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1 Introduction

Momentum appears to violate the efficient market hypothesis in its weakest form. Past returns

should not predict future returns if asset prices respond to new information immediately and to

the right extent—unless past returns correlate with changes in systematic risk. Researchers have

sought to explain the profitability of momentum strategies with time-varying risk, behavioral biases,

and trading frictions.1 At the same time, the pervasiveness of momentum over time and across

asset classes has given momentum the status of an independent factor: models without momentum

cannot explain it and those with momentum cannot explain anything more than just momentum

(Fama and French, 2016).2 In this paper we show that momentum is not a distinct risk factor:

it aggregates the autocorrelations found in all other factors. Rather than being unrelated to the

other factors, momentum in fact relates to all of them.

We first show that factors’ prior returns are informative about their future returns. Small

stocks, for example, are likely to outperform big stocks when they have done so over the prior year.

This effect is economically and statistically large among the 20 factors we study: The average factor

earns 52 basis points per month following a year of gains but just 2 basis points following a year

of losses. The difference in these average returns is significant with a t-value of 4.67. This result

is not specific to the use of obscure asset pricing factors: we work with the major factors that are

regularly updated and published by academics and a hedge fund.

A time-series factor momentum strategy is a strategy that bets on this continuation in factor

1See, for example, Conrad and Kaul (1998), Berk et al. (1999), Johnson (2002), and Sagi and Seasholes (2007)
for risk-based explanations; Daniel et al. (1998), Hong and Stein (1999), Frazzini et al. (2012), Cooper et al. (2004),
Griffin et al. (2003), and Asness et al. (2013) for behavioral explanations; and Korajczyk and Sadka (2004), Lesmond
et al. (2004), and Avramov et al. (2013) for trading friction-based explanations.

2Jegadeesh (1990) and Jegadeesh and Titman (1993) document momentum in the cross section of stocks, Jostova
et al. (2013) in corporate bonds, Beyhaghi and Ehsani (2017) in corporate loans, Hendricks et al. (1993), Brown
and Goetzmann (1995), Grinblatt et al. (1995), and Carhart (1997) in mutual funds, Baquero et al. (2005), Boyson
(2008), and Jagannathan et al. (2010) in hedge funds, Bhojraj and Swaminathan (2006), Asness et al. (2013), and
Moskowitz et al. (2012) in major futures contracts, Miffre and Rallis (2007) and Szakmary et al. (2010) in commodity
futures, Menkhoff et al. (2012) in currencies, and Lee et al. (2014) in credit default swaps.
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Figure 1: Individual stock momentum versus factor momentum. This figure shows t-
values associated with alphas for five momentum strategies that trade individual stocks and a
factor momentum strategy that trades 20 factors. For individual stock momentum strategies, we
report t-values from the five-factor model (yellow bars) and this model augmented with factor
momentum (blue bars). For the factor momentum strategy, we report t-values from the five-factor
model (yellow bar) and this model augmented with all five individual stock momentum strategies
(blue bar). The dashed line denotes a t-value of 1.96.

returns. It is long the factors with positive returns and short those with negative returns. This

time-series momentum strategy earns an annualized return of 4.2% (t-value = 7.04). We show

that this strategy dominates the cross-sectional strategy because it is a pure bet on the positive

autocorrelations in factor returns. A cross-sectional strategy, by contrast, also bets that a high

return on a factor predicts low returns on the other factors (Lo and MacKinlay, 1990); in the data,

however, high return on any factor predicts high returns on all factors.3

Momentum in factor returns transmits into the cross section of security returns, and the amount

that transmits depends on the dispersion in factor loadings. The more these loadings differ across

assets, the more of the factor momentum shows up as cross-sectional momentum in individual

security returns. If stock momentum is about the autocorrelations in factor returns, factor mo-

mentum should subsume individual stock momentum. Indeed, we show that a momentum factor

3Goyal and Jegadeesh (2017) and Huang et al. (2018) note that time-series momentum strategies that trade
individual assets (or futures contracts) are not as profitable as they might seem because they are not zero-net
investment long-short strategies. In factor momentum, however, each “asset” that is traded is already a long-short
strategy. The cross-sectional and time-series factor momentum strategies are therefore directly comparable.
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constructed in the space of factor returns describes average returns of portfolios sorted by prior

one-year returns better than Carhart’s (1997) UMD, a factor that directly targets momentum in

stock returns.

Factor momentum also explains other forms of stock momentum: industry momentum, industry-

adjusted momentum, intermediate momentum, and Sharpe ratio momentum. The left-hand side of

Figure 1 shows that factor momentum renders all individual stock momentum strategies statistically

insignificant. We report two pairs of t-values for each version of momentum. The first is that

associated with the strategy’s Fama and French (2015) five-factor model alpha; the second one

is from the model that adds factor momentum. The right-hand side of the same figure shows

that a five-factor model augmented with all five forms of individual stock momentum leaves factor

momentum with an alpha that is significant with a t-value of 3.96.

Our results suggest that equity momentum is not a distinct risk factor; it is an accumulation of

the autocorrelations in factor returns. A momentum strategy that trades individual securities in-

directly times factors. This strategy profits as long as the factors remain positively autocorrelated.

Factors’ autocorrelations, however, vary over time, and an investor trading stock momentum loses

when they turn negative. We show that a simple measure of the continuation in factor returns de-

termines both when momentum crashes and when it earns outsized profits. A theory of momentum

would need to explain, first, why factor returns are typically positively autocorrelated and, second,

why most of the autocorrelations sometimes, and abruptly, turn negative at the same time.

Our results suggest that factor momentum may be a reflection of how assets’ values first diverge

and later converge towards intrinsic values. The strength of factor momentum significantly varies

by investor sentiment of Baker and Wurgler (2006). Conditional on low sentiment, factors that

earned positive return over the prior year outperform those that lost money by 71 basis points

per month (t-value = 4.79). In the high-sentiment environment, this performance gap is just 18
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basis points (t-value = 1.32). This connection suggests that factor momentum may stem from asset

values drifting away from, and later towards, fundamental values, perhaps because of slow-moving

capital (Duffie, 2010). Under this interpretation, factors may, at least in part, be about mispricing

(Kozak et al., 2018; Stambaugh et al., 2012)

Our results relate to McLean and Pontiff (2016), Avramov et al. (2017), and Zaremba and

Shemer (2017) who show that anomaly returns predict the cross section of anomaly returns at

the one-month and one-year lags. A companion paper to this study, Arnott et al. (2019), shows

that the short-term industry momentum of Moskowitz and Grinblatt (1999) also stems from factor

momentum; it is the short-term cross-sectional factor momentum that explains short-term industry

momentum. That alternative form of factor momentum, however, explains none of individual stock

momentum, consistent with the finding of Grundy and Martin (2001) that industry momentum is

largely unrelated to stock momentum.

We show that the profits of cross-sectional momentum strategies derive almost entirely from the

autocorrelation in factor returns; that time-series factor momentum fully subsumes momentum in

individual stock returns (in all its forms); that the characteristics of stock momentum returns change

predictably alongside the changes in the autocorrelation of factor returns; and that momentum is

not a distinct risk factor—rather, momentum factor aggregates the autocorrelations found in the

other factors. Because almost all factor returns are autocorrelated, for reasons we do not yet

understand, momentum is inevitable. If momentum resides in factors, and if factors across all asset

classes behave similar to the equity factors, momentum will be everywhere.
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2 Data

We take the factor and portfolio data from three public sources: Kenneth French’s, AQR’s, and

Robert Stambaugh’s data libraries.4 Table 1 lists the factors, start dates, average annualized

returns, standard deviations of returns, and t-values associated with the average returns. If the

return data on a factor is not provided, we use the portfolio data to compute the factor return.

We compute factor return as the average return on the three top deciles minus that on the three

bottom deciles, where the top and bottom deciles are defined in the same way as in the original

study.

The 15 anomalies that use U.S. data are accruals, betting against beta, cash-flow to price,

investment, earnings to price, book-to-market, liquidity, long-term reversals, net share issues, qual-

ity minus junk, profitability, residual variance, market value of equity, short-term reversals, and

momentum. Except for the liquidity factor of Pástor and Stambaugh (2003), the return data for

these factors begin in July 1963; those for the liquidity factor begin in January 1968. The seven

global factors are betting against beta, investment, book-to-market, quality minus junk, profitabil-

ity, market value of equity, and momentum. Except for the momentum factor, the return data for

these factors begin in July 1990; those for the momentum factor begin in November 1990. We use

monthly factor returns throughout this study.

Table 1 highlights the significant variation in average annualized returns. The global size factor,

for example, earns 0.4%, while both the U.S. and global betting against beta factors earn 10.0%.

Factors’ volatilities also vary significantly. The global profitability factor has an annualized standard

deviation of returns of 4.9%; that of the U.S. momentum factor is 14.7%.

4These data sets are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.

html, https://www.aqr.com/insights/datasets, and http://finance.wharton.upenn.edu/~stambaug/.
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Table 1: Descriptive statistics

This table reports the start date, the original study, and the average annualized returns, standard
deviations, and t-values for 15 U.S. and seven global factors. The universe of stocks for the global
factors is the developed markets excluding the U.S. The end date for all factors is December 2015.

