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1. Introduction 

The financial crisis of 2007-2008 has revived academic interest in price bubbles.  Shiller (2015) created 

a famous graph of home prices in the United States over the course of a century, which shows prices being 

relatively stable during most of the 20th century, then doubling over the ten year period after 1996, only to 

collapse in the crisis and begin recovering after 2011.  There is also growing evidence of speculation such as 

buying for resale in the housing market (DeFusco, Nathanson, and Zwick 2018, Mian and Sufi 2018) and of 

increasing leverage of both homeowners and financial institutions tied to rapid home price appreciation.  The 

collapse of the housing bubble is at the heart of every major narrative of the financial crisis and the Great 

Recession because it entailed massive losses for homeowners, holders of mortgage backed securities, and 

financial institutions (Mian and Sufi 2014).  Nor is the U.S. experience unique.  Leverage expansions and 

subsequent crises are often tied to bubbles in housing and other markets (Jorda, Schularick and Taylor 2015). 

Despite the revival of academic interest, asset price bubbles remain controversial in finance.  Although 

economic historians tend to see bubbles as self-evident (Mackay 1841, Bagehot 1873, Galbraith 1954, 

Kindleberger 1978, Shiller 2000), Fama (2014) raised the critical question of whether they even exist in the 

sense of predictability of future negative returns after prices have increased substantially.  Interestingly, since 

Smith, Suchanek and Williams (1988), predictably negative returns are commonly found in laboratory 

experiments even when markets have finite horizons.  Greenwood, Shleifer, and You (2018) address Fama’s 

challenge in industry stock return data around the world, and find that although past returns alone are very 

noisy indicators of bubbles, other measures of over-pricing do forecast poor returns going forward2.    

Early theoretical research has focused on rational price bubbles that do not violate (some definitions 

of) market efficiency (e.g., Blanchard and Watson 1982, Tirole 1985, Martin and Ventura 2012), but these 

models are not consistent with the available evidence on prices (Giglio, Maggiori, and Stroebel 2016).  They 

are also rejected by the striking evidence of excessively optimistic investor expectations in bubble episodes 

(Case et al. 2012, Greenwood, Shleifer, and You 2018), which also shows up in experimental data (e.g., Haruvy 

et al. 2007).  Because of such evidence, research has moved to behavioral models of bubbles, which emphasize 

                                                           
2 A closely related literature examines the overpricing of small growth stocks with extremely optimistic analyst forecasts 
of future growth, and predictably poor returns (Lakonishok et al. 1994, La Porta 1996, Bordalo et al. 2018). 
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factors such as overconfidence and short sales constraints (Scheinkman and Xiong 2003), neglect of entry 

(Glaeser et al 2008, Glaeser and Nathanson 2017, Greenwood and Hanson 2014), and extrapolation (e.g., 

Cutler et al. 1990, DeLong et al 1990b, Barsky and DeLong 1993, Hong and Stein 1999, Barberis and Shleifer 

2003, Hirshleifer et al. 2015, Glaeser and Nathanson 2017, Barberis et al. 2015, 2018).  

Despite substantial advances, many important conceptual questions about price bubbles remain open.  

What is the role of innovation, or substantial positive news, in getting bubbles started?  Are bubbles driven by 

the extrapolation of fundamentals, or of returns themselves?  Can price increases become self-reinforcing and 

disconnected from fundamental news?  And what are the respective roles of optimistic beliefs about 

fundamental value versus speculation for quick resale in sustaining price growth? 

In this paper, we revisit some of these questions starting from a psychologically founded model of 

belief formation.  We embrace Kindleberger’s (1978) view of bubbles as consisting of three stages.  The first 

is displacement, meaning a period of good fundamental news, often tied to an economic innovation (see, e.g, 

Pastor and Veronesi 2006), that lead to rapid asset price increases.  The second and crucial period is the 

acceleration of price growth, as price increases themselves encourage buying and further price increases, and 

prices reach levels substantially above fundamental values.  The third period is the price collapse, as traders 

are disappointed and sell the assets.  We do not examine leverage and other factors that link the collapses of 

bubbles to financial fragility and economic recessions (see, e.g., Gennaioli, Shleifer, and Vishny 2012, 

Reinhart and Rogoff 2009, Gennaioli and Shleifer 2018).  Our goal is instead to link expectations to the 

mechanics of a bubble, including price acceleration and subsequent collapse.  

We examine the model of Diagnostic Expectations (see Bordalo, Gennaioli, and Shleifer, hereafter 

BGS 2018, Bordalo, Gennaioli, La Porta and Shleifer, hereafter BGLS 2018, and Bordalo, Gennaioli, Ma, and 

Shleifer, hereafter BGMS 2018), which relates beliefs to Kahneman and Tversky’s (1972) representativeness 

heuristic.  Representativeness refers to the notion that, in forming probabilistic assessments, decision makers 

put too much weight on outcomes that are likely not in absolute terms, but rather relative to some reference or 

baseline level.  For example, many people significantly over-estimate the probability that a person’s hair is red 

when told that the person is Irish.   The share of red-haired Irish, at 10%, is a small minority, but red hair is 

much more common among the Irish than among other Europeans, let alone in the world as a whole.  The 
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over-estimation of the prevalence of representative types distorts beliefs and accounts for many systematic 

errors in probabilistic judgments documented experimentally (Gennaioli and Shleifer 2010).  It also delivers a 

theory of stereotypes consistent with both field and experimental evidence, including gender stereotypes in 

assessments of ability (Bordalo et al. 2018), racial stereotypes in decisions about bail (Arnold, Dobbie and 

Yang 2018), and popular beliefs about immigrants (Alesina, Miano, and Stantcheva 2018).  

In a market context, diagnostic expectations describe how traders update their beliefs in response to 

new information.  Under Rational Expectations, the answer to this question is given by the Bayes Rule.  Under 

Diagnostic Expectations, traders update their beliefs too far in the direction of the states of the world whose 

objective likelihood has increased the most in light of recent news. After good news, right-tail outcomes 

become representative and are overweighed in expectations, while left-tail outcomes become non-

representative and are neglected. This form of over-reaction can lead to overvaluation of financial assets after 

good news (BGLS 2018). Here we ask whether it leads to other aspects of the Kindleberger narrative, such as 

gradual buildup of prices, extrapolation, acceleration of price growth, and eventual price collapse. 

To address these questions, we incorporate diagnostic expectations into a standard finite horizon model 

of a market for one asset, in which there is a continuum of investors receiving noisy private information every 

period about the termination value of that asset. To capture Kindleberger’s displacement, we assume the asset 

is valuable (above the prior) so that traders on average receive good news about fundamentals every period. 

Because traders receive different noisy signals, they hold heterogeneous beliefs.  Heterogeneity also generates 

trading volume, which is an important feature of bubbles (Scheinkman and Xiong 2003, Hong and Stein 2007).   

To fix ideas, in Section 2 we describe learning under diagnostic expectations.  In Section 3, we present 

a model of long horizon investors who learn from prices, and examine how prices respond to a series of good 

news. In Section 4, we modify the model to consider short horizon traders whose objective reflects not the 

final value of the asset, but next period price.  We can thus examine speculation – buying for resale – which is 

a central feature of many narratives of the bubbles, including Kindleberger’s. Under Rational Expectations, in 

both of these models the average price path increases from the prior to the fundamental value. Whether or not 

there is learning from prices, there is no overshooting, and hence there are no price bubbles in equilibrium.   
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A model with learning from prices and diagnostic expectations, in contrast, generates some interesting 

features of a bubble.  As good news come in and prices rise, diagnostic traders act more aggressively on their 

private signals, which makes prices more informative than under the rational benchmark. As a consequence, 

traders react even more aggressively to price signals, which quickly swamp the less informative private ones. 

Prices not only exceed fundamental values in equilibrium, but also accelerate as the bubble develops.  In fact, 

it looks like investors are extrapolating price trends, even though they are not. Instead, recent price increases 

lead traders to upgrade (too much) their expectations of fundamental value, and thus of the future price.  

Despite some plausible intuitions, the model in Section 3 does not deliver wild prices because equilibrium 

prices are still tethered to eventual liquidation values.  

In Section 4, we introduce speculation by having traders optimize relative to their beliefs of the next 

period price rather than the eventual liquidation value of the asset. Unlike previous models of speculation, such 

as Harrison and Kreps (1978) and Scheinkman and Xiong (2003), we do not need to assume short sale 

constraints. This modification has dramatic consequences. Even without learning from prices, traders can drive 

prices extremely high, because speculation compounds overreaction: traders are not only too optimistic about 

fundamentals, they also exaggerate the possibility of reselling the asset to over-reacting traders in the future.  

Following a beauty context logic, a trader who believes that the asset is the next Google thinks that future 

diagnostic traders will receive extremely positive signals and will thus be even more optimistic about the asset. 

The expectation of reselling the asset to very bullish traders further inflates the price today. Eventually, as the 

terminal date approaches, the opportunities for resale become scarcer and the bubble collapses.   

Along with diagnostic expectations, speculation emerges as a central feature of price bubbles, at least 

in terms of the three Kindleberger phases. When combined with learning from prices, speculation disconnects 

expectations of fundamentals from expectations of price increases.  Even a small deviation from rationality in 

the form of diagnostic overreaction compounds into strong price extrapolation and large price dislocations.    
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2. Learning from Good Shocks and the Dynamics of Diagnostic Expectations 

Our basic setup is as follows. Traders learn about the value of a new asset over a finite number of 

periods 𝑡𝑡 = 0, … ,𝑇𝑇. The asset yields a payoff 𝑉𝑉 drawn from a normal distribution with mean 0 and variance 

𝜎𝜎𝑉𝑉2 at 𝑡𝑡 = 0 but is only revealed at the terminal date 𝑇𝑇.  In line with Kindelberger’s (1978) description of a 

positive displacement as the trigger of bubble episodes, we focus on the case of a valuable innovation, 𝑉𝑉 > 0. 

In each period 𝑡𝑡, each trader 𝑖𝑖 (in measure one) receives a private signal 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑉𝑉 + 𝜖𝜖𝑖𝑖𝑖𝑖 of the asset’s value. 

Noise 𝜖𝜖𝑖𝑖𝑖𝑖 is i.i.d. across traders and over time, and normally distributed with mean zero and variance 𝜎𝜎𝜖𝜖2.  

Because the new asset is valuable, 𝑉𝑉 > 0, traders are repeatedly exposed to good news, in that signals are on 

average positive relative to their priors, capturing the initial displacement. Moreover, the assumption of 

dispersed information generates variation in expectations and helps account for trading. 

In this Section, we do not consider trading, and describe instead how Diagnostic Expectations about 

fundamentals evolve solely based on the arrival of noisy private signals over time. This is useful for two 

reasons.  First, in this setting with learning and dispersed information, Diagnostic Expectations behave 

differently than in prior finance applications (BGS 2018, BGLS 2018). Second, by separately characterizing 

the dynamics of expectations about fundamentals, we can better understand their interaction with market forces 

such as trading, learning from prices, and speculation, which we introduce in Sections 3 and 4. 

A rational trader observing a history of signals (𝑠𝑠𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑖𝑖) forms an expectation about 𝑉𝑉 given by: 

𝔼𝔼𝑖𝑖𝑖𝑖(𝑉𝑉) = 𝜋𝜋𝑡𝑡
∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑡𝑡
𝑟𝑟=1
𝑡𝑡

, 

where 𝜋𝜋𝑡𝑡 ≡
𝑡𝑡 𝜎𝜎𝜖𝜖2⁄

𝑡𝑡 𝜎𝜎𝜖𝜖2⁄ +1 𝜎𝜎𝑉𝑉
2⁄  is the signal to noise ratio. Prices will be driven by the consensus expectation, given by 

�𝔼𝔼𝑖𝑖𝑖𝑖(𝑉𝑉)𝑑𝑑𝑑𝑑 = 𝜋𝜋𝑡𝑡𝑉𝑉.                                                                                 (1) 

  The consensus expectation of rational traders exhibits two important properties.  First, it is always 

below the rational benchmark because 𝜋𝜋𝑡𝑡 ≤ 1.  Rational traders discount their noisy signals, which implies 

that average information, always equal to 𝑉𝑉, is also discounted.   Second, the consensus expectation gradually 
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improves over time, because the signal to noise ratio 𝜋𝜋𝑡𝑡 rises, in a concave way, toward one.  As the trader 

sees more and more signals, his uncertainty falls, inducing him to weigh his evidence more heavily. 

As in rational inattention or noisy information models (Woodford 2003), optimal information 

processing by individuals who observe noisy signals creates sluggishness in consensus expectations.  This 

sluggishness is central in thinking about price formation in rational expectations models. Indeed, as we show 

in Sections 3 and 4, rational updating implies that the price of the asset monotonically converges to 

fundamental value from below, just as consensus expectations do. 

Consider now updating under Diagnostic Expectations (DE) in a model of beliefs formation.3  In an 

intertemporal setting like the current one, this model captures the idea that, when forming beliefs about the 

future, investors overweight the probability of events that have become more likely in light of recent news.   

For instance, after observing a period of positive earnings growth, DE overweight the probability that the firm 

may be the next Google.  Even though this event is highly unlikely in absolute terms, it has become more likely 

in light of the strong earnings growth.  As a consequence, the perceived probability of such an event is inflated. 

