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1 Introduction

Social interactions are an essential part of an individual’s life. These interactions are po-

tentially an important source of learning. Furthermore, since working adults spend a large

fraction of their time working, it is natural that most of this learning is the result of in-

teractions with coworkers. It is plausible that this form of learning constitutes the largest

and most important knowledge acquisition mechanism in society. One that transmits and

diffuses the practical knowledge that individuals use every day in their productive endeavors.

Little is known about this type of knowledge transfer in the workplace. Who learns from

whom? How much? What is the labor market value of this learning? How does this learning

change as we change the organization of production in the economy? We aim to provide

answers to some of these questions.

We are interested in understanding how individuals learn from coworkers with different

levels of knowledge and the implications of this form of learning for individual and aggregate

outcomes. To do so, we first develop a benchmark model of idea flows in a competitive labor

market. Workers produce in teams and, while doing so, learn from each other. The model

has the key feature that a worker’s pay reflects both her knowledge and a compensating

differential for the opportunity to learn from her coworkers. In contrast, the labor market

compensates those who provide their coworkers with learning opportunities.

Our goal is to take advantage of the structure of the model, together with detailed micro

data on individual wages in production teams, to study learning on the job. However,

before structurally connecting the model with the data, we start by analyzing the reduced-

form empirical relationship between the wage growth of an individual and the wages of her

coworkers. To measure the key features of this relationship we use German administrative

data that contain the employment biographies of the entire workforce of the establishments

in the sample. We use a variety of empirical specifications that allow us to understand which

features of the distribution of wages are related to an individual’s wage growth.

Our findings indicate that more highly paid coworkers substantially increase future wage

growth. Furthermore, the transmission depends on particular features of the wage distri-

bution. The data suggest small effects from less-well-paid workers and large, and roughly
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symmetric, positive learning from those higher up in the wage distribution. We also show

that the effects we find are present across the wage distribution.

Although suggestive of significant learning from coworkers, these findings could in prin-

ciple also be consistent with other features of wage setting mechanisms in the labor market.

To address these possibilities we offer a battery of checks which suggest that these findings do

not purely reflect mean reversion, back-loading, or other firm-specific factors by separately

analyzing switchers and stayers, mass layoffs at the plant level, using information about

worker tenure, and studying the nonlinearities in the empirical relationship between wage

growth and the distribution of coworkers.

We then revisit our model which yields a mapping between the matched employer-

employee data and the underlying knowledge and learning of individuals. We structurally

estimate a variety of parametric versions of the learning function, motivated by the most

important reduced form patterns we document. We develop a novel way to estimate the

parameters of this function using micro data for the German labor market. Our methodol-

ogy uses only information on workers wages and the wages of her coworkers. The approach

relies on the basic insight that a competitive and frictionless labor market prices coworker

learning. As a consequence, workers who expect to learn a lot from their coworkers must

pay a compensating differential relative to similarly skilled workers who have little to learn

from their peers.

A first step in implementing our approach is to choose a cardinality for knowledge. We

show that the expected present value of income is a natural and useful choice for the units

of knowledge. It simplifies the empirical implementation of our approach and allows for a

natural interpretation of the estimated learning functions. We proceed by showing that, given

the learning function, we can invert individual Bellman equations to recover the knowledge

of individuals from the full set of wages of the members of each production team in a

single cross section. Doing this for several years yields a panel of individuals’ knowledge.

Our identification of the learning function comes from the restriction that the evolution of

individual knowledge must be consistent with the learning function we had imposed. We

find the fixed point of this GMM procedure using an iterative algorithm, resulting in a

structurally estimated ‘learning function’ that maps an agent’s learning to the knowledge
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distribution of her coworkers.

Our model and estimation strategy rely on some strong but standard assumptions like

complete financial markets (or linear utility), perfect labor market competition, and sta-

tionarity. However, since the estimation strategy relies solely on the individual Bellman

equations together with observed wages and team composition, it imposes minimal restric-

tions on the set of firm technologies and complementarities across workers. In fact, our

methodology proves that these characteristics of the production function are not needed to

estimate learning functions. Furthermore, it can be implemented on very short panels re-

quiring only two observations per worker. As such, we view the structure we impose, and

the empirical results we obtain with it, as a natural benchmark.

Using this benchmark model we find that agents learn little from less knowledgeable

workers and they learn significantly from those with more knowledge, particularly from the

most knowledgeable members of their teams. On average, between 4 and 9% of the total com-

pensation of workers comes in the form of learning from coworkers in the same team (either

same establishment or same establishment and occupation). We also show that inequality

in wages is between one third and one fifth larger than inequality in compensation because

workers with different levels of knowledge differ in how their compensation is divided between

wages and learning. We further document an apparent tension between firms’ production

requirements—which are reflected in the equilibrium composition of teams—and coworker

learning: Coworker knowledge flows would almost double if workers were to be grouped

in teams randomly. The finding suggests the presence of knowledge complementarities in

production.

Our estimated model can be used to study a variety of phenomena that might affect team

composition and therefore individual learning. For example, one can study how changes in

the organization of work brought about by technological change affect earnings inequality,

life cycle wage profiles, and the aggregate rate of growth. However, doing so would require

specifying and estimating a production function, which the rest of our analysis does not

require. We therefore leave these exercises for future research.

There is a large literature in macroeconomics that has used learning from others as the

key mechanism to generate aggregate growth. Lucas (2009) proposes a theory of growth
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based on random meetings between agents in the entire population. Lucas and Moll (2014)

and Perla and Tonetti (2014) extend these models to add a time allocation choice, while

Jovanovic and Rob (1989), Jovanovic and MacDonald (1994), and König et al. (2016) focus

on the innovation/imitation margin. Other models like Sampson (2015), Perla et al. (2015),

and Luttmer et al. (2014) also generate growth through adoption of ideas from others. As

Alvarez et al. (2013) and Buera and Oberfield (2016) show, the selection of what particular

ideas an individual or firm confronts, as determined for example by trade flows, is essential to

shape the growth properties of these models. This literature considers random learning from

the population, or a selected group of the population, but it has not incorporated learning

from coworkers. The importance of studying this form of selection in learning is evident,

but challenging. For starters, it requires modeling explicitly teams of coworkers that are

heterogeneous across firms. Caicedo et al. (2016) introduce learning in an economy where

production is organized in heterogeneous production hierarchies as in Garicano and Rossi-

Hansberg (2006), but learning interactions do not happen exclusively within the organization.

Jovanovic (2014) studies learning in teams of two, while Burstein and Monge-Naranjo (2009)

study an environment in which a manager hires identical workers and imparts knowledge to

those workers.1 We go further than these papers in that we model learning within teams and

provide direct evidence of its importance, its characteristics, as well as providing a structural

estimation of the key parameters of the model.

While much of the empirical literature has focused on contemporaneous peer effects (Mas

and Moretti (2009) and Cornelissen et al. (2017)), empirical studies of learning within teams

is much more limited. Nix (2015) argues that increasing the average education of ones peers

raises one’s earnings in subsequent years. Akcigit et al. (2018) argue that increasing one’s

exposure to star patenters raises the likelihood of patenting and the quality of one’s patents.

In related and complementary work, Herkenhoff et al. (2018) build on a frictional sorting

setup to investigate learning with production complementarities. Like us, they detect strong

coworker spillovers. The main difference between the papers is that our competitive labor

market model allows us to structurally estimate the model without imposing restrictions on

1Anderson and Smith (2010) study matching with dynamic types which can also be interpreted as a
model of learning in teams of two.
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the production functions firms use when selecting teams of workers. Our strategy is thus

well-suited for utilizing the full richness of the matched employer-employee data. Because

our model features teams with arbitrary numbers of heterogeneous workers, our analysis

focuses on the role of the within-team distribution of knowledge for the coworker learning

process.

The remainder of this paper is organized as follows. Section 2 presents a general but

simple model of an economy in which agents learn from their coworkers. The theory is useful

in specifying exactly the concept of learning we have in mind and its implications. In Sec-

tion 3 we introduce our German matched employer-employee data and present a number of

reduced-form findings about the relationship between the wage of an individual, the wages

of her coworkers, and an individual’s wage growth. Section 4 contains our main results.

We present and implement an algorithm to structurally estimate the learning function in-

troduced in Section 2, and describe the implications for individual investment in knowledge

and inequality. Section 5 extends the baseline model to study how individual characteristics

affect learning from coworkers. Section 6 concludes.

2 A Benchmark Model

Consider an economy populated by a unit mass of heterogeneous individuals with knowledge

z ∈ Z = [0, z̄]. Individuals have a probability δ of dying each period. Each period a

mass δ of new individuals is born. Newborns start with a level of knowledge z drawn from

a distribution B0 (·). Agents supply labor inelastically, consume, and discount the future

according to a discount factor β. Agents are employed in firms where they obtain a wage

and where they can learn from other coworkers. An agent z, working in a firm that employs

the agent as well as a vector of coworkers z̃ will draw her next period’s knowledge from

a distribution G (z′|z, z̃). Financial markets are complete, or utility is linear, so agents

maximize the expected present value of income.

Since individuals learn from coworkers, the wage they are willing to accept depends on

how much they might learn from coworkers. Thus, the wage schedule, w (z, z̃) , paid to a

worker with knowledge z depends also on the vector of coworkers z̃.
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All firms produce the same consumption goods. Potential firms pay a fixed cost c in

goods, after which they draw technology a ∈ A from a distribution A (·). A firm with

technology a produces according to the production function F (z; a), where z is the vector

of workers it hires. Firms take the wage schedule as given. We purposely impose minimal

structure on the production function. In particular, differences across technologies need not

be Hicks-neutral or even factor augmenting; production technologies may also vary in their

complementarities across workers with different levels of knowledge. Hence, different firms,

in general, make different choices of z.

2.1 Firms

Let W (z) be the total wage bill of a firm that hires the vector of workers z. If z = {zi}ni=1 for

some n, then W (z) =
∑n

i=1w (zi, z̃−i), where z̃−i is the set of i’s coworkers. A firm chooses

the set of workers to maximize profit

π (a) = max
z
F (z; a)−W (z) . (1)

Let z (a) = arg max zF (z; a)−W (z) denote a’s optimal choice.2

2.2 Individuals

Agents decide where to work each period given wages and the learning opportunities across

firms. Let Z̃ denote the set of all possible vectors of coworkers. The expected present value

of earnings for an agent with knowledge z is given simply by

V (z) = max
z̃∈Z̃

w (z; z̃) + β

∫ ∞
0

V (z′) dG (z′|z, z̃) . (2)

Namely, each period individuals choose where to work to maximize their wage, plus the

future stream of wages given their learning opportunities in the firm. In general, equilibrium

wages adjust so that workers are indifferent about working in a set of firms. The competitive

2Note that the firm is choosing both the type of workers, zi, and the number of workers n. Together
these choices determine the vector z.
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labor market assumption implies that workers with a given z will obtain the same value,

V (z), independent of where they work. Hence, the present value of earnings of a worker

does not depend on her current coworkers. Furthermore, since firms take the wage schedule

as given, it must be the case that if a firm wants to hire a vector of workers (z, z̃) then the

wage schedule must capture what it would cost to hire those workers. The wage schedule

must therefore satisfy

w (z; z̃) = V (z)− β
∫ ∞
0

V (z′) dG (z′|z, z̃) , (3)

for any z, z̃ chosen in equilibrium. A simple implication is that for any z̃, z̃′

w (z; z̃)− w (z; z̃′) = −β
[∫ ∞

0

V (z′) dG (z′|z, z̃)−
∫ ∞
0

V (z′) dG (z′|z, z̃′)
]
. (4)

Namely, firms with distinct sets of employees pay different wages to identical individuals

to compensate for differences in their learning. If an individual learns a lot at a firm, the

firm can pay a low wage and still attract the worker. In this sense, wages incorporate

compensating differentials in learning.

2.3 Labor Market Clearing and Free Entry

Let B (z) be the fraction of workers with knowledge no greater than z. For any vector z,

let N (z, z) denote the number of elements of z that are weakly less than z. Labor market

clearing requires that for each z,

B (z) = m

∫
a

N (z (a) , z) dA (a) , (5)

where m denotes the mass of firms in the economy.

Free entry requires that ∫
a

[π (a)− c] dA (a) = 0. (6)
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2.4 The Distribution of Knowledge

Given the choices of firms, we can define O (z̃|z) : Z̃×Z → [0, 1] to be the fraction of workers

with knowledge z that, in equilibrium, have a vector of coworker knowledge that is strictly

dominated by the vector z̃. Then the fraction of workers with knowledge no greater than

z next period are those who are born with knowledge weakly less than z, and those whose

interactions with coworkers leaves them with knowledge weakly less than z. Namely,3

B (z) = δB0 (z) + (1− δ)
∫
x

∫
z̃∈Z̃

G (z|x, z̃) dO (z̃|x) dB (x) . (7)

2.5 Equilibrium

A stationary competitive equilibrium consists of a wage schedule w, a value function V , a

mass of firms m, firm choices z (a), a coworker vector set Z̃, and a distribution of worker

knowledge B, such that

1. V and w satisfy (2) and (3);

2. z (a) solves (1), namely, maximizes the profit for a firm with technology a taking the

wage schedule as given;

3. The labor market clears for each z, so (5) is satisfied;

4. The free entry condition (6) holds;

5. The law of motion for B in (7) is satisfied.

2.6 Characterizing Equilibrium

The methodology we use below in Section 4 requires the value function V (z) to be strictly

increasing. Here we provide one set of conditions that are sufficient to give rise to this

property. In particular, we impose some structure on the functions F and G. We state these

3Note that if the solution to the maximization in (2) is unique, then O (z̃|x) would be degenerate with
a mass point at z̃ chosen by individual x, z̃ (x), and so the integral in (7) would be

∫
x
G (z|x, z̃ (x)) dB (x).

