula for estimating power. Finally we discuss
how simulated power analyses can alleviate some of these challenges.

1.1 Statistical power in the economics literature

Presence of power in published work: The simplest attempts to document concern for power
involve simple keyword searches of published work. Examining a sample of empirical papers from
the American Economic Review in the early 1980s, McCloskey (1985) finds that none of the papers
mention the word power; examining all empirical papers published in top economic journals in the
1980s, McCloskey and Ziliak (1996) find that only 4% mention power and 1.1% examine the
power function.4 In a similar vein, we searched for the phrase “power analysis” in published and
working economics papers and in pre-registrations. We found very few instances of the phrase,
indicating that power analyses are not typically reported in published economics research.5 This
does not mean that economists do not conduct power analyses, as many grant applications require
them, but merely that they are not reported in searchable text in the listed databases.

Concern for power in collections of economic studies: A lack of reported power has not pre-
vented a number of efforts to estimate statistical power in economics. A growing literature across a
number of fields, including economics, documents the frequent appearance of underpowered stud-
ies, as well as the potential causes and implications (Button et al., 2013; Maxwell, 2004; Ioannidis,
2005; Ioannidis et al., 2017).

Using data collected from top economic publications in the 1980s and 1990s, De Long and
Lang (1992) argue that many null hypotheses are not rejected due to insufficient power. More re-
cently, Ioannidis et al. (2017) use data extracted from meta-analyses to examine newer economics
publications and estimate average power in the profession, both on the whole and in certain sub-
fields. The authors report that the median statistical power in economics research is 18%, far from
the 80% often used as a threshold for sufficient power. The authors determine power for each set
of studies by comparing a weighted effect size from meta-analysis to a weighted standard error,
with adequate power being when the effect is at least 2.8 times the magnitude of the standard error.
While this is an appealing and intuitive approach to determining the power of a set of studies, it
relies on the assumption that the weighted average effect size is close to the true effect size. This
approach, as the authors point out, is not sufficient to determine if a single study is well-powered;

4Ziliak and McCloskey (2004) analyze the same journals for the 1990s and find that the percent of papers mention-
ing power rose to 8%.

5For papers released before January 2019, only 45 published and peer-reviewed papers and 39 working papers (in
EconLit and NBER Working papers respectively) contain the phrase. Similarly, in the AEA RCT registry, 58 of the
4274 trials registered contained the search phrase “power analysis.”
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it can only be applied to sets of similar studies.6

There have also been thoughtful explorations of power within more narrowly defined questions.
One example is Banerjee et al. (2015), who demonstrate that the literature evaluating the impact
of microcredit suffers from low statistical power due to a limited take up rate, which is in part
due to study design. For instance, Zhang and Ortmann (2013) identify median power across all
papers using the classic experimental economics dictator game to be 25%. In addition, Gallet and
Doucouliagos (2017) show that 59% of studies examining the impact of healthcare spending on
life expectancy have adequate power. Both of these studies use methods similar to Ioannidis et al.
(2017) to ascertain power for a set of similar studies.

1.2 Ex ante, Ex post, and Post hoc power

Ex ante power calculations: Most power analyses are done ex ante, before conducting a study.
This has become standard practice for many grant applications. For example, the National Insti-
tutes of Health (NIH) requires reviewers to evaluate statistical power and advises potential grant
applicants to aim for studies with at least 80% power (NIH, 2016; Gerin et al., 2017).

For simple ex ante power calculations, it is common to used canned statistical software or
closed form mathematical solutions that involve assumptions on a variety of parameters. In a sim-
ple comparison of means from two groups, a treatment effect needs to be 2.8 standard errors from
zero in order to be detected with 80% power at the 5% significance level. For two samples of equal
size and equal variance the minimum detectable effect size is 5.6× (s.d.)√

N
(Gelman and Hill, 2006).

Thus, after making assumptions about the mean and distribution of an estimated treatment effect,
a researcher designing an RCT could use a standard formula to estimate the minimum number of
subjects needed to detect the effect at a 5% significance level with 80% power. This approach is
helpful in ruling out poor study designs that are underpowered given realistic assumptions. More-
over, it allows the researcher to maximize power subject to realistic constraints (e.g., a budget)
by manipulating the research design before treatment occurs. These manipulations could include
altering the treatment effect size, reducing the number of participants to the minimum number
needed for adequate power, or altering the length of treatment or control.

As the complexity of a statistical model grows, closed form power calculations also grow more
complex and may not be derived for specific research designs (e.g., a synthetic control analysis).
Consider Bertrand et al. (2004), who show that failure to account for serial correlation in a fixed-

6Another appealing feature of this approach is that conditional on distributional assumptions, 2.8 times the
weighted standard error should be the minimum effect size that is detectable 80% of the time at the 5% significance
level in the set of analyzed papers. This approach will not be sufficient for determining the minimum detectable effect
size for any particular specification or for any set of papers that deviate from the assumptions of normality on coef-
ficient estimates. For example, for non-parametric or structural estimates, this short cut for calculating the minimum
detectable effect size will not work.
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effects panel data setting can dramatically affect power and lead to an increased probability of a
Type-I error. The authors recommend clustering standard errors as a solution, but do not provide
a closed form solution for power in such a setting. Only recently did Burlig et al. (2020) derive a
power formula for this common experimental setting of difference-in-differences with serial cor-
relation robust standard errors.7 Prior to this, a researcher wishing to use this experimental design
would have been unable to use a power formula that correctly accounted for fully arbitraty serial
correlation. In such situations, when a closed form power calculation does not exist or is not eas-
ily derivable, simulated power analyses are a viable alternative (Arnold et al., 2011; Burlig et al.,
2020).

Ex post power calculations: In addition to helping design studies before they are conducted,
power analyses can also be calculated ex post—or after the treatment has occurred. Ex post power
analyses are rarer in social science and in economics despite the fact that much of social science
research is conducted after a treatment has already occurred and in situations where the researcher
may have little opportunity to manipulate features such as sample size or treatment effect. The
majority of studies that conduct power analyses after the fact estimate power for collections of
papers. Importantly these studies all rely on comparing the standard errors of each study estimate
to a proxy for the true value, not comparing the estimated treatment effect to the standard error–
which would be equivalent to the t-statistic or p-value of the study. In principle the same methods
used to determine ex ante power can also be used to estimate power ex post, however ex post

power analyses are made more complex because the researcher does not necessarily know (or have
control over) the true treatment effect.

Lewis and Rao (2015) provide an instructive example evaluating the power of an experiment ex

post. They study the return on investment of twenty-five large scale online advertising campaigns
using detailed micro data. They show that despite having millions of observations, most of the
campaigns are significantly underpowered to detect plausible effect sizes.

They assume that sales variance and the number of observations are equal across treated and
untreated groups. Using these assumptions they derive an R-squared and t-statistic formula as a
function of the ratio of the effect size to the standard deviation (Cohen’s D) and the sample size.
The authors consider the “ideal scenario” of adding observations to their dataset. They then ask the
simple question, how many of these additional observations need to be added to reach a t-statistic
of 3? The critical value of 3 is chosen to have 90% power with a one sided p-value at the 5%

7Burlig et al. (2020) provide an excellent overview of ex ante and ex post power calculations. They derive an
analytic formula for difference-in-difference settings that allows for arbitrary serial correlation. They demonstrate that
failure to account for serial correlation can lead to a miscalculation of power and that this miscalculation is ambiguous
in sign. Sometimes serial correlation can improve power, while often in longer panels it dampens power relative to the
scenario of no serial correlation.
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significance level. Using their assumptions, they show that essentially all of the experiments in
question are underpowered and would require much larger sample sizes to detect plausible effect
sizes.

Other existing experimental work uses a similar approach and reaches similar conclusions;
despite sample sizes in the millions, many large scale advertising campaigns have low statistical
power (Lewis and Reiley, 2014; Johnson et al., 2017). Our work differs from these studies since
we do not make assumptions regarding the underlying variance and we opt to perturb existing
data through simulation in a manner that will work for more complex, non-experimental research
designs.

Concerns related to post hoc power analyses: We note that ex ante and ex post are relative
to the time of treatment, not the time of initial empirical analysis. Conducting a power analysis
post hoc or after the analysis has been conducted is a different matter.8 Some have argued that
post hoc power analysis should not be pursued (Hoenig and Heisey, 2001; Gouveia and Fletcher,
2000; Senn, 2002), citing concerns that power analyses would be used selectively, with researchers
omitting the power analysis or arguing that a power analysis is unecessary after finding a significant
effect, and only conducting a power analysis as justification for an insignificant finding. Post hoc

analyses are problematic because conditional on finding a statistically significant effect, tests with
low power have a higher likelihood of the estimated treatment effect being overstated in magnitude
or having an incorrect sign relative to the true effect (Gelman and Carlin, 2014; Button et al.,
2013). Thus, finding a treatment effect estimate at least 2.8 standard errors away from zero does not
ensure sufficient power because ex ante power calculations require that the true, not the estimated,
treatment effect is 2.8 standard errors away from zero.

Hoenig and Heisey (2001) similarly demonstrate that in a post hoc analysis there is a direct
relationship between the estimated p-value of a test and the post hoc power estimate. Since p-
values are estimates that are in part based upon the treatment effect estimate, insignificant findings
will tend to appear as if they have lower power regardless of the true underlying power. Thus an
insignificant finding cannot be used as evidence of low power when the true treatment effect is
unknown.

We agree with these concerns; in both of these cases of post hoc analysis, a fundamental error
occurs because the estimated treatment effect is being used to estimate power instead of the true
treatment effect. This is not an issue when conducting ex ante power calculations since the true
treatment effect is either assumed or known (e.g., an RCT where the researcher controls the treat-

8We recognize that the literal difference between the terms ex post and post hoc is minimal at best. We use the
terms differently for two reasons. First, for clarity. Ex refers to pre/post treatment while pre/post hoc refers to pre/post
analysis. Second, the use of the phrase post hoc has previously been used in the literature to discuss power analyses
that use an estimated effect in the analysis (Gilbert and Prion, 2016).
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ment). Ex post power analyses should be careful to avoid this conflation. That is, the estimated
effect from a single analysis is not enough to determine if a study is well powered. In our empir-
ical analysis, we minimize any possibility that our treatment effect estimate influences our power
estimate by creating measures of power that do not use data from treated units following treatment
and by imposing treatment effects of known size.

Power in observational settings Observational researchers often have no control over the sam-
ple size, treatment effect, or other features that may be malleable when conducting a randomized
controlled trial or other intervention. Thus a researcher using a design for which there is no asso-
ciated power formula is left with a dilemma. How to—without basing the power analysis on the
estimated effect size—check the power of her study design to ensure 1) that significant effects are
not of the wrong magnitude/sign and 2) that insignificant results are not a function of low power.

One solution is to evaluate power at a variety of effect sizes that the researcher believes are
plausibly true (Arnold et al., 2011; Gelman and Carlin, 2014).9 This range can be taken from
the literature through a meta-analysis or asserted logically, but it should not be based upon the
estimated value of the coefficient in the original regression. For our setting, a closed form power
calculation does not exist, leaving simulation as the only viable option. Our approach evaluates
power using observed, but pre-treatment data, for a variety of known and imposed effect sizes,
which serve as a proxy for the true treatment effect. Before explaining this approach in more
detail, we first outline two broad methods of estimating power through simulation.

1.3 Measuring power using simulation:

Simulation can involve either modifications of actual data, to which a treatment effect is added,
or entirely artificial data (from an assumed data generating process). A study of bird nest visita-
tion by Hannon et al. (1993), the earliest simulated power analysis we have found, is similar in
spirit to our approach in that the authors apply a simulated treatment effect to actual data. The
authors modify their outcome variable (nest visitation) using draws from the binomial distribution,
gradually increasing (or decreasing) the probability of visitation. For each modified sample, they
draw 50 bootstrapped samples, re-estimate their statistical model, and report power for each im-
posed effect size as the percentage of times the imposed effect is statistically significant among the
bootstrapped samples.

In contrast, Hsiang et al. (2009) provide an example of estimating power using synthetic data.

9Burlig et al. (2020) also suggest estimating power using simulation for complex research designs/data generating
processes. They provide a suggested plan and Stata package on how to approach this simulation in their Appendix
Section D.2. Their suggested procedure has many appealing features, but does not apply exactly to as broad a range
of research designs or use perturbed real, but untreated data as we do in our approach.
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They generate the dependent variable (likelihood of conflict) using a normal distribution with a
fixed mean and standard deviation; they impose a treatment effect by varying the mean to indicate
a “treatment effect.” For each imposed effect size, they analyze the synthetic data using their
preferred specification and report power as the percent of times they find a statistically significant
result at the 95% confidence level.10

An advantage of entirely synthetic data in a panel setting is that there will be no pre-treatment
trends or treatment effect unless they are imposed. However, fully artificial data involves large
sacrifices, similar to those noted for closed form power analyses by Burlig et al. (2020); one must
implicitly impose structure on the variance-covariance matrix, for which the true structure may
not be known. In panel data settings values could be correlated across time, pre-treatment trends
could be non-parallel in complex ways, and unobserved covariates could predict both treatment
and outcome. All of these complexities can affect statistical power. As Stigler (1977) points out,
real data are rarely drawn from a “perfect distribution.”

Our approach, applying a simulated treatment effect by modifying existing data during the pre-
treatment period, does not guarantee a distribution centered around the null when we impose a zero
treatment effect (the data can exhibit an “accidental” effect). But it preserves both the obvious and
more subtle relationships present in the actual data that can affect power, and lets us take accidental
effects into account when estimating power.

Another example of a simulated power analysis is Bertrand et al. (2004), who demonstrate that
DD estimators in panel settings often suffer from autocorrelation. Similar to our setup, they esti-
mate power with a single imposed effect size of 2%, finding that due to serial-correlation the null
is incorrectly rejected two-thirds of the time when using simple OLS analyses.11 These specifica-
tions in Bertrand et al. (2004) compare the relative gains in power from using different econometric
specifications, with a consistent treatment effect. Our work differs from this since it is an inversion
of the issue; we examine how power changes while changing the treatment effect, holding constant
the econometric model. That is, we wish to know the smallest treatment effect size for which a
certain power threshold is achieved given a certain research design.

Outline of our simulation approach Our contribution focuses on the value of conducting and
reporting a power analysis in an observational study with a complex research design. We conduct
a power analysis by artificially introducing treatment effects of different sizes into the data from
the pre-treatment period, and then assessing how often our preferred analyses can detect these
effects at the 90%, 95%, 99%, and 99.9% confidence levels (using two-tailed tests). Essentially we

10As another example of simulated power using entirely artificial data, Croke et al. (2016) examine a meta-analysis
done by Taylor-Robinson et al. (2015) on the impact of administration of deworming drugs on childhood health. Croke
et al. (2016) demonstrate that the meta-analysis is under-powered by using a simulation similar to Hsiang et al. (2009).

11Bertrand et al. (2004) examine the effect of placebo laws using state-level data on female wages.
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perform a simulation in which we attempt to identify an imposed treatment effect while varying
the treated units and the treatment effect size.

By modifying actual data, we preserve many of the complex relationships between and within
variables that would be difficult to model credibly using artificial data. In our preferred analyses,
we use pre-treatment data to avoid any possible influence of treatment in our setting. We use
the results of our simulation to inform us about the research design and the power to detect true
effects. This simulation based approach has the advantage that it can be applied to a wide-variety
of research settings, including both structural and non-parametric work. One simply needs to run
the same procedure on many versions of modified data, with known and varying treatment effects,
storing the results each time. Following this Monte Carlo procedure, the stored results from each
run are collectively analyzed to determine power at each significance level across varying sizes of
the imposed treatment effect.

We also outline how we approach ad hoc choices that will likely be faced in most power sim-
ulations so that our study can serve as a guide to other applied researchers conducting simulated
power analyses. While no uniform solution exists, we recommend outlining why certain choices
were made and—when possible—demonstrating that other reasonable decisions do not materially
affect power estimates. For example, we use real rather than simulated data in our study, but in an-
other context, obtaining additional data may be impossible and thus generating artificial data may
be the only viable path forward. We explore how changes in which, and how much untreated data
are used (both across space and time), and whether the use of artificial data affects our power esti-
mates. As another example, we strive to impose pseudo-treatments that are as similar as possible
to how an actual treatment effect would be implemented. In our context this means that we do not
simply shift the death rate of every pseudo-treated unit by an identical amount, but we randomly
remove deaths probabilistically.

