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1 Introduction

More than a trillion dollars is spent on transportation infrastructure across the world each
year (Lefevre, Leipziger, and Raifman, 2014). In the U.S. alone — where annual spending
on highways exceeds $150 billion — the average driver spends an average of 42 hours a year
in traffic, generating economic losses exceeding these direct costs (ASCE, 2017). Evaluating
the impact of infrastructure investments in the presence of such traffic congestion is difficult.
On the one hand, improvements to one part of the infrastructure network causes drivers to
alter their routes, changing traffic patterns and congestion throughout the network. On the
other hand, changes in traffic patterns affects the spatial distribution of economic activity, as
individuals re-optimize where to live, work, and/or consume. But as the spatial distribution
of economic activity determines the underlying traffic patterns, these two hands are intri-
cately intertwined, resulting in a complex feedback loop between routing, traffic, congestion,
and the spatial distribution of economic activity.

We propose a new tractable spatial framework that incorporates traffic congestion and
apply it to evaluate the welfare impact of transportation infrastructure improvements. We
embed a route choice problem into two spatial models where the cost of traversing a particular
link depends on the equilibrium amount of traffic on that link. Our approach yields analytical
expressions for transportation costs between any two locations, the traffic along each link
of the transportation network, and the equilibrium distribution of economic activity across
the economy. We characterize the properties of such an equilibrium, highlighting how the
presence of traffic congestion shapes those properties. We then show how the framework can
be combined with readily available traffic data to evaluate the welfare impact of improving
any segment of the infrastructure network. Finally, we evaluate the welfare impact in two
settings: (1) the U.S. highway network; and (2) the Seattle road network. In both cases we
find on average positive but highly variable returns to investment, showing the importance
of well-targeted infrastructure investment.

Our framework begins with a modest departure from two widely used quantitative general
equilibrium models: an economic geography model where agents choose a location to live
(as in Allen and Arkolakis (2014)) and engage in trade between locations (as in Eaton and
Kortum (2002)), and an urban model where agents choose where to live and where to work
within a city (as in Ahlfeldt, Redding, Sturm, and Wolf (2015)). In Eaton and Kortum
(2002), it is assumed that while each location has a idiosyncratic productivity for producing
each type of good, the transportation technology is identical for all goods. Similarly, in
Ahlfeldt, Redding, Sturm, and Wolf (2015), while it is assumed that each individual has

idiosyncratic preferences for each home-work pair of locations, all individuals incur the same



transportation costs when commuting from home to work. In our framework, we allow for
transportation costs in both models to also be subject to idiosyncrasies at the route-level. As
a result, simultaneous to their choice of where to purchase goods (in the economic geography
model) or where to live and work (in the urban model), agents also choose an optimal route
through the transportation network.

This departure allows us to derive an analytical expression for the endogenous trans-
portation costs between all pairs of locations as a function of the transportation network.
It also allows us to derive an analytical expression for the equilibrium traffic along a link.
This expression takes an appealing “gravity” form, where traffic depends only on the cost
of travel along the link and the economic conditions at the beginning and end of the link.
Those economic conditions turn out to be the familiar market access terms (see e.g. Ander-
son and Van Wincoop (2003); Redding and Venables (2004)) — the “inward” market access
at the start of the link and the “outward” market access at the end — highlighting the close
relationship between equilibrium traffic flows and the equilibrium distribution of economic
activity. It is this close relationship that allows us to tractably introduce traffic congestion,
which we do so in the spirit Vickrey (1967), by assuming transportation costs of traversing
a link depend on both the underlying infrastructure and amount of traffic along the link.

Ultimately, we can express the equilibrium distribution of economic activity solely as
a function of the underlying infrastructure matrix, the geographic fundamentals of each
location, and four model elasticities, one of which is new (the traffic congestion elasticity)
and three of which are not (a trade/commuting elasticity, a productivity externality, and an
amenity externality). While the mathematical structure the equilibrium system takes has
to our knowledge not been studied before, we prove an equilibrium will exist and provide
conditions under which it will be unique. The new mathematical structure also yields new
implications: most notably, the presence of traffic congestion implies that the equilibrium
is no longer scale invariant. Increasing the size of an economy results in disproportionate
changes in bilateral transportation costs due to changes in traffic congestion, reshaping the
equilibrium distribution of economic activity.

We then turn to the question of how to apply our framework empirically. We begin
by developing a few new tools. First, we derive an analytical relationship between traffic
flows along a network and bilateral trade/commuting flows between an origin and destina-
tion; in contexts such as our own where we observe both, this serves as a model validation
check. Second, we show that the “exact-hat” approach of conducting counterfactuals (see
Dekle, Eaton, and Kortum (2008); Costinot and Rodriguez-Clare (2014); Redding and Rossi-
Hansberg (2017)) can be applied to our framework, albeit using (readily available) traffic data

rather than harder to observe bilateral trade/commuting data. Third, we provide conditions



under which one can recover the necessary traffic congestion elasticity from a regression of
speed of travel on traffic, where the traffic gravity equation provides guidance in the search
for an appropriate instrument for traffic.

Finally, we calculate the welfare impact of transportation infrastructure improvements
in two settings: (1) the U.S. highway network (using the economic geography variant of the
framework); and (2) the Seattle road network (using the urban variant). In both cases, we
begin by showing that the observed network of traffic flows, appropriately inverted through
the lens of the model, does a good job predicting the observed matrix of trade and commuting
flows, respectively. We then estimate the strength of traffic congestion, finding in both cases
substantial traffic congestion. We proceed by estimating the welfare elasticity of improving
each link on each road network. We find highly variable elasticities across different links,
with the greatest gains in the densest areas of economic activity and at choke-points in
the network. Here, traffic congestion plays a particularly important role, as there is only
a modest positive correlation between these welfare elasticities and those that one would
calculate in a standard model ignoring congestion forces.

Finally, we combine our welfare elasticities with detailed cost estimates of improving each
link (which depends on the number of lane-miles needed to be added as well as the geographic
topography and the density of economic activity along the link) to construct an estimate
of the return on investment for each link. For the U.S. highway network, we estimate an
average annual return on investment of 108%; for the Seattle road network that figure is 16%.
Both averages, however, belie substantial heterogeneity across links. For the U.S. highway
network, the returns on investment for a handful of highways serving as connectors just
outside major metropolitan areas exceed 400%; in Seattle, a number of links surrounding
downtown have annualized returns exceeding 60%. Conversely, a substantial fraction of U.S.
highway links (mainly through the mountain west) and nearly half the links in Seattle are
estimated to have a negative return on investment. Taken together, these results highlight
the importance of targeting infrastructure improvements to the appropriate locations in the
infrastructure network.

The primary contribution of the paper is to develop a quantitative general equilibrium
spatial framework that incorporates traffic congestion and can be applied to empirically
evaluate the welfare impact of transportation infrastructure improvements. In doing so, we
seek to connect two related — but thus far distinct — literatures.

The first literature seeks to understand the impacts of infrastructure improvements on the
distribution of economic activity. This literature is mostly the domain of spatial economists;
early examples include Fogel (1962, 1964); recent quantitative work on the subject that incor-

porates rich geographies and general equilibrium linkages across locations include Donaldson



(2018), Allen and Arkolakis (2014), Donaldson and Hornbeck (2016) in an inter-city context
and the work of Ahlfeldt, Redding, Sturm, and Wolf (2015) and Tsivanidis (2018) in an
intra-city context; Redding and Turner (2015) and Redding and Rossi-Hansberg (2017) offer
excellent reviews. While the details of these models vary, a unifying characteristic is that
the transportation costs are treated as exogenous model parameters (usually determined by
the least cost route, as computed using Dijkstra’s algorithm or the “Fast Marching Method”
pioneered by Osher and Sethian (1988) and Tsitsiklis (1995)). As a result, this literature
abstracts from the effect of infrastructure improvements on how changes in the use of the
transportation network affects the transportation costs themselves through traffic congestion.

Relative to this literature, we make two contributions: first, we provide an analytical
relationship between the transportation network and the bilateral costs of travel through
the network, obviating the need to rely on computational methods. Second (and more
importantly), we allow the transportation costs to respond endogenously through traffic
congestion to changes in the distribution of economic activity. This force has been identified
as empirically relevant (see Duranton and Turner (2011)) but thus far has been absent in
such quantitative modeling. Our analysis retains the key analytical benefits of that previous
work but also provides a comprehensive framework to analyze the effects of traffic both
theoretically and empirically.

The second literature seeks to understand the impacts of infrastructure improvements
on the transportation network. This literature is mostly the domain of transportation eco-
nomics; early examples include Beckmann, McGuire, and Winsten (1955) and seminal text-
book of Sheffi (1985); recent work on the subject includes Bell (1995), Akamatsu (1996),
De Palma, Kilani, and Lindsey (2005), Eluru, Pinjari, Guo, Sener, Srinivasan, Copper-
man, and Bhat (2008), Mattsson, Weibull, and Lindberg (2014); Galichon (2016) provides
a comprehensive theoretical treatment and Chapter 10 of De Palma, Lindsey, Quinet, and
Vickerman (2011) provides an excellent review. While the details of these models vary, a
unifying characteristic is that the economic activity at each node in the network is taken as
given, so the literature abstracts from how changes in the transportation costs affects this
distribution of economic activity.

Relative to this literature, we also make two contributions: first, we provide an ana-
lytical solution for the equilibrium traffic along each link in the network that highlights
the close relationship between traffic and the equilibrium distribution of economic activity.
Second (and more importantly), we allow infrastructure improvements to affect traffic not
only through changing route choices (and congestion) on the network, but also through the
resulting equilibrium changes in the distribution of economic activity.

Most closely related to this paper is parallel work by Fajgelbaum and Schaal (2020),



who characterize the optimal transportation network in a similarly rich geography and also
in the presence of traffic congestion. In that important work, the focus is on an efficient
equilibrium of a flexible spatial model, as it is assumed that the social planner can implement
optimal Pigouvian taxes to offset the externalities created by traffic congestion. Our focus,
instead, is on the competitive equilibrium of constant elasticity quantitative spatial models
where the presence of traffic congestion (and/or productivity and amenity externalities)
means the equilibrium is (generically) inefficient, which in the two settings we consider is
more appropriate given the absence of congestion tolls. Relative to Fajgelbaum and Schaal
(2020), a separate contribution is that the analytical tractability of the framework developed
here facilitates the use of many of the tools developed previously by the quantitative spatial
literature, such as the ability to evaluate the welfare impact of infrastructure improvements
using readily available traffic data and the use of “exact hat algebra” methodology to compute
counterfactuals.?

The remainder of the paper proceeds as follows. In the next section, we incorporate
the routing choice of agents in economic geography and urban variants of the framework.
In Section 3, we provide analytical expressions for the endogenous transportation costs and
traffic flows in the presence of traffic congestion. In Section 4, we combine the results of
the previous sections to characterize the equilibrium distribution of economic activity and
traffic. In Section 5, we develop a set of tools for applying the framework empirically. In
Section 6, we implement these tools to examine the welfare impacts of improvements to the

U.S. highway network and the Seattle road network. Section 7 concludes.

2 Optimal Routing in Two Spatial Models

In this section, we embed an optimal routing problem into two quantitative spatial models: an
economic geography model (where goods are traded between locations subject to trade costs)
and an urban model (where workers commute between locations subject to commuting costs).
We show that both models yield identical expressions for the endogenous transportation
costs, and mathematically identical equilibrium conditions as a function of these costs. This
allows us to derive analytical expressions for costs, traffic, and congestion in both frameworks,

a task we undertake in Section 3.

IThe tractability of our approach is evinced by the number of recent working papers who have proposed
extensions to it since its original dissemination. These include extending the framework to consider multiple
types of transportation networks and transshipment (as in Fan, Lu, and Luo (2019) and Fan and Luo (2020),
respectively), extending the framework to include endogenous development of transportation capabilities in
locations (as in Ducruet, Juhdsz, Nagy, Steinwender, et al. (2020)), and extending the framework to multiple
sectors with economies of scale in traffic rather than traffic congestion (as in Ganapati, Wong, and Ziv
(2020)).



For both models, we posit the following geography. Suppose the economy consists of a
finite number of locations i € {1,..., N} = N arrayed on a network and inhabited by L
individuals. Mathematically, this networks is represented by an N x N matrix T = [ty > 1],
where t;; indicates the (ad valorem) cost incurred from moving directly from k to [ along a
link (if no link between k and [ exists, then t; = 00).? We refer to T as the transportation
network and emphasize that it is endogenous and will depend on the equilibrium traffic
congestion.

Moving goods (in the economic geography model) or people (in the commuting model)
from an origin ¢ to a destination j entails taking a route r through the network. Mathe-
matically, r is a sequence of locations beginning with location 7 and ending with location
j,ie. r={i=rg,ry,..,rx = j}, where K is the number of links crossed on the route, i.e.
the length of route r. Because iceberg costs are multiplicative, the total costs incurred from

moving from ¢ to j along route r of length K is then Hszlt 3 Let R;; denote the set

Tk—1Tk "

of all the (countably infinite) possible routes from i to j.

2.1 An Economic Geography Model with Optimal Routing

We first embed a routing framework into an economic geography model where goods are
traded across locations and labor is mobile, as in Allen and Arkolakis (2014) and Redding
(2016). In what follows, unless otherwise noted, we refer the interested reader to Online

Appendix C for detailed derivations.

2.1.1 Setup

An individual residing in location ¢ supplies her endowed unit of labor inelastically for the
production and shipment of goods, for which she receives a wage w; and from which she pur-
chases quantities of a continuum of consumption goods v € [0, 1] with constant elasticity of
substitution (CES) preferences with elasticity of substitution ¢ > 0. Labor is the only factor
used in the production and shipment of goods and income and the corresponding wage is
denoted by w;. Let YV and L denote the world income and world labor endowment, respec-

tively; in what follows, we choose world per-capita income as our numeraire, i.e. YW /L =1,

2Following the literature on graph theory (see e.g. p.14 of Szabo (2015) or p.218 from Chartrand (1977)),
we assume that ¢; = oo to exclude self loops; however, below we allow agents in ¢ to choose the “null” path
(which is the only admissible path of length 0) where they source goods / work where they reside, thereby
incurring no transportation costs.

3We follow the tradition of the spatial literature by treating transportation costs as ad valorem (iceberg).
In Online Appendix D.1, we consider an alternative framework where costs incurred traveling through the
network are additive and show that one can derive a similar expression for the endogenous transportation
costs below.



which implies that the value of trade is measured in average units of labor.

Each location i € NV is endowed with a constant returns to scale technology for producing
and shipping each good v € [0, 1] to each destination j € N along each route r € R;;, which
under perfect competition yields the following price of good v € [0, 1] in destination j € N

from origin ¢ € N along route r € R;;:

K
Hk:l trkflﬂ'k

Pur V) =0 W)

Following Eaton and Kortum (2002), we assume ¢;;, (v) is independently and identically
Frechet distributed across routes and goods distributed with scale parameter 1/A; and
shape parameter §. Individuals purchase each good v € [0,1] from the cheapest source
(i.e. location-route).

While the basic setting is similar to Eaton and Kortum (2002), the innovation here is that
individuals choose both a location and route to source each good (rather than just a location).
But why would a consumer not simply choose to purchase the goods from the cheapest source
along the least cost route? Some of the value of this choice of modeling arises from the great
tractability it yields below. Yet this added “noise” is also is plausible in the presence of
traffic congestion, as there will be many alternative routes that yield approximately the
same costs.? If all consumers were to use the least cost route, then infinitesimal deviations
from Mogridge’s hypothesis would result in large changes in agents’ route choice; empirically,
an infinitely elastic route choice is unrealistic; theoretically, it would lead to a nightmare of
corner solutions (as e.g. noted by Eaton and Kortum (2012) as original impetus for the
Eaton and Kortum (2002) framework).”

A related concern is with the assumption that agents simultaneously choose the location
that sources the good and the route over which it is supplied. Should agents not first choose
where to purchase a good and then decide how to ship it? It turns out the timing assumption
is not crucial: one can construct a model with just such a timing assumption that is formally
isomorphic to the framework presented here (see Online Appendix D.2). Instead, what is
enormously helpful (and which the simultaneous choice over locations and routes ensures)
is that agents’ demand elasticities for location and route are the same. Deviations from

this assumption — while computationally straightforward — come so at the loss of substantial

4This is known as Modgridge’s hypothesis, quoted as originally stating “For trip origins at any particular
distance from the center of London, peak hour journey times by car and rail to central destinations are equal”
(Holden, 1989).

5In practice, the addition of noise is of little consequence when calculating transportation costs. In the
empirical contexts considered below, the correlation between the (log) transportation costs estimated with
noise and the (log) transportation costs along the least cost route exceeds 0.99 (for the U.S. highways) and
0.98 (for the Seattle road network).



analytical tractability and ensuing economic insight.®

2.1.2 An analytical expression for transportation costs

We now characterize the fraction and value of goods shipped on each route between each
origin and destination. The probability that j € N purchases good v € [0,1] from i € N

along route r € R;;, m;;,, can be written as:

wi/A) 7 (TIS 6321
Tijr = /) <H : ) R (1)

Zke/\/ (wk/Ak:)ie Zr’e}%kj Hllil t;l’

/
_17

To determine the total value of goods shipped from i € N to j € N, X;;, we sum across
all routes, recalling from Eaton and Kortum (2002) that the expenditure shares are equal to

the probability of purchasing a good:

0 0
70 (w; [ A
XU = E 7T7,],7"E] = Y <9 / ) 0 E]? (2)
reRy; Zke/\/ T (wr/Ar)

where:

K g
=) (Htﬁfl,n) (3)
reRi; \l=1
is the transportation costs from i to j. Note that expression (2) is identical to that of
Eaton and Kortum (2002); however, rather than the transportation cost 7;; being taken as
given, here it is determined by the least cost routing problem through the (endogenous)

transportation network.

2.1.3 Market Access and Gravity

While (2) provides an analytical expression for the value of bilateral trade flows, it turns
out it is convenient for what follows to express it in market access terms. To do so, we first
impose two equilibrium market clearing conditions: (1) total income Y; in each location is
is equal to its total sales; and (2) total expenditure E; in each location is equal to its total

purchases:
Yi=> Xy, Ei=) X (4)

6There are two places where an equal demand elasticity for location and route greatly increases the
tractability: first, in transforming the equilibrium conditions of the model written as a function of trans-
portation costs to a function of the transportation matrix (where it allows for a linear inversion); second, in
deriving the traffic gravity equation (where it allows for an explicit rather than implicit analytical form.)

9



We can then follow Anderson and Van Wincoop (2003) and Redding and Venables (2004)

to re-write the gravity equation (2) as follows:

E;
X —25, (5)
P;

where II; is a producer price index capturing the (inverse) of producer market access:

S

N _
641
I, = <Z 7159E1Pf> = ALY, (6)

Jj=1

and P; is the consumer price index capturing the (inverse) of consumer market access:

S

N _
P; = (Z TZ.;GY;HZQ) ) (7)
i=1
A lower value of P; indicates that consumers in location ¢ have greater access to producers

in other markets, and a lower value of II; indicates that producers have greater access to

consumers in other markets.

2.1.4 Equilibrium

Finally, we calculate the equilibrium distribution of population and economic output across
space. Following Allen and Arkolakis (2014), we write the welfare of residents in location
JEN, W, as:
m=%% (8)
where u; is an amenity value of living in location j € N. We assume that there is free labor
mobility across locations and we focus in equilibria where welfare equalizes across locations,
W; = W, and every location is populated.”
We further allow for the possibility that productivities and amenities potentially depend

on the measure of workers in a given location as follows:
Ai= ALY, wp =Ly, (9)

where A; > 0 and @; > 0 are the local geography of productivity and amenities, and a, 3 € R

"This assumption, combined with congestion spillovers introduced later, simply introduces a labor supply
function that increases in the real wage offered in a location. Various microfoundations of such a labor supply
function have been discussed in the literature, see for example Allen and Arkolakis (2014); Redding (2016);
Redding and Rossi-Hansberg (2017); Allen, Arkolakis, and Takahashi (2020).

