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ABSTRACT
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Uncertainty in "policy errors" increases substantially when we account for these underlying 
prediction errors.
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1 Introduction

Particulate matter pollution poses serious health risks—particularly for children, the elderly, and sen-

sitive populations. In the U.S., air pollution regulations have increasingly focused on smaller particles,

such as those less than 2.5 micrometers (PM2.5). These regulations are enforced using ambient air

pollution measurements, collected from the EPA’s air-quality monitoring network.

The network of regulatory-grade monitors is spatially sparse; more than 80 percent of U.S. counties

do not contain a PM2.5 monitor. Coarse measurements of air-pollution concentrations can lead to

significant gaps in our understanding of the burden of exposure for certain areas. These gaps have

potentially important implications for the design and implementation of existing air-quality regulations.

Recent advances in satellite technology, combined with advances in prediction techniques—e.g., ma-

chine learning—may relax some of these information constraints. For instance, a growing suite of satellite

observations of aerosol optical depth (AOD) make it possible to estimate ground-level concentrations of

PM2.5 at fine spatial resolutions (<1km). Social scientists are increasingly using these satellite-based

estimates of PM2.5 concentrations to analyze the health and economic impacts of ambient pollution

exposure (e.g., Sullivan and Krupnick (2018), Voorheis (2016), Di et al. (2017)).

This paper uses two state-of-the-art, satellite-based PM2.5 data products (Di et al., 2016; van Donke-

laar et al., 2019) to assess the extent to which the EPA’s existing, monitor-based measurements over-

or under-estimate true exposure to PM2.5 pollution. We show that regulatory-grade monitor measure-

ments fail to capture a significant amount of spatial variation in the satellite-based estimates. Treating

satellite-based estimates as truth would imply a substantial number of “policy errors” by the EPA—over-

regulating certain areas that are already in compliance with the Clean Air Act (CAA) National Ambient

Air Quality Standards (NAAQS) and under-regulating other areas that, according to the satellite-based

estimates, are in violation of the standards. Somewhat counter-intuitively, we show that re-calibrating

existing policies to capture more spatially resolved measures of pollution exposure need not improve

health outcomes overall.

We also highlight the importance of accounting for prediction error in satellite-based estimates. These

highly spatially resolved datasets offer the potential for new and important insights into the distribution

and impacts of air quality. However, these data are estimates of the true PM2.5 concentration at a

location and contain prediction or forecast errors. The forecast errors associated with these satellite-

based data products have largely been ignored by the social-science research community, and many of

our original conclusions in regards to “policy errors” become substantially more uncertain.

2 Pollution-Concentration Measurement and Estimation

The U.S. EPA directly measures surface PM2.5 concentrations using in situ, filter-based monitors. To-

gether these monitors form a precise but spatially sparse network of PM2.5 measurements that is fairly

expensive to maintain. Recent work in atmospheric, computer, and environmental sciences offers the

potential to extend the spatial coverage of PM2.5 measurements.

By combining satellite-based measures of AOD with chemical-transport modeling and land character-

istics, researchers are able to estimate ground-level concentrations of PM2.5 at high levels of spatial dis-

aggregation. Further, the in situ EPA monitors provide training data for statistical models—mitigating

bias and increasing precision in these satellite-based estimates.

We obtained two data products that estimate annual PM2.5 concentrations in the continental United

States at a high spatial resolution. First, Di et al. (2016) use a neural network to predict daily PM2.5
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concentrations at nationwide 1 km×1 km grid cells over the period 2000 to 2015. Second, van Donkelaar

et al. (2019) combine satellite remote-sensing data with chemical transport modeling and geographically

weighted regression to predict annual PM2.5 concentrations at 1-kilometer resolution 1998–2016. We

spatially intersect both sets of data with U.S. Census block-group (CBG) boundary files from the year

2000. Appendix Figures 2a and 2b plot estimated PM2.5 concentrations for 2005 by Di et al. (2016) and

van Donkelaar et al. (2019), respectively.

3 Policy Context

The United States’ Clean Air Act National Ambient Air Quality Standards (NAAQS) specify maximum

allowable concentrations for common air pollutants (e.g., PM2.5 and lead). Compliance (attainment)

within NAAQS is determined using monitor-based design values. For PM2.5, each EPA monitor is used

to construct two design values: a 3-year annual average concentration and a 3-year average of the annual

98th percentile of 24-hour concentrations. If either design value exceeds its respective NAAQS PM2.5

threshold, the EPA classifies the monitor’s jurisdiction (usually its county) as non-attainment. Areas

that fail to meet these standards must take steps to improve air quality (e.g., mandatory pollution

abatement technologies for air pollution point sources).

