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1. Introduction

How important is misallocation in explaining the income differences across
countries? A recent literature in development and growth economics has
focused on misallocation across sectors, firms, and plants.! This literature
has found evidence that the dispersion of total factor productivity (TFP)
across production units seems to be consistently higher in poor countries
than in rich ones. Such productivity differences have the potential to
account for a large fraction of the cross-country income differences. In an
aggregate sense, misallocation across sectors or firms can significantly

reduce aggregate TFP.

A challenge in this literature is to distinguish misallocation from other
sources of dispersion in productivity, such as technology shocks,
measurement error, and adjustment costs of various kinds. Several recent
papers have taken up this issue in relation to data from the manufacturing
sector; e.g., Bils et al (2017), Haltiwanger et al. (2018), Pellegrino and
Zheng (2018), Rotemberg and White (2017), White et al. (2018). These
papers all point out that measurement error can lead to problems in

identifying the extent and severity of misallocation.

In this paper, we seek to disentangle these different sources of productivity
dispersion in an environment where measured cross-firm dispersion is very
large, aggregate productivity is low, and market failures undoubtedly
contribute to cross-firm frictions in the allocation of resources. Specifically,
we take advantage of extraordinarily rich data from farms in two countries

in Africa, for which we have detailed panel observations on individual

! See, for example, Hsieh and Klenow 2009; Restuccia and Rogerson 2008, 2013,;
McMillan et al. 2014; Porzio 2016; Bento and Restuccia 2017; Hicks et al. 2017;
Restuccia 2018.



farms. Many of these farms produce identical outputs on different plots
within each growing season. This allows us to observe within-season
variation for a given farmer in the input intensity and output of the same
crop. We cannot interpret this variation as the result of misallocation,
since farmers presumably face no market imperfections in allocating
resources across their own plots. As a result, these data allow us to identify
and quantify misallocation more precisely. Our strategy allows us to
disentangle the productivity dispersion that arises from misallocation from
that stemming from measurement error or heterogeneity in technology and

inputs (including production shocks).

The agricultural sector provides a valuable window through which to study
firm-level misallocation. Most firm surveys have relatively few
observations on different plants or establishments operated by the same
firm, and this makes it difficult to disentangle firm management from any
unobservable characteristics of the plant or factory; in contrast, we observe
farmers concurrently operating multiple plots. Another advantage we
have, relative to firm surveys, is that our firms are producing highly
homogeneous products, with little market power. Consequently, we can
compare the output of different firms (farms) without worrying about

mark-ups and pricing strategies.

Understanding the extent of misallocation in agriculture is also of interest
because of evidence that low agricultural productivity can explain — at
least in a mechanical sense — a large fraction of the cross-country dispersion
of output per worker (Caselli 2005, Restuccia et al. 2008, Restuccia and
Rogerson 2017). A cluster of recent papers has suggested that there may

be very large dispersion in productivity at the level of farms and farmers,



potentially indicative of misallocation at this micro level.? These papers
point out that in poor economies, large fractions of the workforce are
employed in agriculture, in contrast to rich countries, where few people
earn a living from farming. In economies where two-thirds of the people
are farmers, it is reasonable to ask whether they are all good at farming —
and whether market failures of various kinds may induce too many low-

skill farmers to remain in agriculture.

Restuccia and Santaeulalia-Llopis (2017), in particular, have raised the
intriguing possibility that much of Africa’s productivity deficit might be
attributable to misallocation within the agricultural sector. They find
suggestive evidence, in data from Malawi, that too much farmland is
managed by low-skill farmers. If true, this finding might offer an
explanation for sub-Saharan Africa’s low productivity in agriculture.
Indeed, it might by extension help explain the region’s low levels of income
per capita. The finding also suggests a relatively straightforward solution
— albeit one with great political complexity — namely, the liberalization of
land and input markets, so that the best farmers can eventually buy out
those farmers who lack the skill to farm productively. Restuccia and
Santaeulalia-Llopis calculate that the social planner would reassign land
from low productivity establishments to high productivity establishments
(or equivalently from bad farmers to good farmers), resulting in more than

a three-fold increase in aggregate agricultural output.

The misallocation hypothesis for African agriculture is particularly
plausible because of abundant evidence that the continent’s agricultural

markets work poorly — for land, rural labor, intermediate goods, and

2 See, for example, Adamopoulos and Restuccia 2014, Adamopoulos and Restuccia 2015,
Adamopoulos et al. 2017, Bento and Restuccia 2017, Restuccia and Santaeulalia-Llopis
2017.



output. Much land lacks formal title, and rural labor markets are often
poorly integrated. Empirical tests consistently reject the hypothesis that

African agricultural markets are complete.?

At the same time, market failure need not lead to misallocation.
Development economists have repeatedly and convincingly documented
the existence and effectiveness of rural customs and institutions that can
stand in for complete markets, with at least limited effectiveness. Informal
credit markets appear to substitute imperfectly for both formal credit
markets and formal insurance markets.* This literature has argued that
informal institutions can often succeed in avoiding gross inefficiencies —
perhaps as the result of some evolutionary pressures that shape these
institutions over time. From this perspective, the persistence of very costly

land misallocation across farmers would pose a puzzle.

Our paper addresses the measurement of misallocation using panel data
from two countries (Tanzania and Uganda) for which we can observe
production in great detail. In these data, we can observe the inputs and
outputs for specific crops cultivated by individual farmers — not simply
households -- on specific plots of land. The data are similar to those used
by Restuccia and Santaeulalia-Llopis (2017), although we exploit the panel
dimension of these data sets rather than the cross-section. For each of our
countries, we can observe many of the same individual farmers in at least

three periods.

* See, for example, Dillon and Barrett (2017) for a set of African countries; Karlan et al.
(2014) for Ghana, Udry (1996a) for Burkina Faso, and Udry (1996b) for Kenya. Similar
findings are common for other parts of the developing world as well; see LaFave and
Thomas (2016) for Indonesia; Kaur (2016) and Jayachandran (2006) for India.

4 Early papers in this literature included Townsend (1994) and Udry (1994); this theme
was also central to numerous papers by Jean-Philippe Platteau, synthesized in Platteau
(2000).



The rich detail of the data allows us to disentangle misallocation from
three other important sources of variation in measured productivity at the
farm level. The first of these is simply the stochastic nature of agricultural
production. Farmers face a large number of shocks to production that are
not well observed in the data, related to weather, pests, crop diseases, and
so on. A second source of variation in productivity is measurement error;
in spite of the high quality of the data that we work with, reporting is
imperfect and measurement is imprecise.” Finally, the third source of
variation in productivity is heterogeneity in unobserved land quality.® All
will give rise to dispersion in measured total factor productivity (TFP) at
the farm level, as well as to dispersion in input intensity. Because of this,
any estimates of the potential gains from reallocation need to account

carefully for mismeasurement and heterogeneity.

In this paper, we propose a theoretical framework that models the
processes by which farmers select plots, allocate inputs to individual plots,
and subsequently realize output. Our theoretical framework explicitly
recognizes the stochastic nature of agricultural production and the
sequencing of farm decision-making. We then show how this model can
help distinguish empirically between misallocation, mismeasurement, and

heterogeneity, given plot-level data.

Drawing on the model, we assess the relative importance of different

sources of dispersion in measured productivity. Our results suggest that

> See, for example, De Nicola and Giné 2014, Deininger et al. 2012, and Beegle et al.
2012b; although Beegle et al. 2012a offer a more positive view.

% The problem of unobserved land quality was recognized by Benjamin 1995 and Udry
1996a. More recent surveys often collect quite detailed data on soil quality, but the
dimensionality of soil quality measurement can be overwhelming; see, for example,
Tittonell et al. 2008.



idiosyncratic shocks, measurement error, and heterogeneity in land quality
are important sources of dispersion in productivity across farms. We find
that when these are taken into account, the potential significance of
misallocation drops substantially. Late-season production shocks,
measurement error, and heterogeneity in inputs together account for as
much as ninety percent of the variance in measured productivity.” Since
these are not susceptible to reallocation, our estimates for the aggregate
productivity gains that could be attained from a reallocation exercise are
correspondingly smaller. Our results suggest that efficient reallocation of
land and other agricultural inputs would not dramatically close the income

gaps between African countries and the world’s rich economies.

Although our work focuses on agriculture, many of the same issues clearly
matter for the broader literature on the importance of misallocation across
firms in the developing world. Much of the macro literature on
misallocation has abstracted entirely from measurement error and
heterogeneity. Our results show that estimates of the gains from
reallocation are highly sensitive to assumptions about these other sources
of dispersion in measured productivity. Put simply, if most of the cross-
firm dispersion in productivity arises from manager characteristics, the
gains from reallocation will be large. But if most of this dispersion arises
from shocks and mismeasurement, or from heterogeneity in input quality,
then reallocating assets to different firms and managers will have little

impact.

" By “late-season” shocks, we mean those shocks that affect production after the farmer
has made most or all of her input choices. We implicitly (and realistically) assume a
production process in which significant amounts of labor and other inputs are applied
early in the season for land clearing and planting; and then additional inputs are
applied during the growing season based on observed growing conditions, market prices,
etc. Late-season shocks might correspond to weather, pest, or disease shocks that
happen sufficiently late in the growing season that farmers cannot effectively respond to
them.



An important caveat of our work is that we consider only the effects of
static misallocation. Implicitly, this holds constant the existing institutions
and technologies. With improved technologies and different institutions,
one might expect that the efficient allocation of land and inputs across
farms and farmers would look very different. For instance, with different
market structures and institutions, farmers in our two countries might find
it worthwhile to mechanize and to use tractors for land preparation and
other farming activities. Given a shift from human power to mechanical
power, the efficient operational size of a farm might change quite
dramatically, and labor might be replaced by capital, with farm size
increasing as it has in Europe and North America. Our analysis does not
consider this hypothetical case. Neither do we ask whether technology
adoption would take place more rapidly if farms were consolidated. In this
sense, our results are mnot mnecessarily inconsistent with those of
Adamopoulos and Restuccia (2014), who ask how agricultural production
would change if all countries had the same size distribution of farms that
is observed in the United States. Our data include no observations on
farms of this size, making it impossible for us to discipline estimates of

such a dramatic change in farm size.

The remainder of this paper proceeds as follows. Section 2 provides some
descriptive background and reviews related literature. We show how our
paper connects to a number of strands in both the micro and macro
literature. Section 3 presents some descriptive features of the data. In
Section 4, we consider the dispersion of some partial productivity measures
(output per unit land and labor per unit land) across farms. Dispersion is
very high across all farms. What is perhaps more surprising is that this
dispersion remains large as we zoom in from the national level to
increasingly disaggregated geographic levels. We show that dispersion in

productivity at the district and village levels is almost as large as that at



the national level. Even within farms, the dispersion on different plots
cultivated by the same farmer is substantial. We interpret this as implying
that farmer characteristics do not account for the bulk of the dispersion in
productivity that we observe in the national data. Moreover, we find that
there are important patterns of productivity variation across plots within
farms. In Section 5, we draw on these patterns of productivity variation
within farms to construct a theoretical framework that models the ways
in which farmers choose their plots, select the crops (or crop combinations)
that they cultivate on each plot, apply inputs, and realize output. In
Section 6, we use this model to motivate the estimation of agricultural
production functions for our two countries. These production function
estimates, together with the assumption that the allocation of inputs
across the different plots of an individual farmer at a given point in time
is efficient, identify the extent of measurement error and heterogeneity in
technology and input quality (including production shocks) across plots.
We use the estimated production functions and variances of measurement
error and unobserved heterogeneity to show that the measured dispersion
of TFP depends on how we control for heterogeneity and measurement
error. This matters in turn for our estimates of the impact of reallocating
factors of production to the most productive farmers. Section 7 discusses

these results, and Section 8 concludes.

2. Background and literature review

Across sub-Saharan Africa, over 60 percent of the population lives in rural
areas, and agriculture remains the dominant source of employment in most
countries of the region (World Bank, World Development Indicators).
Measured agricultural productivity levels are extremely low. Value added
per worker in African agriculture appears to be less than half the level

attained in other sectors, even after adjusting for differences in input



quantity and quality (Gollin et al., 2014). In a proximate sense, these two
facts imply an unpleasant agricultural arithmetic for African income levels:
if many people earn their living from agriculture, and if agricultural

incomes are low, then aggregate incomes will be correspondingly low.

The disparities in average labor productivity across sectors do not
necessarily imply misallocation, however. Average productivity is not the
same as marginal productivity, so sectoral differences in productivity could
arise efficiently from sectoral differences in capital intensity, to give one
example. Average labor productivity could also differ across sectors due to
unobserved differences in worker skills. For instance, higher-skill
individuals might tend to leave agriculture, so that average productivity
would differ across the two sectors -- but there might be no difference for

a worker of a particular skill level (Hicks et al. 2017).

Nevertheless, there are many reasons to consider seriously the possibility
that misallocation could be an important factor in explaining sectoral
differences in productivity. For a start, the sheer number of people working
in agriculture suggests the possibility of misallocation. In rich countries,
only one or two percent of the workforce are engaged in farming; in sub-
Saharan Africa, nearly two-thirds of the workforce consists of farmers.
Presumably not all the people working in African agriculture are
particularly gifted as farmers. Some will surely be better than others. But
for a variety of reasons, many people born in rural areas find it difficult to
leave, and rural institutions in much of sub-Saharan Africa are designed

to share farmland and other resources among those who remain.

This view of misallocation has motivated a series of recent papers that
have explored the possibility that there are too many small farms in the

developing world, with too many of these farms operated by poorly skilled
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farmers. This view is at the heart of work by Adamopoulos and Restuccia
(2014, 2015) and Restuccia and Santaeulalia-Llopis (2017), among others.
These papers explore the hypothesis that distortions in farm size may
account for a large fraction of cross-country differences in agricultural
productivity. Similar issues are explored in Adamopoulos et al. (2015),
Chen (2016), Emran and Shilpe (2015), Gottlieb and Grobovsek (2018),
Shenoy (2017), and Foster and Rosenzweig (2017).

This literature builds on a broader literature in growth economics that has
emphasized the importance of misallocation across firms and plants as a
potential source of cross-country productivity differences or macro
fluctuations in rich countries; e.g., Syverson (2004, 2011), Petrin et al.
(2011), Petrin et al. (2013). An important branch of this literature has
viewed misallocation as a plausible -- and indeed likely — explanation for
low aggregate productivity in widely varying contexts, including
developing countries; e.g., Banerjee and Moll (2010), Bento and Restuccia
(2017), Da-Rocha et al. (2017), Garcia-Santana and Pijoan-Mas (2014),
Guner et al. (2008), Hopenhayn (2014), Hsieh and Klenow (2009), Kalemli-
Ozcan and Sorensen (2012), Midrigan and Xu (2014), Restuccia and
Rogerson (2008, 2013). A recurring theme in this literature is that the
misallocation of productive resources into low productivity firms can lead
to low aggregate productivity. Empirical analysis generally supports the
idea that poor countries have many firms with low measured TFP. The
reasons for the persistence of these low productivity firms are not always
clear, but a sufficient explanation would be frictions or policies in poor

countries that induce distortions to the efficient size distribution of firms.