Start Annual return
Factor Original study date Mean SD t-value

U.S. factors

Size Banz (1981) Jul 1963 3.1% 10.6% 2.11
Value Rosenberg et al. (1985) Jul 1963 4.0% 9.9% 2.96
Profitability Novy-Marx (2013) Jul 1963 3.0% 7.4% 2.92
Investment Titman et al. (2004) Jul 1963 3.6% 7.0% 3.77
Momentum Jegadeesh and Titman (1993) Jul 1963 8.5% 14.7% 4.18
Accruals Sloan (1996) Jul 1963 2.6% 6.7% 2.81
Betting against beta Frazzini and Pedersen (2014) Jul 1963 10.1% 11.2% 6.52
Cash-flow to price Rosenberg et al. (1985) Jul 1963 3.3% 10.2% 2.36
Earnings to price Basu (1983) Jul 1963 4.0% 10.1% 2.89
Liquidity Pástor and Stambaugh (2003) Jan 1968 5.0% 12.1% 2.87
Long-term reversals Bondt and Thaler (1985) Jul 1963 3.2% 8.7% 2.70
Net share issues Loughran and Ritter (1995) Jul 1963 3.1% 8.2% 2.73
Quality minus junk Asness et al. (2017) Jul 1963 4.2% 8.2% 3.73
Residual variance Ang et al. (2006) Jul 1963 1.5% 17.6% 0.64
Short-term reversals Jegadeesh (1990) Jul 1963 5.9% 10.9% 3.92

Global factors

Size Banz (1981) Jul 1990 0.4% 7.5% 0.27
Value Rosenberg et al. (1985) Jul 1990 4.5% 7.5% 3.04
Profitability Novy-Marx (2013) Jul 1990 4.5% 4.9% 4.63
Investment Titman et al. (2004) Jul 1990 2.3% 6.3% 1.87
Momentum Jegadeesh and Titman (1993) Nov 1990 8.8% 12.6% 3.49
Betting against beta Frazzini and Pedersen (2014) Jul 1990 10.0% 9.9% 5.11
Quality minus junk Asness et al. (2017) Jul 1990 5.1% 7.1% 3.57

3 Factor momentum

3.1 Factor returns conditional on past returns

Table 2 shows that factor returns are significantly predictable by their own prior returns. We

estimate time-series regressions in which the dependent variable is a factor’s return in month t, and

the explanatory variable is an indicator variable for the factor’s performance over the prior year
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from month t− 12 to t− 1. This indicator variables takes the value of one if the factor’s return is

positive, and zero otherwise. We also estimate a pooled regression to measure the average amount

of predictability in factor returns.5

The intercepts in Table 2 measure the average factor returns earned following a year of un-

derperformance. The slope coefficient represents the difference in returns between the up- and

down-years. In these regressions all slope coefficients, except that for the U.S. momentum factor,

are positive and nine of the estimates are significant at the 5% level. Although all factors’ un-

conditional means are positive (Table 1), the intercepts show that eight anomalies earn a negative

average return following a year of underperformance. The first row shows that the amount of pre-

dictability in factor premiums is economically and statistically large. We estimate this regression

using data on all 20 non-momentum factors. The average anomaly earns a monthly return of just

1 basis point (t-value = 0.06) following a year of underperformance. When the anomaly’s return

over the prior year is positive, this return increases by 51 basis points (t-value = 4.67) to 52 basis

points.

3.2 Average returns of time-series and cross-sectional factor momentum strate-

gies

We now measure the profitability of strategies that take long and short positions in factors based on

their prior returns. A time-series momentum strategy is long factors with positive returns over the

prior one-year period (winners) and short factors with negative returns (losers). A cross-sectional

momentum strategy is long factors that earned above-median returns relative to the other factors

over the prior one-year period (winners) and short factors with below-median returns (losers). We

5Table A1 in Appendix A.1 shows estimates from regressions of factor returns on prior one-year factor returns. We
present the indicator-variable specification of Table 2 as the main specification because it is analogous to a strategy
that signs the positions in factors based on their prior returns.
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Table 2: Average factor returns conditional on their own past returns

The table reports estimates from univariate regressions in which the dependent variable is a factor’s
monthly return and the independent variable takes the value of one if the factor’s average return
over the prior year is positive and zero otherwise. We estimate these regressions using pooled data
(first row) and separately for each anomaly (remaining rows). In the pooled regression, we cluster
the standard errors by month.

Intercept Slope

Anomaly α̂ t(α̂) β̂ t(β̂)

Pooled 0.01 0.06 0.52 4.67

U.S. factors

Size −0.15 −0.77 0.70 2.76
Value 0.15 0.78 0.28 1.16
Profitability 0.01 0.08 0.38 2.14
Investment 0.14 1.06 0.24 1.44
Momentum 0.78 2.03 −0.10 −0.23
Accruals 0.10 0.79 0.14 0.88
Betting against beta −0.16 −0.58 1.29 4.10
Cash-flow to price 0.10 0.52 0.28 1.14
Earnings to price 0.16 0.81 0.27 1.07
Liquidity 0.14 0.58 0.44 1.43
Long-term reversals −0.18 −1.10 0.71 3.42
Net share issues 0.19 1.27 0.10 0.53
Quality minus junk −0.04 −0.23 0.61 3.04
Residual variance −0.52 −1.73 1.19 2.89
Short-term reversals 0.34 1.28 0.20 0.66

Global factors

Size −0.08 −0.42 0.23 0.95
Value −0.04 −0.18 0.63 2.31
Profitability 0.11 0.58 0.32 1.54
Investment −0.13 −0.75 0.51 2.34
Momentum 0.52 1.03 0.30 0.55
Betting against beta 0.03 0.08 1.15 2.95
Quality minus junk 0.28 1.18 0.20 0.72

rebalance both strategies monthly.6 We exclude the two stock momentum factors, U.S. and global

UMD, from the set of factors to avoid inducing a mechanical correlation between factor momentum

and individual stock momentum. The two factor momentum strategies therefore trade a maximum

6In Appendix A.2 we construct alternative strategies in which the formation and holding periods range from one
month to two years.
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of 20 factors; the number of factors starts at 13 in July 1964 and increases to 20 by July 1991

because of the variation in the factors’ start dates (Table 1).

Table 3 shows the average returns for the time-series and cross-sectional factor momentum

strategies as well as an equal-weighted portfolio of all 20 factors. The annualized return on the

average factor is 4.2% with a t-value of 7.60. In the cross-sectional strategy, both the winner and

loser portfolios have, by definition, the same number of factors. In the time-series strategy, the

number of factors in these portfolios varies. For example, if there are five factors with above-zero

returns and 15 factors with below-zero returns over the one-year period, then the winner strategy is

long five factors and the loser strategy is long the remaining 15 factors. The time-series momentum

strategy takes positions in all 20 factors with the sign of the position in each factor determined by

the factor’s prior return. We report the returns both for the factor momentum strategies as well as

for the loser and winner portfolios underneath these strategies. These loser and winner strategies

are equal-weighted portfolios..

Consistent with the results on the persistence in factor returns in Table 2, both winner strategies

outperform the equal-weighted benchmark, and the loser strategies underperform it. The portfolio

of time-series winners earns an average return of 6.3% with a t-value of 9.54, and cross-sectional

winners earn an average return of 7.0% with a t-value of 8.98. The two loser portfolios earn average

returns of 0.3% and 1.4%, and the t-values associated with these averages are 0.31 and 1.95.

The momentum strategies are about the spreads between the winner and loser portfolios. The

time-series factor momentum strategy earns an annualized return of 4.2% (t-value = 7.04); the

cross-sectional strategy earns a return of 2.8% (t-value = 5.74). Because time-series losers earn

premiums that are close to zero, the choice of being long or short a factor following periods of

negative returns is inconsequential from the viewpoint of average returns. However, by diversifying

across all factors, the time-series momentum strategy has a lower standard deviation than the
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Table 3: Average returns of time-series and cross-sectional factor momentum strategies

This table reports annualized average returns, standard deviations, and Sharpe ratios for different
combinations of up to 20 factors. The number of factors increases from 13 in July 1964 to 20
by July 1991 (see Table 1). The equal-weighted portfolio invests in all factors with the same
weights. The time-series factor momentum strategy is long factors with positive returns over the
prior one-year period (winners) and short factors with negative returns (losers). The cross-sectional
momentum strategy is long factors that earned above-median returns relative to other factors over
the prior one-year period (winners) and short factors with below-median returns (losers). The time-
series strategy is on average long 11.0 factors and short 5.8 factors. The cross-sectional strategy is
balanced because it selects factors based on their relative performance. We rebalance all strategies
monthly.

Annualized return
Strategy Mean SD t-value Sharpe ratio

Equal-weighted portfolio 4.21 3.97 7.60 1.06

Time-series factor momentum 4.19 4.27 7.04 0.98
Winners 6.26 4.70 9.54 1.33
Losers 0.28 6.38 0.31 0.04

Cross-sectional factor momentum 2.78 3.64 5.74 0.76
Winners 6.94 5.54 8.98 1.25
Losers 1.42 5.23 1.95 0.27

winner portfolio alone (4.3% versus 4.7%).

The difference between time-series and cross-sectional factor momentum strategies is statisti-

cally significant. In a regression of the time-series strategy on the cross-sectional strategy, the

estimated slope is 1.0 and the alpha of 1.4% is significant with a t-value of 4.44. In the reverse

regression of the cross-sectional strategy on time-series strategy, the estimated slope is 0.7 and the

alpha of −0.2% has a t-value of −1.02. The time-series factor momentum therefore subsumes the

cross-sectional strategy, but not vice versa.

An important feature of factor momentum is that, unlike factor investing, it is “model-free.”

If factors are autocorrelated, an investor can capture the resulting momentum premium without

prespecifying which leg of the factor on average earns a higher return. Consider, for example,

the SMB factor. This factor earns an average return of 27 basis points per month (see Table 2),

but its premium is 55 basis points following a positive year and −15 basis points after a negative
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Figure 2: Profitability of time-series and cross-sectional factor momentum strategies,
July 1964–December 2015. This figure displays total return on an equal-weighted portfolio of
all factors and the returns on factors partitioned into winners and losers by their past performance.
Time-series winners and losers are factors with above- or below-zero return over the prior one-
year period. Cross-sectional winners and losers are factors that have out- or underperformed the
median factor over this formation period. Each portfolio is rebalanced monthly and each portfolio’s
standard deviation is standardized to equal to that of the equal-weighted portfolio.

year. For the momentum investor, this factor’s “name” is inconsequential. By choosing the sign

of the position based on the factor’s prior return, this investor earns an average return of 55 basis

points per month by trading the “SMB” factor after small stocks have outperformed big stocks;

and a return of 15 basis points per month by trading a “BMS” factor after small stocks have

underperformed big stocks.

Figure 2 plots the cumulative returns associated the equal-weighted portfolio and the winner

and loser portfolios of Table 3. We leverage each strategy in this figure so that each strategy’s

volatility is equal to that of the equal-weighted portfolio. Consistent with its near zero monthly

premium, the total return on the time-series loser strategy remains close to zero even at the end

of the 52-year sample period. The time-series winner strategy, by contrast, has earned three times

as much as the passive strategy by the end of the sample period. Although the cross-sectional
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winner strategy in Panel A of Table 3 earns the highest average return, it is more volatile, and so

it underperforms the time-series winner strategy on a volatility-adjusted basis. The cross-sectional

loser strategy earns a higher return than the time-series loser strategy: factors that underperformed

other factors but that still earned positive returns tend to earn positive returns the next month.