As shown in BGS (2018), if the random variable 𝑋𝑋𝑡𝑡+1 is conditionally normal, the diagnostic 

distribution of beliefs is also normal.4 Furthermore, if 𝔼𝔼𝑠𝑠(𝑋𝑋𝑡𝑡+1) is the rational expectation at time 𝑠𝑠, then the 

diagnostic expectation at time 𝑡𝑡 is: 

𝔼𝔼𝑡𝑡𝜃𝜃(𝑋𝑋𝑡𝑡+1) = 𝔼𝔼𝑡𝑡−𝑘𝑘(𝑋𝑋𝑡𝑡+1) + (1 + 𝜃𝜃)[𝔼𝔼𝑡𝑡(𝑋𝑋𝑡𝑡+1)− 𝔼𝔼𝑡𝑡−𝑘𝑘(𝑋𝑋𝑡𝑡+1)],                                        (2) 

DE are forward looking: they update in the correct direction and nest rational expectations as a special 

case for 𝜃𝜃 = 0.  Crucially, however, DE overreact to information by exaggerating the difference between 

current conditions 𝔼𝔼𝑡𝑡(𝑋𝑋𝑡𝑡+1) and normal conditions 𝔼𝔼𝑡𝑡−𝑘𝑘(𝑋𝑋𝑡𝑡+1) by a factor of (1 + 𝜃𝜃). As good news arrives, 

the right tail of 𝑋𝑋𝑡𝑡+1 becomes fatter; while still unlikely, this right tail is very representative because its prior 

                                                           
3 According to Kahneman and Tversky (1972), the reliance on representativeness as a proxy for likelihood is a central 
feature of probabilistic judgments.  An outcome “is representative of a class if it’s very diagnostic”, that is, if its “relative 
frequency is much higher in that class than in the relevant reference class” (Tversky and Kahneman 1983).   
4 Following BGS (2018), in a Markov process with density 𝑓𝑓(𝑋𝑋𝑡𝑡+1|𝑋𝑋𝑡𝑡), after a particular current state 𝑋𝑋�𝑡𝑡 is realized and 
in light of the past expectation for the current state 𝔼𝔼𝑡𝑡−𝑘𝑘(𝑋𝑋𝑡𝑡), the distorted distribution is equal to: 

𝑓𝑓𝜃𝜃(𝑋𝑋𝑡𝑡+1|𝑋𝑋𝑡𝑡) = 𝑓𝑓(𝑋𝑋𝑡𝑡+1|𝑋𝑋𝑡𝑡) �
𝑓𝑓�𝑋𝑋𝑡𝑡+1|𝑋𝑋�𝑡𝑡�

𝑓𝑓�𝑋𝑋𝑡𝑡+1|𝔼𝔼𝑡𝑡−𝑘𝑘(𝑋𝑋𝑡𝑡)�
�
𝜃𝜃

𝑍𝑍𝑡𝑡 , 

where both the target 𝑓𝑓�𝑋𝑋𝑡𝑡+1|𝑋𝑋�𝑡𝑡� and reference distribution 𝑓𝑓�𝑋𝑋𝑡𝑡+1|𝔼𝔼𝑡𝑡−𝑘𝑘(𝑋𝑋𝑡𝑡)� have equal variance.  Roughly speaking, 
beliefs overweigh states that have become more likely in light of the surprise 𝑋𝑋�𝑡𝑡 − 𝔼𝔼𝑡𝑡−𝑘𝑘(𝑋𝑋𝑡𝑡) relative to 𝑘𝑘 periods ago.        
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probability was so low. As a result, investors overweight the right tail and neglect the risk in the left tail.  For 

normal distributions, this reweighting results in an excessive rightward shift of beliefs. 

In Equation (2), lag 𝑘𝑘 defines which recent news investors over-react to.  For 𝑘𝑘 = 1, investors only 

overreact to news received in the current period, so after one period past good news are immediately perceived 

as normal.  For 𝑘𝑘 > 1, the investor over-reacts to the last 𝑘𝑘 pieces of news.  This captures a realistic 

sluggishness in the perception of normal conditions: new evidence becomes normal only after enough time has 

passed.  Put differently, the investor observing a sequence of good news takes a while to adapt to them.   

BGLS (2018) show that in a setting where traders learn from homogeneous information, diagnostic 

expectations obtained from Equation (2) account well for the link between listed firms’ performance and equity 

analysts’ expectations of their future earnings growth, as well as, crucially, for the link between expectations 

and the predictability of their stock returns. They estimate the model and find that, with quarterly data, 𝜃𝜃 ≈ 1 

and 𝑘𝑘 ≈ 3 years. A similar value of 𝜃𝜃 has been estimated using expectations of credit spreads by BGS, and 

using macroeconomic forecasts by BGMS. Later we use 𝑘𝑘 ≈ 3 years in our simulation exercises.  

The current model, relative to earlier finance applications of DE, we introduce two new ingredients.  

First, each trader observes a different noisy signal of the truth 𝑉𝑉. Second, the state 𝑉𝑉 does not change over 

time, reflecting learning about, say, the potential of a new technological innovation. We next show that under 

these two assumptions DE generate rich dynamics that look promising for studying bubble episodes.   

Given the heterogeneity of information at time 𝑡𝑡 each trader 𝑖𝑖 has a different diagnostic expectation 

𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉).  As before, we focus on the consensus diagnostic expectation. This is given by:    

�𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉)𝑑𝑑𝑑𝑑 = �
(1 + 𝜃𝜃)𝜋𝜋𝑡𝑡𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≤ 𝑘𝑘

[𝜋𝜋𝑡𝑡 + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡−𝑘𝑘)]𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 > 𝑘𝑘
.                                                    (3) 

Equation (3) implies that, under DE, consensus expectations exhibit boom bust dynamics.   

Proposition 1 If 𝜃𝜃 ∈ �1
𝑘𝑘
𝜎𝜎𝜖𝜖2

𝜎𝜎𝑣𝑣2
, 𝜎𝜎𝜖𝜖

2

𝜎𝜎𝑣𝑣2
�, the consensus diagnostic expectation 𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉) exhibits three phases:  

1) Delayed over-reaction: 𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉) starts below 𝑉𝑉, then increases to its peak 𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉) = (1 + 𝜃𝜃)𝜋𝜋𝑘𝑘𝑉𝑉 at 𝑡𝑡 = 𝑘𝑘. 
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2) Bust:  𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉) drops from 𝑡𝑡 = 𝑘𝑘 + 1 to 𝑡𝑡∗, reaching its through 𝔼𝔼𝑡𝑡∗
𝜃𝜃 (𝑉𝑉) < 𝑉𝑉. 

3) Recovery: 𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉) gradually recovers for 𝑡𝑡 > 𝑡𝑡∗, asymptotically converging to the fundamental 𝑉𝑉.   

In a noisy environment, adding a modicum of overreaction 𝜃𝜃 to recent signals upsets the monotone 

convergence of rational expectation, yielding rich beliefs dynamics.  Early on, consensus opinion under-reacts 

to the fundamental displacement, 𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉) < 𝑉𝑉, so that in this range the behavior of DE is qualitatively similar 

to rational learning.  Because diagnostic traders are forward looking, they discount the noise in their signals.  

Initially, when uncertainty about V is large, this discounting is sufficiently strong that it counteracts the 

tendency of each individual to overreact (as long as overreaction is moderate, 𝜃𝜃 < 𝜎𝜎𝜖𝜖2

𝜎𝜎𝑣𝑣2
). As a result, in early 

stages, consensus beliefs about V improve sluggishly, gradually incorporating the good signals of traders. 

The possibility that in a noisy environment individual over-reaction is consistent with sluggishness of 

consensus expectations is not just theoretical. BGMS (2018) document this phenomenon in professional 

forecasts of macroeconomic variables. When expectations are heterogeneous, as is empirically the case, 

information contained in the average is lost, creating apparent under-reaction. 

As traders receive good signals, however, they grow more confident about the value of the asset.  As 

a result, they incorporate their signals more aggressively into their beliefs.  At some point, their signal to noise 

ratio 𝜋𝜋𝑡𝑡 becomes sufficiently high that, for a given amount of diagnosticity 𝜃𝜃 we have: 

(1 + 𝜃𝜃)𝜋𝜋𝑡𝑡 > 1. 

Consensus under-reaction now turns to overreaction.  Displacement causes traders to be so confident 

that beliefs overshoot the fundamental, 𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉) > 𝑉𝑉.  Overshooting of fundamentals stands in stark contrast not 

only to the rational benchmark but also to any model of mis-specified learning in which beliefs are a convex 

combination of priors and new information, including overconfidence (Daniel, Hirshleifer and Subrahmanyam 

1998).5 This distinctive feature reflects the fact that diagnostic expectations generate disproportional and 

asymmetric weight on tail events:  if traders focus on the right tail and neglect the left tail, then in some sense 

                                                           
5 Overconfidence is a different form of over-reaction to private news in which traders exaggerate the precision of their 
private signals. It implies an inflated signal to noise ratio relative to rational expectations, but still be below 1. This 
generates a price path lying above the rational benchmark, but never overshooting or exhibiting a boom-bust path. 
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“the sky is the limit”:  sufficiently many good signals about 𝑉𝑉 bring to mind stratospheric values, each fast 

growing firm is believed to be a new Google, and trees are expected to grow to the sky.  This result is in line 

with the standard narrative of bubbles, in which the initial displacement leads investors to believe in a 

“paradigm shift” capturing the most optimistic scenarios that could result from the innovation.6 

Beliefs revert after 𝑘𝑘 periods, when over-reaction to early signals wanes. After a while, traders view 

these signals as normal and focus on the information contained in the new, most recent, signals.  Because these 

signals have a smaller and smaller incremental value (𝑉𝑉 is finite), they cannot sustain the exorbitant optimism 

of the boom.  As a result, optimism in beliefs starts deflating. The bust here is due not to bad news, but to the 

declining pace at which good news arrive, which causes optimism to run out of steam. After the bust, when 

expectations reach their trough and get close to rational beliefs, over-reaction to good news is negligible 

(because good news are minor), and the consensus converges to 𝑉𝑉 from below.   

In sum, by introducing some over-reaction to recent news in an otherwise standard noisy information 

model, diagnostic expectations can account for initial rigidity of consensus expectations, delayed over-reaction 

of beliefs to fundamental news, and subsequent reversals as dramatic good news stop coming.  This mechanism 

seems promising for thinking about bubbles. Insofar as prices reflect consensus beliefs, diagnostic expectations 

may account for sluggish boom bust price dynamics that cannot be obtained under rationality.  Still, other 

features of this simple formulation are hard to reconcile with bubbles. First, expectations of fundamentals in 

Equation (3) improve in a concave way, which is hard to square with the observed convex price paths during 

bubbles (Greenwood, Shleifer, and Yang 2018).  Second, for realistic parameter values over-optimism about 

fundamentals is small relative to the price inflation observed in bubble episodes. Using 𝜃𝜃 = 1 as estimated 

using expectations of earnings growth (BGLS 2018), and of macroeconomic time series (BGMS 2018), 

suggests that valuation at the peak is bounded above by 2𝑉𝑉. In some historical episodes, such as the internet 

bubble, prices reached multiple times the plausible measures of fundamentals.   

To address these challenges, we next combine diagnostic expectations about fundamentals with two 

standard mechanisms that do not yield the three phases of bubbles in rational models: learning from prices and 

                                                           
6 In Pastor and Veronesi (2009), a successful innovation is not initially overpriced, but instead becomes central enough to 
the economy that the risk associated with it becomes systematic, which in turn depresses prices. 
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speculation.  We show that combining these standard market mechanisms with a modicum of diagnosticity 

about fundamentals is able to reproduce key features of bubble episodes, including convex price paths and 

strongly inflated prices.  Prices growth becomes disconnected from growth in fundamentals.      

 

3. Diagnostic Learning from Prices 

We now analyze trading when traders learn not only from private signals, but also from market prices.  

This is an important feature of real world markets, enabling traders to extract from price changes the 

information that other traders have about fundamentals.  Starting with Grossman (1976) and Grossman and 

Stiglitz (1980), learning from prices plays an important role in formal analyses of rational expectations 

equilibria in financial markets. Here we study its consequences under diagnostic expectations. 

The market setting is as follows. At each 𝑡𝑡 = 0,1 …, traders exchange the asset and determine its price. 

They learn about the fundamental 𝑉𝑉 from current and past private signals as well as from all prices observed 

up to the last period.7  Traders are risk averse with CARA utility 𝑢𝑢(𝑐𝑐) = −𝑒𝑒−𝛾𝛾𝛾𝛾, and they have long horizons, 

in that they value the asset by their assessment of its fundamental value 𝑉𝑉. There is no time discounting.   