10



govern the strength of the productivity and amenity externalities, respectively.®
Combining the definitions in (9), equation (5), the market clearing conditions (4), im-
posing balanced trade (i.e. E; =Y;) and welfare equalization (i.e. condition (8)), we obtain

the following equilibrium conditions:

N
A;9y1+9l‘—0(1+a) — Xzfeaﬁyjlwlje(ﬁq) (10)
() 7 7 1)
j=1
N
——0 —070(1— —0 16, —079(a+1
i Gyi QZZ( B) — XZTjieA?yj Glj( +1) (11)
j=1

where y; = Y;/Y"W and [; = L;/L are the share of world income and world labor in location

I(a+8)
w

equilibrium welfare of the system.? Given productivities {A;}, amenities {u;}, and trans-

i € N, respectively, and x = )918 an endogenous scalar capturing the (inverse) of the
portation costs {7;;}, the 2NN equations (10) and (11) can be solved for the 2N equilibrium
shares of income {y;} and labor {l;} in all locations. It is essential to note that the trans-
portation costs themselves are endogenous and — through traffic congestion — will respond to
the equilibrium distribution of economic activity; hence, these conditions only provide part
of the story. We address the remainder of the story below in Section 3. First, however, we

turn to another spatial model.

2.2 An Urban Model with Optimal Routing

We next embed a routing framework in an urban model where agents commute between their
place of residence and their place of work, as in Ahlfeldt, Redding, Sturm, and Wolf (2015).
2.2.1 Setup

An individual v € [0, 1] residing in city block i € N who works in city block ;7 € N and

commutes via route 7 of length K to work receives a payoff V;;, () that depends on (1)

8As noted in Allen and Arkolakis (2014), the presence of productivity and amenity spillovers create
formal isomorphisms between a large set of economic geography models and also play an important role in
determining the qualitative and quantitative implications of the model. We will contrast the implications of
these (now standard) spillovers to the (new) traffic congestion spillovers below.

9That y combines both the equilibrium welfare W and the aggregate population L demonstrates that the
whether one treats the economy as “closed” (so L is fixed and W is endogenous) or “open” (so that W is fixed
and L is endogenous) has no bearing on the equilibrium distribution of economic activity {l;,y;} jenr Tor on
the value that x takes, i.e. x is a sufficient statistic for welfare in either scenario. This is closely related to
the fact that, conditional on transportation costs, the equilibrium is scale invariant — i.e. changes in L have
no effects on x or the equilibrium distribution of economic activity — a point we discuss in detail in Section
4.3.

11



the wage in the workplace, w;; (2) the amenity value of residence, u;; (3) the time spent
commuting; and (4) an idiosyncratic (Frechet distributed with shape parameter @) route-,

origin-, and destination-specific term:

K
Vijr (v) = (inj/ntn_l,n) X &g (V) -
=1

Individual v chooses where to live, work, and which route to take in order to maximize
Vijr (v). That is, we extend the framework of Ahlfeldt, Redding, Sturm, and Wolf (2015)
to introduce heterogeneity across individuals in their preference not only of where to live
and work but also of what route to take when commuting between the two. Like in the
economic geography framework above, this additional “noise” both substantially increase the
tractability and generates an empirically plausible finite elasticity to the costs of different
routes between home and work. And as above, the assumption that the three choices of
where to live, where to work, and what route to take share the same elasticity — while
straightforward to relax — greatly facilitate the tractability of the derivations and ensuing
economic insight that follows.

We assume each location j produces a homogeneous and costlessly traded good with a
constant returns to scale production function where labor is the only factor of production
with productivity A;. Taking the price of the good as the numeraire, this implies that the

equilibrium real wage is the marginal product of labor w; = A;.

2.2.2 An analytical expression for transportation costs

The probability a worker chooses to live in i, work in j, and commute via route r can be

written as: K
—0 0 0
[1= 6,0, x g < wj

Tijr = ® 7 (12)
Zi,j [T trﬁl,m X uf x wj?

where we re-use the notation from the economic geography model for reasons that will become

apparent below. This implies that the total number of workers residing in ¢« and working in
J, Lij,can then be determined by simply summing across all routes and multiplying by the
aggregate population L, yielding for all i € Nand j € N:
—0 0 o L
Lij = Z Lij,r = Tij X U; X wj X W, (13)

7’69?2']'
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where transportation costs 7;; are given again by (3) and W = E[max;;, Vi, (v)] =
1

<ZZ] T X uf x w9> " is the expected welfare of a resident in the city.

2.2.3 Market Access and Gravity

As in the trade model, we can express the gravity commuting equation (13) in market access
terms. To do so, we impose the following two market clearing conditions: (1) we require that
the total number of residents in i, L, is equal to the commuting flow to all workplaces; and
(2) we require that the total number of workers in 7, LF , is equal to the commuting flow

from all residences:
j i

We can write the gravity commuting equation (13) as follows:

LR LY
Lij = 7.0 % X = (15)
J 1I: F)]

(]

where II; is a resident price index capturing the (inverse of) the commuting market access

residents in 7 have to firms in all locations:

(Z T_GLFPO) B —u; (L) (%) 7 (16)

and P; is a firm price index capturing the (inverse of) the commuting market access firms in

7 have to residents in all locations:

(Z”LRHG>é =y (L) (Wi> g (17)

Note that we re-use the notation from the economic geography framework above: both
models IT; captures the “outward” market access and Pj_e captures the “inward” market

access with respect to the flows from 7 to j.
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2.2.4 Equilibrium

As in the economic geography model, we assume that productivities and amenities are af-

fected by commercial and residential population, respectively, as follows:
A= A (L) w = (LY (18)

where A; > 0 and @; > 0 are again the fundamental components of productivity and ameni-
ties and «, § the respective elasticities.
Substituting equations (18) into the commuting gravity equation (13) and imposing the

equilibrium market clearing conditions (14) yields the following system of equations:

(1B = x>l Al (i)™ (19)
7

GO Z Wl A? (17)” (20)

where (f = LF/L and I = LI /L are the share of workers living and working, respectively,

I(a+8)
W

system. As in the trade model above, given transportation costs {7;;}, productivities {A;},

in location i and x = is again the (inverse) of the equilibrium welfare of the
and amenities {u;}, equations (19) and (20) can be solved to determine the equilibrium
distribution of where people live {If} and where they work {i/}. Once again, however,
the transportation costs themselves are endogenously determined and will respond to the

distribution of economic activity through traffic congestion.

2.3 Taking Stock: Gravity and Optimal Routing on the Network

We now compare the economic geography and urban models. As is evident, the two setups are
very similar, sharing (1) identical expressions for the (endogenous) bilateral trade/commuting
costs (summarized in equation (3)); (2) identical gravity expressions for the bilateral flow
of goods / commuters as a function of bilateral costs and market access (summarized in
equations (5) and (13), respectively); and (3) and mathematically equivalent equilibrium
conditions (summarized in equations (10) and (11) for the economic geography model and
equations (19) and (20) for the urban model). Indeed, the only distinction between the
two models is the particular log linear relationship between market access variables II; % and

Pj_e and the equilibrium economic activity in the origin (Y; and LE

7

respectively) and the

destination (£; and Lf , respectively): the equilibrium conditions in both models as functions

14



of the market access variables and economic activities are identical.'® These similarities allow
us to introduce endogenous transportation costs through equilibrium traffic congestion in

both frameworks using a unified set of tools, which we turn to next.

3 Transportation Costs, Traffic, and Congestion

In this section, we provide analytical solutions for the equilibrium transportation costs,

traffic, and congestion throughout the infrastructure network.

3.1 Transportation Costs

Both the economic geography and urban models yield transportation costs of the form given

in equation (3). By explicitly enumerating all possible routes, equation (3) can be written

o0
-0 _ K
Tij —E Aij7
K=0

where A = [ti_je}, i.e. Aisan N x N matrix with (4, j) element ti_je (not to be confused with
the vector of productivities) and AX = [Ag}, i.e. A is the (4, ) element of the matrix A

to the matrix power K.'? As in Bell (1995), as long as the spectral radius of A is less than

in matrix notation as follows:!!

one, the geometric sum can be expressed as:'?
o0
Y Af=(1-A)"'=B,
K=0

where B = [b;;] is simply the Leontief inverse of the weighted adjacency matrix. As a result,

the transportation cost from ¢ to j can be written as a simple function of the infrastructure

0T hat our model yields a log-linear relationship between local economic outcomes and market access terms
means that it generates a structural interpretation to the empirical specification used by a recent literature
to estimate the effects of transportation where economic outcomes are projected onto market access terms
(see Donaldson (2015) and Redding and Turner (2015) for excellent reviews).

11See Appendix A.1 for a detailed derivation.

12By summing over all possible routes, there is a direct analogy to the integral formulation of quantum
mechanics, which considers all possible paths of the system in between the initial and final states, including
those that are absurd by classical standards. Note that while it is straightforward to truncate the summation
up to some finite K to restrict consideration to only routes that are not “too” long, doing so would entail
a substantial loss of analytical tractability. In the empirical exercises below, the inclusion of more indirect
routes is not quantitatively important, as they are chosen with extremely small probability.

13A sufficient condition for the spectral radius being less than one is if 3. ti_je < 1 for all . The condition
will hold if either transportation costs, ¢;;, between connected locations are sufficiently large, the adjacency
matrix is sufficiently sparse (i.e. many locations are not directly connected so that t;; = 4o0), or the
heterogeneity in preferences across routes is sufficiently small (i.e. € is sufficiently large).
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matrix:
1
Tij =b.7. (21)

Equation (21) provides an analytical relationship between the transportation network T =
[txi] and the resulting transportation costs {7;;}, ;.\, accounting for the choice of the least
cost route.

Notice that in the limit case of no heterogeneity (§ — o), the transportation costs con-
verge to those of the least cost route, which is typically solved computationally using the
Dijkstra algorithm (see e.g. Donaldson (2018)). Our formulation results in an analytical so-
lution by extending the idiosyncratic heterogeneity already assumed in spatial models to also
incorporate heterogeneity over the route chosen. In doing so, our setup bears resemblance to
stochastic path-assignment methods used in transportation and computer science literature
(c.f. Bell (1995); Akamatsu (1996)); here, however, the endogenous transportation costs arise

from —and are determined simultaneously with— a larger general equilibrium spatial model.*

3.2 Traffic Flows

We next characterize traffic along a particular link in the infrastructure matrix. This will
allow us to introduce traffic congestion into the framework and relate it to observed measures
of economic activity. We refer the reader to Appendix A.2 for detailed derivations of the
results that follow.

To begin, we characterize the expected number of times in which link (&, ) is used in trade
kl
ij 1
to j the product of the probability a particular route is used (conditional on purchasing a

kl
o

between (i, j), w7, which we refer to as the link intensity. We sum across all routes from i

product from ¢ to j) and the number of times that route passes through link (k,1), n"* (as

some routes may use a link more than once):

7rikjl = Z (%) nk. (22)

T30t
reR;; r'eR; 1T

Note that for any route r of length K that travels through link (k,[) at least once, there
must exist some length B € [1,2,..., K — 1] at which the route arrives at link (k,[). As a

result, we can calculate ﬁfjl by explicitly enumerating all possible routes from i to k of length

14While equation (21) offers an explicit analytical relationship between the transportation network and the
resulting transportation costs that is unavailable with Dijkstra algorithm, in terms of computation, the two
share the same operational complexity of O (N 2log N ) In practice, however, we find equation (21) offers
significant computational advantage over the Djikstra algorithm. For example, in the interstate highway
network constructed below (N = 228), calculating all bilateral transportation costs takes 0.04 seconds using
equation (21) and 116.5 seconds using Djikstra’s algorithm — a three orders of magnitude improvement.
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B and all possible routes from [ to j of length K — B — 1, which can be expressed as elements

of matrix powers of A :

=

00 —
kl _ 0 2 B K—-B-1
K=0 0

oy
Il

which, with some matrix calculus, becomes:

0
kl Tij
= (T ) 23
J (Tiktlelj) (23)

This expression — which resembles the one of Akamatsu (1996) derived using an exponential
distribution — has a simple intuition: the more “out of the way” the transportation link (k, )
is from the optimal path between ¢ and j (and hence the greater the cost of traveling through
link (k,1) along the way from i to j relative to the unconstrained cost of traveling from i to
j) the less frequently that link is used.

We now use the above derivation to characterize equilibrium traffic flows along each link
of the network. Let Zj; be the total traffic over link (k,1), by which we mean the total
world value of goods shipped (in the economic geography model) or the total number of
commuters (in the urban model) over the link (k,1).'> To calculate Zj;, we sum across all

origins, destinations, and routes which travel over link k[, which can be written as:

e S § E E kl 2 E kl
Sl = Tigr Ty Ej = 7'['2-in]'

ieEN jEN reRy; ieN jeN
= = kKl _ kl
SIS g g E Tijorty L= E E ;i Lij,
ieN jEN reR;; ieN jeN

in the economic geography and urban models, respectively. In either case, combining the
market access gravity equation ((5) in the economic geography model or (15) in the urban
model) with the link intensity equation (23), we obtain the following expression for equilib-

rium traffic flows:

=ty x P x 100 (24)

There are several implications of equations (24). First, traffic flows a long a link (k, ) follow

a gravity equation, where all determinants of the flow of traffic along link (k,{) are fully

I5Recall that our choice of world per-capita income as the numeraire means that the total world value of
goods shipped over a link is also the average number of persons flowing over a link; that is, traffic in both
the economic geography and urban models is measured in persons traveling over a link.
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summarized by the cost to travel along the link (¢;;) and the economic conditions at the
beginning and end of the link. Second, there is a tight connection between the gravity
equation for traffic and trade/commuting flows, as the variables summarizing the economic
conditions for the traffic gravity equation are the same market access terms P, and Il that
shape the economic conditions in the origin and destination in the economic geography and
urban models. Third, the intuition for the role that the market access terms play in the
traffic gravity equation is straightforward: the greater the inward market access (Pk_ 9), the
more traffic that flows into a link k&, and the greater the outward market access (Hl_e), the
more traffic that flows out of link [.16

Equation (24) takes the cost of traveling along a link #;; as given — we now introduce
traffic congestion by a parametric relationship between this cost and the traffic along the

link.

3.3 Traffic Congestion

To complete our modeling of traffic flows, we now suppose that the direct cost of traveling
over a particular link depends in part on the total traffic flowing over that link through traffic
congestion. In particular, we assume that the direct cost of traveling over a link, t;;, depends
in part on the amount of traffic over that link =j; through the following simple functional

form:
tr =t (Br), (25)

where A > 0 governs the strength of traffic congestion and T = [t] is the infrastructure
network. Intuitively, if A > 0, the greater the fraction of total economic activity that passes
through a link, the more costly traversing that link is. Like the amenity and productivity
externalities in equations (9) and (18), the choice of the functional form of equation (25)
succinctly allows for transportation costs to depend on an exogenous component (the infras-
tructure network) and an endogenous component (traffic), with a single structural parameter
(A) governing the relative strength of the two. And like with the amenity and productivity
externalities, it has the unattractive feature that the transportation costs is equal to zero
when the endogenous component (traffic) is equal to zero. Just as with the amenity and
productivity externalities, however, this never occurs in equilibrium, as all agents’ idiosyn-

cratic preferences over routes ensures there will be strictly positive traffic on all links. An

16Tn both the economic geography and urban models, traffic flows from an origin to a destination. This
abstracts from back-hauling (in the economic geography model) and return commutes (in the urban model).
For this reason (and because our traffic data does not indicate a direction of travel), in the empirical exercises
below, we consider symmetric improvements to both directions of travel on a given link in the infrastructure
network.
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additional attractive feature of equation (25) is that can be derived from a simple micro-
foundation (presented in Section 5.3) where transportation costs are log-linear functions of
travel time and speed is a log-linear function of traffic congestion.

Combining equation (25) with the gravity equation for Zj; from equation (24) we imme-

diately obtain:

1 —_0A __6x
_ f1+460X 146X 14+6X
tr = tkl X Pk X Hl (26)

0 0
=  __ ¥ 1+6x RN NN
el = tkl X Pk: X Hl (27)

Equation (26) shows how the distribution of economic activity affects transportation costs
through traffic congestion. It says that the cost of transiting a link #;; is higher the better the
inward market access (lower Py) at the beginning of the link and/or the better the outward
market access (lower II; at the end of the link), as both increase traffic along the link, with A
governing the strength of the forces. Equation (27) — which provides the basis for estimating
the strength of traffic congestion below — shows traffic flows retain a gravity structure in
the presence of traffic congestion. It also highlights that improvements in infrastructure

quality endogenously increases the traffic demand for the infrastructure with an elasticity

BlnEkl — 0
Olnty 1+0X°

to in Section 5.3.

a fact highlighted by Duranton and Turner (2011), and a point we return

4 Traffic Congestion in the Spatial Economy

In Section 2, we characterized the equilibrium distribution of economic activity given trans-
portation costs. In Section 3, we characterized the equilibrium transportation costs given the
distribution of economic activity. In this section, we characterize both simultaneously as a
function of the fundamental infrastructure network. As noted above, we refer the interested

reader to Online Appendix C for detailed derivations.

4.1 Equilibrium

We begin by formally defining our equilibrium: Given a local geography {/L»,ﬂi} an

ieN?
aggregate labor endowment L, an infrastructure network T = [f], and model parameters

{a, 8,0, )}, we define an equilibrium to be a distribution of economic activity {y;,li},c

in the economic geography model and {If,iF in the urban model and an aggregate

ieN
(inverse) welfare x > 0 such that:

1. Given equilibrium transportation costs {7;;}, en » the equilibrium distribution of eco-

19



nomic activity ensures markets clear, i.e. equations (10) and (11) hold in the economic

geography model and equations (19) and (20) hold in the urban model;

2. Given the equilibrium transportation network T = [ty], agents optimally choose their
routes through the network, i.e. equilibrium transportation costs are determined by
equation (21); and

3. Given the equilibrium distribution of economic activity, the infrastructure network

T = [tx], and agents’ optimal route choice, the equilibrium transportation network
T = [ty] is determined by the equilibrium levels of traffic congestion, i.e. equation
(26) holds.

We further define a strictly positive equilibrium to be one where the distribution of economic
activity is strictly greater than zero in all locations, i.e. y; > 0 and [; > 0 for all : € N in an
economic geography model and I > 0 and [# > 0 for all i € N in an urban model. While
the first equilibrium condition — market clearing given transportation costs — is standard to
all general equilibrium spatial models, the second and third conditions are new, introducing
optimal routing on the part of agents and endogenous traffic congestion, respectively. Despite
the added complexity of the system, however, it turns out that the equilibrium of the system
remains surprisingly tractable. To demonstrate this, we present the derivations for the
economic geography model; given their identical mathematical structure, the traffic model
calculations proceed similarly.

Recall that equations (10) and (11) characterize the equilibrium distribution of popula-
tion and income as a function of the endogenous transportation costs {7;;}, i.e. they satisfy
equilibrium condition 1. To satisfy equilibrium condition 2, we substitute in equation (21)
for the endogenous transportation costs and perform a matrix inversion to re-write the equi-
librium conditions as a functions of the infrastructure network rather than the transportation
costs:

N
1—0, 1407;—0(1+a) _ _ _6_  1+07 6(8—1) -0 1—0, 1+6;—0(1+a)
A7y = XU yi L +Ztij Aj Y; lj

j=1

N
j=1

To incorporate endogenous traffic congestion — satisfying equilibrium condition 3 — we then
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substitute the endogenous transport costs using equations (24),(26), (27), yielding:

N

y;ﬁﬁ* l;““ﬁ?ﬁ ne Xl Ay, TR R 4y T S pgij)ﬂ#% Afﬂ?% Aj—u%yjllffx [ SEY
j=1
(28)
A s A M Lt ol M
Y l; = xA;u;y, ; +x T+ox Z (L tji) A; u;u, Y; lj .
j=1
(29)

An identical process for the urban model — starting from equilibrium conditions (19) and
(20), substituting in equation (21) for the endogenous transportation costs, performing a
matrix inversion, and incorporating endogenous traffic congestion from equation (24),(26),
(27), — yields:

—a o N ox 0 _
(lﬁ)l—eg (Z;F) ekﬁ_eﬁ) _ X[}?af (lf) e§fé§> + X% Z (Z)\Eij)*pr% ﬂ?Aflx,\ ’ELJ- 1+90/\ (lf’) Lsz
j=1
(30)
_ N _ba
(%) AR (1F)"7 = vl A7 (1F) TR T S (pt—ji)—ﬁ Afﬂfl‘%*%—l;“% (F) Eo
j=1
(31)

Equations (28) and (29) for the economic geography model and equations (30) and (31)
for the urban model determine the equilibrium distribution of economic activity {y;,[;} or
{ZZF , ZZR} as a function of the model elasticities {a, 8, 8, A}, geography {f_li, ﬂ,-}, and fundamen-
tal infrastructure matrix T = [fy], accounting for both the (standard) effect of transportation
costs on the distribution of economic activity and the (new) effect of the distribution of eco-
nomic activity on agents’ optimal routing choice, the resulting traffic congestion, and the
equilibrium transportation costs. Despite the complicated feedback loop between the two
effects and the necessity of solving the resulting fixed point, the resulting equilibrium system
is no more complicated than the typical system treating transportation costs as exogenous,

as the number of equations and number of unknowns remains the same.