The winner-minus-loser gap is therefore considerably wider for the time-series strategies than what

it is for the cross-sectional strategies.

3.3 Decomposing factor momentum profits: Why does the cross-sectional strat-

egy underperform the time-series strategy?

We use the Lo and MacKinlay (1990) and Lewellen (2002) decompositions to measure the sources

of profits to the cross-sectional and time-series factor momentum strategies. The cross-sectional

decomposition chooses portfolio weights that are proportional to demeaned past returns. The

weight on factor f in month t is positive if the factor’s past return is above average and negative

if it is below average:7

wft = rf−t − r̄−t, (1)

where rf−t is factor f ’s past return over some formation period such as from month t− 12 to month

t − 1 and r̄−t is the cross-sectional average of all factors’ returns over the same formation period.

The month-t return that results from the position in factor f is therefore

πft = (rf−t − r̄−t) r
f
t , (2)

7The key idea of the Lo and MacKinlay (1990) decomposition is the observation that, by creating a strategy with
weights proportional to past returns, the strategy’s expected return is the expected product of lagged and future
returns. This expected product can then be expressed as the product of expectations plus the covariance of returns.
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where rft is factor f ’s return in month t. We can decompose the profits by averaging the profits in

equation (2) across the F factors and taking expectations:

E[πXS
t ] = E

[ F∑
f=1

1

F
(rf−t − r̄−t)r

f
t

]
=

1

F

F∑
f=1

cov(rf−t, r
f
t )− cov(r̄−t, r̄t) +

1

F

F∑
f=1

(µf − µ̄)2, (3)

where µf is the unconditional expected return of factor f . The three potential sources of profits

can be isolated by writing equation (3) in matrix notation (Lo and MacKinlay, 1990):

E[πXS
t ] =

1

F
Tr(Ω)− 1

F 2
1′Ω1 + σ2

µ

=
F − 1

F 2
Tr(Ω)− 1

F 2
(1′Ω1− Tr(Ω)) + σ2

µ, (4)

where Ω = E
[
(rf−t − µ)(rft − µ)′

]
is the autocovariance matrix of factor returns, Tr(Ω) is the trace

of this matrix, and σ2
µ is the cross-sectional variance of mean factor returns.

The representation in equation (4) separates cross-sectional momentum profits to three sources:

1. Autocorrelation in factor returns: a past high factor return signals future high return,

2. Negative cross-covariances: a past high factor return signals low returns on other factors, and

3. Cross-sectional variance of mean returns: some factors earn persistently high or low returns.

The last term is independent of the autocovariance matrix; that is, factor “momentum” can emerge

even in the absence of any time-series predictability (Conrad and Kaul, 1998). A cross-sectional

strategy is long the factors with the highest past returns and short the factors with the lowest

past returns; therefore, if past returns are good estimates of factors’ unconditional means, a cross-

sectional momentum strategy earns positive returns even in the absence of auto- and cross-serial

covariance patterns.

Table 4 shows that the cross-sectional strategy in equation (4) earns an average annualized
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Table 4: Decomposition of factor momentum profits

Panel A reports the amount that each term in equation (4) contributes to the profits of the cross-
sectional factor momentum strategy. Panel B reports the contributions of the terms in equation (5)
to the profits of the time-series factor momentum strategies. We report the premiums in percentages
per year. We multiply the cross-covariance term by −1 so that these terms represent their net
contributions to the returns of the cross-sectional and time-series strategies. We compute the
standard errors by block bootstrapping the factor return data by month. When month t is sampled,
we associate month t with the factors’ average returns from month t− 12 to t− 1 to compute the
terms in the decomposition.

Annualized
Strategy Premium (%) t-value

Cross-sectional factor momentum 2.48 3.49
Autocovariance 2.86 2.96
(−1)× Cross-covariance −1.00 −1.85
Variance of mean returns 0.53 3.41

Time-series factor momentum 4.88 4.65
Autocovariance 3.01 2.96
Mean squared return 1.88 4.41

return of 2.5% with a t-value of 3.49. The autocovariance term contributes an average of 2.9%,

more than all of the cross-sectional strategy’s profits. The cross-covariance term is positive and,

therefore, it negatively contributes (−1.0% per year) to this cross-sectional strategy’s profits. A

positive return on a factor predicts positive returns also on the other factors, and the cross-sectional

strategy loses by trading against this cross-predictability. This negative term more than offsets the

positive contribution of the cross-sectional variation in means (0.5% per year).

Whereas the cross-sectional strategy’s weights are based on the factors’ relative performance,

those of the time-series strategy are based on the factors’ absolute performance. The time-series

strategy is a pure bet on factor autocorrelations; in principle, this strategy could be long or short all

factors at the same time whereas the cross-sectional strategy is always a balanced mix of long and

short positions. The weight on factor f in month t is now just its return over the formation period,

wft = rf−t. Following Moskowitz et al. (2012), the time-series momentum strategy’s expected return
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decomposes as:

E[πTS
t ] =

1

F
E
[ F∑
f=1

rf−tr
f
t

]
=

1

F

F∑
f=1

[
cov(rf−t, r

f
t ) + (µf )2

]
=

1

F
Tr(Ω) +

1

F

F∑
f=1

(µf )2, (5)

where the definitions are the same as those in equation (3). Equation (5) shows that the time-series

momentum profits stem either from autocorrelation in factor returns or from mean returns that

are either very positive or negative.

Table 4 shows that the monthly premium of the time-series strategy is 4.9% with a t-value of

4.65. The decomposition of these profits into the autocorrelation and mean-squared components

shows that this premium largely derives from the autocorrelation in factor returns; the annualized

premiums associated with these two components are 3.0% (t-value of 2.61) and 1.9% with (t-value

= 4.49). The time-series strategy outperforms the cross-sectional strategy because it does not bet

on factors exhibiting negative cross-covariance; it is a pure bet on the autocorrelations in factor

returns.

4 Factor momentum and individual stock momentum

4.1 Transmission of factor momentum into the cross section of stock returns:

Framework

If stock returns obey a factor structure, then factor momentum transmits into the cross section

of stock returns in the form of cross-sectional stock momentum of Jegadeesh and Titman (1993).

In multifactor models of asset returns, such as the Intertemporal CAPM of Merton (1973) and

the Arbitrage Pricing Theory of Ross (1976), multiple sources of risk determine expected returns.
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Consider a factor model in which asset excess returns obey an F -factor structure,

Rs,t =
F∑
f=1

βfs r
f
t + εs,t, (6)

where Rs is stock s’s excess return, rf is the return on factor f , βfs is stock s’s beta on factor

f , and εs is the stock-specific return component that should not command a risk premium in the

absence of arbitrage. We assume that the factors do not exhibit any lead-lag relationships with the

stock-specific return components, that is, E[rft′εs,t] = 0.

We now assume that asset prices evolve according to equation (6) and examine the payoffs to a

cross-sectional momentum strategy; this strategy, as before, chooses weights that are proportional

to stocks’ performance relative to the cross-sectional average. The expected payoff to the position

in stock s is

E[πmom
s,t ] = E

[
(Rs,−t − R̄−t)(Rs,t − R̄t)

]
, (7)

where R̄ is the return on an equal-weighted index. Under the return process of equation (6), this

expected profit becomes

E[πmom
s,t ] =

F∑
f=1

[
cov(rf−t, r

f
t ) (βfs − β̄f )2

]
+

F∑
f=1

F∑
g=1

f 6=g

[
cov(rf−t, r

g
t ) (βgs − β̄g) (βfs − β̄f )

]
(8)

+ cov(εs,−t, εs,t) + (ηs − η̄)2,

where ηs is stock s’s unconditional expected return. The expectation of equation (8) over the cross
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section of N stocks gives the expected return on the cross-sectional momentum strategy,

E[πmom
t ] =

F∑
f=1

[
cov(rf−t, r

f
t )σ2

βf

]
︸ ︷︷ ︸

factor autocovariances

+
F∑
f=1

F∑
g=1

f 6=g

[
cov(rf−t, r

g
t ) cov(βg, βf )

]
︸ ︷︷ ︸

factor cross-covariances

(9)

+
1

N

N∑
s=1

[
cov(εs−t, ε

s
t )
]

︸ ︷︷ ︸
autocovariances

in residuals

+ σ2
η,︸︷︷︸

variation in
mean returns

where N is the number of stocks and σ2
βf

and σ2
η are the cross-sectional variances of the portfolio

loadings and unconditional expected returns.

Equation (9) shows that the profits of the cross-sectional stock momentum strategy can emanate

from four sources:

1. Positive autocorrelation in factor returns induces momentum profits through the first term.

Cross-sectional variation in betas amplifies this effect.

2. The lead-lag return relationships between factors could also contribute to stock momentum

profits. The strength of this effect depends both on the cross-serial covariance in factor

returns and the covariances between factor loadings. This condition is restrictive: the cross-

serial correlation of returns and the covariances of betas have to have the same signs. It would

need to be, for example, that (1) SMB return in period 1 positively predicts HML returns in

period 2 and (2) that SMB and HML loadings also positively correlate. For this channel to

matter, this condition would need be satisfied for the average pair of factors.8

3. Autocorrelation in stocks’ residual returns can also contribute to the profitability of the cross-

sectional momentum strategy.

8In Appendix A.3 we show that this term is negligible relative to the autocovariance term in the five-factor model
because of this joint condition.
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4. The cross-sectional variation in mean returns of individual securities can also contribute to

momentum profits. If stocks’ past returns are good estimates of their unconditional means,

a cross-sectional momentum is long stocks with high mean returns and short those with low

means (Conrad and Kaul, 1998).

4.2 Explaining the returns on portfolios sorted on equity momentum

Does factor momentum contribute to the returns of cross-sectional momentum strategies? We focus

on the role of the first term of equation (9); this is the term through which the autocorrelation

in factor returns could add to the profits of cross-sectional momentum strategies. We measure

the connection between the profitability of these strategies and time-series factor momentum. The

time-series factor momentum strategy is the same as above: it is long factors that have earned

positive returns over the prior year and short those that have earned negative returns.

In Table 5 we compare the performance of three asset pricing models in pricing portfolios

sorted by prior one-year returns skipping a month; the sorting variable is the same as that used

to construct the UMD factor of Carhart (1997).9 The first model is the Fama-French five-factor

model; the second model is this model augmented with the UMD factor; and the third model is

the five-factor model augmented with the factor time-series momentum strategy. We report alphas

for the deciles and, for the models 2 and 3, the factor loadings against UMD and factor time-series

momentum.