To determine the demand for the asset at time 𝑡𝑡, suppose that trader 𝑖𝑖 believes that 𝑉𝑉 is normally 

distributed with mean 𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉) and variance 𝜎𝜎𝑡𝑡2(𝑉𝑉), where 𝜃𝜃 denotes diagnostic expectations.8  With exponential 

utility and normal beliefs, his preferences are described in terms of mean and variance.  Trader i’s demand 𝐷𝐷𝑖𝑖𝑖𝑖 

of the asset maximizes the mean-variance objective function: 

𝐷𝐷𝑖𝑖𝑖𝑖 = max
𝐷𝐷�𝑖𝑖𝑖𝑖

�𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉) − 𝑝𝑝𝑡𝑡�𝐷𝐷�𝑖𝑖𝑖𝑖 −
𝛾𝛾
2

 𝜎𝜎𝑡𝑡2(𝑉𝑉)𝐷𝐷�𝑖𝑖𝑖𝑖2 , 

where 𝛾𝛾 captures risk aversion. Trader 𝑖𝑖’s demand 𝐷𝐷𝑖𝑖𝑖𝑖 is then given by: 

                                                           
7 If investors learn also from the current price, the equilibrium may fail to exist for 𝑡𝑡 > 𝑘𝑘. We thus focus on learning from 
past prices, which guarantees existence, but the models behave very similarly when equilibrium exists. To study 
speculation, because we set 𝑘𝑘 to be high, existence is guaranteed and so we allow investors to learn from the current price. 
8 As we discussed in Section 2, diagnostic beliefs are normal. This is shown in the appendix, where we also show that the 
variance 𝜎𝜎𝑡𝑡2(𝑉𝑉) is not distorted under our specification. 
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𝐷𝐷𝑖𝑖𝑖𝑖 =
𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉)− 𝑝𝑝𝑡𝑡
𝛾𝛾𝜎𝜎𝑡𝑡2(𝑉𝑉)

,                                                                              (4) 

Intuitively, demand increases in the difference between the trader’s valuation and the market price. 

To make learning from prices non-degenerate, we follow the literature and assume that that the supply 

𝑆𝑆𝑡𝑡 of the asset is random, i.i.d. normal with mean zero and variance 𝜎𝜎𝑆𝑆2 (without supply shocks 𝑉𝑉 is learned in 

one period). The classical justification here is the presence of noise or liquidity traders who demand/supply 

the assets for non-fundamental reasons (Black 1986, Grossman and Miler 1988, DeLong et al. 1990a). The 

implication is that price is no longer fully revealing: high price today may be due either to a low unobserved 

supply 𝑆𝑆𝑡𝑡 shock or to a high average private signal 𝑉𝑉. 

By aggregating individual demands in Equation (4) and by equating to supply we find: 

𝑝𝑝𝑡𝑡 = �𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉)𝑑𝑑𝑑𝑑 − 𝛾𝛾𝜎𝜎𝑡𝑡2(𝑉𝑉)𝑆𝑆𝑡𝑡.                                                                  (5) 

To solve for the equilibrium in Equation (5), we must compute the diagnostic consensus expectation 

at time 𝑡𝑡, recognizing that it depends both private signals and past prices.  Because DE are forward looking, it 

is possible to amend the consensus beliefs in Equation (3) to reflect diagnostic learning from prices.  As in 

rational expectations models (Grossman and Stiglitz 1980), we first conjecture that, at each time 𝑡𝑡, price is a 

linear function of the state variables of the economy, which include the fundamental 𝑉𝑉. Second, we assume 

that traders use this linear rule to make inferences about 𝑉𝑉 in light of the current and past prices. Third, we 

determine at each time 𝑡𝑡 the coefficients of the pricing function that equilibrate demand and supply, so that the 

resulting rule yields the equilibrium price. 

Denote by 𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡) the rational expectation of 𝑉𝑉 based solely on the history of prices up to 𝑡𝑡, formally 

𝑃𝑃𝑡𝑡 ≡ (𝑝𝑝1, … ,𝑝𝑝𝑡𝑡−1).  Then, our conjectured pricing rule takes the form:9     

𝑝𝑝𝑡𝑡 = 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡) + 𝑎𝑎3𝑡𝑡𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡−𝑘𝑘) + 𝑏𝑏𝑡𝑡 �𝑉𝑉 −
𝑐𝑐𝑡𝑡
𝑏𝑏𝑡𝑡
𝑆𝑆𝑡𝑡� .                                         (6) 

                                                           
9 The price could equivalently be assumed to be linear in the diagnostic expectation 𝔼𝔼𝜃𝜃(𝑉𝑉|𝑃𝑃𝑡𝑡 , 𝑠𝑠𝑖𝑖1 = ⋯ = 𝑠𝑠𝑖𝑖𝑖𝑖 = 0) held by 
traders held solely on the basis of prices (i.e. assuming that private signals are neutral).    
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Equation (6) is reminiscent of rational expectations analyses. The current price reflects consensus expectations 

derived from all prices up to date 𝑡𝑡, as well as the average private signal. Because diagnostic expectations 

combine current and lagged rational forecasts, the lagged forecast is also added as a state variable.  

To solve for the diagnostic expectations equilibrium (DEE), we must find the coefficients 

(𝑎𝑎1𝑡𝑡 ,𝑎𝑎2𝑡𝑡,𝑎𝑎3𝑡𝑡 ,𝑏𝑏𝑡𝑡, 𝑐𝑐𝑡𝑡)𝑡𝑡≥1 that equate supply with demand when traders make diagnostic inferences from prices. 

We now sketch the logic of the result, and leave a fuller account to the proof in Appendix A.  

First, consider how traders learn in light of the pricing rule. Because diagnostic traders over-react to 

news, they over-react also to the shared news coming from prices. To compute the diagnostic expectations 

with learning from prices, we proceed in two steps.  We compute the rational expectations when prices are 

generated by Equation (6), and then apply the diagnostic transformation of Equation (2).10  

The rational news conveyed by price at time 𝑟𝑟 is captured by the term 𝑝𝑝𝑟𝑟 − 𝑎𝑎1𝑟𝑟 − 𝑎𝑎2𝑟𝑟𝔼𝔼(𝑉𝑉|𝑃𝑃𝑟𝑟) −

𝑎𝑎3𝑟𝑟𝔼𝔼(𝑉𝑉|𝑃𝑃𝑟𝑟−𝑘𝑘) as well as by the coefficients 𝑏𝑏𝑟𝑟 and 𝑐𝑐𝑟𝑟, which are known by all (in equilibrium). That is, 

observing 𝑝𝑝𝑟𝑟 effectively endows all traders with the following unbiased public signal of 𝑉𝑉: 

𝑠𝑠𝑟𝑟
𝑝𝑝 = 𝑉𝑉 − �

𝑐𝑐𝑟𝑟
𝑏𝑏𝑟𝑟
� 𝑆𝑆𝑟𝑟.                                                                        (7) 

The variance of the signal, which is the inverse of its precision, is equal to (𝑐𝑐𝑟𝑟/𝑏𝑏𝑟𝑟)2𝜎𝜎𝑆𝑆2.  Intuitively, the price 

is more informative when it is more sensitive to the persistent fundamental than to the transient supply shock, 

namely when 𝑐𝑐𝑟𝑟/𝑏𝑏𝑟𝑟 is lower.  This price sensitivity is an endogenous part of the equilibrium, and later we 

characterize it in terms of primitives.  

 Since private and public signals 𝑠𝑠𝑖𝑖𝑖𝑖 and 𝑠𝑠𝑡𝑡
𝑝𝑝 are normally distributed, conditional on a history of signals 

�𝑠𝑠𝑖𝑖1, … 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠1
𝑝𝑝, … 𝑠𝑠𝑡𝑡

𝑝𝑝�, a rational trader’s beliefs about 𝑉𝑉 are normal with mean: 

𝔼𝔼𝑖𝑖,𝑡𝑡(𝑉𝑉) = 𝑠̅𝑠𝑖𝑖,𝑡𝑡𝑧𝑧𝑡𝑡 + 𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡)(1 − 𝑧𝑧𝑡𝑡),                                                         (9) 

                                                           
10 In the appendix we show that the diagnostic expectations so obtained are equivalent to those obtained by applying the 
distorted distribution of footnote 4 to the true distribution 𝑓𝑓(𝑉𝑉|𝑠𝑠𝑖𝑖1, , , 𝑠𝑠𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑡𝑡) conditional on private signals and prices.   



14 
 

The rational inference combines the private signals with the price signals embodied in 𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡). The weight 𝑧𝑧𝑡𝑡 

attached to the private signals is given by:11 

𝑧𝑧𝑡𝑡 =
𝑡𝑡
σϵ2
�
𝑡𝑡
σϵ2

+
1

𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉)

�
−1

,                                                             (10) 

where 𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉) is the variance of the fundamental conditional only on prices.  The weight 𝑧𝑧𝑡𝑡 attached to private 

signals is higher when the informativeness of prices is low (when 𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉) is high).  

To compute diagnostic consensus beliefs, we need to: i) compute diagnostic beliefs by transforming 

rational beliefs in Equation (10) according to Equation (2), and ii) aggregate the resulting beliefs into the 

consensus. The implied consensus dynamics works as follows: 

�𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉)𝑑𝑑𝑑𝑑 = �
(1 + 𝜃𝜃)[(1− 𝑧𝑧𝑡𝑡)𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡) + 𝑉𝑉𝑧𝑧𝑡𝑡] 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≤ 𝑘𝑘

(1 + 𝜃𝜃)(1− 𝑧𝑧𝑡𝑡)𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡) − 𝜃𝜃(1 − 𝑧𝑧𝑡𝑡−𝑘𝑘)𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡−𝑘𝑘) + [(1 + 𝜃𝜃)𝑧𝑧𝑡𝑡 − 𝜃𝜃𝑧𝑧𝑡𝑡−𝑘𝑘]𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 > 𝑘𝑘
. 

There are two important messages. First, diagnostic expectations exaggerate the information revealed 

by prices, not only private information.  This exaggeration comes from the amplification (1 + 𝜃𝜃) of the impact 

of the current price-based estimate 𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡), and from the reversal of past price inferences 𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡−𝑘𝑘).  This is 

another difference from overconfidence, in which public information – including that coming from prices – is 

underweighted. Because a price increase says that positive information about fundamentals is dispersed in the 

economy, it renders the right tail representative, causing overreaction in beliefs.  Second, if prices become very 

informative over time, the weight 𝑧𝑧𝑡𝑡 attached to private signals falls and the weight attached to prices increases.  

The effects of information dispersion may thus subside, and the dynamics of beliefs may be very different 

from what we saw in Section 2.   

 

3.1 The Boom Phase 

                                                           
11 The variance of 𝑉𝑉 is equal to 𝜎𝜎𝑡𝑡2(𝑉𝑉) = � 𝑡𝑡

σϵ2
+ 1

𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉)

�
−1

.  𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉) decreases in the precision of the public signals observed 

up to 𝑡𝑡. See the appendix for details.  
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To assess whether learning from prices significantly affects beliefs and prices, we need to solve for 

the coefficient of price informativeness 𝑐𝑐𝑟𝑟/𝑏𝑏𝑟𝑟. It may in fact be that diagnosticity reduces price 

informativeness, moderating overreaction to price signals. We need to find a fixed point at which consensus 

beliefs are consistent with market equilibrium in Equation (5). Here the key result comes from considering the 

equilibrium for the boom phase of the bubble, 𝑡𝑡 ≤ 𝑘𝑘.   

Proposition 2 With learning from prices and 𝑡𝑡 ≤ 𝑘𝑘, the average consensus belief about 𝑉𝑉 is higher than the 

average consensus belief formed when investors learn from private information alone. The precision of the 

equilibrium price signal increases over time as: 

𝑏𝑏𝑡𝑡
𝑐𝑐𝑡𝑡

= �
1 + 𝜃𝜃
𝛾𝛾σϵ2

� 𝑡𝑡,                                                                            (11) 

and the average equilibrium price path (for 𝑆𝑆1 = 𝑆𝑆2 = ⋯ = 𝑆𝑆𝑡𝑡 = 0) is given by: 

𝑝𝑝𝑡𝑡 = (1 + 𝜃𝜃)

⎣
⎢
⎢
⎢
⎡ 𝑡𝑡

σϵ2
+ �1 + 𝜃𝜃

σ𝑆𝑆σϵ2
�
2 𝑡𝑡(𝑡𝑡 − 1)(2𝑡𝑡 − 1)

6
𝑡𝑡
σϵ2

+ 1
σV2

+ �1 + 𝜃𝜃
σ𝑆𝑆σϵ2

�
2 𝑡𝑡(𝑡𝑡 − 1)(2𝑡𝑡 − 1)

6 ⎦
⎥
⎥
⎥
⎤
𝑉𝑉.                                            (12) 

As in the consensus expectations described in Section 2, the equilibrium price grows in the boom phase 

𝑡𝑡 ≤ 𝑘𝑘, before investors adapt to the displacement. The price in Equation (12) increases over time. If 𝜃𝜃 in in the 

range of Proposition 1, the price starts below the fundamental 𝑉𝑉. This initial under-reaction is due to the same 

reason that consensus beliefs underreact: traders discount the noise in their signals, so the good news they on 

average receive is not incorporated into prices. 