2 Applied example: Health insurance and mortality

Our illustrative example of the importance of statistical power, the effect of health insurance on
mortality, fits into a large literature that examines the connection between health insurance and
health status. This literature spans experimental and quasi-experimental settings, and examines
morbidity and mortality, physical and mental health, elderly and non-elderly adults, pregnant
women, children, infants, short- and long-run effects, and specific diseases and demographic sub-
populations. Recent work using individual level data has provided strong evidence that health
insurance lowers mortality (Miller et al., Forthcoming; Goldin et al., 2021). Our question is sim-
ply whether this effect can be detected using aggregate rather than individual data. Specifically
we examine whether state-level Medicaid expansion is associated with lower healthcare amenable
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mortality for the young elderly (i.e., those aged 55 to 64) using data aggregated at the county-year
and state-year levels. In the next section we address the question of the smallest effect size that
could be detected with sufficient statistical power.

2.1 Prior work on effect of health insurance on health and mortality

Historically, the first rigorous evidence on how health insurance affects health and mortality comes
from the RAND Health Insurance Experiment (HIE) (Brook et al., 1983; Keeler et al., 1985; New-
house, 1993), which provided experimental exposure to varying degrees of insurance generosity;
none of the study subjects was fully uninsured. Brook et al. (1983) found no significant overall ef-
fect on mortality for the full sample—point estimate -0.02; 95% CI [-0.05, +0.02] for persons aged
14 to 61, followed for 3-5 years—but found 10% lower mortality for high-risk individuals who
received generous insurance. The RAND HIE also found some improvements in blood pressure
for low-income populations receiving generous insurance, but otherwise found limited evidence
that generous insurance led to improved health.

Finkelstein and McKnight (2008) study Medicare’s introduction in 1965, which remains the
largest health insurance policy change in US history. They find a large increase in the insurance
rate of around 75%, because private insurance for the elderly was uncommon before Medicare
(Finkelstein, 2007). They find a 40% drop in out-of-pocket medical expenditures, but no dis-
cernible mortality effects over a 10-year period (point estimate after 5 years = -0.15%; 95% CI
[-3.9%, +3.6%]). They observe that these results may be driven by the fact that prior to Medicare,
those with life-threatening but treatable conditions likely sought care even if they were uninsured.

Card et al. (2004) exploit the age-65 discontinuity in Medicare coverage using more recent
data from 1989-1998; they find no significant effect of turning 65 on population mortality (point
estimate +0.5%, 95% CI [-3.3%, +4.3%]). They find an increase in the rate of insurance coverage
of approximately 8% for the full sample and 14% for a low-education subsample. In a related
study that speaks to possible mechanisms, Card et al. (2009) find a drop in mortality at age 65
among those admitted to hospital through the emergency department—for severe, non-deferrable
reasons for which most individuals would seek emergency department care whether insured or not.
They find that having insurance through Medicare increases treatment intensity by around 3% and
results in a 1% absolute (20% relative) reduction in 7-day mortality and a 3% relative reduction in
1-year mortality.

Doyle (2005) studies a subpopulation with strong need for emergency medical care—victims
of auto accidents who are alive when they reach the hospital—and finds higher adult mortality rates
for uninsured persons in Wisconsin during 1992-1997. He finds that being uninsured increases in-
hospital mortality by 39%, relative to other auto accident victims—1.5 more deaths per 100 (95%
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CI [0.3, 2.7]), relative to a mean of 3.8 deaths per 100. He attributes this finding to differences in
treatment intensity, rather than pre-accident differences in health.

Levy and Meltzer (2004, 2008) review the literature and conclude that, consistent with Finkel-
stein and McKnight (2008) and Card et al. (2004), there is at most modest evidence of some health
benefits from general adult health insurance expansions. They note potential exceptions for specific
vulnerable populations, but conclude that “for most of the population at risk of being uninsured
(adults of ages 19 to 50), we have limited reliable evidence on how health insurance affects health”
(Levy and Meltzer, 2008, p.404).

In addition to the RAND Experiment, three other randomized experiments deserve attention.
Weathers and Stegman (2012) find no significant mortality effect for adults receiving Social Se-
curity Disability Insurance who receive Medicare immediately rather than after the usual 2-year
waiting period (point estimate for odds ratio 1.28, 95% CI [0.71,1.85]. They do find that those
receiving insurance have better self-reported health. The second is the Oregon Experiment, in-
volving Medicaid expansion for adults, administered through a lottery among those who applied.
Finkelstein et al. (2012) and Baicker et al. (2013) find limited changes in mortality or measures
of physical health after 2 years. They find increased healthcare use, increased diabetes detection
and care (but not lower blood sugar levels), reduced financial strain, and less depression. Their
estimated increase in health insurance coverage is large, indicating around a 25% relative rise in
coverage for those in the treatment group, but shrinks rapidly and is only half as large after 16
months. Their point estimate for mortality reduction is large, at -13%, but with a wide 95% CI
[-26%, +13%]. These first two experiments find statistically insignificant effects for relatively vul-
nerable populations (the disabled for Weathers and Stegman (2012), and poor adults who signed
up for the Medicaid lottery and enrolled if eligible for the Oregon Experiment).

In contrast, the third experiment in the literature finds large and significant effects of insurance
on mortality. Goldin et al. (2021) randomly notified 3.9 million households—which owed an
Affordable Care Act induced penalty for failure to have health insurance—of their tax burden
and instructions on how to sign up for health insurance. This nudge increased health insurance
enrollment by 1.9% relative to a control group. This increase in health insurance reduced mortality
of 45-64 year olds by 0.06 percentage points (95% CI[-0.112 to -0.014]) relative to a mean of 1
percent.

In a similar vein as Goldin et al. (2021), several recent—but, non-experimental—papers on
insurance expansions for nonelderly adults find large effects of health insurance on mortality rates.
Sommers et al. (2012) considers Medicaid expansion for non-elderly adults in three states (Ari-
zona, Maine, and New York) that expanded Medicaid in the early 2000s compared to neighboring
non-expansion states; Sommers et al. (2014) and Powell (2018) consider the Massachusetts insur-
ance expansion in 2006. McClellan (2017) considers the ACA mandate that requires employers
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to cover young adults under their parents’ employment-based insurance policies until age 26, and
Dunn and Shapiro (2019) consider the effect of Medicare Part D prescription drug coverage for
elderly adults. Using a weighted match and trimmed sample, Borgschulte and Vogler (2020) find
that Medicaid expansions are associated with a 3.6 percent decrease in mortality for those aged 20
to 64.

Although not an RCT, recent work by Miller et al. (Forthcoming) uses large samples of individual-
level data to study the impact of ACA Medicaid expansions on insurance rates. They find a 9.4 per-
cent reduction in mean elderly mortality associated with Medicaid expansion. Along with Goldin
et al. (2021), this work provides the strongest evidence that health insurance can affect mortality,
with both studies leveraging large-scale individual level data, known treatment, and strong research
designs to demonstrate a clear link between health insurance and mortality.

2.2 Conceptual Concerns

Several concepts inform our power analysis and the interpretation of our mortality results. One is
the existence of prior policies that provide vulnerable populations with health insurance, or with
healthcare regardless of health insurance status. These include existing Medicare or Medicaid av-
enues to health insurance and healthcare for the disabled persons in the 50+ age range we study;
emergency care through the Emergency Medical Treatment and Active Labor Act (EMTALA);
coverage for persons with specific high-cost health conditions (e.g., AIDS through the Ryan White
Act and end-stage renal disease under Medicare); coverage for those who suffer workplace or auto-
mobile injuries; and healthcare for those with access to public hospitals, publicly supported clinics,
or the charity care provided by nonprofit hospitals). Thus, health insurance expansions will affect
principally populations and medical conditions outside these groups. This issue is exacerbated in
our setting since we do not have detailed data on subgroups or individuals that experienced mean-
ingful increases in health care access due to expanded insurance. Our analysis examines treatment
effects at the county age-group level, despite treatment being at the individual level.

A second concept that informs our analysis is selection into coverage for a new program, such
as the ACA Medicaid expansion, including selection effects for both take-up of new coverage and
crowd-out of other coverage. The less policymakers are practically or politically able to target
groups likely to be uninsured and promote a high take-up rate, the less likely it is that studies
like ours will have sufficient statistical power to find detectable effects on health or mortality. For
example, the ACA changes eligibility but does not directly provide insurance. As in any “intent-
to-treat” (encouragement) design, we can estimate a treatment effect only for the “compliers” with
the encouragement. Multiple selection effects are possible, including that those who sign up: (i)
may be more health-conscious in other ways; (ii) may have greater healthcare needs (e.g., Ken-
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ney et al., 2012); (iii) may be more likely to use additional healthcare once insured; (iv) may be
more compliant with medical advice than the “never-takers” who do not sign up; and (v) some
Medicaid-eligible persons may wait to enroll until care is needed for a catastrophic event creating
adverse selection (Marton and Yelowitz, 2015). Thus, estimates for compliers may differ from
those for never takers or always takers (the already insured). For example, Kowalski (2020) rec-
onciles differences in the effects of the Oregon experiment and the Massachusetts health insurance
expansion on emergency department visits on the basis of better initial health for the Massachusetts
compliers.

Third, there could be substantial treatment heterogeneity even among the compliers, with health
insurance improving health for some, but being neutral for others (“flat of the marginal benefit
curve” medicine) or even detrimental due to overtreatment (e.g., opioid addiction as an unintended
possible effect of pain treatment). Yet the available data limits our ability to study specific sub-
populations. A fourth concern is heterogeneous health insurance quality. In many states, Medicaid
insurance is considered to be of lower quality than commercial insurance (Polsky et al., 2015).
Fifth, health insurance is only one factor potentially affecting trends in health and mortality. Other
factors can vary by age and ethnic group (e.g., Case and Deaton (2015) find rising mortality in
middle-age for less-educated whites, but not other groups), and by state. Differing trends can
complicate efforts to define a suitable control group.

These concerns collectively highlight the complex relationship between health insurance and
health outcomes, and anticipate the limitations of the available data and policy shocks.

2.3 ACA Insurance Expansions and Identifying Variation

In 2014, the two main insurance expansions under the ACA took place, with Medicaid expansions
occurring in 27 states (including the District of Columbia) on or soon after January 1, 2014; ex-
pansions took place in three more states in late 2014 or soon after January 1, 2015, and then in
two more in late 2015 or the beginning of 2016. Standard expansion included coverage for all
non-elderly adults with family income less than 138% of the federal poverty level (FPL). Of these
32 expansion states, 10 had conducted significant expansions prior to 2014 and are not included
in our main specifications (following other studies on Medicaid expansion, e.g.,Wherry and Miller
(2016)).12 The treated states for our principal analyses are the remaining 22 “Full Expansion
States;” the control group consists of the 19 “Non-Expansion States.” Table A1 lists the states in
each expansion group, as well as the change in percent uninsured in each state from 2013 to 2016
for persons between the ages of 18 and 64.

12Louisiana expanded Medicaid in mid-2016. We consider the first expansion year for Louisiana to be in 2017,
which occurs after the last year of data used in our analyses.
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The second major way in which the ACA expanded coverage was by creating marketplaces
with private insurance subsidies for those with low income. Although our study design exploits
variation in Medicaid expansion, Table A1 shows that the uninsured population fell in both Ex-
pansion and Non-Expansion States due to these other aspects of the ACA. Subsidized marketplace
insurance was available for persons with incomes from 100-400% of FPL in non-expansion States,
and thus to some extent substituted for Medicaid expansion; this reduces the relative effect of
Medicaid expansion on insurance rates between expansion and non-expansion states, and thus the
first-stage for our study.

2.4 Data

We measure mortality using the confidential version of the Compressed Mortality File (CMF),
which contains individual death records for approximately 2.5 million deaths a year. This dataset
is compiled by the National Center for Health Statistics. The data in the mortality files include (1)
race, ethnicity, and gender; (2) year of death; (3) age at death (which we collapse into 10 year-age
groups, e.g., 55-64); and 4) primary cause of death. In our preferred analysis we use ten years
of pre-treatment data (from 2004 to 2013) and three years of post-treatment data (from 2014 to
2016). We conduct county and state-level analyses, using population (from the National Cancer
Institute’s SEER) and inverse propensity score weights, which more heavily weight untreated units
that closely match treated units and that are representative of the respective populations.

To examine the impact of ACA expansion on health insurance estimates—our first-stage—we
use information on uninsurance rates from both the Census Bureau’s Small Area Health Insurance
Estimates (SAHIE) and from the American Community Survey (ACS). These data help place our
mortality estimates into better context. The periods used in SAHIE and ACS were 2006-2016 and
2008-2016, respectively. We analyze ACS data at the state level, which allows us to examine results
by gender, race, ethnicity, education and income. SAHIE estimates, on the other hand, are available
both at the county and state level, but with only gender and income subgroups. We estimate the
first stage using two data sources since each source offers its own idiosyncratic advantages. The
ACS data have the advantages of allowing for a direct comparison with our population of interest
by age (i.e., those aged 55-64 versus those aged 65-74 as a control group), which enables us to
perform the same DD and triple difference analyses for the first stage as we conduct using the
mortality data. The SAHIE data have the advantage of providing county level insurance estimates
as well as a longer time horizon than the ACS—with usable data beginning in 2006 rather than
2008.
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2.5 Empirical Approach

To investigate the effect of Medicaid expansion on mortality, we use several DD specifications: (i) a
“simple DD” specification, which assumes a one-time change in mortality rates; (ii) an event-study
or “leads-and-lags” model, which allows for a separate treatment effect by years since expansion,
and lets us assess whether pre-treatment trends are parallel; and (iii) a “triple difference” model,
in which the third difference is persons aged 55-64 versus persons in the same county or state
aged 65-74. Treatment is recorded in event time, relative to the year in which each expansion
state expanded Medicaid. Our preferred specifications use county-year level data, county and year
fixed effects (FE), inverse propensity score based population weights, standard errors clustered
at the state level, and data from 2004 through 2016, for the sample of 22 full-expansion and 19
non-expansion states.

The simple county-level DD model is:

Yit = α +βDst +δX jt + τt +ϑ j + ε jt (1)

Here, j indexes county; s indexes state; t indexes time in years, the dependent variable; Yjt

is ln((deaths/100,000 persons)+1); we add 1 to the mortality rate to avoid dropping county-years
with zero deaths. We limit the sample to Full- and Non-Expansion States to form a stronger com-
parison. The predictor variable of interest is D = 1 for Full Expansion States in post-expansion
years (2014-2016 for the 17 states that fully expanded Medicaid in 2014; 2015 and 2016 for the
3 states that expanded in 2015; and 2016 for the 2 states that expanded in 2016). The covari-
ate vector X jt includes the following county-level variables: managed care penetration (Medicare
Advantage beneficiaries as % of all Medicare beneficiaries); % disabled (% of Medicare benefi-
ciaries receiving SSDI benefits); % in poverty; unemployment rate; median household income;
mean per-capita income; % with diabetes; % obese; % physically inactive; % smokers; and active
practicing non-federal physicians/1,000 persons. We convert all amounts to 2010 dollars. In some
specifications, we use a narrower set of covariates or no covariates, partly to assess whether our
results are sensitive to including observable, time-varying, county-level factors, and also because
expansion could affect some covariates. We include county and year fixed-effects in all models to
control for potential unobserved covariates that vary across counties but are fixed over time, and
for determinants of mortality that are constant across counties but vary over time. Standard errors
are clustered at the state level.

To address potential differences in control and treatment states, we implement an inverse
propensity score weighting approach in which we compute average treatment on the treated (ATT)
weights that also reflect differential population. To generate the ATT weights, we first average
covariates in each unit over the pre-treatment period (2004 to 2013 in our preferred analysis ).13

13We use the following list of covariates: % uninsured under 138% federal poverty line, % uninsured 50-64, total
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We then run a logistic regression, predicting whether a county has full-expansion or non-expansion
status. We generate the fitted propensities p for each untreated unit and calculate ATT weights as
(p/(1− p)); ATT weights for treated units are set to one. The inverse propensity score weights are
windsorized at the 95th percentile to avoid assigning extremely high weights to a small number of
control counties.14 We interact these inverse propensity score weights by population so that our
results better reflect the treatment effect for the average person rather than the average county. This
procedure more heavily weights non-expansion counties that look like expansion counties.

We principally study mortality due to healthcare-amenable causes (Nolte and McKee, 2003),
but we also provide some estimates for non-amenable and total mortality. The concept of amenable
mortality seeks to capture deaths from conditions that are potentially preventable with timely
care; including mortality related to HIV, cardiac, diabetes, and respiratory causes. Studying non-
amenable mortality has value as a placebo check—any effect of health insurance expansion should
be weaker, or absent entirely, for non-amenable mortality.