Uniqueness of the solution of the maximization in (2) is neither guaranteed nor necessarily a desired property
in our model.
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properties in three assumptions. Throughout, when we compare two ordered vectors of the

same length, z1 < z2 means that each element of z2 is weakly greater than the corresponding

element in z1, and at least one element is strictly greater.

Assumption 1 F (z, a) is strictly increasing in each element of z: z1 < z2 implies F (z1, a) <

F (z2, a).

Assumption 2 G is strictly decreasing in z and z̃: z̃1 < z̃2 implies that G (z′|z, z̃1) >

G (z′|z, z̃2).

Assumption 3 There is free disposal of knowledge.

The first assumption implies more knowledgeable individuals always have an absolute

advantage in production. The second assumption is that if two individuals have the same

coworkers, the one with more knowledge this period will have stochastically more knowledge

next period. It also says that if two individuals have the same knowledge, the one with more

knowledgeable coworkers will have stochastically more knowledge next period.

These assumptions are sufficient to deliver the following results:

Lemma 1 Suppose there is a firm with productivity a such that (z, z̃) = z∗ (a). Then for

each z1 > z2 it must be that w (z1, z̃) > w (z2, z̃).

Proof. First, free disposal of knowledge ensures that V is weakly increasing. Second, the

fact that G is decreasing in z implies that w (z, z̃) is weakly decreasing in z̃. Finally, toward

a contradiction, suppose there was a z1 > z2 such that w (z1, z̃) ≤ w (z2, z̃). Then the firm

should hire z1 instead of z2. It would strictly increase output, it could pay that worker a

weakly lower wage, and it could weakly lower the wage of all other workers.

Proposition 1 V (z) is strictly increasing in z.

Proof. For any wage schedule, the operator T V (z) = maxz̃∈Z̃w (z, z̃)+β
∫∞
0
V (z′) dG (z′|z, z̃)

is a contraction because it satisfies Blackwell’s sufficient conditions. To show that the V is

strictly increasing, it is sufficient to show that if V is weakly increasing, T V is strictly in-

creasing. To see this, consider z1 < z2. Market clearing ensures that there is a firm that
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hires z1, and let z̃1 be the the coworkers of z1 in at least one such firm. Then this, along

with Lemma 1, implies

T V (z1) = w (z1, z̃1) + β

∫ ∞
0

V (z′) dG (z′|z1, z̃1)

< w (z2, z̃1) + β

∫ ∞
0

V (z′) dG (z′|z1, z̃1)

≤ w (z2, z̃1) + β

∫ ∞
0

V (z′) dG (z′|z2, z̃1)

≤ max
z̃∈Z̃

w (z2, z̃) + β

∫ ∞
0

V (z′) dG (z′|z2, z̃)

= T V (z2) ,

where the first inequality follows from Lemma 1 and the second inequality from the as-

sumption that G (·|z, z̃) is decreasing in z and the presumption that V is weakly increasing.

Proposition 2 z̃1 < z̃2 implies that w (z, z̃1) > w (z, z̃2).

Proof. This follows directly from the assumption that G is decreasing in z, Proposition 1,

and (4).

Proposition 3 Within a team, a worker that earns a higher wage has more knowledge.

Proof. Consider two workers in the same team, with respective knowledge z1 > z2. Let z̃

denote the vector of the rest of their coworkers. Then we have that

w (z2, (z1, z̃)) < w (z1, (z1, z̃)) < w (z1, (z2, z̃))

where the first inequality follows from Lemma 1 and the second inequality follows from

Proposition 2.

Finally, we show how a worker’s wage is related to her marginal product. Firms choose

a vector of workers z to maximize profits. Hence, they solve

π (a) = max
n,{zi}ni=1

F (z; a)−
n∑

j=1

w (zj, z̃−j) .
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Optimality implies
∂

∂zi
F (z; a)−

∑
j 6=i

w (zj, z̃−j)

∂zi
=
∂w (zi, z̃−i)

∂zi
.

The marginal cost to a firm of having its ith worker have a bit more knowledge is ∂w(zi,z̃−i)
∂zi

.

The marginal benefit equals the sum of its marginal product and the change in wages the

firm must pay its other workers.

Since (3) must hold for any z̃, we can differentiate with respect to coworker i’s knowledge

to get
∂w (zj, z̃−j)

∂zi
= −βdE [V (z′) |zj, z̃−j]

dzi
.

We can thus write the optimal condition for the firm as

∂w (zi, z̃−j)

∂zi
=

∂

∂zi
F (z; a) + β

∑
j 6=i

d

dzi
E [V (z′) |zj, z̃−j] .

Hence, the marginal value of a worker’s knowledge to the firm reflects both the marginal

product of the knowledge and the marginal increase in coworkers’ learning.

3 Reduced-Form Evidence

We next use German social security data to investigate the relationship between coworker

(relative) wages and individual wage growth. Our goal is to provide empirical discipline on

the learning function G (z′|z, z̃).

To do so, we relate individual wage dynamics to wages in the peer group using various

flexible reduced-form specifications. We are particularly interested in three questions: First,

do future wages rise more steeply if one’s coworkers are more highly paid? Second, if so,

does this relationship depend on which coworkers are more highly paid? That is, is it those

below in the within-team wage distribution or those above that matter? Third, how do these

reduced form patterns change with team size, tenure, age, and the current wage level? We

further offer various robustness checks with the particular focus on ruling out two alternatives

to learning which could be driving our initial findings, namely a back-loaded wage structure

and mean reversion.
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While none of the reduced-form specifications are tightly grounded in our theory, we

nonetheless argue that the resulting picture is useful in guiding the structural approach

that follows. Of course, the lack of an empirical identification strategy implies that these

results cannot be understood as causal and so remain simply a suggestive statement about

equilibrium relationships. In the next section we use the structure of our theory, and the

suggested specification of the learning function, to structurally estimate the model.

Our structural approach builds on the baseline framework developed in Section 2. In

particular, we specify a flexible but parsimonious parametric form for the learning function

G (z′|z, z̃) in light of our reduced form evidence. We then implement a simple routine to

discipline the parameters of G(·) using only panel information on wages and peer groups.

3.1 Summary Statistics

We begin by briefly describing the dataset along key dimensions. The longitudinal version of

the Linked-Employer-Employee-Data of the IAB (LIAB LM 9310) contains information on

the complete workforce of a subset of German establishments. The sample establishments are

the ones selected—at least once—in an annually conducted survey between 2000 and 2008.

The employee part of the dataset then contains the employment biographies from 1993 to

2010 of all individuals which were, for at least one day, employed at one of the sample

establishments between 1999 and 2009.4 The employment biographies come in spell format

and contain information, among other things, on a worker’s establishment, occupation, and

average daily earnings along with a rich set of observables (age, gender, job and employment

tenure, education, location, among others). We organize the resulting dataset as an annual

panel. Specifically, the annual observation recorded (employer, average daily wage, etc.)

for each individual pertains to the spell which overlaps a particular reference date (January

31st).

To construct a baseline sample, we then proceed as follows. We select panel case es-

tablishments for the year 2000 to 2008, since those are the establishments where we obtain

information on the full workforce. We then include those individuals who were employed at

one of those establishments at the reference date during at least one year between 2000 and

4For more detail, see Klosterhuber et al. (2014).
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2008. This leaves us with the employment biographies (between 1993 and 2010) of the full

workforce (at a reference date) of a large number of establishments. The Data Appendix A

provides more detailed information on the construction of the baseline sample.

Throughout, we work with the following two different ways of defining a peer group:

• Team Definition 1: All workers in the same establishment.

• Team Definition 2: All workers in the same establishment and occupation.

We next document the team size distribution and the wage distribution, both economy-

wide, and within teams. We report all those statistics for the year 2000.

Team Size Distribution Figure 1 plots the unweighted size distribution for both team

definitions for the year 2000. We restrict attention to teams that have size ≥ 2. The team

size distribution is naturally more compressed under the second, narrower, team definition,

but for both definitions a sizable fraction of teams are fairly large. The sample contains

4478 establishments with average size 116. When working with the second team definition

we have a total of 28524 teams with an average size of 18.

Figure 1 Team Size Distribution.

0 20 40 60 80 100
Team Definition 1

0

0.05

0.1

0.15

0 20 40 60 80 100
Team Definition 2

0

0.05

0.1

0.15

Notes: Top panel plots the unweighted team size distribution in the year 2000 for teams of size 2-99 for
team definition 1 (so it corresponds to the establishment size distribution). The bottom panel plots the
unweighted team size distribution in the year 2000 for teams of size 2-99 for team definition 2.
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Wage Distribution Figure 2 plots the histogram of the average daily earnings during

the year-2000 reference spell in Euros. The “mass-points” reflect top-coding of the earnings

data at the social security contribution ceiling (which is lower in Eastern Germany). As a

consequence, 7.7% of the wage observations in the underlying dataset are top coded.5 A

simple variance decomposition implies that the within-team component accounts for 47.9%

of the overall variance in wages under team definition 1 and 22.7% under team definition 2.

Finally, there is fairly little wage growth in the decade covered by our dataset. The cohort

whose wages are depicted in Figure 2 experienced average annual wage growth of .97% over

the next 5 years. The annual growth rate drops to .43% in the second half of the decade.

Figure 2 Wage Distribution

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
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10th Pct: 54.6
Median: 87.0
90th Pct: 140.6
Mean: 90.4 Euros

10th Pct: 54.6
Median: 87.0
90th Pct: 140.6
Mean: 90.4 Euros

Notes: Distribution of mean daily wages during spell overlapping 01/31/2000 for full time employees
working subject to social security.

Wage Gap to Coworkers We are interested in how a worker’s future wage growth re-

lates to her coworker’s (relative) wages. To gauge the extent of wage differences across peers,

Figure 3 plots the histogram of wage gaps, defined as the log difference between an individ-

5While there exist imputation methods to address the truncation, we instead treat the top-coded ob-
servations as actual wage observations and do not correct for the top-coding. We have experimented with
various ways of treating the top coded observations and found our main empirical results to be robust. We
show in Appendix B.2 how our reduced form results change when omitting all teams with top coded wage
observations. For more detail regarding the construction of wages, see Data Appendix A. There, we also
describe how we eliminate some extreme wage observations.
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ual’s wage and the mean wage of her peers, for each team definition. Under the first team

definition, the gap has mean .023 and amounts to -.26, .04, and .28 at the 10th, 50th, and

90th percentiles in the year 2000. Under the second team definition, the gap has mean .01

and is -.17, .00, and .20 at the 10th, 50th, and 90th percentiles. Naturally, within-team wage

dispersion is smaller under the narrower team definition.

Figure 3 Wage Gap Distribution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Team Definition 1

0

1
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4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Team Definition 2

0

1

2
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Notes: Top panel plots the distribution of wage gaps as defined in the main text in the year 2000 for
team definition 1. Bottom panel: team definition 2.

3.2 Regression Framework

We begin with the following baseline specification which we implement separately for various

horizons h,

wi,t+h = α + βw̄−i,t + γwi,t + ωage + ωtenure + ωgender + ωeduc + ωocc + ωt + εi,t. (8)

wi,t+h is individual i’s log wage in year t + h, which we project on the log mean wage

of her peers in year t, w̄−i,t, controlling for her own log wage in year t, wi,t, along with

fixed effects for age decile, tenure decile, gender, education, occupation, and year. Unless

otherwise indicated that is the set of fixed effects used in all specifications. Further, we omit
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observations that fall into the top and bottom percentile in terms of wage growth from t to

t+ h in all reduced form specifications.

All our regressions pool the observations across all years t. Since we observe the full peer

groups for ten years, the results for h > 2 use only a subset of years t. For instance, for

h = 10 we are restricted to exclusively use information about peers in the year 2000 (since

we observe workers until 2010). Likewise, for h = 5 we can use all years between 2000 and

2005.

We report the parameter estimates for each team definition in Table I, clustering standard

errors at the establishment-year level. Panel A reports the results using team definition 2.

We first note that our findings suggest quantitatively large effects: They imply that doubling

the mean wage of individual i’s peers raises, in expectation, i’s wage next year by over 7%.

These effects are naturally larger as the horizon extends further into the future, but they do

not grow linearly. This is natural in the context of learning, as agents likely learn less as

they gradually become more knowledgeable. Over a 10 year horizon, doubling peers’ wages

results in 21% higher wages.