A challenge in this literature is the measurement of productivity at the
level of individual firms. Typically, the data used for these analyses come
from firm surveys that may vary in quality and in coverage. To calculate

measures of productivity for the individual firm requires a series of strong
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assumptions about the firm-level production function and about the
quality of data. In particular, methods used widely in the macro literature
on misallocation have been criticized on methodological grounds; e.g., by
Asker et al. (2014), Foster et al. (2016), and Haltiwanger (2016). Our
approach addresses some of the concerns raised by these critiques. In
particular, our approach recognizes that idiosyncratic shocks (such as
weather shocks), unobserved variation in input quality, and measurement
error may give rise to apparent dispersion in productivity but would not

necessarily indicate misallocation.

Our paper also connects with a long strand of micro development literature
that has examined some of the same questions around allocative efficiency
that have been taken up in the recent macro misallocation literature. The
literature on efficiency within and across farms in developing countries
dates back to a large literature on the rationality of farms in developing
countries, starting perhaps with Chayanov’s work on peasant economies
(republished in English 1966) and taken up again in the work of Schultz
(1964). A large literature from the past half century has tried to
understand efficiency in the context of agricultural household models. This
literature has explored the ways in which agricultural households facing
incomplete markets may make choices that are efficient subject to a
variety of constraints. Our theoretical framework and analytic approach

are consistent with this literature.

3. Data and Settings

Our paper draws on two nationally representative data sets, for Tanzania
and Uganda, collected by government statistical agencies in collaboration

with the World Bank’s program on Living Standards Measurement
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Surveys — Integrated Surveys of Agriculture (LSMS-ISA). The first of
these is the Uganda National Panel Survey (UNPS), which has followed
about 3,200 households that were interviewed in 2009-2010, 2010-2011,
2011-2012, and 2013-14. The second is the Tanzania National Panel
Survey (TZNPS), which has followed about 3,300 households that were
interviewed in 2008-2009, 2010-2011, and 2012-2013. Both surveys
collected data on all plots cultivated by the household. For each plot, the
survey identifies the individual or individuals within the household who
farm the plot. Detailed information was collected for each plot on inputs
used and output harvested. Depending on the survey, some or all plots
were measured by GPS, and data were collected using state-of-the-art
survey techniques. The data are freely available online and all data and

documentation are available for open access.®

The survey data include detailed descriptors of both the households and
the farms. For households, data are available on household composition
and the age, education, and health characteristics of each household
member; the relationship of each member to the household head; and the
allocation of each person’s time to household production and market labor,
among many other variables. For the farm, data were collected at the plot
level on crops cultivated, soil characteristics, toposequence, location, soil
quality (including measures of erosion and tree cover), land rights, and a

variety of observed shocks, including rainfall.

An important feature of our data — and one that helps us significantly in
terms of our identification strategy — is that we have many instances in
each country in which we observe the same farmer cultivating the same

crop on multiple plots within the same year. For instance, we may observe

8 For information on the LSMS-ISA project and links to the data, see:
http://go.worldbank.org/BCLXW38HYO0.
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a single farmer growing maize on each of two or three distinct plots in the
same growing season.’ This is not particularly surprising; in many African
production environments, farmers may farm non-contiguous plots because
of complex patterns of inheritance and land rights, as well as for purposes
of risk management. Even when the plots are contiguous, farmers may
plant different plots with the same crop but at different dates or with
different varieties, due to the micro characteristics of the plots or as an
effort to diversify against shocks that might occur at different points in

the season.

Tanzania and Uganda differ to some degree in the types of production
systems that we observe. Some crops are common to both countries (e.g.,
maize), while others (e.g., matoke, a kind of cooking banana) are of
importance only in a single country (in this case, Uganda). For most
purposes, however, the two countries are quite similar in the farming
systems and production environment. Key points to note are that these
are smallholder farming systems that use few inputs other than human
labor and hand tools. Almost none of the farms in our data use irrigation
or machinery; very few farmers use chemical fertilizers, pesticide, or
herbicide. In Uganda, most farmers cultivate crops in two growing seasons

per year; in Tanzania, there is only a single growing season.

Y For convenience, we speak of “a farmer” as an individual. But our data sets actually
provide quite rich data that distinguishes the person who owns the land from the
person who manages the plot and the person who keeps most of the revenue from the
plot. We focus here on the person who manages the plot. An added level of complexity
is that the data often allow for up to two household members to be designated as the
manager of the plot. We use the term “farmer” to refer to distinct individuals or pairs
of household members. When we speak of a farmer cultivating the same crop on
different plots, it could thus be a husband and wife (or father and son, or two
brothers,etc.) operating as a pair (this is the case for about 50% of the plots in both
Tanzania and Uganda).
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3.1 Descriptive statistics

Tables 1a and 1b show key descriptive statistics for our two data sets. As
Table la shows, within some households, there are multiple farmers; for
instance, within the Uganda data, the 2,592 farm households correspond
to 4,989 distinct farmers (where “farmer” is defined, as per footnote 9,
either as an individual or a pair of individuals). We observe these farmers
over six seasons, and we end up with nearly 40,000 plot-season
observations. For Tanzania, we have almost 17,000 plot-season
observations. Individual plots are quite small, with a median plot size of
0.20 ha in Uganda and 0.40 ha in Tanzania. The majority of farmers
cultivate multiple plots within each season. Thus, for Uganda, the median
number of plots per farmer-season is 4; for Tanzania, the median farmer
cultivates 2 plots per season. Not all of these plots are cultivated with the
same crops; the median number of plots that a given farmer cultivates

with a given crop in a given season is one.

Our samples are geographically quite dispersed and are representative at
the national level. The Uganda data covers over 600 villages across 81
districts; the Tanzania data come from 184 villages across 140 districts in

Tanzania.

Table 1b shows yields (output per hectare) for each of the data sets. These
are given in value terms because of the prevalence of multiple cropping
(i.e., several crops being cultivated at the same time on a given piece of
land). Multiple cropping makes it difficult (or irrelevant) to measure yield
in physical quantities. Instead, we report value per hectare, with the
physical quantities of different crops priced using median values reported

by all farmers in a community.
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It is immediately apparent from the yield data that reported yields are
wildly skewed. The mean yield is typically around twice the median, and
the large standard deviations are indicative of very long right-hand tails
of the distributions. This is true even after the data have been winsorized
at the 0.01 level. Because there are biophysical constraints on maximum
yield, we look skeptically at some of the very high reported values of yield
in these data, and we view this as prima facie evidence that measurement

error is likely to be an important feature of the data.'

The data on input intensity are somewhat less skewed. We define labor
input to be all forms of labor (hired and family labor) that is reported to
have been used on the plot. Median days of labor per plot are not very
different across the two countries, with 32 days per plot in Uganda and 47

in Tanzania.

4. Heterogeneity, allocative efficiency, and variation

in the intensity of cultivation

In this section, we document the dispersion in measured productivity
across farms and plots, and we explore patterns that are evident in the
data. It is useful to begin with a simple benchmark model of efficient

static allocation.

1 We note that these LSMS-ISA data sets rely on farmer self-reporting of yield, which
may be one source of measurement error, as suggested by Gourlay et al. (2017).
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4.1 Efficient static allocation

If the allocation of resources were efficient, then by the second welfare
theorem there are shadow prices common to all farmers such that profits
are maximized on each plot, and factor marginal value products are
equalized across all plots. Perfectly-measured factor ratios would be
identical across all plots planted with the same crop at the same time.
Note that this condition would hold even if farmers were pursuing complex
diversification strategies. If in addition, there were no risk (i.e., no
stochasticity) or measurement error in output, then perfectly measured

output-factor ratios would also be identical across all plots.!

Needless to say, this description does not characterize the world
particularly well, and our data from Tanzania and Uganda show marked
deviation from this benchmark. There is wide dispersion in factor ratios
across plots as well as in realized output per unit land. This dispersion is
large and ubiquitous, and it remains even after controlling for a variety of

observable plot characteristics and observable shocks.

4.2 Dispersion of yield and factor intensity

Figure 1 shows, in two subgraphs (for Tanzania and Uganda respectively),
Epanechnikov kernel estimates of the density of the plot-level deviation of
log output per hectare from its sample mean. The different lines on the

Figure correspond to dispersions calculated with differing controls.

Figure 2 similarly illustrates the plot-level density of the deviation of log
labor per hectare in each country. This is a measure of input intensity,

which is a useful alternative to the measure of realized yield. One might

"' Tn this context, perfect measurement would account for differential quality of inputs
and outputs.



17.

imagine, for instance, that yield is a noisier measure, given that output
realizations necessarily embody all the shocks that have occurred during
the growing season. By contrast, much of the labor applied to each plot is
realized before harvest and hence should not reflect all of the shocks that

might alter yield.

Consider first the solid black lines in Figure 1 and Figure 2. These are the
raw dispersions across plots. The corresponding variances of log output
per hectare are 1.74 for Tanzania and 1.98 for Uganda. The variance of
log labor input per hectare is 1.09 in Tanzania to 0.92 in Uganda. It is
noteworthy that the variance of log labor input is quite high; yield

dispersion is not coming entirely from shocks affecting final harvest.!

The raw data on output and input do not account for variation in
observable heterogeneity across plots. Land characteristics such as slope,
soil type, and location affect farmers’ optimal allocations of inputs and
their expected yields. These land characteristics are measured in each of
our data sets. Characteristics of the farmer such as gender, education, and
experience are also components of plot productivity that we observe.
Moreover, agriculture in each of our settings is almost exclusively rainfed.
Rainfall thus affects plot productivity both by affecting the overall level
of plot productivity and through unanticipated shocks to output. The
data include measurements of rainfall shocks; we condition on measures of
these shocks, and their interactions with land characteristics as well. If

these observed characteristics fully account for the variation in

12 As a different measure of dispersion, note that in the data, we can consider the 90-10
ratio of output per hectare (labour per hectare); i.e., the 90" percentile of output
divided by the 10" percentile. These numbers are 17.99 (13.84) for Tanzania, and
27.32(10.00) for Uganda.
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productivity, then in an efficient allocation output per hectare and labor

per hectare would not vary across plots, once we control for observables.

Tables 2(a) and 2(b) report a set of regressions for each country, with
output per hectare as the dependent variable in all regressions.
Observations are for individual plots in specific years/seasons. In each of
these tables, the first column shows selected coefficients from a regression
of output per hectare on cultivated area and the large set of observable
land characteristics and exogenous shocks that are available in these
datasets. The estimated density of the residuals from these regressions is
illustrated as the red line in each of the subgraphs of Figure 1. The plot
characteristics and shock variables are highly jointly significant in each
regression, and the estimated variance of the residuals is significantly
smaller than the variance of the raw data in each case. This tells us that
the observable plot characteristics are indeed explaining part of the
dispersion in yield. Nevertheless, as is apparent from Figure 1, including
these observable plot characteristics does not alter the overall pattern of

dispersion in productivity.

The first column of Table 3(a) and Table 3(b) reports the same subset of
coefficients of the parallel regression of labor input per hectare on the
observable land characteristics, farmer characteristics, and exogenous
shocks. The estimated density of the residuals from these regressions is the
red/orange line in each of the subgraphs of Figure 2. Again, the set of
observable characteristics is highly jointly significant in each regression,
and the estimated variance of the residuals is significantly smaller that of
the raw data. The variation in observable characteristics, including shocks,
is an important determinant of the variation in both output and labor
input per hectare across plots in each of these samples. But again, these
observables do not generate much difference in the pattern of residuals as

shown in Figure 2.
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In the analysis thus far, the within-country data pool observations across
farming systems and over multiple growing seasons. Differences in
technology across farming systems and crops will presumably affect yield
and input intensity, even in an efficient allocation. Similarly, variation
over time in the shadow costs of factors of production or the shadow value
of output could generate time variation in output or labor per hectare.
Therefore, Column (2) in each of the Tables 2(a)-(b) and 3(a)-(b) reports
coefficients from regressions of log output per hectare and log labor per
hectare on the same set of plot characteristics with year-season-region-
crop fixed effects. Estimates of the density of the residuals from these
regressions are the blue dashed lines in each of the subgraphs of Figures 1
and 2.

Qualitatively speaking, these tables provide evidence that observable
characteristics of plots and shocks have a statistically meaningful effect on
input intensity and yield. However, we note that quantitatively speaking,
these observables do not account for a very large fraction of the total

dispersion.

One way to see this is to note that the magnitude of the remaining
variation is large: the log variance of the residuals is 0.81 in Tanzania and
1.28 in Uganda. In comparison, the variance of log output per hectare for
farms in the United States is 0.05 for corn in the Corn Belt and 0.14 for

wheat in the Northern Plains (Claassen and Just 2011)." The variance of

13 Claassen and Just (2011) report that for more than 500,000 observations in their US
data, the 95" percentile corn yield is 190% higher than the 5" percentile, which they
view as “quite wide” (p. 148). By contrast, we find 95-5 ratios for Uganda of 4691%,
and for Tanzania of 2376%. This reinforces our perception that the dispersion of yield
across plots is quite high.
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log labor per hectare also remains substantial: it is 0.44 in Tanzania and
0.43 in Uganda.

It is apparent that substantial variation in output per hectare and labor
per hectare remains after we account for a rich set of observable
characteristics of land, including detailed measures of rainfall variation.
The variance remains large even when we add year-season-crop-region
fixed effects (Column 2). This remaining variation is sometimes
characterized as reflecting the effects of factor and output market
distortions that prevent the efficient match of factor inputs to dispersion
in total factor productivity (Hsieh and Klenow 2009; Adamopoulos et al.,
2017; Restuccia and Santaeulalia-Llopis 2017). For this reason, we will
refer to the estimated residuals from the regressions reported in columns
(2) of Tables 2(a)-(b) and 3(a)-(b) as our baseline measures of dispersion

in productivity across plots.!*

The variation remains substantial as we move from the baseline
specification to tighter specifications, adding fixed effects at progressively
narrower geographic units. In Tables 2(a)-(b) and 3(a)-(b), Column 3 adds
village fixed effects. The dispersion falls, of course, with narrower fixed

effects, but it remains non-trivial.