Our analysis focuses on the 1997 PM2.5 NAAQS, which set an annual-average standard of 15 µg/m3

and a 24-hour standard of 65 µg/m3. Following court challenges, these 1997 standards were enacted in

2005. Virtually all non-attainment designations from the 1997 standard occurred due to violations of

the annual (versus 24 hour) standard.1 We use the satellite-based estimates to construct design values

for each CBG, and we compare these design values to the de jure, county-level design values (i.e., design

values based on the maximum EPA monitor readings within the county).

We first use EPA AQS monitors to construct the 3-year annual average design values for all 685

counties that had monitors in 2005. Counties that do not have a monitor receive a design value of 0

and are accordingly classified as in attainment. Next, we use the satellite-based estimates constructed

by Di et al. (2016) and van Donkelaar et al. (2019) to construct the 3-year annual average design values

for every CBG in 2005. Figure 1 summarizes the relationship between the satellite-based design values

and the corresponding monitor-based design values. Figure 1a explores these relationships using the Di

et al. (2016) data, whereas Figure 1b plots the monitor versus van Donkelaar et al. (2019) data. The

distribution to the left of each figure shows the extent of variation in satellite-based estimates in counties

with no EPA monitor.

These figures illustrate the striking variation in satellite-based measurements for counties that share

the same monitor-based, county-wide design value. Recall that the monitor-based, county-wide design

value is the only piece of information that the EPA currently uses to regulate counties under NAAQS.

If we assume that these satellite-based estimates are precise and unbiased, these figures suggest that

the county-level, monitor-based design values are a very crude proxy for true pollution concentrations

in many locations.

However, some of the observed variation in satellite-based estimates likely reflects prediction errors,

rather than true variation in underlying PM2.5 concentrations. Ideally, our analysis would account for

both bias and uncertainty in these estimates. We explore the extent of prediction errors by focusing

on the 911 CBGs equipped with an EPA monitor, comparing the satellite-based estimates to the EPA

1In contrast, violations of the current standards (enacted in 2009) were mostly triggered by violations of the 24-hour
standard. We cannot construct these design values using annual satellite-based estimates, so we focus on the earlier standard.
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monitor readings for the same area. Appendix Figures 3a and 3b provide a sense of the range of satellite-

based estimates we observe across CBGs with similar monitor readings. The range of these estimates,

particularly at higher measured PM2.5 concentrations, is significant.

Regulatory-grade monitors measure pollution concentrations directly and with high precision at a

particular location. If we assume that spatial variation within a CBG is minimal, we can interpret the

difference between monitor-based design values and the satellite-based design values as prediction errors

for the 911 CBGs that have a monitor. However, there are over 215,000 CBGs without a monitor, so

we try to forecast the prediction errors for these CBGs “out of sample.” We begin by regressing the

“in-sample” prediction errors on a set of seven CBG-level observable variables.2 We use this regression

model to predict errors in the satellite-based predictions—for both in-sample (the 911 CBGs that contain

a monitor) and out-of-sample predictions (the more than 215,000 CBGs without a monitor).We use the

standard error from this regression model to create a 95% prediction interval for each CBG pollution

estimate.3 We will use these prediction intervals below to better understand the extent to which our

conclusions are sensitive to this measure of satellite-based estimation uncertainty.

4 Nonattainment Designations, Revisited

We distinguish between two types of attainment designation “errors”. A “Type 1” error (i.e., False

Positive) occurs if the 3-year annual average of satellite-based estimates of PM2.5 concentrations in a

CBG falls below the NAAQS standard of 15 µg/m3, but the associated county-level, EPA monitor-

based design value exceeds this threshold. Conversely, a “Type 2” error (i.e., False Negative) occurs

if the estimated CBG pollution concentration exceeds the regulatory standard, whereas the associated

county-level, monitor-based design value does not.