We next contrast these results with the corresponding results for the wider team defi-

nition 1. Comparing Panel A and Panel B of Table I, the coefficients tend to be larger for

the narrower team definition. These results are consistent with learning from coworkers if

interactions between coworkers within occupations are more intense. Thus, in the rest of

this section we restrict our attention to team definition 2. We separately report all results

for the alternative team definition in the Appendix.

We next turn to an alternative specification where we split a peer group into those with

higher and lower wages. In particular, we let w̄+
−i,t (w̄−−i,t) denote the log of the mean wage

of i’s peers with higher (lower) wages. We then run the otherwise unaltered specification,

wi,t+h = α+β+w̄+
−i,t +β−w̄−−i,t +γwi,t +ωage +ωtenure +ωgender +ωeduc +ωocc +ωt + εi,t , (9)

and report our findings in Table II.

The table documents a stark asymmetry. It suggests that the peers higher up in the team

wage distribution matter far more for future wage outcomes than the peers below. While
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Narrow Team Definition

Horizon in Years 1 2 3 5 10

w̄ 0.071∗∗∗ 0.099∗∗∗ 0.13∗∗∗ 0.17∗∗∗ 0.21∗∗∗

(0.0024) (0.0032) (0.0038) (0.0051) (0.011)

Within R2 0.88 0.82 0.77 0.67 0.47
Observations 3909669 3419208 2939960 2133116 506778

Broad Team Definition

Horizon in Years 1 2 3 5 10

w̄ 0.059∗∗∗ 0.086∗∗∗ 0.11∗∗∗ 0.16∗∗∗ 0.21∗∗∗

(0.0023) (0.0030) (0.0036) (0.0049) (0.011)

Within R2 0.89 0.82 0.77 0.68 0.48
Observations 4048531 3543440 3049905 2215625 521934

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8). Column titles indicate horizon n. Standard errors clustered
at the establishment-year level. The regressions include current wage and fixed effects for age decile,
tenure decile, gender, education, occupation, and year.

Table I Estimation Results for Specification (8).

Horizon in Years

1 2 3 5 10

w̄+ 0.090∗∗∗ 0.13∗∗∗ 0.16∗∗∗ 0.22∗∗∗ 0.28∗∗∗

(0.0044) (0.0060) (0.0074) (0.010) (0.024)

w̄− 0.019∗∗∗ 0.029∗∗∗ 0.041∗∗∗ 0.060∗∗∗ 0.097∗∗∗

(0.0033) (0.0043) (0.0050) (0.0069) (0.012)

Within R2 0.88 0.81 0.76 0.66 0.46
Observations 3462305 3034301 2617097 1903104 448560

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β− as estimated from specification (9). Team definition 2. Column titles indicate horizon
n. Standard errors clustered at the establishment-year level. The regressions include current wage and
fixed effects for age decile, tenure decile, gender, education, occupation, and year.

Table II Estimation Results for Specification (9).
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increasing the average wage of either group comes with a significant increase in the expected

wage of an individual, the peer group above has an impact three to four times larger at all

horizons. These findings are consistent with larger knowledge flows from more highly skilled

peers and little congestion from less skilled peers. Since we find this stark asymmetry to be

robust throughout, we henceforth build on specification (9).

3.2.1 Across the Wage, Age, Tenure, and Size Distributions

We show next that the forces we document are present across the labor market. In particular,

we run the same baseline specification separately for workers in different deciles of the wage

distribution.6 We next repeat the exercise for different deciles of the age, tenure, and team

size distribution. As we discuss further below, the findings in this subsection suggest that the

patterns we have described thus far are not entirely driven by mean-reversion, a backloaded

wage structure, or returns to tenure or experience.

Our first set of results are reported in Panel A of Table III which reports the regres-

sion coefficients for specification (9) which we run separately for each decile of the wage

distribution.7

The results are fairly stable across the wage distribution.8 We conclude that having

more highly paid coworkers is associated with future wage growth, largely independent of

the current level of wages. This is informative for the modeling choices we make below.

Furthermore, since the coefficients do not decline as we focus on higher wage deciles, the

results strongly suggests that our baseline findings do not reflect a form of economy-wide

mean reversion in wages.

Our next set of results is reported in Panel B of Table III where we cut the sample

into different deciles of the (pooled) sample age distribution. Our findings suggest that the

effects we document are substantially stronger for young workers. Furthermore, while we find

6Of course, we use the full peer group in the construction of the independent variable as before.
7Specifically, we assign a worker-year observation to decile i if the worker’s wage in that year falls into

decile i of the wage distribution during that year.
8The sharp increase in the coefficient estimate for the two top deciles is likely a consequence of the top-

coding since that group has an artificially compressed distribution of w̄+. Further, the fact that the number
of observations is substantially smaller for the bottom deciles reflects that those workers are more marginally
attached to the labor market and are therefore more frequently not employed at the reference spell h years
ahead.
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Panel A: Decile of the Wage Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.18∗∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.32∗∗∗ 0.35∗∗∗

(0.0082) (0.0080) (0.010) (0.010) (0.011) (0.013) (0.015) (0.016) (0.015) (0.049)

w̄− 0.043∗∗∗ 0.041∗∗∗ 0.045∗∗∗ 0.047∗∗∗ 0.048∗∗∗ 0.046∗∗∗ 0.071∗∗∗ 0.069∗∗∗ 0.057∗∗∗ 0.024∗∗∗

(0.0066) (0.0078) (0.0081) (0.0096) (0.0092) (0.0092) (0.0092) (0.0075) (0.0074) (0.0036)

Within R2 0.43 0.086 0.053 0.040 0.037 0.039 0.051 0.080 0.17 0.062
Observations 248920 263528 265462 264823 262632 261579 261499 261687 262796 264087

Panel B: Decile of the Age Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.31∗∗∗ 0.27∗∗∗ 0.16∗∗∗ 0.12∗∗∗ 0.097∗∗∗ 0.089∗∗∗ 0.058∗∗∗ 0.035∗∗∗ 0.018∗∗ 0.0092
(0.011) (0.014) (0.0093) (0.0083) (0.0081) (0.0075) (0.0070) (0.0065) (0.0067) (0.0063)

w̄− 0.023∗∗ 0.032∗∗∗ 0.030∗∗∗ 0.038∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.056∗∗∗ 0.061∗∗∗ 0.065∗∗∗ 0.056∗∗∗

(0.0077) (0.0072) (0.0068) (0.0067) (0.0066) (0.0061) (0.0059) (0.0054) (0.0057) (0.0050)

Within R2 0.61 0.70 0.75 0.77 0.78 0.79 0.80 0.82 0.82 0.82
Observations 313804 256870 253754 294113 205242 301874 284811 261404 221992 223184

Panel C: Decile of the Tenure Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.26∗∗∗ 0.25∗∗∗ 0.19∗∗∗ 0.16∗∗∗ 0.10∗∗∗ 0.077∗∗∗ 0.062∗∗∗ 0.050∗∗∗ 0.035∗∗ 0.012
(0.013) (0.015) (0.016) (0.0099) (0.0086) (0.0096) (0.0085) (0.0095) (0.011) (0.012)

w̄− 0.012 0.022∗∗∗ 0.038∗∗∗ 0.059∗∗∗ 0.051∗∗∗ 0.061∗∗∗ 0.062∗∗∗ 0.065∗∗∗ 0.050∗∗∗ 0.059∗∗∗

(0.0074) (0.0063) (0.0068) (0.0073) (0.0067) (0.0076) (0.0072) (0.0080) (0.0083) (0.0095)

Within R2 0.66 0.73 0.77 0.79 0.80 0.79 0.79 0.78 0.74 0.74
Observations 259787 258018 261847 264724 314261 216646 298387 231182 261285 250908

Panel D: Decile of the Size Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.057∗∗∗ 0.097∗∗∗ 0.13∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.25∗∗∗ 0.16∗∗∗ 0.16∗

(0.0037) (0.0058) (0.0086) (0.011) (0.012) (0.016) (0.022) (0.031) (0.027) (0.069)

w̄− 0.027∗∗∗ 0.040∗∗∗ 0.050∗∗∗ 0.056∗∗∗ 0.042∗∗∗ 0.021 -0.022 -0.084∗∗∗ -0.056∗ -0.11∗∗

(0.0028) (0.0045) (0.0059) (0.0072) (0.0092) (0.012) (0.013) (0.018) (0.026) (0.040)

Within R2 0.78 0.77 0.75 0.74 0.72 0.70 0.70 0.66 0.61 0.65
Observations 263527 276795 256020 256637 266652 259741 260926 259466 257506 259821

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β− as estimated from specification (9) for separate deciles of the wage, age, tenure, and
team size distributions. We include observation i in the decile k in t if i falls into the k’th decile of
the distribution in year t. Team definition 2 at horizon h = 3 years. Standard errors clustered at the
establishment-year level. The regressions include current wage and fixed effects for age decile, tenure
decile, gender, education, occupation, and year (whenever possible).

Table III Baseline results for different deciles of the wage, age, tenure, and team size
distribution.
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positive and significant effects from more highly paid peers above and below for all segments

of the wage distribution, the asymmetry vanishes, and perhaps reverses, at the top. As a

consequence of these strong age patterns, we entertain an age-specific learning function in

the structural estimation below. The results we find there starkly mimic these reduced form

patterns.

Our next set of results is reported in Panel C of Table III and shows that the patterns we

describe are present across the (job) tenure distribution. In particular, the table shows that

more highly paid coworkers are associated with larger wage growth for workers everywhere

in the tenure distribution. In addition, increasing the wages of more highly paid peers has a

larger effect on one’s future wage growth compared with the effect from less-well-paid peers.

The asymmetry is stark at the bottom of the tenure distribution and, similar to the results

for age, vanishes towards the top.

Our final set of results in this subsection gauges the role of team size and is reported

in Panel D of Table III. It shows that the patterns we describe are present in small and

large teams alike. The estimated relationships are somewhat weaker for the smallest teams

and become less precise at the very top.9 These results suggest that learning is, to some

extent, independent of team size and happens throughout the team size distribution. As a

consequence, when we have to take a stance on parametric forms in the structural estimation,

we work with scale-independent learning functions.

3.2.2 Switchers

We now consider whether our baseline results may be driven by mean reversion in wages. To

do so, we run specification (9) for a sample of workers that leave their establishment after

the reference spell. Specifically, we restrict the sample to workers who leave their job after

the reference date in year t and regain employment at a different employer by the reference

date in year t+ 1.10

The results are reported in Panel A of Table IV. The table corroborates the asymmetry

9The reason is that we cluster standard errors at the establishment-year level and there are very few
establishments in the largest team decile.

10Recall that we assign the employer pertaining to the spell overlapping January 31th of any given year
as the annual observation. We further note that our data do not allow us to observe the firm’s other
establishments so we cannot rule out that some of the team-switchers move within the same firm.
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we have found so far using the mover design and shows that more highly paid peers comes

with higher wage growth even for those who move to a different establishment.

Clearly, the effects remain large and significant which implies that our results do not

purely reflect team level mean-reversion in wages. In fact, the results indicate that the effect

of having better coworkers is somewhat larger for agents that switch jobs than for agents

that remain in the same job. This can be the result of selection. Switchers might be the

ones that learned the most, which might give them an incentive to leave the team if there is

no room for their newly acquired skills in their current organization. Alternatively, it maybe

the result of the fact that switchers tend to be young, and young workers’ wage growth is

more sensitive to peers’ wages.

To account for some of these forms of selection we also present results for only those

switchers who experience an interim unemployment spell between jobs. That is, we re-

strict the sample to movers who experience a period of joblessness in year t and report the

corresponding results in Panel B of Table IV.

To go even further, we conclude this section by restricting the sample to switchers with

an interim spell of nonemployment whose reference spell employer also experienced a mass

layoff event in year t.11 Arguably, constructing the sample this way partially controls for

selection and, as can be seen in Panel C of Table IV our corresponding estimates tend to fall

somewhat. Further, the results are somewhat more noisy because we lose most observations.

Nevertheless, the results remain large and significant which strongly suggests that within-

team mean reversion is not a key driver of our baseline results.