As time goes by, the price increases due to two forces.  First, as traders accumulate private signals, 

they gain confidence about the innovation and revise their beliefs upward.  This effect is captured by the term 

𝑡𝑡/σϵ2 in Equation (12).  Second, the observation of prices provides on average additional good news about 

displacement and that makes all traders more confident at the same time. As a result, the consensus estimate 

of 𝑉𝑉 increases relative to the case in which only private signals are observed, and the price booms.  The effect 

of learning from prices is captured by the second term in the numerator of Equation (12).  At some point, 

traders become so confident that the price over-reacts, overshooting the fundamental 𝑉𝑉.   
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  How does diagnosticity interact with learning from prices? And how does learning from prices 

contribute to the price path? Equation (11) answers the first question. Stronger diagnosticity 𝜃𝜃 increases the 

informativeness of prices. When 𝜃𝜃 is higher, investors are aggressive both in revising their beliefs and in 

trading on the basis of their private signals. Because these signals are informative about 𝑉𝑉, price 

informativeness increases. In turn, greater price informativeness implies that diagnostic traders over-react 

faster to the price signals, which implies that the bubble arises earlier. Unlike non-fundamental based 

behavioral biases, such as mechanical extrapolation, which disconnect prices from fundamentals, diagnostic 

expectations exaggerate this link, creating faster and accelerating overreaction to the initial displacement.  

To see how learning from prices influences the price path, consider again Equation (11). It says that, 

for a given 𝜃𝜃, the price signal becomes more informative over time. As the i.i.d. supply shocks average out 

over time, a path of consistent price increases is highly informative of good fundamentals. Consequently, 

learning from prices progressively gains ground, and swamps private signals as prices rise up to the peak of 

the bubble. As shown in Equation (12) the precision of price signals grows with the cubic power of 𝑡𝑡, which 

eventually swamps the linear precision of private signals, 𝑡𝑡/σϵ2.  This has the following implication. 

Proposition 3 With learning from prices, there exists a 𝜎𝜎𝑉𝑉2∗ > 0 such that for 𝜎𝜎𝑉𝑉2 < 𝜎𝜎𝑉𝑉2∗ there exists a 𝑡𝑡∗ > 0 

such the average price path is convex for 𝑡𝑡 < 𝑡𝑡∗ and concave for 𝑡𝑡 ∈ (𝑡𝑡∗,𝑘𝑘).  When the supply shocks are so 

volatile ( σ𝑆𝑆 → ∞) that prices convey no information, the price path is concave: 𝜎𝜎𝑉𝑉2∗ → 0.  

When fundamental displacement is sufficiently large (𝜎𝜎𝑉𝑉2 is low enough), learning from prices 

generates a price path that is initially convex and then slows down as the bubble reaches its peak. This occurs 

because all traders, regardless of their private signals, aggressively infer fundamentals from the common price 

signal, so the price informativeness increases at first.  After sufficient information has been incorporated into 

expectations and prices, the value of additional signals diminishes, which causes a price growth slowdown.  

Under rational expectations, learning from prices would also coordinate traders’ beliefs and generate 

convexity in prices, but not lead to overvaluation. In contrast, under diagnostic expectations convex price 

growth eventually overshoots the fundamentals, creating a bubble.  In this respect, with learning from prices, 

diagnostic expectations generate a boom phase where the price initially under-reacts, but as displacement 
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continues and as the price increases, traders make strong inferences and push the price even higher, generating 

a convex price increase and eventually an overvaluation.  Allowing for learning from prices thus remedies the 

first shortcoming of the model of Section 2: it creates the convex price paths typical of real world bubbles.   

 

3.2 Model Simulation: Boom, Bust and Price Extrapolation 

To explore the entire path of the bubble, we resort to simulations, because the model cannot be 

analytically solved for 𝑡𝑡 > 𝑘𝑘. This analysis shows that diagnostic expectations can produce the boom and bust 

phases of bubbles and the dynamics of investor disagreement (and hence trading). Most importantly, diagnostic 

expectations can endogenously produce extrapolative expectations of prices, but in a way that distinguishes 

them from adaptive expectations or from alternative formulations (Hong and Stein 1999, Glaeser and 

Nathanson 2017). The predictions may also suggest how to detect bubbles in the data. 

We now describe our choice of parameters.  We normalize 𝑉𝑉 to 1. To capture that displacement is a 

fairly rare event, we assume 𝜎𝜎𝑉𝑉 = 0.5, so 𝑉𝑉 is two standard deviations away from the mean.  The dispersion 

of trader’s private signals is set at 𝜎𝜎𝜖𝜖 = 12.5, which is in the ballpark of what we estimated from the quarterly 

dispersion of professional forecasts (BGMS 2018).12  We set 𝜃𝜃 = 0.8, in line with the quarterly estimates from 

macroeconomic and financial survey data. For the model without speculation, we take a time period to be a 

quarter, set the sluggishness of diagnostic beliefs at 𝑘𝑘 = 12 (in line with the estimates from BGLS 2018) and 

run the model for 𝑇𝑇 = 24 periods, i.e. 6 years. We set the volatility of supply shocks at 𝜎𝜎𝑆𝑆 = 0.3.   

Figure 1 reports the actual price for the average path (no supply shocks) both under diagnostic 

expectations (𝜃𝜃 = 0.8) and under rational expectations (𝜃𝜃 = 0).  Under diagnostic expectations, the 

equilibrium price exhibits the typical boom bust pattern, where the boom is driven by overreaction to private 

signals and prices, while the bust is due to the reversal of expectations at 𝑡𝑡 = 𝑘𝑘 = 12.  In the rational model, 

by contrast, the price monotonically converges to 𝑉𝑉 from below. 

                                                           
12 In BGMS (2018), the estimated signal to noise ratio of the average macroeconomic series was between 3.5 and 4.  In 
the current setting, this should be compared to the precision 𝜎𝜎𝜖𝜖

𝑉𝑉√𝜏𝜏
 of the signals received by the traders over some natural 

time scale 𝜏𝜏.  Picking this time scale to be around 𝑘𝑘, we get 𝜎𝜎𝜖𝜖 between 12 and 14.   
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Figure 1. Average Price Path 

 

Rational expectations cannot produce over-reaction and price inflation because they constrain assessed 

fundamentals to always stay between the prior of zero and the true value 𝑉𝑉.  The same is true under 

overconfidence, which can generate bubbles only in the presence of short sales constraints (Harrison and Kreps 

1978).  In our model, a displacement drives continued good news, resulting in a price boom. This leads traders 

to focus on the right tail of 𝑉𝑉 and think that the innovation is truly exceptional, causing prices to overreact. 

The bust occurs at time 𝑡𝑡 = 𝑘𝑘 + 1, when investors adapt to the displacement, starting to view the 

innovative asset or technology as the new norm.  Here the length 𝑘𝑘 of the boom phase is deterministic, but the 

model could be made more realistic by having 𝑘𝑘 stochastic (and even heterogeneous across investors). As in 

the analysis of Proposition 1, adaptation to early news causes excess optimism to run out of steam, generating 

the bust. Reversal of expectations and prices due to disappointment of prior optimism can help account for the 

slowdown of some bubbles, but it is not the only mechanism behind a bust; other factors including bad news 

(the housing bubble deflating from 2006 onward), as well as the proximity of a terminal trading date (crucial 

in experimental findings), are surely significant.  We consider the latter mechanism in Section 4. 

Because traders observe independent signals, they have heterogeneous beliefs about the value of the 

asset.  This creates room for disagreement and trading (Scheinkman and Xiong 2003).  Barberis et al. (2018) 

show that disagreement tends to rise in the boom phase.  Our model can create very similar effects.  As time 
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goes by, traders become more confident in their information, which causes them to place stronger weight on 

private signals.  This effect tends to foster disagreement.  At some point, the common price shock becomes so 

strong that disagreement declines. We plot the standard deviation of individual beliefs in Figure 2: 

disagreement rises in the early part of the boom, but falls as the public signal dominates the private information. 

Figure 2. Model-Implied Belief Dispersion 

 

We can also use simulations to describe the dynamics of expectations of future prices. Under 

mechanical extrapolation, traders project past price increases into the future using the updating rule: 

𝔼𝔼𝑡𝑡(𝑝𝑝𝑡𝑡+1) = 𝑝𝑝𝑡𝑡 + 𝛽𝛽(𝑝𝑝𝑡𝑡−1 − 𝑝𝑝𝑡𝑡),                                                            (13) 

where 𝛽𝛽 > 0 captures the fixed degree of price extrapolation.  In our model, in contrast, traders watch prices 

in order to infer fundamentals. As a result, price extrapolation arises because high past prices signal high 

fundamentals and hence even higher future expected prices. 

In Hong and Stein (1999), extrapolation is due to under-reaction, which makes it optimal for 

momentum traders to chase the upward trend in prices.  In that model, momentum traders form expectations 

of future price changes by running simple univariate regressions of current on past price growth.  In Glaeser 

and Nathanson (2017), investors believe that the price reflects fundamental value. An increase in price is then 

interpreted as stronger fundamentals, and leads to extrapolation of high prices into the future.  In both models, 

as in adaptive expectations, extrapolation is due to the use of simplified (or wrong) models.        

 This logic suggests a testable difference between mechanical extrapolation models and price learning 

under diagnostic expectations.  In the latter case, price extrapolation is the product of an inference process, 
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distorted by 𝜃𝜃.  This implies that the degree of extrapolation is not constant over time, but rather depends on 

the degree of uncertainty concerning fundamentals.  In terms of Equation (13), our model predicts that the 

updating coefficient 𝛽𝛽 should not be constant, but depends on the extent to which prices are informative.  

Modest price increases observed in the early stages of a bubble are not very informative about the magnitude 

of the fundamental, so the coefficient 𝛽𝛽 should be low.  In contrast, a sustained price increase (as observed 

some time into the bubble) is a solid indicator of a strong fundamental, and should therefore be associated with 

a much higher over-reaction, as measured by the coefficient 𝛽𝛽 under diagnostic expectations. 

We evaluate these ideas by simulating the model. We run regression (13) using a time series of the 

model simulated using the parameters above.  We produce 2000 such time series and plot in Figure 3 the 

histogram of estimated coefficients for both the diagnostic and the rational model.        

Figure 3. Model-Implied Extrapolation Coefficient 

 
 

The coefficient of price extrapolation implied by the model is positive, between .5 and 1.5.  Even 

though our investors are entirely forward looking, they appear to mechanically extrapolate past prices.  This is 

not the case under rational expectations, where the coefficient is negative because traders discount their 

information and under-predict the future consensus (and hence price).  

While diagnostic expectations entail a positive extrapolation coefficient on average across the entire 

bubble episode (as does mechanical extrapolation), the extrapolation coefficient is the highest when prices are 

most informative, namely close to the peak of the bubble.  Figure 4 reports the average estimates of the 
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extrapolative coefficient 𝛽𝛽 in each of six buckets, capturing growth, overshooting and collapse of the bubble.13 

The results confirm our intuition: price extrapolation is strongest in the making of the bubble when there is 

rapid learning (the first phase highlighted in blue).  This occurs because prices are most informative (relative 

to the private signal) in that range, which induces diagnostic traders to update upward more aggressively after 

a price rise. At the peak of the bubble, expectations of future prices are significantly above actual prices.  After 

the bubble bursts, traders adjust their expectations downwards significantly, but not fast enough to converge 

to the actual prices.  Thus, in this period extrapolation appears negative.  Finally, as learning subsides, 

extrapolation goes to zero, just as in the rational case. 

Figure 4. Time-Dependent Extrapolation 

 

As Figures 3 and 4 show, this model can produce some price convexity and moderate overvaluation.  

However, this model precludes large bubbles because for reasonable values of 𝜃𝜃 prices are tethered to the long-

term liquidation value. In contrast, prices sometimes strongly overshoot sensible measures of fundamentals.  

Second, while learning from prices generates some convexity in the price path, it does not create enough 

acceleration to generate increasing growth rate of prices (accelerating returns) seen in the data (Greenwood, 

Shleifer, and You 2018). We next show that both features can be attained by adding speculation to our model. 

 

                                                           
13 To build Figure 3, we simulate 5000 price paths and expected future price paths. We pool simulations and compute the 
regression 𝔼𝔼𝑡𝑡(𝑝𝑝𝑡𝑡+1) = 𝑝𝑝𝑡𝑡 + 𝛽𝛽(𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1) within buckets of 4 time periods. Figure 3 reports the resulting 𝛽𝛽s and 
corresponding confidence intervals (running regressions for individual paths and averaging the 𝛽𝛽s yields similar results).  
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4. Speculation 

To introduce speculation, we assume that traders have short horizons in the sense that their objective 

function at each time 𝑡𝑡 is to resell the asset at time 𝑡𝑡 + 1. The trading game lasts for 𝑇𝑇 rounds, and the traders 

holding the asset in the terminal date receive its fundamental value. We take 𝑇𝑇 to be exogenously given and 

deterministic, as in laboratory experiments of bubbles. In real markets, there is no such thing as a terminal 

date, but taking a fixed 𝑇𝑇 is a very convenient approximation to a setting in which there is a certain probability 

that at some point the “speculation game” ends in the sense that most traders attend to fundamentals. 

With speculation, diagnostic expectations generate price paths with significantly larger overvaluation 

than in the previous models, followed by a price collapse as the terminal date approaches. This occurs because 

diagnostic speculators not only overreact to good fundamental news, but also expect to resell to overreacting 

buyers in the future, which drives the price today higher. As the terminal date approaches, the prospects for 

re-trading fade and the bubble bursts.  These dynamics are very different from those obtained under rationality. 