4.2 Existence and Uniqueness

While systems of equations with a structure as in (28) and (29) have, to our knowledge,
not been studied previously, it turns out that the tools developed in Allen, Arkolakis, and
Takahashi (2020) can be extended to analyze the properties of such an equilibrium.!” We

"Tn the absence of traffic congestion, the equilibrium of a spatial equilibrium (e.g. equations (10) and
(11) in the economic geography model) are examples of a system of non-linear integral equations known as a
Hammerstein equation of the second kind, see e.g. Polyanin and Manzhirov (2008). Such systems, however,
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first make an additional assumption on the infrastructure matrix:

Assumption 1. The infrastructure matriz T is strongly connected, i.e. there exists a path

with finite costs between any two locations i and j, where © # j.

Given Assumption 1, we summarize the results regarding existence and uniqueness in the

following proposition:

Proposition 1. For any strictly positive local geography {fll- > 0,u; > O} aggregate labor

ieN”
endowment L > 0, strongly connected infrastructure network T = [ty], and model parameters

{a e R, B €R,0>0,\> 0}, then:

1. (Ezistence): There exists a strictly positive equilibrium.
2. (Uniqueness): For any o € [—1,1] and B € [—1,1]:

(a) In an economic geography model with a symmetric infrastructure matriz, i.e. ty =

tie for alll € N and k € N, the equilibrium is unique if:
a+8<0. (32)

(b) In an urban model, the equilibrium is unique if:

agé(%—k) andﬁﬁ%(%—)\) (33)

Proof. See Appendix B. m

Despite the added complexity of endogenous traffic congestion, the sufficient conditions
for uniqueness in the economic geography model are identical to those of an economic geogra-
phy model with exogenous transportation costs, see Allen and Arkolakis (2014): productivity
and amenity externalities must be (weakly) net dispersive to ensure a unique equilibrium.
In the urban model, we achieve a similar result (here, however, because we do not impose
symmetry, the productivity and amenity spillovers must be sufficiently dispersive individu-
ally, rather than combined). Unlike in the economic geography model, however, the strength
of traffic congestion () does play a role in ensuring uniqueness: the stronger the traffic con-
gestion, the more dispersive the productivity and amenity externalities must be to ensure
uniqueness. Unlike productivity and amenity externalities where the forces occur within a
location, traffic congestion forces arise on flows between locations; loosely speaking, stronger
traffic congestion forces can induce greater economic concentration by reducing the flows of

goods or people between locations.

do not admit the inclusion of an endogenous additive term, as in (28) and (29) and also in (30) and (31).
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4.3 Scale Dependence

In the absence of traffic congestion, equilibrium of the economic geography and urban models
do not depend on the size of the aggregate labor endowment L, i.e. both (standard) spatial
models are scale invariant.'® In the presence of traffic congestion, however, the equilibrium
distribution of economic activity does depend on the size of the aggregate labor endowment
L, i.e. the equilibrium is scale dependent. As is evident from equations (28) and (29) (in
the economic geography model) and equations (30) and (30) (in the urban model), increases
in L are isomorphic to increases in costs of travel through the infrastructure network #;;,
with an elasticity equal to the strength of the traffic congestion A. Intuitively, the greater
the aggregate labor endowment, the greater the traffic flowing through the network, and the
greater the resulting traffic congestion. While the increases in the cost of travel through
the infrastructure network are uniform, the impact on equilibrium transportation costs is
not. To see this, we ask how a small uniform increase in the cost of travel through the
entire infrastructure matrix by a factor of ¢ > 1, i.e. suppose ty; increases to cty;, changes
equilibrium transportation costs (holding constant traffic congestion fixed). Differentiating
equation (21) around ¢ = 1 yields:
N

e 1
k=1 I=1
i.e. a uniform increase in the cost of travel results in a non-uniform increase in bilateral
transportation costs, where origins and destinations whose link intensity across the entire
network is greater face the largest increases. These disproportionate changes in transporta-

tion costs alter the equilibrium distribution of economic activity, as the following example

highlights.

4.4 Example

Consider a city comprising 25 locations arranged in a 5 x 5 grid, where, apart from their
location in the grid, all locations are identical. Panel (a) of Figure 1 depicts the equilibrium
distribution of economic activity in the absence of congestion forces (i.e. A = 0). Locations in
the center of the grid with better market access enjoy greater equilibrium economic activity

(as indicated by taller “buildings”), and links in the center of the grid experience greater

'"This fact is immediately evident from an examination of equations (10) and (11) (in the economic
geography model) and equations (19) and (20) (in the urban model). In both systems, L only enters as a
component of the endogenous scalar x, so that any changes in L only changes W in such a way to ensure y

remains constant.
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traffic (as indicated by their color), as they are more heavily used to travel through the
network.

In panel (b), we introduce traffic congestion, setting A = 0.05, but holding everything
else constant. Traffic congestion disproportionately increases the cost of traversing the more
heavily traveled central network segments. This disproportionately reduces the amount of
traffic on those segments, causing relatively greater declines in central locations’ market
access and resulting in a fall in economic activity falls in the center of the city and rises in
the outskirts: i.e. traffic congestion forces agents out of the center of the city and into the
suburbs.

In panels (c) and (d), we increase the size of the economy from L = 100 to L = 1000
(panel ¢) and L = 10000 (panel d). As discussed above, this would have no effect on the
distribution of economic activity in the absence of traffic congestion, but in the presence
of traffic congestion, scale matters. Increasing the aggregate population increases traffic
everywhere, but the center of city is the worse affected: the resulting gridlock induces a real-
location of economic activity away from the center and toward the edges, further amplifying

the move to the suburbs.

5 From Theory to Data

We now turn to applying our framework to evaluate the welfare impact of transportation
infrastructure improvements. To do so, we begin by developing three helpful empirical tools:
(1) we derive an equilibrium relationship between traffic flows on the one hand and trade
(in the economic geography model) or commuting (in the urban model) on the other; (2) we
show how to re-write the equilibrium conditions in terms of “exact hat” changes that depend
only on observed traffic flows and economic activity and model parameters (e.g. the strength
of traffic congestion); and (3) we present a procedure for estimating the strength of traffic

congestion.

5.1 Traffic, Trade, and Commuting Flows

As we discussed in Section 3.2, there is a close link between the gravity equations for
trade/commuting flows (equations 5 and 15, respectively) and the gravity equation for
traffic (27). It turns out that this close link admits an analytical relationship between
trade/commuting flows and traffic. Combining the two gravity equations (along with the

definitions of the respective market access terms), one can express equilibrium trade flows in
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the economic geography model as:**
X’U = Cg; X }/Z X Ej, (34)

where cf](- is the (i,j)th element of the matrix CX = (DX — E)fl , DX is a diagonal matrix
Similarly, one can express equilibrium commuting flows in the urban model as:

Lij=cix LEx LY (35)

where ciLj is the (i,j)th element of the matrix CF = (DL — E)_l , D% is a diagonal matrix
with ih element d; = 1 (LR + LF) + L (Zj.vz N Eij)) and E = [Z;)].

Equations (34) and (35) show that in both the economic geography and urban models,
the equilibrium flows from origin to destination can be written only in terms of the economic
activity in the origin (Y; and L, respectively), economic activity in the destination (E; and
LE

7 )

respectively), and the matrix of traffic flows through the network, =. In particular,
equations (34) and (35), show that trade and commuting flows can be expressed as (an
appropriately scaled) Leontief inverse of the traffic flows. Note that the expression depends
only on available data and hence can be accomplished without knowledge of the underlying
model elasticities. This result had two advantages, depending on the empirical availability
of trade/commuting flows: in settings where both traffic flows and commuting / trade flows
are observed (such as our empirical contexts below), it provides an out-of-sample test of the
model, whereas in other settings where trade/commuting data are not available but traffic
data is (e.g. much of the developing world), it still enables one to evaluate the welfare

impacts of infrastructure improvements, a point we turn to next.

5.2 Counterfactuals

We now discuss how to evaluate the welfare impact of transportation infrastructure improve-
ments in the presence of traffic congestion. Suppose we observe: (1) a matrix of traffic flows
E = [2;;]; (2) the distribution of economic activity in the origin and destination (i.e. (Y;, E;)
in the economic geography model or (L, L) in the urban model); and (3) the model pa-
rameters {a, 3,0, \}. Suppose the observed economy has infrastructure network T = [ty]
and is in equilibrium. To determine how the distribution of economic activity and the welfare
will change under an alternative infrastructure network T’ = [t},], we follow the “exact hat

algebra” approach pioneered by Dekle, Eaton, and Kortum (2008), where we denote with

19Gee Appendix A.3 for detailed derivations.
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hats the change in variables, e.g. fkl = Fkl/fkl, Y = 3—; For the economic geography model,

one can write the equilibrium system of equations (10) and (11) in changes as:

140246, 0(1+a+0X(B+a)) Ei 140246  0(B—1) ox :ij . _ 0 140, 6(1+a)
DY ENDY A DY 1+6X A= — T 146X AT1+6X 1+6X
0 + lz + =X 7. + lZ + +X1+6)\ E t. + ik + l +

! E,-—i—ZkEik ! EZ-+Z,€E,-;€ g J
(36)
—0(1—=X) 0(1—B—6X(a+B)) Y —0(1—X) O(atl) o N Eji PR 0 . 6(1-B)
n 1+6X lz 1+ =¥ Y n 1+6X l 1+6X +X1+‘9>‘ 2 : % — tji1+9>\yj 1+9/\l 1+6X
+ Zk Sk j=1 i + Zk —ki
(37)

Similarly, for the urban model, the equilibrium system defined by equations (19) and (20)

can be written in changes as:

) 1-68 /. ON(1—ab) LF ) 0(a+) N — N 1-68
)0 =i (g ()T i () ()
! ’ LE+3, Zx/) " — \ L + Zk Eir) " J

(38)
([R) R <fF>10a=>2( _ LiR: ><f3> gEese X Z( ] _gj )t s <ZF> o
' ! L’L + kEer ! - L —|— k‘—‘k’L
(39)

Both systems of equilibrium changes bear a close resemblance to their level variants above;
the key distinction, however, is that the local geography and the infrastructure matrix are re-
placed with shares that depend only on the observed traffic flows and observed distribution of
economic activity. Given such data — and knowledge of the model parameters {6, o, 5, A\} —

is then straightforward to evaluate the impact of any transportation infrastructure improve-
ments {t}} on the equilibrium distribution of economic activity and aggregate welfare.?
While the first three parameters {0, a, f} are familiar ingredients in spatial models (and
we will be calibrating their values to those of the literature below), the strength of traffic

congestion A is new to our framework. We turn now to its estimation.

5.3 Estimating the Strength of Traffic Congestion

To derive a straightforward estimating equation for the strength of the endogenous traffic
congestion, we make two additional assumptions. First, we follow an extensive literature on
trade cost estimation, and assume that transportation costs t;; are a log-linear function of

travel time.?! As a result, we can write t;; as a function of the distance of the link and the

200nline Appendix E describes the algorithm used to solve equations (19) and (20) given these ingredients.
2For example, Hummels and Schaur (2013) find that time is an important component of international
trade costs, and Pascali (2017) and Feyrer (2019) use plausibly exogenous shocks to travel time as instruments
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speed of travel on the link:

t = (distancekl X speed,;ll)(so , (40)

where g is the time elasticity of the transportation cost. In our preferred results below, we
set dp = 1/6 to imply a “distance elasticity” of negative one, which is consistent with a large
gravity literature, see e.g. Disdier and Head (2008) and Chaney (2018).%

Our second assumption is that time per unit distance (inverse speed) is a log-linear
function of traffic congestion (measured as total vehicle miles traveled per lane-miles, or

equivalently, traffic per average lanes) as follows:

= o1
speed ! = mg x [ —2— X € 41
Peetu 0 (laneskl> M (41)

where 0;is the congestion elasticity of inverse speed, mg is the average rate of flow without
congestion, lanesy; are the average number of lanes on a link, and e; is a segment specific
idiosyncratic free rate of flow. The log-linear specification was first posited by Vickrey
(1967), and while simple, has a number of advantages in our setting.?® First, combined with

equations (40), and (41) immediately implies:

e =t X (Ekz)/\7

where t; = lcmesl,:léo‘s1 X (distanceg x mgy X 5k1)5° and A = 6p0;. That is, this simple setup

offers a micro-foundation for the traffic congestion formulation (25) posited in Section 4.
Second, treating distance and the free rate of flow as segment specific time-invariant charac-
teristics, equation (41) provides a simple relationship between infrastructure improvements

and the change in the infrastructure matrix:

t = laﬁes,;l)\. (42)

for changes in trade costs. Anderson and Van Wincoop (2004) note that the assumption that trade costs are
a log-linear function of distance — a special case of our assumption when speed of travel is constant — is “by
far the most common assumption” (p.710).

22Tn Online Appendix G, we present alternative results where we estimate &y by using the estimated dis-
tance elasticity from gravity equations of our observed trade and commuting flows, respectively, on distance,
which imply slightly stronger traffic congestion forces (as our estimates of the distance elasticity are 1.6 in
the economic geography case and 1.45 in the urban case). As is evident, the welfare impacts of infrastructure
improvements are qualitatively and quantitatively similar to those with our preferred estimates.

23Vickrey (1967) assumes a log-linear relationship between inverse speed and traffic congestion, where
inverse speed is defined relative to an unimpeded inverse speed (see his equation 1). In equation (41)
there is no such unimpeded inverse speed, i.e. while we follow Vickrey (1967) in considering a log-linear
approximation of the impact of congestion on travel time, our approximations centers around an inverse
speed of zero rather than the free-flow rate of travel.
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As additional lane-miles are added to a segment, congestion on the segment falls, reducing
the exogenous component of transportation costs with an elasticity of A. This is intuitive:
the greater the strength of traffic congestion, the larger the impact of adding additional lanes.
However, it is important to (re-)emphasize that improvements in the infrastructure matrix

will also result in an endogenous increase in traffic demand. Indeed, combining equation (42)

8lnEkl _ )\9
Olnlanesy; ~ 1+X07

case as traffic congestion becomes infinitely large is that traffic increases proportionately

with (27), we see that the elasticity of traffic to lanes is i.e. the limiting
with the adding of additional lanes, as in “the fundamental law of road congestion” identified
by Duranton and Turner (2011).

The final advantage of this setup is that it delivers a straightforward estimating equation
and, combined with the traffic gravity equation (27), an appropriate identification strategy.
Taking logs of equation (41) yields:

—_—

In speed;;! = Inmg + 4y In (la:l;;kl) + Ineyy, (43)

i.e. a regression of inverse speed on traffic congestion can in principal identify the congestion
elasticity of inverse speed d;. An ordinary least squares regression is inappropriate in this
case, as the residual is the free rate of flow on the segment kl, which enters into ¢;; and so,
from the traffic gravity equation (27) is negatively correlated with traffic =, biasing the
estimate of §; downwards. Instead, we propose to use an instrumental variables strategy,
instrumenting for traffic =, with observables that affect traffic demand for a segment but
are uncorrelated with the free rate of flow on the segment. From the traffic gravity equation
(27), conditional on k and [ fixed effects, any component of ¢;; that does not affect the free
rate of flow is a suitable instrument. Intuitively, we can use observables that shift the traffic
gravity (demand) equation to identify the slope of the traffic congestion (supply) equation.
We describe such instruments in the next section, where we apply our procedure to determine

the welfare impact of transportation infrastructure improvements in two different settings.

6 The welfare impact of transportation infrastructure

improvements

We first apply the economic geography variant of our framework to evaluate the welfare
impact (and, given cost estimates, the return on investment) of small improvements to every

single segment of the U.S. Interstate Highway network. We then apply the urban variant of
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our framework to do the same for each segment of the road network in Seattle, WA .?*

6.1 Traffic across the Country: The U.S. Highway Network

The U.S. National Highway System is largest highway system in the world. The main back-
bone of the National Highway System — the Interstate Highway System — is one of the
world’s largest infrastructure megaprojects in history (Kaszynski, 2000), taking more than
thirty five years to construct at an estimated cost $650 billion (in 2014 dollars), and total
annual maintenance costs are approximately $70 billion (CBO, 1982; FHA, 2008; NSTIFC,
2009; ASCE, 2017). However, little is known about the relative importance of different seg-
ments of the highway system in terms of how each affects the welfare of the U.S. population.
Such knowledge is crucial for appropriately targeting future infrastructure investments.
Our strategy to estimate the welfare impact of improvements to the U.S. Highway System
is straightforward: for each segments of the network, we will use equations (36) and (37) for
the economic geography variant of our approach to estimate the aggregate welfare impact
(ﬁ/ — ¥9) of a small (1%) improvement to the infrastructure network. We then use equation
(42) to calculate how many lane-miles must be added in order to achieve a 1% improvement in
order to estimate such an infrastructure cost. Given costs and benefits, we can then identify
the highway segments with the greatest return on investment. This procedure requires just
two ingredients: (1) data on traffic {Z;} and income {Y; = E;}; and (2) knowledge of the

four model parameters {0, a, 5, A\}. We discuss the source of these ingredients in turn.

6.1.1 Data

We briefly summarize the data used here; see Online Appendix F.1 for more details. The
primary source of data we use to construct the infrastructure network is the 2012 Highway
Performance Monitoring System (HPMS) dataset by the Federal Highway Administration.
This dataset comprises the length, location, number of lanes, and average annual daily traffic
(AADT) over 330,021 segments of the U.S. highway system.?

To create the infrastructure network, we begin by placing nodes at each endpoint and
intersection between two different Interstate highways and collapsing all nodes within the

same core-based statistical area (CBSA) to a single CBSA point. This resulting 228 locations

24We leave the evaluation of large scale changes to the infrastructure network — while feasible using the
methodology presented in 6 — to future work.

2°The traffic data is reported for a segment without reference to the direction of travel. Combined with
the fact that we impose Y; = E; in the data, this results in two implications: first, as equations (36) and (37)
have symmetric kernels, the uniqueness results of Proposition 2(a) apply to the counterfactuals conducted,;
second, to be consistent with the data, we examine infrastructure improvements that symmetrically improve
a segment in both directions of travel.
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and 704 links between adjacent nodes, where for each link we construct a length-weighted
average of AADT and number of lanes. Panel (a) of Figure 3 depicts the actual highway
network and the resulting infrastructure network.

To this network, we append four additional data sources. First, to estimate the strength
of congestion, we recover the time of travel (timey;) across each link from the HERE API
using the georoute Stata command by Weber and Péclat (2017). Second, we calculate the
population and income at each node by summing the population and averaging the median
income of all cities from Edwards (2017) (which is itself based on the U.S. Census and
American Community Survey) within 25 miles of the node. Third, we estimate the cost
of improving each link based on the topography of its constituent segments. To do so, we
classify each segment of the Interstate Highway System into one of seven categories from the
Federal Highway Administration’s Highway Economic Requirements System (HERS) Federal
Highway Administration (2015), each of which is associated with an estimated cost of adding
one lane-mile.?® To determine the average cost of adding one lane-mile to a link, we construct
a distance-weighted average of the cost of improving each of its constituent segments. Fourth,
we rely on the 2012 Commodity Flow Survey (CFS) to construct measures of the value of
bilateral trade flows between each CBSA; for CFS areas comprising more than one CBSA, we
allocate observed CFS area flows to CBSAs proportionally to their share of the CFS area’s

total income.