4.1 Policy “Errors”

Panel A of Table 1 summarizes the results of this classification exercise using the Di et al. (2016) satellite

data, whereas Panel C presents results using van Donkelaar et al. (2019) PM2.5 estimates. We first

calculate designation errors assuming that the satellite-based estimates provide an unbiased and precise

estimate of true PM2.5 concentrations. We then incorporate uncertainty stemming from prediction

errors, using the lower and upper bounds of the 95% prediction interval to compute designation errors.

Numbers in parentheses report results using the lower and upper estimates, respectively.

Panels A and C in Table 1 show how populations are distributed across correctly classified and

misclassified attainment designations, respectively. Column (1) shows that a majority of the population

live in areas that have been correctly designated as in attainment based upon year-2005 design values

(satellite-based point estimates imply around 78% fall into this category). Column (4) shows that the

share of the population living in properly designated non-attainment areas is much smaller. We find

Type 1 errors (Column (2)) are much more prevalent than Type 2 errors (Column (3)). 11-14% of the

population live in areas that are designated as non-attainment using the de jure monitor measurement

but are associated with satellite-based estimates of PM2.5 concentrations that fall below the NAAQS

2The CBG-level explanatory variables in this regression are: The monitor-based PM2.5 estimate, total population, the
share of the population that is white, the share of the population that is rural, minimum and maximum elevation, and land
area.

3For this simple thought exercise, we are assuming that the regression error is independent of the x’s, normally distributed,
with zero mean, and constant variance.
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limits. Only 1-2% of the population live in areas that appear to exceed the NAAQS threshold (using

either satellite-based data product), but are classified as “attainment” under the de jure, monitor-based

NAAQS policy. Estimates in parentheses show how the relative importance of Type 1 and Type 2 errors

is sensitive to the prediction interval bounds we use. Intuitively, when we use the lower bound of the 95%

prediction interval for the satellite data, we are more likely to see CBGs misclassified as non-attainment

based on de jure monitor readings when “true” pollution concentrations, as measured by satellites,

meet the standard (i.e., Type 1 errors). When we use the upper bound of the 95% prediction intervals

from the satellite data, we see more CBGs designated as in-attainment based on monitor-readings when

satellite-based estimates exceed the NAAQS threshold (Type 2 errors).

4.2 Health Implications

The vast majority of the damages associated with PM2.5 exposure are mortality related. Panels B and

D of Table 1 use the satellite-based estimates of PM2.5 concentrations to estimate the likely health

implications of the classification errors we have identified.

To assess the mortality impacts of our findings, we adopt an approach similar to the regulatory

impact analyses conducted by the EPA which is based on estimated concentration-response (or“hazard”)

functions. These functions relate PM2.5 exposure to mortality risk. Importantly, the scientific evidence

on health impacts has yet to identify a safe threshold for PM2.5 exposure.4 In contrast, the threshold-

based design of NAAQS is most consistent with marginal damages that are low or zero below the

threshold and high above. This mismatch between the structure of the NAAQS and the underlying

concentration-response relationship has important implications when assessing the health implications of

designation errors. In particular, it implies that Type 1 errors (i.e., over-regulation) generate potentially

significant benefits in the form of reduced mortality.

Panels B and D of Table 1 summarize estimated annual mortality benefits associated with a 1 µg/m3

reduction in PM2.5 concentrations. “Lower” estimates of deaths avoided are based on Krewski et al.

(2009). “Higher” estimates are based on Lepeule et al. (2012). See Appendix A for more details.

We speculate that moving a county into non-attainment would induce a reduction in annual average

concentrations of at least 1 µg/m3. To put this assumption in perspective, Sullivan and Krupnick (2018)

estimate that a non-attainment classification under the 2012 standard reduced pollution concentrations

by more than 2 µg/m3.

Satellite-based point estimates imply that the mortality implications of Type 1 errors (i.e., reduction

in mortality from regulating areas already in compliance) may be much more consequential than the

foregone mortality benefits associated with Type 2 errors (i.e., the mortality increase associated with

failing to regulate areas that are out of compliance). Panel B of Table 1 suggests that when using the

higher hazard ratio parameters of Lepeule et al. (2012), 335 deaths resulted from a failure to designate

areas exceeding the NAAQS threshold as non-attainment, whereas 1,982 deaths were avoided as a

consequence of designating areas that met the standard as non-attainment. The estimates from Panel D

are qualitatively similar. However, these results are sensitive to which prediction-interval bounds we use.

In other words, our estimated prediction errors suggest significant uncertainty underlies these estimated

mortality impacts of Type 1 and Type 2 errors.