As in previous Sections, traders hold mean-variance preferences (in particular, expectations are normal 

in the diagnostic equilibrium). Away from the terminal date, 𝑡𝑡 < 𝑇𝑇, trader 𝑖𝑖 chooses demand 𝐷𝐷𝑖𝑖𝑖𝑖 to maximize 

[𝔼𝔼𝑖𝑖𝑖𝑖(𝑝𝑝𝑡𝑡+1) − 𝑝𝑝𝑡𝑡]𝐷𝐷𝑖𝑖𝑖𝑖 −
𝛾𝛾
2

 𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡(𝑝𝑝𝑡𝑡+1)𝐷𝐷𝑖𝑖𝑖𝑖2 , while his objective at time 𝑇𝑇 is fundamental-based as before. Demand 

in each period is then given by:  

𝐷𝐷𝑖𝑖,𝑡𝑡 =
�𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑝𝑝𝑡𝑡+1) − 𝑝𝑝𝑡𝑡�
𝛾𝛾𝛾𝛾𝛾𝛾𝑟𝑟𝑡𝑡(𝑝𝑝𝑡𝑡+1) ,     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1, … ,𝑇𝑇 − 1,                                        (14) 

𝐷𝐷𝑖𝑖,𝑡𝑡 =
�𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑉𝑉)− 𝑝𝑝𝑡𝑡�
𝛾𝛾𝛾𝛾𝛾𝛾𝑟𝑟𝑡𝑡(𝑝𝑝𝑡𝑡+1) ,                      𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 𝑇𝑇.                                            (15) 

With speculation, demand increases in the expected capital gain 𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑝𝑝𝑡𝑡+1) − 𝑝𝑝𝑡𝑡 except in the last 

period 𝑡𝑡 = 𝑇𝑇, in which traders buy the asset to hold it. 

To illustrate the key consequences of speculation, we begin with a model in which there is no learning 

from prices. In Section 4.2 we then introduce such learning and compare this formulation to the one in Section 

3. With learning from prices, we find a speculative equilibrium by again starting from a linear pricing function, 
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which is then used to compute price expectations 𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑝𝑝𝑡𝑡+1) for next period.  In each period, the coefficients 

of the pricing function are pinned down by equating demand and supply. 

In both versions of the speculation model, speculation is itself a source of price reversal as 𝑇𝑇 

approaches. We can thus simplify the analysis by assuming that the diagnostic reference is very sluggish, 𝑘𝑘 >

𝑇𝑇, so that information about the asset’s value is always assessed compared to the prior 𝑉𝑉 = 0.   

 

4.1 Speculation without Learning from Prices 

Without learning from prices, we do not need a supply shock, so we assume that the supply of the asset 

is equal to zero. Aggregating the individual demand functions, prices are pinned down by the conditions: 

𝑝𝑝𝑡𝑡 = �𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑝𝑝𝑡𝑡+1)𝑑𝑑𝑑𝑑,     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1, … ,𝑇𝑇 − 1,                                             (16) 

𝑝𝑝𝑇𝑇 = �𝔼𝔼𝑖𝑖,𝑇𝑇𝜃𝜃 (𝑉𝑉)𝑑𝑑𝑑𝑑.                                                                                           (17) 

In the final period 𝑇𝑇, the consensus fundamental value is 𝔼𝔼𝑇𝑇𝜃𝜃(𝑉𝑉) = (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇𝑉𝑉, as per Equation (3), 

leading to the terminal price 𝑝𝑝𝑇𝑇 = (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇𝑉𝑉. Under the assumption 𝜃𝜃 ∈ �1
𝑇𝑇
𝜎𝜎𝜖𝜖2

𝜎𝜎𝑣𝑣2
, 𝜎𝜎𝜖𝜖

2

𝜎𝜎𝑣𝑣2
� of Proposition 1, which 

we maintain, this price is above the fundamental, (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇 > 1.14 

Consider now the price at 𝑇𝑇 − 1.  By Equation (16), this price is the consensus expectation as of 𝑇𝑇 − 1 

of the terminal price 𝑝𝑝𝑇𝑇.  To compute this consensus, consider first the expectation held at 𝑇𝑇 − 1 by a generic 

trader 𝑗𝑗. When forecasting the terminal price, this trader must make two assessments.  First, he must assess the 

fundamental value 𝑉𝑉 of the asset.  Second, he must assess how future traders will react to noisy signals of the 

same fundamental value.  Because the beliefs of future traders are a random variable, trader 𝑗𝑗 uses the very 

same diagnostic formula of Equation (2) when representing their distribution.   One can interpret this 

forecasting process in two ways.  First, one can view trader 𝑗𝑗 as placing himself in the shoes of future traders 

                                                           
14 Recall that in this Section we shut down the adaptation of diagnostic expectations by setting 𝑘𝑘 > 𝑇𝑇. 
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receiving different signals, predicting that these traders will behave the way he would behave in light of the 

same signals.  Alternatively, one can view trader 𝑗𝑗 as forecasting the behavior of others understanding that 

they will update diagnostically. In both cases, we continue to rule out the possibility that any trader is 

sophisticated enough to be aware of his own diagnosticity, thereby correcting his assessments for it.     

   Consider how trader 𝑗𝑗 forecasts the beliefs at 𝑇𝑇 of a generic trader 𝑖𝑖 who has observed an average 

signal ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑇𝑇
𝑟𝑟=1
𝑇𝑇

 from the initial date to the terminal period.  Trader 𝑗𝑗 knows that trader 𝑖𝑖 overreacts to all signals 

received, forming a terminal estimate 𝔼𝔼𝑖𝑖𝑖𝑖𝜃𝜃 (𝑉𝑉) = (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇
∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑇𝑇
𝑟𝑟=1
𝑇𝑇

.  By averaging across all traders 𝑖𝑖, trader 𝑗𝑗 

knows that, if the fundamental value is 𝑉𝑉, the consensus estimate, and hence the equilibrium price at 𝑇𝑇  

𝑝𝑝𝑇𝑇 = (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇𝑉𝑉. 

This prediction is based on the fact that trader 𝑗𝑗 knows that, whichever signals observed by individual 

traders, they will average out to the true 𝑉𝑉.   Of course, trader 𝑗𝑗 does not know the true value of 𝑉𝑉 at 𝑇𝑇 − 1; he 

only has an estimate of it, based on the signals 
∑ 𝑠𝑠𝑗𝑗𝑗𝑗𝑇𝑇−1
𝑟𝑟=1
𝑇𝑇−1

 observed up to that period. This estimate is diagnostic:    

𝔼𝔼𝑗𝑗𝑗𝑗−1𝜃𝜃 (𝑉𝑉) = (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇−1
∑ 𝑠𝑠𝑗𝑗𝑗𝑗𝑇𝑇−1
𝑟𝑟=1

𝑇𝑇 − 1
. 

The diagnostic expectation held at 𝑇𝑇 − 1 by trader 𝑗𝑗 about the terminal price is then given by:  

𝔼𝔼𝑗𝑗𝑗𝑗−1𝜃𝜃 �𝔼𝔼𝑇𝑇𝜃𝜃(𝑉𝑉)� = (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇𝔼𝔼𝑗𝑗𝑗𝑗−1𝜃𝜃 (𝑉𝑉) 

= (1 + 𝜃𝜃)2𝜋𝜋𝑇𝑇𝜋𝜋𝑇𝑇−1
∑ 𝑠𝑠𝑗𝑗𝑗𝑗𝑇𝑇−1
𝑟𝑟=1

𝑇𝑇 − 1
. 

This trader uses his signals but he compounds diagnosticity twice.  First, he diagnostically overreacts 

to his signal, creating an inflated estimate of fundamentals. Second, he expects future traders to over-react to 

signals generated by the inflated fundamentals. To see the intuition, imagine that 𝑗𝑗 overestimates the share of 

future Googles in the population of tech firms to be 7%. He then expects future traders to overreact relative 

his assessment and estimate the share of Googles to be, say, 10%.  In this way, overreaction to news compounds 

as the current forecast is projected into the future.    
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Because every trader j repeats the same logic, by averaging across all of them, the consensus forecast 

held at time 𝑇𝑇 − 1 about the terminal price, and thus the equilibrium price at 𝑇𝑇 − 1 is given by:  

𝑝𝑝𝑇𝑇−1 = (1 + 𝜃𝜃)2𝜋𝜋𝑇𝑇𝜋𝜋𝑇𝑇−1𝑉𝑉.                                                                 (18) 

To gauge the role of diagnostic expectations, suppose that traders are rational, so 𝜃𝜃 = 0.  In this case, 

the price at 𝑇𝑇 − 1 is lower than the terminal price, because 𝜋𝜋𝑇𝑇−1 < 1.  As a result, under rationality speculation 

causes the price to rise as the terminal date is approached.   It is well known that speculation under rationality 

leads to initial under-reaction, and thus to a rising price path (Allen et al. 2006).  The intuition is that rational 

traders discount their signals and expect future traders to do the same. As a result, they do not expect to be able 

to resell the asset for a very high price, which keeps the current price low. 

With diagnosticity, even a modicum of overreaction dramatically changes the calculus.  When 𝜃𝜃 > 0, 

it is entirely possible that the price drops at the terminal date.  This is true if and only if: 

𝑝𝑝𝑇𝑇−1 > 𝑝𝑝𝑇𝑇 ⟺ (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇−1 > 1. 

If traders overestimate the fundamental value at time 𝑇𝑇 − 1, i.e. (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇−1 > 1, then the price at 𝑇𝑇 − 1 is 

above both fundamentals and the terminal price.  Indeed, by overestimating 𝑉𝑉, traders believe that future 

traders will overreact to this estimate, compounding overreaction twice. But then, the expectation to sell to 

these bullish traders in the future raises the current price of the asset. 

In sharp contrast with the rational case, which leads to a monotone rising price path, diagnostic 

expectations introduce the opposite effect. By creating overreaction, they imply that prices decline toward the 

terminal date, reflecting an initial strong overvaluation of the asset. 

To study the implications of 𝜃𝜃 > 0 fully, we need to iterate the same logic backward to earlier periods 

until the initial date 𝑡𝑡 = 1. It is immediate to see that the full path of equilibrium prices obtained by iterating 

Equation (18) backwards is described by: 

𝑝𝑝𝑡𝑡 = (1 + 𝜃𝜃)𝑇𝑇−𝑡𝑡+1 �� 𝜋𝜋𝑟𝑟
𝑇𝑇

𝑟𝑟=𝑡𝑡
� 𝑉𝑉,                                                               (19) 

which implies the following result.   
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Proposition 4 Define the geometric average of all signal to noise ratios 𝜋𝜋� ≡ [∏ 𝜋𝜋𝑟𝑟𝑇𝑇
𝑟𝑟=1 ]

1
𝑇𝑇.  Then, if 𝜃𝜃 ∈

�1
𝑇𝑇
𝜎𝜎𝜖𝜖2

𝜎𝜎𝑣𝑣2
, 1−𝜋𝜋�
𝜋𝜋�
�, where 1−𝜋𝜋�

𝜋𝜋�
< 𝜎𝜎𝜖𝜖2

𝜎𝜎𝑣𝑣2
, the speculative price dynamics exhibit the three bubble phases. In particular: 

1. The price starts below fundamental, 𝑝𝑝1 < 𝑉𝑉, and gradually increases above fundamentals, reaching its 

maximum at the smallest time 𝑡̂𝑡 for which (1 + 𝜃𝜃)𝜋𝜋𝑡̂𝑡 > 1.     

2. From 𝑡𝑡 = 𝑡̂𝑡 onwards the price monotonically declines toward 𝑝𝑝𝑇𝑇. 

With diagnostic expectations, speculative dynamics can generate both the sluggish upward price 

adjustment typical of underreaction (provided 𝜃𝜃 is not too large), the price inflation relative to fundamentals 

typical of overreaction (provided 𝜃𝜃 is not too small), and the bust phase in which prices collapse, which here 

is driven by the reduction in the available rounds of reselling. 

Because (1 + 𝜃𝜃)𝜋𝜋�𝑇𝑇 < 1, individual traders underreact to the aggregate information in the first period. 

The logic is the same as before: individual uncertainty about 𝑉𝑉 is still very large.  Traders are not only cautious 

in estimating 𝑉𝑉, but also think that next period buyers will be cautious as well.  This effect curtails the expected 

resale price and demand for the asset today, keeping its price low.  As time goes by, traders acquire more 

information, become more confident, and start using it more aggressively.  They become more optimistic about 

the signals future buyers will get, more confident about future buyers’ over-optimism, and the price starts 

increasing. As traders gain confidence, the possibility of multiple rounds of reselling to over-reacting traders 

dramatically boosts price, which overshoots 𝑉𝑉. The price then starts declining as the terminal date 𝑇𝑇 

approaches, because there are fewer and fewer rounds of trading and thus less scope for reselling to 

overreacting buyers. 

Once again, under rationality, the dynamics of speculation do not yield a hump shaped price path. 