6.1.2 Predicted versus observed trade flows

As a first check of the validity of the framework developed above, we compare the observed
value of bilateral trade flows between CBSAs from the CFS to the predicted bilateral trade
flows arising from observed traffic flows using equation (34). To do so, we assume that each
element of the matrix of traffic flows E = [Z] is equal to the observed AADT along the
highway segment, which is equivalent to assuming that each car is carrying a value of trade
equal to the average value of a single individual’s labor. This of course abstracts from many
nuances of traffic flows, including shipments via truck (where the trade value exceeds this
average) as well as traffic for non-trade purposes such as commuting and shopping (where the
trade value falls below this average). Given these abstractions, it is all the more remarkable

how well traffic across the interstates is able to predict actual trade between CBSAs. Panel

26The Federal Highway Administration provides seven different cost categories for the interstate highway
system that we can use based on geographical characteristics and urbanization: rural-flat ($1.923m), rural-
rolling ($2.085m), rural-mountainous ($6.492m), small-urban ($3.061m), small-urbanized ($3.345m), large-
urbanized ($5.598m), major-urbanized ($11.197m). We are grateful to the experts at the U.S. Department of
Transportation Volpe National Transportation Systems Center for their substantial assistance in developing
these cost estimates.
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(a) of Figure 2 shows the scatter plot between observed and predicted (log) trade flows,
conditional on origin and destination fixed effects (so the only variation arises from the
bilateral flows and not e.g. income in the origin or destination). As is evident, there is a
strong positive correlation of 0.60, indicating the traffic matrix — through the lens of the

theory and despite obvious measurement issues — does a good job of predicting trade flows.

6.1.3 Estimation

We now discuss our choice of the four model parameters {6, «, 5, A\}. As the first three model
parameters — the trade elasticity 6, productivity externality a, and amenity externality
— are standard in the economic geography literature, we choose central values from the
literature. We set = 8 to match previous estimates of the trade elasticity.?” We also choose
a = 0.1, and g = —0.3, which corresponds to the estimated scale economies found in the
literature, as e.g. summarized in Rosenthal and Strange (2004) and Combes and Gobillon
(2015) and the share of consumption allocated to housing, see e.g. Allen and Arkolakis
(2014).28 From Proposition 1, this choice of parameter values guarantees the existence of a
unique equilibrium.

To estimate the strength of traffic congestion, we follow the estimation procedure de-
scribed in Section 5.3, regressing observed inverse speed on (appropriately instrumented)
traffic congestion as in equation (43). As implied by the traffic gravity equation (27), recall
that an appropriate instrument would be something that — conditional on start-location and
end-location fixed effects — affects the cost of travel ¢; but is uncorrelated with the free-flow
speed of travel on the link. In the context of the U.S. highway system, we propose that the
distance along the link is such an appropriate instance. Distance clearly affects the cost of
travel (and so is relevant), and given the relative homogeneity of U.S. highways in terms of
speed limits, lanes, limited access, etc., we have no reason to believe that longer or shorter
links have different free flow rates of speed (so it is plausibly excludable).

Panel A of Table 1 presents the results. Columns (1) and (2) show using OLS that there
is a positive, but small, correlation between inverse speed of travel and congestion. Column

(3) presents the first stage regression of traffic on distance: as expected, conditional on

2TDonaldson and Hornbeck (2016) estimate a trade elasticity of 8.22 for U.S. intra-national trade, albeit
in the late 19th century. Eaton and Kortum (2002) estimate a trade elasticity between 3.60 and 12.86 for
international trade, with a preferred estimate of 8.28.

28In reviews of the literature, Rosenthal and Strange (2004) and Combes and Gobillon (2015) conclude that
agglomeration elasticities at the city level are likely between 0.03 and 0.08. As in Allen and Arkolakis (2014),
we choose a spillover of @ = 0.1 to also incorporate the effects of entry on overall output. As robustness, in
Online Appendix G, we repeat the exercise for alternative constellations of these model parameters, including
(1) removing the externalities, (2) lowering the trade elasticity; and (3) increasing the traffic congestion
parameters. As is evident, both the patterns of welfare elasticities and the returns on investment are both
qualitatively and quantitatively similar to the results presented here.
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start-location and end-location fixed effects, distance is strongly negatively correlated with
traffic. Column (4) presents the IV regression: Consistent with OLS exhibiting downward
bias due to traffic demand being lower on slower links, the IV is substantially larger, finding
a coefficient 0, = .739 (with standard error of .181). Recall from above that we set 6o = 1/6
to match the unit distance elasticity, so this implies A = §;5p = 0.092, i.e. a 10% increase in
traffic flows is associated with a 7.4% increase in travel time, resulting in a 0.9% increase in

the transportation cost.

6.1.4 Results

Given the observed traffic data and estimated parameters, we calculate the aggregate welfare
elasticity to a 1% reduction in iceberg transportation costs on every link (in both directions

of travel) of the U.S. Highway System using equations (36) and (37), i.e. 3 <211;‘¥;Vl + g%ﬁ{i)

Panel (a) of Figure 4 presents our results. While all highway segments have positive wel-

fare elasticities, the elasticities are largest on short segments connecting CBSAs in densely
populated areas, e.g. along [-95 between Boston and Philadelphia and on I-5 between Los
Angeles and San Diego. Welfare elasticities are also large along longer highway segments
that do not directly connect large urban areas but that are major thoroughfares for trade,
e.g. in the interstates passing through Indiana (“the crossroads of America”). Conversely,
highway segments that neither connect major urban areas nor are used intensively for trade
— such as [-90 through Montana — have the lowest positive impact on aggregate welfare.

How much does incorporating endogenous traffic congestion affect our welfare elasticity
estimates? Panel (a) of Figure 5 presents a scatter plot of the welfare elasticity for each
segment with and without congestion. Not surprisingly, in the absence of traffic congestion,
the welfare gains from reducing transportation costs are greater. What is surprising, however,
is that there is substantial variation in welfare gains with and without congestion across
segments, highlighting that traffic congestion plays an important role in determining which
segments would achieve the greatest welfare gains.

The benefit of improving a link, of course, is only half of the story. To calculate an
return on investment, we pursue a cost-benefit approach. On the benefit side, we translate
the welfare elasticity into a dollar amount use a compensating variation approach, asking
how much the annual U.S. real GDP (of $19 trillion) would have to increase (in millions
of chained 2012 US dollars) to bring about the same welfare increase we estimate. On the
cost side, we first use equation (42) to calculate how many additional lane-miles would need
to be added to the route to achieve a 1% reduction in transportation costs. We then take
multiple this number of lane-miles by the cost per lane-mile to get a total construction cost.

We assume a 20 year depreciation schedule (as in Appendix C of Office of the State Auditor
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(2002)), a 5% annual maintenance cost, and a 3% borrowing cost, which together imply 10%
of the construction cost is incurred each year.?”

Panel (a) of Figure 6 reports the annual return on investment (Rol) for each segment
of the U.S. highway system. On average, infrastructure improvement return are well-worth
the investment, with a mean Rol of just over 108%. However, there is also huge variance
in returns, with some segments offering negative Rol (such as 1-90 through Montana) and
others offering much higher than average. Panel (a) of Table 2 presents the ten links with
the highest Rol (each of which exceed 400%). All ten are for links outside the largest cities,
where reducing transportation costs is less costly. This does not mean that returns are
entirely driven by costs: the links with the highest returns are those on the periphery of
densely populated areas with high welfare elasticities, reflecting the importance of trade

between these regions.

6.2 Traffic in the City: The Seattle Road Network

We now provide use the urban variant of our framework to examine the welfare impacts of
transportation infrastructure improvement in Seattle, WA. Seattle provides an ideal test-case
for our framework for several reasons, notably: (1) it has some of the worst traffic in the
U.S.; (2) with limited (non-bus) public transit options, its road network plays a critical role
in commuting; and (3) its road network is particularly interesting, with multiple natural
choke points created by the waterways which intersect the city.°

Our strategy for estimating the welfare impacts of improvements to the Seattle road
network proceeds analogously to the U.S. highway system above: for each link in the road
network, we estimate the change in the aggregate welfare (ﬁ/ = )A(%> from a small (1%)
improvement using equations (38) and (39). Doing so requires just two ingredients: (1) data
on traffic (), residential population (Lf), and workplace population (L") and (2) values

for the model parameters {6, «, 5, A\}. We discuss the source of both ingredients in turn.

29 Annual spending equal to 10% of total cost accords well with various sources. Feigenbaum, Fields, and
Purnell (2020) find the average total-disbursements of state-controlled highway in 2018 is $308,558 per lane-
mile, 8.5% of our length-weighted average estimated construction cost of $3.6m per lane-mile. ASCE (2017)
find in 2014 that states spent $70 billion in maintenance and upkeep of the highway system, 10.7% of the
$650 billion construction cost of the interstate highway system.

30A 2019 study by Apartment Guide ranked Seattle as the second worst city for commuters; a coauthor
vividly remembers running out of gas while stuck in Seattle traffic. Of commuters, over half drive alone
or carpool. Of those that use public transit, the vast majority of trips are conducted via buses: Commute
Seattle’s 2016 Center City Commuter Mode Split Survey found that, among public transit commuters, over
three-quarters take the bus while only around a sixth take the train (or light rail or streetcar) (EMC Research,
2016).
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6.2.1 Data

We briefly summarize the data used here; see Online Appendix F.2 for more details. Data
on the location, functional system (i.e., interstate, arterial road, local road, etc.), ownership,
AADT, lane width, and possibility for lane expansion of the 9,188 road segments within the
municipal boundaries of Seattle were taken from the 2016 HPMS release for the state of

31 To construct our adjacency matrix of Seattle, we divide Seattle into "1 sq.

Washington.
mi. grids,3? place the center point of each of these grids as a node into ArcGIS Network
Analyst, and find the least-cost path between each of these nodes. This gives us a total
of 217 nodes, with 1,384 links between adjacent nodes, 1,338 for which we observe traffic.??
Panel (b) of Figure 3 depicts the actual Seattle road network and the resulting infrastructure
network.

We append to this network five additional sources of data. First, we calculate the time of
travel between each link from the HERE API using the georoute Stata command by Weber
and Péclat (2017). Second, we observe the labor force and residential population density
at the census block group level from the 2017 Longitudinal Employer-Household Dynamics
Origin-Destination Employment Statistics (LODES), which we aggregate to our constructed
grids (allocating population from block groups intersected by our grids proportional to the
area of the block group within each grid). Third, the LODES data also provide bilateral
commuting flows between census block groups, which we aggregate to bilateral grid cell pairs
using a similar procedure. Fourth, we estimate the cost of adding an additional lane-mile to
each link in the network. To do so, we classify each Seattle’s road sections into the major
urbanized road type based on the population of the Seattle urban area (as defined by the
Census Bureau’s 2012 Urban Area data) and additionally indicate if the section is “restricted”
if the HPMS indicate that additional lanes cannot be added. Then, based on a road section’s
functional system classification, its major urbanized classification, and whether it is a high

cost road to improve or not, we code each road section with the cost of adding a lane-mile to

31Traffic data on a road segment is reported without regard to the direction of travel. As such, we evaluate
simultaneous improvements to each link in the Seattle road network in both directions of travel. This has the
added advantage of reconciling our urban framework — where traffic is modeled as flowing from an agents’
residence to her workplace — to the (presumed) empirical reality that the agent returns home after work.

32This approach is necessary because, at this level, typical units of observation like census blocks and block
grounds are endogenous to the road structure of Seattle; this leaves us with concerns that census blocks which
are larger are in a less dense area of Seattle with less traffic.

33Unlike the interstates, where we observe all segments of the highway system, our analysis does not cover
every road in Seattle, just those along the least-cost path between adjacent nodes. We do, however, observe
the entirety of the Seattle road network in our dataset. We assume the route along the least-cost path
between nodes reasonably captures the costs of moving across similar paths, on different roads, between the
same nodes.

34



it, as estimated by the FHA’s HERS from Federal Highway Administration (2015).3* Fifth,
we calculate the number of intersections and turns along each link of the network using the

ArcGIS network analyst.

6.2.2 Predicted versus observed commuting flows

As a first pass of the validity of the urban variant of our framework to the data, we compare
the observed bilateral commuting flows from LODES to those predicted from the observed
traffic flows using equation (35). To do so, we assume that each element of the matrix
of traffic flows = = [Z] is equal to the observed AADT along that road segment. This
assumes every vehicle carries one commuter. As with the interstates, this introduces obvious
measurement error: some vehicles contain many commuters (e.g. buses), whereas other
vehicles contain none (e.g. when driving to go shopping). And like with interstates, it is
remarkable how well observed traffic flows are able to predict commuting flows, as panel (b)
of Figure 2 illustrates. Even conditional on origin and destination fixed effects, there is a
positive correlation between predicted and observed commuting flows of 0.43, indicating that
the urban model with traffic congestion is able to successfully predict observed commuting

flows.

6.2.3 Estimation

We now discuss our choice of model parameters {6, «, 5, A\}. As the first three model param-
eters are standard in the quantitative urban literature, for our preferred estimates presented
here we set them equal to the values of estimated in the seminal work of Ahlfeldt, Redding,
Sturm, and Wolf (2015), with § = 6.83, « = —0.12, and 3 = —0.1.3> From Proposition 1,
this choice of parameter values guarantees the existence of a unique equilibrium.

To estimate the strength of traffic congestion, we again proceed as discussed in Section

(39), regressing the observed inverse speed of travel over a link on the traffic congestion,

34For major urban areas, the Federal Highway Administration provides the following estimates of the
cost of adding an additional lane-mile: for interstates/freeways ($11.197m when unrestricted, $46.691m
when restricted), other principal arterial ($8.252m when unrestricted, $31.988m when restricted), and minor
arterial/collector ($5.614m when unrestricted and $31.988m when restricted. Further details are in Online
Appendix F.2.1.

35 Ahlfeldt, Redding, Sturm, and Wolf (2015) also allow for externalities to affect nearby locations, which
they estimate to steeply decay over space; here we assume externalities have only local effects. Our choice
of & = —0.12 combines their estimated agglomeration externality with the congestion force that arises from
floor space being used in the production of goods. As robustness, in Online Appendix G, we repeat the
exercise for alternative constellations of these model parameters where we vary the commuting elasticity,
strength of externalities, and strength of congestion. As with the analysis of the U.S. highway network, both
the patterns of welfare elasticities and the returns on investment are both qualitatively and quantitatively
similar to the results presented here.
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appropriately instrumented by a demand shifter uncorrelated with the free-flow rate of speed
over the link. Unfortunately, the instrument used for the U.S. highway system — distance
— is inappropriate in a city setting. There exists enormous variation in the types of roads
and speed of travel within Seattle (e.g. surface streets with stop signs, larger streets with
major intersections, highways, etc.), so it is likely that the distance of a segment is correlated
with its free-flow rate of speed (e.g. a link which travels along a highway might be longer
but faster). As an alternative, we propose that the complexity of a route is a suitable
instrument: conditional on the free-flow rate of speed, drivers would prefer to take routes that
are less complex. To measure complexity, we use the number of turns along the route as our
instrument, conditioning on the number of intersections.?® Intuitively, intersections reduce
the free-flow rate of speed of travel regardless if one turns or not, while turns themselves
present an additional inconvenience to drivers.

Panel (b) of Table 1 presents the results. Column (1) shows that there is actually a small
negative correlation between inverse speed and traffic, consistent with substantial downward
bias due to the heterogeneity in free-flow speed across links (e.g. faster links on highways
also have higher traffic). Column (2) presents the first stage results; as expected, the greater
the number of turns along a route (conditional on the number of intersections), the lower
the traffic along that link. Column (3) presents the IV results, where we estimate §; =
0.118 (with a standard error of 0.048). One potential concern with the instrument is that
controlling for the number of intersections alone may not be sufficient to allay the concern
that more complex routes are more likely to travel over smaller (and slower) roads. In
Columns (4) and (5) present the first and second stage results where we nonparametrically
control for the share of the route that travels over arterial and local roads.?” Such a procedure
compare links with similar road compositions, mitigating the concern that route complexity
is correlated with unobserved speed of travel. Adding these controls increases our estimate of
d; = 0.488 (with standard error of 0.278). Combined with the maintained assumption that
dp = 1/0 (to generate a unit distance elasticity), this implies a traffic congestion parameter
of A = 6109 = 0.071, i.e. a 10% increase in traffic flows is associated with a 4.9% increase
in travel time, resulting in a 0.7% increase in the transportation cost. It is interesting to
note that while the elasticity of travel time to congestion is smaller in Seattle than U.S.
highways — perhaps due to the lower free-flow rates of speed within a city — the impact of

traffic congestion on transportation costs in both settings is quite similar.

36See Online Appendix Figure F.1 for an example of how the instrument is constructed.
37To do so, we include fixed effects for each decile of arterial and local road shares.
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6.2.4 Results

For each link in the road network, we simulate a 1% reduction in transportation costs in
1(0lmW dln W

2 <81nfkl 8lnflk)'
Panel (b) of Figure 4 presents our findings. While a reduction in transportation costs on all

each direction and calculate the change in aggregate welfare elasticity

links are welfare improving, the largest welfare elasticities are greatest in the center of the
city (downtown). Welfare elasticities are also higher for the various choke-points in the road
network (oftentimes corresponding to bridges over water).

Panel (b) of Figure 4 compares these estimated welfare elasticities to those estimated
without traffic congestion. As with the U.S. highway system, ignoring congestion would not
result in overestimates of the welfare elasticities, it would also substantially change which
links one would identify as having the largest welfare effects. For example, the link at the top
left of the figure corresponds to a highly trafficked stretch of interstate I-5. Ignoring traffic
congestion would cause one to identify this stretch as the one whose improvement would
yield the greatest welfare gains for the city. Accounting for the endogenous change in traffic
congestion throughout the whole network, the aggregate welfare elasticity to improving this
link is not even in the top fifty of links.

Finally, we combine these welfare elasticities with estimated costs of construction to
estimate a return on investment for each link of the Seattle road network. We proceed
analogously to the U.S. highway system case, first calculating the necessary lane-miles to
achieve a 1% reduction in transportation costs, assuming 10% of construction costs are
incurred each year, and then using a compensating variation approach to assign a dollar
value to the aggregate welfare gains.®® We find that improving the average link in Seattle
yields an annual return of 16.8% for the residents of the city. Like with the U.S. highway
system, however, there is substantial heterogeneity, with returns varying from less than 25%
to more than 250%. Panel (b) of Figure (6) shows the Rol for each segment; the highest
returns are concentrated in the center of the city. Panel (b) of Table 2 lists the top 20
links in terms of their Rol; half of the list are either entirely within downtown Seattle or
between downtown Seattle and another part of the city. Other locations with high returns on
infrastructure improvement include the area around the University of Washington campus
and Lake City Way in the neighborhood of North Seattle. On the other hand, we estimate
that nearly half (331 of 692) links in the Seattle road network would generate negative returns

of investment, highlighting the importance of well-targeted infrastructure improvements.

38To identify a “GDP” for the municipality of Seattle, we sum over the incomes of all our grid cells, which
we derive from block group income measures from the American Community Survey. We estimate a GDP
of $45.5 billion.
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7 Conclusion

This paper proposes a new spatial framework that incorporates traffic congestion and uses
it to evaluate the welfare impact of transportation infrastructure improvements. In doing
so0, it combines the rich geography and general equilibrium structure of existing quantitative
spatial models with the endogenous routing and traffic congestion of transportation models,
but where both the distribution of economic activity and the resulting traffic patterns are
determined jointly in equilibrium.

The approach generates analytical expressions for transportation costs between any two
locations, the traffic along each link of the transportation network, and the equilibrium
distribution of economic activity across the economy. This tractability not only allows us to
characterize the equilibrium properties of the framework, but it also facilitates applying the
framework to evaluate the welfare impacts of transportation infrastructure improvements
empirically. Using readily available traffic data we show that for both the U.S. highway
network and the Seattle road network, where you improve the road network matters, as
there are large differences in returns on investment across different links.