3.2.3 Discussion and Robustness

Besides coworker learning there are two other prime mechanisms that might be driving the

patterns uncovered in Tables I and II. First, certain plausible wage back-loading patterns

could give rise to the results. In particular, firms could attempt to retain workers by offering

wage schedules that pay relatively more in the future. Firms could have incentives to do so

11We identify such an event at establishments who had at least 50 employers two years prior and have
since contracted employment by at least 30%. We further require that they did not build up employment by
more than 30% between year t− 3 and t− 2 and that in year t+ 1 employment remains at least 10% below
its year t− 2 level.
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Panel A: All Switchers

Horizon in Years 1 2 3 5 10

w̄+ 0.092∗∗∗ 0.17∗∗∗ 0.20∗∗∗ 0.25∗∗∗ 0.35∗∗∗

(0.012) (0.014) (0.015) (0.016) (0.027)

w̄− -0.052∗∗∗ -0.031∗∗∗ -0.019∗ -0.0082 0.026
(0.0089) (0.0079) (0.0093) (0.011) (0.021)

Within R2 0.59 0.55 0.49 0.40 0.26
Observations 194848 228110 203726 160495 43609

Panel B: Switchers with Unemployment Spell

Horizon in Years 1 2 3 5 10

w̄+ 0.094∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.24∗∗∗ 0.31∗∗∗

(0.018) (0.013) (0.015) (0.017) (0.030)

w̄− -0.039∗ 0.024∗ 0.044∗∗∗ 0.036∗ 0.061∗

(0.020) (0.012) (0.013) (0.016) (0.030)

Within R2 0.37 0.46 0.39 0.31 0.19
Observations 21084 72223 68781 57331 16224

Panel C: Switchers, Mass Layoff Event

Horizon in Years 1 2 3 5 10

w̄+ 0.11 0.14∗∗∗ 0.14∗∗ 0.22∗∗∗ 0.34∗∗∗

(0.059) (0.042) (0.048) (0.052) (0.100)

w̄− 0.032 0.032 0.064 0.049 -0.016
(0.062) (0.040) (0.043) (0.053) (0.11)

Within R2 0.34 0.34 0.28 0.21 0.14
Observations 2264 5258 5453 4904 1545

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β− as estimated from specification (9) on a sample of establishment switchers. Team
Definition 2. Column titles indicate horizon h. Standard errors clustered at the establishment-year level.
The regressions include current wage and fixed effects for age decile, tenure decile, gender, education,
occupation, and year.

Table IV Establishment switchers.
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if it is costly to hire new workers and workers search on the job. This would, for instance, be

the case in an environment similar to Burdett and Coles (2003) or Postel-Vinay and Robin

(2002).

We argue, however, that the additional results we have shown thus far are hard to rec-

oncile with those mechanisms. First, the mover results suggest that the forces we document

are present and similar in size for team switchers, including those who arguably leave their

establishments involuntarily. This suggests back-loading or establishment specific factors

cannot be the only force behind our baseline results. This is further corroborated by the

results which show that our baseline effects are present across the tenure and age distribu-

tion. Second, the sharp asymmetry between β̂+ and β̂−, for which we provide additional

evidence in the next subsection, is hard to reconcile with an explanation which broadly

builds on within-team mean reversion in wages. Third, the asymmetry, jointly with the

results for movers and job tenure rule out that the basic results are exclusively driven by

learning-by-doing or on-the-job search as in Postel-Vinay and Robin (2002)

Finally, we point to additional robustness results which are relegated to Appendix B.2.

There, we show that the patterns documented in this section are robust to modified sample

selection criteria and reduced-form specifications. We show results when we omit teams

with top-coded wages, when we omit teams with apprentices, when we exclusively work with

establishments that neither have a collective bargaining agreement nor benchmark their

wages with one. We also report results when we include more high-dimensional fixed effects.

Most importantly, we show our baseline results under the inclusion of team fixed effects

under both team definitions.

As can be seen from the corresponding tables in Appendix B.2, our baseline results appear

mostly insensitive to these modifications and the basic pattern highlighted throughout this

section remains stable.

We conclude this section by offering the results for a specification which splits individuals

working in the same establishment as worker i into two groups: Those working in the same

occupation and those working in different occupations. We again split each of those two

groups into those paid more than wi and those paid less. We include those four variables on

an otherwise unchanged specification (9) and report the results in Table V.
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Horizon in Years

1 2 3 5 10

w̄+
same occ 0.070∗∗∗ 0.095∗∗∗ 0.12∗∗∗ 0.16∗∗∗ 0.20∗∗∗

(0.0043) (0.0058) (0.0071) (0.0098) (0.024)

w̄−same occ 0.0073∗ 0.011∗ 0.016∗∗ 0.023∗∗∗ 0.055∗∗∗

(0.0030) (0.0042) (0.0048) (0.0062) (0.011)

w̄+
other occ 0.041∗∗∗ 0.060∗∗∗ 0.076∗∗∗ 0.11∗∗∗ 0.14∗∗∗

(0.0043) (0.0056) (0.0065) (0.0088) (0.022)

w̄−other occ 0.024∗∗∗ 0.036∗∗∗ 0.052∗∗∗ 0.076∗∗∗ 0.095∗∗∗

(0.0033) (0.0044) (0.0053) (0.0072) (0.016)

Within R2 0.88 0.81 0.76 0.66 0.46
Observations 3315351 2907077 2509645 1827701 431782

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β− as estimated from specification (9) with separate coefficients for peers in the same
occupation and in other occupations. Column titles indicate horizon h. Standard errors clustered at the
establishment-year level. The regressions include current wage and fixed effects for age decile, tenure
decile, gender, education, occupation, and year.

Table V Peers in the same and in other occupations.

The results indicate that individuals learn more from higher-wage peers in the same

occupation than in other occupations. The asymmetry between β̂+ and β̂− is also much

larger in the same than in other occupations. These results are natural if we interpret them

as resulting from learning. In their own occupation, individuals learn mostly from more

knowledgeable peers. In contrast, when they interact with peers in occupations that use

different knowledge, they learn from everyone since they know less of the topic themselves.

3.2.4 A More Flexible Specification

We end the reduced-form exploration with an exercise that attempts to approximate the wage

distribution surrounding a worker in a flexible way. To do so, we divide a worker’s peers into

11 bins. The bottom bin takes peers j with wage such that log(wj)− log(wi) < −.45 while

the top bin takes those peers with log(wj) − log(wi) > .45. All other workers are grouped

into 9 equally spaced bins in-between. We then compute, for each individual i and year t,
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the fraction of her coworkers in each bin k, pi,k,t, and run the following regression,

wi,t+h =
11∑
k=2

βkpi,k,t + γwi,t + ωage + ωtenure + ωgender + ωeduc + ωocc + ωt + εi,t. (10)

That is, we project log wages h years ahead on the current log wage and a non-parametric ap-

proximation of the current peer wage distribution around a worker, along with our standard

controls and fixed effects. We present the results in Figure 4.

Figure 4 plots the marginal response of log wages h years ahead to increasing the weight

on each of the 10 bins (relative to increasing the weight on bin 1 which is the omitted

category). The figure shows that moving 10% of one’s peers from the bottom bin into the

highest bin increases wages 3 years ahead by slightly more than 1.5%. It also shows that

the effects are naturally larger for longer horizons, but exhibit similar patterns. The figure

confirms the findings from the previous exercises: Those who are less well paid (those in bins

5 and under) have little effect on a worker’s future wage growth. In contrast, workers seem

to benefit from additional highly paid workers in the peer group (those in bins 7 and higher).

Note that, while workers benefit more from more highly paid peers, the effects are less than

proportional.12 This mimics our findings from the structural estimation below which suggest

that knowledge flows more efficiently from those in close proximity relative to those far above

in the wage distribution. Nevertheless, we stress that the effects are monotonically increasing

(almost everywhere), suggesting that individuals learn more from coworkers that are further

out in the wage distribution.

The bottom panel of Figure 4 also confirms that learning from higher earners is accumu-

lates over time, presumably because the composition of teams is highly persistent, but not

in a linear fashion. We report the table underlying Figure 4 in Appendix B.1 along with the

corresponding results for the other team definition. In addition, we report the results, for

the horizon h = 3, for specifications restricted to workers above (or below) the median wage

in their team and to specifications restricted to workers selected from particular deciles of

the wage distribution. The basic patterns in Figure 4 are generally confirmed.

12The top bin collects all peers j such that log (wj) − log (wi) > .45 and thus does not directly compare
with the other groups.
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Notes: We plot the coefficients β̂k from regression specification (10) with weights pk scaled such that
they add up to 100. The bin k = 1 (which takes the peers i such that log (wj) − log (wi) < −.45) is
the omitted category. The top panel only plots h = 3 along with the 95% confidence bands. Standard
errors clustered at the establishment year level. The bottom panel plots estimates for different horizons.
All workers with log (wj)− log (wi) > .45 are in one single bin as indicated by the break in the axis and
the lines. The figure uses Team Definition 2. Standard errors clustered at the establishment-year level.
The regressions include current wage and fixed effects for age decile, tenure decile, gender, education,
occupation, and year.

Figure 4 Approximating the Wage Distribution

4 Structural Estimation

We now turn to a structural estimation of the amount of learning within teams. One of

the key problems interpreting the results in the previous section is that wages do not equal

knowledge. In order to go beyond reduced-form relationships between the distribution of

wages and wage growth and determine the implications of our findings for learning, we need

a theory that allows us to map one into the other. We use the theory developed in Section 2

to do so. Our main objective is to estimate the “learning function” G(·). Below we describe

a strategy to recover G(·) from panel data that includes teams’ wages, and implement our

strategy using the German data.
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Heuristically, our method exploits two dimensions of the data. First, it uses the within-

team coworker pay differentials we observe in repeated cross-sections to back out the worker

types z which are consistent with a particular G(.). That is, compensating differentials

reveal z given a learning function G(.). Second, it uses the intertemporal dimension of the

resulting panel dataset of worker types to estimate G(.). That is, the dynamic evolution of

zi projected on z−i identifies the learning function G(.).

4.1 Identifying Learning Parameters

Our identification strategy requires a panel of at least two years of matched employer-

employee data that includes wages. We rely only on the worker’s Bellman equation,

V (z) = w (z, z̃) + βE [V (z′) |z, z̃] (11)

which is the result of the worker’s maximization. Equation (11) depends on the assumptions

of stationarity, perpetual youth, competitive labor markets, and complete financial markets

(or linear utility).13 However, we do not need to place any assumptions on the set of firms

that are active, or features of the technologies that firms use beyond those which guarantee

that V (z) is increasing (e.g. Assumptions 1 to 3). The set of technologies and firms in the

economy determine the set of teams we observe in equilibrium, but our strategy simply uses

the set of observed teams.

We first note that z does not have a natural cardinality. We are therefore free to choose

a convenient one: If V (z) is the value function in the current equilibrium, we choose a

cardinality of z so that V (z) = z. Then, (11) becomes

z = w (z, z̃) + βE [z′|z, z̃]

= w (z, z̃) + β

∫ ∞
0

z′dG (z′|z, z̃)

13Our approach allows for a number of generalizations. For example, if markets are so incomplete that
agents cannot save or borrow, we can simply replace the current return in (11) with a known increasing and
concave function of the wage.
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or

zi = wi + βE [z′i|zi, z̃−i] (12)

= wi + β

∫ ∞
0

z′idG (z′i|zi, z̃−i) .

Our strategy hinges on the following two observations. First, if we know, for each worker

i, z′i, zi, and z̃−i, we can directly identify G. Conversely, if we know G, we can invert (12)

and solve for zi as a function of a worker’s wage and the wages of her coworkers; for a team of

size n, (12) for each of the n team members delivers a system of n equations in n unknowns

(zi for each team member). Together these equations provide several moment conditions

that can be used to identify G using GMM.

Operationally, we choose a functional form for G (z′|z, z̃; θ), with parameters θ, and we

calibrate β externally. Starting from period t, we can decompose next period’s knowledge,

z′, into expected and unexpected components. Namely,

z′i = E (zi, z̃−i) + εi, (13)

where E (zi, z̃−i) is the conditional expectation and εi is the expectational error. We then use

the moment conditions built from E [εi|zi, z̃−i] = 0. Below we specialize to the case where

E (zi, z̃−i) = E [z′i|zi, z̃−i] is a linear combination of several moments {mk (zi, z̃−i)}Kk=1, so

that E (zi, z̃−i) =
∑K

k=1 θkmk (zi, z̃−i). In such a case, we would have K parameters {θk} and

K natural moment conditions

E [mk (zi, z̃−i) εi] = 0, k = 1, ..., K. (14)

Formally, if a team has n workers, then given θ and w, (12) provide n equations for the n

unknowns of {zi}. Therefore given the wages wt and a vector of team assignments rt, we

can construct Z (wt, rt, θ) to be the I × 1 vector of all workers’ knowledge at t. Given this,

we can construct M (wt, rt, θ) to be the I × k matrix of moments so that the i, k entry of

M (wt, rt, θ) is mk (zi, z̃−i) where zi, z̃−i are the knowledge of i and her coworkers implied by

the wages, wt, the assignment rt, and parameters θ. Then the k moments conditions (14)
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can be stacked as

E
[
M (wt, rt, θ)

T (Z (wt+1, rt+1, θ)−M (wt, rt, θ) θ)
]

= 0. (15)

We solve for θ using an iterative two-step procedure that exploits the panel structure

of our data along with the intertemporal restrictions inherent in the learning function (13).

We first guess parameters θguess. Given this guess, we can back out the types z in a team

solely from information on wages.14 In other words, we invert (12) to solve for all workers’

knowledge, Z (wt, rt, θ). We do this by finding a fixed point z of the operator

T (z) =

{
wi + β

∫
z′dG (z′|zi, z̃−i; θ)

}
i

.

We can then use the wages at time t + 1 to solve for all workers knowledge at t + 1,

Z (wt+1, rt+1, θ). With this, we have the implied values of zi, z̃−i, and z′i for each worker. We

then use these knowledge levels to estimate θ using a linear regression

zit+1 =
K∑
k=1

θkmk (zit, z̃−it) + εit.

If our estimated θ̂ = θguess then we have found a fixed point. This fixed point is a solution

to (15). In practice, we use θ̂ to update our guess and iterate until we find a fixed point.