Stock momentum is evident in the alphas of the Fama-French five-factor model. The alpha

for the loser portfolio is −0.78% per month (t-value = −4.06) and for the winner portfolio it is

0.61% (t-value = 4.89). The average absolute alpha across the deciles is 27 basis points. We

significantly improve the model’s ability to price these portfolios by adding Carhart’s momentum

9We use the portfolio return data made available by Kenneth French at http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html as the test assets.
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Table 5: Time-series regressions on momentum sorted portfolios

This table compares the performance of three asset pricing models in explaining the monthly
excess returns on ten portfolios sorted by prior one-year returns skipping a month. The three
models are: (1) the Fama-French five-factor model with the market, size, value, profitability, and
investment factors; (2) the five-factor model augmented with Carhert’s UMD factor; and (3) the
five-factor model augmented with the time-series factor momentum strategy. The time-series factor
momentum strategy is long the factors with positive prior one-year returns and short those with
negative prior one-year returns. The 20 factors used in constructing this strategy are listed in
Table 1. We report alphas for each of the three models and loadings against the UMD factor and
the time-series factor momentum strategy. We compute Gibbons et al. (1989) test statistics using
the returns on the decile portfolios. This test statistic is distributed as F (N,T −N − 1) under the
null hypothesis that the alphas are jointly zero, where N = 10 is the number of test assets and
T = 618 is the number of observations in the time series. The sample period starts in July 1964
and ends in December 2015.

Asset pricing model
FF5 FF5 + UMD FF5 + TSMOM

Decile α̂ α̂ b̂umd α̂ b̂tsmom

Low −0.78 −0.10 −0.92 −0.05 −2.44
(−4.06) (−0.92) (−36.32) (−0.33) (−19.46)

2 −0.34 0.17 −0.69 0.18 −1.76
(−2.53) (2.50) (−45.18) (1.70) (−20.25)

3 −0.22 0.18 −0.54 0.18 −1.32
(−1.92) (2.92) (−37.36) (1.90) (−17.37)

4 −0.16 0.08 −0.33 0.13 −0.96
(−1.89) (1.24) (−21.97) (1.74) (−16.43)

5 −0.19 −0.06 −0.17 −0.05 −0.47
(−2.74) (−0.98) (−11.88) (−0.70) (−8.84)

6 −0.16 −0.12 −0.06 −0.09 −0.23
(−2.44) (−1.79) (−3.76) (−1.38) (−4.27)

7 −0.11 −0.16 0.07 −0.14 0.09
(−1.72) (−2.47) (4.46) (−2.09) (1.76)

8 0.06 −0.10 0.22 −0.06 0.42
(0.93) (−1.71) (16.57) (−0.93) (7.82)

9 0.10 −0.14 0.32 −0.10 0.65
(1.17) (−2.33) (22.99) (−1.28) (10.47)

High 0.61 0.19 0.58 0.18 1.43
(4.89) (2.43) (32.30) (1.72) (16.61)

High − Low 1.39 0.29 1.50 0.24 3.87
(4.94) (2.53) (56.85) (1.09) (22.31)

Avg. |α̂| 0.27 0.13 0.12
GRS F -value 4.43 3.26 2.55
GRS p-value 0.00% 0.04% 0.50%
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factor. The average absolute monthly alpha falls to 13 basis points, and the profitability of the

long-short portfolio falls from 1.4% to 0.3%. Yet, the alpha associated with the long-short portfolio

is statistically significant with a t-value of 2.53. The UMD slope monotonically increases from

−0.92 to 0.58 as we move from the bottom to top decile.

The model augmented with the time-series factor momentum strategy performs just as well

as—or even better than—the Carhart (1997) six-factor model in pricing the momentum portfolios.

The average absolute alpha falls to 12 basis points per month; the Gibbons et al. (1989) test statistic

falls from 3.26 to 2.55; and the alpha of the high-minus low falls from 0.29% to 0.24% (t-value =

1.09). Similar to the Carhart (1997) model, the estimated slopes against the factor momentum

strategy increase monotonically from bottom decile’s −2.44 to top decile’s 1.43.

The fact that the five-factor model augmented with factor momentum performs as well as the

model augmented with UMD is surprising. The Carhart six-factor model sets a high standard be-

cause both the factor and the test assets sort on the same variable; that is, UMD targets momentum

as directly as, say, HML targets portfolios sorted by book-to-market.

4.3 Alternative momentum factors: Spanning tests

In Table 6 we show that, in addition to the “standard” individual stock momentum of Jegadeesh

and Titman (1993), factor momentum fully subsumes the informativeness of other cross-sectional

momentum strategies.10 In addition to the UMD factor, which sorts by stocks’ prior one-year

returns skipping a month, we construct three other momentum factors using the same methodology:

Industry-adjusted momentum of Cohen and Polk (1998) sorts stocks’ by their industry-adjusted

returns; intermediate momentum of Novy-Marx (2012) sorts stocks by their returns from month

10We use the term “span” to indicate that an unconstrained investor trading the right-hand-side factors would
not gain anything by trading the left-hand side strategy. See, for example, Novy-Marx (2013) and Fama and French
(2015). Tests of mean-variance spanning also constrain the betas to add up to one (Kan and Zhou, 2012). We could
alter the implicit leverage of the factor momentum strategy to set the sum of the beta to one.
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t−12 to t−7; and Sharpe ratio momentum of Rachev et al. (2007) sorts stocks by the returns scaled

by the volatility of returns. We also construct the industry momentum strategy of Moskowitz and

Grinblatt (1999). This strategy sorts 20 industries based on their prior six-month returns and takes

long and short positions in the top and bottom three industries.

Panel A of Table 6 introduces the alternative momentum factors alongside the time-series factor

momentum strategy. Each factor earns statistically significant average returns and Fama-French

five-factor model alphas. Although the average return associated with the time-series momentum

strategy is the lowest—0.35% per month—it is also the least volatile by a wide margin. Its Sharpe

and information ratio, which are proportional to the t-values associated with the average returns

and five-factor model alphas, are therefore the highest among all the factors.

The first two columns of Panel B show estimates from spanning regressions in which the de-

pendent variable is one of the momentum factors. The model is the Fama-French five factor model

augmented with factor momentum. These regressions can be interpreted both from the investment

and asset pricing perspectives. From an investment perspective, a statistically significant alpha

implies that an investor would have earned a higher Sharpe ratio by having traded the left-hand

side factor in addition to the right-hand side factors (Huberman and Kandel, 1987). From an asset

pricing perspective, a statistically significant alpha implies that the asset pricing model that only

contains the right-hand side variables is dominated by a model that also contains the left-hand side

factor (Barillas and Shanken, 2017).

Although all definitions of momentum earn statistically significant average returns and five-

factor model alphas, factor momentum spans all of them. Consistent with Table 5, time-series

factor momentum leaves standard momentum (UMD) with an alpha of 0.01% per month (t-value

= 0.07). Table 6 shows that factor momentum also spans the other four forms of momentum. The

maximum t-value across the five specifications is intermediate momentum’s 1.64.
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Table 6: Alternative definitions of momentum: Spanning tests

Panel A reports monthly average returns and Fama-French five-factor model alphas for alternative
momentum factors. Every factor, except for industry momentum, is similar to the UMD factor
of Jegadeesh and Titman (1993) (“standard momentum”). We sort stocks into six portfolios by
market values of equity and prior performance. A momentum factor’s return is the average return
on the two high portfolios minus that on the two low portfolios. Industry momentum uses the
Moskowitz and Grinblatt (1999) methodology; it is long the top three industries based on prior
six-month returns and short the bottom three industries, where each stock is classified into one of
20 industries following (Moskowitz and Grinblatt, 1999, Table I). Panel A also reports references for
the original studies that use these alternative definitions. Panel B reports estimates from spanning
regressions in which the dependent variable is the monthly return on either one of the momentum
factors or factor momentum. When the dependent variable is one of the momentum factors, we
estimate regressions that augment the five-factor model with factor momentum. We report the
intercepts and the slopes for factor momentum. When the dependent variable is factor momentum,
we estimate regressions that augment the five-factor model with one of the momentum factors or,
on the last row, with all five momentum factors, We report the intercepts and the slopes for the
momentum factors. The sample begins in July 1964 and ends in December 2015.

Panel A: Factor means and Fama-French five-factor model alphas
Monthly FF5
returns model

Momentum definition Reference r̄ SD t(r̄) α̂ t(α̂)

Individual stock momentum

Standard momentum Jegadeesh and Titman (1993) 0.70 4.27 4.10 0.74 4.28
Ind.-adjusted momentum Cohen and Polk (1998) 0.47 2.80 4.18 0.50 4.58
Industry momentum Moskowitz and Grinblatt (1999) 0.35 4.13 2.09 0.39 2.26
Intermediate momentum Novy-Marx (2012) 0.58 3.12 4.60 0.63 4.97
Sharpe ratio momentum Rachev et al. (2007) 0.63 3.43 4.55 0.69 4.88

Factor momentum

Factor momentum 0.35 1.23 7.05 0.30 6.13

The last two columns of Table 6 show that none of the alternative definitions of momentum

span time-series factor momentum. Across all six specifications reported in this panel, the lowest

t-value for the alpha earned by the factor momentum is 3.73. The last specification augments

the Fama-French five-factor model with all five momentum factors. In this specification factor

momentum’s alpha is significant with a t-value of 3.96. Table 6 indicates that factor momentum

contains information not present in any other forms of momentum and yet, at the same time,

22



Panel B: Spanning regressions
Dependent variable =

Individual stock Individual
momentum stock momentum Factor momentum
definition, SMOM α̂ FMOM α̂ SMOM

Standard 0.01 2.43 0.16 0.20
momentum (0.07) (23.49) (4.32) (23.49)

Industry-adjusted 0.11 1.32 0.17 0.26
momentum (1.18) (17.95) (4.17) (17.95)

Industry −0.22 2.02 0.24 0.16
momentum (−1.48) (17.29) (5.87) (17.29)

Intermediate 0.17 1.52 0.16 0.23
momentum (1.64) (17.92) (3.89) (17.92)

Sharpe ratio 0.09 2.00 0.13 0.24
momentum (0.83) (24.02) (3.73) (24.02)

All of above 0.14 .†

(3.96)
†Note: This regression includes all six individual stock momentum factors as explanatory variables in addition to the five factors

of the Fama-French five-factor model: standard momentum, industry-adjusted momentum, industry momentum, intermediate

momentum, and Sharpe ratio momentum.

no other form of momentum is at all informative about the cross section of stock returns when

controlling for factor momentum.