To study the time pattern of any apparent treatment effect, and to assess whether pre-treatment
trends differ between Full- and Non-Expansion States, we use a leads-and-lags model in event
time, with the first expansion year set to zero, following Equation (2):

Yjt = α +
2

∑
k=−10

(βkDk
jt)+δX jt + τt +ϑ j + ε jt (2)

Here, k indexes “event time” in years relative to Medicaid expansion. D jk = 0 for Non-
Expansion States for all j and k. For Full-Expansion States, D jk = 1 for the kth year relative to
the adoption year, and 0 otherwise. Thus, β1 provides the estimated population average treatment
effect for the first expansion year, while β−1 is the estimated effect one year before adoption, and
so on. All coefficient estimates are reported relative to the difference between expansion and non-
expansion counties in the year before adoption (k = −1). The true identifying assumption is that
there would be parallel trends in the post-treatment period in the absence of treatment. While this
assumption is not directly testable, the evidence of parallel trends in the pre-treatment period is
suggestive that this identifying assumption would hold so long as we use the appropriate weights
in our analysis.

In addition, we use a further source of within-state variation: mortality trends among those who
are 65 or older (and thus always insured) can potentially control for the otherwise unobserved state-
specific factors that generate non-parallel trends. We thus also use a triple-difference specification,

% uninsured, per capital income, median household income, % in poverty, % Medicare Advantage penetration, %
Medicare beneficiaries receiving disability, % disabled, % obese, % daily-smokers, % occasional smokers, % former
smoker, active MDs per 1000, population that is male, white non-Hispanic, Black non-Hispanic, aged 55-64, and aged
65-74.

14Our main results are not sensitive to any reasonable amount of windsorization. We display sensitivity across a
range of choices in Figure A2.
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where the third difference is mortality among persons between the ages of 65 and 74, who are
eligible for Medicare and should not be affected by Medicaid expansion; we limit the sample to
persons between the ages of 55 and 74, thus comparing mortality trends for the 55-64 and 65-74
age groups. This specification implicitly controls for all county-year unobservables that equally
affect death rates for both age groups. The triple-difference specification, analogous to the simple
DD, is:

Y jt = α +βDst×Under65 jt + γDst +θUnder65 jt +δX jt + τt +ϑ j + ε jt (3)

We also estimate separate models for subsamples stratified on covariates that may predict unin-
surance rates or response to health insurance, for which we also have mortality data: cause of
death, gender, and race/ethnicity.

2.6 Results

We present full-sample results in this section for adults aged 55-64. We first present univariate
results, and then results from DD and triple difference models. In the Appendix, we assess whether
we could obtain a better match between treated and control states, and thus tighter confidence
bounds. We conclude that we cannot rely on these methods for inference due to poor pre-treatment
fit.

2.6.1 Univariate Graphical Evidence

In Figure A3, we display trends in the amenable mortality rate for the four state groups, for the
full time period with available data (2004-2016) in event time. For those states that did not expand
Medicaid, time is measured relative to 2014 (i.e., at t = 0 the data come from 2014). Several
features of Figure A3 are important. First, there are substantial level differences in mortality rates
across the state groups, although these are smaller between our principal comparison groups—the
Full-Expansion vs. Non-Expansion States. Second, the trends of mortality across full and non-
expansion states are relatively stable across time, even following ACA adoption.

2.6.2 Event Studies

To investigate these differences more formally, we next turn to an event study analysis, using Equa-
tion 2 for our DD specifications and an analogous specification for the triple difference analysis.
Figure 1 provides, in its first-row, event study estimates and 95% confidence intervals using data
from 2004 to 2016 at the state (panel A) and county (panel B) levels, for amenable mortality among
persons aged 55-64. For the county-level specifications—consistent with the trends observed in the
raw data—there is no evidence of a change in relative mortality in the first three expansion years.
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The same conclusion can be reached for the 65-74 age group in the second-row of Figure 1. The
DD event-studies at the state level show declines in mortality for the young elderly and elderly that
begin in the year before expansion. For the state-level data and the triple difference specification,
we see both flat pre-trends and a decline in mortality in the first two years after the ACA expansion.
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Figure 1: Event study estimates showing the effect of Medicaid expansion on amenable mortality

A. State-level event studies
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B. County-level event studies
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Note: Number along the x-axis indicates years since most Medicaid expansion. For non-
expansion states, t = 0 corresponds to 2014. Years included in this figure are 2004 to
2016. Since each dependent variable is a natural log transform of the healthcare amend-
able death rate per 100,000, we transform each regression coefficient by 100(exp(coef.)-
1) and the standard errors using the delta method. Thus each reported coefficient can
be interpreted as the percent effect of Medicaid expansion t years ago on the healthcare
amenable mortality rate for a given age group (i.e., A coefficient of -2 would mean that the
mortality rate would decrease by 2%). Point estimates are depicted by blue squares and
come from regressions analogous to Equation 2. 95% confidence intervals are displayed
by gray area and are calculated using robust standard errors clustered at the state level.
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Table 1: The effect of Medicaid expansion on mortality by age group and specification

State-level County-level

DD
55-64 years

DD
65-74 years

DDD
55-64 years

DD
55-64 years

DD
65-74 years

DDD
55-64 years

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Healthcare amenable mortality

Full expansion dummy -3.23** -2.32** -1.50 -0.98 -1.63 -0.88 -0.29 -0.65 0.85 0.41 0.61 0.25
(1.27) (1.01) (1.22) (0.89) (1.18) (0.90) (2.00) (1.74) (1.21) (0.80) (1.19) (0.88)

Full expansion dummy x Age 55-64 dummy -1.55** -1.53* -0.83 -0.85
(0.76) (0.77) (0.94) (0.94)

Non-amenable mortality

Full expansion dummy 0.93 1.45 2.95** 3.32*** 2.76** 3.23*** 3.03 2.60 1.63 0.90 1.45 0.90
(1.36) (1.35) (1.24) (0.76) (1.21) (0.94) (2.59) (2.36) (1.32) (1.12) (1.31) (1.20)

Full expansion dummy x age 55-64 dummy -1.73 -1.73 1.56 1.58
(1.11) (1.12) (1.79) (1.79)

All Mortality

Full expansion dummy -2.27* -1.27 -0.75 -0.18 -0.88 -0.06 0.60 0.28 1.03 0.57 0.81 0.46
(1.18) (0.97) (1.12) (0.77) (1.08) (0.81) (1.89) (1.70) (1.06) (0.68) (1.03) (0.78)

Full expansion dummy x Age 55-64 dummy -1.35* -1.32* -0.17 -0.18
(0.72) (0.72) (1.00) (1.01)

Weights ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop
Unit fixed-effects (state or county) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Covariates No Yes No Yes No Yes No Yes No Yes No Yes
Observations 533 533 533 533 1066 1066 36478 36478 36478 36478 72956 72956

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state level in parentheses. Each DD regression corresponds to Equation 1 while each triple-difference regression
corresponds to Equation 3, with any deviations noted. Years included in this table are 2004 to 2016. Each dependent variable is a natural log transform of the death rate per 100,000 population
for the respective group. We transform each regression coefficient by 100(exp(coef.)-1) and the standard errors using the delta method. Thus each reported coefficient can be interpreted as the
percent effect of Medicaid expansion on the specific mortality rate for a given age group (i.e., a coefficient of -2 would mean that the mortality rate would decrease by 2%). Covariates are used in
even-numbered regressions. Third difference (regressions (5)-(6)) is ages 55-64 versus aged 65-74. Covariates include % Medicare Advantage Penetration, % Medicare enrollees receiving social
security disability benefits, Per Capita Income, Median Household Income, % Persons in Poverty, Unemployment Rate, 16+, Number of individuals with diabetes as percent of the population, Age-
adjusted percent of the population that is physically inactive, Percent of population that is obese, Smoking Prevalence (all genders), Non-Federal Active MDs per 1000 people.
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Table 2: The effect of Medicaid expansion on the percentage uninsured by age group and demo-
graphics

ACS (County-level) SAHIE

DD
55-64

DD
65-74

DDD
55-64

State DD
50-64

County DD
50-64

(1) (2) (3) (4) (5)

All –1.75*** –0.11* –1.60*** –1.97*** –1.99***
(0.30) (0.06) (0.41) (0.34) (0.49)

Female –1.81*** –0.15** –1.59*** –1.99*** –2.11***
(0.39) (0.06) (0.48) (0.41) (0.50)

Male –1.68*** –0.08 –1.63*** –1.93*** –1.89***
(0.25) (0.07) (0.36) (0.29) (0.48)

White (non-Hispanic) –1.57*** –0.03 –1.38*** –1.79***
(0.32) (0.04) (0.41) (0.33)

Black (non-Hispanic) –2.55*** –0.27 –2.64** –2.66***
(0.74) (0.23) (0.99) (0.75)

Other (non-Hispanic) –0.99 –1.06 –1.93
(0.94) (0.74) (1.17)

Hispanic –3.22* 0.34 –4.00** –3.59***
(1.74) (0.54) (1.92) (1.00)

Elementary school –4.40*** –0.96*** –3.55***
(1.05) (0.35) (0.98)

High school incomplete –4.58*** –0.55*** –4.12***
(0.69) (0.20) (0.82)

High school complete –2.03*** 0.03 –2.02***
(0.42) (0.08) (0.54)

Some college –1.32*** –0.05 –1.19***
(0.28) (0.05) (0.35)

Below 138% FPL –7.11*** –0.43* –6.68*** –7.03*** –7.27***
(0.83) (0.23) (1.10) (0.81) (1.33)

138%-400% FPL –1.83*** –0.10 –1.68*** –2.13*** –1.81**
(0.44) (0.07) (0.55) (0.47) (0.73)

Observations 369 369 738 451 19628
Unit fixed-effects (state or county) Yes Yes Yes Yes Yes
Year fixed-effects Yes Yes Yes Yes Yes
Covariates Yes Yes Yes Yes Yes
Weights used ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are reported in
parentheses. Each estimate comes from a separate regression and the point estimate can be interpreted as
the effect of Medicaid expansion on the percent uninsured for a given group (i.e., a coefficient of -2 would
mean that those without insurance in that group decreased by 2 percentage points). ACS data refers to the
American Community Survey and are at the county-level covering 2008 to 2016. SAHIE data refers to the
Census Bureau’s Small Area Health Insurance Estimates and are reported at both state and county-levels
covering 2006 to 2016. See Table A4 in Appendix to see the same Table, but with population weights
rather than ATT×Pop weights.
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2.6.3 DD and Triple-Difference Regression Results

We next turn to regression analysis in Table 1, showing results from DD regressions at the state
and county-level, following Equation 1. These specifications include year and unit fixed effects (at
either the state or county levels) and use ATT×population weights. We present results separately
for our principal treatment group (ages 55-64) and the placebo group (ages 65-74). The table also
shows triple-difference results, following Equation 3. We show separate results for healthcare-
amenable mortality, non-amenable mortality, and total mortality. Even-numbered columns include
covariates. Since each dependent variable is a natural log transform of the death rate per 100,000,
we transform each regression coefficient by 100(exp(coef.)-1) and the standard errors using the
delta method. Thus each reported coefficient can be interpreted as the percent effect on the mor-
tality rate (i.e., A coefficient of -2 would mean that the mortality rate would decrease by 2%).

These regression results are consistent with those presented in the event-study plots. At the
county-level we find no clear evidence that Medicaid expansions affected mortality of the young el-
derly; in the DD model, we find a statistically insignificant 0.65% post-expansion fall in amenable
mortality and in the triple-difference design we find an insignificant decline of 0.85%. At the
state-level we see evidence of declining healthcare amenable and all cause mortality for the young
elderly. While we find evidence of this using both the DD and triple difference research designs,
only the triple difference specification yields parallel pre-trends in the event-study results. Table 1
suggests that the young elderly health care amenable mortality rate decreased by 1.53% and the
all-cause mortality rate decreased by 1.32% following expansion.

The state and county-level estimates are discrepant due to the difference in propensity score
weights across the two specification types. The county-level specifications find non-expansion
counties that look the most like expansion counties, while the state-level specifications do likewise
for states. The use of these weights achieves balance on covariates across treated and control units
in similar ways (see Table A2), but it is evident that the use of state or county weighting scheme
affects our point estimates. Geographic aggregation has been shown to affect the magnitude of
health effects in other settings as well. Lindo (2015) compares the relationship between economic
conditions and health and—much like we do here—finds that county-level specifications result
in smaller estimated effects than results from state-level specifications. As in the case of Lindo
(2015), it may be that measurement error in treatment is partially responsible for this discrepancy.
Since Medicaid expansion is so tightly tied to income, it may be the case that assigning expansion
status to a state results in less measurement error than assigning it at the county level. That is,
there may be some counties in an expansion state where very few residents of that county qualified
for expanded Medicaid. Similarly, there could be counties in non-expansion states, where a large
number of people gained coverage through the marketplace.

Geographic aggregation may affect power as well. We explore this issue in the next section by
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conducting power simulations at both the state and county levels. However, before moving to the
simulated power analysis, we explore how the insurance expansion affected the rate of insurance
and possibility of treatment effect heterogeneity by subgroup.

2.6.4 The effect of Medicaid expansion on insurance coverage

In this section we estimate how Medicaid expansion affects reported health insurance status using
survey data. Medicaid expansion plausibly affects mortality by first increasing access to health
care by reducing the cost of care and then by patients seeking or receiving care at an increased
rate due to this reduced cost. As such, we refer to the effect of Medicaid expansion on health
insurance status as a “first-stage,” as we anticipate that the mechanism through which the policy
affects mortality is changes in insurance.15 Our empirical analyses are analogous to the DD and
triple difference specifications outlined by Equations 1 and 3, but with the percent uninsured as our
outcome of interest.

Another key difference between the mortality and health insurance specifications is the geo-
graphic level of the analysis. Due to data availability, we present some specifications at the state-
year level and others at the county-year level. We first use state-year level data from the American
Community Survey (ACS), which corresponds directly to our DD and triple-difference specifica-
tions where those aged 55 to 64 are considered treated. We then use data from the Census Bureau’s
Small Area Health Insurance Estimates (SAHIE) as a second data source. The SAHIE data have
the advantage of being at the county-level, but the disadvantage of lacking the same age-groups
used in our ACS analysis. Thus, specifications using the SAHIE data consider those aged 50 to 64
to be treated and only employ our DD design comparing those of similar age in expansion counties
to non-expansion counties.

Both the ACS and SAHIE provide additional information on race, ethnicity, income, and ed-
ucation. When possible—not all additional information is available for each data source and ge-
ography combination—we provide a first stage estimate for relevant subgroups as well. We are of
course the most interested in the first stage for low-income individuals as Medicaid eligibility is
tied to income.

Table 2 demonstrates our results. Using the ACS data and our DD specifications, we can see
that there was a decrease in the uninsurance rate of about 1.75% among those aged 55-64. When
using our triple difference specification, the point estimate is quite similar showing a 1.6% drop.
Estimates using the SAHIE data show similar first stage estimates with uninsurance rate reductions
of 2.0% using state or county-level data. We do not read too much into the difference across these
two datasets since the confidence intervals overlap. However, ACA-derived insurance gains could

15We do not mean to conflate this term with the first-stage terminology used in two-stage-least-squares regressions,
simply that this is the a necessary first effect to be present if Medicaid expansions are to affect health.
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be somewhat smaller among the near elderly (on whom we focus) than among younger adults,
perhaps because the near-elderly have greater healthcare needs and greater income, which may
have led many to obtain insurance before the ACA induced Medicaid expansions. In any case, we
use the larger of the estimates, 2.0%, throughout our paper when referring to the first stage for the
near elderly.

Demographic characteristics are associated with heterogeneous first stage estimates. Certain
groups—non-Hispanic Blacks, Hispanics, those without a high school degree, and low income
individuals—have the largest first-stage estimates. As expected, due to the mechanical nature
between income and Medicaid eligibility, low-income individuals have the largest first stage es-
timates—with point estimates indicating an increase in insurance coverage of between 6.7 and
7.3%.16 Unfortunately, our mortality data do not include income of the decedent. We do however
know the race, ethnicity, and education status of the decedent, which are correlated with income
and result in a larger first stage estimates near 5%. Thus, around 5% is likely as large a first stage
as one can likely achieve without linked individual data on some combination of income, family
status (children at home), pre-expansion insurance, and mortality.