This baseline dispersion might be a consequence of wunobserved
characteristics of land; it might also reflect unobserved dimensions of risk,

or measurement error in output or factor inputs. These could drive

1%An alternative baseline could be provided by examining the residuals from a similar
regression with village-crop-year fixed effects. This would absorb the effects of
unobserved village-level shocks which might otherwise be misinterpreted as
misallocation, but it would also absorb any real misallocation of resources across
villages. As can be seen in Figures 1 and 2, the estimated dispersion of the residuals
from these two specifications is similar.
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dispersion, even if factors of production are allocated with full efficiency.
In order to draw wuseful conclusions regarding the extent of factor
misallocation and its implications for aggregate output loss, it is vital to
disentangle these sources of variation. To do so, we rely on an assumption

that within a farm, the allocation of resources across plots is efficient.

A farm is defined as the set of plots cultivated under the management of
a single farmer in a single season. Any reallocation of factors across plots
within a farm requires no market intermediation or other exchange, only
rational decision-making by the farmer. While we acknowledge that there
may in fact be behavioural limits on the rationality of input decisions by
farmers, we abstract away from these sources of efficiency loss for this
paper and maintain the Schultzian “poor but efficient” assumption. This
assumption does not imply that all farmers are equally productive or
knowledgeable. One farmer may have superior technical knowledge to
another; this difference would be reflected in higher total factor

productivity of the first.

If the allocation of factors across plots within a farm (during a single
season) is efficient, then the dispersion of factor- and output-factor ratios
across plots within a farm is generated by (a) imperfect measurement of
factor inputs; (b) imperfect measurement of output; or (c) varying

realizations of risk.”

1> Tt is of course possible that some farmers are systematically worse than others at
allocating efficiently across plots. But it is not obvious that this should have a strong
correlation with productivity levels. A bad farmer is arguably one who realizes equally
poor yields across all plots, based on allocating inputs with the same (improper)
intensity across all plots.



22.

The final two columns of Tables 2(a)-(b) and 3(a)-(b) show coefficients
from regressions of log output per hectare and log labor per hectare with
the same set of plot characteristics and within-farm fixed effects. To be
precise, Column (4) reports the regressions with crop-season-household
fixed effects, and Column (5) is based on crop-season-farmer fixed effects,
where we are now looking at variation across plots farmed by the same
individual within the households. The residuals from these regressions are

again shown in each of the subgraphs of Figures 1 and 2.1

In each country, when we consider the yield regressions of Table 2,
approximately one-quarter of the baseline dispersion from the specification
reported in Column (2) remains after we focus attention on variation in
output per hectare across plots within a farm. When we look instead at
the labor intensity regressions of Table 3, about one-quarter of the baseline

dispersion remains after we restrict attention to variation within farms.

Given our assumption of efficient within-farm allocation, we conclude that
this residual variation is evidence for significant heterogeneity or
measurement error in factors of production or output. Alternatively, it
could reflect unobserved shocks to output that do not affect the marginal
product of factor inputs or which occur following the application of inputs
to different plots within a farm. If the variance of these errors of
measurements or of shocks to output is at least as large across farmers as

it is across plots of a given farmer, then interpreting the residuals of the

18 The fourth, penultimate column reports the results of regressions with household-
crop-season fixed effects. There is no evidence of systematic differences in yield and
labor intensity on the plots of men and women farmers within the same household in
Uganda or Tanzania. Even in Burkina Faso, where there is such evidence, Udry (1996a)
finds that the magnitude of the dispersion generated by this difference is very small
relative to other sources of variation.
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equations estimated in columns (2) of Tables 2 and 3 as misallocation

would result in an overestimate the importance of misallocation.

To improve our estimate of the magnitude of misallocation, we need to
know more about the production function and the magnitude of

measurement error in factor inputs, which we address in Section 5.

4.3 Plot Size, Yield, and Factor Intensity

As we seek to disentangle the different sources of dispersion in yield and
input intensity, we next turn to a clue that emerges from a simple reduced
form analysis of the data. We observe a strong and consistent negative
relationship between output per hectare and plot size. While this pattern
is reminiscent of the long-standing discussion of an inverse farm size-yield
correlation, we find in the final column of Tables 2 and 3 that this pattern
holds across plots (planted with the same crop in the same season) within
a farm. Across farms, factor market imperfections might explain an inverse
relationship between land area and yield, but these market imperfections
cannot explain this relationship across plots within a farm. Both Tanzania
and Uganda exhibit fairly extreme negative relationships between log yield
and log plot size within a farm; the estimated elasticity is -0.75 (s.e.=0.02)
for Uganda and -0.61 (s.e.=0.03) for Tanzania.

This pattern of a strong negative relationship between crop yields and plot
size within a farm has been observed in multiple data sets from Africa
(Carletto et al, 2015; Carletto et al., 2017; Bevis and Barrett, 2017). One
source of this estimated inverse relationship might be measurement error
in plot size. Kilic et al. (2016) provide a careful account of the role of this
kind of measurement error using the same Uganda and Tanzania data sets
that form part of our analysis. They show that while measurement error

does contribute to the estimated inverse plot-size relationship, the
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relationship remains strong after using objective GPS measures of plot
area and correcting for selection bias in the subset of plots measured with
GPS.

Bevis and Barrett (2017) hypothesize that there is an “edge effect” on land
productivity, in which plants near the boundary of a plot receive more
attention in cultivation from the farmer, and perhaps have access to better
nutrients and water then plants in the center of a plot. They provide
evidence from the shape of plots that this edge effect explains part of the
negative plot size — yield relationship in Uganda. Finally, Gourlay et al.
(2017) report the results of a methodological experiment, also in Uganda,
which carefully examined the problem of misreporting output data from
farmers. They argue that farmers misreport crop harvests and that this
measurement error is not random. Self-reported yields are biased upward
compared to measurement of crop cuts at harvest. This effect is stronger
on smaller plots. Gourlay et al. (2017) find that taking into account this
measurement error fully explains the inverse plot size — yield relationship

in a sample of farms in eastern Uganda.

We find, however, that labor per hectare is also strongly declining in plot
size within a farm (Column 5 of Table 3). In Uganda and Tanzania, the
elasticity of labor intensity with respect to plot size is almost identical to
that of yield with respect plot size. The consistency of the estimates of the
correlations of plot size with labor intensity and with yield in Uganda and
Tanzania suggests a potentially different interpretation: namely, that

smaller plots have higher unmeasured land quality.!”

I” Barrett et al. (2010) argue against this hypothesis using data from Madagascar,
showing that the introduction of a vector of objective measures of soil quality from soil
tests has no effect on the estimated inverse yield — plot size relationship. However, the
measures of land quality are not jointly significant predictors of yield, nor are they
jointly significant in the production function estimated. This is a frequent characteristic
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These correlations lead us to hypothesize that there is an important degree
of unmeasured heterogeneity in land quality across the land of a given
farmer. This is consistent with the patterns in Figures 1 and 2
documenting important dispersion in yield and factor intensity across the
plots of an individual farmer. It may play a role in the strong inverse
relationship observed between cultivation intensity and plot size across the

plots of a farmer.

5. Theoretical framework

Our central argument is that heterogeneity in land quality and growing
conditions play an important role in explaining the dispersion of
productivity at the level of plots and farms. This heterogeneity is
unobservable to the econometrician but may be well recognized by
farmers. Some of the unobservables involve intrinsic properties of the soil
or land, such as the physical and chemical properties of the soil, or the
slope and topography. Other unobservables relate to highly localized
shocks — such as hail that strikes one part of a farm but spares another
part. Still others may involve complex interactions between shocks and
plot characteristics: a heavy early-season rain makes one low-lying plot
unworkable at the start of the season because of mud; but the same

rainstorm is actually beneficial for another plot that is well-drained.

of observed measures of land quality. In our data, however, the land quality measures

are strongly jointly significant, perhaps reflecting the high quality of data collection in
the LSMS-ISA data. This encourages us to think that land quality may have some role
to play in the relationship between plot size and observed yield.
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The importance of this kind of heterogeneity, often at a very fine-grained
spatial level, is well documented in agronomic and economic studies.'
Farmers can and do modify their practices to reflect heterogeneity of this
kind; e.g., choosing plot boundaries that reflect spatial differences in soil
type. But even in detailed household surveys such as the LSMS-ISA data,
the available measures of plot-level land quality do not adequately capture

these dimensions of heterogeneity.

To help us understand the significance of this kind of location-specificity,
we develop a model of agricultural production on heterogeneous land in

which farmers can endogenously choose plot sizes and locations.

5.1  Agricultural production with continuous variation in land

quality

For the purposes of the model, let us assume without loss of generality

that a household consists of a single farmer.* The farm household, indexed

'® The importance of heterogeneity in agricultural systems at highly localized spatial
scale has been shown previously in numerous contexts; e.g., by Hanna et al. (2014). For
African crop agriculture, see the work on agronomy by Tittonell et al. (2005), Tittonell
et al. (2007), Tittonell et al. (2008), Vanlauwe et al. (2006), and Vanlauwe et al.
(2015), along with papers in economics such as Suri (2011) and Tjernstrom et al.
(2015). For U.S. crop agriculture, Hurley et al. (2004) document high levels of
agronomic heterogeneity within farmers’ fields. This indeed is the premise for the
emergence of “precision agriculture” technologies, as discussed in Stoorvogel et al.
(2015). Recent empirical work on precision agriculture in the United States shows the
profitability of fine-tuning inputs to within-plot variation in land quality
(Schimmelpfennig 2016). Commercial systems typically fine-tune applications of
chemicals at a spatial resolution of less than 1.0 m? reflecting meaningful differences in
soil properties at that scale.

¥n what follows, we will use the terms “household” and “farmer” interchangeably. As
noted above, the data allow us to distinguish multiple plot managers within a given
household, and we will ultimately treat individuals and pairs of individuals as
“farmers.”
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by h, holds a fixed endowment of land denoted by Lj. This land consists

of a continuum of locations that can be indexed by k on the interval [0, Ly].

At a location k, the quality of the land in effective units is denoted by
{(k). For simplicity, assume that the function {(-) is continuous and
integrable. Land is used for producing an agricultural good. The
production process uses a bundle of inputs that, in principle, could be
applied on a location-specific basis. We denote the inputs used at a
particular location as é(k). Output is also affected by a location-specific
productivity shock that depends on the state of the world, which we denote
by y(k,s). The state of the world s is distributed according to A(s) over
support S. This shock is observed by the farmer before she chooses the
input bundle. For example, this shock could consist of early-season rain —
or perhaps the timing of the onset of the rainy season. A given state of the
world may have different productivity implications for different locations

on the farmer’s land and for different farmers.

Given this notation, we define a simple production technology in which
the output obtained by household h at location k conditional on the shock

s having been realized will be given by:

an(k,s) = Yk, ) () (&4, 5))° . (1)

If a profit-maximizing household were to farm only this single point, facing
a household-specific shadow price wy for inputs, the household would

solve:

Jmax [Vh(k' )80 (6, $))” = wién (e, s)]- (2)
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As an elementary optimality condition, this would give an optimum of
1
& (k,s) = (w)l_e. The corresponding profit-maximizing output
h

at that location would be:

Oyn(k, S)Zh(k)>m. (3)

Wp

qn(k,s) = {n(kK)yn(k, S)<

5.2  Plot-level production with continuous variation in land

quality

Production could, in principle, be fine-tuned in this fashion to match the
precise characteristics of each location, with inputs varying continuously
across space. However, production takes place at the level of a plot. We
define a plot (consistent with the definition used in most surveys) as a set
of contiguous locations that are treated with an identical input bundle. In
the rural contexts that we seek to model, a plot is a unit of land that is
prepared in the same way and at the same time. The same crop (or crop
mix) is planted across the plot, and the same inputs — including labor —

are used across the plot.”

For a household in our model, a plot will be defined as a contiguous set of
locations [E, E] c [0,Ly]. The household faces a fixed cost ¢ to create and
farm a plot of land within its overall land holding. Because of this fixed
cost, there will be finitely many plots per farm. On a previously defined

plot 7, the household A now applies inputs with the same intensity across

20'We note that in some farm surveys, nomenclature varies. Our usage is consistent
with the Uganda LSMS-ISA data, in which contiguous parcels of land are divided into
plots. The individual plots may be planted with different crops and may be farmed with
different inputs and management techniques.
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every location on the plot. The intensity at each location can be written
as &;,; s . Define the size of the plot to be the distance between its two
endpoints; i.e., Ly; = (E—K) Define the aggregate inputs used on the
plot as Xp; = §hi(s)(E— E).Zl Then output at any point on that plot is
given by:

Xui\®
an(,) = 1 500 (72) @)

Without loss of generality, assume that k = 0 and k= Ly;. Total output
on the plot is thus:

0

i) = [ a0 (£2) a ;
- ()L‘—:)B [tk s160 0k

Defining average land quality as {pi(s) = Li fOLhi Yni(k, s)(ni (k) dk and
hi
substituting, we get:

0
Xni

() = L) (72) = (LT )° (©)

2 We note that as a simple extension of the analysis, we can let the input vector & be a
Cobb-Douglas composite of two or more other inputs; e.g., labor N and chemicals V, such
that ¢= N*V1~% The analysis will go through unchanged.
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The corresponding profit-maximization problem involves a trade-off
between the fixed cost of creating a plot (which incentivizes larger plot
sizes) and the fine-tuning of inputs that is possible on a smaller plot. This
trade-off is clearly visible when the profit-maximization problem is given

in terms of input intensity:

k

k k] Eni (5)) f]’hi(kls)fhi(k)dk
k
1 (7)
— [ (][ — k] JI

max

,___|

Note that in equation (7), the bluntness of input use means that the
profit-maximizing input bundle &;; s differs from the “precision
agriculture” levels that would be chosen if the household were
maximizing at each location separately. Output will differ

correspondingly. The lone exception is the case in which the fixed cost

¢ = 0, in which case (E —k) -0 and [Y,"{i - fkk q’;L(k)dk] - 0. With ¢ >
0, the household chooses to divide its land into a finite number of plots.
Appendix A1l describes the problem of endogenous plot selection. For the
moment, we simply note that under quite general conditions, a farmer
will choose a determinate number of plots, with the size and location of

these plots reflecting the level and variability of land quality.

5.3 Land quality and plot size

Without imposing some further restrictions on the patterns of land quality,
we cannot make any statements about the relationship between land
quality and plot size. But we can offer a few relevant observations. First,

we show in Appendix Al that the maximum number of plots that could
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be cultivated profitably by a household depends inversely on the fixed cost
and is also positively related to the average land quality across the farm.
A farm household with very poor average land quality will ceteris paribus
have a smaller maximum number of plots than a farm household with the
same total land area but better quality land. This does not necessarily give
rise to an empirical prediction, because farms will not in general cultivate
the maximum possible number of plots. But it does point to an underlying
pattern that should hold more generally: everything else equal, poor

quality plots must be sufficiently large that they will earn positive profits.