Factor momentum’s ability to span individual stock momentum, but not vice versa, suggests

that individual stock momentum is a manifestation of factor momentum. An investor who trades

individual stock momentum indirectly times factors, and an investor who directly times factors

performs better. The indirect method loses out because it also takes positions based on noise. The

other possible sources of momentum profits do not contribute to these profits, and so their inclusion

renders the strategy unnecessarily volatile.

4.4 Individual stock momentum versus factor momentum with alternative sets

of factors

The factor momentum strategy takes positions in up to 20 factors. Tables 5 and 6 show that this

“full” version of factor momentum explains individual stock momentum. In Figure 3 we measure
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Figure 3: Individual stock momentum versus factor momentum as a function of the
number of factors. We form random subsets of the 20 non-momentum factors listed in Table 1
and form time-series factor momentum strategies that trade these factors. A time-series factor
momentum strategy is long factors with positive returns over the prior year and short those with
negative returns. In this figure the number of factors ranges from 1 to 20. The thick line represents
the factor momentum strategy’s average t(α̂) from the Fama-French five-factor model regression;
the thin line represents UMD’s average t(α̂) from a regression that augments the five-factor model
with the factor momentum strategy; and the dashed line denotes UMD’s t(α̂) from the Fama-French
five-factor model regression. The shaded region indicates t-values below 1.96.

the extent to which this result is sensitive to the number and identity of the factors included in

factor momentum.

In this figure we construct random combinations of factors, ranging from one factor to the full

set of 20 factors. We then construct a factor momentum strategy that trades this random set of

factors and estimate two regressions. The first regression is the Fama-French five-factor model and

the dependent variable is the factor momentum strategy. The dependent variable in the second

regression is UMD and the model is the is the Fama-French five-factor model augmented with

factor momentum. We draw 20,000 random combinations of factors for each set size, record the

t-values associated with the alphas from these models, and then plot averages of these t-values as

a function of the number of factors. In Figure 3 we also show, for reference, the t-value associated

with UMD’s alpha in the five-factor model.
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Figure 3 shows that the t-value associated with factor momentum’s five-factor model alpha

monotonically increases in the number of factors. When the strategy alternates between long and

short positions in just one factor, the average t-value is 2.91; when it trades 10 factors, it is 6.30;

and when we reach 20 factors, it is 7.05. At the same time, factor momentum’s ability to span

UMD improves. The typical one-factor factor momentum strategy leaves UMD with an alpha that

is statistically significant with a t-value of 2.96. However, when the number of factors increases to

10, this average t-value has decreased to 1.24; and with all 20 factors, this t-value is 0.07. These

estimates suggest that factor momentum’s ability to span UMD is not specific to the set of factors

used; as the number of factors increases, the autocorrelations found within most sets of factors

aggregate to explain individual stock momentum. Figure 3 supports our thesis that individual

stock momentum is an aggregation of the autocorrelations found in factor returns; the more factors

we identify, the better we capture UMD’s return.

4.5 An analysis of momentum crashes

Individual stock momentum sometimes crashes.11 If the profits of momentum strategies emanate

from factor autocorrelations, then momentum crashes should stem from changes in these autocorre-

lations. This represents an additional testable prediction of the proposition that factor momentum

drives individual stock momentum. We test for this connection by creating a proxy of the first

term in equation (9) for the average factor. We can rewrite this term as a function of factor

11See, for example, Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016).
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autocorrelations:12

F∑
f=1

[
cov(rf−t, r

f
t )σ2

βf

]
≈ 1

12

F∑
f=1

[
ρfauto σ

2
ρs,f×σs

]
, (10)

where ρfauto is the average autocorrelation between factor f ’s return in month t and its average

return from month t−12 to t−1 and σ2
ρs,f×σs is the cross-sectional variance of stock s’s correlation

with factor f (ρs,f ) multiplied its volatility (σs). If this cross-sectional-dispersion term does not

vary significantly across factors, momentum profits directly relate to the summation of factor

autocorrelations.

We create an aggregate factor autocorrelation index to proxy for the term in equation (10). We

first define factor f ’s autocorrelation in month t as

ρauto,t =
r−t rt − µ−t µt

σrt σr−t
≈ r−t rt − µ2

σ2/
√

12
, (11)

where µ and σ are the factor’s mean and standard deviation over the sample period. The aggregate

factor autocorrelation index in month t is the cross-sectional average of these autocorrelations. A

positive autocorrelation index in month t indicates that the average factor in month t moved in the

same direction as its return during the past year.

In Figure 4 we divide the sample into two regimes based on the sign of the autocorrelation index

and then draw UMD’s return distribution conditional on the regime. In the positive-autocorrelation

regime, in which the average factor continues to move in the same direction as it did over the prior

12Equation (10) can be derived as follows. Because r−t = 1
12

(
rt−12 + rt−11 + · · · + rt−1

)
, factor variance can be

removed from the expression:

F∑
f=1

[
cov(rf−t, r

f
t )σ2

βf

]
=

F∑
f=1

[
(

1

12

12∑
k=1

ρfrt−k,rt σ
2
f )

1

N

N∑
s=1

(
ρs,fσs
σf

− ρs,fσs
σf

)2
]

=

F∑
f=1

[
(

1

12

12∑
k=1

ρfrt−k,rt)
1

N

N∑
s=1

(ρs,fσs − ρs,fσs)
2].

We get the presentation in equation (10) by denoting the summation of the autocorrelations from lags 1 to 12 by
ρfauto.
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Figure 4: Distribution of UMD returns conditional on factor autocorrelation. A factor’s

autocorrelation in month t is computed as r−t rt−µ2
σ2/
√

12
, where µ and σ are the factor’s mean and

standard deviation and the formation period −t runs from month t − 12 to t − 1. The aggregate
factor autocorrelation index in month t is the cross-sectional average of these autocorrelations.
This figure shows the distributions of UMD’s monthly returns from July 1964 through December
2015 conditional on the aggregate autocorrelation index being negative (bars; N = 264) or positive
(solid line; N = 354).

year, UMD’s returns are typically positive. In these month’s UMD’s average return is 2.4% and

its volatility is 3.3%. In the negative-autocorrelation regime, in which the average factor “turns”

against its own past, UMD earns an average return of −1.6% with a standard deviation of 4.4%.13

The connection between the sign of the autocorrelation index and UMD is not limited to the

first two moments. Figure 4 shows that almost all of UMD’s left tail—its crashes—concentrates

in months when the autocorrelation index is negative. The 5th percentile of UMD’s return in the

positive regime is −1.9%; in the negative regime it is −8.8%.

These estimates support the proposition that factor momentum emerges as momentum in the

cross section of stock returns. An investor who trades individual stock momentum need to look at

the individual positions to know whether the strategy turned a profit or a loss in month t. The

amount of continuation in factor returns, or the lack therefore, is already a good indicator of UMD’s

13In Appendix A.4 we report the mean, standard deviation, skewness, kurtosis, and the percentiles of UMD’s return
distribution conditional on the factor autocorrelation regime.

27



performance.

In Appendix A.5, we show that the factor autocorrelation index significantly correlates with

momentum crashes and “booms.” A one unit increase in this index lowers the probability of a

momentum crash by 15% (z-value = −6.78). Factor momentum therefore explains all of UMD’s

returns unconditionally—and the changes in the factor autocorrelations explain when momentum

is likely to crash. When factor momentum ceases, the resulting “reversal” in factor returns feeds

into stock returns and crashes stock momentum.

4.6 Momentum is not a distinct risk factor

4.6.1 Conditional correlations between factors and the momentum “factor”

If the autocorrelation in factor returns contributes to the profits of these strategies, then these

strategies should be more profitable when the “realized” autocorrelation in factor returns is positive.

We first examine the connection between factor momentum and individual stock momentum

by measuring factors’ correlations with Carhart’s (1997) UMD factor. In Table 7 we report three

correlations estimates for each factor: unconditional correlation, correlation conditional on the

factor’s return over the prior one-year period being positive, and correlation conditional on this

return being negative.

Table 7 shows that the unconditional correlations between the factors and UMD are low; 11 out

of the 20 correlations with the individual factors are positive, and the correlation between UMD

and the portfolio of all 20 factors is 0.05. The correlations conditional on past returns, however,

are remarkably different. Except for the short-term reversals factor, all factors correlate more with

UMD when their past returns are positive. For 17 of these 19 factors, the difference is statistically

significant at the 5% level. On the first row, we assign all factors into two groups each month based

on their past returns. The estimates show that the basket of factors with positive past returns has
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Table 7: Unconditional and conditional correlations with the equity momentum factor (UMD)

This table reports correlations between UMD and factor returns: ρ is UMD’s unconditional correla-
tion with the raw factor; ρ+ is the correlation with the factor conditional on the factor’s return over
the prior year being positive; and ρ− is the correlation conditional on the prior-year return being
negative. The first row shows the estimates for a diversified factor which is defined as the average of
the 20 factors. The conditional correlations on this row are computed by averaging factors with pos-
itive or negative returns over the prior year. The last two columns report statistics for the test that
the conditional correlations are equal, H0: ρ+ = ρ−. This test uses Fisher’s (1915) z-transformation,

1
/√

1
N+−3

+ 1
N−−3

(
tanh−1(ρ̂+)− tanh−1(ρ̂−)

)
∼ N(0, 1), where tanh−1(x) = 1

2
ln(1+x)
ln(1−x) and N+

and N− are the number of observations used to estimate ρ+ and ρ−.