A proof of identification then amounts to guaranteeing that this procedure has a unique

fixed point. While we currently do not have such a proof, this method has always uncov-

ered the true parameter values in Monte Carlo simulations and has always converged when

implemented on the matched German data.

4.2 Results

Guided by our reduced form findings, we focus on the following parametric form for the

conditional expectation, that implicitly determines G(·),
14As discussed in the theory section above, the vector of types z is the solution to the firm problem in (1).

Here, we simply use the composition of teams observed in the data.
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E [z′i|zi, z̃−i] =

∫ ∞
0

z′idG (z′i|zi, z̃−i; θ) =
1

n− 1

∑
j 6=i

ziΘ

(
zj
zi

)
(16)

where n is the worker’s team size and Θ (·) is a weakly increasing function. Below we let

Θ (·) be piece-wise linear. We focus on the expected value because this is the only feature of

the function G needed to invert the Bellman equation and recover the workers’ knowledge.

This functional form could be motivated by a variant of the model in Lucas (2009) in which a

worker is equally likely to attain knowledge from any coworker, and the function Θ describes

how the worker’s learning depends on the gap between the worker and the coworker. In

contrast to Lucas (2009), however, here agents only learn from coworkers, not from the

whole population.

We begin by studying the parametric learning function

Θ (x) =

 1 + θ0 + θ+ (x− 1) , x ≥ 1

1 + θ0 + θ− (x− 1) , x < 1
,

or

E [z′i − zi|zi, z̃−i] = θ0zi +
1

n− 1

θ− ∑
zj<zi

(zj − zi) + θ+
∑
zj≥zi

(zj − zi)

 . (17)

This learning function allows for asymmetric learning from types zj for a worker zi depending

on whether zj > zi or vice versa. It also allows for a constant time trend in skill growth, θ0.

It is also scale-invariant (apart from the constant) since we divide the second term by n− 1.

In updating our guess for θ = {θ+, θ−, θ0}, we make use of the linear structure of the

learning function and regress z′i−zi on zi,
1

n−1
∑

zj<zi
(zj − zi), and 1

n−1
∑

zj>zi
(zj − zi). Note

that all the information used in this regression is constructed purely from the cross-sectional

dimension of the data in the first step.

For this baseline learning function, we report our parameter estimates along with the

associated standard errors in Table VI.15 Choosing the expected present value of earnings

as the cardinality of z allows for a natural interpretation of these estimates. In particular,

the point estimates suggest that raising the average expected present value of earnings of a

15The only other parameter we need to choose is β which we set to .95 (annual) here. Our results are not
particularly sensitive to this choice.
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Team Definition

1 2

θ+ .0673 .0882
(.0004) (.0006)

θ− .0111 .0370
(.0003) (.0004)

θ0 .0039 .0060
(.00004) (.00003)

Observations 4763089 4590120

GMM standard errors in parentheses

Table VI Parametric estimation results for the learning function (17).

worker’s more-highly-paid coworkers in the team by 100 Euros raises that workers expected

present value of earnings over the next year by 7 to 9 Euros times the share of more-highly-

paid workers. In turn, doing so for the coworkers that are less well paid only increases

expected present value of earnings by 1 to 4 Euros times the share of less-well-paid workers.

This implies that there are only small learning effects coming from less-well-paid coworkers.

Furthermore, the results imply that learning for individuals at the bottom of the distribution

of knowledge in a team is large relative to learning for individuals at the top of the distribu-

tion. Naturally, we find somewhat larger effects for the narrower team definition.16 Clearly,

these point estimates are very much consistent with the reduced form patterns discussed in

the previous section.

Finally, while θ0 is precisely estimated and strictly positive it is very small for both team

definitions. One reason for why we find essentially no trend growth in wages beyond what

arises from learning is that the average real wage growth during the period covered in our

dataset was very limited, as discussed above.

The next step is to generalize the specification of G to allow for additional flexibility in

order to capture potential nonlinearities in coworker learning. Hence, we specify the learning

16One important observation across all specifications we have worked with is that θ0 is substantially larger
for team definition 2.
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function to be defined by Θ(1) = θ0 and

Θ′(x) =


θ++, x ≥ 1 + b

θ+, 1 ≤ x < 1 + b

θ−, x < 1

.

Θ is a continuous and piecewise linear function with kinks at x = 1 and x = 1 + b, and

corresponds to the conditional expectation

E [z′i − zi|zi, z̃−i] = θ0zi+
1

n− 1

{ ∑
zj<zi

θ− (zj − zi) + (18)

∑
zj>zi

[
θ+ (zj − zi) + 1zj>(1+b)zi

(
θ++ − θ+

)
(zj − zi − bzi)

]}
,

where 1 denotes the indicator function. This piece-wise linear function incorporates addi-

tional flexibility yet still allows us to linearly project z′− z on the right-hand-side to update

the four parameters of the learning function {θ0, θ−, θ+, θ++}.17 When implementing this

learning function, we set b = 10%.

The results are reported in Table VII. Our estimates for θ0 and θ− are hardly changed

by the modification of the learning function for either team definition. That is, as before,

changing the wages of those team members with lower type affects an individual’s expected

wage growth little in comparison with those team members with more knowledge. Likewise,

the estimated trend growth remains minimal. Our results indicate that θ+ > θ++, so the

marginal returns (in terms of future wage growth) to improving the knowledge of those above

in the wage distribution appears to be somewhat larger for those in closer proximity in the

distribution of knowledge. Just like in Table VI, we find that the effects are stronger for the

narrower team definition. Workers appear to benefit more from those coworkers that work

in the same occupation. Similarly, improving those below in the skill distribution has far

larger positive effects when they also work in the same occupation.

We conclude this subsection with three short exercises which cast light on the quantitative

17In light of our previous findings and due to computational limitations we have thus far restricted the
learning function to take a single parameter for the group zj < zi. This restriction could, in principle, be
relaxed.
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Team Definition

1 2

θ+ .0844 .1091
(.0011) (.0009)

θ++ .0668 .0853
(.0004) (.0006)

θ− .0102 .0346
(.0003) (.0004)

θ0 .0038 .0058
(.00004) (.00003)

Observations 4763089 4590120

GMM standard errors in parentheses.

Table VII Estimates for the learning function (18).

importance of coworker learning and its interplay with how teams are formed. We run all

three exercises in the context of both the basic learning function (17) and the piece-wise

linear learning function in (18) for both team definitions.

4.2.1 Investment in Knowledge

An individual receives compensation in two ways: with wages and with knowledge. We can

use our estimated framework to gauge the quantitative importance of coworker learning in

the economy by comparing the value of knowledge flows to the value of wage payments.

Specifically, we compute the value of the annual flow of knowledge, β (z′i − z), where next

period’s knowledge z′i is given by equation (13) and compute its simple pooled average across

all individuals and years in our sample. We then subtract the pure trend component βθ0z

from this and contrast it with the pooled average of wages.

We present the results for both team definitions and both learning function in Table

VIII. Coworkers knowledge flows account for roughly 4-9% of the average flow value workers

receive, with the remainder given by the wage. This is the total value of knowledge flows each

worker receives relative to the knowledge flows she would attain from working on a team of

identical workers. In other words, agents invest on average 4-9% of their total compensation
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Team Definition

Learning Function 1 2

Basic Learning 8.25% 3.62%

Piece-Wise Linear Learning 8.68% 4.21%

Notes: First row refers to results for learning function (17) and second row to results for learning function
(18).

Table VIII Coworker learning as a fraction of compensation.

in learning from others at work.18 While the results are fairly similar across the two different

specifications, they are substantially larger for team definition 1. The reason is simply that

there is more within-team knowledge dispersion with team definition 1: Workers do not

only learn from their coworkers in the same occupation but also from everyone else in the

establishment.

Naturally, there is substantial heterogeneity in this breakdown across the knowledge

distribution. For the basic learning function and team definition 1, knowledge flows amount

to 16.0% for the bottom decile of the knowledge distribution reflecting the substantial room

for learning at the bottom. In turn, it becomes negative at the top decile, dropping to -.02%,

reflecting the mild negative effect of having mostly less knowledgeable coworkers. Naturally,

this is somewhat less pronounced for the second team definition where the bottom decile

receives 6.2% of their flow compensation in terms of learning, dropping to -1.2% at the top.

The numbers are very similar for the piece-wise linear learning function.

4.2.2 The Role of Sorting

In equilibrium, the team selected by a firm produces both output and knowledge. As a

result, the sorting of workers across firms reflects both of these goals. How does equilibrium

sorting affect the value of learning within teams? How much would the total value of learning

18If individuals do, in fact, learn from coworkers with the same knowledge, then some of the trend compo-
nent would also represent knowledge flows. We note that when we do not subtract the trend component this
number rises substantially, to approximately 17% in all four cases. The effect of the trend component βθ0z
is large since average knowledge levels are high relative to the amount of dispersion in knowledge within
teams.
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Team Definition

Learning Function 1 2

Basic Learning 64.99% 91.36%

Piece-Wise Linear Learning 64.48% 88.07%

Notes: First row refers to results for learning function (17) and second row to results for learning function
(18).

Table IX Increase in knowledge growth from random assignment.

change if teams were formed randomly?

To assess the role of coworker sorting for learning, we conduct a simple experiment

where we randomly reshuffle workers across existing teams in the final coworker year in our

sample, 2008. We leave the team size distribution unaltered and compute, for all workers, a

counterfactual conditional expectation E
(
zi, z̃

cf
−i
)

for z′i where z̃cf
−i is worker i’s counterfactual

peer group.

We then contrast the average of the counterfactual conditional expectation with the

average of the factual conditional expectation, E (zi, z̃−i). We report the results in Table IX

which shows that, under random sorting, the average growth in z rises between 64% and

91%. We highlight that the associated losses in the value of output must weakly exceed

these knowledge gains in an efficient allocation. The results are naturally larger for team

definition 2 because within-team knowledge dispersion is smaller in more narrowly defined

teams.

These findings suggest that workers are allocated to teams in a way that hinders knowl-

edge flows relative to a random sorting benchmark. We interpret this as reflecting supermod-

ularity in the production function, which results in positive assortative matching of workers

in teams. Intuitively, since the learning function is increasing and convex over much of its

domain, learning benefits from large differences between coworkers. In contrast, production

benefits from small differences between team members due to knowledge complementarity in

the production function. In sum, these findings seem to suggest a tension between the con-

temporaneous requirements on the production side and the dynamic returns from coworker
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Team Definition

Learning Function 1 2

Basic Learning -33.47% -19.56%

Piece-Wise Linear Learning -33.53% -19.70%

Notes: We first compute the variance of log wages and then the variance of log overall compensation.
We report the percentage decline when moving from the first to the second measure of inequality. First
row refers to results for learning function (17). Second row for learning function (18).

Table X Decline in inequality when taking learning into account.

learning.

4.2.3 Inequality

Two individuals with the same knowledge and same present value of earnings might earn

different wages because they work on teams with different opportunities to learn. In other

words some of the wage differences reflect compensating differentials for learning rather than

unequal compensation.

We now ask how variation in log wages compares to variation in log compensation,

where compensation is measured as (1 − β)zi = wi + βE[z′i − zi|zi, z̃−i]. The unconditional

variance of log wages in our data is approximately .13, while the unconditional variance in

log compensation is approximately .10 or .09, depending on the team definition (and similar

for both learning functions).

Table X reports the difference between the variance of log wages and the variance in

log compensation as a fraction of the variance of log wages. By this measure, inequality in

compensation is one-fifth to one-third smaller than wage inequality. Note that the result

that compensation inequality is smaller is not mechanical; it reflects the fact that those with

less knowledge receive a larger share of their compensation in the form of learning.
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4.2.4 An Alternative Interpretation

The equations characterizing an individuals value function use the idea that the change in

one’s knowledge depends on the distribution of knowledge among one’s coworkers. There

is an alternative interpretation of the equations that characterize learning that is consistent

with our empirical specification of learning.

Suppose that z, instead of being a scalar, represents a vector of individual characteris-

tics. For example, these characteristics could reflect different dimensions of knowledge. In

such an environment, one possibility is that learning is such that the change in one’s value

function depends on the composition of one’s coworkers’ value functions. Namely, in this

case, it is natural to assume that the learning function depends on values, not on knowledge

directly, since values provide a relevant summary of the vector of characteristics z. Then, the

procedure outlined above to obtain an individual’s knowledge from a panel of wages simply

recovers the values of all agents, as in equation (11). Under this assumption, our method-

ology can be used exactly as described, and our quantitative results would be unchanged.

We would simply interpret the estimated learning function as determining how the value of

other agents determines the change in value of a given individual.

5 Incorporating Other Observables

We now show how our methodology can be extended to a setting in which either the produc-

tion function or the learning function (or even the value placed on knowledge) depends on

worker characteristics aside from knowledge. These characteristics may or may not evolve

endogenously. We require the characteristics to be observable.

An individual is described by knowledge z and a vector of observable characteristics

x. These evolve according to a joint Markov process. For example, x could consist of an

individual’s age, schooling, occupation, location, etc. Denote the joint Markov process by

G (z′, x′|z, x, {z̃, x̃}) .
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The value function for an individual with state z, x is V (z;x) satisfying

V (z, x) = w (z, x; {z̃, x̃}) + β

∫ ∫
V (z′, x′)G (dz′, dx′|z, x, {z̃, x̃}) .