Consider the profit maximization from above for the ith plot cultivated
by household h. The size of this plot is Ly; , with its boundaries at Lp;_,
and Ly;, respectively. The average productivity of this plot, conditional on
the realization of the shock y,(k,s), is {p; = LL b Yn(k,s)¢n (k) dk. We

Lpi “Lhi-1
can solve the profit maximization problem and then ask, for a given value
of {n; what is the smallest plot size that will yield non-negative profits —
or in other words, what threshold plot size will be needed to cover the
fixed cost c. We can then ask how this plot size threshold changes in

relation to {y;. The formulation of this is straightforward. Substituting in
1

the optimized value of X* <= Ly (%)1_(9) into the zero profit condition,
h

Setting {ni ($)IL7% (X1)? — wipXp: = ¢, we get a relationship between the

threshold plot size and land quality that will sustain non-negative profits:

&
cwi-

Y )T (67— o) ®

min

This relationship is illustrated in Figure 4, which shows the negative
relationship between the average quality of the plot and the minimum

profitable plot size. This threshold plot size will also vary with the fixed
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cost. The higher the fixed cost of cultivating a plot, the larger will a plot

needs to be, for any given quality, to make it profitably cultivable.

Within a farm, the optimal size of a plot depends on both the average
quality of the land and the heterogeneity of the land quality. Holding
average quality constant, the size of the plot will be decreasing in
heterogeneity. Holding heterogeneity constant, the size of the plot will be
decreasing in average quality (or put differently, it will increase on poorer
land). The underlying logic is that there is a trade-off between the benefits
gained by fine-tuning the inputs used on a plot, which tends to drive plot
size smaller, and the fixed cost, which tends to drive plot size larger. On
high-quality land, the fixed cost is a relatively smaller burden, and so plot
size will be smaller, ceteris paribus. On low-quality land, the fixed cost
poses a heavier burden, and so plot size will tend to be larger. We show
in Appendix Al that for any given fixed cost, a farmer will partition a
given parcel of heterogeneous land into two plots if the parcel is sufficiently
productive and not if productivity is lower. At the same time, however,
the more heterogeneous a plot is in terms of land quality, the more costly
it will be to have a large plot; a homogeneous plot can be large. In the
extreme case of a farm that is entirely uniform in terms of land quality,

there is no reason to subdivide this into plots, regardless of the quality.

5.4  Empirical Framework

This theoretical framework allows us to structure an empirical analysis of
the patterns of factor intensities and yields across plots within and across
farms described in Section 4, based on the plot-level production function

derived in Section 5.2.
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We rewrite the production function derived in (6) adding a t index to
denote the season and year in which production takes place, because we
will be working with panel data in which farmers are observed in multiple
seasons. Thus output of plot i of farmer h in season t is Yy =

Cnie L2 (Xnie)©. The productivity term Chit =
ﬁ fOLhit Ynit (k, s(t))¢pi (k) dk incorporates the average of land quality at
each point, denoted as {j;(k); and the average effect of shocks received in
season t at each point yhi(k,s(t)). Both land quality and the effects of
shocks may vary across plots and across households in ways we do not
observe but which our model implies will potentially be correlated with
plot size. To account for the possible dependence of average plot

productivity on plot size, we parametrize productivity as

Lpi . .
ﬁ Jo " vniCe, s(0))3ni (k) dk = e®nit (L, ) PLnic,

Our model implies that @i < 0; in other words, larger plots will have
lower average productivity. However, we will not impose this assumption
in the estimation below. The parameter @ ;s varies across plots because
the rate at which productivity falls with plot size depends upon the
variability in land quality over space, which need not be uniform. The

production function, therefore, becomes:

Yiie = €®hit (Lyge) Phit (Lyie) ™0 (Xpie)®
= ewhit(Lhit)aLhit(Xhit)aXhit.

(9)

The parameter wp;; is total factor productivity, which is at least partially
known to the farmer. However, at least some of what is known to the
farmer is unobserved to us. Given this structure, factor demands are

subject to the classic production function endogeneity concern.? In

22 For a recent discussion see Ackerberg et al. (2015), which in turn builds on Olley and
Pakes (1992) and Levinsohn and Petrin (2003).
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addition, unobserved heterogeneity in factor productivity gives us

arpie and axpie that may be heterogeneous across plots.

We assume that farmers know the productivity of the factors they are
using in cultivation, so factor demands will in general be correlated with
the realizations of the factor productivities. Therefore, Equation (9) is an

example of a model with correlated random coefficients.

Total factor productivity has three components. The first is a set of
observable characteristics of the plot, farmer, or community, Wyp;¢, which
may include both permanent and transitory components. These transitory
components may be realized either before or after factor inputs are chosen
for the plot. The second is a component that is unobserved in the data but
known to the farmer at the time factor inputs are chosen, wyp;. Finally,
there is a component that is unobserved in the data and unknown to the
farmer at the time of input application, €yy;+. This final component could
be an actual output shock that is realized late in the season, or it could be
pure measurement error in output; from the production function alone
these cannot be distinguished.

Whit = WynitBy + Oynit + €ynit (10)

Land and labor inputs to production (J € {L,X}) are modeled as the
observed quantity of that factor (Jp;), observed as hectares or days of
input J on plot i of household h in season t, corrected for a factor-specific

set of observables (Wj;) and subject to classical measurement error €jp;;:
Jnie = JRie" miePs=emic, (11)
As a notational convenience, we use lower-case y to represent log output;

similarly, x and [ represent respectively log labor and land. The

production function we estimate in logs, therefore is:
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Vit = Arnitlhic + xnieXnie + WynieBy
+ Y jnit WinieB) — €Lnic) + Oynie + Eynir (12)

The vector of observable determinants of total factor productivity
(Wynit = Wehie, Wynie)) includes a rich set of indicators of shocks to
productivity; most importantly, we have measures of the amount and
timing of local rainfall interacted with characteristics of the plot and
indicators of specific shocks (fire, flooding) on particular plots. We denote
by Wgpit the subset of those shock indicators that occur before the early
harvest season begins, sufficiently early that farmers may be able to adjust
factor inputs in response. Similarly, Wyp is the subset of those shock
indicators that occur at harvest season, too late for farmers to adjust factor

inputs in response.

If factor markets are imperfect, then conditional on the realization of Wgy;,
on plot i, the realizations of Wgp, _;; on plots =i # i of farmer h in season
t provide variation in the shadow value of factors of production on plot i
of farmer h in season t. Similarly, if there is some within-village exchange
of labor or land, but inter-village factor markets are imperfect, realizations
of Wg _pj: on the plots of farmer —h # h within the village of farmer h
also provide variation in the shadow value factors of production on all the
plots of farmer h. Accordingly, Wgp _;; and Wg_p j, along with measures
of household wealth and demographics comprise the set of instruments

Gpit for plot i.

The heterogeneity across plots in factor productivity (app; and axpir)
implies that the effects of the instruments on factor demands are also
heterogeneous across plots. Therefore, we estimate the parameters By, B,
and the expected values of a;p;; and ayp;: using the Instrumental

Variables Correlated Random Coefficients (IVCRC) estimator of Masten
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and Torgovitsky (2016), which allows for heterogeneity in the first-stage

regressions of the instruments on the endogenous factor demands.

5.5 Correcting Productivity Estimates for Measurement
Error, Risk, and Heterogeneity

With estimates of the deterministic production function parameters By, B},
and Py, and estimates @, @y of the expected values of the random factor
productivities i and axp;e, a first approximation to the distribution of

log TFP across plots might simply be the residual:

INTFP, = Yaie — @ulf - AxXpie + &Iikgit — WynieBy (13)

— @ WinieBL — QxWxnicPx
Equating TFP to the difference between observed output and output
predicted by substituting observed factor use (and observed enterprise
characteristics) into an estimated production function, as is common in
the macro literature, attributes all unexplained variation in output to
variation in TEFP. This approach overstates the variation in TFP if there
is measurement error, and it is further misleading in the presence of shocks
to output or unobserved variation in factor productivity. Both of these are

surely present in our data.

From (12) and (13), we observe:
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InTFPp;e = wypie + Z (a]hit - d\j)(w/]hité])
unobs tfp  Je{L,X}

unobs productivity of
observed characteristics

+ Z (a]hit - &1) In(Jp;e)

JE{LX}
unobs productivity
of factors
(14)

- Z (Qnie = @) €nir — z 7€t

JE{L,X} JE{L,X}

unobs productivity of factor

factor measurement error ~ measurementerror

+ €ynit

post—input shocks and
measurement error iny

The final three terms are sources of variation in measured productivity
(i.e., INTFP&,), but they do not give rise to actual productivity variation.
This implies, for instance, that the dispersion in measured productivity
arising from these three terms cannot be remedied through reallocation.
Reallocation cannot “solve” measurement error, nor can reallocation

“solve” late-season idiosyncratic shocks that affect yield.

The variance of the production function residual In TFP5, is
var(InTFP%,) =

var | wyp;e + Z (@jnic — &) WinieB; + In(J5:)
JE{LX}

(15)

+ &fvar(emit) + &)z(var(exhit) + var(eynit)

Only the first term of (15) represents cross-farm variation in productivity
that is relevant for any assessment of allocative efficiency; we would like
to disentangle it from the final three terms, which are the variation due to
measurement error and late season shocks. To do so, we use the observed
allocation of factors across the plots of a given farmer in a season as a

benchmark. The efficient allocation of factors across these plots cultivated
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by the same farmer implies patterns of behavior that can identify the
variances of these late-season productivity shocks and measurement errors.
For example, observed variation in labor inputs across the plots of a single
farmer that is not correlated with either output or other inputs is

attributable to measurement error in labor.

In what follows, we maintain the assumption that the allocation of factors
within a farm is efficient. There should be no market failures that affect
farmers’ allocative decisions across his/her plots. ® Uninsured risk,
imperfect financial markets, labor market frictions and missing markets
for land all assuredly influence a farmer’s input choices. However, by the
second welfare theorem, there exist farm-season-specific shadow prices
(PLht»Pxnt), with pyp: = 1 the numeraire, such that the input choices

maximize plot profits on all the plots of a farm. Therefore, log factor inputs

satisfy:
Aphit
nit ¥ WinieBr = lnie = ln< l ) + Ynie = WhnieBu — €vnit;
Prnt
o Axhit (16)
Xnit + WxnitBx = Xnit = 1“( ) + Yhit = WhnieBu — Evnie
Pxnt
in familiar Cobb-Douglas fashion. Similarly, log output is:
Yhit = WhnitBu + Evnic
+ ——<—— \WgpnitPr + Wyn;
1— 2] a]&it{ EhltBE YI(;lt (17)
+ appie In (—tht> + Axnit ln( Xhlt)}
Dint Pxht

Observed factor inputs and output, unsurprisingly, depend on the costs of
the factors, on the realization of factor productivity and total productivity,

and the realizations of factor and output measurement error and risk.

Factor shadow costs pyps and pypevary in unspecified and unobserved
ways across farmers as a consequence of factor and other market

imperfections. Within a farm, however, factor prices are constant across

2 Clearly it is possible for market failures to affect allocations within the household
(e.g., between husband and wife, as in Udry (1996a). But our analysis will focus on
individual farmers, rather than on households.
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plots. Therefore, differencing plot output and input demands from within-
farm means eliminates the shadow prices. Within farm variation in
observed output and observed inputs depend only on (a) unobserved
dimensions of risk or measurement error in output (€yyi) ; (b)
measurement error in factor inputs (€ppit, €xnic); or (¢) unobserved

heterogeneity in factor (@ppit, @xnie) or total-factor productivity (wypie)-

We show in Appendix A2 that the observed covariances of factor demands
and output across plots within a farm (along with a normalization
discussed below) provide us with sufficient information to identify the
average within-farm variances of plot-level total factor productivity (05),
factor-specific productivity and their covariance (o7, 0%, 0.x), factor
measurement error (O'GZL,O'EZX) and output measurement error and post-
input risk (ng), as well as the covariance of plot-level total factor

productivity and factor-specific productivity (O'QL, O'QX).

We will not separately identify variation in all three types of unobserved
heterogeneity in factor (wppi, Wxnie) or total-factor productivity (wyp;):
a parallel increase in wpp;r and wyp; is equivalent to an increase in Wyp;¢-
Hence, we normalize wppir + wxnie = 0. Intuitively, a change in wpp;
relative to wxp; is a change in the slope of an isoquant; a change in wyp;¢
is a shift in or out of an isoquant. This normalization implies 67 = o2,

— 2 —
OLx = _GL' O-QL - _O-QX'

The assumption of an efficient allocation across plots within a farm,

therefore, permits us to calculate the parameters &2 =

(65,(7‘5,6)%,6623,, 6%,6%,6.x 6QL,6QX) that are consistent with the
observed covariance of plot level output and inputs across plots within

farms, given an estimate of the production function parameters.

The estimated values of 62 reflect the mean, across farmers, of the within-

farm variances of measurement error, late season risk and unobserved
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productivity. If we maintain the assumption of classical measurement
error, then the variance of that measurement error is the same across all
plots as it is, on average, across plots within a farm. Similarly, if late
season risk is iid across plots, then its variance across all plots is the same
as it is, on average, across plots within a farm. If there are farmer-specific
components to either late season risk or to measurement error, then we
can expect (as shown in Appendix A2) that our estimate of the variance
of unexplained output attributable to late-season risk and measurement
error in output and factor inputs (6&?3, + @762 + &)2(662)() is a lower bound
estimate of the variance in the final three terms of (15). Subtracting 62, +
@t6? + az6% from var(lrﬁTPﬂ-t), therefore, provides an upper bound
estimate of var(wypi + Z]E{L_X}(a]hit — &) (WjnieB) + In(J5))). This
gives the variation in productivity that is relevant for any assessment of

allocative efficiency.

We therefore proceed by beginning with the naive production function
residual, INTFPf%,, and shrinking it towards its mean pi4 to account for
the variances of the measurement errors and late-season shocks we can
measure within the farm. Our revised estimate of unobserved productivity
is

INTFPyy, = pa + (INTFP, — py)

1
var(InTFP,) — o4 — X atod\? (18)
* ——
var(InTFPZ,)

If there are aggregate late-season shocks, or farmer- or household-specific

components to measurement error, then



41.

var(InTFPY;,)

> var| Wypit
(19)

+ " (@nie = &) Winieh) +n030)
JE{L,X}

and our revised estimate of the dispersion of unobserved productivity

remains an overestimate of the true variation.

6. Empirical analysis
6.1 Estimation

We estimate the agricultural production functions, the implied residuals,
INTFPY, , the associated variances of unobserved heterogeneity and
measurement error and the revised estimates of unobserved productivity
INTFPP, both by 2SLS and using Masten and Torgovitsky’s (2016)
IVCRC estimator.