Given 𝜃𝜃 = 0, traders rationally anticipate that future traders will have lower signals than they do, and that they 

will in turn discount those signals, resulting in depressed prices.  Because traders receive information over 

time, price grows monotonically and approaches 𝑉𝑉 from below. It displays momentum but not overshooting 

or reversal (Allen, Morris, and Shin 2006).  
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Another important consequence of speculation is that it can greatly exacerbate the overshooting of 

fundamentals, relative to the benchmark model of Section 3.  Equation (19) shows how speculation fuels 

bubbles under diagnostic expectations, and can cause strong price inflation even with small diagnostic 

distortions 𝜃𝜃. Consider the ratio of price under speculation to consensus expectations of fundamentals (which 

equals price in the absence of speculation).   At the peak of the bubble, which occurs at 𝑡̂𝑡 = 1
𝜃𝜃
𝜎𝜎𝜖𝜖2

𝜎𝜎𝑣𝑣2
, this ratio is 

inflated relative to the rational benchmark as follows:  

𝑝𝑝𝑡̂𝑡(𝜃𝜃)
𝔼𝔼𝑡̂𝑡
𝜃𝜃(𝑉𝑉)

= (1 + 𝜃𝜃)
𝑇𝑇−1𝜃𝜃

𝜎𝜎𝜖𝜖2
𝜎𝜎𝑣𝑣2
𝑝𝑝𝑡̂𝑡(0)
𝔼𝔼𝑡̂𝑡
0(𝑉𝑉)

 

While under diagnostic expectations beliefs about fundamentals are inflated by a linear factor of 𝜃𝜃, namely 

𝔼𝔼𝑡𝑡�
𝜃𝜃(𝑉𝑉)
𝔼𝔼𝑡𝑡�
0(𝑉𝑉) = 1 + 𝜃𝜃, when speculation is included the inflation of price relative to beliefs grows as a power of 1 +

𝜃𝜃. Even a small departure 𝜃𝜃 from rationality can fuel large bubbles. This much stronger growth reflects the 

compounding effect of over-optimism about selling to overreacting investors until the horizon 𝑇𝑇.  Increasing 

𝜃𝜃 increases optimism, which also implies that the peak of the bubble is reached earlier, which in turn implies 

a stronger compound effect of diagnostic expectations.   

 

4.2 Learning from Prices 

We now enrich the speculation model with learning from prices, which may further fuel speculative 

dynamics by leading traders to expect strong price appreciation following good fundamental news.  Building 

on the analysis in Section 3, we start from the pricing rule of Equation (6), setting 𝑎𝑎1𝑡𝑡 = 0 (which follows 

from our earlier analysis) as well as 𝑎𝑎3𝑡𝑡 = 0, since for 𝑘𝑘 > 𝑇𝑇 the lagged expectation is redundant. We 

reintroduce supply shocks to prevent prices from being fully revealing.  Traders now use the pricing rule also 

to forecast future prices, not only to learn about 𝑉𝑉.  Equations (16) and (17) then imply the following market 

clearing conditions: 

                            𝑝𝑝𝑡𝑡 = �𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑝𝑝𝑡𝑡+1)𝑑𝑑𝑑𝑑 − 𝛾𝛾𝛾𝛾𝛾𝛾𝑟𝑟𝑡𝑡(𝑝𝑝𝑡𝑡+1)𝑆𝑆𝑡𝑡,              𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1, … ,𝑇𝑇 − 1 
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                        𝑝𝑝𝑇𝑇 = �𝔼𝔼𝑖𝑖,𝑇𝑇𝜃𝜃 (𝑉𝑉)𝑑𝑑𝑑𝑑 − 𝛾𝛾𝛾𝛾𝛾𝛾𝑟𝑟𝑇𝑇(𝑉𝑉)𝑆𝑆𝑇𝑇 .                                                       

In line with Equation (9), the diagnostic expectation of value held by trader 𝑖𝑖 after observing the private 

signals �𝑠𝑠𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑖𝑖, 𝑠𝑠1
𝑝𝑝, … 𝑠𝑠𝑡𝑡

𝑝𝑝� is given by:  

𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑉𝑉) = (1 + 𝜃𝜃)[𝑠̅𝑠𝑖𝑖,𝑡𝑡𝑧𝑧𝑡𝑡 + 𝔼𝔼𝑡𝑡(𝑉𝑉|𝑃𝑃)(1 − 𝑧𝑧𝑡𝑡)], 

where 𝑧𝑧𝑡𝑡 = 𝑡𝑡
σϵ2
� 𝑡𝑡
σϵ2

+ 1
𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉)

�
−1

. Here 𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉) denotes the variance of fundamentals at 𝑡𝑡 when there is learning 

only from prices.  The diagnostic expectation of price and its variance are then equal to: 

𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑝𝑝𝑡𝑡+1) = (1 + 𝜃𝜃)�𝑎𝑎𝑡𝑡+1𝔼𝔼𝑖𝑖,𝑡𝑡[𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡+1)] + 𝑏𝑏𝑡𝑡+1𝔼𝔼𝑖𝑖,𝑡𝑡(𝑉𝑉)� 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑝𝑝𝑡𝑡+1) = �𝑎𝑎𝑡𝑡+1 �1−
𝜎𝜎𝑝𝑝,𝑡𝑡+1
2 (𝑉𝑉)
𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉)

� + 𝑏𝑏𝑡𝑡+1�
2

𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡�𝑠𝑠𝑡𝑡+1
𝑝𝑝 �. 

By plugging these expressions in the market clearing conditions we show the following result.  

Proposition 5. A diagnostic equilibrium at parameters (𝛾𝛾,𝜃𝜃,σ𝑆𝑆2,σϵ2,σ𝑉𝑉2 ,𝑇𝑇) is a set of coefficients 

�𝑎𝑎2,𝑡𝑡, 𝑏𝑏𝑡𝑡, 𝑐𝑐𝑡𝑡�𝑡𝑡=1…,𝑇𝑇 and price-based variance 𝑉𝑉𝑡𝑡
𝑝𝑝satisfying the recursion for 𝑡𝑡 < 𝑇𝑇: 

𝑏𝑏𝑡𝑡 = (1 + 𝜃𝜃)
𝑡𝑡
σϵ2

�[(1 + 𝜃𝜃)𝑇𝑇−𝑡𝑡 − 𝑏𝑏𝑡𝑡+1] � 1
𝜎𝜎𝑝𝑝,𝑡𝑡+1
2 (𝑉𝑉)�

−1

�𝑏𝑏𝑡𝑡+1𝑐𝑐𝑡𝑡+1
�
2 1
σ𝑆𝑆2

+ 𝑏𝑏𝑡𝑡+1�

� 𝑡𝑡σϵ2
+ 1
𝜎𝜎𝑝𝑝,𝑡𝑡+1
2 (𝑉𝑉) − �𝑏𝑏𝑡𝑡+1𝑐𝑐𝑡𝑡+1

�
2 1
σ𝑆𝑆2
�

,                                 (20) 

𝑎𝑎2,𝑡𝑡 = (1 + 𝜃𝜃)𝑇𝑇−𝑡𝑡+1 − 𝑏𝑏𝑡𝑡,                                                                 (21) 

𝑐𝑐𝑡𝑡 = 𝛾𝛾 �[(1 + 𝜃𝜃)𝑇𝑇−𝑡𝑡 − 𝑏𝑏𝑡𝑡+1] �
1

𝜎𝜎𝑝𝑝,𝑡𝑡+1
2 (𝑉𝑉)

�
−1

�
𝑏𝑏𝑡𝑡+1
𝑐𝑐𝑡𝑡+1

�
2 1
σ𝑆𝑆2

+ 𝑏𝑏𝑡𝑡+1�

2

��
𝑡𝑡
σϵ2

+
1

𝜎𝜎𝑝𝑝,𝑡𝑡+1
2 (𝑉𝑉)

− �
𝑏𝑏𝑡𝑡+1
𝑐𝑐𝑡𝑡+1

�
2 1
σ𝑆𝑆2
�
−1

+ �
𝑐𝑐𝑡𝑡+1
𝑏𝑏𝑡𝑡+1

�
2
σ𝑆𝑆2� ,                                                                                                                                    (22) 

1
𝜎𝜎𝑝𝑝,𝑡𝑡
2 (𝑉𝑉)

=
1

𝜎𝜎𝑝𝑝,𝑡𝑡+1
2 (𝑉𝑉)

− �
𝑏𝑏𝑡𝑡+1
𝑐𝑐𝑡𝑡+1

�
2 1
σ𝑆𝑆2

,                                                                 (23) 



29 
 

with terminal conditions:  

𝑏𝑏𝑇𝑇 = (1 + 𝜃𝜃)
𝑇𝑇
σϵ2
�
𝑇𝑇
σϵ2

+
1

𝜎𝜎𝑝𝑝,𝑇𝑇
2 (𝑉𝑉)

�
−1

                                                  (24) 

𝑐𝑐𝑇𝑇 = 𝛾𝛾 �
𝑇𝑇
σϵ2

+
1

𝜎𝜎𝑝𝑝,𝑇𝑇
2 (𝑉𝑉)

�
−1

                                                                 (25) 

1
𝜎𝜎𝑝𝑝,0
2 (𝑉𝑉)

=
1
𝜎𝜎𝑉𝑉2

.                                                                                      (26) 

     The above iteration specifies values at 𝑡𝑡 as a function of those at 𝑡𝑡 + 1, so that the recursion identifies 

the equilibrium from the terminal condition.    

Proposition 6. There exists 𝜎𝜎𝑝𝑝,𝑇𝑇
2 (𝑉𝑉) such that condition (26) holds and the equilibrium exists. 

Introducing learning from prices into the model with speculation adds some attractive features.  Like 

in the model of Section 3, learning from prices leads to more aggressive price growth once the bubble starts, 

and to a peak price higher than that without learning from prices.  To explore the model’s properties, and to 

systematically compare it to the model without speculation, we turn to simulations.  

 

4.3 Model Simulations 

In this Section, we present simulations of the model with speculation and learning from prices, and 

compare it to the model of Section 3 in terms of its ability to generate price acceleration and large 

overvaluation.15  Using the same parameters as in Section 3.2, we compare the price paths that obtain when 

investors learn from prices, with and without speculation.  To compute the price path under speculation, we 

first find the terminal variance 𝜎𝜎𝑝𝑝,𝑇𝑇
2  (from which previous 𝜎𝜎𝑝𝑝,𝑡𝑡

2  are computed in equilibrium) such that condition 

(26) holds, as described in Proposition 5.   

                                                           
15 Here we do not consider price extrapolation because, when every investor is a speculator, expectations of future prices 
are embedded in current prices. The current setting thus misses the “partial equilibrium” perspective in which the current 
price does not yet contain information available to the investor expressing price beliefs. One way to assess price 
extrapolation in this context is to have a market consisting of both fundamental investors and speculators (with both types 
learning from prices).  We leave this interesting exercise for future work. 
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Figure 5 plots the average price path prevailing when the supply shock 𝑆𝑆𝑡𝑡 is zero in all periods.  For 

comparison, it also plots the corresponding path of expectations about fundamentals under speculation. Several 

features stand out.  First, the price path displays the three phases described by Kindelberger (1978), namely a 

price growth phase, an acceleration and overshooting phase, and then a collapse.  Second, the first phase is 

protracted, with prices being lower than in the rational case at first, before they accelerate. At this stage, 

speculative motives slow down learning from the prices. Third, when prices accelerate, they do so much more 

strongly than in the absence of speculation, and the extent of overpricing is much greater than that obtained in 

the previous model with the same parameters.   

Figure 5. Speculation and learning from prices 

  

These features are driven by the interaction of speculation with learning from prices. The speculative 

motive adds uncertainty to the prices, but also allows traders to trade more aggressively on their beliefs.  These 

forces play a differential role throughout the bubble episode.  At first, traders have little information and prices 

are less informative about fundamentals. Traders thus heavily discount early price increases, which may be 

driven by a supply shock compounded by the willingness to speculate of other traders. Because all traders 

behave this way, prices (and beliefs about 𝑉𝑉) remain low. In this phase, speculation compounds under-reaction 

and the price path is similar to what would be obtained under rationality. However, once individual traders are 

confident that the innovation is in fact valuable, the interaction reverses sign. At this point, price paths under 
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diagnostic and rational expectations become very different. With diagnostic expectations, learning from prices 

fuels speculation, because current prices convey more information, and the price skyrockets above 

fundamentals. As the terminal date 𝑇𝑇 approaches, the extent of possible reselling decreases and so the price 

drops. This boom-bust pattern is not possible under rationality, which entails a monotonically increasing price 

that converges to 𝑉𝑉 from below.   

In sum, the current model exhibits both fast growth of prices as well as very strong overvaluation 

within a set of parameters broadly consistent with data on expectations and with the duration of the different 

phases of several bubble episodes.  Speculation under diagnostic expectations plays a key role by capturing 

the idea – present in Kindleberger (1978) and other analyses of bubbles – of optimistic investors bidding up 

prices with the expectation of selling subsequently to other, even more optimistic, investors.  This mechanism 

helps the model generate substantial bubbles even when the departure from rationality is modest.  A degree of 

distortions of 𝜃𝜃 = 0.8 generates in the above simulation a price peak that is three times the fundamental, and 

about 80% higher than the price peak in the absence of speculation.  Mechanical price extrapolation is not 

necessary to generate such overpricing.  The role of Kindelberger’s fundamental displacement in generating 

bubbles may be larger than usually thought.  

 

5. Conclusion 

 In this paper, we brought a micro-founded model of beliefs, diagnostic expectations, to the problem of 

modeling bubbles. We have considered two formulations: belief formation about fundamentals with learning 

from prices and also speculation, whereby investors focus on reselling the asset next period.  We showed that 

both of these formulations exhibit the central features of bubbles as conceived by Kindleberger (1978): 

displacement, price acceleration, and a crash.  Moreover, these models deliver extrapolative beliefs and 

overreaction to information during the later stages of the bubble that are so central both to the Kindleberger 

narrative and empirical facts about bubbles.  