The goal of this paper has been to provide a tractable framework that bridges the gap
between the quantitative spatial and transportation economics literatures. As a result, we
hope it can facilitate the answering of a number interesting and unresolved research questions,
including: How does traffic congestion impact urban land use? What is the best way to design
congestion tolls? How does the presence of multiple uses of transportation infrastructure (e.g.
trade, commuting, consumption) interact in determining traffic congestion and the spatial

distribution of economic activity”? We look forward to fruitful future research on these topics.
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Tables and Figures

Figure 1: TRAFFIC CONGESTION AND THE DISTRIBUTION OF ECONOMIC ACTIVITY

(a) No congestion (A = 0, L = 100) (b) Congestion, low scale (A = 0.05, L = 100)
~ L
' I .
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(c) Congestion, medium scale (A = 0.05, L = B
1000) (d) Congestion, large scale (A = 0.05, L = 10000)

Notes: This figure shows how traffic congestion (A) and the scale of the economy (I_L) shapes
the distribution of economic activity within an example 5x5 grid network using the urban model.
The height of the buildings (and the rooftop colors, associated with the color bar on the right)
indicate the equilibrium residential population (Lﬁ) at each location in the city, and the color of
each link (associated with the color bar on the left) indicates the equilibrium traffic along the link.
Throughout, o = 3 =0, § = 4, and t;; = 1.5 for connected links.
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Figure 2: PREDICTING FLOWS USING TRAFFIC
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Correlation: 0.5974

(a) Trade flows in an economic geography model

Observed commuting from LODES (log)
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Predicted commuting (log), cond. on orig. & dest. FE

Correlation: 0.4341

(b) Commuting flows in an urban model
Notes: This figure compares the observed bilateral origin to destination flows to those predicted

from the observed traffic along the transportation network. In panel (a), we compare the predicted
(log) trade flows on the x-axis to the observed (log) trade flows between metropolitan areas from the
Commodity Flow Survey (CFS) data on the y-axis using the economic geography model. In panel
(b), we compare the predicted (log) commuting flows on the x-axis to the observed (log) commut-
ing flows from the Longitudinal Employer-Household Dynamics Origin-Destination Employment
Statistics (LODES) between grid cells within Seattle. In both figures, the predicted and observed
flows are residualized using origin and destination fixed effects, so the observed correlation only
arises through similarity at the pair level. 45



Figure 3: TRANSPORTATION SYSTEMS AND THEIR NETWORK REPRESENTATIONS
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Notes: This figure presents the observed transportation network (on the top) and the constructed
infrastructure matrix (on the bottom) for the U.S. highway network (panel a) and the observed
transportation network (on the right) and the constructed infrastructure matrix (on the right) for
the Seattle road network (panel b). In both panels, the size of each node reflects its population
and the color of each link reflects the amount of traffic with red (blue) indicating high (low) levels
of traffic. The gray roads in panel (b) are roads not on the least cost route between grid centers.
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Figure 4: WELFARE ELASTICITIES OF INFRASTRUCTURE IMPROVEMENT

(a) U.S. Highway Network
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Notes: This figure presents the elasticity of aggregate welfare to improving each link in the U.S.
Highway Network (panel A) and the Seattle road network (Panel B). The color ramp goes from
blue (lower welfare elasticity) to red (higher welfare elasticity). Nodes in the network are marked
by the black circles, which are increasing the population size of the node.
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Figure 5: COMPARING WELFARE ELASTICITIES WITH AND WITHOUT CONGESTION

(a) U.S. Highway Network

0)
.006
Il

.004
1

Welfare Elasticity without Congestion (A
.002
1

T T
0 .001 .002 .003
Welfare Elasticity with Congestion (A = .092)

Elasticity w/ Congestion = Elasticity w/o Congestion

(b) Seattle Road Network

=0)

Welfare Elasticity without Congestion (A

T
0 .02 .04 .06
Welfare Elasticity with Congestion (A = .071)

Elasticity w/ Congestion = Elasticity w/o Congestion

Notes: This figure compares the welfare elasticity calculated allowing for traffic congestion (given
the estimated strength of congestion A) to the welfare elasticity that would be calculated if traffic
congestion were ignored (i.e. if A = 0), as in a standard spatial model for each link in the U.S.
highway network (panel a) and the Seattle road network (panel b).
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Figure 6: RETURNS ON INVESTMENT OF INFRASTRUCTURE IMPROVEMENT

(a) U.S. Highway Network
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Notes: This figure presents the return on investment of improving links in the Interstate Highway
System (Panel A) and the Seattle road network (Panel B). Return on investment is annual and in
decimals of the initial investment (i.e. 0.75 means a 75% return on initial investment per annum).
The color ramps goes from blue (negative returns) to red (high positive returns). Nodes in the
network are marked by the black circles, which are increasing the population size of the node.
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A Appendix: Main Derivations

This section presents the full derivations of the major results mentioned in the text.

A.1 Section 3.1: Transportation Costs

Define the N x N matrix A = [aij = ti_je]. We can write 7;; from equation 3 by explicitly summing across
all possible routes of all possible lengths. To do so, we sum across all locations that are traveled through all
the possible paths as follows:

o0

N N N
-0 _
Tij = E E E E Qi Jey X Qfy kg X oo X Akpe o kg1 X kg 1,5 | 5
1

K=0 \ki=1ko=1 kx_1=

where k,, is the sub-index for the n'" location arrived at on a particular route. Note that pairs of locations
that are not connected will have a;; = 0, so that infeasible routes do not affect the sum. The portion of
the expression in the parentheses is equivalent to the (4, j) element of the weighted adjacency matrix to the

power K, i.e.:
(o)
-0 _ K
T = g Az-j7
K=0

where AK = [Afj(-], ie. Afj(- is the (4,7) element of the matrix A to the matrix power K. As we note in the
paper, for a matrix A with spectral radius less than one, the geometric sum can be expressed as:

Y AK=(1-A)"'=B,
K=0

where B = [b;;] is the Leontief inverse of the weighted adjacency matrix, so the transportation cost from i
to j can be expressed as a function of the infrastructure matrix:

-0 _
i = byj,

as in equation (21).

A.2 Section 3.2: Traffic Flows
Beginning with equation (22) we have:

_
okl Z ij,r nkl

ij
T o
Te%ij ZT’E%U 1],T

( K 4—0 )
1=1"ri—1,m
EDY nkl

1] K 70
reRi; LireRy; (Hz:1 t"'l*lﬂ‘l)

K
kil _ 60 —0 kl
T = Tij Z thfl,n”r )

reR;; =1

where the second line used either equation (1) (for the economic geography model) or equation (12) (for the

urban model), and the third line used the definition of 7;; from equation (3).

For each route in r € ¥;;, the value H{il t;ﬁl,” nk! is the transportation costs incurred along the route
multiplied by the number of times the routes traverses link {k,!}. To calculate this, we proceed by summing
across all possible traverses that occur on all routes from 4 to j. To do so, note for any r € R;; of length K

(the set of which we denote as #;; k), a traverse is possible at any point B € [1,2,..., K — 1] in the route.
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Defining A = [ax] = [t;ﬁ] and B = [b;;] = [7139] as above, we can write:

) K—-—B-1
k:l 1
T = bor Qrpy_yrn | X Ok X QAry, 1,1
" K=0 B=0 \reR;, pn=1 r€Ryj k—p—1 n=1

This can in turn allows us to explicitly enumerate all possible paths from i to &k of length B and all possible
paths from [ to j of length K — B — 1:

co K-1 N N
kl __ 1 . .
77117‘ —bf al)m X Appg_ 1.k X X Al n, X ... XanK—B—l,] s
) K=0 B=0 \ni=1 np_1=1 ni=1 nkg_pg_1=1

T, = Agc X agy X AK-iBil.
A result from matrix calculus (see e.g. Weber and Arfken (2003)) is for any N x N matrix C we have:

co K-1
YD APCAK P =a-A)Cca-A)T. (A1)
K=0 B=0

Define C to be an N x N matrix that takes the value of ag; at row k and column [ and zeros everywhere
else. Using equation (A.1) we obtain our result:

kel Dikariby

J —0
Tij
—0,—60_—0
T b, Ty
Kkl _ ik VKl ‘lj
T = — 5 (A.2)

ij
as in equation (23).
We now derive gravity equations for traffic over a link for both economic geography and commuting

models. For trade, we sum over all trade between all origins and destinations, and all routes taken by that
trade, to get:

= kl
TS s, —
1EN JEN reR;;

=D > Xy =

1EN jEN

Ot 0 Y, E.
Z Z zk kl lj % Tl—G Lt N
; J H P_
iEN JEN ZJ
=, =0 s Y 70 E
=kl =tk Tik 77—0 Tij P 0"
iEN i jeN J

(1]

[I]

where the second line used equations (1) and (22), the third lines used equation (23), and the fourth lined
rearranged. Recalling our definition of the consumer and producer market access terms (equations (7) and
(6)) in the text, this becomes:

= _ 4—0 —0 —0
“kl_tkl XPk XHl s

as in equation (24).
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Turning to the commuting model, we proceed similarly, summing over all commuting flow pairs and the
routes they take:

[I]

W= S bl e

1EN JEN TER;;

= :ZZW“L —

iEN jJEN
R [F

—_ zkr l le —0 L; 7
Skl = Z Z X Tij er P =

iEN JEN ij i J
_ L —0 L —6 Lf
Skl = e X b X(Zm e ZTZ"F g

iEN l JEN J

where the second line used equations (12) and and (22), the third lines used equation (23), and the fourth
lined rearranged. We substitute in the consumer and producer market access defined in (16) and (17) to
generate traffic gravity for the commuting framework:

Ekl = t;la X (Pk)76 X (Hl)ie,

again as in equation (24).

A.3 Section 5.1: Traffic, Trade, and Commuting flows

In this section, we derive an analytical mapping between traffic and gravity flows of trade and commuting.
We begin by writing trade, commuting and traffic gravity from equations (2), (13), and (24), respectively in
matrix form:

X = [Xi] L = [Ly]

E = [2] A= [t;’]

P = diag (Pi_a) II = d1ag(Hi_9)
Y = diag (V7) E = diag(E;)
L® = diag (L) L* = diag(L]")

are each N x N matrices.
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Solving for the adjacency matrix A, we have:

X = < > (1-plEm)” <§> —
X = (lE)) _1( ~P'EIY) (Eyl —
X! = <§> - <11‘/I> o (B)'2()! =
X' =(BE) " PIH-28)(Y) " <

X = (Y)(PII-2)"" (E)

Now all that remains is to define diagonal matrix PII in terms of traffic = and other observables. For
the trade model, we have the following, where P and % are column vectors:

P = -0 Y,
7 Jt er
J J
Y
P=(1-4AT)"
(-an" () =
Y
I-'=E'pYp==
( )P =1
Y
P-11'=2T1==
I
npP=yv+z"1

and:
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p
E
I-pP1'Z1=—
P
IIP = FE+Z1

where II and % are column vectors.

Since we have two definitions of column vector IIP, we average them:

HP:%(E—FEl)Jr%(Y—FETl) =%(E+Y)+%(51+5T1)

and plug that definition into our matrix product characterization of trade flows, where the diagonal matrix
PII = diag(ILP):

1 1 !
X = (Y) (diag <2 (E+Y)+5 (E1+ ETl)) - E) (B) <~
Xy = DX — 2] x Vi x B,

as in equation (34).

For the commuting model, we derive the following for vector PII:

0 OLR
-0 __ — J -
P’L 727—]7: H—e
7 J
1 (LE
P= (11— AT —
-4 (%)
1=T 1 LR
- 'ETpYYp=" =
( )P ="
LR
P-M'=" == «—
I
LR
np==—+=z"1
1

R . oy e
where P and Lﬁ are column vectors. We also derive another definition:
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J J
M= (-A)" (f) =
LF
(I-pP 'z Y= (P)
LF
n-pr'=1= 2
Ip=_L"+Z1

F
where IT and % are column vectors.

Like with the trade case, we average over the two different definitions for traffic to define the vector I1P:

1 1 1 1
P = o (L +81) + 5 (L*+ET1) = o (L + L7) + 5 (B1+E"1)
and combining this average definition with our matrix product characterization of commuting flows, with
the equality PII = diag(IIP)we get:

-1
L= (L") (diag (; (L" + L") + % (14 ET1)> - E) (L")
Li; = [D* - E];jl x LEx LF,

as in equation (35).

B Appendix: Proof of Proposition 1

B.1 Preliminaries

In this subsection, we show how the economic geography and urban models both are special cases of the
following mathematical system:

Cipaitayy a0 1 By -,
i1 = Din ST Tt Z Kijeiiia; ;7 Vie N (B.1)
2 jen Cia@ii e JEN
Ci,QI'?QfIE?Q; - -2t A
Tio= Do e — z iyt + Z Kjiz; " ajy Vie N (B.2)
2jen Cintii ey} JEN

In the following sections, we then prove the existence and provide conditions for the uniqueness of any
equilibrium characterized by equations (B.1) and (B.2).
To begin, note that gravity equation in both frameworks can be written as follows:

o i d;
Fij = T,ij X er X ﬁ, (B?))
J

7

where in the economic geography model F; = X;;, v; = Y;, and d; = E; and in the urban model Fj; = L;j,
v; = L, and 6; = L. Written like this, the market market clearing conditions in both frameworks can be
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expressed identically as follows:

Vi = Z Fi; (B.4)

5= F; (B.5)

Substituting the gravity equation (B.3) into the two market clearing conditions yields:
-0 -0
=27
J
-6
= Z Tij
i

Substituting in the expression for the endogenous trade costs TiEQ as a function of the transportation network
from equation (21) and inverting each linear equation, the system becomes:

PO =6, +Zt‘9P o1

PO = +Zt_9P o11;°

Finally, expressing the transportation network as a function of equilibrium traffic and the infrastructure
network from equation (26):

(Pife) T+6X H;G _ 51_ ( ;0 1+9x + Z (t 1+0>\> - 0) TFox

P7;79 (H;G)m = (H;e)iﬁ + ZE;H% (ije) I+6X ,

e
or, by defining p; = Pfe, m =117, 0 o= 1%)\, and K;; = tij”‘“, we can write this more succinctly as:

pimi = 51‘]?;(17&) + ZK@W??G) (B.6)
J
pird =y, T 3 Kl (B.7)
J
We proceed by one final change of variables to get equations (B.6) and (B.7) into a form more amenable to
define an operator to establish existence and uniqueness. Define x; 1 = p{m; and x;2 = p;7{’. Note this in
—— _ 1 1 _a
turn implies p; = xi,l 1%72@271 and m; =z, | z’lxi; ', so that equations (B.6) and (B.7) become:
s KT ®3
e K T i (B.9)

The final step is to write {~;, d;} as functions of {z; 1, Ll?lg} As mentioned in the text, this mapping between
the endogenous economic activity and the market access variables differs depending on the model considered,
so we do it separately for each.
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B.1.1 The Economic Geography Model

In the economic geography model in equilibrium, we have v; = §; = Y;. From welfare equalization equation
(8) we have:

1 _
P= =L},
w
and from the definition of the producer price index equation (6) we have:
I, = ALy,

Combining these two equations yields a log-linear system, which can be inverted to write Y; as a function of
p; and 7;, as follows:

Inp;\ OlnW — 01na; 6(1-0) —0 InL;
(lnm) - ( —0In 4 ) + (—0(1+a) (1+0)) (my,-) A
InL\ (60(1—8) =6 \ ' [lnp;—0lnW +0Ina

nY;) \-0(1+a) (1+6) Inm; +60In A

(mLi) Y = N - 0(53“3) (lnpi—ﬁan—F@lnﬁi)’

InY; (1+a) Inm; +60lnA
1-B=0(at+B) 1-B—0(a+pB)

so that: e
(+a) (1-5) oo Ot (1-p)
Y, = pl P @R TSR (&) 1=p-0(at+h) A?l—ﬁ—emm)
) z W 1 °
e can then express Y; as a function of {1 ;, x5 ;} as follows:
Wi th P Y; funct f iy T2, foll
(a(l4a)—(1—B)) a(1-p)—(1+a) PN/ e =) a-p
Y, = (- 0A—F=0etB) | (@=1)(=F-b(atp)) ((Ui)"1-F-0(a+H) Aem
T xz 1 1,2 w i ’
or, more succinctly, as:
P
=WrC; xZ 1951 o (B.10)
1+o 1-8
where b a(l+a)—(1-p5) b a(l—B8)—(1+a) C. 01= /3( e(a>+[s)A — /a( 9((1)+/3) cand p = 0 (14a)
1= @=0{-F—0th) 2 = P="Y15-00+p)"

= @-D(-F-0+A)’ 151_;

Substituting equation (B.10) into the equilibrium system (B.8) and (B.9) yields:

+b1 — gy tbe
xi1=WFPCix ffl T, 5 i + E K”xj‘ﬁlx] 5t & (B.11)
J

_ b _
rio = WoCa, i iy +Z e (B.12)

Equations (B.11) and (B.12) will form the basis of the uniqueness analysis below (where we additionally
impose a symmetric infrastructure matrix). For the analysis of existence, we proceed one step further and
impose the normalization that ), Y; = L,which then allows us to write:

_ Cypbyal
Y;; =7 %, 1 %, 2
Zj ijj,lxj,Q
so that the system of equations becomes:
T C; xz 1x1 2 - -3
— a+1 a+1 a+1 a+1
Tin =L 5 Til T2 T Zwa Lo (B.13)
Z C; xj 1scj 5
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_ Cx b _
vio=1L 7“ B2 o +ZKM s (B.14)
Z C; xj,lxﬂ

which is a special case of equations (B.1) and (B.2), as claimed.

B.1.2 The Urban Model

In the urban model, we have v; = LF and §; = LI and, from equations (16) and (17) we have:

1
2(1—0a)

- 1 1 [N
so that L] = p/ eaAl s (WTQ) and LF = n/ P a;~" (WT) =T . We can then express LI and

LE as a function of {1 ;, 22} as follows:

or more succinctly as:

p1 b11,.b12
= WG qa o)’ (B.15)
bar b
= WOl 2% (B.16)
T 3
_ Al — U = _a_ 1 1 — 1 1 —
where C;; = E%IJG Cig = P — bii = py10ger b2 = —meriogas D21 = — oy ioggy b2 =
Z e

P 95, p1= m and p2 = 5755 Substltutlng equations (B.15) and (B.16) into equations into the

equlhbrlum system (B.8) and (B.9) yields:

+b11 — 37 t+bi2 -
J— P1 a+1 a+ a+1 u.+1
zi1 = WO ;5 + E Kijoi1 x5 (B.17)
J
- +b21 +b22 .
Ti2 = = WPr2 Cl 2T i, 1a+1 a+1 + E a+1 -El . (BIS)

Equations (B.17) and (B.18) will form the basis of the uniqueness analysis below. For the analysis of
existence, we proceed one step further and impose the normalization that >, LF = > LE = L which then
allows us to write: -

LF Cl 13"11111:2122 T

K2
Z Cj ll.bll b12

3.105,2

ba1 b2z
IR Clglexw _

g bo1 b22
Z CJ QIJ 15,2

so that the system of equations becomes:

bi2

b
- I Clllellsz aal 7a+1 K a+1 —atT B.19
Ti1 = b1 1o Fil + ijLi1 Ljo (B.19)
¥, Ciaayialy
745,177,
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ba1 .ba2
I 012x11$12

b21 b22
Z CJijl 7,2

which is a special case of equations (B.1) and (B.2), as claimed.

Tiz = T (B.20)

a a+1 _|_ E szl' a+1 a+1 .

B.2 Part 1 (Existence)

We first turn to the existence of the system. To do so, we rely on Brouwer’s fixed point theorem. A natural
way to proceed would be to define the operator T' (z) : R?ﬁ R2 2} such that:

C; 1fbb11113b12 ey 7a+1 a¥T, T atT
P btk 75 Mhiek 2 TR
(T (x)) D%lzv C. 1r511z512x11 Z; +Z]€NK1Jm]1 Lo
T (z) = 1 iEN | = JEN T, 3.2 i
T: (.’ﬂ)) - Cj.22°21 zbZz - - -1
2 ieN D.2 i,2%; 1 blz = T 1a+1 a+1 +Z NK 1_ a+1xa,-£1
) Ve 1
ZjeN Cj, 21,]2111 1 i€ I i

While it is immediately obvious that T is continuous, unfortunately, T" does not operate on a compact space,
and hence Brouwer’s theorem cannot be directly applied to it. Instead, following Allen, Arkolakis, and
Takahashi (2020), we consider an alternative “scaled” system, the equilibrium of which will turn out to be a
scaled version of the equilibrium of our system.