The 2SLS estimates are consistent for the expected value of the production
function coefficients if the effects of the instruments on land and labor
demand are homogeneous (Heckman and Vytlacil, 1998; Wooldridge
2008). However, we do not expect this homogeneity, because the effect of
a change in the opportunity cost of an input on input demand should vary
depending upon the marginal product of that factor. The IVCRC
estimator uses a control function estimated with first stage quantile
regressions, with the conditioning approximated with kernel weights. The
expected values of the production function factor coefficients are estimated

from an average of weighted linear regressions, with the weights
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determined by the first stage quantile regression (Masten and Torgovitsky
2016).

Tables 4(a)—(b) present OLS and quantile regression estimates of the
determinants of land and labor inputs into production in Tanzania and
Uganda, respectively.? These estimates serve as the first stages of the
2SLS and IVCRC production function estimates provided below. The first
pair of columns in each table report selected coefficients of the OLS
regression of log land area and log labour use on each plot; the second
through fourth pairs of columns report the same set of coefficients for the
251 50" and 75" quantile regressions. The final pair of columns reports

the differences of these coefficients in the 75" and 25" quantile regressions.

The penultimate row of Tables 4(a)—(b) shows that the instruments are
strong predictors of plot-level land and labor demand. For example, when
growing conditions are good, demand for both land and labor on a specific
plot is lower when the other plots in the household have loamy soil (in
Tanzania), and when household illness raises the shadow price of labor (in
Uganda).

If the production function has random coefficients, then the associated
input demand functions will have heterogeneous coefficients as well. The
IVCRC estimator was developed to allow for heterogeneity in the first
stage regressions. The final pair of columns reports the difference in
coefficients at the 75" and 25" percentiles of the factor demand quantile
regressions, and the F-test that these differences are jointly zero for the
instrumental variables. We strongly reject that these differences are zero.
For example, in Uganda, at the 25" percentile of the demand for land, the

effect of adverse shocks on other plots is less than one-quarter as strong

24 Bootstrapped standard errors, clustered at the household-season level, are reported.
The full sets of coefficient estimates are presented in Appendix Tables Ada and A4b.
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as it is for plots at the 75" percentile. Nevertheless, we present 2SLS
estimates of the production function and their implications for estimates

of the dispersion of unobserved productivities for comparison.

The 2SLS and IVCRC estimates of E(app;) and E(ayp;) in the
production function for agricultural plots in Tanzania and Uganda are

presented in Table 5 (a).

Columns 1 and 3 present 2SLS estimates of the Cobb-Douglas factor
coefficients for Tanzania and Uganda; columns 2 and 4 provide the
corresponding IVCRC estimates, with the log total value of crop output
as the dependent variable. Crop by year-season by region fixed effects are
included, as are a rich set of observable characteristics of land and labor,
as well as plot-level observable shocks.” Reflecting the simple technology
of Tanzanian and Ugandan smallholder agriculture, these coefficients
imply a much larger share of income for land than is observed in typical
macroeconomic data, and a much smaller share for labor.*® The preferred
IVCRC estimates imply a larger share for labour and a smaller share for

land than the 2SLS, and returns to scale that are much closer to unity.

% Bootstrapped standard errors clustered at the household-season level are reported.
The full sets of coefficients are reported in Appendix Tables Aba and A5b. For
Tanzania, sale value of land, distance of the plot from home and from the nearest road,
three levels of soil quality, four soil types, the gender, health status, literacy and age of
the plot manager, indicator variables for drought or floods, crop disease or pests, severe
water shortage or other shocks that led to crop loss, and the seasonal maximum
enhanced vegetation index for the village, interacted with soil type and soil quality
dummies. For Uganda, six categories of soil type, four categories of soil quality, three
sources of water, 6 indicators of plot toposequence, level of erosion, indicators of the
gender, literacy and access to agricultural advice of the plot manager, household-level
indicators of drought and flood and their interactions with plot level soil quality, village
level season rain and enhanced vegetation index and their interactions with plot level
soil quality.

% In the United States a labor share is often taken to be about 50%, with land perhaps
15%, and capital about 35%.
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With estimates &, = E(aunie), @x = E(axnie) and By, B, and By in hand,
we generate a first approximation, In TFPZ,, to the distribution of log TFP
across plots. Our measure of TFP is the usual production function residual,
as in equation (13). Figures 3(a)—(b) provide the empirical distribution of
InTFPZ, in Tanzania and Uganda using both the IVCRC and 2SLS
estimates. The apparent dispersion is high: in Tanzania (Uganda) the
variance based on the IVCRC estimates is 1.22 (1.44); the 90-10 log
difference in TFP is 2.70 (2.76), corresponding to a 90-10 ratio of 15 (16)
in TFP levels.”

Equations (14) and (15), however, clarified that In TFP® incorporates the
effects of late season agricultural shocks and measurement error in output
and factors of production, and thus its dispersion is greater than the

dispersion of unobserved total factor productivity.

Maintaining the assumption of within-farm efficient factor allocation,
Table 5(b) presents the estimates of within-farm variation generated by
risk, measurement error and heterogeneous productivity in the Tanzania
and Uganda samples. The most striking feature of the table is the
remarkable importance of late-season risk and measurement error in
output in driving the apparent variation in output across plots within a
farm. In both Tanzania and Uganda, using both the 2SLS and IVCRC
production function estimates, this is the largest component of the
unobserved variation in productivity across plots. In Uganda this
component is especially dominant. There is important measurement error
in land and labor inputs as well. Variation in plot-level productivity
observed by the farmer, but unobserved to us, (05), is also important.
Cross-plot within-farm variation in factor specific productivity also exists,

but is relatively less important. The results are similar whether they are

T Using the 2SLS estimates of the production function, the variance for Tanzania
(Uganda) is 1.27 (1.38) and the 90-10 log difference in TFP is 2.72 (2.82).
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based on production function parameters estimated using 2SLS or IVCRC
techniques, with the exception that the IVCRC estimates in Tanzania do
not show any significant role for land measurement error in explaining

apparent productivity variation intensity.

Table 5(b) provides evidence on the across-plot distributions of
productivity shocks and measurement errors within farms. We use these
estimates in equation (18) to calculate a revised estimate of plot-level total
factor productivity based on the assumption that the overall variances of
2. € pir and €yp;e across all farms are no smaller than these within-farm
variances. The variance of InTFPP,, is an upper bound on the dispersion
of unobserved total factor productivity across plots more generally.*

In both Tanzania and Uganda, accounting for measurement error in
factors of production and output and for late-season shocks dramatically
reduces the apparent dispersion of TFP across plots. In Tanzania, the
variance of the naive log residual of the production function was 1.22. The
variance of the estimate corrected for measurement error and late season
risk falls to 0.36. The 90-10 log difference in estimated TFP falls from 2.70
to 1.48, corresponding to a drop in the 90-10 ratio of TFP from 14.8 to
4.4. In Uganda, the correction is even more dramatic. The variance of the
log production function residual is 1.44, falling to 0.13 when corrected.
The 90-10 log difference in estimated TFP falls from 2.76 to 0.85,
corresponding to a correction in the 90-10 ratio of TFPs from 15.8 to 2.3.%

2Tt is of course possible that a single farmer may, for a variety of reasons, pursue an
optimization strategy that would lead to very different outcomes on different plots and
thus to a high within-farm variance. But other farmers will then face similar problems
and will realize similarly disparate outcomes. Across all farms, this variation will be
amplified by the differing location-specific factors that affect production, so that the
aggregate variation is higher than the average within-farm variation. This intuition is
formalized in Appendix A3.

2 The corrections are similarly dramatic using 2SLS estimates of the production
function. Using these estimates in Tanzania, the variance of unobserved log TFP falls
from 1.27 to 0.41, and the 90 — 10 difference falls from 2.72 to 1.55, corresponding to a
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The effect of correcting the estimates of unobserved total factor
productivity for measurement error and late season risk is visually
apparent in Figures 3(a)—(b). These figures provide kernel estimates of the
densities of INTFP%, and InTFPP,, for Tanzania and Uganda, for both the
IVCRC and 2SLS estimates of the production function. We note that the

patterns of dispersion are robust to the choice of estimation method.
6.2 Implications for Characterizing Misallocation

Late-season production shocks and measurement error in factors of
production and output together account for about two-thirds to ninety
percent of the variance in log productivity residuals. Since these are not
susceptible to reallocation, the aggregate productivity gains that could be
attained from a hypothetical reallocation exercise are correspondingly
smaller. The effect of correcting estimates of productivity for the effects of
risk and measurement error on estimates of the magnitude of misallocation
in economy depend, of course, on the specifics of the reallocation exercise.
However, a simple calculation serves to illustrate the order of magnitude

of this effect.®

fall in the 90 — 10 ratio of TFP from 15.2 to 4.7. Using the 2SLS estimates in Uganda,
the variance of unobserved log TFP falls from 1.38 to 0.53. The 90-10 log difference
falls from 2.82 to 1.74, corresponding to a fall in the 90-10 ratio of TFP from 16.7 to
1.7.

30 Any reallocation exercise must impose a great deal of structure on what is ultimately
an artificial exercise. For example, results will be sensitive to whether land alone is
reallocated to the best farmers, or whether labor is allowed to move along with land. If
land is to be reallocated, is it limited to within-village or within-region reallocation? If
labor is reallocated along with land, how should one account for the shifting allocations
of population — or even for the potential exit from agriculture of some of the labor
force? Many other potential questions arise, and there is no real discipline on the
exercise from either theory or practice. As an alternative approach, in what follows, we
have preferred to impose less structure and simply to focus on the dispersion of
productivity.
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Consider a Cobb Douglas production function without factor-specific
productivity heterogeneity or measurement error in factors of production:
Y, = e®@itei(Ly) (X)X (18)
where w; is total factor productivity, known to the producer, and ¢; is
measurement error in output or output risk that is realized after factors
are committed. An efficient allocation of factors across plots requires L =

sfL and Xf = sfX, where

1

eXp (1—aL—ocX (l)i)
w

L and X are aggregate endowments of land and labor and @ =

e
Si

)

1
Vi e<1‘“L‘“le). Measured output of producer 7 in an efficient allocation is
1 aL+aX w;

Y = (_) el—aL—aX+€i(Z)aL(X)(XX_ (19)
If w; and €; are normally distributed and independent of each other, then

expected output is
E (Yl-e) = (:)
w

ap+ay E(w;) %
= (i) (Z)aL( )?)aXE(efi)el—aL—aX (82(1—aL—aX)2> (20)

aptay

(L)% ( X)X E () E (e%)

=Y?(0d),
where 62 is the variance of total factor productivity. The notation Y€(c2)
emphasizes the dependence of the average output in the efficient allocation
on the variance of total factor productivity. Relative to an existing baseline

allocation, the gains to efficient reallocation are proportional to
2

ez(l‘“L‘“X)z, and therefore depend on the dispersion of total factor
productivity and the concavity of the production function. An
overestimate of the variance of total factor productivity across producers,
caused, for example, by misinterpreting measurement error or pure risk as
variation in total factor productivity, leads directly to an overestimate of

the potential gain from reallocation.
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Let 0 = Var(InTFPg,) > Var(InTFP},) = 65 . The overstatement of
the potential gains from reallocating resources from an existing baseline to
the efficient allocation from assuming that the variance of total factor
productivity is 67 rather than o2 is
Ye(a4)
4]
y2i¥i
Ye(o3)
ZiVi

In Tanzania, this ratio is 2.6. In Uganda, the overstatement of the gains

— @UA— 0B, (21)

to correcting misallocation is 3.7 . The extent of misallocation is
substantially overstated if the contributions of risk and measurement error
to the apparent dispersion of total factor productivity are neglected. This
calculation is independent of the particular estimate of the production
function: the amount of gain from a hypothesized reallocation depends on
concavity, but the relative overstatement generated by overestimating the
variance of total factor productivity is independent of the production
function parameters. Similarly, the degree of overstatement is independent
of many of the particulars of the hypothesized reallocation. For example,
if the thought experiment is to leave one factor in its current
(mis)allocation and optimally reallocate the other, the conclusion of (21)

remains unchanged.

7. Discussion

The results from Tanzania and Uganda show the importance of accounting
carefully for measurement error, shocks, and heterogeneity in technology
(including input quality) in measuring productivity at the level of
individual production units. These issues have previously been raised in
critiques of the literature on misallocation, but the data from African farms
provide sufficiently rich detail that we can begin to disentangle the
different sources of productivity dispersion. Our analysis suggests that

previous estimates of misallocation have probably overestimated the
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potential productivity losses due to misallocation (or, equivalently, the
gains from efficient reallocation). We do find that the gains from
reallocation are non-trivial, but they are certainly not of such a magnitude
as to account in a macro sense for the aggregate differences in agricultural

productivity — or income per capita — between rich and poor countries.

Given that reallocation would also entail massive costs — not least, in terms
of the social welfare implications of reallocating land away from many poor
smallholders in Africa — we believe that these findings are important for
their own sake. But in addition, we believe that there are additional
implications for the broader literature that has grown up around the topic
of misallocation in development and growth. Much of this literature has
relied on cross-section data and has assumed that firms are observed
without error. The literature has also tended to assume that all firms
operate precisely the same technology, with all parameters of the
production function known exactly. In our context, these assumptions
would lead to flawed conclusions. Even though our data have been
carefully collected with highly trained enumerators — and although they
are often characterized as “state of the art” surveys — measurement error

is pronounced, and shocks are quantitatively important.

There are limits to our analysis. As noted in the introduction, we cannot
rule out the importance of misallocation in a dynamic sense. The current
allocation of land and labor across farms may be relatively efficient in a
static sense, but improved technologies might be well suited to very
different allocations. For instance, mechanization and tractor use might
increase efficiency in these countries, but it is possible that the current
distribution of land might make it unprofitable to use tractors and might
thus slow the diffusion of the new technologies. Thus, one could think
about a dynamically optimal allocation, which would raise different issues

than those we have addressed here.
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This paper also suggests that within the literature on agriculture and
development, there is a need to pay close attention to heterogeneity in
unobservable characteristics of plots. These may be linked to soil and land
quality, which vary in quantitatively significant ways at very fine
geographic scale. But there may also be a high degree of spatial variation
in shadow prices (reflecting, for example, within-farm transport costs). For
instance, the distances from one end of a plot to another may create
consequential transport and transaction costs for the application of organic
fertilizers or for the shadow price of output that must be carried to the
household or to market. The importance of heterogeneity has been
emphasized in recent work on technology adoption (e.g., Suri 2011), and

it is surely important for other issues in agricultural development.