4In fact, there is some evidence that the mortality-related benefits from incremental reductions in PM2.5 concentrations
may be higher at lower concentrations U.S. EPA (2018).
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5 Conclusion

Newly available, spatially resolved pollution data present a host of new opportunities—for both research

and policy. We use state-of-the-art satellite estimates to assess the extent to which the limited network

of EPA monitors leads to over and/or under detection of violations of PM2.5 standards.

We arrive at the surprising conclusion that using more spatially disaggregated measures of PM2.5

concentrations to determine NAAQS attainment need not be welfare improving, relative to the current

status-quo. The reason is twofold. First, we find that a significant share of the population is living in

areas where satellite-based estimates of pollution concentrations fall below the NAAQS threshold, but

EPA monitor-based design values exceed the threshold (i.e., these populations received health benefits

from “over-regulation”). In contrast, the share of the population living in areas where the reverse appears

to be true is small. Second, the design of the NAAQS standards poorly approximate the underlying

damage function. This implies that marginal benefits from pollution reductions are significant in areas

that meet NAAQS standards.

Finally, it is important to recognize that satellite-based estimates of pollution concentrations are not

direct measures. Prediction error appears to be economically significant, and the error structure is poorly

understood. In general, satellite estimates appear to be biased down at higher PM2.5 concentrations,

which could explain the prevalence of what appear to be “Type 1” designation errors. We conclude

that further work exploring the precision, bias, and limits of these estimates remains important to

understanding the health and policy implications of spatial heterogeneity in pollution exposure.
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Tables and Figures

(a) Di et al. (b) van Donkelaar et al. (2019)

Figure 1: Comparing PM2.5 Measurements: Monitor-Based vs. Satellite-Based Estimates

Notes: These figures plot the relationship between satellite-based design values and monitor-based design values in 2005. An

observation is a Census block group. The graphs show the variation in satellite-based design values for each level of monitor

design values. The distribution to the left of each figure shows the variation in satellite-based estimates in counties with no

EPA monitor. Source: Authors, Di et al. (2016), van Donkelaar et al. (2019), EPA-AQS.
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Table 1: Comparing NAAQS Designation: Monitors and Satellite-Based Estimates

Satellite Attain Satellite Nonattain

Monitor Designation: Attain Nonattain Attain Nonattain
(1) (2) (3) (4)

Panel A: Population Summary (Di et al.)

Population (millions) 234.3 33.1 5.7 29.9
(239.7, 111.7) (29.2, 0.2) (0.3, 128.3) (33.8, 62.9)

Population share 77.3% 10.9% 1.9% 9.9%
(79.1%, 36.9%) (9.6%, 0.1%) (0.1%, 42.3%) (11.2%, 20.8%)

Panel B: Mortality Impacts (Di et al.)

Avoided deaths 4,640 694 116 614
Lower estimate (4,748, 2,201) (651, 5) (8, 2,556) (657, 1,303)

Avoided deaths 13,489 1,982 335 1,726
Higher estimate (13,802, 6,448) (1,868, 14) (22, 7,376) (1,840, 3,694)

Panel C: Population Summary (van Donkelaar et al.)

Population (millions) 238.8 42.3 1.2 20.8
(240.0, 106.2) (43.8, 0.2) (0.0, 133.8) (19.3, 62.8)

Population share 78.8% 14.0% 0.4% 6.9%
(79.2%, 35.0%) (14.5%, 0.1%) (0.0%, 44.2%) (6.4%, 20.7%)

Panel D: Mortality Impacts (Van Donkelaar et al.)

Avoided deaths 4,733 883 23 425
Lower estimate (4,757, 2,080) (949, 5) (0, 2,676) (359, 1,302)

Avoided deaths 13,758 2,532 66 1,175
Higher estimate (13,824, 6,097) (2,721, 15) (0, 7,727) (987, 3,693)

Notes: These estimates come from comparing satellite-based estimates to EPA AQS monitor data. We spatially intersect the

Di et al. and van Donkelaar et al. estimates with census block groups to provide the relevant demographic characteristics and

baseline mortality rates. The column NAAQS classifications are based on the 2005 3-year Annual Design Values, calculated at

(i) the county-level for EPA monitors or (ii) at the census block-group level for the satellite-based estimates. Avoided death

estimates come from two concentration-response functions: lower estimate (Krewski et al., 2009) and higher estimate (Lepeule

et al., 2012).
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A Appendix: Concentration-Response Functions

Concentration-response (or “hazard”) functions relate exposure to concentrations of a PM2.5 to risk of
negative health impacts. Notably, no safe threshold has been identified, and some research suggests that
marginal benefits from abatement are decreasing in baseline concentrations (see, for example, Krewski
et al. (2009)). Here, we follow the EPA standard for Regulatory Impact Analysis and assume a log-linear
functional form over the range of PM2.5 concentrations we observe.