. T1
Define the operator: T (z) = (x); : R — R2Y such that:
T (x),
b1 ’712 1
D1 Cizy 1“r za,i1$_a+1 1 ”
i1 T by bz Fil T2 atT " atl
;¢ JlTj 11“”]122 + Zj KLij,l Tjo
= 11b111Lb12 T, +1 a1, "t oot =y 1 ot -t
i i,2 a a a i, i a a oo.a a
N > | Din i h12 wi @ A Kigw iy wy > | Din b1 b1z Yin Tipz +30; Kijz T ;5
T (x) — 25 %5, 1“‘ i1 %52 25 Cjam51 s
= b21 b22 1 a
Ci,27; ~a¥I T
D; o z. otl ot _ _a 1
. T 1 2 T T
= J2Ij21111222 “i - + EJ Kﬂxj,er xf;
i 2“b2111b222 — T +1 == Cipr A ei% -k 4 -atr et
i a+T @ a at 2551 Ty a a T a
2| Di2 C ba1,ban Lol +>320, Kjiz; 'z > | Di2 SO a2l 022 z, Tl A Ky T
37,2751 T42 J 3,251 T4.2

(xz 2);

it also maps a compact space to itself, thereby allowing us to establish the existence of a fixed point of T.

Define the compact space M C ]Ri])’r = {z € R2 |z € [my, M;] VI € {1,2},i € N'}, where:

where x = ((m Vi

) e R2Y Y. Like with T, it is immediately obvious that T is continuous. We show now that

K;
M; = max { max , max
! { Zz Dl VDY Kl]}
m1 = min < min bl ,min
' { Zz Dy g Zl Kl] }
D; s Ky
M5 = max { max 42 , max
? { Zl Dl2 iJ Zl }

Mo = min {mm

D1 K;; }
mln
Zz Dy Zl KIJ
We claim that for all x € M, T (x) € M.i.e. T operates from a compact space M to itself. We show the
argument for T (x) < Mjy; the argument for the remaining bounds proceed similarly. Consider the first term

61




O, 12011012 a 1

ey el 4 -
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D Zl‘DllZClbuxbmﬁl xi,Q
< max Skt [
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Similarly, consider the second term of T} (x), T} (z) = T —,
0,1%5,1 ©4,2 41, atl +1 +1
= (DMEJ ey 1: 111;"?12’“ ey wg A2 Kl mf'; )
TG TG
which can be bounded as follows::
_1 a
a+1,, a+1
o 2Ky Kij@ii Tz
.. bi1,.b12 a 1 a
Z Kl] Kz] Z D Ciaziy®; s a+1 . atl +Z K, a+1 Ta+1
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K;; ZlZ'Klj i1 o
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Zi 511 ’712 xz 1 CL’ Z ij 1 m] 2
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<max ———— X
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I\ Dinsg omrma il Tag 2 K g
Z 31T 501 T

so that together we have:

K;
T, (z), < max { max bl , max
) < {2 2.

as claimed.

Since T is a continuous operator mapping a compact set M to itself, by Brouwer’s fixed point, there
exists a fixed point #* € M such that T (#*) = &*.

The next step of the existence proof is to show that there exists an equilibrium of the system characterized
by equations (B.1) and (B.2), or, equivalently, there exists a fixed point * of the (un-scaled) operator T’
ie. #* =T (z*). To do so, we will show that there exists a scalar ¢ > 0 such that z* = ¢tZ*. Before we do
this, however, we first need the following result that says the denominator of the T} (z*), and Ty (z*), are
equal, i.e.:
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1 a

Cin (#2)"™ (7)™ a1 ) o
Z D" ) , ) G ) aF (7% ot Z Koo (7% )oFT (7% atrl | —
i “ch',l (53;,1)()11 (95;,2)1)12 Ea)™ a) J 4 @)™ E5a)
Oig (f?l)bm (frz)b22 - -1 _a_ - —_—a_ 1
Z D'y ) , ) * ot (g* et 4 Z K (3% aFl (¥ Yatt B.21
P G (g (e ) T 2K )T () e

The easiest way to see this is to re-write the scaled equilibrium conditions as functions of the endogenous
variables {p;, m;} (rather than {z;1,x;2}), which becomes:

oip; 1 4+ 3 Ky
> (52'2%_(1_&) +2; Kij”§l_a))

a —
p;mi =

v T+ 8 K
> (%‘ﬂ'i_(l_a) +2; sz‘pﬁl_a»

Multiplying the first condition by p}f" and summing over ¢ yields:

a _
piTy =

1—a l1—a

Zp’”‘ B D20+ 22,20 Kij”g(‘ )pz(' :
vt —(1—a l—a

i > (§ipi ey Zj Kij73(' ))

a

Similarly, multiplying the second condition by 771'1_ and summing over 7 yields:

l1-a —a
ZP-W. DR DD Kﬁpg' )ng :
: > (%w;“‘“) +3; sz-pg»l_a))
Since the left hand side of both conditions are the same and the numerators on the right hand side are both

the same (as recall Y, 6; = >_.7; = L in both the economic geography and urban models), the denominators
must also be the same. Hence we have:

Z 5ipi_(1—a)+ZKij7r](,1—a) :Z %Wi—(l—a)+ZKjip§1_a) ’

i J i J

or in {z; 1,x; 2} space, equation (B.21) holds, as claimed.
Armed with this result, we are now prepared to construct a solution of equations (B.1) and (B.2). We
posit that for all i € A and [ € {1, 2} we have:

Ty, =tr;, (B.22)

. Cin ()™ (@)™ e 1 s
w3 P g g ) ) R 5 057 )

(B.23)
) Cia (#1))™ (#12)™ o, o ee 4
et = Z Di’z 7~ b21 ,~ b2z (xi*l) o (wi72) ! +2Kji (ij) o (zj,2) o ’ (B24)
i 25 oz (#5) ™ (352) ;
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where the second line immediately follows from equation (B.21).
Since z* = T (Z*), we first consider Z} = T3 (£*). Imposing (B.22) and (B.23) yields:
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Cin(#22)"(#2)"™ (=0 \THT (7r )~ sk \aiT (k)T aiT
Zi <Di71 > Cj,l(ff;,l)bu(i;,z)bm (le) B (I;Q) B +Zj Kij (I;J) B (I;Q) B
bll b12
Cz,l (Z‘ 1) (m*g) a __1 1 a
#ia =D C Pt (2 0) T (wha) T D Ky (a50) T (252) T
2 a( j,l) (% 2) J
ie x¥ =T (z*) holds as claimed.
Similarly, considering £5 = T5 (z*) and imposing (B.22) and (B.24) yields:
2
Cia(Lar ) (Laf,)"? ST a
D tTi, t i, 1% at+T (1% o+l
Lo T G e ) T (i) .
t ©,2 Z D C@Q(Irl)bzl(qw )b22 (.i'* )_a}rl (~* )ail +Z K ( * )_ail (~* )a«lu
% 2’227012(if1) 21(~: )bzz i,1 mz’,Q g orJe x]l $]2
__a 1
> Kii (3252) 7 (3250) "
CoalFT ) (F2) ™ (e \ ot (e o RN S
> <D”22j Cra(31)72 (37,)722 (@51) 7 (310) " + 2 Kji (%,1) * (%72) o >
) C; 2($1,1)b21 (75:,2)1)22 * 7%“ * ail
N P 6l () T () .
¢ 0,2 Z D Cig(:%”) 1(5;2)%2 (i‘* )—,,,_}_1 (~ )ail +E K ( ) a+l( * )ail
i i,2 >, ijz("* ) 21 (5@2"2)!’22 i,1 ) 7 ] 1 l‘j,
__a 1
o K (a5,) = (250) —
Z D C@_g(/j;l)bzl 3g.;_*y2)bz2 (i'* )*a}rl (j )a«aH +Z K ( ) i (~* )a«lu
i 1,2 Z]’ 0.1,2(55;1)[)21 (5;2)@2 ,1 Je 1 :Cj,Z
ba1 bao
Cig (#7,) ™ (272) :
Tig = ey (@) T (a) +Y K (25,) T (w0) T
E Cv (xj,l) ( ],2) J

ie. a5 = T, (x*) as well. Together, this means we have successfully constructed a fixed point a* of the
(un-scaled) operator T, i.e. x* =T (x*), i.e. there exists a solution to the system characterized by equations
(B.1) and (B.2).

Finally, we show that the equilibrium we have found is strictly positive ie. ;1 >0 for all i € N and
I € {1,2}. (Note that all z}, are trivially finite since t € (0,00) and #* € M, so that z;, < tM; < oo)
We proceed by contradiction: suppose not. Then there exists an i € N and [ € {1,2} such that z;, = 0.
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Suppose that [ = 1 (the case of | = 2 proceeds analogously). We then have:

. Cir (@in) " @) ™yt

1 1 a
i = e) T (o) 4 Y K () (52) T =0
M c, (@)™ (50)"7 1 ; ’ ’

Since {x* } are weakly positive and finite, since K;; > 0, and a € [0,1], for this to be true, this means that
for all j connected to i (i.e. the set of j such that K;; > 0), it must be the case that %, = 0 as well. The
same argument implies that all j* connected to any of these j also have zj, 1 = 0. Since the matrix K = (K]
Is connected, repeating this argument iteratively then implies that 27, = 0 for all j. But if 27, = 0 for all
j, then from equation (B.2) z7* 7o would be infinite for all j, which is a contradiction, as z7 o < th Hence,
the equilibrium is strictly posmve

B.3 Part 2 (Uniqueness)

We now proceed to study the uniqueness of the system. We consider first an economic geography with a
symmetric infrastructure matrix; we then consider an urban model.

B.3.1 Part 2(a): Uniqueness in an Economic Geography Model with Symmetric
Infrastructure Matrix

Consider an economic geography model with a symmetric infrastructure matrix, i.e. £y =t for all [,k €
N x N. Tt is well known (see e.g. Anderson and Van Wincoop (2003); Allen, Arkolakis, and Takahashi
(2020)) that with symmetric transportation costs, the market access terms are equal up to scale). It turns
out that this is also true about a symmetric infrastructure matrix in the presence of endogenous traffic
congestion. To see this, note a symmetric infrastructure matrix implies K;; = Kj; for all ¢ and j, so that
equations (B.6) and (B.7) can be written in the economic geography case as:

pim = Yip;(lia) + ZKijW](-17G) (B.25)
J

pm® = Yim; 170 +ZK”p§1 9 (B.26)

It is obvious by inspection of equations (B.25) and (B.26) that a solution to this system is m; = kp; for some
k> 0. (Indeed, one can show using the same tools applied to the urban model in the next section that this
is the unique solution). As a result, it is sufficient to focus on the solution of the single equation case, which
can be written as follows:
Kep T = ke ip, T 4 Y Kp
J
Recall from Section B.1.1 that we can write:
o _ _ (1+a) _
Y; = p= Blzu»?w) =R (ﬂ)elfﬁf"(“”) Aelfﬁqe@w)
b; e W % .

so that the full system becomes:

(1—8) (1+a)+(1 B)

(14a) g1t —(1-a)
a,l+a a—1 —0 = T—B—0(atB) T—B—0(atp) —B—0(atp) —(1—a) (1— a)
Kip, T = rla= D —f=s=u ) U, A pz D; + E Kij

Define z; = & pH“ so that p; = k~ T+ex; ™" so that we can write:

K3

-0 (1+a) 9 (A+a) 0 (1-—p) 1 (A+o)+(1-—B) 7(1—(1) a(l—a) l—a
r; = Kk 1Fe T=F—0(aFh) 1+a)W mu 1=p- 6(“'”1)_,4 1=6- 9(”'%) 1+“ 1=p—6(ath) T, 1+a +K - Ita E Kijle+a
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or, written slightly more succinctly:

a l—a
7 4 s > Kz (B.27)
J

— b— (1=
T; = kP W'DQCiCIJ,L- (1+

(+)+0-8) _ (1-0) , — _p_ (ta) _ _ala) ) 1 (+a)i0-5)
where py = — 3 {EEER — (158, p2 = ~0rf ity ps = R0 = i {E52GRS and G =
0 (A+a) 9 (1-—8)

— —pB—6 3 1 1—-B8—6 3
uill @FB) 1 T-B=0(p)

We proceed by contradiction. Suppose there are two solutions { Wy, ky, {y:},cn} and {Wa, ki, {@i},c 00}
that both solve the system of equations (B.27) and that the two equations are distinct, i.e. they are not
equal up to scale. To proceed, we take ratios of the two assumed solutions:

_ h—(i=a
gy EOW, ’”c-yi (52) RS, K”y;“
T = (lfa)
v Hm po Z; e + K/gs E jKijJ}jl+a

_(1-a 1-a
&i = DR ngii (15¢) + § Fij,%m:%]& (B.28)

J
b_(lfa) lra

~ & ) TFa 3 IC. a

Ny oA Ky _ Wy _ REVW,P2Ciz, _ Fz” BijT;
wherezi:x—;,n:’;, :W7Di: - < b_(1—a)I 1—avandFij: - b_(l—ia) l—a *
REIW,P2Cim;, T/ 403 >, Kija:jl+"’ REIW,P2Cim, TP k03 22 Kijwjl-*—a’

We now construct a maximum and minimum bound to equation (B.28). Define M = max; &;, m =
min; ;, and p = M/m. Note that because a € [0,1], we have:

—a

& < D Wi ~(59) +Y F; /ipSm]axle . (B.29)

J

Indeed (and importantly), the inequality is strict. How do you see this? Well, suppose the inequality is not
strict. Then there exists an i € S such that:

A (ke . 1-a
Zi1 = DiRPAWP2 L, (52) + g FijiP* max @
, J
j

For this to be true, it must be the case that for all j such that F;; > 0 that 2 ““ = max; i"j”“ or equivalently,
Z; = max; £; = %;. Since all the locations are connected, we can choose any of these j as our new i, they
must also satisfy the equation with equality, and the argument can continue to the point that we have £; = z;
for all 7 and j. But this is a contradiction, since we assumed that there are two distinct solutions. Hence

the inequality is strict. As a result, equation (B.29) implies:

M < Dyger e MY (- (F))mt (- (52)) 137 Fyees Mot (B.30)

J

where the (apologetically cumbersome) notation 17 (z)

. al - . K
0 ifz<0 0 ifz>0
necessary to consider multiple cases of the signs of the exponents at once. A similar argument can be made
to establish the following lower bound, resulting in:

{x ifx>0 d1- () = r ifx<O

m > Di,%meml*(b (I ))Ml (b—(15 + ZF’Jszma+l' (B.31)

J

Taking ratios of the upper to lower bounds achieves a strict upper bound on u:
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Il (0-(52)) + >, Fjips M owt
)

M < A l—a — l—a l—a <:>
D Weemtt (0-(358)) prt- (0-(552)) + 3, Fighramart
< pul =G+ (1 - gy st (B.32)
p1th 1t (o (332 17 (b (332 )
where 8 = panezm' (0 (558) - (-(552) —. Equation (B.32) says that u is bounded

D; Pl Wﬂ2m1+ (b_( ilz ))Ml_ (b_(%))Jij F;jRP2maFl
above by a weighted average of two terms. For this to be true, it must either be the case that p is smaller
than the first of the two terms or y is smaller than the second of the two terms (or both). Since p > 1, we
then have a contradiction if both
1—-a
a+1

‘b—(ilj)’gl (B.33)

Hence a contradiction arises (and therefore uniqueness is assured) if equation (B.33) holds. Recall from above

that a = ﬁm and b= 1ia% It is straightforward (but tedious) to verify that for all a € [—1,1],

which is assured since a € [0, 1] and:

B e€[-1,1], A > 0, and € > 0 the following condition ensures equation (B.33) is satisfied an uniqueness is
assured:

a+ <0,
as claimed.

B.3.2 Part 2(b): Uniqueness in an Urban Model

From equations (B.17) and (B.18), we have that the equilibrium of the urban model satisfies the following
system of equations:

+b11 - +b12 -
_ ot a+1 2 : FEs it}
i1 = Wp1011 11 + Klﬂmjl :C]z (B34)

1
— g +ba1 g +ba2
a+1 a+1 a+1 1
Tio = W”ZCZ-,gxi,l Z;o + E Kﬂx J2 - (B.35)

As in the economic geography model, we prove uniqueness by contradiction. Suppose there exists a {Wy, {yir};» {yig}z}
and {W,,{2i1};,{zi2},} that both solve equations (B.34) and (B.35), where solutions {y;1,y;2} and
{i1, %2} are not equal up to scale. We will derive conditions under which this implies a contradiction.
The first step is to re-write the system in terms of ratios of the two proposed solutions. Beginning with
equation (B.34) , we have:

+b11 -1 +b12 —
p1 a+1 at1 a+1 a+1
Yin _ Wy Ci AYi1 Yio + Z i Kzai‘/g 1 Yj2
1
T4,1 p1 arrthn —gyrthie a.+1 -
Wz'Ciqx Ti1 Lso +Z Kza%l Lja

Big = Dig WP (£30) 7000 ()70 02 4 > Fija (@) =
J

—

a

T (Zj2) 41, (B.36)

A — Yia _ W,
where £; 1 = o W = W

+b11 — 5 +b12
P1 a+1 a+1
Wiz z; 5

D;1 = :
Wl Wp1 a+1+ 11 7u+1+ 12 K u.+1 a+1 ’
z Uiy Li2 +Z ij L1 Lj2
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K;

i
+b11 +b12 - ’
p1 o a+1 a+1 o
WI Cl 1371 1 xi,? + Z Kljxj 1 x] 2

Fija =

Note that D; 1 + Zj F;j1 =1 for all i € N. Similarly, equation (B.35) can be written in ratios as follows:

A 1 a a 1
A _ A — a7 tb21 4 o9 tha2 A —25T (4 =
Bip = DigWr? (£;1) 7T (£50) 7122+ Y o (851) 77 (£2) 77, (B.37)
J
where &; o = zz,
’ - +bo1 S5 +bo2
P2 = a+1
D - W Cz 2X i1 $L2
1,2 = 1
WP C 7:11»1 +b21 a+1 +b22 + Z K..x 7a+1 a+1 ’
4,205 1 Ti2 Jilj1  Tjo
_ Kj;
Fij’2 B - +ba1 gy tba2 =
+1 1 +1 at1
We2C o, zfs + 30 Ky )

Note that Di’g + Zj Fij,g =1foralliecN.

In what follows, we focus on the system of equations (B.36) and (B.37) written in ratios. Because we are
assuming the solutions {y; 1,¥:2} and {x;1,x; 2} are not equal up to scale, it must be the case that there is
at least one ;; # 1.

To proceed, we start bounding the ratios of the solutions. Define M; = max; £;;, m; = min; ;;, and
= % From equation (B.36) we have for all i € N :

Fi1 < D WP (&) o (fi,z)fﬁ“%m + ZFij,l max ((‘%jl)%ﬂ) max ((»@',2)7#1) : (B.38)
, i J
J
Indeed (and importantly), the inequality is strict. How do you see this? Well, suppose the inequality is not
strict. Then there exists an ¢ € S such that:

A T A —S5+b11 (4 — L tbio A L
ig = Di g WP (£30) 1 (#9) 77172 4 Fij max ((fﬂj,l)““
1
j

) mjax ((£j72)7%“) .