In further work, an interesting area to explore is the trade-off between
farm scale and the precision of input application. Because input use is
(optimally) calibrated to the average quality of a plot, there is a trade-off
between increasing the size of the plot (which reduces the fixed cost per
unit output) and the loss of profits that comes from applying inputs more
crudely. This trade-off may have some power in explaining the tendency
of smallholder agriculture in the developing world to rely so heavily on
very small plots, finely tuned in terms of crop choice and input use.
Previous explanations of small plot size have tended to focus on risk and
diversification, but our analysis suggests that there may also be important

efficiency arguments.

8. Conclusions

This paper has examined the importance of misallocation across firms as

an explanation for low aggregate productivity in developing countries,



51.

using data from agriculture in Tanzania and Uganda. A challenge in this
kind of analysis is that misallocation is not the only potential source of
dispersion in productivity. Some of the other sources of dispersion are not
susceptible to improvement through efficient reallocation. In particular,
reallocation will not lead to increases in output if dispersion is primarily
an artefact of measurement error. Reallocation will also prove futile to the
extent that dispersion results from idiosyncratic shocks that occur after

inputs have been (efficiently) applied.

Our paper takes advantage of rich data at the plot level to disentangle the
different sources of productivity dispersion. We begin by showing that
dispersion in productivity is not simply a feature of the cross-farm data;
perhaps surprisingly, within-farm dispersion is quite large. This suggests
that differences in farmer quality are not sufficient to account for the

patterns of dispersion that we observe in the data.

We estimate agricultural production functions for Tanzania and Uganda,
with a framework that draws on the sequential nature of production
decisions. The estimated production functions can be used to assess the
potential gains from reallocation. Our finding is that misallocation does
indeed affect aggregate agricultural output in these countries, but
commonly used approaches in the literature overstate the dispersion of log
TFP by as much as an order of magnitude. The gains from a hypothetical
reallocation are thus correspondingly overstated by a factor of three or
four. Based on our estimates, reallocation can generate non-trivial gains in
aggregate output, but not enough to narrow significantly the large cross-

country income differences.

Beyond the rather special case of African agriculture, this research points

to the need for caution in estimating the impact of misallocation. Not all
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dispersion in productivity at the firm level reflects misallocation. It is
important to for researchers to consider other sources of productivity

dispersion, including heterogeneity and measurement error.
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Figure 2: Dispersion of Log
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Figure 3: Log Productivity Dispersion
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Table 1a: Agriculture in Tanzania and Uganda - Samples

Tanzania Uganda

Sample Size

Households 5,791 2,592

Farmers 7,089 4,989

Plot-Seasons 16,998 39,290

Seasons 3 6

Regions 26 6

Districts 140 81

Villages 184 622
Number of Clusters

Farmer - Seasons 7,732 13,810

Farmer - Crop - Seasons 13,589 34,366
Size of Clusters (Median)

Farmer - Seasons 2 4

Farmer - Crop - Seasons




Table 1b: Agriculture in Tanzania and Uganda - Yields

Tanzania Uganda
Median Plot Size (ha) 0.40 0.20
Yield ($/ha)
N 14,777 39,065
mean 844 3,992
median 442 181
std deviation 3,256 399,964
Yield on Maize Plots ($/ha)
N 5,795 7,768
mean 814 579
median 464 206
std deviation 3,985 3,715
Yield on Groundnut/Beans Plots ($/ha)
N 784 8,051
mean 723 9,103
median 465 221
std deviation 867 758,833
Yield on Cassava (Tz) or Banana (UG) Plots ($/ha)
N 1,386 4,487
mean 606 570
median 347 287
std deviation 897 1,490
Labour (Days/ha)
N 14,582 39,065
mean 182 299
median 106 165
std deviation 693 1,400

Note: All yields winsorized at the 0.01 level




Table 2a: Log Output per Hectare in Tanzania

©) ) 3) 4 &)
Year-Season-
Year-Season- Year-Season- Crop- Year-Season-
Fixed effects: None Crop-Region Crop-Village Household Crop-Farmer
In(ha) -0.58 -0.59 -0.57 -0.61 -0.61
(0.0092) (0.011) (0.013) (0.031) (0.032)
Female Plot -0.070 -0.090 -0.097 -0.15
(0.028) (0.030) (0.035) (0.23)
Plot used free of charge -0.17 -0.090 -0.12 -0.056 -0.031
(0.030) (0.033) (0.037) (0.098) (0.10)
Shared - rent -1.13 -1.30 -0.94 0 0
(0.37) (0.36) (0.40) 0 0
Shared - owned -0.23 -0.16 -0.20 0.71 0.68
0.11) (0.12) (0.14) 0.31) (0.32)
Average quality -0.17 -0.13 -0.14 -0.060 -0.086
(0.020) (0.021) (0.024) (0.071) (0.073)
Poor quality -0.27 -0.26 -0.28 -0.28 -0.30
(0.041) (0.043) (0.052) (0.12) (0.12)
Loam 0.17 0.069 0.11 -0.063 -0.097
(0.025) (0.028) (0.032) (0.081) (0.083)
Clay 0.18 0.071 0.12 -0.070 -0.099
(0.032) (0.035) (0.040) (0.097) (0.10)
Distance to market 0.0023 0.00100 0.00047 0.0044 0.00043
(0.00070) (0.00084) (0.00087) (0.0079) (0.0082)
Irrigated 0.48 0.10 0.24 0.050 -0.18
(0.068) (0.093) (0.099) (0.26) (0.28)
Erosion evident -0.019 -0.046 -0.057 -0.071 -0.072
(0.029) (0.031) (0.035) (0.072) (0.074)
Sale value -0.033 -0.14 -0.21 -0.14 0.73
(0.078) (0.089) (0.080) (1.75) (1.91)
Current morbidity (z) -0.053 -0.046 -0.045 0.23 0
(0.010) (0.011) (0.013) (0.12) 0
Morbidity missing 5.21 4.54 4.47 -22.4 0
(1.01) (1.09) (1.26) (11.9) 0
Log variance of residuals 1.23 0.81 0.79 0.24 0.24
F-stat for plot characteristics 177.8 104.7 84.1 17.1 17.1
Corresponding P-value 0 0 0 0 0

Notes: Standard errors in parentheses. Variance of dependent variable is 1.09. Regressions include: 28 plot
characteristics - e.g. dummies for soil type, toposequence, presence of boundary markers, location, etc.; most also
interacted with weather shocks. Regressions also include 14 household and farmer characteristics; e.g., housing,

education, age, etc.




Table 2b: Log Output per Hectare in Uganda

(D 2 A3) “4) 6)) (6)
Year-
Season-  Year-Season- Year-Season-
Year-Season-  Crop- Crop- Crop- Year-Season-
Fixed effects: None  Crop-Region  District Village Household Crop-Farmer
In(ha) -0.58 -0.66 -0.71 -0.72 -0.75 -0.75
(0.0071) (0.0071) (0.0082) (0.0087) (0.021) (0.022)
Male Plot 0.17 0.15 0.10 0.11 0.21 0
(0.023) (0.024) (0.025) (0.026) (0.16) @)
Leasehold Plot -0.020 -0.050 0.12 0.061 -0.13 -0.30
(0.038) (0.036) (0.042) (0.045) (0.12) (0.14)
Customary Plot -0.017 0.029 0.051 -0.016 -0.18 -0.22
(0.057) (0.054) (0.060) (0.063) (0.20) (0.23)
Mailo Plot -0.099 -0.052 0.0086 0.012 0.0035 0.015
(0.034) (0.032) (0.040) (0.047) (0.16) (0.20)
Plot via Occupancy -0.023 -0.0036 0.011 -0.0055 -0.033 -0.063
(0.035) (0.033) (0.039) (0.042) (0.13) (0.14)
Customary -0.23 -0.20 0.0093 0.031 -0.0097 0.042
(0.021) (0.020) (0.032) (0.034) (0.10) (0.12)
No document 0.0083 0.032 -0.040 -0.057 -0.0070 -0.045
(0.027) (0.026) (0.031) (0.032) (0.11) (0.12)
Fair Soil -0.12 -0.10 -0.075 -0.058 -0.16 -0.13
(0.036) (0.034) (0.038) (0.040) (0.12) (0.13)
Poor Soil -0.014 -0.013 0.0069 0.020 -0.035 -0.081
(0.090) (0.085) (0.091) (0.096) (0.25) (0.26)
Sandy clay loam -0.00032 -0.010 -0.0010 0.0069 -0.016 -0.016
(0.016) (0.016) (0.017) (0.018) (0.052) (0.056)
Black clay -0.037 -0.074 0.012 0.023 0.12 0.14
(0.020) (0.019) (0.022) (0.023) (0.067) (0.073)
Flood*Avg Soil 0.100 0.19 0.25 0.10 2.09 2.46
(0.14) (0.13) (0.14) (0.15) (1.11) (1.48)
Flood*Poor Soil -0.30 -0.30 0.0030 -0.10 0.55 0.50
(0.44) (0.41) (0.46) (0.46) (1.03) (1.04)
Drought*Avg Soil -0.00056 0.00039 0.00067 0.0021 0.0043 -0.014
(0.0071) (0.0066) (0.0071) (0.0076) (0.020) (0.021)
Drought*Poor Soil -0.010 -0.0090 -0.0085 0.0052 -0.030 -0.027
(0.014) (0.013) (0.014) (0.015) (0.041) (0.044)
Log variance of residuals 1.52 1.28 0.71 0.56 0.27 0.27
F-stat for plot characteristics 141.4 169.6 142.8 133.4 28.2 28.0
Corresponding P-value 0 0 0 0 0 0

Notes: Standard errors 1n parentheses. Variance of dependent variable 1s 1.98. Regressions include: 54 plot characteristics -
e.g. dummies for soil type, toposequence, presence of bound+A25ary markers, location, etc.; most also interacted with
weather shocks. Regressions also include 57 household and farmer characteristics; e.g., education, age, weather shocks,
dummies for morbidity and housing, etc.




Table 3a: Log Labor per Hectare in Tanzania

(D 2 3 4 (&)
Year- Year- Year-
Season- Season-  Year-Season- Season-
Crop- Crop- Crop- Crop-
Fixed effects: None Region Village  Household  Farmer
In(ha) -0.63 -0.62 -0.63 -0.62 -0.61
(0.0067)  (0.0082)  (0.0090) (0.020) (0.020)
Female Plot -0.13 -0.11 -0.11 0.050 0
(0.020) (0.021) (0.025) (0.13) 0
Plot used free of charge 0.13 0.0047 0.074 0.044 0.023
(0.021) (0.024) (0.026) (0.059) (0.060)
Shared - rent 0.29 0.35 0.24 0 0
(0.24) (0.23) (0.26) 0 0
Shared - owned -0.077 -0.20 -0.13 0.36 0.31
(0.084) (0.092) 0.11) 0.21) 0.22)
Average quality -0.000048 0.0072 0.011 0.036 0.032
(0.014) (0.015) (0.017) (0.044) (0.044)
Poor quality -0.044 -0.024 -0.050 0.040 0.063
(0.028) (0.031) (0.036) (0.077) (0.080)
Loam 0.0083 0.036 0.050 0.067 0.062
(0.018) (0.020) (0.022) (0.051) (0.052)
Clay 0.033 0.051 0.068 -0.017 -0.0059
(0.022) (0.025) (0.028) (0.062) (0.063)
Distance to market -0.00086  -0.00044  -0.00044 0.023 0.024
(0.00049)  (0.00059)  (0.00061)  (0.0049) (0.0050)
Irrigated -0.15 -0.063 -0.22 -0.029 -0.099
(0.046) (0.064) (0.068) (0.16) (0.17)
Erosion evident -0.0084 -0.060 -0.046 -0.21 -0.20
(0.020) (0.022) (0.025) (0.046) (0.047)
Sale value -0.27 -0.34 -0.28 -0.24 -0.25
(0.056) (0.061) (0.058) (1.15) (1.24)
Current morbidity (z) -0.013 -0.013 -0.016 0.14 0
(0.0071)  (0.0079)  (0.0090) (0.085) 0
Morbidity missing 1.30 1.32 1.65 -13.8 0
0.71) (0.78) (0.89) (8.39) 0
Log variance of residuals 0.62 0.44 0.41 0.11 0.11
F-stat for plot characteristics 379.4 2223 191.9 42.6 42.7
Corresponding P-value 0 0 0 0 0

Notes: Standard errors in parentheses. Variance of dependent variable is 1.09. Regressions include: 28 plot
characteristics - e.g. dummies for soil type, toposequence, presence of boundary markers, location, etc.;
most also interacted with weather shocks. Regressions also include 14 household and farmer characteristics;

e.g., housing, education, age, etc.




Table 3b: Log Labour per Hectare in Uganda

O] 2) 3) “4) ) (6)
Year- Year- Year-
Season- Season- Season-  Year-Season-
Crop- Crop- Crop- Crop- Year-Season-
Fixed effects: None Region District Village Household Crop-Farmer
In(ha) -0.72 -0.73 -0.76 -0.77 -0.78 -0.78
(0.0041) (0.0042)  (0.0053)  (0.0058) (0.012) (0.013)
Male Plot -0.016 0.0073 -0.0035 -0.017 -0.062 0
(0.012) (0.013) (0.015) (0.016) (0.090) 0
Leasehold Plot -0.026 -0.046 -0.018 -0.048 0.061 0.16
(0.021) (0.021) (0.026) (0.029) (0.073) (0.085)
Customary Plot -0.10 -0.11 -0.11 -0.100 -0.17 -0.25
(0.031) (0.031) (0.037) (0.040) (0.12) (0.13)
Mailo Plot -0.12 -0.11 -0.14 -0.089 0.19 0.13
(0.019) (0.018) (0.025) (0.030) (0.095) (0.11)
Plot via Occupancy -0.24 -0.22 -0.24 -0.22 -0.064 -0.059
(0.019) (0.019) (0.025) (0.027) (0.076) (0.084)
Customary -0.048 -0.062 -0.065 -0.070 0.14 0.21
(0.012) (0.011) (0.020) (0.022) (0.061) (0.069)
No document -0.14 -0.16 -0.11 -0.083 -0.076 -0.068
(0.016) (0.015) (0.020) (0.022) (0.066) (0.070)
Fair Soil -0.031 -0.043 -0.059 -0.029 -0.077 -0.029
(0.020) (0.019) (0.023) (0.025) (0.063) (0.068)
Poor Soil -0.092 -0.11 -0.15 -0.11 -0.34 -0.28
(0.051) (0.050) (0.058) (0.064) (0.15) (0.15)
Sandy clay loam -0.020 -0.022 -0.015 -0.017 0.013 0.031
(0.0090) (0.0087) (0.010) (0.011) (0.029) (0.031)
Black clay -0.041 -0.032 -0.023 -0.015 -0.0033 0.033
0.011) 0.011) (0.013) (0.015) (0.037) (0.039)
Flood*Avg Soil 0.013 0.051 0.020 0.085 0.19 -0.58
(0.075) (0.073) (0.086) (0.091) (0.35) (0.47)
Flood*Poor Soil 0.0079 -0.013 0.10 0.075 0.28 0.27
(0.24) (0.23) (0.28) (0.29) (0.62) (0.61)
Drought*Avg Soil 0.0072 0.0057 0.0043 0.0037 0.016 0.0095
(0.0039) (0.0038) (0.0045) (0.0049) (0.012) (0.013)
Drought*Poor Soil 0.017 0.015 0.015 -0.00041 0.025 0.025
(0.0078) (0.0076)  (0.0092) (0.010) (0.025) (0.026)
Log variance of residuals 0.47 0.43 0.29 0.25 0.10 0.090
F-stat for plot characteristics 594.4 576.4 399.6 337.3 81.3 81.2
Corresponding P-value 0 0 0 0 0 0

Notes: Standard errors in parentheses. Variance of dependent variable is 0.92. Regressions include: 54 plot characteristics -
e.g. dummies for soil type, toposequence, presence of boundary markers, location, etc.; most also interacted with weather
shocks. Regressions also include 57 household and farmer characteristics; e.g., education, age, weather shocks, dummies for
morbidity and housing, etc.