Thus both the production function and the learning function can depend on the individual

characteristics and those of her coworkers. The realized value function of worker i at time t

is

vit = wit + β

∫ ∫
V (z′, x′)G (dz′, dx′|zit, xit, {z̃it, x̃it}) . (19)

The key step is to transform the learning function from the knowledge space to the value

space. We require that V is strictly increasing in z for each x, and therefore has a partial

inverse Z (v, x) that satisfies v = V (Z (v, x) , x) and z = Z (V (z, x) , x). Further, define the

learning function in the value space as

Ĝ (v′, x′|v, x, ṽ, x̃) ≡ G
(
Z (v′, x′) , x′|Z (v, x) , x, Z̃ (ṽ, x̃) , x̃

)
,

where Z̃ (ṽ; x̃) is the vector of coworkers’ knowledge given their values and characteristics.

With this, we can write (19) as

vit = wit + β

∫ ∫
v′Ĝ (dv′, dx′|v, x, ṽ, x̃) . (20)

5.1 Algorithm

We now show that it is straightforward to extend the methodology described in the previous

section to estimate the function Ĝ. Let E be the conditional expectation,

E (v, x, ṽ, x̃) ≡ E [v′|v, x, ṽ, x̃] =

∫ ∫
v′Ĝ (dv′, dx′|v, x, ṽ, x̃) ,

so that the realized Bellman equation (20) can be written as

vit = wit + βE (vit, xit, ṽ−it, x̃−it) . (21)
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If we observed {v′i, x′i, vi, xi, ṽ−i, x̃−i} for each worker, we could directly estimate E . And

conversely, if we knew E and we observed {wit, xit, x̃−i, x
′
i} for each worker, we could solve

for {vit} for each team using the system of equations given by (21) for each team member.

We can again cast this in terms of GMM. For example, suppose we assume E takes the

form of a linear combination of moments {mk (v, x, ṽ, x̃)}Kk=1, so

E (v, x, ṽ, x̃) =
K∑
k=1

θkmk (v, x, ṽ, x̃) .

Next, define the expectational error term εit+1 to be

εit+1 ≡ vit+1 − E [vit+1|vit, xit, ṽ−it, x̃−it]

= vit+1 − E (vit, xit, ṽ−it, x̃−it) .

We can again build moment conditions to estimate θ from E [εit+1|vit, xit, ṽit, x̃it] = 0. Our

natural moment conditions would then be E [εit+1mk (vit, xit, ṽit, x̃it)] = 0. Formally, given

θ, we can solve for {vit} using (21). Given the entire vector of wages w, observable charac-

teristics x, and team assignments r, let Υ (w, x, r, θ) be the corresponding values that have

been solved for using (21) so that {vit} = Υ (wt, xt, rt, θ) . Given this, we can construct

M (wt, xt, rt, θ) to be the I × k matrix of moments so that the i, k entry of M (wt, xt, rt, θ)

is mk (vi, xi, ṽ−i, x̃−i) where vi, ṽ−i are the values of i and her coworkers implied by the

wages, wt, the observable characteristics xt, the assignment rt, and parameters θ. Then the

k moments conditions (14) can be stacked as

E
[
M (wt, xt, rt, θ)

T (Υ (wt+1, xt, rt+1, θ)−M (wt, xt, rt, θ) θ)
]

= 0.

5.2 Results

We illustrate this methodology by studying the differences in learning between young and old

workers. Let {y, o} indicate whether a worker is young or old. We implement the following
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parametric form for the conditional expectation

Ey [v′i − vi|vi, ṽ−i] = θ0yvi +
1

n− 1

{
θ+yy

∑
vj>vi,j young

(vj − vi) + θ+yo
∑

vj>vi,j old

(vj − vi)

}
(22)

Eo [v′i − vi|vi, ṽ−i] = θ0ovi +
1

n− 1

{
θ+oy

∑
vj>vi,j young

(vj − vi) + θ+oo
∑

vj>vi,j old

(vj − vi)

}
.

This specification allows knowledge flows to depend on both the age group of the worker and

the age group of her coworker. For instance, θ+yo captures the strength of the knowledge flows

from old to young coworkers. Furthermore, the specification allows for age group specific

trend growth. For simplicity we do not allow for any effects of coworkers j with vj < vi.

In practice, we do not regroup workers across age groups and instead label them y when

younger than 40 in the year 2000. We then implement our routine on a short panel, using

only information from the years 2000-2002. The rest of the implementation follows exactly

the same routine outlined in the previous section.

We present our results in Table XI. In line with our previous findings we find little trend

growth for either age group. For the first team definition we find that both the young and

the old learn more from the old. In fact, the old only seem to learn from the old, with

slightly negative trend growth and learning from the young. For the second, narrower team

definition we find that each group learns more from itself, that is the young learn more from

the young than from the old and vice versa for the old. Regardless of the team definition,

the young learn far more than the old, closely in line with our reduced form findings.

6 Conclusion

We set out to study learning from coworkers. We found evidence suggesting that in fact

this form of learning is significant. Our results are intuitive and natural. Workers learn

from those more knowledgeable than they are; knowledge growth is more sensitive to more-

knowledgeable coworkers than to less-knowledgeable coworkers. Individuals—especially those

that are younger and less knowledgeable—invest a substantial fraction of their compensa-

tion into knowledge growth. As a result, inequality in wages overstates inequality in total
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Team Definition

1 2

trend growth young: θ0y .0095 .0109
(.0002) (.0003)

learning of young from young: θ+yy .2810 .1734
(.0083) (.0119)

learning of young from old: θ+yo .3581 .1467
(.0309) (.0197)

trend growth old: θ0o -.0025 .0040
(.0008) (.0005)

learning of old from young: θ+oy -.0020 .0446
(.0013) (.0031)

learning of old from old: θ+oo .0551 .0876
(.0049) (.0077)

Observations 457266 436265

GMM standard errors in parentheses.

Notes: Old defined as 40 and older in year 2000.

Table XI Estimates for the learning function (22).

41



compensation.

We hope that these findings are useful in encouraging work on more theories and empirical

research with learning from coworkers at their core. Our theory, although general in its

specification of technology and existing complementarities in production, does assume that

workers are simply income maximizers and that labor markets are competitive. It would be

valuable to refine our estimates of the value of learning in the workplace by relaxing these

assumptions.

Finally, the importance of learning from coworkers implied by our findings suggests large

aggregate consequences of any economy-wide change that affects the composition of teams.

Many such changes come to mind, like, for example, technological improvements in informa-

tion and communication technology, other forms of skilled-biased technical change, as well

as increased spatial segregation. Our results underscore the importance of studying these

and other well-known trends in the economy from the point of view of their effect on team

formation and the resulting learning from coworkers.
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Appendix

A Data Appendix

Construction of Basic Annual Panel

The basic dataset comes in spell format where a spell can correspond either to employment or to
a period of benefit receipt. We implement the publicly available code by Eberle, Schmucker and
Seth (2013) to convert the spells into monthly cross sections which we then merge into a monthly
panel covering 1993-2010.19 For each spell that runs through an entire calendar year we see one
observation per variable (occupation, employment status, average hourly wage, type of benefit
receipt,...) per year. For all other spells, we see one observation per variable per spell.

Our main analysis is carried out on an annual panel and we select the spell overlapping January
31st of a given year as the observation for the year. This implies that the peer groups we study are
the full workforce of the sample establishments on January 31st of each year from 2000 to 2008.
To construct real prices we deflate using a CPI provided by the data provider.

When assigning a wage observation we assign the daily wage during spells of full time employ-
ment unless otherwise noted.20 As a consequence, we ignore information on earnings from part time
employment and construct peer groups only from full time employees for full time employees. The

19Download link accessed under http://doku.iab.de/fdz/reporte/2013/MR 04-13 EN.pdf.
20We follow the routine in the aforementioned code to select a main employment spell in case individuals

hold several jobs.
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reason is that, while we observe a part time flag, we do not have good information on hours which
blurs the mapping between daily earnings—as reported to the social security administration—and
the wage for non full time employees.

Construction of Regression Sample for Section 3

Team Construction We identify all workers that work at one of the sample establishments
and construct teams with minimum size 2 as the collection of workers employed full time subject to
social security during the reference spell for a given calendar year. We exclude workers in vocational
training and interns. Thus, our reduced form exploration projects log wages for individual i working
full time subject to social security in year t+ n on the wages of her full-time coworkers in year t if
she worked in one of our sample establishments in year t.

Wages We drop the bottom percentile and the top .1 percentile of the annual wage observations
and, since our approach requires information on wages, we only use information on full time workers
who work subject to social security.21 We flag observations which are top-coded due to the social
security ceiling when they fall into one of the two masspoints which are easily identified in the wage
distribution in a given year. We further omit any observations from the regressions in section 3
where wage growth over the corresponding horizon h falls into the top or bottom tenths of percentile
of the pooled sample.

Mass Layoffs and Job Loss To identify a mass layoff event at an establishment, we use
information from the IAB establishment panel, which is the annual survey from which the panel
cases in our dataset are sampled. In particular, we identify a mass layoff event if the following
is true: The establishment reduces full time employment by at least 25% since two years prior,
still has a strictly positive number of full time employees, had more than 25 employees two years
prior, did not build up employment by more than 30% between three and two years prior, does not
rebuild to more than 90% of employment two years prior within the next year, and was surveyed
each years from three years prior to one year past.22

We register a job loss for individual i in year t if there is at least one instance where she is
employed subject to social security at the end of a month but not anymore at the end of the
following month.23 We register a job loss in the context of a mass layoff event in year t if we
register a job loss at the individual level during year t and a mass layoff event at her ascribed
establishment, that is the one she works at during the spell overlapping January 31st of that year,
during the same year t.

21The reason for the asymmetry is that almost no wage observations lie above the social security ceiling.
A small number of observations have a wage that is above the ceiling which the data provider suspects may
either be due to bonuses or actually incorrect. Dropping the top .1 percentile each year eliminates any such
observations.

22These criteria closely follow Davis and von Wachter (2011).
23We do so when we actually have information on that worker for the following month, that is when we

see her receiving benefits. If we do not have any information for the subsequent month we only register job
loss if the worker disappears for more than two months from the dataset.
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Construction of Estimation Sample for Section 4

To construct the sample for the structural estimations in section 4, we build on the same annual
worker panel underlying our reduced form work.

We largely mimic the construction of the sample used in the reduced form part. We likewise
drop the bottom percentile and the top .1 percentile of wage observations and only use information
on full time workers who work subject to social security. As in the reduced form, we assign the
workforce on January 31 during any year to the establishment in that year. Furthermore, we only
keep establishments which were surveyed every year between 2000 and 2010. While this is clearly
not necessary, it still leaves us with a very large number of observations. We constructed the sample
in this way so as to be able to supplement the analysis with firm level information from the BHP
establishment survey.

Correlations

We compute a set of correlations of various wage moments at the team level. Specifically, Table XII
reports the correlation matrix of team average pay, team pay dispersion, team mean-median ratio
(skewness), team size, and max wage at the team. All entries of the matrix are positive except the
correlation between team average pay and the mean-median ratio. 24

Mean Wage SD Wage Mean/median Team size Max wage
Mean Wage 1
Wage sd 0.25 1
Mean/median −0.15 0.09 1
Team size 0.09 0.23 0.05 1
Max wage 0.92 0.48 0.02 0.28 1

Table XII Pairwise correlations at the team level, team definition 2. All variables in logs

B Additional Reduced Form Empirical Results

B.1 Figure 4

This section offers the regression output underlying Figure 4. It then offers the same table for the
alternative team definition followed by the results for various restricted samples at horizon h = 3.