For this to be true, it must be the case that for all j such that Fj;, > 0 that (ijﬂ)"’il = max; ((ijﬂ)ﬁrl),
or equivalently, £;1 = max; £;1 = ;1. Similarly, it must be the case that £;2 = min; ;9. Since all the
locations are connected, we can choose any of these j as our new ¢, they must also satisfy the equation with
equality, and the argument can continue to the point that we have £; 1 = ;1 and ;2 = Z;,2 for all ¢ and j.
But this is a contradiction, since we assumed that there are two distinct solutions. Hence the inequality is
strict. As a result, we can write equation (B.38) as implying:

~ t(_a_4p —(—2_4p (=1 _4p (-1 _4p 1 __a_
]\41 < Di71WP1M11 (a+1+ 11)m1 (a+1+ 11)M21 ( artt 12)m; ( ar1t 12) 4 ZFij,1M1a+1 my a+1, (B39)
J

xz ifx>0 ifx <0
where the (apologetically cumbersome) notation 17 (z) = 1 and 17 (z) = * 1 , 18
0 ifz<o0 0 ifz>0
necessary to consider multiple cases of the signs of the exponents at once.
We can proceed similarly for the minimum bound of equation (B.36), yielding:
~ t(—a_4p —(—2_4p (-1 _4p (-1 _4p —_a_
my > Di,IWplmi (a4 + 11)M11 (a4 + 11)m; (ot 12)M21 (= oo +br2) ZFM 1mf+1 “T (B.40)
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Taking ratios of equations (B.39) and (B.40) yields:

~ t(—a_4p —(—2_4p (1 _4p (-1 _4p 1 __a_
% § Di,1Wp1M11 (a+1+ 11)m1 (a+1Jr 11)M21 ( artt 12)777,; ( a1t 12)—’_2]' Fij,1M1a+1m2 at+1

<~
m DiJWplm?(ﬁL%u)Mll—(a%leru)m;+(_%ﬂ+b12)M21+(—#1+b12) s Fzg,ﬂnf“ M, -
—a__p —_1
< Bl“|1a+l+ 11‘,u|2 a1t 12‘ ( ﬁl) u,+1, (B.41)
where 31 = DiT1W"1mi+(#;l+bu)M117(ail+bll)ml+(_%+l+b12)Ml+( i) .
Di,lel nz1+(%ﬂ+bll)M;7(ﬁ+bll)7rzi+(7%“+b12)hf;+(7%““712)—&-2]' Fij, 17n1”+1 M;%Jrl
Proceeding identically for equation (B.37) yields the corresponding bound:
—_1__p —_a_
i < popl TRl Tl g gy (B.42)

a7 (b)) (st ra) | ()

where (9 =
ﬁ D;, SWe2 m1+( a+1+b21)M117 (7 a«lH +b21)m;+(ai1 +b22)M21+(%+1+b22)+2j Fing;%HnLﬁ

Both equations (B.41) and (B.42) bound p; above by a weighted average of two terms. For each equation
to be true, it must then be the case that either y; is bounded above by the first term or it is bounded above
by the second term (or both). Considering all possible combinations, for there not to be a contradiction, we
require at least one of the following conditions to be true:

(mul) _ %H-i-bu‘ ‘—ﬁ—&-bm‘ (111/“)
IHMQ _%-H_'_le’ ﬁ"‘bQQ’ 1nM2
1 a
(asa) < (3 5) ()
<\ la
In o at+l  a+l In p10
In g4 < %H+bn‘ ‘-ﬁ-ﬁ-blz’ In p4
In po e Til In po

In pq ail a1 In g
In iy ‘—m+b21’ ‘ﬁj_l-i-bﬂ’ In i

By the Collatz-Wielandt formula, note the each inequality can hold only if its matrix has a spectral radius
greater than one. By the Gershgorin circle theorem, if all row sums of a matrix is no greater than one, its
spectral radius is also no greater than one. As a result, none of the four inequalities will hold if:

1
—— +b ———+b B.43
‘ + 011 ' +1+ 12| < ( )
and:
| | < (B.44)
a+1 M T eyl TR '

Hence if both inequalities (B.43) and (B.44) are satisfied, then we have a contradiction, thereby establishing
uniqueness Recall that a = 112)@ b1 = az“ 1T 19a bia = a21 11 Ga by = ﬁﬁ, and boy =
P 0 . Although the calculations are tedious, for all & € [0,1], 8 € [0,1], 6 > 0,and A > 0, one can verify

that inequality (B.43) holds if:
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Similarly, one can verify that inequality (B.44) holds if:

as required.
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C Online Appendix: Additional Derivations

In this subsection, we present detailed derivations from the main text.

C.1 Section 2.1: An Economic Geography Model with Optimal
Routing

Below, we derive the equilibrium conditions for the economic geography model described in equations (10)
and (11) in the paper. We start with the first market clearing condition defined in equation (4) and combine
it with the gravity equation described in equation (5):

=

Yz':ZXij <~
1

N
_ —0, —0 40 . b
Yi—g T W; AJE; P} <~
j=1
N
Y
_ —0 1 pb
Ew = Tij EJP] <
% j=1
N
T-0r1—ab, 6+1 _ -0, 1 pb
AL w T = ) m wi L P
j=1

Assuming welfare equalization, the above becomes:

N
T—071—af, 0+1 _ 00786
A7VL; w; = ZTZ» L w]uJLJ Wl —

A GLl af 0+1 Z —0 9+1 0L59+1W 0

Now, defining y; = 34 = % and [; = %
N
F—071—ab, 0+1 _ 0,,0+1 50 [P0+ 1y —0
AL —ZTU w; T LW =
i=1
w 0+1 N W 0+1
A—071—ab 71—ab le o ) le 07 BO0+115,—0
AL ( L ) = Tij ( I u L;7T W =
K3 ]:1 1

0 0+1 —0(1+0a) FO(14o wH0+1 wh0+1 Fo(5— Dy -6 0 9 1+0 0(8-1)
A7y LO0F) (YW = (yW) " L Z I =

T—0 1+40;—0(1+a) —9 0 1+0 0(p—1

This concludes our derivation of the equilibrium condition we describe in equation (10).
Moving on to the second market clearing condition defined in equation (4) and combining with the
gravity equation described in equation (5):
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N

EZ' :Zin <~

j—l

E; = 27*9 JAYE P! —

Z 7_—9 ]_HAGLQO.

Assuming welfare equalization, this definition of the consumer price index becomes:

9, —0-—0r5—B0 _
W w;"u; " L;

Defining the same income and labor shares, y; =
condition, we get the following:

9, —0-—07—B0 _
Wow;"u; " L;

YW

—0
__0;-BOF—BO _
—01=POT—B0 _
ZL ) uZ 1

we (
WOy e (y ) L

——0, —6;0(1-8) __
u; Yl =

27_79 79A0Loc9.

Yi
Yw

L;
>

=45 and [; = we used for the first equilibrium

w; L;
Y

ZT_QUJ GAGLQO

(

y YV

-0
10700 T 0
le ) Ajlg-’ LY —

N
—6
ZTji

j=1

N
_ (YW)fe L0letD) er;‘)y;"lf("‘“)ﬁg —

j=1
— o N
L(e+h) —0 10 ,—elé(cwrl)'

Wo >

Jj=1

At this point, we have reached the second equilibrium condition described in equation (11).

C.2 Section 2.2: An Urban Model with Optimal Routing

In this section, we derive the equilibrium conditions for the urban model described in equations (19) and
(20). We start by combining commuting gravity with the adding-up constraint on the residential population:

Lf:ZLij —
J

ZT—Q QAO(

L
we

).

We substitute in for the spillovers as defined in equation (18):

-2

Next, we define residential labor shares and commercial labor shares as [?

L
wo

SRR

)

= LE/L,IF = LY /L, and putting

the above equation in terms of the shares, we get equilibrium equation (19):
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-t w0 8w () —
J
L= 3 IRL)* 40 (17 (Véa) —
L(a+/3)92779 aAa lF

Moving to the derivation of the second equilibrium condition, we start by combining commuting gravity
with the adding up constraint on commercial population:

F
i = ZLJZ <~
J
L
—9 0 4
We substitute in for the spillovers to arrive at the following characterization of the commercial labor force:
0 9 <0 af I_/
Z af (Lf)” AL (L) (We> :

Finally, we define the above expression in terms of residential and commercial labor shares:

1-40
D)

597 a0 (L
=St ) () <
= S (5D)” 4¢ (1 L) (L) —
i J © \"J] W0

Z 79A99 lR

which is the second equilibrium condition defined in equation (20).

C.3 Section 4.1: Equilibrium

Trade Model In this Appendix section, we derive the equilibrium conditions for the economic geography
and commuting frameworks.
For the trade equilibrium conditions, we start with equation (10) from the paper. Note that Ti;G =

I- A]", where A = [a;;] = [t;:%] is the adjacency matrix, so with a change of notation, we can rewrite
ij J ]
the summation term as a matrix product:

_ _ (a+B)0
{Ai—eyilwli 9(1+a)} = % [7};9] % [ﬂgyjuelja(ﬁﬂ)]
(e 6
{Ai—ey3+91i—9(1+0¢)} — L(V;j) % [I _ A]—l {u Y; 1+91 0(8— 1)}

where fli_eyngli_e(Ha)] and [ﬂ?yj”relje(ﬁ’l)] are column vectors. Taking a matrix inversion and convert-
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ing back to summation notation:

e 0
[I—A]x [A.—Oy_1+0li0(1+a)} — ﬂ ~ |:aey'1+0l'0(ﬁ—l)} —
(3 K2 3 W i Yi i
A7 9y1+9l—9(1+a)} A x [A 9y1+0170(1+a)} — LJf)e % {aey,uel,e(ﬁ—l)} —
W 1 I 7
A - e - _ a L(a+5)
A Oylrop-00Fe) _ ZaijA;"y}”lj 0(1+a) _ W Y H07,005-1)

J
The second equilibrium condition, equation (11), can also be written as a matrix multiplication, where

[u Y; 0l9(1 ﬁ)} and [flgy;el?(aﬂ)} are row vectors. Applying the same matrix inversion we did to equi-

librium equation we did to the first equilibrium condition, we get:

B [at+8)0 N _ N
a0y 000P) = =0 f9,,=00(a+D)
j=1
L (atB)0 N
{u Y; 9l9(1 )} = X {Aeyfel H)} X
7 (a+B)0
0,00-8)] _ L —6,0(a+1) -1
{“ vi 'l }_ wo X{yﬂl }X —
L (atB)0 (a
(@ y 0P x 1= AT) = S x Al Y] =
7 (a+B)0
__9 —0,0(1—B) ——0, —0;0(1-5) r_L 0, —00(a+1)
up Yl }—{“y‘ vl }XA L [A L }
L(at+B)0
T Zaﬂu yy 0P = =0 Ay ey

Recalling that a;; = ¢;.°, we have for our two equilibrium conditions (before incorporating traffic con-

1]7

gestion):
A0, 10,00 +a) _ L(;;B) y; 107,081 +Zt HA 6 1+9l 0(1+a)
I (at+B)0 _ o
e R o
J

To incorporate congestion, we combine these two equations with the expression (26), converting from market
access terms to equilibrium {y;} and {I/;} (as in Appendix B). Starting with the first equilibrium condition:
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L(a+,3)

A;g 1+9l;6(1+a) o 1+Gl 0(8— 1)+

we
—0
A
o 1 L—(a4B)0N THOX  __ _ox  _ _ox_ _60AB=1) _6A(+a) __ox_ A(146)
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where x = ( =3 , as in equation (28). For the second equilibrium condition, we proceed similarly:
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where again y = (Lmjﬁ> , as in equation (29).

Commuting Model The derivations for the commuting model follow a very similar process to that
of the economic geography model. We rewrite the first equilibrium condition, equation (19), as a matrix

product and invert:
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where [ﬂf (1F) 79’8“} and {T]‘? (lf)ea] are column vectors.

Applying the same steps to equilibrium equation (20), where [[l;e (1) _GQH} and [ﬂf (%) 05} are Tow
vectors:
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Recalling a;; = t;.”,we have two equilibrium conditions for our commuting model:

Zj’

——0 R\ "B+ Lloth)e *9 F 9770 R —06+1
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g s\ —bat1  LFA)P a? (17) P —fat1
A70 (1) T Type Y (% g Ztﬂ A

As above, substituting in our expression for the iceberg transportation costs along a link using equation (26),
and converting from market access terms to equilibrium {ZZF } and {llR} (as in Appendix B), incorporates
endogenous traffic congestion. For the first equilibrium condition (30), we have:
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where x = ( % ) , as claimed. For the second equilibrium condition (31):
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as claimed.

C.4 Section 4.3: Scale Dependence

In this section, we present a derivation of the partial derivative of trade costs about ¢ = 1. Let’s define the
matrix of bilateral trade costs as B = (I — (exp (—f1Inc) A))”'. We then have from, by matrix calculus,
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C.5 Section 5.2: Counterfactuals

To simplify the derivation of counterfactual expressions for the trade and commuting models, we present a
generalized version of models in term of market access terms and convert that to the “exact hat” notation
developed in Dekle, Eaton, and Kortum (2008). Substituting in for the specific definitions of market access
of each model returns the relevant counterfactual equilibrium conditions for both models.

For both models, flows X;; can be described in gravity form as:

Vi 0
17 H_g P_

where v; and 6; are cumulative flows out of an origin and into a destination, respectively, and II; and P; are
origin and destination market access terms. Trade costs can be represented as:

[’ = (1-1es)™")

And the iceberg cost of traveling along a link can be described as:

— -
i Byl " =
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T 7% 7%

1y i+ i+

tij =1;;"" X B, x 1,

For both models, we have the equilibrium conditions:

=y X
J
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5= 3 X,

J
Starting with the first equilibrium conditions, we substitute in for our gravity model of flows and solve for
market access term II;:

vi=Y Xy =
J

N0y, i 9
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For the second equilibrium condition, we do the same, but solving for market access term P;:
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Expressed in changes, these two equilibrium conditions become

d; A~
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We multiply both the numerator and denominator by their appropriate market access term so that we
can substitute in our expression for traffic, resulting in:
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Finally, substituting in our expression for iceberg trade costs along a link,

1 L _6x 6
[ZBN 1+6X 14+6X
x P, 1O % Hj +

tij =ty
and multiplying each equation by the other market access term, we obtain the following for the two equilib-

rium conditions:

Now that we have defined the counterfactual equations generally, we turn to the specific cases of the
trade and traffic models. For the trade model, we have the following definitions for the fixed effects:

0, =F
vi =Y
We also derive the following for the price indices:
W;Ug
P =
w
P =YLl 7'wl —
e

and

II, = AiLini_% <~
II; = AiL‘?f“Yf% —
fl; = fo+ig= 7

[

Substituting into the equilibrium conditions, we get:
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as in equation (36) and:
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as in equation (37).
For the commuting model, we define the following for fixed effects:

R

and:
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Substituting these into our generalized equilibrium conditions, we get:
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as in equation (38) and:
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as in equation (39).
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D Online Appendix: Extensions

In this section, we present two model extensions mentioned in the main text.

D.1 Additive Transportation Costs

In this subsection, we describe an alternative framework where transportation costs are additive across
segments (rather than multiplicative, as assumed in the main text). Let L;; be the worker hours employed
in the production and shipment of goods from ¢ to j, which is split into the hours workers spend producing
the good, LP7°"® and hours the workers spend shipping the good L‘?;L P

Lij _ Lf;oduce + ijhlp
The total number of goods being sent from i to j is:

_ produce
Qij = AiL;;
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Let t;; be the expected travel time from ¢ to j (see below). Suppose that each unit of good requires a separate
truck so that the total amount of labor hours used in shipping goods is:

ship 4. _ A.yproduce,
LM = Qijtiy = ALYt

Hence, to produce each unit of a good to send from i to j requires (1%]) units of labor and costs p;; =
(1+ti5) % If we define 7;; = 1 + ¢;;, the model is identical to the economic geography presented in the
main text.

Now we calculate the expected cost. Let y;; the direct travel time between ¢ and j. The total aggregate

travel time from ¢ to j on path p of length K is:

K
fij (p) = Zlu’pk—lgpk
k=1

Suppose each worker v € [1, L;] is heterogeneous in her preferences of routes so that she chooses the path p
to minimize:
tii (V)= min {; +¢ei (p,v),
i (V) K>0.pePK ij (p) i (p,v)
where ¢;; (p, v) is Gumbel distributed with shape parameter 6.
The expected trade cost can then be written as:

b Y e’ =

K>0,pePk
1 K B
g o (Tan] o
K>0,pePK k=1
1 oo K
=33 5 (Tow o) =
KZOPEPiI]-( k=1
1 oo N N N
tij = 75111 Z Z .. Z (ai_’kl X Oy ky X eoe X Qkpe o kg q X akK_hj) <,
K=0 \ki=lko=1 kg_i=1
1 oo
K
tij = —gln Z Aij
K=0

where a;; = exp (—0uq;), A = [a;;] and AX = [Af] . Define B = (I — A) P =% AKX We then have:

1
tij = —= lnbij.

0

Hence, the iceberg transportation cost with additive transportation costs can be written as:
_1 _1
ry =14+ (b50) = b0,
i.e. it is approximately equal to the iceberg transportation cost defined in equation (21).

D.2 Nested Route Choice

In this subsection, we present an alternative economic geography model where agents first choose from which
location to source the good and then choose on which route to ship the good. Suppose that each location
i € N is endowed with a constant returns to scale technology for producing and shipping each good v € [0, 1]
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to each destination j € A along each route r € R;;, which under perfect competition yields the following
price of good v € [0,1] in destination j € N from origin ¢ € A" along route r € R;;:

K
Wy « Hk:l trkﬂ,rk

Pijr (V) = & (V) €ij,r (V)

where ¢; (v) is an independently and identically Frechet distributed across goods distributed with scale
parameter 1/A; and shape parameter 6, and ¢;;, (v) is independently and identically Frechet distributed

0,—
0,

convenience alone) and shape parameter 6,.. The timing is as follows: first, individuals observe ¢; (v) and
choose a source to purchase the good; second, individuals observe €;; » () and choose the route to ship the
good. (For simplicity, individuals are not permitted to alter their decision of where to source the good once
€ij.r (V) is revealed).

To solve the model, we proceed by backwards induction. Conditional on choosing to source good v from
location 7, a consumer in location j will choose a route from 4 to j to minimize the shipping cost incurred,
so that the probability she selects a route r € ¥t;; is:

K Or
(Hk:l t"“k—l 77’k)
0
K ke
2R, (szl tr;_l,r;>

and the expected cost she incurs in shipping a good from i to j is:

-1
across routes with a scale parameter equal to I" ( ) (which is done without loss of generality and for

Tij,rli =

K —0,\ —7=
Tij = Z ( trl’cvr;c) (D.1)
k=1

' eR;;

Apart from the different 8, equation (D.1) is equivalent to equation (3) and so a similar be expressed
equivalently as in equation (21):

Tij =b"", (D.2)

where b;; is the (i, j) element of the matrix B = (I — A)~" and A = [a;;] = {t;f)r]

Knowing that this is the expected cost she will incur, a consumer in location j will first choose the
location ¢ to source the good v from in order to minimize the expected total cost, so that the probability she
sources from i € N is:

7.0 (wi ) A;) %

ij
Mij = —0 -0 (D-3)
Zke/\/ Thj ¢ (wg/Ag)
and the total value of trade from ¢ to j can be written as:
-6 -6
T, 7 w; Az g
Xij = 4 (wi/A:) E;. (D.4)

_99 Yy
ZkeNTkj (wi/Ag) i

It is immediately evident that when 6, = 6, = 60, equation (D.2) is identical to equation (21) and equation
(D.4) is identical to equation (2), i.e. the model here becomes isomorphic to the one presented in the main
text. More generally, (and to get a sense of where the tractability is lost when 6, # 6,), combining equations
(D.2) and (D.4) yields:

() (wi/A;) %

X = —34 v E,

ij g J»

2 keN blgjsr) (wi/Ar)

so the bilateral trade flows are functions of elements of the Leontief inverse raised to a power (rather than
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the elements of the Leontief inverse themselves).