Unconditional Conditional Test:
correlation correlations H0: ρ̂+ = ρ̂−

Anomaly ρ̂ ρ̂+ ρ̂− z-value p-value

Diversified 0.05 0.44 −0.50 17.87 0.00

U.S. factors

Size −0.02 0.16 −0.39 6.99 0.00
Value −0.17 0.23 −0.57 10.55 0.00
Profitability 0.09 0.44 −0.39 10.50 0.00
Investment −0.01 0.19 −0.35 6.53 0.00
Accruals 0.07 0.24 −0.18 5.04 0.00
Betting against beta 0.17 0.36 −0.13 5.18 0.00
Cash-flow to price −0.06 0.18 −0.40 7.35 0.00
Earnings to price −0.14 0.16 −0.55 9.21 0.00
Liquidity −0.02 0.07 −0.16 2.63 0.01
Long-term reversals −0.06 0.11 −0.41 6.46 0.00
Net share issues 0.13 0.36 −0.41 9.79 0.00
Quality minus junk 0.24 0.47 −0.41 11.12 0.00
Residual variance 0.20 0.67 −0.56 17.87 0.00
Short-term reversals −0.29 −0.36 −0.23 −1.50 0.13

Global factors

Size 0.08 0.17 −0.02 1.63 0.10
Value −0.16 0.17 −0.49 5.50 0.00
Profitability 0.26 0.33 −0.17 3.40 0.00
Investment 0.07 0.41 −0.47 7.79 0.00
Betting against beta 0.24 0.27 0.15 0.87 0.38
Quality minus junk 0.41 0.51 −0.14 5.17 0.00

a correlation of 0.44 with UMD; the basket of factors with negative returns has a correlation of

−0.50.
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Because the unconditional correlations between momentum and the other factors are close to

zero, most factor models, such as the five-factor model, explain none of momentum profits. This

result, however, does not imply that momentum is “unrelated” to the other factors. Table 7 shows

that the unconditional correlations are close to zero only because these correlations are significantly

time-varying. Momentum, in fact, appears to relate to all factors!

4.6.2 Diversification benefits?

An implication of the connection between factor momentum and individual stock momentum is that

the diversification benefits of momentum are more elusive than what the unconditional correlations

might suggest. Consider, for example, the interaction between value and momentum. Table 7 shows

that UMD’s unconditional correlation with the U.S. HML is −0.17 and that with the global HML

is −0.16. These negative correlations are consistent with the findings of Asness et al. (2013). This

same table, however, shows that these correlations vary greatly depending on HML’s performance

over the prior year. In the U.S., for example, the correlation is 0.22 following a year in which HML

earned a positive return and −0.57 following a negative year. These switching signs matter because

HML’s return also depends on its prior returns—this is the essence of factor momentum! The

U.S. HML earns an average monthly return of 15 basis points after a negative year and a return of

43 basis points after a positive year (see Table 2).

Because of this interaction between individual stock momentum, value, and the autocorrelation

in HML’s returns, the diversification benefits of mixing momentum and value are limited. Figure 5

illustrates this issue by considering the 50-50 momentum/value strategy of Asness et al. (2013) and

an alternative dynamic version of this strategy that sometimes replaces value with cash.14 If HML

14In this analysis, we use the “all equity” value and momentum factors made available by AQR at https://www.

aqr.com/Insights/Datasets. The difference between the AQR and Fama-French value factors is that Asness et al.
(2013) divide the book values of equity by the end-of-June rather than end-of-December market values of equity
(Asness and Frazzini, 2013).
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Figure 5: Returns to diversifying momentum with value versus cash. This figure shows
total cumulative returns to two strategies that invest in momentum, value, and cash. The static
strategy always invests 50% in momentum and 50% in value. The dynamic strategy invests 50%
in momentum and 50% in value if value’s return over the prior one-year period is positive and
50% in momentum and 50% in cash if its return is negative. Because value and momentum are
zero-investment portfolios, the return on cash is set to zero. The dynamic strategy is drawn in red
when the strategy is momentum-value and in blue when it is momentum-cash.

has earned a positive annual return up to month t, this strategy is the 50-50 momentum/value

strategy. However, if HML’s return has been negative, this strategy becomes momentum/cash.

Here, because both momentum and value are zero-investment portfolios, we set cash’s return to

zero—this position would finance a purchase of T-bills with T-bills. Figure 5 shows that there is no

meaningful difference between the original and dynamic strategies; an investor draws no benefits

from the negative correlation.

This result is not specific to value’s correlation with momentum. Table 7 shows that almost

all factors “diversify” momentum better after they have performed poorly. The same issue thus

applies to almost all factors: when a factor correlates negatively with momentum, it typically is

also the state in which the factor does not earn a meaningful premium.15 These state-dependent

15The short-term reversals factor is the only exception. Arnott et al. (2019) examine the diversification benefits of
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Table 8: Factor returns conditional on sentiment and factor momentum

This table reports average returns on factors conditional on past factor returns and investor senti-
ment. Investor sentiment is defined in the same way as in Stambaugh et al. (2012). Winner factors
are those that earned positive returns over the prior year; losing factors are those that earned
negative returns. The winner and loser portfolios are equal-weighted portfolios of factors. The
winner-minus-loser is the return difference between the two portfolios.

Prior factor returns
Sentiment Losers Winners W − L

Low −0.22 0.50 0.71
(−2.10) (6.11) (4.79)

High 0.35 0.54 0.18
(3.42) (5.83) (1.32)

correlations are the direct consequence of the nature of momentum—momentum is not something

that exists separate from the other factors.

5 Investor sentiment and factor momentum

Stambaugh et al. (2012) show that many return anomalies are stronger following high levels of

sentiment, and that this effect originates from the anomalies’ short legs. They suggest that these

findings are consistent with a mispricing interpretation for the anomalies: anomalies may be due

to mispricing that is particularly persistent in the presence of short-sale restrictions.

Factor momentum may be a different manifestation of the same mechanism. If a segment of

the market—such as growth stocks—becomes overpriced, this overpricing may take time to correct

itself because of short-sale restrictions and, more broadly, slow-moving capital (Duffie, 2010). That

is, asset prices do not immediately jump back to the fundamental levels but, rather, they converge

over time.

Following Stambaugh et al. (2012), we take the residual from a regression of the monthly

sentiment index of Baker and Wurgler (2006) against a set of macroeconomic variables as a measure

momentum, (short-term) factor momentum, and short-term reversals

32



of investor sentiment. The intuition is that this residual represents optimism and pessimism that

is not justified by the state of the macroeconomy.

In Table 8 we measure the interaction between investor sentiment and factor momentum. We

assign month t into a high or low sentiment regime depending on whether month t’s sentiment is

above or below median; and, similar to the winner and loser portfolios in Table 3, we classify each

factor as a winner or loser depending on the sign of its average return over the prior year. The

average underperforming factor earns a negative return of −22 basis points (t-value = −2.10) in the

low-sentiment environment; in the same environment, factors with positive returns over the prior

year earn a premium of 50 basis points (t-value = 6.11). This 71-basis point difference is significant

with a t-value of 4.79. In the high-sentiment environment, however, the difference is just 18 basis

points (a t-value of 1.32).16

The difference between the two regimes is due to the loser factors. In the high sentiment

environment, the average return on prior losers is significantly higher than in the low sentiment

environment. This is the Stambaugh et al. (2012) finding: the average factor earns a higher re-

turn in the high-sentiment environment. The results in Table 8 are consistent with a mispricing

interpretation for factor momentum and, by extension, all manifestation of individual stock mo-

mentum. A mispricing may take time to build up and, because of impediments to arbitrage, an

asset’s value does not immediately snap back to its fundamental value when arbitrageurs enter.

Factor momentum may stem from asset values drifting back towards fundamental values.

16In Appendix A.6 we confirm the findings of Stambaugh et al. (2012) by estimating regressions that explain
each factor’s returns with both investor sentiment and past factor returns. Both sentiment and past factor returns
positively predict factor returns, and neither variable subsumes the other.
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6 Conclusion

Positive autocorrelation is a pervasive feature of factor returns. Factors with positive returns over

the prior year earn significant premiums; those with negative returns earn premiums that are

indistinguishable from zero. Factor momentum is a strategy that bets on these autocorrelations in

factor returns.

We link factor momentum to individual stock momentum by decomposing stock momentum

profits under the assumption that stock returns follow a factor structure. This representation shows

that the autocorrelations in factor returns transmit into the cross section of stock returns through

the variation in stocks’ factor loadings. Consistent with this decomposition, we show that factor

momentum explains both the “standard” momentum of Jegadeesh and Titman (1993) and other

forms of it: industry-adjusted momentum, industry momentum, intermediate momentum, and

Sharpe momentum. By contrast, these other momentum factors do not explain factor momentum.

Our results imply that momentum is not a distinct factor; rather, a momentum “factor” is the

summation of the autocorrelations found in the other factors. An investor who trades momentum

indirectly times factors. The profits and losses of this strategy therefore ultimately depend on

whether the autocorrelations in factor returns remain positive.

An additional testable implication of the proposition that individual stock momentum stems

from factor momentum relates to momentum crashes. If individual stock momentum is, in the end,

about factors, then momentum crashes should trace back to the factors as well. Indeed, we show

that momentum crashes when the autocorrelations in factor returns abruptly cease. These results

can guide future research. A theory of momentum would need to explain why factors are typically

positively autocorrelated—and why, sometimes, almost all of these autocorrelations turn negative

at the same time.

Our results imply that individual stock momentum is unlikely about firm-specific news—most
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factors are so well diversified that they likely wash out all remnants of firm-specific information.

Our results on the connection between factor momentum and investor sentiment suggest that the

autocorrelation in factor returns, and, by extension, individual stock momentum, may stem from

mispricing. Factor returns may positively autocorrelate because mispricings slowly mean-revert:

prices of assets that have been pushed away from fundamentals must later drift towards these

fundamental values as arbitrageurs enter to profit from the mispricings.
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A Appendix

A.1 Autocorrelations in factor returns

Table 2 in the main text reports estimates from regressions in which the dependent variable is a

factor’s return in month t and the explanatory variable is an indicator variable that takes the value

of one if the factor’s return over the prior year is positive and zero other. In Table A1 we measure

autocorrelations in factor returns by regressing a factor’s return against the factor’s realized return

over the prior year.

A.2 Cross-sectional and time-series factor momentum strategies with different

formation and holding periods

In the main text we form both the cross-sectional and time-series factor momentum strategies using

prior one-year returns and rebalance these strategies monthly. Table A2 examines the performance

of these strategies with formation and holding periods ranging from one month to two years. When

the holding period is longer than a month, we use the overlapping portfolio approach of Jegadeesh

and Titman (1993) to correct the standard errors. In month t, the return on a strategy with a

k-month formation period is computed as the average return across h portfolios, where h is the

length of the holding period. We construct these h strategies every month between months t − 1

and t − h. This approach produces a single time series for each formation period-holding period

combination.