24A natural interpretation is that highly productive teams have a skewed wage distribution with very
highly paid managers.
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Horizon in Years

1 2 3 5 10

Bin 2 0.000088∗ 0.00024∗∗∗ 0.00036∗∗∗ 0.00047∗∗∗ 0.00100∗∗∗

(0.000037) (0.000050) (0.000061) (0.000081) (0.00021)

Bin 3 0.000023 0.000091∗ 0.00018∗∗∗ 0.00025∗∗∗ 0.00082∗∗∗

(0.000031) (0.000040) (0.000048) (0.000070) (0.00017)

Bin 4 -0.000062 -0.00000048 0.000075 0.00013 0.00048∗∗

(0.000032) (0.000043) (0.000048) (0.000069) (0.00016)

Bin 5 -0.000079∗ -0.000013 0.000088 0.00019∗∗ 0.00075∗∗∗

(0.000032) (0.000041) (0.000048) (0.000070) (0.00017)

Bin 6 0.000049 0.00015∗∗∗ 0.00026∗∗∗ 0.00039∗∗∗ 0.00079∗∗∗

(0.000032) (0.000044) (0.000053) (0.000073) (0.00016)

Bin 7 0.00025∗∗∗ 0.00036∗∗∗ 0.00049∗∗∗ 0.00065∗∗∗ 0.0011∗∗∗

(0.000035) (0.000044) (0.000049) (0.000071) (0.00018)

Bin 8 0.00037∗∗∗ 0.00051∗∗∗ 0.00068∗∗∗ 0.00085∗∗∗ 0.0014∗∗∗

(0.000038) (0.000049) (0.000054) (0.000077) (0.00019)

Bin 9 0.00042∗∗∗ 0.00057∗∗∗ 0.00073∗∗∗ 0.00092∗∗∗ 0.0014∗∗∗

(0.000041) (0.000053) (0.000060) (0.000082) (0.00020)

Bin 10 0.00040∗∗∗ 0.00051∗∗∗ 0.00066∗∗∗ 0.00080∗∗∗ 0.0011∗∗∗

(0.000043) (0.000056) (0.000066) (0.000094) (0.00020)

Bin 11 0.00081∗∗∗ 0.0012∗∗∗ 0.0016∗∗∗ 0.0023∗∗∗ 0.0033∗∗∗

(0.000042) (0.000056) (0.000066) (0.000095) (0.00023)

Within R2 0.88 0.81 0.76 0.66 0.46
Observations 3354925 2942967 2537838 1846999 436728

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Each row reports the coefficient on the weight of bins 2 through 11 where the weight on the bottom
bin is the omitted category. Each column corresponds to one line in figure 4. Team definition 2. Column
titles indicate horizon h. Standard errors clustered at the establishment-year level. The regressions
include current wage and fixed effects for age decile, tenure decile, gender, education, occupation, and
year.

Table XIII Results for figure 4 using specification (10).
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All
Above

Team-Median
Below

Team-Median
2nd Pct. 4th Pct. 7th Pct. 9th Pct.

Bin 2 0.00036∗∗∗ 0.0010∗∗ 0.00028∗∗∗ 0.00062∗ -0.00016 0.0016∗∗∗ 0.00016
(0.000061) (0.00035) (0.000057) (0.00026) (0.00042) (0.00024) (0.00011)

Bin 3 0.00018∗∗∗ 0.0013∗∗∗ 0.00015∗∗∗ 0.00012 0.00054 0.00038∗ 0.000060
(0.000048) (0.00034) (0.000044) (0.00026) (0.00033) (0.00016) (0.00010)

Bin 4 0.000075 0.0011∗∗∗ 0.00011∗ 0.00029 0.00050 0.00067∗∗∗ -0.000041
(0.000048) (0.00030) (0.000046) (0.00022) (0.00033) (0.00016) (0.000090)

Bin 5 0.000088 0.00057 0.00021∗∗∗ 0.00055∗ 0.00028 0.00051∗∗ 0.00017∗

(0.000048) (0.00030) (0.000045) (0.00022) (0.00031) (0.00016) (0.000087)

Bin 6 0.00026∗∗∗ 0.00087∗∗ 0.00044∗∗∗ 0.00063∗∗ 0.00041 0.00088∗∗∗ 0.00028∗∗∗

(0.000053) (0.00029) (0.000046) (0.00021) (0.00032) (0.00016) (0.000081)

Bin 7 0.00049∗∗∗ 0.0011∗∗∗ 0.00058∗∗∗ 0.00093∗∗∗ 0.00078∗ 0.0010∗∗∗ 0.00068∗∗∗

(0.000049) (0.00029) (0.000057) (0.00021) (0.00032) (0.00016) (0.000081)

Bin 8 0.00068∗∗∗ 0.0013∗∗∗ 0.00075∗∗∗ 0.00090∗∗∗ 0.00060 0.0012∗∗∗ 0.00098∗∗∗

(0.000054) (0.00029) (0.000081) (0.00022) (0.00032) (0.00016) (0.000085)

Bin 9 0.00073∗∗∗ 0.0014∗∗∗ 0.00044∗∗∗ 0.0011∗∗∗ 0.0010∗∗ 0.0012∗∗∗ 0.0013∗∗∗

(0.000060) (0.00030) (0.000089) (0.00022) (0.00037) (0.00016) (0.00012)

Bin 10 0.00066∗∗∗ 0.0014∗∗∗ 0.00033∗∗ 0.00060∗ 0.0013∗∗∗ 0.0016∗∗∗ 0.0079∗

(0.000066) (0.00029) (0.00012) (0.00024) (0.00035) (0.00015) (0.0036)

Bin 11 0.0016∗∗∗ 0.0024∗∗∗ 0.00020 0.0017∗∗∗ 0.0015∗∗∗ 0.0017∗∗∗ 0
(0.000066) (0.00030) (0.00012) (0.00022) (0.00032) (0.00017) (.)

Within R2 0.76 0.71 0.78 0.091 0.048 0.061 0.17
Observations 2537838 1307463 1230371 235351 245260 244998 244236

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Each row reports the coefficient on the weight of bins 2 through 11 where the weight on the
bottom bin is the omitted category. Columns 2 and 3 report the results when the sample is restricted
to workers above (below) the team median wage. The remaining columns restrict the sample to workers
from particular parts of the wage distribution. Team definition 2. Column titles indicate horizon h.
Standard errors clustered at the establishment-year level. The regressions include current wage and
fixed effects for age decile, tenure decile, gender, education, occupation, and year.

Table XIV Results from specification (10) under team definition 2 for various restricted
samples.

B.2 Robustness

This sections evaluates the robustness of the main reduced form empirical results reported in section
3.2. We do so for team definition 2 at the horizon h = 3 years and report the corresponding tables
for team definition 1 below.

To do so, we begin by contrasting our baseline results for specification (9) when omitting teams
that have any apprentices.25 We then restrict the sample exclusively to teams without any top-
coded wage observations.26 We report the corresponding results, contrasted with our benchmark

25We highlight that even our baseline results do not use any wage information on workers in apprenticeship.
26The ceiling varies from year to year and differs between former Eastern and Western Germany. Further-

more the data display a certain amount of bunching in a small interval around the officially reported ceiling
levels. To identify workers with top-coded wages we thus simply group workers into 50 Euro-cent wide bins
in each year and flag the two bins with the most mass.
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Baseline
Teams w/o
Apprentices

Teams w/o
Top CodedWages

w̄+ 0.16∗∗∗ 0.16∗∗∗ 0.12∗∗∗

(0.0074) (0.0079) (0.0055)

w̄− 0.041∗∗∗ 0.054∗∗∗ 0.056∗∗∗

(0.0050) (0.0053) (0.0046)

Within R2 0.76 0.76 0.73
Observations 2617097 1667028 1319836

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β̂− as estimated from specification (9). Team definition 2. Column (1): Baseline. Column
(2): Sample restricted to teams without workers in apprenticeship. Column (3): Sample restricted to
teams without top-coded wages. Standard errors clustered at the establishment-year level. The regres-
sions include current wage and fixed effects for age decile, tenure decile, gender, education, occupation,
and year (whenever possible).

Table XV Subsamples. Team Definition 2.

results, for h = 3 in table XV and, for the alternative team definition, in table XXI. While the
results vary across the samples, the main takeaway from our reduced form exercises is robust.

We next restrict the sample to workers in teams that are not restricted by collective bargaining
agreements. To that end, we use IAB establishment panel for the year 2000 which asks establish-
ments whether a binding collective bargaining agreement exists and if so if they pay above the
applicable collective bargaining agreement. The survey also asks whether firms benchmark their
wages with a collective bargaining agreement in case they are not subject to a binding agreement.
The second columns of table XVI reports the results if we restrict the sample to workers in es-
tablishments paying, on average, at least 10% above their collective bargaining agreement in the
year 2000. The third column restricts the sample to establishments that are neither subject to a
collective bargaining agreement nor report to benchmark their pay structure with one.

Finally, we offer results for various specifications where we include higher-dimensional fixed
effects. In particular, we extend the baseline specification (9) in three different ways. First, we
include additional fixed effects for establishment (establishment x occupation in the second team
definition). In a second specification, we include additional team fixed effects. In a third specifica-
tion, we include occupation x year fixed effects.

In doing so, we replace the separate right hand side variables w̄+ and w̄− in specification (9) with
the gap w̄+ − w̄−. The reason is the following: One’s own wage, those of higher paid teammates,
and those of lower paid teammates are approximately (but not exactly) collinear with a team fixed
effect. If we include a team fixed effect, we cannot recover both of β+ and β−, but we can recover
their difference. The results are reported in table XVII.

B.3 Tables for Team Definition 1

This subsection reports all empirical results from the main body of the paper when we define a
peer group to be all workers at an establishment.
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All 2000 >10% CB
No CB, No

Benchmarking

w̄+ 0.14∗∗∗ 0.14∗∗∗ 0.11∗

(0.021) (0.024) (0.051)

w̄− 0.044∗∗∗ 0.047∗∗∗ 0.027
(0.013) (0.014) (0.027)

Within R2 0.75 0.75 0.67
Observations 336073 275890 10591

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β̂− as estimated from specification (9). Team definition 2. Column (1): Benchmark
results for year 2000 at horizon h = 3 years. Column (2): Restrict sample to establishments which
report to pay at least 10% above their collective bargaining agreement. Column (3): Restrict sample to
establishments which neither have a collective bargaining agreement nor benchmark their wage structure
with one. The regressions include current wage and fixed effects for age decile, tenure decile, gender,
education, occupation, and year.

Table XVI Collective Bargaining. Team Definition 2.

Baseline Est x Occ FE Team Occ x Yr

w̄+ − w̄− 0.057∗∗∗ 0.087∗∗∗ 0.12∗∗∗ 0.060∗∗∗

(0.0042) (0.0047) (0.0052) (0.0038)

Within R2 0.76 0.47 0.51 0.76
Observations 2617097 2614229 2585060 2617037

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: We replace the separate right hand side variables w̄+ and w̄− in specification (9) with the
gap w̄+ − w̄−. Team definition 2, horizon h = 3. Column (1): Baseline. Column (2): Baseline plus
establishment x occupation fixed effects. Column (3): Baseline plus establishment x occupation x year
fixed effects. Column (4): Baseline plus occupation x year fixed effects. The regressions include current
wage and fixed effects for age decile, tenure decile, gender, education, occupation, and year.

Table XVII Fixed Effects.
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Horizon in Years

1 2 3 5 10

w̄+ 0.090∗∗∗ 0.13∗∗∗ 0.17∗∗∗ 0.23∗∗∗ 0.32∗∗∗

(0.0041) (0.0055) (0.0065) (0.0089) (0.020)

w̄− 0.025∗∗∗ 0.039∗∗∗ 0.057∗∗∗ 0.085∗∗∗ 0.12∗∗∗

(0.0030) (0.0039) (0.0048) (0.0069) (0.015)

Within R2 0.89 0.82 0.77 0.68 0.48
Observations 4026321 3522994 3032228 2197932 515017

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β− as estimated from specification (9). Team definition 1. Column titles indicate horizon
h. Standard errors clustered at the establishment-year level. The regressions include current wage and
fixed effects for age decile, tenure decile, gender, education, occupation, and year.

Table XVIII Estimation Results for Specification (9). Team Definition 1. Counterpart to
table II.

Horizon in Years

1 2 3 5 10

Bin 2 0.000038 0.00018∗∗ 0.00028∗∗∗ 0.00045∗∗∗ 0.00068∗∗∗

(0.000031) (0.000055) (0.000070) (0.000088) (0.00013)

Bin 3 0.00018∗∗∗ 0.00033∗∗∗ 0.00050∗∗∗ 0.00076∗∗∗ 0.0011∗∗∗

(0.000034) (0.000046) (0.000055) (0.000069) (0.00011)

Bin 4 0.00015∗∗∗ 0.00030∗∗∗ 0.00046∗∗∗ 0.00066∗∗∗ 0.00093∗∗∗

(0.000026) (0.000041) (0.000048) (0.000059) (0.00011)

Bin 5 0.000025 0.00014∗∗∗ 0.00029∗∗∗ 0.00055∗∗∗ 0.0011∗∗∗

(0.000025) (0.000037) (0.000045) (0.000063) (0.00013)

Bin 6 0.000066 0.00020∗∗∗ 0.00035∗∗∗ 0.00056∗∗∗ 0.00073∗∗∗

(0.000034) (0.000048) (0.000062) (0.000073) (0.00011)

Bin 7 0.00029∗∗∗ 0.00041∗∗∗ 0.00056∗∗∗ 0.00080∗∗∗ 0.0012∗∗∗

(0.000026) (0.000037) (0.000044) (0.000061) (0.00013)

Bin 8 0.00040∗∗∗ 0.00058∗∗∗ 0.00078∗∗∗ 0.0011∗∗∗ 0.0015∗∗∗

(0.000028) (0.000041) (0.000048) (0.000063) (0.00014)

Bin 9 0.00045∗∗∗ 0.00067∗∗∗ 0.00092∗∗∗ 0.0013∗∗∗ 0.0017∗∗∗

(0.000035) (0.000051) (0.000057) (0.000075) (0.00015)

Bin 10 0.00050∗∗∗ 0.00075∗∗∗ 0.00100∗∗∗ 0.0014∗∗∗ 0.0018∗∗∗

(0.000038) (0.000058) (0.000066) (0.000089) (0.00018)

Bin 11 0.00075∗∗∗ 0.0011∗∗∗ 0.0015∗∗∗ 0.0022∗∗∗ 0.0031∗∗∗

(0.000032) (0.000048) (0.000057) (0.000080) (0.00015)

Within R2 0.89 0.82 0.77 0.68 0.48
Observations 4061699 3553684 3057261 2215146 518545

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Each row reports the coefficient on the weight of bins 2 through 11 where the weight on the bottom
bin is the omitted category. Each column corresponds to one line in figure 4. Team definition 1. Column
titles indicate horizon h. Standard errors clustered at the establishment-year level. The regressions
include current wage and fixed effects for age decile, tenure decile, gender, education, occupation, and
year.