E Online Appendix: Algorithm for Conducting Coun-
terfactuals

The algorithm we use to find the equilibrium in our counterfactual simulations consists of an outer loop,

where we guess a ¥, and an inner loop, where, given a X, we solve for vectors of {g;} and {l;} in the

economic geography case and vectors of {lAlR} and {if } in the commuting case for which the system is

equal up to scale. We can see that for equilibrium equations (36) and (37) (the economic geography model)
and equilibrium equations (38) and (39) (the commuting model), given a X, the system forms a system of
non-linear equations in ({Ql} , {l}}) and ({ZF} , {if}), respectively. At the same time, the term on the
left-hand side of each of the equilibrium conditions is a log-linear combination of the endogenous variables.
Because of these similarities, we use a very similar algorithm to solve both models. For concision, we will

describe the algorithm in detail in terms of the endogenous variables of the economic geography model.
Let’s start with a detailed description of the inner loop. Given an initial guess of X(oy = 1, we plug in

an initial guess of the endogenous variables {g}i}(o) =1and {[i}(o) =1 into our equilibrium conditions (38)
and (39). To help us update our guess, we define the following:

1+62460 9( 1+a+9>(;()\a+ﬁ) )
1+

T1: =Y e l;
b = g ()
so that:
. 1+0A+0 _g ((rotoX(ats) .
<lnx17i> B T+0X 110X (111 yz>
Inis,; ) 1-) —148+0A(a48) .
o) <\ (i) o (pemment) ) (i) =
N 1+62+6 9 1+a+0X(a+3) N R
In Ui\ _ THOX T+6X Inzy;
Ini; )\ _p (@) 0 (M) In s ;
[ER) 1+6A

By this definition, for a guess of ({gji}(o) , {l}}( )>, the equilibrium conditions yield a set of vectors
0
({5:1724}(1) ,{33271-}(1)), which by the log-linear transformation defined above, imply an updated guess of
({Qi}(l) ) {Zi}(1)>. On each iteration, we rescale the vectors ({fcl,i}(l) 7{,@2’1‘}(1)) such that the second-
period income and labor distribution still sum to 1, and update our guess of <{yi}(0) , {l}}( )) towards
0
({g}i}(l) , {L}( )> , We iterate through procedure this until the equilibrium conditions are solved up to scale.
1

Therefore, the inner loop returns a ({g}i}(o) , {L}(o)> for which:

(B—1)

E. 140X+60  , TFox _OX = . A _0 1460, T
A (T4 — v 71H Ui T+ (lz) 4y IFex <2]H> $TFON () 10X (Z)
vi (1)) = X (EﬁZk :m) (@) 0) o Xo ; B>, En ) @iy~ ()
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j=1

To solve the equilibrium conditions, we’d like to have a ¥ for which {\; ;} =1 and {X2;} = 1. Therefore,
in the outer loop we implement a version of the fmincon function, a non-linear constrained minimization
function built into MATLAB, which finds a X(;) which minimizes the matrix norm of [{In A} {lnXg;}].
We use the output of fmincon to update our guess of x, and we iterate on this outer loop until gy converges
with )A((l)

F Online Appendix: Data Construction

In this section, we provide details on the construction of the data used in the paper.

F.1 The U.S. Highway System Network

Our version of the interstate highway system consists of road segments, which are parts of an interstate which
pass through a county. Each segment has data on mileage, traffic flows, and through lanes over the entirety
of the segment, as well as over subsections of the segment which fall into different road type classifications
under the Federal Highway Administration’s (FHA) Highway Economic Requirements System (HERS). To
generate this dataset, we combine GIS data on the interstate highway network released by the FHA, elevation
data from NASA’s Shuttle Radar Topography Mission (SRTM), population data on and geographies of urban
areas, Commodity Flow Survey (CFS) Areas, and Census-Based Statistical Areas (CBSA) released by the
Census Bureau and sourced through IPUMS NH-GIS, and trade information from the CFS.

F.1.1 Interstate Highway System & Traffic Data

Since 2011, the FHA has released shapefiles of the national road network, which are linked to data collected
from the Highway Performance Monitoring System (HPMS). Critically, this shapefile contains information
on the state and county a road segment is in, the roads’ Department of Transportation functional system
classification, a road’s name or route number, whether it is in an urban or rural area and which urban area
it is in, the mileage of a segment, the average annual daily traffic (AADT) that goes over it, and how many
lanes the segment has.

To generate our version of the interstate highway system, we begin with the HPMS release from 2012,
trim it to only those roads within the contiguous United States, and remove all roads that are not classified
as Interstates, resulting a road network with 334,040 segments. Beyond this, we resolve several data quality
issues within the 2012 HPMS release. The most visible of these issues is the road reports from West Virginia,
which are missing large sections of several interstate highways. To resolve these, we replace the reported
data on West Virginia interstates from 2012 with that from 2013. Additionally, because the national HPMS
dataset is sourced from reports prepared by state departments of transportation, there are some discrepancies
in how roads are labeled. For instance, for Interstate Route 10, one department of transportation might code
it as 10, another as 110, another as I-10, and another might use an entirely different identification system
altogether. In order to consistently code each road segment by its integer route number (i.e. Interstate 10 as
“10”), it was necessary to recode interstate segments in Arizona, California, Nevada, and Rhode Island, with
reference to Google Maps. Finally, the HPMS has some road segments which are classified as interstates
but are not coded with a route number at all. These “zeroes” come from three states: Alabama, Maine,
and New York. We delete those in Alabama, being exceptionally small in length (<0.1 miles), and those
in Maine, which are short ramps, insignificant to the overall connectivity of the road network. The “zero”
in New York is a transitional ramp between 1-90 and [-87 near Albany and is recoded as part of 1-90. The
resulting dataset consists of 333,021 road segments.
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Table F.1: Interstate Highway System: Cost of Adding a Lane-Mile

’ Road Type \ Cost ($m) ‘
Rural - Flat 1.923
Rural - Rolling 2.085
Rural - Mountainous 6.492
Small Urban 3.061
Small Urbanized 3.345
Large Urbanized 5.598
Major Urbanized 11.197

Source: Federal Highway Administration (2015)

F.1.2 Road Type Classifications

Using the cleaned version of the interstate highway system, we proceed to match each segment of the highway
system to its underlying terrain. An elevation raster of the United States was sourced from DIVA-GIS, which
gathers the underlying elevation data for the raster from the CGIAR’s Center for Spatial Information SRTM
data. Using this elevation raster and ArcGIS’ 3D Analyst toolkit, we extract the average grade of each
segment of the interstate highway system.

Each road segment is then matched with the population of the urban area it passes through based on its
urban code in the HPMS data, which are the same codes that the Census Bureau uses to identify its urban
areas and urbanized centers. Populations for urban areas are sourced from the 2010 Census Urban-Rural
Classification, which was released in March 2012. The urban area codes in use in the HPMS data differ
slightly from those in the census release, so a handful of urban areas in the HPMS data are recoded to match
their updated codes in 2010 Census Urban-Rural Classification. Based on this terrain and population data,
each segment was then classified into one of the seven HERS urban-rural road types below.

Urban road segments are classified based on population, per standards outlined by the FHA in its HPMS
field manual Federal Highway Administration (2016). Rural road segments, which are all segments which
pass through areas of less than 5,000 in population, are classified based on the average grade. The FHA
offers only general guidance on how to classify roads by terrain. Based upon the guidance that Level terrain
“generally includes short grades of no more than 2 percent” Federal Highway Administration (2016), all roads
of grade below 2% were classified as Level, and based upon the maximum grade for Interstate Highways going
over rolling terrain with a speed limit of 60 mph being set at 4% American Association of State Highway
and Transportation Officials (2016), all roads of grades between 2% and 4% were classified as Rolling. The
remainder of roads (those over 4% in grade) were classified as Mountainous.

For each section, a measure of its length is generated by subtracting the mileage marker of its endpoint
from the mileage marker of its beginning point. Then, we generate a measure of vehicle miles traveled
(VMT) by multiplying AADT by the length of the segment and a measure of lane-miles over the segment
by multiplying through lanes (the total two-way lane width of a road) by the length of the segment. Each
of these three measures—length, VMT, and lane-miles—is also interacted with the seven dummy variables
that code road type.

F.1.3 Observed Network of the Interstate System

To simplify the geometry of the interstate network, we aggregate road segments based on their state, county,
and route number, summing length, VMT, lane-miles, and all road type-interactions. This reduces the
number of road segments from 333,021 to 1,761. Finally, we join segments within a radius of 3500 meters of
each other together. This links together geometries which were either not precisely connected in the shapefile
or were connected by shorter roads not coded as interstates in the HPMS dataset, and therefore removed in
the initial data cleaning. This dataset forms the links of our interstate network.

For our network analysis of the interstate system, we choose to place nodes at every intersection between
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two different interstates and endpoint in the interstate highway system. This results in a set of 616 nodes,
each of which we geocode with its latitude, longitude, distance from and name of nearest CBSA, and CFS
area. We also identify adjacent nodes as nodes which can be reached from each another without passing
through another node on the network.

F.1.4 Simplified Network of the Interstate System

In ArcMap, we set the nodes as origins and destinations in a symmetric origin-destination matrix; identify
length, VMT, lane-miles and all road type-interactions as accumulation attributes (that is, fields that the
ArcMap Network Analyst toolbox should integrate over as it calculates the least-cost route); and set length
as the impedance, which is the field that the Network Analyst toolbox minimizes to identify the least-cost
route. Solving this symmetric origin-destination matrix between 616 origins and 616 destination leads to
379,456 bilateral connections. Each of these bilateral connections contains data on the length of the route,
total VMT over the route, total lane-miles over the route, and the length, total VMT, and total lane-miles
over sections of the route which fall into each of the seven road types.

Using the CBSA information geocoded to the nodes, we code a node as being within its nearest CBSA
if it is less than 3000 m away from the boundary of that CBSA. This is necessary to address the presence
of nodes which just barely fall outside of a CBSA. The set of bilateral connections generated by solving the
origin-destination matrix has several “redundant” connections because our approach to generating the nodes
of the interstate network yields clusters of nodes near cities, with large ring roads or through which many
interstate highways pass. To eliminate these redundancies, we consolidate all nodes coded to the same CBSA
into one “CBSA node,” coded with the average latitude and longitude of all nodes within that CBSA and its
relevant CBSA and CFS area. The bilateral connections from this “CBSA node” to all other nodes in the
interstate network contain the average distance units (length, VMT, lane-miles, and road type interactions)
for each unique connection from that CBSA to another node. This process of consolidating nodes within
CBSAs yields a simplified adjacency matrix, where the clusters of nodes around major cities due to ring
roads are absorbed into one node. The 616 nodes and 379,456 links of the original OD matrix are reduced
down to 228 nodes and 51,984 links, of which 704 are between adjacent nodes.

F.1.5 Estimated Cost of Improvements and Congestion

For the simplified network, we calculate the cost of adding an additional lane-mile along an link by identifying
the share of each link that goes over each road type and using those shares as weights in a weighted average
of the different cost figures for adding a lane-mile in each terrain type estimated by the Federal Highway
Administration (2015). To identify congestion measures, we divide the total VMT along an link by the total
lane-miles along that link. This gives us a measure of traffic per lane-mile over the course of the road.

F.1.6 Consistent Measures of Node Population and Income

To generate a consistent measure of population and income at each node, we sum the population of and
average the median income of all cities within 25 miles of a node, conditional on a city within that radius not
being closer to another node. We name each node (for readability) after the city with the largest population
in the aforementioned 25 mile radius. Population and median income data come from a purchased dataset
from USCitiesList.org. Although consistent, this way of measuring population naturally tends to understate
populations for less densely populated areas.

F.1.7 Trade Flows: Observed and Imputed

Using the CFS area coded to each node, we link links with trucking flows aggregated to the origin-destination
level from the 2012 CFS. CFS areas are generally larger than CBSA’s, so to get more granular trade flows,
we imputed commodity flows between CBSAs by assuming that, for CFS areas which consist of more than
one CBSA, each CBSA receives and sends out a portion of flows proportional to its share of the CFS area’s
total GDP. Both the observed CFS area-CFS area flows and imputed CBSA-CBSA flows are included in the

88



Table F.2: Seattle Road Network: Cost of Adding a Lane-Mile

| Road Type | Standard Cost ($m) | High Cost ($m) |
Freeway /Interstate 11.197 46.691
Other Principal Arterial 8.252 31.988
Minor Arterial/Collector 5.614 31.988
Local* 5.614 N/A

*Local costs imputed as identical to Minor Arterial/Collector costs
Source: Federal Highway Administration (2015)

data. 9,801 of the 51,984 links are linked to CFS flows; 9,651 of those links can be further disaggregated into
CBSA-CBSA flows.

F.2 The Seattle Road Network

Our version of Seattle’s commuting network combines the road system reported in the Seattle-Tacoma-
Bellevue CBSA in the FHA’s 2016 HPMS release for the state of Washington with commuting flow data
from the 2017 LEHD LODES release from the Census Bureau. We also, similarly, to the our version of the
interstate highway network rely on elevation data from the SRTM and population data for urban areas and
Census block groups released by the Census Bureau.

F.2.1 Local Road Data

We trim the data from the 2016 HPMS release for the state of Washington to cover all roads within the
municipal boundaries of Seattle, creating a dataset of 9,188 road segments. This dataset contains information
on a road segment’s Department of Transportation functional system classification, which authority owns it,
how many lanes it has, whether additional lanes could be easily added, and the AADT that flows over it,
and whether it is a ramp or not.

There are a handful of roads for which one or several of these datapoints are blank, so we impute those
based upon the features of the surrounding roads. For functional system classification and ownership, which
are both categorical variables with an associated hierarchy, we fill in these blanks with the “highest” level of
the hierarchy that a road comes into contact with; for example, if a road touches an interstate highway and
a minor arterial, it is classified as belonging to the interstate functional classification, and if a road touches
a road that is owned by the state and another that is owned by the county, that road is classified as being
owned by the state. Generally, for lane width, we fill in blanks with the maximum lane width among roads
that a segment comes into contact with, and for traffic flows, we fill in blanks with the mean traffic flows
among roads that a segment comes into contact with. For a subset of roads which happens to have blank lane
widths and traffic flows because they represent the other lane of a dual lane road way with that data, like a
large highway or boulevard, we simply impute traffic flows and lane width from the its parallel counterpart.
The only other exception to the aforementioned general rule is surface streets, where we impute that each
surface street has width of two lanes and an AADT of 120. Finally, we used geoprocessing tools in ArcGIS
to fix connectivity issues in the road data.

Taking the cleaned traffic data, we prepared the road network for network analysis by aggregating road
segment-level data to what we call the “road section”level—road sections being defined as a continuous
segment of road not interrupted by an intersection with another road. This increases the number of road
segments in our data to 17,261. We used ArcGIS tools to measure the length of each road section and code
it to the Census urban area it belongs to. We further classified each road as being a high cost road to add
a lane to or a not, based on whether the HPMS release says that additional lanes could be easily added to
it. Using a road section’s functional system classification and its high-cost classification, we coded each road
section with the cost of adding a lane-mile to it, based on the costs estimated by the FHA Federal Highway
Administration (2015).
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Finally, for road sections which are missing posted speed limits, we filled in speed limits based on whether
it is a ramp (ramps are given a speed limit of 30 mph) and who owns the road. Washington state has
default statutory speed limits for city and town streets, county roads, and state highways Washington State
Legislature (1965). Local roads are assigned a speed limit of 20 miles per hour, as per local Seattle traffic
regulations. From these road type classifications, the length of the road, and the traffic and through-lane
capacity data from the HPMS release, we created measures of VMT), lane-miles, improvement cost—generated
by multiplying the cost of adding a lane-mile to a road by its length—and unimpeded travel time—generated
by dividing the length of the road by its speed limit.

F.2.2 The Observed Road Network

We convert this local data into the observed road network by generating a set of nodes for network analysis,
solving for the least-cost path between those nodes using ArcMap’s Network Analyst tool, and paring the
resulting set of bilateral paths down to only those between adjacent nodes.

To generate the nodes, we grid the city of Seattle into 224 1 km x 1 km parcels and set the center points
of those parcels as nodes for network analysis. We restrict participation in the network analysis to only those
nodes which are within a third of a kilometer of the road network; we find that this distance restriction does
a good job of resolving the tradeoff between capturing the overall structure of Seattle’s roads and limiting
the nodes to those within a reasonable distance of the road system. Overall, 217 nodes participate in the
network analysis.

Using the OD Matrix feature of the Network Analyst tool, we solve for the path which minimizes
unimpeded travel time from each of the 217 nodes to all the other nodes. Along each path, we also sum
over VMT, lane-miles, improvement cost, the number of intersections crossed, the number of turns taken,
and the length traveled along arterial and local roads. While the network dataset has highly detailed data
on all the roads in Seattle, this step means that we observe only those roads along which at least one least
cost route between nodes travel. Solving this optimization problem yields a dataset with 47,089 bilateral
connections between nodes. We define a node as adjacent to another node if it is in one of eight parcels which
surrounds the other node’s parcel and is not separated from the other node by a body of water, without
being connected by a bridge.3? There are 1,384 bilateral connections between adjacent nodes in our dataset.

F.2.3 Node Populations and Incomes

Since our nodes are not linked to any existing administrative dataset on populations and incomes, we need
to generate population and income figure for each one. To do so, we use an ArcMap tool to identify the
area of each intersection between a block group and a parcel and calculate the share of each parcel’s area
that comes from a particular block group. We also calculate the population density of each block group.
Then, assuming that the population of each block group is uniformly distributed within that block group, we
estimate the population density of each parcel by finding the weighted average of the block groups it overlaps
with, where the weights are provided by the share of each parcel’s area that comes from a block group. We
calculate the per capita income of each parcel using a similar method. Further assuming that the residential
and working population within each parcel is uniformly distributed, we calculate the total residential and
working population of each parcel by multiplying the respective population density by its area.

F.2.4 Commuting Flows

We take commuting flow data from the LEHD LODES dataset. We narrow down the commuting flows,
which originally are at the census block-to-census block level, to only those flows which begin and end in the
Seattle Metro Area. Using the areas of the intersections between each block group and parcel, we calculate
the share of each block group’s area that falls into a particular parcel. We distribute a block group’s residents

39We visually inspect for the latter condition, generating a list of 30 bilateral pairs which violate it. These
pairs are removed from the sample after an earlier filtering, which cuts to the sample to only those bilateral
pairs which are between nodes that are in contiguous parcels.
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Figure F.1: ROUuTE COMPLEXITY: AN EXAMPLE

| <

T
Notes: This figure provides an example of how the instrument for traffic based on the route com-
plexity is constructed for the Seattle road network. On this link, there are five turns and 19
intersections.

and labor force among its intersections according to these shares, and then aggregate those intersections up
to the parcel level to find the number of residents and the size of the labor force for each parcel.

To distribute commuting flows, we estimate the commuting flows between block group-parcel intersec-
tions by multiplying total commuting flows between two block groups by the shares of the origin block group
and the destination block group taken up by the origin intersection and the destination intersection. We
then aggregate these commuting flows up to the parcel-to-parcel level.

F.2.5 Instrument Construction

For our IV estimation of the congestion parameter in Seattle, we rely upon the number of turns along a
route, conditional on the number of intersections traversed and origin and destination fixed effects, as an
instrument. We define any deviation from the current bearing of the route by more than 30 degrees, in
either direction, as a turn, and we use the Global Turn Delay within ArcMap’s Network Analyst to count
the number of turns along the least-cost route between two nodes. We also use the Network Analyst to count
the number of intersections traversed. The below figure presents an example of how this process works and
what kind of data it results in. Between these two nodes, the least-cost path makes five turns and traverses
19 intersections.

G  Online Appendix: Alternative Parameter Constel-
lations

In the section, we compare the estimated welfare elasticities and returns on investment for each segment of
the U.S. highway network and the Seattle road network to equivalent results under three different parameter
constellations: (1) no externalities (« = § = 0); (2) lower trade elasticity (8 =4); and (3) greater traffic
congestion, which we calculate by estimating Jy from a gravity regression of either trade or commuting
on travel times. We summarize the results in three figures, corresponding to each of the three parameter
constellations.
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Figure G.1: Alternative parameter constellation: No externalities

(a) U.S. Highway Network
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Notes: This figure compares the welfare elasticity (on the left) and return on investment (on the
right) elasticity for each link in the U.S. highway network (panel a) and the Seattle road network
(panel b) calculated using our preferred parameter constellation (on the x-axis) to an alternative
parameter constellation where we assume no externalities, i.e. @ = =0, (on the y-axis).
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Figure G.2: Alternative parameter constellation: Lower gravity elasticity

(a) U.S. Highway Network
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Notes: This figure compares the welfare elasticity (on the left) and return on investment (on the
right) elasticity for each link in the U.S. highway network (panel a) and the Seattle road network
(panel b) calculated using our preferred parameter constellation (on the x-axis) to an alternative
parameter constellation where we assume a smaller gravity elasticity, i.e. § =4, (on the y-axis).
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Figure G.3: Alternative parameter constellation: Greater traffic congestion

(a) U.S. Highway Network
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Notes: This figure compares the welfare elasticity (on the left) and return on investment (on the
right) elasticity for each link in the U.S. highway network (panel a) and the Seattle road network
(panel b) calculated using our preferred parameter constellation (on the x-axis) to an alternative
parameter constellation where we assume greater traffic congestion, i.e. higher A, (on the y-axis).
The A is calculated here by estimating dpf based on a gravity regression of trade (panel a) or
commuting (panel b) flows on travel times, rather than setting dpf = 1, as above.
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