Panel A of Table A2 examines the performance of time-series factor momentum strategies. The

time-series strategy with the one-month formation and holding periods earns an average return

of 35 basis points (t-value = 6.61). These strategies typically remain profitable also with longer

formation and holding periods. All time-series momentum strategies are the most profitable when
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Table A1: Autocorrelations in factor returns

The table reports estimates from univariate regressions in which the dependent variable is a factor’s
monthly return and the independent variable is the factor’s average return over the prior year. We
estimate these regressions using pooled data (first row) and separately for each anomaly (remaining
rows). In the pooled regression, we cluster the standard errors by month.

Intercept Slope

Anomaly α̂ t(α̂) β̂ t(β̂)

Pooled 0.24 4.34 0.30 3.04

U.S. factors

Size 0.19 1.50 0.29 2.28
Value 0.24 2.00 0.23 2.00
Profitability 0.18 2.04 0.28 2.51
Investment 0.23 2.54 0.25 2.11
Momentum 0.71 3.59 −0.01 −0.05
Accruals 0.20 2.48 −0.03 −0.19
Betting against beta 0.41 2.74 0.52 5.52
Cash-flow to price 0.23 1.82 0.16 1.31
Earnings to price 0.26 2.10 0.22 1.89
Liquidity 0.39 2.37 0.11 0.69
Long-term reversals 0.16 1.54 0.38 3.23
Net share issues 0.16 1.58 0.36 3.20
Quality minus junk 0.26 2.46 0.29 2.56
Residual variance 0.10 0.48 0.22 1.80
Short-term reversals 0.49 3.31 0.01 0.04

Global factors

Size 0.05 0.38 0.14 0.64
Value 0.21 1.54 0.45 3.67
Profitability 0.29 2.72 0.21 1.15
Investment 0.13 1.15 0.32 2.37
Momentum 0.84 3.30 −0.10 −0.54
Betting against beta 0.56 2.71 0.41 2.75
Quality minus junk 0.36 2.54 0.18 1.07

held for one month; at longer holding periods, this strategy’s performance deteriorates because it

cannot immediately rebalance away from factors whose average returns turn negative.

Panel B of Table A2 shows that cross-sectional momentum performs the best with one-month

formation and holding periods. This strategy’s average return is 31 basis points per month with
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Table A2: Average returns of time-series and cross-sectional factor momentum strategies

This table reports annualized average returns and t-values for time-series and cross-sectional factor
momentum strategies that trade the 20 non-momentum factors listed in Table 1. The time-series
factor momentum strategy is long factors with positive returns over a formation period that ranges
from one month to two years and short factors with negative returns. The cross-sectional mo-
mentum strategy is long factors that earned above-median returns relative to other factors over
the same formation period and short factors with below-median returns. We let the rebalancing
frequency range from one month to two years. When the holding period is longer than a month, we
use the Jegadeesh and Titman (1993) approach correct standard errors for the overlapping holding
periods returns.

Panel A: Time-series factor momentum
Holding Formation period Formation period
period 1 3 6 12 18 24 1 3 6 12 18 24

Average returns t-values

1 0.35 0.29 0.33 0.36 0.28 0.28 6.61 5.43 6.44 6.77 5.47 5.60
3 0.06 0.13 0.22 0.28 0.26 0.22 1.25 2.38 4.40 5.26 5.33 4.51
6 0.13 0.08 0.22 0.22 0.21 0.19 2.63 1.70 4.75 4.75 4.40 3.90
12 0.18 0.10 0.12 0.09 0.10 0.09 3.82 2.26 2.79 2.10 2.24 2.07
18 0.08 0.03 0.03 0.06 0.06 0.10 1.78 0.75 0.74 1.38 1.48 2.50
24 0.06 0.04 0.04 0.11 0.12 0.15 1.47 1.10 1.09 2.82 3.20 4.01

Panel B: Cross-sectional factor momentum
Holding Formation period Formation period
period 1 3 6 12 18 24 1 3 6 12 18 24

Average returns t-values

1 0.30 0.24 0.20 0.24 0.17 0.15 5.99 4.91 4.28 4.99 3.80 3.48
3 0.00 0.04 0.07 0.14 0.11 0.09 0.05 0.78 1.57 3.03 2.70 2.14
6 0.07 0.05 0.09 0.09 0.08 0.08 1.50 1.16 1.95 2.04 1.89 1.84
12 0.08 0.07 0.00 −0.04 −0.01 0.01 1.75 1.65 0.00 −0.87 −0.19 0.22
18 0.00 −0.03 −0.06 −0.02 −0.01 0.01 −0.05 −0.70 −1.56 −0.48 −0.36 0.30
24 0.03 0.00 0.00 0.02 0.03 0.02 0.83 −0.06 −0.12 0.59 0.72 0.53

a t-value of 5.98—the largest among all cross-sectional strategies. The profits on this short-term

strategy decay quickly: the return on a strategy with one-month formation and three-month holding

period is small and insignificant. Some of the strategies with longer formation periods, although less

profitable initially, earn statistically significant profits at the three- and six-month holding periods.
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A.3 Measuring the effects of the auto- and cross-serial covariances on momen-

tum profits under the Fama-French five-factor model

Section 4.1 shows that the covariance structure of factor returns can induce momentum into the

cross section of stocks through autocovariances and cross-serial correlations. Because factor returns

are positively autocorrelated, the autocovariance component positively adds to the momentum

profits. The effect of the cross-serial correlations, however, depends on the cross-serial covariance

in factor returns and the covariance in stocks’ factor loadings. This channel adds to the momentum

profits only if the cross-serial correlations of returns and the covariances of betas have the same

signs. In this Appendix we show that, because of the restrictiveness of this condition, it is unlikely

to matter in the data. We use the Fama-French five-factor model as an illustration.

Our approach requires estimating factor betas to measure the cross-sectional variances in factor

betas and covariances between betas of different factors. For each stock at time t, we estimate

factor betas by estimating rolling five-factor model regressions using one year of daily return data:

rs,d = αs + βMKTRF
s,d MKTRF + βCMA

s,d CMA + βHML
s,d HML + βRMW

s,d RMW + βSMB
s,d SMB + εs. (A-1)

We winsorize the beta estimates every month at the 1st and 99th percentiles to mitigate the effect

of outliers. The top panel of Table A3 shows the autocovariances (elements on the diagonal of the

matrix, boldfaced) and cross-serial covariances in factor returns. Most factors exhibit positive lead-

lag relationship with other factors with the exception of the market. High returns on the market

between t− 12 and t− 1 signal lower returns on the other factors at time t. Similarly, high returns

on the size (SMB), profitability (RMW), and investment (CMA) factors are associated with lower

future returns on the market.

The lower panel of Table A3 reports the average cross-sectional variances and covariance of
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Table A3: Equity momentum profits due to the covariance structure of factor returns under the
Fama-French five-factor model.

This table reports estimates of the terms in equation (9) under the assumption that the Fama-
French five-factor model governs asset returns. The first panel shows the estimates of the auto-
and cross-serial covariances between factor returns,

[
cov(rf−t, r

f
t )
]
. The second panel shows the

covariance matrix of factor betas
[
σ2
βf

and cov(βg, βf )
]
. At the bottom of the table we report

the net total effects of the autocovariance-related terms,
[∑F

f=1 cov(rf−t, r
f
t )σ2

βf

]
, and the cross-

covariance terms,
[∑F

f=1

∑F
g=1

f 6=g
cov(rf−t, r

g
t )cov(βg, βf )

]
.

Factor auto- and cross-serial covariances

CMA−t HML−t RMW−t SMB−t MKTRF−t
CMAt 0.12 0.08 0.14 0.05 −0.08
HMLt 0.13 0.23 0.11 0.08 −0.22
RMWt −0.02 −0.03 0.17 −0.01 −0.06
SMBt 0.18 0.36 0.16 0.29 −0.29
MKTRFt −0.08 0.08 −0.07 −0.10 0.14

Covariance matrix of factor betas

βCMA βHML βRMW βSMB βMKTRF

βCMA 2.52 −0.86 0.29 0.16 0.11
βHML −0.86 2.11 0.75 0.26 0.34
βRMW 0.29 0.75 2.66 0.45 0.14
βSMB 0.16 0.26 0.45 1.20 0.47
βMKTRF 0.11 0.34 0.14 0.47 0.69

Net auto-covariance,
[∑F

f=1 cov(rf−t, r
f
t )σ2

βf

]
1.69

Net cross-covariance,
[∑F

f=1

∑F
g=1

f 6=g
cov(rf−t, r

g
t )cov(βg, βf )

]
−0.13

betas that are estimated each month. With the exception of the investment and value factors,

whose betas tend to be negatively correlated, the pairwise covariances are positive. We use these

estimates to measure the contributions of the auto-covariances and cross-serial covariances to the

profitability of the individual stock momentum strategy. Multiplying each cross-covariance of the

top panel by its corresponding covariance in the lower panel, and summing across all factor pairs,

gives a small and negative estimate of −0.13% for the net effect of the cross-covariance component.

In contrast, the contribution of the autocovariance term is significantly higher. Under the five-

factor model, it is the autocorrelation in factor returns that turns into momentum in the cross
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Table A4: Distribution of momentum profits conditional on factor autocorrelation

This table reports the distributions of UMD returns conditional on the aggregate factor autocorrela-
tion index. This index is the cross-sectional average of factors’ autocorrelations (see equation (11)).
We report UMD’s unconditional distribution as well as the distribution conditional on the autocor-
relation index being positive or negative. The sample begins in July 1964 and ends in December
2015.

Aggregate factor
autocorrelation index

Statistic Unconditional < 0 > 0

Mean 0.70 −1.59 2.41
Standard deviation 4.27 4.40 3.26
Skewness −1.37 −2.58 0.72
Kurtosis 13.59 16.95 7.66
Percentiles

5th −6.65 −8.81 −1.92
10th −4.05 −6.91 −0.69
25th −0.73 −3.16 0.36
50th 0.78 −0.48 2.07
75th 2.93 0.78 3.76
90th 4.99 2.54 5.93
95th 6.54 3.21 7.95

Number of months 618 264 354

section of stock returns.

A.4 Distribution characteristics of UMD as a function of the aggregate factor

autocorrelation index.

Figure 4 in the text shows UMD’s return distribution conditional on the sign of the aggregate factor

autocorrelation index. Table A4 reports the first four moments and the percentiles of UMD’s return

distribution.