Of note, this table uses weights that interact inverse propensity scores with population, so
the results are comparable with our mortality regressions. An analogous table using population
weights is presented as Table A4 in the Appendix. When weighting by population the first stage
estimates tend to be slightly smaller in magnitude than those results using inverse propensity score
weights. However, results follow a similar pattern and are quite close to one another, with the
respective confidence interval across each point estimate overlapping in most cases.

Our first-stage estimates suggesting that insurance coverage increased by 1.6 to 2% across
the entire near elderly population and by around 7% for those under 138% FPL are similar to
estimates from recent work. Wehby and Lyu (2018) use ACS microdata from 2011 to 2015 to
show that Medicaid expansion caused a 1.6% decline in the uninsurance rate for those aged 56 to
64.17 Courtemanche et al. (2017) use the ACS microdata from 2011 to 2014 to show that Medicaid
expansion is associated with a gain in insurance for those aged 50 to 64 of 2.8%. This estimate
includes all states and is not limited to full vs. non-expansion states. Borgschulte and Vogler (2020)
use the SAHIE data and a slightly different specification than ours to estimate a 2.7% increase in
those with insurance aged 50 to 64. Finally, Miller et al. (Forthcoming) demonstrate that for those
below 138% FPL or without a high-school degree, Medicaid expansion decreased the uninsurance
rate by more than 4%. As displayed in the bottom panel of Figure A4 and in Table 2, we find
similarly large estimates for this population. However when we consider the entire population of

16This larger increase in insurance coverage for the low income sub-population is particularly salient when displayed
in event time as in Appendix Figure A4.

17See Table 3 from Wehby and Lyu (2018), which limits the sample of states to full and non-expansion states, the
same set of states used in our analyses. When including all states their estimate rises to 3.5%.
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those aged 55 to 64—not just the low-income population, our first stage estimates attenuate as is
seen in the top panel of Figure A4.

Our first-stage estimates are subject to several important limitations. First, the data on insur-
ance coverage are subject to measurement error, which is likely worse in the county-level data. It is
possible that this measurement error introduces attenuation bias. To combat this issue, we present
results using state-level data from two different data sources and we use the largest measure of
the first stage (2%) when interpreting power estimates later on. Second, survey based estimates
of Medicaid enrollment have been shown to severely undercount the percent of true Medicaid en-
rollees. For example, using the Current Population Survey Davern et al. (2009) find that many
Medicaid enrollees fail to report being enrolled with many reporting that they are uninsured. It is
possible that newly insured individuals are more susceptible to under-reporting Medicaid enroll-
ment status than those earlier enrolled in Medicaid. If this is the case then our first-stage estimates
may be attenuated. Third, many who are eligible for Medicaid do not sign up until care is needed
or are allowed to sign up retroactively after receiving healthcare (Marton and Yelowitz, 2015).
Since prior work has shown that those with health insurance may have different health outcomes
than those without (Doyle, 2005), this conditional/retroactive coverage may cause survey based
estimates to undercount the share of those with “effective” Medicaid coverage.

For all of these reasons, it is possible that our first-stage is an underestimate of the true impact
of Medicaid expansion on health insurance coverage. Thus when considering the mortality effect
and the minimum mortality effect that is well powered, we will consider first stages of both 2%
(as estimated) and 5%, which may account for some of these attenuating factors. As outlined in
the next section, we will also explore analyses for various subgroups with larger first stages in the
hopes that these analyses will correspond to larger—and thus more detectable—effects.

2.6.5 Evidence on Heterogeneous Effects

We conduct additional analyses of the effects of ACA-induced insurance variation on mortality,
focusing on vulnerable subgroups or particular causes of death. These subgroups can potentially
provide a stronger first stage, a stronger second stage, or both. However, moving to subgroup
analysis also reduces the population composing each subgroup in each county or state, which
affects the annual mortality rate variance. We consider subgroups based on gender, race/ethnicity,
and specific cause of death. We present these results in the Appendix Table A3.

At the county level, our search for evidence of a significant effect of Medicaid expansion on
mortality for particular subgroups also proves to be largely unsuccessful; we find statistically sig-
nificant results for two of thirteen DD coefficients and one of thirteen triple difference coefficients.
As with our full-sample results, we find stronger evidence for mortality effects when using state-
level data—in particular, for respiratory mortality and mortality for men. We do find strong and
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significant effects for Black mortality across both the county and state aggregates for both DD and
triple difference designs; estimates suggest that Medicaid expansion induced reductions in Black
mortality between 3.7 and 8.6 percent. In the next section we explore how these larger treatment
effects and larger first stage estimates affect statistical power.

3 Simulated Power Analysis

We conduct a simulation-based power analysis by artificially introducing treatment effects of dif-
ferent sizes into the data in the pre-treatment period, and then assessing (over many iterations)
how often our specifications of interest can detect these effects. The goal of this analysis is to
determine the minimum effect of health insurance on amenable mortality that is reliably detectable
with our data and research design. The alternative of a closed-form power analysis requires fully
modeling the data generating process, including parameterizing the error term for both variance
and covariance terms, and is especially hard to construct with panel data in which observations can
be correlated over time (Burlig et al., 2020). Our use of regression weights and clustered standard
errors further contributes to the difficulty in producing a tractable and credible form for an analytic
power calculation.

Simulation avoids these challenges and lets us use the same research design and econometric
specification as the main analysis. In our preferred simulations, we perturb real, but untreated data.
For example, our simulation approach mechanically builds in correlations and “noise” from trends
in the actual data. A simulation using entirely artificial data would have similar conceptual issues
as the closed form analyses, requiring modeling the level and form of trends and correlations in
the data.18

Our preferred simulation proceeds as follows. We exclude all data from the post-treatment
period (2014 and after), opting to use only data from the pre-treatment period to ensure that it is
not possible for any treatment effect to influence our results.

We maintain the same basic structure in our power analysis as was present in our earlier analy-
sis. We still use ten years of “pre-treatment data” (from 2001 to 2010 instead of 2004 to 2013) and
three years of “post-treatment data” (from 2011 to 2013 instead of 2014 to 2016), where a pseudo
treatment is assigned in 2011. We restrict the sample of states to be the same ones used in our
earlier analysis (i.e., the 41 states that either fully expanded or did not expand Medicaid).

We next repeat the following 1,000 times: we randomly assign a pseudo-expansion status to 22
of the 41 states, the same number of full-expansion states. In each case, we assume that the expan-
sion occurred in 2011, giving us ten years of pre-pseudo-expansion and three years of post-pseudo-
expansion data for each pseudo-treated state, ensuring that there are always the same number of

18We do explore some simulations that use artificial data. These results are presented in Table 3.
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control state-years and treated state-years in our power analysis as in our earlier specification of
interest.

For each randomly drawn set of pseudo-treated states, we impose a pseudo treatment effect
of a reduction in amenable mortality (from 0% to 8%, in 0.25% increments) for all persons aged
55-64 living in a pseudo-treated state. We do this by randomly removing deaths from each pseudo-
treated county-year (or state-year) using draws from a binomial distribution. For example, if a
county-year has 100 healthcare-amenable deaths and the imposed treatment effect is 0.5%, we
remove each death with probability 0.005. The expected number of remaining deaths is then 99.5,
but the actual number must be a whole number and could be 100, 99, 98, etc. Each imposed
treatment effect is randomly distributed across the pseudo-treated states and across counties in
each state. Thus, as in the above example, it is unlikely that any pseudo-treated county will have
its mortality rate decrease by exactly 0.5%, but the pseudo-treated counties will still experience the
imposed treatment effect on average (subject to sample variation).19

We opt for this approach since it ensures that each simulated dataset used in our power analysis
resembles data that could actually occur. Consider the alternative of simply reducing the death

rate in each county by a fixed percent. In addition to enforcing an identical treatment effect across
all treated units, this can produce negative death rates, an undesirable property in our setting since
we are examining log death rates and bounding these rates at zero will affect the overall average
treatment effect. Thus while a bit more cumbersome, we strongly prefer perturbing the data in a
manner that produces plausible data.

Within each iteration, we re-estimate the inverse propensity score based weights so that the
pseudo-control states that are the best match for the pseudo-treated states receive the most weight.
Once we have introduced the artificial shocks, we run the DD model in Equation 1 and save the re-
gression coefficient and standard error. The percentage of times a result is found to be statistically
significant for a given effect size and significance level is the power for that effect size and signifi-
cance level. For each specification, we report the smallest imposed effect size that can be detected
at the 5% significance level with 80% power—an arbitrary, but common threshold used to denote
“adequate power.” We similarly assess power using the triple difference model in Equation 3.

In addition to statistical power, we also report three measures based upon Gelman and Carlin
(2014) that inform the plausibility of any significant results obtained, given the underlying power
of the study: 1) the percentage of times a significant, estimated treatment effect has the wrong

19Of note, when we impose zero treatment effect, we are not manipulating the data such that there is guaranteed to
be zero effect. Similarly when we impose a specific effect (x%), there is no guarantee that exactly this effect will be
found if a regression is run. This is because we are adding the imposed effect to the existing data. Since the data are
untreated, there should be no effect on average. If we were to use data from the treated time period, we would first
need to “enforce the null” before imposing our effect size. We opt not to follow this approach because it is unclear
how best to enforce the null before adding in an imposed treatment effect.
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sign—i.e., the opposite sign as the imposed treatment effect; 2) for the subset of cases where a
significant effect is found, the mean ratio of the estimated treatment effect to the true, imposed
effect (i.e., the exaggeration ratio); and 3) the percentage of significant treatment effect estimates
that have the correct sign and an exaggeration ratio below two—which we term a “believable”
coefficient.

Our empirical specifications of interest (Equations 1 and 3) and accompanying power simu-
lations require a number of choices: for example, which, if any, weights to be used; the level of
clustering for standard errors; the inclusion of control variables; the length of the pre-treatment
period; the level of the analysis (e.g., a county-year vs. state-year analysis); whether or not to
include data from the post-treatment period in the power simulation; and the use of perturbed—but
real data—vs. entirely artificial data in the power simulation. Many of these decisions are made on
an ad hoc basis and it is important to understand how these choices affect power and our estimate
of the minimum detectable effect size. As such, we repeat our power simulation after altering each
of these choices, reporting the minimum effect size that is detectable at the 5% significance level
with 80% power for each.

Finally, it is possible that our analysis will lack power for the whole population of those aged
55-64 because not every member in this group experienced an insurance expansion. Indeed Med-
icaid expansion targeted lower-income individuals and an analysis solely focused on subgroups
more likely to be treated could have more power than a whole group analysis. While the mor-
tality data we use do not report income, the data do report other demographic information that is
correlated with a larger first stage. The data also report cause of death and it is entirely possible
that individuals with certain ailments (e.g., HIV or cancer) would disproportionately benefit from
Medicaid enrollment, which would improve power. However, focusing on subgroups is not guar-
anteed to improve power, as zooming in on any subset of the data may increase variance more than
the gains from an increased first stage or enlarged treatment effect. We explore this possibility by
examining power, variance, and first-stage estimates in Section 3.3.

3.1 Full Sample Power Simulation Results

Figure 2 illustrates the results from our power simulations, using the log amenable mortality rate
per 100,000 as the dependent variable. Each simulation uses data from 2001-2013 from our actual
treated and control states. A pseudo-shock of gradually increasing magnitude is applied to 22
states chosen at random for 2011 to 2013. For a pseudo-shock of a given size, power is defined as
the percent of the 1,000 simulations that result in a statistically significant pseudo-treatment effect
at a given significance level. We display results for the 10%, 5%, 1% and .1% significance levels.
The left panel shows simulation results using state-level data, while the right shows simulation
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results using county-level data. The top row shows DD results that correspond to Equation 1 and
the bottom row shows triple-difference results that correspond to Equation 3. When we impose
an effect of 1.53% using the triple difference specification and state-level data, 51.2% of the 1000
simulations find a statistically significant effect at the 5% level. Simulation results indicate that the
smallest mortality reduction that could be detected at the state (county) level —given our research
design—80% of the time at the 5% significance level is 2.55% (2.88%) for the DD specification
and 2.17% (2.33%) for the triple-difference specification.

For our triple difference specification, we depict measures of believability adapted from Gel-
man and Carlin (2014) in Figure 3. Panel A shows the ratio of the magnitude of the estimated
effect—when found to be statistically significant—relative to the true magnitude, imposed in the
simulation. For population effect sizes under 1%, the exaggeration ratio is high. That is, an ef-
fect large enough to be statistically significant is likely to be far from the truth, on average two to
five times larger. In Panel B we show the proportion of statistically significant results that have
the wrong sign. This proportion is also appreciable for the smaller imposed effect sizes, reaching
almost 10%. As we increase the imposed effect size, prevalence of sign-error shrinks, and it be-
comes negligible for effect sizes above 1%; the exaggeration ratio also shrinks, but more slowly.
We combine these two measures in Panel C, which considers a “believably” significant specifi-
cation to be one that does not have a sign-error and that has a magnitude error no greater than
two. The believability curves follow the power curves from Figure 2 quite closely. By the time the
minimum detectable effect size is reached, issues of believability subside with more than 80% of
specifications returning a significant and believable estimate.

As outlined earlier, our research design (represented by Equations 1 and 3), the data included
in the analysis, and ad hoc choices made to implement our power simulation may affect power and
thus our minimum detectable effect estimate. Table 3 demonstrates the sensitivity of this estimate
to those choices. For each MDE estimate we report 95% confidence intervals that are computed
using 1,000 bootstrapped draws from the 1,000 power simulations. Column (1) represents our
preferred estimates: containing ATT×population weights, clustering standard errors at the state
level, and controlling for other county-year variables. Our preferred simulation uses data from
treated and untreated states, but only from the pre-treatment period; with 2001-2010 being the
pre-treatment period and the pseudo-treatment affecting 2011 through 2013.

The top panel presents simulation results using state-level data and the bottom panel presents
analogous results at the county-level. Columns (1) through (6) all are power simulations that only
use pre-Medicaid expansion data. In each column, we vary at least one feature from our preferred
simulation, including: the level of clustering (county or state), the weights used (ATT×population
or population), the length of the pre-period (2001-2010, 2004-2010, or 2007-2010), and whether
or not control variables are included. Columns (7) and (8) use some data that come from post-
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Figure 2: Power simulation results

A. State-level simulations
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B. County-level simulations
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 MDE: 2.33%; 95% CI: [2.26, 2.4]
0%

20%

40%

60%

80%

100%

Po
w

er

0 2 4 6 8
Imposed Effect (Percent Reduction in Amenable Mortality)

α =.10 α =.05 α =.01 α =.001

 
Power simulation

Note: Each sub-figure represents results from 1000 different power simulation as outlined in the text. Broadly, each
simulation uses data from 2001-2013 from our actual treated and control states; a pseudo-shock of gradually increasing
magnitude is applied to 22 states chosen at random for 2011 to 2013; and for a pseudo-shock of a given size, power
is defined as the percent of the 1,000 simulations that result in a statistically significant pseudo-treatment effect at
a given significance level. Results for the 10% significance level are displayed by the solid blue line; results for
the 5% significance level are depicted by the dashed green line; 1% significance level estimates are represented by
the dashed orange line; and the .1% significance level results are shown by the solid black line. MDE stands for
minimum detectable effect size and is the smallest imposed treatment effect that is detectable with 80% power at the
5% significance level. The 95% confidence interval for the MDE is estimated through a bootstrapping procedure. The
left column presents results using state-level data, while the right column presents results using county-level data. The
DD results correspond to Equation 1, while the triple difference results correspond to Equation 3.
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Medicaid expansion. Importantly these data never included mortality rates from those states that
expanded Medicaid in the years following expansion. Column (7) excludes data from expansion
states and oversamples control (i.e., non-expansion) states so that 41 total states are selected. Col-
umn (8) uses exactly the same data as is used in Equation 1 and 3, except for the dependent
variable. The dependent variable is entirely artificial and is constructed such that each county-year
death rate is a draw from a normal distribution that has the same mean and variance as that given
county’s actual death rate from 2001 to 2013. We also allow the artificial data to exhibit the same
time trends as the observed mortality data (see Figure A3). We do this by regressing a simple time
trend on the raw mortality data in the pre-pseudo-treatment period and assuming that this time
trend continues into the post-pseudo-treatment period.