Table XXIV Results from specification (10) under team definition 1. Counterpart to table
XIII.
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Panel A: All Switchers

Horizon in Years 1 2 3 5 10

w̄+ 0.080∗∗∗ 0.15∗∗∗ 0.18∗∗∗ 0.23∗∗∗ 0.35∗∗∗

(0.012) (0.012) (0.013) (0.014) (0.025)

w̄− -0.033∗∗∗ -0.0037 0.0065 0.029∗∗ 0.052∗

(0.0084) (0.0080) (0.0092) (0.011) (0.022)

Within R2 0.61 0.56 0.51 0.42 0.28
Observations 236844 275172 245570 193710 52114

Panel B: Switchers with Unemployment Spell

Horizon in Years 1 2 3 5 10

w̄+ 0.092∗∗∗ 0.17∗∗∗ 0.19∗∗∗ 0.22∗∗∗ 0.33∗∗∗

(0.015) (0.011) (0.012) (0.014) (0.025)

w̄− -0.038∗ 0.052∗∗∗ 0.056∗∗∗ 0.049∗∗∗ 0.062∗

(0.017) (0.011) (0.013) (0.015) (0.030)

Within R2 0.39 0.47 0.41 0.32 0.21
Observations 26822 87818 83827 70084 19542

Panel C: Switchers, Mass Layoff Event

Horizon in Years 1 2 3 5 10

w̄+ 0.15∗∗ 0.15∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.35∗∗∗

(0.054) (0.033) (0.036) (0.041) (0.072)

w̄− 0.078 0.10∗∗ 0.042 0.062 0.091
(0.053) (0.038) (0.041) (0.049) (0.088)

Within R2 0.37 0.36 0.31 0.23 0.16
Observations 2871 6617 6855 6139 1895

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β− as estimated from specification (9) on a sample of establishment switchers. Team
Definition 1. Column titles indicate horizon h. Standard errors clustered at the establishment-year level.
The regressions include current wage and fixed effects for age decile, tenure decile, gender, education,
occupation, and year.

Table XIX Establishment switchers. Counterpart to table IV.
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Decile of the Wage Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.19∗∗∗ 0.14∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.13∗∗∗ 0.100∗∗∗ 0.43∗∗∗ 0.32∗∗∗

(0.0064) (0.0077) (0.0099) (0.012) (0.015) (0.018) (0.022) (0.021) (0.017) (0.071)

w̄− 0.060∗∗∗ 0.076∗∗∗ 0.083∗∗∗ 0.096∗∗∗ 0.092∗∗∗ 0.094∗∗∗ 0.11∗∗∗ 0.094∗∗∗ 0.060∗∗∗ 0.011∗∗∗

(0.0068) (0.0081) (0.0093) (0.011) (0.011) (0.011) (0.0100) (0.0080) (0.0069) (0.0033)

Within R2 0.42 0.091 0.058 0.045 0.043 0.046 0.058 0.087 0.21 0.057
Observations 287759 303889 306947 306718 304500 303378 303475 303665 315004 296800

Decile of the Age Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.31∗∗∗ 0.27∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 0.12∗∗∗ 0.10∗∗∗ 0.084∗∗∗ 0.072∗∗∗ 0.051∗∗∗ 0.038∗∗∗

(0.010) (0.011) (0.0085) (0.0078) (0.0074) (0.0077) (0.0070) (0.0067) (0.0067) (0.0063)

w̄− 0.055∗∗∗ 0.074∗∗∗ 0.056∗∗∗ 0.053∗∗∗ 0.049∗∗∗ 0.056∗∗∗ 0.063∗∗∗ 0.070∗∗∗ 0.070∗∗∗ 0.069∗∗∗

(0.0096) (0.0074) (0.0063) (0.0060) (0.0056) (0.0056) (0.0053) (0.0052) (0.0053) (0.0046)

Within R2 0.61 0.70 0.75 0.78 0.80 0.80 0.81 0.83 0.83 0.84
Observations 348673 285365 286022 336003 354897 232921 333851 309471 265648 279320

Decile of the Tenure Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.23∗∗∗ 0.24∗∗∗ 0.20∗∗∗ 0.18∗∗∗ 0.14∗∗∗ 0.094∗∗∗ 0.099∗∗∗ 0.084∗∗∗ 0.070∗∗∗ 0.086∗∗∗

(0.011) (0.012) (0.014) (0.0093) (0.0086) (0.0094) (0.0100) (0.011) (0.012) (0.016)

w̄− 0.056∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.068∗∗∗ 0.057∗∗∗ 0.067∗∗∗ 0.073∗∗∗ 0.082∗∗∗ 0.050∗∗∗ 0.053∗∗∗

(0.0076) (0.0063) (0.0065) (0.0065) (0.0063) (0.0068) (0.0079) (0.0075) (0.0092) (0.0097)

Within R2 0.67 0.74 0.78 0.80 0.80 0.81 0.80 0.80 0.75 0.76
Observations 302698 296147 303727 304230 305582 307905 307934 306307 301182 296473

Decile of the Size Distribution

1 2 3 4 5 6 7 8 9 10

w̄+ 0.068∗∗∗ 0.098∗∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.11∗∗∗ 0.14∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.24∗∗∗ 0.63∗∗∗

(0.0047) (0.0084) (0.012) (0.015) (0.018) (0.022) (0.025) (0.031) (0.042) (0.064)

w̄− 0.030∗∗∗ 0.048∗∗∗ 0.043∗∗∗ 0.026∗ 0.0033 0.017 0.011 -0.053 0.026 0.018
(0.0037) (0.0057) (0.0080) (0.011) (0.013) (0.014) (0.017) (0.027) (0.031) (0.026)

Within R2 0.76 0.75 0.72 0.70 0.70 0.71 0.69 0.62 0.61 0.69
Observations 292073 299230 301358 309821 310036 311021 312640 312095 312825 271044

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β− as estimated from specification (9) for separate deciles of the wage, age, tenure, and
team size distributions. We include observation i in the decile k in t if i falls into the k’th decile of
the distribution in year t. Team definition 1 at horizon h = 3 years. Standard errors clustered at the
establishment-year level. The regressions include current wage and fixed effects for age decile, tenure
decile, gender, education, occupation, and year (whenever possible).

Table XX Baseline results for different deciles of the wage distribution. Counterpart to
table III.
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Baseline
Teams w/o
Apprentices

Teams w/o
Top Coded Wages

w̄+ 0.17∗∗∗ 0.065∗∗∗ 0.085∗∗∗

(0.0065) (0.015) (0.0079)

w̄− 0.057∗∗∗ 0.048∗∗∗ 0.064∗∗∗

(0.0048) (0.0080) (0.0057)

Within R2 0.77 0.75 0.73
Observations 3032228 304525 298771

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂+ and β̂− as estimated from specification (9). Team definition 2. Column (1): Baseline. Column
(2): Sample restricted to teams without workers in apprenticeship. Column (3): Sample restricted to
teams without top-coded wages. The regressions include current wage and fixed effects for age decile,
tenure decile, gender, education, occupation, and year (whenever possible).

Table XXI Subsamples. Team Definition 1. Counterpart to table XV.

All 2000 >10% CB
No CB, No

Benchmarking

w̄+ 0.13∗∗∗ 0.13∗∗∗ 0.096∗

(0.018) (0.020) (0.043)

w̄− 0.033∗∗ 0.047∗∗∗ 0.024
(0.012) (0.013) (0.023)

Within R2 0.76 0.76 0.70
Observations 389140 318634 14251

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ and β̂− as estimated from specification (9). Team definition 1. Column (1): Benchmark
results for year 2000 at horizon h = 3 years. Column (2): Restrict sample to establishments which
report to pay at least 10% above their collective bargaining agreement. Column (3): Restrict sample to
establishments which neither have a collective bargaining agreement nor benchmark their wage structure
with one. The regressions include current wage and fixed effects for age decile, tenure decile, gender,
education, occupation, and year.

Table XXII Collective Bargaining. Team Definition 1. Counterpart to table XVI.

55



Baseline Est FE Team Occ x Yr

w̄+ − w̄− 0.045∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.047∗∗∗

(0.0041) (0.0044) (0.0045) (0.0037)

Within R2 0.77 0.56 0.58 0.77
Observations 3032228 3031943 3029247 3032165

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: We replace the separate right hand side variables w̄+ and w̄− in specification (9) with the
gap w̄+ − w̄−. Team definition 1, horizon h = 3. Column (1): Baseline. Column (2): Baseline plus
establishment fixed effects. Column (3): Baseline plus establishment x year fixed effects. Column (4):
Baseline plus occupation x year fixed effects. The regressions include current wage and fixed effects for
age decile, tenure decile, gender, education, occupation, and year.

Table XXIII Fixed Effects. Counterpart to table XVII.

All
Above

Team-Median
Below

Team-Median
2nd Pct. 4th Pct. 7th Pct. 9th Pct.

Bin 2 0.00028∗∗∗ 0.00038 0.00029∗∗∗ 0.00055∗∗∗ 0.000011 0.00090∗∗∗ 0.00019∗

(0.000070) (0.00059) (0.000063) (0.00017) (0.00020) (0.00013) (0.000074)

Bin 3 0.00050∗∗∗ 0.0027∗∗∗ 0.00040∗∗∗ 0.00016 0.00042∗∗ 0.00048∗∗∗ 0.00032∗∗∗

(0.000055) (0.00057) (0.000050) (0.00015) (0.00016) (0.00011) (0.000083)

Bin 4 0.00046∗∗∗ 0.0021∗∗∗ 0.00032∗∗∗ 0.00020 0.00080∗∗∗ 0.00084∗∗∗ 0.00027∗

(0.000048) (0.00050) (0.000046) (0.00012) (0.00017) (0.00013) (0.00011)

Bin 5 0.00029∗∗∗ 0.0017∗∗∗ 0.00032∗∗∗ 0.00052∗∗∗ 0.00040∗ 0.00029 0.00062∗∗∗

(0.000045) (0.00048) (0.000052) (0.00012) (0.00016) (0.00015) (0.00017)

Bin 6 0.00035∗∗∗ 0.0018∗∗∗ 0.00036∗∗∗ 0.00053∗∗∗ 0.00025 0.0012∗∗∗ 0.00016
(0.000062) (0.00046) (0.000064) (0.00011) (0.00016) (0.00015) (0.000091)

Bin 7 0.00056∗∗∗ 0.0020∗∗∗ 0.00058∗∗∗ 0.0011∗∗∗ 0.00097∗∗∗ 0.00086∗∗∗ 0.00049∗∗∗

(0.000044) (0.00047) (0.000051) (0.00011) (0.00019) (0.00014) (0.000065)

Bin 8 0.00078∗∗∗ 0.0022∗∗∗ 0.0011∗∗∗ 0.00088∗∗∗ 0.00055∗ 0.0011∗∗∗ 0.0013∗∗∗

(0.000048) (0.00046) (0.000077) (0.00013) (0.00023) (0.00013) (0.000084)

Bin 9 0.00092∗∗∗ 0.0024∗∗∗ 0.0013∗∗∗ 0.00093∗∗∗ 0.0012∗∗∗ 0.0013∗∗∗ 0.0020∗∗∗

(0.000057) (0.00047) (0.00010) (0.00015) (0.00035) (0.00012) (0.00014)

Bin 10 0.00100∗∗∗ 0.0026∗∗∗ 0.0011∗∗∗ 0.00092∗∗∗ 0.0011∗∗∗ 0.0015∗∗∗ 0.014∗

(0.000066) (0.00047) (0.00013) (0.00018) (0.00024) (0.00014) (0.0071)

Bin 11 0.0015∗∗∗ 0.0030∗∗∗ 0.0014∗∗∗ 0.0016∗∗∗ 0.0015∗∗∗ 0.0016∗∗∗ 0
(0.000057) (0.00047) (0.00013) (0.00011) (0.00015) (0.00013) (.)

Within R2 0.77 0.72 0.79 0.10 0.053 0.064 0.20
Observations 3057261 1479286 1577972 300910 305370 302901 314668

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Each row reports the coefficient on the weight of bins 2 through 11 where the weight on the
bottom bin is the omitted category. Columns 2 and 3 report the results when the sample is restricted
to workers above (below) the team median wage. The remaining columns restrict the sample to workers
from particular parts of the wage distribution. Team definition 1. Column titles indicate horizon h.
Standard errors clustered at the establishment-year level. The regressions include current wage and
fixed effects for age decile, tenure decile, gender, education, occupation, and year.

Table XXV Results from specification (10) under team definition 1 for various restricted
samples. Counterpart to table XIV 56
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