These functions are typically estimated using random-effects Cox proportional-hazard models. Log-
linear specifications regress the natural log of mortality risk on PM2.5 concentration levels:

ln(λ(X,PM2.5) = ln(λ̂) +X ′β + γPM2.5,

where λ̂ is the baseline mortality risk; X is a matrix of covariates that presumably affect mortality;
and PM2.5 is the pollution concentration level. We are primarily interested in γ which captures the
estimated average effect of an incremental change in PM2.5 concentrations on mortality (conditional on
X.

Taking the ratio of two hazard functions identifies the relative mortality risk (RR) or hazard ratio
(HR) between a relatively high concentration of pollution and a low concentration:

HR =
λ(X,PM

′

2.5)

λ(X,PM
′′

2.5)
= exp(γ(PM

′′

2.5 − PM
′

2.5))

Note that, using the log-linear function of the concentration-response function, an incremental change
in pollution concentration will lead to the same value of the hazard ratio, regardless of the baseline level
of the concentration.

We use these hazard ratios to evaluate, for a given location, the impact of an incremental change
in air pollution concentrations (relative to the baseline concentrations we observe). To implement this
empirically, we use mortality relative risk (RR) ratios estimated by two influential studies.

• Krewski et al. (2009) analyze a large, ongoing American Cancer Society Cancer Prevention Study
of mortality in adults initiated in 1982. Krewski et al. (2009) incorporate additional years of follow-
up and include refinements of statistical methods and incorporate sophisticated control of bias and
confounding. Data analyzed included all causes, cardiopulmonary disease (CPD), ischemic heart
disease (IHD, reduction of blood supply to the heart, potentially leading to heart attack), lung
cancer, and all remaining causes.

When estimating PM mortality impacts based on the Krewski et al. (2009) study, the U.S. EPA
applies mortality risk coefficients stratified by educational attainment. We follow this approach.5

• In another influential study, Lepeule et al. (2012) estimate cause-of-death specific hazard ratios.
We use these cause-of-death-specific estimates from this study to construct our ‘high’ mortality
impact estimates.

We estimate the census block group mortality rates using the average annual deaths in county i
divided by the county population. Following the literature, we focus exclusively on mortality rates asso-
ciated with cardiovascular diseases, ischemic heart disease and cerebrovascular disease, and respiratory
complications. We estimate the mortality impacts of an incremental (i.e., 1 µg/m3) reduction in PM2.5

concentrations as:

∆Deathsij =Popij · λij [1−
1

HRj(Ci − 1)
]

=Popij · λij [1− exp(−γj)],

where i denotes county and j denotes the population cohort.

5Krewski et al. (2009) find that educational attainment is inversely related to mortality risk. Populations with lower levels
of education are more vulnerable to PM2.5 related mortality.

10



B Appendix Figures

(a) Di et al. (b) van Donkelaar et al.

(c) EPA Monitor-Based Measurements

Figure 2: Satellite-Based PM2.5 Measurements and EPA AQS Monitoring Network, 2005

Notes: These figures display the 2005 annual mean pollution concentrations from Di et al. (2016), van Donkelaar et al. (2019),

EPA-AQS monitors, respectively. We winsorized the EPA monitor data above their 95th percentile (17.5).
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(a) Di et al. (b) van Donkelaar et al. (2019)

Figure 3: Comparing PM2.5: Monitors’ Measurements vs. Satellite-Based Estimates

Notes: These figures display the relationships between satellite-based pollution measurements and monitor based pollution

measurements for the 911 census block groups that contain an EPA PM2.5 monitor. The blue boxes depict the range of

estimates (2.5th–97.5th percentiles) from the satellite-based datasets (y axis) for the given PM2.5 level measured by the EPA-

AQS monitor (x axis). Source: Authors, Di et al. (2016), van Donkelaar et al. (2019), EPA-AQS.
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