The vast majority of these simulations yield similar minimum detectable estimates, indicating
that the idiosyncratic choices in our preferred simulation do not drive our estimate. In general, most
MDEs are just above 2%; the triple difference specifications have smaller minimum detectable
effect sizes; and controlling for covariates improves power. The smallest MDEs use population
weights instead of ATT×population weights. These specifications are somewhat problematic as
they exhibit pre-trends when analyzed in event-time.20

There could be a trade-off between identification (or a preferred specification) and the power
of an estimate. For our analysis, we aim to first determine which specifications are reasonable and
most likely to be well identified before we turn to concerns of power. An unidentified, but well-
powered estimate may well be uninterpretable, while an identified but under-powered estimate is
much easier to interpret. For example, consider the minimum detectable effect size estimates in
Table 3. Among the specifications using only pre-expansion data, the set with the most power use
population weights; however when we use population weights our identification assumptions are at
a higher risk of being invalid since there are problematic pre-trends for these analyses. Therefore
we opt to use the slightly lower powered, but better identified estimates that use inverse propensity
score weights.

The largest minimum detectable effect sizes come from the specifications that use artificial
death data. This is likely because these artificial data are not able to take advantage of the power
gains from including covariates, county fixed effects, and year fixed effects. One could imagine
simulating artificial data that is micromanaged and tweaked to maximize power, but it would be
unclear what the optimal level would be. That is, the end goal is to produce a power estimate
for the real analysis to be done, not to design a dataset that produces maximum power when the
analysis is applied to it.

20These specifications were discussed extensively in an earlier version of this manuscript and are available by
request. We omit them for brevity and have shifted towards the use of inverse propensity score weights to better
ensure that the identifying assumption of parallel trends holds in our analyses.
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Figure 3: As power increases so does believability (i.e., reduced magnitude error and chance of
sign-error)

A. Magnitude error

 MDE: 2.17%; 95% CI: [2.09, 2.25]

0

2.5

5

M
ag

ni
tu

de
-e

rr
or

0 2 4 6 8
Imposed Effect (Percent Reduction in Amenable Mortality)

α =.10 α =.05 α =.01 α =.001

 
Magnitude-error simulation

B. Sign error
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C. Believability % (no sign-error and
magnitude error ≤ 2)
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Note: Results here correspond to power simulations at state-level for the triple difference specification (the bottom
right sub-figure from Figure 2). Each sub-figure here represents a different measurement in addition to power for
that simulation. Magnitude-error is depicted in sub-figure A, which is the average of statistically significant estimate
divided by the true effect size. Sign-error is depicted in sub-figure B, which is the % of times a statistically significant
estimate has a different sign that the imposed treatment effect. Believability combines these two concepts and shows
the % of simulations that report a statistically significant estimate without a sign-error and without a magnitude error.
Results for the 10% significance level are displayed by the solid blue line; results for the 5% significance level are
depicted by the dashed green line; 1% significance level estimates are represented by the dashed orange line; and the
.1% significance level results are shown by the solid black line. MDE stands for minimum detectable effect size and
is the smallest imposed treatment effect that is detectable with 80% power at the 5% significance level. The 95%
confidence interval for the MDE is estimated through a bootstrapping procedure.
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Table 3: The minimum imposed reduction (%) in health care amenable mortality rate that can be detected with 80% power at the 5%
significance level varies with specification and other choices made in the power simulation.

(1) (2) (3) (4) (5) (6) (7) (8)

Simulations using only pre-expansion data Simulations including post-expansion data

Non-expansion
states only

Using artificial
death data

State-level

MDE, DD 55-64 2.55 2.27 1.92 3.43 2.36 1.17 2.15
(2.44 to 2.66) (2.21 to 2.33) (1.81 to 2.03) (3.30 to 3.56) (2.30 to 2.43) (1.11 to 1.24) (2.00 to 2.29)

MDE, DDD 2.17 2.04 1.79 2.18 1.77 1.26 5.28
(2.09 to 2.25) (1.94 to 2.13) (1.73 to 1.85) (2.11 to 2.26) (1.73 to 1.81) (1.21 to 1.32) (5.11 to 5.45)

County-level

MDE, DD 55-64 2.88 2.79 2.36 4.23 2.28 2.39 1.82 5.29
(2.74 to 3.02) (2.70 to 2.87) (2.23 to 2.50) (4.08 to 4.38) (2.21 to 2.34) (2.24 to 2.53) (1.72 to 1.92) (4.70 to 5.88)

MDE, DDD 2.33 2.21 2.07 2.36 1.75 2.23 1.37 9.77
(2.26 to 2.40) (2.13 to 2.29) (1.99 to 2.16) (2.29 to 2.44) (1.70 to 1.80) (2.15 to 2.31) (1.25 to 1.50) (9.01 to 10.53)

Weights ATTxPop ATTxPop ATTxPop ATTxPop Pop ATTxPop ATTxPop ATTxPop
Clustering State State State State State County State State
Controls Yes Yes Yes No Yes Yes Yes No
Pre-treatment years 2001-2010 2004-2010 2007-2010 2001-2010 2001-2010 2001-2010 2001-2013 2001-2013
Post-treatment years 2011-2013 2011-2013 2011-2013 2011-2013 2011-2013 2011-2013 2014-2016 2014-2016

Note: Each number comes from a separate power simulation. The top set of results come from simulations that use state-level data. The bottom set of results come from
simulations that use county-level data. The DD specifications are analogous to Equation 1, except with noted differences in each column. The DDD specifications are
analogous to Equation 3, except with noted differences in each column. 95% confidence intervals in parentheses are calculated using a bootstrapping procedure. MDE
refers to minimum detectable effect size at the population level.
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3.2 Interpretation of results

Comparing the minimum detectable effect size to the size of the estimated first stage (i.e., the %
increase in insured status due to Medicaid expansion) is a natural way to examine the plausibility
of any MDE estimate. If done directly by simply comparing the 2.17% MDE to the 2% first stage,
it appears that a well-powered result would also be unrealistic. This would imply that Medicaid
expansion would have to reduce the average amenable mortality rate of all newly insured persons
by 109% (= 0.0217

0.0200 ). That is, the death rate would need to decrease by more than the % insured
increased for the result to be well powered. However, this comparison bakes in the assumption
that the underlying mortality rate of the newly Medicaid-insured is identical to other persons aged
55-64, and this need not be the case.

The mortality rate for the newly insured could be much higher (e.g., the newly insured tend to
be low income, and thus may have higher mortality), or it may even be lower (e.g., the disabled
are already insured and those in poor health could be more likely to already have insurance).
Which is the case is unclear and cannot be evaluated using our data. Indeed, prior research has
presents mixed evidence. Kowalski (2020) provides evidence that complier populations can be of
better health relative to comparison populations. Finkelstein et al. (2012) study a likely lower-
income, less-healthy population (persons who applied for the Oregon Medicaid expansion lottery),
and report annual total mortality for the controls of 0.008, which is similar to the average total
mortality rate we find for persons aged 55-64 in both full-expansion and non-expansion States.

Conversely, Chetty et al. (2016) demonstrate a strong link between income and life-expectancy
and income is directly tied to Medicaid eligibility. In a similar vein, Miller et al. (Forthcoming) use
data from the National Health Interview to establish that Medicaid enrollees aged 55-64 in 2014
have a 2.3% probability of death in the next year, higher than the cohort average of 1.4%. Finally,
Marton and Yelowitz (2015) show that conditional coverage does occur. That is, people may wait
to sign up for Medicaid until they are sick. Thus, even if recent Medicaid enrollees appear to be of
similar health to the general population, it could be the case that those eligible, but not yet enrolled

are more likely to suffer a catastrophic health event or death without insurance.
Having a clear understanding of how much more likely the recently insured are to die relative to

the general population of 55-64 year olds is crucial to understanding whether or not our minimum
detectable effect size is of a plausible or an unrealistic magnitude. For example, if the mortality
rate of the 55 to 64 year olds who gained insurance due to Medicaid expansions was twice that
of the general population of 55 to 64 year olds, then the estimated treatment effect on the treated
would drop from 109% to 58%. Since we cannot determine the mortality ratio between these
two groups with certainty, we present a range of potential treatment on the treated estimates that
correspond with different mortality ratios in Figure 4. Under the assumption that the first stage is
2%, to obtain a treatment on the treated of 30% or less the newly insured would have to be at least
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3.8 times more likely to die than the general population without insurance. If the first stage was
around 5%, then this ratio would only need to be 1.7 or greater to obtain a treatment on the treated
of 30% or less.

Thus for our minimum detectable effect size to be of plausible magnitude at least one of two
things must be true. First, it could be that those who recently obtained insurance are significantly
more likely to die than those in the general population. Second, it could be that the true first stage
is much larger than the estimated first stage of 2%. This is of course entirely plausible given the
concerns of underreporting and conditional coverage previously documented (Davern et al., 2009;
Marton and Yelowitz, 2015), but it is nonetheless an important consideration when determining
the plausibility of our estimates.

Figure 4: For a given average treatment effect, the implied treatment on the treated (TOT) decreases
as the mortality ratio of the newly insured relative to the remaining population changes grows or a
larger share of the population receives insurance.

Ratio >  3.8
implies TOT < 30% 
for 2% first stage
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Note: The orange line represents the relationship between the implied treatment on the treated and the mortality ratio
of the newly insured relative to the remaining population for a 2% first stage. The dashed black line represents the
same relationship, but for a 5% first stage. Both consider an average treatment effect size of 2.17%, which is the
minimum detectable effect size for the state-level triple difference research design.
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3.3 Power for vulnerable subgroups

We also conduct power analyses for subgroups based on different demographics, education levels,
and causes of death. We estimate the minimum detectable reduction in mortality across gender,
race, cause of death, and education status that could be detected at the 5% significance-level 80%
of the time. Table 2 demonstrates that many of these subgroups have larger first stage estimates
than the overall population (e.g., Blacks aged 55-64 saw increases in insurance of around 2.6%,
Hispanics saw increased coverage of 3.2 to 4%, and those who had not completed high-school saw
increases of around 4.5%). We also estimate the MDE for specific causes of death (cancer, HIV,
diabetes, cardiac, and respiratory ailments) that may be more directly preventable by insurance
induced access to healthcare (e.g. HIV through antiretrovirals or cancer through chemo-therapies).
It is possible that through increased size of the first-stage or through having a larger treatment
effect (i.e., mortality reduction) there will be improved power.

Figure 5 displays results from these analyses. We construct each minimum detectable effect
size estimate following an analogous power simulation as outlined earlier at the state-level in Panel
A and at the county level in Panel B. Within each panel scatterplots from the DD specifications are
on the left-side and scatterplots from triple-difference specifications are on the right. Of note, for
both the DD and triple difference specifications the average and median MDE across our subgroup
analyses are larger than the respective MDEs that use the whole sample.21

In the top row of each panel, the minimum detectable effect size is plotted against a measure
of variance for each subgroup. As a simple measure of variance, we use the coefficient of vari-
ation, which is the average standard deviation of the death rate compared to the mean death rate
by subgroup. There is a clear, positive relationship. That is, those sub-groups with the largest
minimum detectable effect sizes (i.e., those whose analyses have the lowest power) have the most
volatile mortality rates. This increased variance makes intuitive sense; while each subgroup anal-
ysis has the same number of observations—with the exception of a small number of counties that
have no Black or no Hispanic residents—the number of people contributing to the death rate in
each county-year is quite variant. That is, subgroups with smaller populations will naturally have
more variation than the larger subpopulations. This is why average power among the subgroups is
worse than when all groups are combined; breaking into subgroups increases noise in each group.

The second row illustrates that groups with larger first-stages tend to have larger minimum
detectable effect sizes. This finding may initially be surprising, but it is driven by the fact that the
power improvements expected by “zooming-in” on sub-groups with larger first-stages and larger

21For the state-level (county) DD specifications the average MDE across subgroups is 5.45 (7.46) and the median
is 3.33 (4.73); compared to an MDE of 2.55 (2.88) using the whole population of 55-64 year olds. For the triple-
difference specification the average MDE across subgroups is 6.06 (6.75) and the median is 3.82 (4.35); compared to
an MDE of 2.17 (2.33) using the whole population of 55-64 year olds.
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treatment effects are offset by the increased variance of average mortality associated with these
more narrowly defined groups. Finally the third row demonstrates that larger measures of volatility
are associated with larger first-stage estimates. Thus, in our setting it does not appear that we
can improve power by focusing on smaller subgroups since the increase in volatility appears to
dominate the increased first-stage and potentially larger treatment effects.

3.4 What data would be needed for reasonable power?

We turn in this section to a different question—what combination of a stronger first stage and a re-
duction in amenable mortality for the newly insured would be detectable with reasonable power, if
we could use a richer dataset, with data on mortality linked to data on income and family status (to
determine eligibility for expanded Medicaid coverage) and pre-ACA insurance status (to exclude
the always-insured from the sample)?

These hypothetical data are similar to those used in recent work by Miller et al. (Forthcoming)
and Goldin et al. (2021). At a minimum one could improve the first stage to 7% by studying only
adults with incomes ≤ 138% of FPL and one could reach almost 10% as in Simon et al. (2017)
by focusing on childless adults with incomes ≤ 100% of FPLs. In these analyses, we consider the
triple-difference design, since it has been shown to induce more statistical power in our setting.

In this scenario, we imagine that we can identify in each county both a treated subsample and
a similar within-county control subsample, both aged 55-64. For example, if the treated subsample
is childless adults with income ≤ 138% of FPL, the within county control subsample could be
childless adults with incomes from 138% to 250% of FPL. We assume hypothetical first stages
varying from 1% to 20% and hypothetical second stages varying from 0% to 10%. For, say, a 5%
first stage and a 10% second stage, we assign “insurance due to Medicaid expansion” to 5% of
the persons in a “5% first stage” subsample of each expansion county, and then remove 10% of
the amenable mortality deaths from the treated persons in this subsample (thus applying an overall
mortality reduction to the subsample of .005). We again use data from 2001 to 2013 and a pseudo-
treatment beginning in 2011, and assess whether we could detect this mortality effect if we did
not know which specific individuals within this subsample would have gained insurance due to
this pseudo-treatment. Since the treated and control samples are drawn at random from the same
county and age range, they have the same expected mortality rates, by construction.

In Figure 6, we show power curves only for the 95% significance level. We vary (i) the assumed
first stage (we show curves for 1%, 3%, 5%, 10%, 15%, and 20% first stages) and (ii) the imposed
mortality reduction for the newly insured (from 0% to 10%) for the 5% significance level. With
this hypothetical richer data, we need a smaller number of avoided deaths to be able to reliably
detect a treatment effect. For example, with a 10% first stage, we could reliably detect mortality
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reductions of 2.4% or more within this subsample. This shows that individual level data with
known treatment status can improve power, and highlights the contribution of recent studies that
use such data (Miller et al., Forthcoming; Goldin et al., 2021).

4 Conclusion

In this manuscript, we explore issues of statistical power using an applied example; the relationship
between mortality and health insurance. We focus on whether or not true effects can be reliably
detected using geographically aggregated data. Using county-level data we uncover no statistically
significant evidence of an ACA-induced decline in mortality in Medicaid expansion states, but with
state level data we find evidence that mortality declined for the young elderly by around 1.53%.
Using simulated power analyses, we show that our research designs would need to find at least
a 2.17% effect to be well powered; when the true effect is 1.53%, statistical power is just above
50%. We end with a discussion of how individual level data, like those used in recent work linking
health insurance to mortality, can be used to overcome issues of power.

Power is an important metric that can be used to evaluate the strength of an empirical result.
Despite this it is under reported in empirical work. Studies with low statistical power are more
likely to find null results even when a true effect exists, and conditional on finding a statistically
significant effect they are likely to overstate the magnitude of the true treatment effect. Moreover,
meta-analyses of economics have shown that power may be an important issue for economists,
with median power being below 18% (Ioannidis et al., 2017).22

One impediment to considering power is the large amount of observational work in economics.
Another is the lack of closed form power formulas for many common research designs. Here we
present a simple method of estimating power using simulation. While we are not the first to esti-
mate power using simulation, we take very seriously the actual impediments a modern researcher
faces. There is no uniform approach that will work to estimate power in every setting. Each project
will face its own idiosyncratic choices and trade-offs. In this regard, we attempt to outline com-
mon issues that other researchers may face when seeking to conduct their own simulated power
analyses.

22We caution against the interpretation that low-powered studies contain no important information. We suggest
instead that results from such studies should be interpreted with more caution than results from otherwise identical,
but well-powered studies.
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Figure 5: In our setting, focusing on sub-groups with larger first-stages reduces power because the sub-groups tend to have more volatile
mortality rates.