 Our micro-founded model of beliefs, based on expectations about fundamentals, delivers two further 

insights into the anatomy of bubbles.  First, it connects over-reaction to fundamental news, which is the central 
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implication of diagnostic expectations, to price extrapolation, which has been increasingly seen as a key feature 

of bubbles (see Barberis et al. 2018).   In our model, price extrapolation is far from constant over the course of 

the bubble, as in mechanical models of adaptive expectations, but in fact emerges as a byproduct of diagnostic 

expectations during the rapid price growth stage of the bubble.  In fact, the bubble collapses in part because 

the psychological mechanisms that entail price extrapolation run out of steam. 

 Second, our model illustrates the centrality of speculation for bubbles.  Bubbles exist in specifications 

where traders focus on the final liquidation value of the asset. But bubbles are much more dramatic when 

traders focus on the resale next period because their valuations are no longer tethered to liquidation values, 

and they bid up the asset’s price based on the expectation of other trader’s optimism next period.   Indeed, we 

show that in a model with speculation, but not otherwise, even a small amount of diagnosticity in belief 

formation can lead to extremely large overvaluation during the rapid growth stage of the bubble.  Even a mild 

departure from rational expectations, when combined with speculation, can entail extreme overvaluation.  

 These insights into the structure of asset price bubbles would not be obtained without modeling beliefs 

explicitly from fundamental psychological assumptions, and combining this with standard neoclassical 

mechanisms, such as learning from prices and speculation. But while this approach advances our understanding 

of the anatomy of price bubbles, it is only a first step. We have not considered further critical features of price 

bubbles, emphasized by Kindleberger but also obviously critical to the financial crisis of 2008 as well as other 

crises (Gennaioli and Shleifer 2018).   These include leverage as well as the central involvement of banks and 

other financial institutions in the bubble episode.  Introducing these elements into a model of bubbles with 

diagnostic expectations would get us closer to understanding the structure of financial fragility, beginning with 

basic features of expectations.     
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Appendix: Proofs. 

Lemma 1. At time 𝑡𝑡, each trader has access to 𝑡𝑡 signals of precision 1
𝜎𝜎𝜖𝜖2

, as well as a prior with precision 1
𝜎𝜎𝑉𝑉
2  

around 0. By standard results in normal posterior updating, the trader’s rational posterior is a normal 

distribution, with the following mean and variance. 

𝔼𝔼𝑖𝑖,𝑡𝑡(𝑉𝑉) =  
𝑡𝑡 𝜎𝜎𝜖𝜖2⁄

𝑡𝑡 𝜎𝜎𝜖𝜖2⁄ + 1 𝜎𝜎𝑉𝑉2⁄
 𝑠𝑠𝚤𝚤,𝑡𝑡���� =  𝜋𝜋𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖 

𝜎𝜎𝑡𝑡2(𝑉𝑉) =
1

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 1
𝜎𝜎𝑉𝑉2

=  (1 − 𝜋𝜋𝑡𝑡)𝜎𝜎𝑉𝑉2 

The diagnostic distribution then reads (up to normalization constants): 

exp �−
1

2𝜎𝜎𝑡𝑡2(𝑉𝑉) �
�𝑉𝑉 − 𝔼𝔼𝑖𝑖,𝑡𝑡(𝑉𝑉)�

2
(1 + 𝜃𝜃) − 𝜃𝜃 �𝑉𝑉 − 𝔼𝔼𝑖𝑖,𝑡𝑡−1(𝑉𝑉)�

2
�� 

 The quadratic and linear terms in 𝑉𝑉 are given by (the constant terms are absorbed by normalization):  

exp �−
1

2𝜎𝜎𝑡𝑡2(𝑉𝑉) �
𝑉𝑉2 − 2𝑉𝑉 �𝔼𝔼𝑖𝑖,𝑡𝑡(𝑉𝑉)(1 + 𝜃𝜃) − 𝜃𝜃𝔼𝔼𝑖𝑖,𝑡𝑡−1(𝑉𝑉)��� 

It follows that the diagnostic distribution is also a normal 𝒩𝒩�𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑉𝑉),𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡𝜃𝜃(𝑉𝑉)� with mean: 

𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑉𝑉) = 𝔼𝔼𝑡𝑡(𝑉𝑉) + 𝜃𝜃�𝔼𝔼𝑖𝑖,𝑡𝑡(𝑉𝑉)− 𝔼𝔼𝑖𝑖,𝑡𝑡−1(𝑉𝑉)�  

and variance: 

�𝜎𝜎𝑡𝑡𝜃𝜃�
2(𝑉𝑉) = 𝜎𝜎𝑡𝑡2(𝑉𝑉) 

from which the result follows. 

 

Proposition 1. For simplicity, denote 𝛼𝛼 = 𝜎𝜎𝜖𝜖2

𝜎𝜎𝑉𝑉
2. The price is then 𝑝𝑝𝑡𝑡 = 𝑡𝑡

𝑡𝑡+𝛼𝛼
𝑉𝑉 for 𝑡𝑡 ≤ 𝑘𝑘. Note that the price 

function is increasing from 𝑡𝑡 = 1 to 𝑘𝑘. Next, let us show that 𝑝𝑝𝑘𝑘+1 < 𝑝𝑝𝑘𝑘. It suffices to show: 

(1 + 𝜃𝜃)𝑘𝑘
𝑘𝑘 + 𝛼𝛼

>  
(1 + 𝜃𝜃)(𝑘𝑘 + 1)
𝑘𝑘 + 1 +  𝛼𝛼

−
𝜃𝜃

1 + 𝛼𝛼
 

⟺ 𝜃𝜃 >
𝛼𝛼
𝑘𝑘
⋅

𝛼𝛼 + 1
𝑘𝑘 + 2𝛼𝛼 + 1
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As we have assumed that 𝜃𝜃 ∈ �1
𝑘𝑘
𝜎𝜎𝜖𝜖2

𝜎𝜎𝑣𝑣2
, 𝜎𝜎𝜖𝜖

2

𝜎𝜎𝑣𝑣2
� = �1

𝑘𝑘
𝛼𝛼,𝛼𝛼�, the above inequality is satisfied.  

Next, we show that prices are decreasing after 𝑡𝑡 = 𝑘𝑘 until it hits the trough. Taking the derivative of the price 

with respect to 𝑡𝑡, one obtains: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
(1 + 𝜃𝜃)𝛼𝛼
(𝑡𝑡 + 𝛼𝛼)2 𝑉𝑉 −

𝜃𝜃𝜃𝜃
(𝑡𝑡 − 𝑘𝑘 + 𝛼𝛼)2 

The above expression is negative if and only if: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 ⇔ �
𝑡𝑡 + 𝛼𝛼

𝑡𝑡 − 𝑘𝑘 + 𝛼𝛼
�
2

<
𝜃𝜃

1 + 𝜃𝜃
⇔ 𝑡𝑡 < �1 −� 𝜃𝜃

1 + 𝜃𝜃
�

−1

⋅ 𝑘𝑘 − 𝛼𝛼 = 𝑘𝑘 ⋅ ��1−� 𝜃𝜃
1 + 𝜃𝜃

�

−1

−
𝛼𝛼
𝑘𝑘�

  

Finally, after 𝑡𝑡∗ ≡ 𝑘𝑘 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚 �1, ��1−� 𝜃𝜃
1+𝜃𝜃

�
−1

− 𝛼𝛼
𝑘𝑘
��, the price increases monotonically. To conclude, 

observe that [𝜋𝜋𝑡𝑡 + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡−𝑘𝑘)]𝑉𝑉 ↦ 𝑉𝑉, because 𝜋𝜋𝑡𝑡 ↦ 1 as 𝑡𝑡 ↦ ∞. 

 

Proposition 2. We start by assuming a linear price formula of the form: 

 𝑝𝑝𝑡𝑡 = 𝑎𝑎2𝑡𝑡𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡) + +𝑏𝑏𝑡𝑡 �𝑉𝑉 −
𝑐𝑐𝑡𝑡
𝑏𝑏𝑡𝑡
𝑆𝑆𝑡𝑡� 

for 𝑡𝑡 ≤ 𝑘𝑘. Denote 𝑠𝑠𝑡𝑡
𝑝𝑝 = 1

𝑏𝑏𝑡𝑡
(𝑝𝑝𝑡𝑡 − 𝑎𝑎𝑡𝑡2𝐸𝐸[𝑉𝑉|𝑃𝑃𝑡𝑡]) = 𝑉𝑉 − 𝑐𝑐𝑡𝑡

𝑏𝑏𝑡𝑡
𝑆𝑆𝑡𝑡 as the public signal obtained about 𝑉𝑉 from the prices. 

Furthermore, let 𝜁𝜁𝑡𝑡 be the precision of the public distribution, i.e. 𝜁𝜁𝑡𝑡 = 1
𝜎𝜎𝑝𝑝,𝑡𝑡
2 , and use the shorthand 𝐸𝐸𝑡𝑡

𝑝𝑝 =

𝐸𝐸[𝑉𝑉|𝑃𝑃𝑡𝑡]. Using standard results of normal posteriors, we obtain: 

𝐸𝐸𝑡𝑡
𝑝𝑝 =

1
𝜎𝜎𝑆𝑆2

�𝑠𝑠𝑟𝑟
𝑝𝑝 �
𝑏𝑏𝑟𝑟
𝑐𝑐𝑟𝑟
�
2

 
1
𝜁𝜁𝑡𝑡

  
𝑡𝑡−1

𝑟𝑟=1

 

𝜁𝜁𝑡𝑡 =
1
𝜎𝜎𝑉𝑉2

+ 
1
𝜎𝜎𝑆𝑆2

��
𝑏𝑏𝑟𝑟
𝑐𝑐𝑟𝑟
�
2

   
𝑡𝑡−1

𝑟𝑟=1

 

Denoting 𝐸𝐸𝑡𝑡��� as the average rational fundamental beliefs, it follows that:  

𝐸𝐸�𝑡𝑡 = ∫ �
1
𝜎𝜎𝑉𝑉2

+
1
𝜎𝜎𝑆𝑆2

�𝑠𝑠𝑟𝑟
𝑝𝑝 �
𝑏𝑏𝑟𝑟
𝑐𝑐𝑟𝑟
�
2

   
𝑡𝑡−1

𝑟𝑟=1

�
1
𝜁𝜁𝑡𝑡

 𝑑𝑑𝑑𝑑 =

𝑡𝑡
𝜎𝜎𝜖𝜖2

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
 𝑉𝑉 + 

𝜁𝜁𝑡𝑡
𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
𝐸𝐸𝑡𝑡
𝑝𝑝 

Then, as 𝑡𝑡 ≤ 𝑘𝑘, we have 𝐸𝐸𝑡𝑡���
𝜃𝜃 = (1 + 𝜃𝜃) 𝐸𝐸�𝑡𝑡, and hence our equilibrium condition  

𝑝𝑝𝑡𝑡 = 𝐸𝐸𝑡𝑡���
𝜃𝜃 − 𝛾𝛾𝜎𝜎𝑡𝑡2(𝑉𝑉)𝑆𝑆𝑡𝑡 
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translates to: 

𝑝𝑝𝑡𝑡 = (1 + 𝜃𝜃)�

𝑡𝑡
𝜎𝜎𝜖𝜖2

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
 𝑉𝑉 +  

𝜁𝜁𝑡𝑡
𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
𝐸𝐸𝑡𝑡
𝑝𝑝� − 𝛾𝛾

𝑆𝑆𝑡𝑡
𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
 

Matching coefficients, we obtain: 

𝑎𝑎2𝑡𝑡 = (1 + 𝜃𝜃)
𝜁𝜁𝑡𝑡

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
 

𝑏𝑏𝑡𝑡 = (1 + 𝜃𝜃)

𝑡𝑡
𝜎𝜎𝜖𝜖2

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
 

𝑐𝑐𝑡𝑡 = 𝛾𝛾 �
𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡�
−1

 

In particular, note 𝑏𝑏𝑡𝑡
𝑐𝑐𝑡𝑡

= 1+𝜃𝜃
𝛾𝛾
⋅ 𝑡𝑡
𝜎𝜎𝜖𝜖2

 , and plugging this into our expression for 𝜁𝜁𝑡𝑡, one obtains: 

𝜁𝜁𝑡𝑡 =
1
𝜎𝜎𝑉𝑉2

+
(1 + 𝜃𝜃)2

𝛾𝛾2𝜎𝜎𝑆𝑆2
�

𝑟𝑟2

𝜎𝜎𝜖𝜖4

𝑡𝑡−1

𝑟𝑟=1

=  
1
𝜎𝜎𝑉𝑉2

+
(1 + 𝜃𝜃)2

𝛾𝛾2𝜎𝜎𝑆𝑆2𝜎𝜎𝜖𝜖4
(𝑡𝑡 − 1)𝑡𝑡(2𝑡𝑡 − 1)

6
  

Consider now the average price 𝑝𝑝𝑡𝑡� , obtained under the average shock 𝑆𝑆𝑡𝑡 = 0. Plugging in 𝐸𝐸𝑡𝑡
𝑝𝑝 and then 𝜁𝜁𝑡𝑡 we 

find: 

𝑝𝑝𝑡𝑡� =  (1 + 𝜃𝜃)�

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡 −
1
𝜎𝜎𝑉𝑉2

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
 �𝑉𝑉 =

(1 + 𝜃𝜃)� 𝑡𝑡𝜎𝜎𝜖𝜖2
+ (1 + 𝜃𝜃)2
𝛾𝛾2𝜎𝜎𝑆𝑆2𝜎𝜎𝜖𝜖4

(𝑡𝑡 − 1)𝑡𝑡(2𝑡𝑡 − 1)
6  �

� 1
𝜎𝜎𝑉𝑉2

+  𝑡𝑡𝜎𝜎𝜖𝜖2
+ (1 + 𝜃𝜃)2
𝛾𝛾2𝜎𝜎𝑆𝑆2𝜎𝜎𝜖𝜖4

(𝑡𝑡 − 1)𝑡𝑡(2𝑡𝑡 − 1)
6  �

𝑉𝑉. 