Table 4a: OLS and Quantile Regression Determinants of Land and Labor Inputs in Tanzania

) (€] ©) 4) ®) (6) @) ®) ©) (10)

OLS 25th percentile 50th percentile 75th percentile  Interquartile Range
Land Labor Land Labor Land Labor Land Labor  Land Labor
Male Plot 0.36 0.21 0.31 0.25 0.32 0.19 0.37 0.21 0.059 -0.037

0.022)  (0.019) (0.027) (0.030) (0.024) (0.023) (0.026) (0.020)  (0.029)  (0.031)

EVI*Good Soil in HH* -0.10  -0.025 -0.060 -0.029 -0.11 -0.021 -0.13  -0.027 -0.068 0.0025
(0.030)  (0.027) (0.039) (0.043) (0.034) (0.031) (0.035) (0.029) (0.046)  (0.038)

EVI*Avg Soil in HH* -0.056 0.027 0.011 0.049 -0.073 0.042 -0.11 0.012 -0.12  -0.037
(0.029)  (0.026) (0.036) (0.042) (0.031) (0.030) (0.037) (0.027) (0.035)  (0.043)

EVI*Poor Soil in HH* -0.048  0.018 -0.0033 0.021 -0.054 0.056 -0.049 0.050 -0.046 0.029
(0.048)  (0.043) (0.037) (0.074) (0.064) (0.056) (0.040) (0.042) (0.052)  (0.067)

EVI*Loam in HH* -0.057  -0.11 -0.096  -0.11 -0.056  -0.12 -0.087 -0.11 0.0085 0.0020
(0.028)  (0.025) (0.034) (0.040) (0.031) (0.029) (0.033) (0.027) (0.044)  (0.034)

EVI*Clay in HH* -0.048 -0.061 -0.099 -0.049 -0.050 -0.046 -0.067 -0.081 0.032  -0.031
(0.036)  (0.033) (0.044) (0.052) (0.041) (0.036) (0.042) (0.033) (0.047)  (0.048)

EVI*Other in HH* -0.13 -0.16 -0.15 -0.10 -0.16 -0.15  -0.093  -0.15 0.055 -0.049
(0.062)  (0.056) (0.081) (0.077) (0.053) (0.035) (0.068) (0.083) (0.092)  (0.083)

Livestock death or stolen* 0.098 0.014  0.082 -0.00037 0.087 0.017 0.12 0.048 0.037 0.049
(0.022)  (0.020) (0.030) (0.026) (0.027) (0.024) (0.029) (0.023)  (0.029)  (0.035)

Illness/accident of hh

member* 0.070  -0.023 0.049 -0.044 0.11 -0.035 0.081 0.0024 0.031 0.046
(0.035)  (0.031) (0.059) (0.046) (0.040) (0.042) (0.046) (0.025) (0.053)  (0.053)

Death of hh member* 0.15 0.071 0.12 0.085 0.14 0.099 0.13 0.073 0.012 -0.012

(0.028)  (0.025) (0.033) (0.031) (0.030) (0.030) (0.035) (0.025)  (0.049)  (0.040)

Victim of property crime
or attack™® 0.036 -0.073 0.063 -0.13  0.017 -0.077 0.052 -0.047 -0.012 0.079
(0.035)  (0.032) (0.039) (0.039) (0.041) (0.037) (0.051) (0.035) (0.064)  (0.048)

Adverse shock to other

household plots* -0.075 -0.021 -0.078 -0.024 -0.065 -0.020 -0.069 -0.022 0.0086 0.0026
0.012)  (0.011) (0.012) (0.015) (0.013) (0.012) (0.014) (0.011) (0.017)  (0.016)

F statistic; see note #. 26.8 12.2 15.6 7.85 25.8 10.8 26.8 15.2

Corresponding p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F statistic; see note §. 9.28 17.4
Corresponding p value 0.00 0.00
Notes:

Standard errors in parentheses.

*Variables used as instruments in Table 5.

#F statistic for joint significance of variables used as production function instruments in Table 5.
§F stat for hO — coefficients of instruments equal for 25th and 75th percentile.

All regressions also include 28 plot and household characteristics.




Table 4b: OLS and Quantile Regression Determinants of Land and Labor Inputs in Uganda

) (€] ©) 4) ®) (6) @) ®) ©) (10)

OLS 25th percentile 50th percentile 75th percentile  Interquartile Range

Land Labor Land Labor Land Labor Land Labor Land Labor

Male Plot 0.14 0.1 0.13 0092 0.14 0.11 0.14 0.1 0014  0.021
(0.010) (0.0080) (0.012) (0.010) (0.011) (0.0082) (0.011) (0.0083) (0.013)  (0.015)
EVI*Avg Soil in -0.0002 -0.0004 -0.0003 -0.0004 -0.0001 -0.0004 -0.0005 -0.0005 -0.00022 -0.000074
household* (0.00018) (0.00016) (0.00023) (0.00019) (0.00019) (0.00014) (0.00022) (0.00015) (0.00033) (0.00031)
EVI*Poor Soil in 0.00041 0.00039 0.00062 -0.0005 0.00049 -0.0005 -9E-05 0.0003 -0.00071 0.00075
household* (0.00059) (0.00052) (0.00068) (0.00048) (0.00075) (0.00046) (0.00072) (0.00047) (0.00090) (0.00082)
EVI*Missing Soil in -0.0066 -0.0004 -0.0051 -0.0005 -0.0043 0.00092 -0.0049 -0.0017 0.00024 -0.0012
household* (0.0019) (0.0015) (0.0024) (0.0016) (0.0016) (0.0012) (0.0017) (0.0012) (0.0033)  (0.0021)
Drought*Avg Soil in -0.0063 -0.0071 -0.01 -0.0075 -0.0057 -0.0068 -0.0051 -0.0075 0.0052 -0.000077
household* (0.0020) (0.0016) (0.0025) (0.0018) (0.0016) (0.0015) (0.0018) (0.0014) (0.0030) (0.0017)
Drought*Poor Soil in -0.0029 0.00075 -0.0045 0.000049 -0.0063 0.0032 -0.0021 0.0053 0.0024  0.0053
household* (0.0044) (0.0037) (0.0050) (0.0025) (0.0047) (0.0037) (0.0049) (0.0035) (0.0060) (0.0067)
Drought*Missing Soilin ~ -0.031  0.023  -0.041 0.018 -0.024 0.017 -0.0017 0.029  0.039  0.011
houschold* (0.0089) (0.0059) (0.013) (0.0070) (0.0084) (0.0072) (0.0075) (0.0044) (0.016)  (0.011)
Illness Incidence in -0.0072 -0.073 -0.0059 -0.084 0.0014 -0.088 -0.013 -0.096 -0.0071 -0.011
household* 0.014) (0.011) (0.016) (0.015) (0.013) (0.012) (0.015) (0.012) (0.017)  (0.015)
Household shock tonon- 0 08 .0.0023  0.080 -0.0011 0.072 -0.0041 0.090 -0.0097 0.0100  -0.0086
agricultural income* (0.029)  (0.023) (0.023) (0.031) (0.033) (0.022) (0.026) (0.021) (0.038)  (0.034)
Number of household 0.026 0.017 0.024 0.020 0.023 0016 0.026 0.017 0.0015 -0.0030
members* (0.0024) (0.0019) (0.0030) (0.0027) (0.0024) (0.0019) (0.0026) (0.0020) (0.0033)  (0.0031)
Number of adults in 0.011 0.0082 0.011 0.0041 0.016 0.0075 0.0093 0.0078 -0.0019 0.0037
household* (0.0033) (0.0027) (0.0042) (0.0037) (0.0034) (0.0027) (0.0037) (0.0029) (0.0044)  (0.0047)

Shocks on other plots* 0.021 -0.0005 0.018 -0.0035 0.048 -0.0006 0.081 -3E-05 0.063 0.0035
(0.0029) (0.0013) (0.0024) (0.0032) (0.0099) (0.00046) (0.0072) (0.0012) (0.016)  (0.0027)

F statistic; see note #. 23 16.7 55.7 27.2 28.5 67.5 30.4 59.4

Corresponding p value 0 0 0 0 0 0 0 0

F statistic; see note §. 112 7.15
Corresponding p value 0 1.20E-19
Notes:

Standard errors in parentheses.

*Variables used as instruments in Table 5.

#F statistic for joint significance of variables used as production function instruments in Table 5.

§F stat for hO — coefficients of instruments equal for 25th and 75th percentile.

All regressions also include 34 plot and household characteristics.

Not shown are 28 additional variables used as instruments in 5b. These are: 6 community average soil characteristics
interacted with EVI and household reported drought, 22 household and community average soil characteristics interacted with
household reported flood, and community early season rain, household asset value, dummies for electricity, roofing, literacy,
schooling, generations resident in community, community leadership position.




Table 5: Production Function and Variance Components

Tanzania Uganda
2SLS IVCRC 2SLS IVCRC

A. Cobb-Douglas Factor Coefficients

Land 0.76 0.57 0.70 0.53
(0.15) (0.0 (0.05)  (0.00)
Labor 0.21 0.37 0.14 0.38
023)  (0.03) (0.10)  (0.00)

B. Implied Plot Level Variances of Productivity, Risk and Measurement Errors

Plot TFP 0.36 0.61 0.26 0.26

(0.01) (0.05) (0.01) (0.01)
Land Productivity (= Labor 0.04 0.29 0.10 0.10
Productivity) (0.01) (0.05) (0.01) (0.01)
Late Season Risk and Output 0.68 0.93 1.20 1.20
Measurement Error (0.02) (0.17) (0.02) (0.01)
Land Measurement Error 0.28 -0.21 0.25 0.25

(0.03) (0.32) (0.01) (0.01)
Labor Measurement Error 0.37 0.37 0.21 0.21

(0.02) (0.02) (0.01) (0.01)
Covariance of TFP and Land 0.08 0.34 0.06 0.06
Prod. (= -Covariance with (0.01) (0.06) (0.00) (0.00)
Labour Prod.)

Notes: Full production function results presented in Appendix tables AS5a and A5Db.
Bootstrapped standard errors (50 bootstrap iterations) in parentheses.
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Appendix Al: Endogenous plot selection

This appendix describes the process through which a farmer (household)

chooses the number and locations of its plots.

Consider first the household’s option of producing on a single plot, [0, L],
making use of the entire land endowment. The profit maximization
problem is then given by:

L
0 h

X
max (L—:> f Y (k, $)3 (k) dk — wpXp, — c|. (A1.1)
0

Xn

As an alternative to the single plot, the household could instead farm
multiple plots. We assume that the household divides its landholding into
plots at the start of the season, before inputs are chosen and — crucially —
before the realization of the productivity shock. In modelling the farm in
this way, we seek to capture the notion that inputs can be adjusted
through most of the growing season, so that the total input vector responds
to the shocks. But plot boundaries cannot normally be adjusted once
planting has taken place — and indeed, plot boundaries are often set even
before planting, with a series of decisions that commit the household to
planting certain crops at certain moments. For instance, the timing and
techniques of land preparation will be linked to decisions about plot

boundaries and potentially also crop choice.

Consider first the problem of a household that is choosing a single
boundary that will define two plots. Denote the threshold location between
the two plots as Lyq, so that the two plots are [0,Ly,] and [Ljq, Ly]. In
this case, an interior solution for the size of the two plots must hold;
expected total profits could not be increased by moving this location either

to  the left or  the  right on  the  number line.
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The profit maximization problem can be written as:

Lp1
maxf max (X—hl)ef yn(k,s){, (k) dk
Ln1 Xn1.Xnz | \Lpy
SE 0
X o '
h1
+ <—> f Yn(k,$)¢n (k) dk — wpXp4
Lp=Lp . (A1.2)

- WhXhZ — 2c dA(S)

In effect, the household chooses the plot boundary Lp; to maximize
expected profits, knowing what input bundle it would choose for each plot
for every realization of the productivity shock y,(k,s). The problem is
well-defined.

Now consider a household that farms I plots, I > 2. We use the notation
that Ly; will denote the right-hand boundary of the ith plot; i.e., the
boundary between plot i and plot i + 1. For notational convenience, we
set Lpo=0 and Ly =L, . Then {Ly}Y_, is the sequence of plot
boundaries. The first plot is given by the interval [0, Ly;], and the ith plot

covers the interval [Lp;_q, Lpi], continuing to the Ith plot, which covers

[Lps—1, Lnl.

We assume for convenience in what follows that all the plots are of
sufficient quality that they will be actively farmed, allowing for an interior
solution. The logic of the analysis would extend, however, to a situation

in which the household chooses not to cultivate some portion of its land.
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For notational convenience, let the size of the ith plot be denoted as Ly; =
(Lpi—1 — Ly;) . As before, the average productivity of plot i, conditional

on the realization of the shock yp(k,s), can be written as p; =
1 Lpi

I ik, )60 dk

Lpi "Lni-
Then the household’s problem of choosing the boundaries of I plots can

be written as:

1
Ef(l) = max f s [&n?}( [(hilingi - ZWhXhiZhi
hisi=1 ses hiJi=1 i1

(A1.3)

—cl

] dA(s).