A. State-level B. County-level

Note: The left panel presents simulation results using state-level data. The right panel presents simulation results using county-level data. Within each
panel the left column shows results from the DD simulations and the right shows results from triple difference simulations. The top row shows a scatter of
the minimum detectable effect size for each subgroup against a measure of variance (the coefficient of variation). The middle row shows a scatter of the
minimum detectable effect size against the first stage estimate. The bottom row shows a scatter of the first stage against the coefficient of variation.
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Figure 6: Additional data on treatment status can greatly reduce minimum detectable effect size
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Appendix

Table A1 includes Medicaid expansions through 2016. It is based on combining and reconciling
the classification of states as “full expansion,” “None,” or in- between (“mild” or “substantial”
expansion), by Simon et al. (2017), Lou et al. (2018), and Kaiser Family Foundation (2018). Most
states could be classified based on their rules for when and to what level they expanded Medicaid
for all adults. Arizona required special care; see detailed analysis below. Because our mortality
data are annual, we consider New Hampshire to be a 2015 expansion, Alaska to be a 2016 ex-
pansion, and Louisiana to be a 2017 expansion, hence beyond our study period. In the expansion
details column, ACA Expansion means regular expansion to 138% of FPL, on the date stated in the
Effective Date column. In the inclusion/exclusion column, C = control (non-expansion), T = treat-
ment (full expansion), and other states are excluded. Simon et al. (2017) classify early expansion
states as mild or substantial expansion, based on their assessment of the extent to which enrollment
increased with full Affordable Care Act expansion in 2014. This classification of states based on
expansion status is also used in our manuscript (referred to as BHNS). % change in uninsured
enrollees (2013-20156) come from SAHIE estimates for ages 18-64 and considering all income
groups.
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Table A1: Medicaid expansion states: part 1

State Abbr. Expansion Details Effective Date
% change in
uninsured enrollees
(2013-2016)

Inclusion/ Exclusion Expansion type Compare to BHNS

Alabama AL None -5.3 C [.] None Consistent

Alaska AK Medicaid Expansion 9/1/15 -6.9 T [2016] Full
Consistent for
2014-2015
(expanded late 2015)

Arizona[1]
AZ

§ 1115 Waiver (100% FPL,
but closed to new enrollees
in 2011)

2000 -9.1 T[2014] Full Consistent

ACA Expansion 1/1/14

Arkansas[2] AR § 1115 Waiver 1/1/14 -10.8
T [2014]

Full Consistent
Private Option

California[3] CA

§ 1115 Waiver
(LA county) 1/1/95

-12.8
Excluded

Substantial Consistent§ 1115 Waiver
(200% FPL) 11/1/10 (Early expansion)

ACA Expansion 1/1/14

Colorado[4] CO
§ 1115 Waiver
(to 10% of FPL) 4/1/12

-7.2 T [2014] Full Consistent
ACA Expansion 1/1/14

Connecticut[5] CT
State Plan
Amendment (56% FPL) 4/1/10

-5.7
Excluded

Substantial Consistent
ACA Expansion 1/1/14 (Early Expansion)

Delaware[6] DE ACA Expansion
1/1/96

-5.8
Excluded

Mild Consistent
1/1/14 (Early Expansion)

District of Columbia[7] DC

State Plan
Amendment (133% FPL) 7/1/10

-3.4
Excluded

Mild Consistent§ 1115 Waiver 12/1/10 (Early expansion)
ACA Expansion 1/1/14

Florida FL None -9.5 C [.] None Consistent

Georgia GA None -7.0 C [.] None Consistent

Hawaii[8] HI ACA Expansion
8/1/94

-4.5
Excluded

Substantial Consistent
1/1/14 (Early expansion)

Idaho ID None -7.8 C [.] None Consistent

Illinois IL ACA Expansion 1/1/14 -8.4 T [2014] Full Consistent

Indiana IN § 1115 Waiver 2/1/15 -8.1 T [2015] Full Consistent

Iowa[9] IA § 1115 Waiver 1/1/14 -6.2 T [2014] Full Consistent

Kansas KS None -5.6 C [.] None Consistent

Kentucky KY ACA Expansion 1/1/14 -12.9 T [2014] Full Consistent

Louisiana LA ACA Expansion 7/1/16 -9.1 C [.] None Consistent

Maine ME None -4.4 C [.] None Consistent

Maryland MD ACA Expansion 1/1/14 -5.2 T [2014] Full Consistent

Notes: [1] Arizona used a § 1115 waiver to expand Medicaid coverage to childless adults up to 100% FPL during 2000-2011. In 2011, the
state started to phase out that program (transitioning into Medicaid expansion). Which category Arizona belongs in was unclear based on its
rules, so we also examined the extent to which Medicaid enrollment increased in 2014. See details below. [2] Arkansas operated a limited-
benefit premium-assistance program for childless adults who worked for small uninsured employers (ARHealthNetworks waiver) prior to the ACA.
Arkansas’s Medicaid expansion includes a “private option” under which Medicaid-eligible persons receive health insurance from the state insur-
ance exchange, with a small monthly premium. [3] California expanded Medicaid in 2010-2011, in selected counties. [4] Colorado conducted
early expansion through a § 1115 waiver in 2012, but only to persons with income ¡10 (ten) % of FPL, and also capped new enrollment at 10,000
individuals. It expanded Medicaid program fully in 2014. We ignore the small expansion in 2012, and treat Colorado as a full expansion
state. [5] Connecticut, elected to enact the Medicaid expansion in 2010 through a state amended plan at 56%. Connecticut expanded its Med-
icaid program fully in 2014. [6] In Delaware, childless adults with incomes up to 100% FPL were eligible for Medicaid through the Diamond
State Health Plan waiver, effective on 01/01/1996. [7] DC expanded its Medicaid program at 133% of FPL in 2010. [8] In Hawaii, childless
adults with incomes up to 100% FPL were eligible for the state’s QUEST Medicaid managed care waiver program, effective on 08/01/1994.
[9] Under the IowaCare program, chilDless adults with income below 200% FPL were eligible for health insurance since 2005. However,
IowaCare provided limited services in a limited network, so low-income adults in Iowa received a substantial coverage expansion in 2014 (Dami-
ano et al., 2013). During 2014-2015, Iowa residents with income ¡ 100% of FPL were enrolled in Medicaid managed care plans, while those
with income of 100-138% of FPL received private insurance obtained through the Iowa health exchange, with premiums waived (a partial “pri-
vate option”). See https://www.medicaid.gov/Medicaid-CHIP-Program-Information/By-Topics/Waivers/1115/downloads/ia/

Market-Place-Choice-Plan/ia-marketplace-choice-plan-state-term-app-06012016.pdf.
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Table A1: Medicaid expansion states, part 2

State Abbr. Expansion Details Effective Date
% change in
uninsured enrollees
(2013-2016)

Inclusion/ Exclusion Expansion type Compare to BHNS

Massachusetts[10] MA
“Romneycare” 4/12/06

-1.7 Excluded Mild Consistent
ACA Expansion 1/1/14

Michigan MI ACA Expansion 4/1/14 -7.9 T [2014] Full Consistent

Minnesota[11] MN

State Plan
Amendment (75% FPL) 3/1/10

-4.6
Excluded

Substantial Consistent§ 1115 Waiver
(200% FPL) 8/1/10 (Early Expansion)

ACA Expansion 1/1/14
Mississippi MS None -6.5 C [.] None Consistent

Missouri MO

§ 1115 Waiver
(St. Louis County Only)
(200% FPL) 7/1/12 -4.9 C [.] None Consistent

None

Montana MT ACA Expansion 1/1/16 -10.7 T [2016] Full
Consistent for
2014-2015
(expanded in 2016)

Nebraska NE None -2.3 C [.] None Consistent

Nevada NV ACA Expansion 1/1/14 -11.3 T [2014] Full Consistent

New Hampshire[12] NH § 1115 Waiver 8/15/14 -6.3 T [2015] Full
Consistent
(expanded late 2014)

New Jersey[13] NJ
§ 1115 Waiver (23% FPL) 4/1/11

-7.2 T [2014] Full Consistent
ACA Expansion 1/1/14

New Mexico NM ACA Expansion 1/1/14 -14.5 T [2014] Full Consistent

New York[14] NY
§ 1115 waiver 10/1/01

-6.1
Excluded

Mild Consistent
ACA Expansion 1/1/14 (Early expansion)

North Carolina NC None -6.4 C [.] None Consistent

North Dakota ND ACA Expansion 1/1/14 -4.4 T [2014] Full Consistent

Ohio OH ACA Expansion 1/1/14 -7.6 T [2014] Full Consistent

Oklahoma OK None -4.5 C [.] None Consistent

Oregon OR[15] ACA Expansion 1/1/14 -11.1 T [2014] Full Consistent

Notes: [10] Massachusetts implemented reforms to expand insurance coverage to low-income adults in 2006. [11] Minnesota conducted early expan-
sion in 2010 two ways. Persons with income ≤ 75%FPL were insured through Medical Assistance Medicaid, funded through a State Plan Amend-
ment, persons with income from 75 200% of FPL were insured through MinnesotaCare, funded through a § 1115 Waiver, which had limited benefits
and cost-sharing. [12] New Hampshire implemented a “private option” (mandatory purchase of subsidized private insurance, instead traditional
Medicaid, in 2016. See https://www.medicaid.gov/Medicaid-CHIP-Program-Information/By-Topics/Waivers/1115/downloads/
nh/health-protection-program/nh-health-protection-program-premium-assistance-appvl-amend-req-06232015.pdf.

[13] New Jersey’s expansion in 2011 only extended to 23% FPL; we therefore treated it as a full expansion state. [14] In New York, childless adults
up to 78% FPL were eligible for the Medicaid (Home Relief) waiver program and childless adults up to 100% FPL were eligible for the Family
Health Plus waiver program (Heberlein et al., 2011). [15] In 2008, Oregon enacted a small Medicaid expansion for low-income adults through a
lottery among applicants. However, less than one-third of the 90,000 people on the waitlist were selected to apply for Medicaid in 2008 (Baicker
et al., 2013), some of the denied applicants were then enrolled in 2010. We treat Oregon as full expansion due to the small size of this earlier
expansion.
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Table A1: Medicaid expansion states, part 3

State Abbr. Expansion Details Effective Date
% change in
uninsured enrollees
(2013-2016)

Inclusion/ Exclusion Expansion type Compare to BHNS

Pennsylvania PA ACA Expansion 1/1/15 -5.3 T [2015] Full Consistent

Rhode Island RI ACA Expansion 1/1/14 -9.1 T [2014] Full Consistent

South Carolina SC None -7.2 C [.] None Consistent

South Dakota SD None -4.4 C [.] None Consistent

Tennessee TN None -6.1 C [.] None Consistent

Texas TX None -6.4 C [.] None Consistent

Utah UT None -6.1 C [.] None Consistent

Vermont VT[16]
§ 1115 Waiver 1/1/96

-5.0
Excluded

Mild Consistent
ACA Expansion 1/1/14 (Early expansion)

Virginia VA None -4.3 C [.] None Consistent

Washington[17] WA
§ 1115 Waiver (133% FPL) 1/3/11

-10.3 T [2014] Full Consistent
ACA Expansion 1/1/14

West Virginia WV ACA Expansion 1/1/14 -12.0 T [2014] Full Consistent

Wisconsin[18] WI
New eligibility for
BadgerCare but not
ACA Expansion

2009 -5.2 Excluded Substantial Consistent

Wyoming WY None -2.5 C [.] None Consistent

Notes: [16] In Vermont, childless adults up to 150% FPL were eligible for Medicaid equivalent coverage through the Vermont Health Access Plan
waiver program (Heberlein et al., 2011). Vermont Health Access Plan (Sec. 1115 waiver) was approved in 1995 and effective in 1996. [17]
Washington’s early expansion was limited to prior state plan enrollees (Sommers et al., 2013). [18] Although Wisconsin was not an ACA expansion
state, the state received federal approval to offer Medicaid to childless adults below 100% FPL through the BadgerCare program as of 2009 (Gates
and Rudowitz, 2014).
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Figure A1: Number of Arizona inpatient stays by payor and year
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Author reproduction of HCUP figure using HCUP Fast Stats at https://www.hcup-us.ahrq.gov/faststats/
StatePayerServlet?state1=AZ. Accessed June 2018. Arizona had a S.1931 program providing Medicaid up to
106% FPL for parents. It also had a limited program for 7 childless adults, under a § 1115 waiver, starting in 2001,
which was closed to new entrants since 2011.23 Whether to treat Arizona as a full expansion state or an early expansion
state turns on how many childless adults were still covered at the ACA onset in 2014, given churn in eligibility. The tail
off in hospital admissions with Medicaid payment, and jump at the start of 2014 (with uninsured admissions showing
the opposite pattern), persuades us that Arizona should be treated as a regular expansion state.
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Table A2: Covariate Balance for Full-Expansion and Non-Expansion States

Full Expansion States Non-Expansion States Difference t-stat Normalized Difference
(1) (2) (3) (4)

% 55-64 years 12.68 12.35 0.31 0.08
% 65-74 years 16.61 16.85 0.67 –0.05
% Female 50.23 50.43 0.76 –0.03
% Female, 55-64 years 4.96 4.85 0.21 0.05
% Female, 65-74 years 7.27 7.35 0.22 –0.03
% White 84.15 87.17 0.81 –0.18
% White, 55-64 years 9.97 10.23 0.94 –0.06
% White, 65-74 years 13.81 14.53 0.94 –0.14
% Black 9.59 8.29 0.62 0.10
% Black, 55-64 years 1.79 1.53 0.63 0.11
% Black, 65-74 years 1.77 1.55 0.66 0.09
% Hispanic 4.03 2.98 0.52 0.11
% Hispanic, 55-64 years 0.59 0.37 0.81 0.14
% Hispanic, 65-74 years 0.63 0.46 0.54 0.09
% In Poverty 14.92 13.42 1.44 0.24
% Managed Care Penetration 24.86 22.92 0.40 0.18
% Disabled (ages 18-64) 16.36 16.83 0.59 –0.08
Mean Per Capita Income 40364.57 41696.06 0.52 –0.15
Median Household Income 51284.70 52565.73 0.29 –0.12
Unemployment Rate, 16+ 8.68 7.55 2.81 0.38
% with Diabetes 8.91 8.67 0.45 0.12
% Physically Inactive 22.59 22.38 0.13 0.04
% Obese 27.97 27.74 0.04 0.05
% Smoker 21.80 21.51 0.42 0.07
Physicians/1,000 people 3.12 3.04 0.48 0.05

% Uninsured (18-64 years) 18.69 18.27 0.32 0.07
% Uninsured (50-64 years) 12.88 12.91 0.02 –0.01
% Uninsured (18-64 years), ≤138% FPL 37.80 39.57 0.33 –0.23
% Uninsured (50-64 years), ≤138% FPL 32.87 34.97 0.81 –0.32
Death Rate 859.58 845.20 0.34 0.05
Death Rate 55-64 years 852.93 797.00 1.41 0.16
Death Rate 65-74 years 1861.27 1786.72 0.93 0.12
Non-amenable Death Rate 589.41 576.92 0.38 0.06
Non-amenable Death Rate 55-64 years 644.03 607.40 1.11 0.12
Npn-amenable Death Rate 65-74 years 1498.39 1436.08 0.89 0.12
Amenable Death Rate 270.16 268.29 0.16 0.02
Amenable Death Rate 55-64 years 208.91 189.60 1.71 0.14
Amenable Death Rate 65-74 years 362.88 350.64 0.50 0.06

Note: Table shows summary statistics for county-level covariates and mortality for Full-Expansion and Non-Expansion states during
pre-expansion period, using ATT× population weights. T-statistics use two-sample t-test for difference and robust standard errors
with state clusters. Normalized difference is a sample-size independent measure of the difference between two means, scaled by stan-
dard deviation). State groups are defined in Table A1. Mortality rates are per 100,000 persons. Dollar amounts are in 2010 $. See
Table A5 in the Appendix to see the same Table, but with population weights instead of ATT×Pop weights.
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Figure A3: Time trends in amenable mortality for persons aged 55-64

Note: Number along the x-axis indicates years since most Medicaid expansion. For non-expansion states, t = 0
corresponds to 2014. Years included in this figure are 2004 to 2016. Health care amenable causes of death follow
Nolte and McKee (2003).
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Figure A2: Event studies with different windsorization of weights