A.5 Momentum crash and booms probit regressions

Figure 4 suggests that individual stock momentum is likely to crash when the autocorrelations in

factor returns turn negative. In this Appendix we measure the strength of this association. In

Table A5 we reports estimates of probit models in which the dependent variable (Crash) is an
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indicator variable that takes the value of one when UMD’s return is below the 10th percentile of

its distribution and zero otherwise:

Pr
(
Crasht = 1| ρauto,t

)
= F (α+ βρauto,t), (A-2)

where ρauto,t is the factor autocorrelation computed using equation (11), Pr(·|·) denotes the con-

ditional probability, and F (·) is the cumulative normal distribution. We also report estimates of

another set of probit models in the dependent variable (Boom) takes the value of one if UMD’s

return is above the 90th percentile of its distribution and zero otherwise. Because the probit model

is nonlinear, we report the marginal effects implied by the slope estimates. In addition to the 20

non-momentum factors listed in Table 1, we also add the market factor to the list of factors due to

its role in generating momentum crashes (Daniel and Moskowitz, 2016).

Table A5 shows that the conditional probability of a momentum crash decreases in the autocor-

relation across most factors. For the 11 factors with statistically significant estimates, a one-unit

increase in the autocorrelation decreases the probability of a momentum crash between −1.1%

(global investment) and −7.1% (liquidity). The first row measures the effect of the aggregate au-

tocorrelation index on the likelihood of a crash. A one-unit increase in the index associates with

a 15% lower probability of a crash (z-value = −6.78). This estimate exceeds that of all individ-

ual factors and it supports the view that equity momentum emerges as the summation of factor

autocorrelations.

Just as momentum underperforms when factor returns are negatively autocorrelated, momen-

tum returns are higher when the autocorrelations intensify. The boom estimates are similar to the

crash estimates but with the opposite signs. A one-unit increase in the aggregate autocorrelation

index increases the probability of a “boom” by 15%. The aggregate autocorrelation index there-
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Table A5: Factor autocorrelation and momentum crashes and booms

This table reports estimates for probit regressions that measure the relationship between momentum
crashes and booms and factor autocorrelations. Momentum crash is an indicator variable that takes
the value of one if UMD’s return is below the 10th percentile of its distribution and zero otherwise;
momentum boom takes the value of one if UMD’s return is above the 90th percentile. Each row,
except for the first one, measures the association between momentum crashes and booms and the
autocorrelation in one of the factors. The independent variable in these regressions is the factor’s
autocorrelation in month t computed from equation (11). The independent variable on the first
row is the aggregate factor autocorrelation index, which is the cross-sectional average of factors’
autocorrelations. This table reports the marginal effects associated with the autocorrelations, that
is, the effect of a one-unit increase in the autocorrelation on the likelihood of a crash or a boom in
percentage points, the z-values associated with the slope estimates, and McFadden’s pseudo R2s.

Momentum crash Momentum boom

Factor β̂ z-value R2 β̂ z-value R2

Aggregate autocorrelation index −15.18 −6.78 38% 15.46 7.23 24%

U.S. factors

Size −3.89 −3.56 3% 3.38 3.91 4%
Value −1.35 −1.88 1% 0.67 0.98 0%
Profitability 0.30 0.83 0% 0.06 0.20 0%
Investment −2.33 −4.15 10% 1.91 4.02 13%
Market −2.02 −1.78 1% 0.76 0.62 0%
Accruals −2.46 −4.33 8% −1.11 −2.39 3%
Betting against beta −0.40 −0.62 0% 5.29 5.85 7%
Cash-flow to price −2.51 −2.48 1% 1.67 1.88 1%
Earnings to price −4.92 −4.18 4% 2.51 2.93 2%
Liquidity −7.86 −5.62 7% 7.06 5.08 6%
Long-term reversals −2.01 −2.47 2% 3.53 4.63 7%
Net share issues −4.16 −4.98 11% 2.45 4.40 13%
Quality minus junk −3.04 −4.75 11% 4.11 5.90 20%
Residual variance −1.57 −1.55 0% 1.82 1.80 1%
Short-term reversals −0.62 −0.75 0% 0.95 1.38 0%

Global factors

Size 0.84 0.77 0% 1.58 1.94 4%
Value 0.19 0.39 0% 0.67 1.26 1%
Profitability −0.87 −1.83 32% 0.38 1.39 24%
Investment −0.33 −0.78 1% 0.31 0.74 1%
Betting against beta −4.36 −4.02 12% 6.54 4.44 10%
Quality minus junk −3.38 −3.58 34% 1.53 1.84 56%
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fore has remarkably balanced effects on the crashes and booms: a one-standard deviation shock to

aggregate autocorrelations has almost identical effects on the probabilities of booms and busts.

A.6 Time-series regressions of factor returns on sentiment and lagged returns

We regress each factor’s returns on lagged sentiment and past returns:

rt = α+ βsSt−1 + βmr−t + εt, (A-3)

where St−1 is the sentiment index at time t−1 and r−t is the average factor return from month t−12

to t − 1. We also estimate alternative regressions which replace both the investor sentiment and

prior average returns with indicator variables. The investor sentiment indicator variables takes the

value of one when the sentiment is above the sample median and zero otherwise; the prior-return

indicator variables takes the value of one when the prior return is positive and zero otherwise. This

definition of the sentiment indicator variable is the same as that in Stambaugh et al. (2012).

Table A6 confirms the findings of Stambaugh et al. (2012). Anomaly returns are higher following

periods of high sentiment, and often significantly so. The only statistically significant exception

is the size factor. The first row reports the results from a pooled regression which clusters the

standard errors by month. Both sentiment and momentum are statistically significant. The right-

hand side of Panel A shows that these conclusions do not change when we replace the explanatory

variables with indicator variables. In the pooled regression, high sentiment and positive factor

return both signal higher future factor returns. High sentiment increases factor returns by 27 basis

points (t-value = 2.75); positive factor return by 49 basis points (t-value = 4.19). Both sentiment

and prior factor returns therefore independently predict factor returns.
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Table A6: Time-series regressions of factor returns on sentiment and prior factor returns

We report coefficient estimates from predictive time-series regressions in which the dependent vari-
able is the return on a factor and the explanatory variables are the lagged investor sentiment and
the factor’s prior one-year return: rt = α + βsSt−1 + βmrt−12,t−1 + εt. The second set of columns
shows the results from regressions that replace the sentiment and return variables with indicator
variables: rt = a+ bs1St−1>median + bm1r−t>0 + εt. The sentiment indicator variable takes the value
of one when investor sentiment is above the sample median and zero otherwise. The return indica-
tor variable takes the value of one when the factor’s average return over the prior year is positive
and zero otherwise. The pooled regression on the first line cluster standard errors by month.

Regression 1: Continuous variables Regression 2: Indicator variables
Sentiment Prior returns Sentiment Prior returns

Factor b̂s t(b̂s) b̂m t(b̂m) b̂s t(b̂s) b̂m t(b̂m)

Pooled 0.14 2.00 0.25 2.56 0.26 2.75 0.49 4.19

U.S. factors

Size −0.32 −2.50 0.22 1.70 −0.33 −1.30 0.63 2.41
Value 0.11 0.90 0.22 1.83 0.49 2.09 0.18 0.73
Profitability 0.29 3.17 0.17 1.41 0.47 2.73 0.31 1.70
Investment 0.12 1.48 0.21 1.77 0.26 1.61 0.22 1.28
Momentum 0.04 0.20 −0.01 −0.07 0.00 0.00 −0.10 −0.23
Accruals −0.07 −0.82 −0.03 −0.18 −0.03 −0.16 0.14 0.88
Betting against beta 0.13 0.94 0.50 5.03 0.54 2.04 1.12 3.44
Cash-flow to price −0.08 −0.62 0.16 1.24 0.05 0.22 0.28 1.12
Earnings to price 0.00 −0.03 0.21 1.85 0.34 1.44 0.23 0.92
Liquidity 0.16 1.05 0.08 0.52 0.19 0.63 0.41 1.31
Long-term reversals 0.05 0.53 0.38 3.20 0.02 0.12 0.71 3.41
Net share issues 0.37 3.51 0.20 1.68 0.41 2.13 0.07 0.33
Quality minus junk 0.45 4.26 0.07 0.56 0.50 2.52 0.47 2.25
Residual variance 0.95 4.23 0.01 0.10 1.16 2.73 0.85 2.00
Short-term reversals −0.13 −0.99 −0.03 −0.17 0.10 0.38 0.21 0.70

Global factors

Size −0.31 −1.53 0.04 0.19 −0.39 −1.58 0.20 0.81
Value 0.84 3.67 0.19 1.36 0.68 2.65 0.52 1.89
Profitability 0.13 0.98 0.22 1.21 0.13 0.76 0.34 1.63
Investment 0.60 3.41 0.20 1.50 0.50 2.36 0.53 2.44
Betting against beta −0.01 −0.03 0.41 2.74 −0.11 −0.33 1.14 2.91
Quality minus junk 0.46 2.32 0.15 0.88 0.28 1.13 0.21 0.77
Momentum 0.54 1.56 −0.11 −0.61 0.03 0.07 0.30 0.54

52


	Introduction 
	Data 
	Factor momentum 
	Factor returns conditional on past returns
	Average returns of time-series and cross-sectional factor momentum strategies 
	Decomposing factor momentum profits: Why does the cross-sectional strategy underperform the time-series strategy?

	Factor momentum and individual stock momentum
	Transmission of factor momentum into the cross section of stock returns: Framework 
	Explaining the returns on portfolios sorted on equity momentum
	Alternative momentum factors: Spanning tests 
	Individual stock momentum versus factor momentum with alternative sets of factors
	An analysis of momentum crashes 
	Momentum is not a distinct risk factor
	Conditional correlations between factors and the momentum ``factor''
	Diversification benefits?


	Investor sentiment and factor momentum
	Conclusion 
	Appendix
	Autocorrelations in factor returns
	Cross-sectional and time-series factor momentum strategies with different formation and holding periods
	Measuring the effects of the auto- and cross-serial covariances on momentum profits under the Fama-French five-factor model 
	Distribution characteristics of UMD as a function of the aggregate factor autocorrelation index.
	Momentum crash and booms probit regressions
	Time-series regressions of factor returns on sentiment and lagged returns