How many plots might the household farm? We can identify a finite
maximum number of plots for any household. Because the problem in
equation (7) is well-defined for any number of plots I, we use this to define
an upper bound for I. Recall that for a single location k, the household
can maximize profits conditional on the shock s, by choosing a point-

specific input bundle. This gives output qn(k,s) =

[
h(K)yn(k, s) (%?-h(k))l_e with corresponding profits of mj,(k,s) =

qn(k,s) —wpép(k,s). Across the entire land holding of the household, this
gives rise to an expression for the maximum profits that can be earned,
conditional on the shock s, with ¢ =0: m,(s) = fOLh ny,(k,s) dk. This
expression can be understood as the “precision agriculture profits” in
which every location on the household’s land holdings is farmed with

optimal point-specific inputs. Integrating over possible realizations of the
shock s, then mj, = fsES my,(k,s) dA(s) is the expected maximum profits.
Given this, I" = (% + 1) is an upper bound for the number of plots that

can be profitably cultivated.



65.

With this upper bound defined, the household’s choice of its optimal

number of plots reduces to a discrete optimization, with [ = argmax
{ER()}j=1-

We now consider the relationship between plot quality and plot size within
a farm. A simple illustration is provided by the special case of a farmer
who has access to multiple physical parcels, each of unit size. Parcel i has

average productivity {p; = fol vi(k,s){;(k)dk . If that parcel can be
partitioned into two plots (A and B) of any size such that {f; # {f;, then

i
there exists a scalar z* = 0 such that Vz = z*, if we replace {;(k) with
(,i(k) = z;(k), it is optimal to split the parcel into more than one plot.
Therefore, if a parcel is divided into multiple plots, then a more productive
parcel is also divided. And a sufficiently less productive parcel will not be.

0 1
Define my; = {j; (zhie)l_e - wy (%)1_9 as the profit from farming the

Wh
parcel as a unit. Let L4, and LB, = 1 — L4, be the areas of the two plots

that optimally divide parcel i (the solution to (Al1.2)). So mi =

0 1 0

A 1-0 A 1-0 B 1-0

A 7A (Sni®\1® A ($hif\1—° B _ 1B 7B ($rni®\1®
LyiShi (wlh> — WplLp; (= and Ty = LpiChi 7, -

Wh Wh

1

B o\1-0
w15, (%‘/f)l ®  Define i = fol yi(k,s){,; (k) dk = z{; as the average

productivity of the z-transformed parcel, and m,;, m/, and 75 as the

profits from farming the full parcel, and optimally subdivided if the
0

Ag\1-6
productivity process is {,;(k). Finally, define #/ = La;{x (%)1 -
h

1

Ag\1og
wp L, (q‘;‘g)l , and similarly %5, as the maximized profits generated on
h

plots A and B of the z-transformed parcel, where plots A and B are defined

by the optimal partition of the parcel given its original productivity.

A % ¢B impli XL 4
Chi # Cpi implies that =3+ # —5* so for 6 <1,
1i 1i

. B A B
Ty; = LTty + Ly < 05 + 7qj
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Suppose 1wy + P — ¢ > my;. Then for all z > 1,

1
A B ~A | =B — oA B
My +M,; —Cc2T,; +7T,; —C= 21—9(n1i + 7T1i) —-C (A1.4)
1 .

> 71-0714; = T,

Therefore, if a parcel is divided into more than one plot, then any more
productive parcel is also divided. Conversely, for a sufficiently low value

of z, i + m2; < ¢ and it is not feasible to divide the parcel.
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Appendix A2: Estimating the within-farm variances of
measurement error, late-season risk, and unobserved

productivity

We consider a plot 7 farmed by household (farmer) A in season . We
define log TFP for the plot, inclusive of the plot-specific factor

productivities, as

_ 1 QALpit
Znit = 77— \WEenitBe + Wynit + Appic In
1- Z] Ajhit PLht (A2 1)
- .
F tyne ln( Xhlt)}
Pxht

We write log output and (actual, not observed) factor demand on the plot
as
Yhit = WhnitBu + €vnie + Znit
Lhie = In(a@pnic) = In@ine) + Znie
Xnie = In(@xpic) = In@xne) + Znie (42.2)
The IVCRC procedure provides us with an estimate of the means of the
distribution of the factor productivity coefficients, @, and @y. We define
the plot-specific factor productivities w;pi; = In(@ppir) — @, and wxpir =
In(axpic) — @x. We will work in terms of observable inputs, and output,
adjusted for the estimated effects of observed characteristics
Yhit = WanieBu = €ynie + Gnae
lhic + WinieBr = @ + @ppie — IN(Dpne) + Epnie + Gnie
Xhie + WynieBx = @x + Wxnie — (Pxne) + €xnic + Gnie (A2:3)
Wipie and wypie are plot level productivities of land and labor and and z;;

is plot level total productivity.

Fnit = Ynie — Yne — Wanic = Wane) Bu (A2.4)
= €ynit — €yt t Znit — Zne
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- - _ R
lhit = lhit - lh.t + (WLhit - WLh.t),BL

= Wrnit — Oppe + €Lnie — €cne + Gnic — Qe
~ — .0 ~0 7 A
Xnit = Xpie — Xne + Wynie — Wyne) Py

= Wxpit — Wxnt T €xnit — €xne T Gnit — Gnt

The LHS of these are observable. Their covariance (and a normalization
discussed below) provides us with sufficient information to identify the
within-farm variances of plot-level total factor productivity (O’,;), factor-
specific productivity and their covariance ( 62,0%,0.x ), factor
measurement error (O'EZL,O'EZX) and output measurement error and post-
input risk (aezy), as well as the covariance of plot-level total factor
productivity and factor-specific productivity (O'QL, O'QX):
var(Jpie) = 0§ + 03y
var(ly;) = of + 04 + 0§ + 20q,
var (Xpie) = 0f + 02 + 05 + 2009x
cov(Fniv lnic) = g1 + 64
cov(Fnit, Tnie) = 0px + 04

s _ 2
cov(lhit, xhit) = 0px + 0, + 0px + 9]

(A2.5)

We will not separately identify variation in all three types of unobserved
heterogeneity in factor (@ppie, Wxnie) Or total-factor productivity (zp;): a
parallel increase in wppirand wypir is equivalent to an increase in zy;;.
Hence, we normalize wppi + wxpir = 0. Intuitively, a change in wpp;e
relative to wyp;+ 18 a change in the slope of an isoquant; a change in zp;;
is a shift in or out of an isoquant. The normalization of factor specific
productivities distinguishes these from TFP shocks; this normalization

adds the restrictions

o = o}
O-QL = _O-QX

From equations (A2.5)-(A2.6) we calculate the parameters
( 65,61,6%,63,62,0%,0.x,601,0px) that are consistent with the

observed covariance of plot level output and inputs across plots within
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farms, given an estimate of the production function parameters and the

assumption of efficient allocation across plots within a farm.
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Appendix A3: Measurement error / shock variances across all

plots and average across farmers of within-farmer variances

We estimate the mean, across farmers, of the within-farm, cross-plot
variance of measurement errors in factor inputs and of measurement error
and late-season shocks to output. How does this compare the overall

variance, across all plots, of these measurement errors/random shocks?

Denote by yg the realization of any of these errors/shocks
(Evmits €Lnits Exnic)- Let N be the total number of plots, N/ the number
of farmers and N]’; be the number of plots of farmer f. The average across
farmers of the cross-plot within-farmer variance of y is 0% =

! ; _ . .
ﬁZNzlﬁ i\ifl (¥ — 7). The variance of y across plots in the sample

is 0=+ Z Zl 1(yfz y)* . If there are no farmer effects in
measurement error or the late season shock to output, then y, =y V f and

O-F:O-.

However, if there is variation across farmers in the mean level of
measurement error or the late season shock, then the average across
farmers of the within-farmer variance may differ from the variance across
all plots. The largest number of plots cultivated by a single farmer is k. We
partition the sample of farmers into sets { M, M,, ..., M;} such that each
farmer f € M, has k plots. With some abuse of notation we denote the

cardinality of each set M, as M,. Then we have

Z Z Y —r)”

fGMk i=1

31 We drop the t subscript for this appendix; the calculations should be understood as
occurring within any season.
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k=1 feM,, i=1 k=1
S D ID I DA
N fem, i=1 " N (A3.1)
1k
= NZ[MkkUI%]

where the inequality follows from convexity (and is a strict equality if

Yy =y Vf. The average across farmers of the variance of y is

So

k
1
o’ —o% > Z (ﬁ — —) M, o%,. (A3.2)

If each farmer has the same number of plots, then the weak inequality in
(2) is an equality, and ZZ: . (% — NLF> M,0%, = 0 and the average across
farmers of the within-farmer variance of plot yield is the same as the

overall variance of plot yields.

Note that (% — NLF) is increasing in k. If the average number of plots per
i E_ 1 2 _
farmer is less than or equal to 2, then ( ~ NF) >0 for all k and o

0% > 0. The average number of plots per farmer in Tanzania is 1.95.
Therefore, the average across farmers of the within-farmer variance of y is

less than the overall variance of y in Tanzania.



72.

In Uganda the average number of plots per farmer is 2.7. If the average
variance of y across plots of farmers who have only 2 plots is much larger
than the average variance of y across plots of farmers who have many
more plots, than it is possible that the RHS of (A2) is negative. Given the
observed number of plots (N), number of farmers (Ny) and numbers of
farmers cultivating k plots (M,), then we can calculate that if 0%, <
3.82x 02, for k> 2, then Zizl(% — NLF) M,0%, > 0. That is, as long as
the average variance across plots of y of farmers cultivating 2 plots is no
more than about 4 times as large as the average variance across plots of y
of farmers cultivating more than 2 plots, then the overall variance of y
across plots is larger than the average across farmers of within-farmer

cross-plot variance of y.
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Page 1 of Appendix Table A5a

Appendix Table ASa: Tanzania Production Function Estimates

Tanzania
2SLS IVCRC
Land 0.76 0.57
(0.15) (0.01)
Labor 0.21 0.37
(0.23) (0.03)
Land Value 0.00 0.03
(0.02) (0.01)
Land Value Missing 0.14 0.09
(0.08) (0.10)
Distance Home 0.00 0.00
(0.00) (0.00)
Distance to Road -0.02 -0.02
(0.00) (0.00)
Good Soil 0.14 -4.55
(0.32) (0.60)
Average Soil -0.17 -4.86
(0.33) (0.55)
Sandy Soil 0.47 5.88
(0.88) (3.28)
Loamy Soil 0.84 6.46
0.91) (3.29)
Clay Soil 0.51 6.60
(0.96) (3.25)
Single Manager -0.05 -0.01
(0.03) (0.01)
Poor Health -0.03 -0.03
0.01) (0.00)
Missing Health -0.11 -0.15
(0.05) (0.05)
[lliterate Manager -0.06 -0.08
(0.04) (0.02)
Literacy Missing 0.07 0.13
(0.30) (1.40)
Male Manager -0.06 0.00

(0.03) (0.01)
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Appendix Table ASa: Tanzania Production Function Estimates

Tanzania
2SLS IVCRC
Manager Age 0.00 0.00
(0.00) (0.00)
Age Missing 3.66 4.01
(1.02) (0.52)
Crops Lost 0.07 0.07
(0.03) (0.01)
Bad Shock -0.27 -0.27
(0.03) 0.01)
EVI*Good Soil 0.14 0.01
(0.54) (0.46)
EVI*Average Soil 0.51 0.37
(0.58) (0.31)
EVI*Poor Soil 0.00 -8.67
(0.63) (1.34)
EVI*Loamy Soil -0.58 -0.94
(0.32) (0.32)
EVI*Clay Soil 0.03 -1.35
(0.59) 0.31)
EVI*Other Soil 1.11 12.37
(1.65) (5.68)
Drought/flood Severity -0.07 -0.05
(0.03) 0.01)
Crop Disease Severity 0.02 0.03
(0.02) (0.01)
Water Shortage -0.07 -0.06
(0.03) (0.02)
Constant 0.00 0.03
(0.00) (0.04)

Notes: Bootstrapped standard errors (50 bootstrap iterations) in parentheses.
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Appendix Table ASb: Uganda Production Function Estimates

Uganda
2SLS IVCRC
Land 0.70 0.53
(0.05) (0.00)
Labour 0.14 0.38
(0.10) (0.00)
Drought*Avg Soil -0.03 -0.03
(0.01) (0.00)
Drought*Poor Soil -0.04 -0.05
(0.02) (0.01)
Drought*Missing Soil 0.00 -0.01
(0.03) (0.05)
Flood*Avg Soil 0.01 -0.05
(0.03) (0.03)
Flood*Poor Soil 0.26 0.46
(0.31) (0.63)
Flood*Missing Soil -0.22 1.16
(0.17) (0.41)
High Early Rain * Avg Soil 0.00 0.00
(0.00) (0.00)
High Early Rain * Poor Soil 0.00 0.00
(0.00) (0.00)
High Early Rain * Other Soil 0.00 -0.04
(0.00) (0.03)
High Early Rain * Missing Soil 0.00 0.00
(0.00) (0.00)
EVI*Avg Soil 0.00 0.00
(0.00) (0.00)
EVI*Poor Soil 0.00 0.00
(0.00) (0.00)
EVI*Missing Soil 0.00 0.00
(0.00) (0.00)
soil_type== 0.00 0.03
(0.01) (0.01)
soil_type==3 0.02 0.02
(0.02) (0.00)
soil type==4 0.02 0.01
(0.02) (0.00)

soil_type== 0.01 -0.03
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Appendix Table ASb: Uganda Production Function Estimates

Uganda
2SLS IVCRC
(0.04) (0.02)
soil_type==99999 -0.02 -0.01
(0.04) (0.00)
soil _quality==2 -0.24 -0.34
0.11) (0.14)
soil quality==3 -0.13 -0.11
(0.03) (0.00)
soil_quality==5 0.07 0.04
(0.09) (0.03)
soil _quality==99999 -1.09 0.51
(0.61) (0.74)
water source== -0.54 3.78
(0.38) (0.81)
water_source==3 0.18 0.12
(0.06) (0.01)
water_source==99999 0.39 0.29
(0.08) (0.01)
slope== 0.52 1.32
(0.32) (0.53)
slope==3 0.01 0.01
(0.03) (0.00)
slope== 0.08 0.07
(0.02) (0.00)
slope==5 0.11 0.04
(0.04) (0.02)
slope==6 -0.05 -0.04
(0.05) (0.02)
slope==99999 0.34 4.10
(0.29) (2.31)
erosion==2 -0.19 -5.95
(0.27) (0.73)
erosion==99999 0.08 0.07

(0.02) (0.00)
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Appendix Table ASb: Uganda Production Function Estimates

Uganda

2SLS IVCRC
Male plot 0.56 0.94

(0.18) (0.26)
Extension 0.09 0.09

(0.01) (0.00)
Constant 0.09 0.12

(0.02) (0.00)

Notes: Bootstrapped standard errors (50 bootstrap iterations) in parentheses.