(a) Top 10%

(b) Top 7.5%

(c) Top 5%

(d) Top 2.5%

(e) No trimming

Note: Number along the x-axis indicates years since most Medicaid expansion. For non-expansion states, t = 0 corre-
sponds to 2014. Years included in this figure are 2004 to 2016. Since each dependent variable is a natural log transform
of the healthcare amendable death rate per 100,000, we transform each regression coefficient by 100(exp(coef.)-1) and
the standard errors using the delta method. Thus each reported coefficient can be interpreted as the percent effect of
Medicaid expansion t years ago on the healthcare amenable mortality rate for a given age group (i.e., A coefficient of
-2 would mean that the mortality rate would decrease by 2%). Point estimates are depicted by blue squares and come
from regressions analogous to Equation 2, except that in each sub-figure a different trimming is used. 95% confidence
intervals are displayed by gray area and are calculated using robust standard errors clustered at the state level.
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Figure A4: The impact of Medicaid expansion on the percentage uninsured aged 55 to 64 is the
largest for lower income individuals

A. No income restrictions (as in mortality data)

B. Restricting to those with income ≤ 138% FPL

Note: Number along the x-axis indicates years since most Medicaid ex-
pansion. For non-expansion states, t = 0 corresponds to 2014. Data come
from the American Community Survey and are at the county-level cover-
ing 2008 to 2016. Each reported coefficient can be interpreted as the per-
cent effect of Medicaid expansion t years ago on the percentage of those
without health insurance in each group. Point estimates are depicted by
blue squares and come from regressions analogous to Equation 2, but for
the triple difference specification. 95% confidence intervals are displayed
by gray area and are calculated using robust standard errors clustered at
the state level. A9



Table A3: Treatment effect estimates by subgroup

State-level County-level

DD
55-64

DD
65-74

DDD
55-64

DD
55-64

DD
65-74

DDD
55-64

(1) (2) (3) (4) (5) (6)

Healthcare amenable mortality -2.32** -0.98 -1.53* -0.65 0.41 -0.85
(1.01) (0.89) (0.77) (1.74) (0.80) (0.94)

Non-amenable mortality 1.45 3.32*** -1.73 2.60 0.90 1.58
(1.35) (0.76) (1.12) (2.36) (1.12) (1.79)

All mortality -1.27 -0.18 -1.32* 0.28 0.57 -0.18
(0.97) (0.77) (0.72) (1.70) (0.68) (1.01)

Respiratory mortality -5.34*** -4.04** -2.69* -7.19 -2.64 -5.75
(1.56) (1.54) (1.47) (4.28) (2.49) (6.73)

Cancer mortality -1.50* 0.25 -1.71 0.73 1.73*** -0.52
(0.82) (0.86) (1.05) (1.83) (0.60) (1.72)

Cardiac mortality -0.97 -0.55 -0.80 0.58 -0.15 0.93
(1.17) (1.13) (0.91) (1.77) (0.83) (1.52)

HIV mortality -2.40 0.97 -5.33 0.57 10.63 -7.16
(3.94) (5.71) (9.17) (4.18) (7.69) (9.51)

Diabetes mortality -3.42 -2.06 -1.25 -4.44 -2.35 -2.66
(2.58) (2.50) (1.26) (2.74) (5.05) (2.42)

Male, amenable mortality -1.48 -0.10 -1.88** -0.15 1.24 -1.01
(1.10) (0.86) (0.83) (1.91) (1.02) (1.13)

Female, amenable mortality -3.51*** -2.14* -1.18 -1.45 -0.71 -0.31
(1.09) (1.07) (1.01) (1.64) (0.87) (1.47)

White, amenable mortality -2.18** -1.41 -0.89 0.31 0.82 -0.08
(0.93) (0.90) (0.89) (1.68) (0.76) (1.04)

Black, amenable mortality -3.72*** 0.99 -5.24*** -5.82* 0.44 -8.55***
(1.15) (1.11) (1.21) (3.17) (2.82) (2.85)

Hispanic, amenable mortality -9.44** -3.39 -5.67 -14.81** -5.61 -5.33
(3.75) (3.41) (3.73) (6.66) (6.18) (4.61)

Weights ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop ATTxPop
Unit fixed-effects (state or county) Yes Yes Yes Yes Yes Yes
Year fixed-effects Yes Yes Yes Yes Yes Yes
Covariates Yes Yes Yes Yes Yes Yes

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state level in parenthe-
ses. Each DD regression corresponds to Equation 1 while each triple-difference regression corresponds to
Equation 3, except that we change the subgroup or cause of death as noted. Years included in this table are
2004 to 2016. Each dependent variable is a natural log transform of the death rate per 100,000 population
for the respective group. We transform each regression coefficient by 100(exp(coef.)-1) and the standard
errors using the delta method. Thus each reported coefficient can be interpreted as the percent effect of
Medicaid expansion on the specific mortality rate for a given age group (i.e., a coefficient of -2 would mean
that the mortality rate would decrease by 2%). Covariates include % Medicare Advantage Penetration, %
Medicare enrollees receiving social security disability benefits, Per Capita Income, Median Household In-
come, % Persons in Poverty, Unemployment Rate, 16+, Number of individuals with diabetes as percent
of the population, Age-adjusted percent of the population that is physically inactive, Percent of population
that is obese, Smoking Prevalence (all genders), Non-Federal Active MDs per 1000 people.
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Table A4: The effect of Medicaid expansion on the percentage uninsured by age group and demo-
graphic, using population weights

ACS (County-level) SAHIE

DD
55-64

DD
65-74

DDD
55-64

State DD
50-64

County DD
50-64

(1) (2) (3) (4) (5)

All –1.19*** –0.01 –1.16** –1.23** –1.21**
(0.42) (0.06) (0.47) (0.51) (0.47)

Female –1.32*** 0.01 –1.29** –1.35** –1.31***
(0.46) (0.07) (0.50) (0.53) (0.48)

Male –1.07** –0.03 –1.03** –1.14** –1.10**
(0.43) (0.06) (0.48) (0.49) (0.47)

White (non-Hispanic) –1.51*** –0.02 –1.37*** –1.54***
(0.28) (0.04) (0.35) (0.37)

Black (non-Hispanic) –2.25*** 0.09 –2.63** –2.09**
(0.80) (0.21) (1.03) (0.78)

Other (non-Hispanic) –1.44 –0.57 –2.12*
(0.97) (0.45) (1.11)

Hispanic –0.04 0.12 0.09 –0.38
(1.47) (0.52) (1.59) (1.18)

Elementary school –2.74** –0.08 –2.93**
(1.32) (0.39) (1.09)

High school incomplete –4.24*** –0.27 –4.26***
(0.71) (0.20) (0.83)

High school complete –1.48** 0.08 –1.37**
(0.56) (0.07) (0.65)

Some college –0.87** –0.07 –0.79**
(0.36) (0.05) (0.38)

Below 138% FPL –6.54*** –0.09 –6.26*** –6.38*** –6.43***
(0.88) (0.25) (1.00) (0.95) (0.95)

138%-400% FPL –1.01 –0.01 –0.91 –1.00 –1.27*
(0.60) (0.06) (0.67) (0.76) (0.71)

Observations 369 369 738 451 19628
Unit fixed-effects (state or county) Yes Yes Yes Yes Yes
Year fixed-effects Yes Yes Yes Yes Yes
Covariates Yes Yes Yes Yes Yes
Weights used Pop Pop Pop Pop Pop

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the state-level are reported in
parentheses. Each estimate comes from a separate regression and the point estimate can be interpreted as
the effect of Medicaid expansion on the percent uninsured for a given group (i.e., a coefficient of -2 would
mean that those without insurance in that group decreased by 2 percentage points). ACS data refers to the
American Community Survey and are at the county-level covering 2008 to 2016. SAHIE data refers to the
Census Bureau’s Small Area Health Insurance Estimates and are reported at both state and county-levels
covering 2006 to 2016. See Table 2 in main text to see the same Table, but with ATT×Pop weights rather
than population weights.
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Table A5: Covariate Balance for Full-Expansion and Non-Expansion States Using Population
Weights.

Full Expansion States Non-Expansion States Difference t-stat Normalized Difference
(1) (2) (3) (4)

% 55-64 years 12.68 13.72 2.61 –0.26
% 65-74 years 16.61 17.64 2.59 –0.22
% Female 50.23 49.37 2.12 0.15
% Female, 55-64 years 4.96 5.38 2.11 –0.19
% Female, 65-74 years 7.27 7.62 1.56 –0.12
% White 84.15 75.02 3.11 0.56
% White, 55-64 years 9.97 9.44 0.87 0.14
% White, 65-74 years 13.81 13.17 1.45 0.12
% Black 9.59 15.52 2.69 –0.48
% Black, 55-64 years 1.79 2.96 2.69 –0.48
% Black, 65-74 years 1.77 2.91 2.62 –0.45
% Hispanic 4.03 7.85 1.09 –0.39
% Hispanic, 55-64 years 0.59 1.06 0.90 –0.30
% Hispanic, 65-74 years 0.63 1.25 1.06 –0.32
% In Poverty 14.92 17.16 3.14 –0.35
% Managed Care Penetration 24.86 23.64 0.77 0.11
% Disabled (ages 18-64) 16.36 17.58 1.59 –0.20
Mean Per Capita Income 40364.57 37594.69 2.13 0.30
Median Household Income 51284.70 46819.56 2.29 0.42
Unemployment Rate, 16+ 8.68 8.12 1.47 0.19
% with Diabetes 8.91 9.77 2.78 –0.43
% Physically Inactive 22.59 24.52 1.97 –0.39
% Obese 27.97 29.09 1.29 –0.26
% Smoker 21.80 21.49 0.44 0.08
Physicians/1,000 people 3.12 2.67 2.63 0.27

% Uninsured (18-64 years) 18.69 25.06 3.23 –1.09
% Uninsured (50-64 years) 12.88 17.44 3.33 –1.03
% Uninsured (18-64 years), ≤138% FPL 37.80 46.97 3.46 –1.21
% Uninsured (50-64 years), ≤138% FPL 32.87 39.48 3.73 –1.01
Death Rate 859.58 825.58 0.50 0.12
Death Rate 55-64 years 852.93 933.79 2.20 –0.23
Death Rate 65-74 years 1861.27 1939.68 0.71 –0.13
Non-amenable Death Rate 589.41 557.11 0.81 0.16
Non-amenable Death Rate 55-64 years 644.03 701.74 1.84 –0.20
Non-amenable Death Rate 65-74 years 1498.39 1540.86 0.35 –0.08
Amenable Death Rate 270.16 268.47 0.40 0.02
Amenable Death Rate 55-64 years 208.91 232.05 2.60 –0.17
Amenable Death Rate 65-74 years 362.88 398.81 1.71 –0.17

Note: Table shows summary statistics for county-level covariates and mortality for Full-Expansion and Non-Expansion states during
the pre-expansion period using county population weights. t-statistics use two-sample t-test for difference and robust standard errors
with state clusters. Normalized difference is a sample-size independent measure of the difference between two means, scaled by stan-
dard deviation). State groups are defined in Table A1. Mortality rates are per 100,000 persons. Dollar amounts are in 2010 $. See
Table A2 in the main text to see the same Table, but with ATT×Pop weights instead of population weights.
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A Example code

This is an example of the type of simulated power analysis done in our paper. This example is
done with publicly available data. You can find the code, data, and output for this example hosted
on https://github.com/hollina/simulated-power-analysis.

This set-up is designed to mimic a typical DiD setting. Here we will compare 23 randomly chosen
treated states to 18 randomly chosen control states. We will impose a series of treatment effects
that gradually increase in magnitude and report whether or not these imposed treatment effects are
detectable. We will vary the set of randomly chosen treated states. We will calculate the minimum
detectable effect size at various power and significance levels. We will also explore a measure of
believability, which is based upon Gelman and Carlin (2014) measures of sign and magnitude error.

In this simple design we used 5 years of pre-expansion data and 3 years of post-expansion data.
Both state and year fixed-effects are included. Regressions are weighted by state-population and
standard errors will be clustered at the state-level. The dependent variable will be the natural log
of the all-cause non-elderly mortality rate per 100,000.

This stata code is simply an example of our simulated power analysis and is not an attempt to
identify the impact of Medicaid expansion on mortality. Importantly, changing the research de-
sign (e.g. adding control variables, shifting to the county-level, changing the cause of death, using
propensity score weights, or using a synthetic control estimator) will impact power. Our approach
could be easily modified to accommodate any of these alternative research designs. Any improve-
ments to the research design will very likely increase power and decrease the minimum detectable
effect size.

Stata code

// Change directory

cd "~/Documents/GitHub/health_insurance_and_mortality"

////////////////////////////////////////////////////////////////////////////////

// Initial Set-up

// ====================
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// Here we will set-up the power analysis and choose various required parameters/options.

// First we clear the memory

clear all

set matsize 10000

// Choose the number of datasets we want to compose each estimate. For example, if we choose 2, then two sets of psuedo-treated states will be drawn and the power analysis will be conducted twice for each effect size; once for each set of pseudo-treated states and effect size pair.

local max_dataset_number = 500

// Pick the number of psuedo-post-expansion years

local number_post_years = 3

local last_year = 2013-‘number_post_years’+1

// Set number of psuedo-pre-expansion years

local number_pre_years = 5

local first_year = ‘last_year’-‘number_pre_years’

// Set effect size step and max value in percent terms (0-1)

local step_size = .0025 // Quarter of a percent

local end_value = .05 // End at 5%

// Create a local macro from the choices above

local step_macro

forvalues x = 0(‘step_size’)‘end_value’ {

local step_macro ‘step_macro’ ‘x’

}
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// Determine the length of the macro above, so percent complete can be displayed later

local num : word count ‘step_macro’

local num = ‘num’

local max_steps = ‘num’

di ‘max_steps’

// Calculate the max number of rows so percent complete can be displayed later

local max_row = ‘max_dataset_number’*‘num’

////////////////////////////////////////////////////////////////////////////////

// Import and clean mortality data

// ====================

// Import data extracted from [CDC wonder](https://wonder.cdc.gov/). All cause mortality 0-64 by state and year. The data were gathered on 1 January 2019.

import delimited "state_level_public_data_example/data/Multiple Cause of Death, 1999-2017.txt"

// Drop total variables

drop if missing(year)

// Drop unneeded variables from CDC Wonder

drop notes

// Drop years after expansion

drop if year>=2014
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// Drop if year before first desired year

drop if year<‘first_year’

// Change state name to be state postal code

replace state ="AL" if state=="Alabama"

replace state ="AK" if state=="Alaska"

replace state ="AZ" if state=="Arizona"

replace state ="AR" if state=="Arkansas"

replace state ="CA" if state=="California"

replace state ="CO" if state=="Colorado"

replace state ="CT" if state=="Connecticu "

replace state ="DE" if state=="Delaware"

replace state ="DC" if state=="District of Columbia"

replace state ="FL" if state=="Florida"

replace state ="GA" if state=="Georgia"

replace state ="HI" if state=="Hawaii"

replace state ="ID" if state=="Idaho"

replace state ="IL" if state=="Illinois"

replace state ="IN" if state=="Indiana"

replace state ="IA" if state=="Iowa"

replace state ="KS" if state=="Kansas"

replace state ="KY" if state=="Kentucky"

replace state ="LA" if state=="Louisiana"

replace state ="ME" if state=="Maine"

replace state ="MD" if state=="Maryland"

replace state ="MA" if state=="Massachusetts"

replace state ="MI" if state=="Michigan"

replace state ="MN" if state=="Minnesota"

replace state ="MS" if state=="Mississippi"

replace state ="MO" if state=="Missouri"

replace state ="MT" if state=="Montana"

replace state ="NE" if state=="Nebraska"

replace state ="NV" if state=="Nevada"
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replace state ="NH" if state=="New Hampshire"

replace state ="NJ" if state=="New Jersey"

replace state ="NM" if state=="New Mexico"

replace state ="NY" if state=="New York"

replace state ="NC" if state=="North Carolina"

replace state ="ND" if state=="North Dakota"

replace state ="OH" if state=="Ohio"

replace state ="OK" if state=="Oklahoma"

replace state ="OR" if state=="Oregon"

replace state ="PA" if state=="Pennsylvania"

replace state ="RI" if state=="Rhode Island"

replace state ="SC" if state=="South Carolina"

replace state ="SD" if state=="South Dakota"

replace state ="TN" if state=="Tennessee"

replace state ="TX" if state=="Texas"

replace state ="UT" if state=="Utah"

replace state ="VT" if state=="Vermont"

replace state ="VA" if state=="Virginia"

replace state ="WA" if state=="Washington"

replace state ="WV" if state=="West Virginia"

replace state ="WI" if state=="Wisconsin"

replace state ="WY" if state=="Wyoming"

// Add expansion status to each state

gen expansion4=0

label define expansion4 0 "0. Non-expansion" 1 "1. Full expansion" ///

2 "2. Mild expansion" 3 "3. Substantial expansion"

label values expansion4 expansion4

local full AZ AR CO IL IA KY MD NV NM NJ ND OH OR RI WV WA

foreach x in ‘full’ {

replace expansion4=1 if state=="‘x’"

}

local mild DE DC MA NY VT
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foreach x in ‘mild’ {

replace expansion4=2 if state=="‘x’"

}

local medium CA CT HI MN WI

foreach x in ‘medium’ {

replace expansion4=3 if state=="‘x’"

}

// Account for mid-year expansions

replace expansion4=1 if state=="MI" //MI expanded in April 2014

replace expansion4=1 if state=="NH" //NH expanded in August 2014

replace expansion4=1 if state=="PA" //PA expanded in Jan 2015

replace expansion4=1 if state=="IN" //IN expanded in Feb 2015

replace expansion4=1 if state=="AK" //AK expanded in Sept 2015

replace expansion4=1 if state=="MT" //MT expanded in Jan 2016

replace expansion4=1 if state=="LA" //LA expanded in July 2016

// Keep only full or non-expansion states

drop if expansion4==2 | expansion4==3

// Store number of expansion states

distinct statecode if expansion4==1

scalar number_expand = r(ndistinct)

// Save data to be called in power analysis

// ====================

// Save temporary dataset to be called

compress

save "state_level_public_data_example/temp/temp_data.dta", replace

////////////////////////////////////////////////////////////////////////////////
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// Run simulated power analysis

// ====================

// Start a timer to show how long this takes

timer on 1

// Create matrix to store results

matrix b_storage = J(‘max_dataset_number’,‘max_steps’,.)

matrix se_storage = J(‘max_dataset_number’,‘max_steps’,.)

matrix p_storage = J(‘max_dataset_number’,‘max_steps’,.)

// Start run counter for % update

local run_count = 1

// Run a loop. Performing the power analysis once for each of the desired number of datasets. The following output is supressed for the html document even though it runs. This is to ensure the document is not too long.

forvalues dataset_number = 1(1)‘max_dataset_number’ {

// Display the dataset number

qui di "‘dataset_number’"

// Open main dataset for analysis

qui use "state_level_public_data_example/temp/temp_data.dta", clear

// Set seed for reproducibility. We want the seed to be the same within a dataset.

qui local rand_seed = 1234 + ‘dataset_number’

qui set seed ‘rand_seed’

///////////////////////////////////////////////////////////////////////////////

// Generate a random variable for each state, then the first N in rank will be

// considered expansion states. Where N is # of expansion states
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qui bysort statecode: gen random_variable = runiform() if _n==1

qui bysort statecode: carryforward random_variable, replace

// Rank the states

qui egen rank = group(random_variable)

// Given this random ordering of states, assign expansion status to the # set above

qui gen expansion = 0

qui replace expansion=1 if rank <=number_expand

// Do this same thing for the treatment variable

qui gen treatment = 0

qui replace treatment = 1 if expansion==1 & year>=‘last_year’

// Create Post variable

qui gen post = 0

qui replace post =1 if year>=‘last_year’

// Generate a death rate with no effect

qui gen death_rate = (deaths/population)*100000

// Gen order variable

qui gen order = _n

/////////////////////////////////////////////////////////////////////////////

// Create a reduced deaths variable by a given percentage using the binomial for each effect size

qui local counter = 1

foreach x in ‘step_macro’ {

qui gen reduced_deaths_‘counter’ = 0

qui replace reduced_deaths_‘counter’ = rbinomial(deaths,‘x’) if treatment==1

qui replace reduced_deaths_‘counter’=0 if missing(reduced_deaths_‘counter’)

qui gen deaths_‘counter’ = deaths - reduced_deaths_‘counter’

qui replace deaths_‘counter’=0 if missing(deaths_‘counter’)

A20



qui gen death_rate_‘counter’= ln((deaths_‘counter’/population)*100000+1)

// Move the row and counter one forward

qui local counter = ‘counter’ + 1

}

/////////////////////////////////////////////////////////////////////////////

// Run regression of treatment on reduced deaths variable for each effect size

// Reset the counter

qui local counter = 1

forvalues counter = 1(1)‘num’ {

qui reghdfe death_rate_‘counter’ ///

i.treatment ///

i.post i.expansion ///

[aweight=population] ///

, absorb(statecode year) vce(cluster statecode)

//Evaluate Effect using nlcom. Since we will do a tranform of the log results

qui nlcom 100*(exp(_b[1.treatment])-1)

// Store in matrices

mat b = r(b)

mat V = r(V)

scalar b = b[1,1]

scalar se_v2 = sqrt(V[1,1])

scalar p_val = 2*ttail(‘e(df_r)’,abs(b/se_v2))

mat b_storage[‘dataset_number’, ‘counter’] = b

mat se_storage[‘dataset_number’, ‘counter’] = se_v2

mat p_storage[‘dataset_number’, ‘counter’] = p_val

// Display Percent Complete
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di "///////////////////////////////////////////////////////////////////////"

di "///////////////////////////Percent Complete///////////////////////////"

di ((‘run_count’-1)/‘max_row’)*100

di "///////////////////////////////////////////////////////////////////////"

qui local run_count = ‘run_count’ + 1

qui local counter = ‘counter’ + 1

}

}

// Stop timer

timer off 1

timer list

// Erase temporary dataset used for analysis

erase "state_level_public_data_example/temp/temp_data.dta"

// Save power results as csv

quietly {

clear

svmat b_storage

format * %20.5f

svmat se_storage

format * %20.5f

svmat p_storage

format * %20.5f

ds p_*

foreach x in ‘r(varlist)’ {

replace ‘x’ = 0 if ‘x’ < .00001

}
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export delimited using "state_level_public_data_example/temp/power_simulation_storage.csv", replace

}

////////////////////////////////////////////////////////////////////////////////

// Clean results from simulated power analysis

// ====================

// Calculate a count variable

gen count = 1

// Make an indicator if powered at a certain level

local counter = 1

foreach x in ‘step_macro’ {

// Calculate indicator for power threshold for an observation

gen power_10_‘counter’ = 0

gen power_05_‘counter’ = 0

gen power_01_‘counter’ = 0

gen power_001_‘counter’ = 0

replace power_10_‘counter’ = 1 if p_storage‘counter’ <= .1

replace power_05_‘counter’ = 1 if p_storage‘counter’ <= .05

replace power_01_‘counter’ = 1 if p_storage‘counter’ <= .01

replace power_001_‘counter’ = 1 if p_storage‘counter’ <= .001

// Move the counter one forward

local counter = ‘counter’ + 1

}

// Make an indicator if sign error at a certain level
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local counter = 1

foreach x in ‘step_macro’ {

local power_list 10 05 01 001

foreach y in ‘power_list’ {

gen s_error_‘y’_‘counter’ = 0

replace s_error_‘y’_‘counter’ = 1 if power_‘y’_‘counter’ == 1 & b_storage‘counter’ > 0

}

// Move the counter one forward

local counter = ‘counter’ + 1

}

// generate magnitude-error

local counter = 1

foreach x in ‘step_macro’ {

gen m_error_‘counter’ = abs(b_storage‘counter’/(‘x’*100))

local power_list 10 05 01 001

foreach y in ‘power_list’ {

gen m_error_‘y’_‘counter’ = m_error_‘counter’

replace m_error_‘y’_‘counter’ = . if power_‘y’_‘counter’ == 0

}

drop m_error_‘counter’

// Move the counter one forward

local counter = ‘counter’ + 1

}

// Generate Beliveabilitiy
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local counter = 1

foreach x in ‘step_macro’ {

local power_list 10 05 01 001

foreach y in ‘power_list’ {

gen believe_‘y’_‘counter’ = 0

replace believe_‘y’_‘counter’ = 1 if power_‘y’_‘counter’ == 1 & m_error_‘y’_‘counter’ <= 2 & power_‘y’_‘counter’ == 1

}

// Move the counter one forward

local counter = ‘counter’ + 1

}

// Collapse by effect size

gcollapse (sum) count power_* s_error_* believe_* (mean) m_error_*

// Reshape data by effect size

reshape long ///

power_10_@ power_05_@ power_01_@ power_001_@ ///

s_error_10_@ s_error_05_@ s_error_01_@ s_error_001_@ ///

m_error_10_@ m_error_05_@ m_error_01_@ m_error_001_@ ///

believe_10_@ believe_05_@ believe_01_@ believe_001_@, ///

i(count) j(effect_size)

// Remove hanging _

rename *_ *

// Turn into a percent

local power_list 10 05 01 001

foreach y in ‘power_list’ {

replace s_error_‘y’ = (s_error_‘y’/power_‘y’)*100
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replace s_error_‘y’ = . if effect_size == 1 // Cannot have a sign-error when no treatment effect

}

// Turn into a percent

qui ds power_* believe_*

foreach x in ‘r(varlist)’ {

replace ‘x’ = (‘x’/count)*100

}

// Cannot have a sign-error when no treatment effect

local power_list 10 05 01 001

foreach y in ‘power_list’ {

replace believe_‘y’ = . if effect_size == 1

}

// Fix effect size

local counter = 1

foreach x in ‘step_macro’ {

replace effect_size = ‘x’*100 in ‘counter’

// Move the counter one forward

local counter = ‘counter’ + 1

}

// Drop unneeded variables

drop count
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////////////////////////////////////////////////////////////////////////////////

// Plot power curves

// ====================

// Create a variable that is the gap between desired power level and closest estimates

capture drop gap

gen gap = abs(80 - power_05)

// Sort on this variable

sort gap

// Run a regression on the two closest observations

qui reg power_05 effect_size in 1/2

// Predict MDE using these two points (more accurate for finer grid)

scalar mde = (power_05-_b[_cons])/_b[effect_size]

local mde = mde

// Add label to graph with this MDE

capture drop mde_label

gen mde_label = ""

set obs ‘=_N+1’

replace mde_label = "MDE" in ‘=_N’

replace effect_size = ‘mde’ in ‘=_N’

capture drop full_power

gen full_power = 102.5
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// Plot power curve

sort effect_size

twoway connected power_10 effect_size , lpattern("l") color(sea) msymbol(none) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) ///

|| connected power_05 effect_size , lpattern(".._") color(turquoise) msymbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected power_01 effect_size , lpattern("_") color(vermillion) msymbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected power_001 effect_size , lpattern("l") color(black) msymbol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) ///

|| scatter full_power effect_size , mlabel(mde_label) msymbol(none) mlabpos(12) mlabsize(3.5) ///

xline(‘mde’, lpattern(dash) lcolor(gs3) lwidth(.5) noextend) ///

ytitle("Percent with Significant Treatment Effect", size(4)) ///

xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly Mortality)", size(4) ) ///

xscale(r(0 5)) ///

xlabel(, nogrid labsize(4)) ///

ylabel(0 "0%" 20 "20%" 40 "40%" 60 "60%" 80 "80%" 100 "100%",gmax noticks labsize(4)) ///

legend(order( 1 2 3 4) pos(6) col(4) ///

label(1 "{&alpha} =.10") label(2 "{&alpha} =.05") ///

label(3 "{&alpha} =.01") label(4 "{&alpha} =.001") size(4)) ///

title("Simulated Power Analysis; DD, 0-64, All Cause Mortality" " ", size(4))

graph export "state_level_public_data_example/output/simulated_power_analysis.png", replace width(800)

// ![Simulated Power Analysis; DD, 0-64, All Cause Mortality](simulated_power_analysis.png){width="100%"}

A28



Figure A5: Power
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// Plot sign error

sum s_error_10

gen s_error_label= 62.5

twoway connected s_error_10 effect_size , lpattern("l") color(sea) msymbol(none) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) ///

|| connected s_error_05 effect_size , lpattern(".._") color(turquoise) msymbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected s_error_01 effect_size , lpattern("_") color(vermillion) msymbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected s_error_001 effect_size , lpattern("l") color(black) msymbol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) ///

|| scatter s_error_label effect_size , mlabel(mde_label) msymbol(none) mlabpos(12) mlabsize(4) ///

ytitle("Percent", size(4)) ///

xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly Mortality)", size(4)) ///

legend(size(4) order(1 2 3 4) pos(6) col(4) label(1 "{&alpha} =.10") label(2 "{&alpha} =.05") label(3 "{&alpha} =.01") label(4 "{&alpha} =.001")) ///

xscale(r(0 5)) ///

xline(‘mde’, lpattern(dash) lcolor(grey) noextend) ///

xlabel( , nogrid labsize(4)) ///

ylabel(0 "0%" 20 "20%" 40 "40%" 60 "60%",gmax noticks labsize(4)) ///

title("Likelihood of Significant Coefficient Having Wrong Sign" "DD, 0-64, All Cause Mortality" " ", size(4))

graph export "state_level_public_data_example/output/s_error.png", replace width(800)

// ![Likelihood of Significant Coefficient Having Wrong Sign DD, 0-64, All Cause Mortality](s_error.png){width="100%"}
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Figure A6: Sign error
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// Plot magnitude error

sum m_error_001

gen height= ‘r(max)’*1.05

twoway connected m_error_10 effect_size , lpattern("l") color(sea) msymbol(none) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) ///

|| connected m_error_05 effect_size , lpattern(".._") color(turquoise) msymbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected m_error_01 effect_size , lpattern("_") color(vermillion) msymbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected m_error_001 effect_size , lpattern("l") color(black) msymbol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) ///

|| scatter height effect_size , mlabel(mde_label) msymbol(none) mlabpos(12) mlabsize(4) ///

ytitle("Mean abs(sig coef/imposed effect)", size(4)) ///

xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly Mortality)", size(4)) ///

legend(size(4) order(1 2 3 4) pos(6) col(4) label(1 "{&alpha} =.10") label(2 "{&alpha} =.05") label(3 "{&alpha} =.01") label(4 "{&alpha} =.001")) ///

xscale(r(0 5)) ///

xline(‘mde’, lpattern(dash) lcolor(grey) noextend) ///

xlabel(, nogrid labsize(4)) ///

ylabel(, gmax noticks labsize(4)) ///

title("Exaggeration Ratio; DD, 0-64, All Cause Mortality" " ", size(4))

graph export "state_level_public_data_example/output/m_error.png", replace width(800)

// ![Exaggeration Ratio; DD, 0-64, All Cause Mortality](m_error.png){width="100%"}
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Figure A7: Magnitude error
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// Plot believability

twoway connected believe_10 effect_size , lpattern("l") color(sea) msymbol(none) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) ///

|| connected believe_05 effect_size , lpattern(".._") color(turquoise) msymbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected believe_01 effect_size , lpattern("_") color(vermillion) msymbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) ///

|| connected believe_001 effect_size , lpattern("l") color(black) msymbol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) ///

|| scatter full_power effect_size , mlabel(mde_label) msymbol(none) mlabpos(12) mlabsize(4) ///

xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly Mortality)", size(4)) ///

legend(size(4) order(1 2 3 4) pos(6) col(4) label(1 "{&alpha} =.10") label(2 "{&alpha} =.05") label(3 "{&alpha} =.01") label(4 "{&alpha} =.001")) ///

ytitle("Probability", size(4)) ///

xscale(r(0 5)) ///

xline(‘mde’, lpattern(dash) lcolor(grey) noextend) ///

xlabel(, nogrid labsize(4)) ///

ylabel(0 "0%" 20 "20%" 40 "40%" 60 "60%" 80 "80%" 100 "100%",gmax noticks labsize(4)) ///

title("Likelihood of believable coefficient; DD, 0-64, All Cause Mortality" " ", size(4))

graph export "state_level_public_data_example/output/believable.png", replace width(800)

// ![Likelihood of believable coefficient; DD, 0-64, All Cause Mortality](believable.png){width="100%"}
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Figure A8: Believability
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Using this simple example, we can see that for this simple research design the minimum mor-
tality reduction that is believable, well-powered (80%), and significant at the 5% level is around
3%. Changing the research design (e.g. adding control variables, shifting to the county-level,
changing the cause of death) would certainly impact power.

This simple research design is a DiD comparing 23 random treated states to 18 random con-
trol states. In this simple design we used 5 years of pre-expansion data and 3 years of post-
expansion data. Both state and year fixed-effects were included. Regressions were weighted by
state-population and standard errors were clustered at the state-level. The dependent variable was
the natural log of the all-cause non-elderly mortality rate per 100,000.
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