    

Proposition 3.  Under learning from prices, the price at time t is 𝑝𝑝𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜃𝜃(𝑉𝑉|𝑝𝑝𝑡𝑡−1, … ,𝑝𝑝1; 𝑠𝑠𝑡𝑡, … , 𝑠𝑠1).  From 

Proposition 2, the average price path is: 

𝑝𝑝𝑡𝑡 = (1 + 𝜃𝜃)

⎣
⎢
⎢
⎢
⎡ 𝑡𝑡

σϵ2
+ �1 + 𝜃𝜃

σ𝑆𝑆σϵ2
�
2 𝑡𝑡(𝑡𝑡 − 1)(2𝑡𝑡 − 1)

6
𝑡𝑡
σϵ2

+ 1
σV2

+ �1 + 𝜃𝜃
σ𝑆𝑆σϵ2

�
2 𝑡𝑡(𝑡𝑡 − 1)(2𝑡𝑡 − 1)

6 ⎦
⎥
⎥
⎥
⎤
𝑉𝑉 

To explore convexity, rewrite price as: 

𝑝𝑝𝑡𝑡 = (1 + 𝜃𝜃)𝑉𝑉
𝑓𝑓

𝑓𝑓 + 𝑐𝑐
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where 𝑓𝑓 = 𝑘𝑘1𝑡𝑡 + 𝑘𝑘2𝑡𝑡(𝑡𝑡 − 1)(2𝑡𝑡 − 1), 𝑐𝑐 = 1
σV
2 ,  𝑘𝑘1 = 𝑡𝑡

σϵ2
 and 𝑘𝑘2 = 1

6
� 1+𝜃𝜃
σ𝑆𝑆σϵ2

�
2
.  Note that, up to a constant, we 

have: 

𝜕𝜕𝑡𝑡2𝑝𝑝𝑡𝑡 = 𝜕𝜕𝑡𝑡
𝑓𝑓′

(𝑓𝑓 + 𝑐𝑐)2 = (𝑓𝑓 + 𝑐𝑐)−2 �𝑓𝑓′′ −
2(𝑓𝑓′)2

(𝑓𝑓 + 𝑐𝑐)� 

which has the same sign as 𝑓𝑓′′ − 2(𝑓𝑓′)2

(𝑓𝑓+𝑐𝑐).   This is positive when: 

𝑐𝑐 >
2(𝑓𝑓′)2

𝑓𝑓′′
− 𝑓𝑓 

Convexity requires 𝑐𝑐 to be large, that is σV2  to be small. For example, convexity at 𝑡𝑡 = 1 requires: 

𝑐𝑐 >  
𝑘𝑘12 − 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘22

3𝑘𝑘2
 

Rewrite the condition above as: 

𝑓𝑓′′𝑐𝑐 > 2(𝑓𝑓′)2 − 𝑓𝑓𝑓𝑓′′ 

that is 

6𝑘𝑘2(2𝑡𝑡 − 1)𝑐𝑐 > 2�𝑘𝑘1 + 𝑘𝑘2(6𝑡𝑡2 − 6𝑡𝑡 + 1)�2 − 6𝑘𝑘2(2𝑡𝑡 − 1)�𝑘𝑘1𝑡𝑡 + 𝑘𝑘2(2𝑡𝑡3 − 3𝑡𝑡2 + 𝑡𝑡)� 

As we are looking near 𝑡𝑡 = 1, let us set 𝑠𝑠 =  𝑡𝑡 − 1. Then, the inequality simplifies to: 

6𝑘𝑘2(2𝑠𝑠 + 1)𝑐𝑐 >  48𝑘𝑘22 𝑠𝑠4 + 96𝑘𝑘22𝑠𝑠3 + 66𝑘𝑘2𝑠𝑠2 + 12𝑘𝑘1𝑘𝑘2𝑠𝑠2 + 18𝑘𝑘22 𝑠𝑠 + 6𝑘𝑘1𝑘𝑘2𝑠𝑠 + 2𝑘𝑘12 + 2𝑘𝑘22 − 2𝑘𝑘1𝑘𝑘2 

In particular, the right-hand side is a quartic with positive coefficients (and in particular it is convex in 𝑠𝑠), 

whereas the left hand side is a linear function. Hence, if the left-hand side lies above the right hand side at 

𝑡𝑡 = 1, the two will cross at 𝑡𝑡 = 𝑡𝑡∗ > 1, and never cross again.   Hence, for the average price path to be 

convex at 𝑡𝑡 ∈ [1, 𝑡𝑡∗] and concave afterwards, it is necessary and sufficient for the above inequality to hold at 

𝑠𝑠 = 0, which is given by: 

𝑐𝑐 >  
𝑘𝑘12 − 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘22

3𝑘𝑘2
→  𝜎𝜎𝑉𝑉2 < � 

𝑘𝑘12 − 𝑘𝑘1𝑘𝑘2 + 𝑘𝑘22

3𝑘𝑘2
�
−1

=  𝜎𝜎𝑉𝑉∗2  

as desired.  

 

Proposition 4.  Consider the price path 

𝑝𝑝𝑡𝑡 = (1 + 𝜃𝜃)𝑇𝑇−𝑡𝑡+1 �� 𝜋𝜋𝑟𝑟
𝑇𝑇

𝑟𝑟=𝑡𝑡
� 𝑉𝑉 
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where 𝜋𝜋𝑡𝑡 = 𝑡𝑡

𝑡𝑡+σϵ
2

σV
2

 and denote 𝜋𝜋� ≡ [∏ 𝜋𝜋𝑟𝑟𝑇𝑇
𝑟𝑟=1 ]

1
𝑇𝑇.  First note that 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 = 𝑝𝑝𝑡𝑡[1 − (1 + 𝜃𝜃)𝜋𝜋𝑡𝑡−1].  So price 

increases at 𝑡𝑡 if (1 + 𝜃𝜃)𝜋𝜋𝑡𝑡−1 < 1 and it decreases otherwise.  Because 𝜋𝜋𝑡𝑡 is monotonic, it follows that the 

price path is either always increasing (if (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇 < 1), or always decreasing (if (1 + 𝜃𝜃)𝜋𝜋1 > 1) or is first 

increasing and then decreasing.  This holds provided (1 + 𝜃𝜃)𝜋𝜋1 < 1 < (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇, which reads 𝜃𝜃 ∈

� σϵ2

𝑇𝑇σV
2 , 1−𝜋𝜋�

𝜋𝜋�
�.  In particular, we then have both 𝑝𝑝1 = (1 + 𝜃𝜃)𝑇𝑇[∏ 𝜋𝜋𝑟𝑟𝑇𝑇

𝑟𝑟=1 ]𝑉𝑉 < 𝑉𝑉 and 𝑝𝑝𝑇𝑇 = (1 + 𝜃𝜃)𝜋𝜋𝑇𝑇𝑉𝑉 > 𝑉𝑉.  

 

Proposition 5.  For simplicity, set 𝑎𝑎2,𝑡𝑡 = 𝑎𝑎𝑡𝑡. As indicated in the paper, we obtain: 

𝔼𝔼𝑖𝑖,𝑡𝑡𝜃𝜃 (𝑝𝑝𝑡𝑡+1) = (1 + 𝜃𝜃)�𝑎𝑎𝑡𝑡+1𝔼𝔼𝑖𝑖,𝑡𝑡[𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡+1)] + 𝑏𝑏𝑡𝑡+1𝔼𝔼𝑖𝑖,𝑡𝑡(𝑉𝑉)� 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑝𝑝𝑡𝑡+1) = �𝑎𝑎𝑡𝑡+1 �1 −
ζt
𝜁𝜁𝑡𝑡+1

�+ 𝑏𝑏𝑡𝑡+1�
2
𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡�𝑠𝑠𝑡𝑡+1

𝑝𝑝 �. 

where 𝜁𝜁𝑡𝑡 = 1
𝜎𝜎𝑝𝑝,𝑡𝑡
2 . Integrating across 𝑖𝑖, we obtain: 

𝑝𝑝𝑡𝑡 =  𝔼𝔼�𝑡𝑡𝜃𝜃[𝑝𝑝𝑡𝑡+1]− 𝛾𝛾𝛾𝛾𝛾𝛾𝑟𝑟𝑡𝑡[𝑝𝑝𝑡𝑡+1]𝑆𝑆𝑡𝑡       𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 < 𝑇𝑇 

𝑝𝑝𝑇𝑇 =  𝔼𝔼�𝑡𝑡𝜃𝜃[𝑉𝑉]− 𝛾𝛾𝜎𝜎𝑇𝑇2(𝑉𝑉)𝑆𝑆𝑇𝑇    

𝔼𝔼�𝑡𝑡𝜃𝜃(𝑝𝑝𝑡𝑡+1) = (1 + 𝜃𝜃)[𝑎𝑎𝑡𝑡+1𝔼𝔼�𝑡𝑡[𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡+1)] + 𝑏𝑏𝑡𝑡+1𝔼𝔼�𝑡𝑡(𝑉𝑉)] 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑝𝑝𝑡𝑡+1) = �𝑎𝑎𝑡𝑡+1 �1 −
ζt
𝜁𝜁𝑡𝑡+1

�+ 𝑏𝑏𝑡𝑡+1�
2
𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡�𝑠𝑠𝑡𝑡+1

𝑝𝑝 �. 

Hence, to pin down the equilibrium coefficients, one needs to evaluate 𝔼𝔼�𝑡𝑡[𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡+1)] and 𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡�𝑠𝑠𝑡𝑡+1
𝑝𝑝 �. We 

calculate the quantities in the following lemma. 

 

Lemma 2.   Denote  𝜁𝜁𝑡𝑡 = 1
𝜎𝜎𝑝𝑝,𝑡𝑡
2  and let 𝐸𝐸𝑡𝑡

𝑝𝑝 = 𝐸𝐸[𝑉𝑉|𝑃𝑃𝑡𝑡] denote the expectation of the fundamentals only using 

prices. The average rational expectation of the future public expectation of the fundamentals is given by: 

𝔼𝔼�𝑡𝑡[𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡+1)] =
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

𝐸𝐸𝑡𝑡
𝑝𝑝 + �1 −

𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

�𝔼𝔼�𝑡𝑡[𝑉𝑉] 

The conditional variance of the future price signal is given by:   

𝑉𝑉𝑉𝑉𝑟𝑟𝑡𝑡�𝑠𝑠𝑡𝑡+1
𝑝𝑝 � =

1

𝜁𝜁𝑡𝑡 + 𝑡𝑡
𝜎𝜎𝜖𝜖2

+
𝑐𝑐𝑡𝑡+12

𝑏𝑏𝑡𝑡+12 𝜎𝜎𝑆𝑆2 

Proof.  
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𝔼𝔼�𝑡𝑡�𝐸𝐸𝑡𝑡+1
𝑝𝑝 � = 𝔼𝔼�𝑡𝑡 �

1
𝜁𝜁𝑡𝑡+1

1
𝜎𝜎𝑆𝑆2

 ��
𝑏𝑏𝑟𝑟2

𝑐𝑐𝑟𝑟2

𝑡𝑡+1

𝑟𝑟=1

�𝑉𝑉 −
𝑐𝑐𝑟𝑟
𝑏𝑏𝑟𝑟
𝑆𝑆𝑟𝑟�� � 

=
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

𝐸𝐸𝑡𝑡
𝑝𝑝 + 𝔼𝔼�𝑡𝑡 �

1
𝜁𝜁𝑡𝑡+1

1
𝜎𝜎𝑆𝑆2

 �
𝑏𝑏𝑡𝑡+12

𝑐𝑐𝑡𝑡+12 �𝑉𝑉 −
𝑐𝑐𝑡𝑡+1 

𝑏𝑏𝑡𝑡+1
𝑆𝑆𝑡𝑡+1�� � 

=  
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

𝐸𝐸𝑡𝑡
𝑝𝑝 + 𝔼𝔼�𝑡𝑡 �

1
𝜁𝜁𝑡𝑡+1

(𝜁𝜁𝑡𝑡+1 − 𝜁𝜁𝑡𝑡)𝑉𝑉 � 

which gives the first result. Second, note that as 𝑠𝑠𝑡𝑡+1
𝑝𝑝 = 𝑉𝑉 − 𝑐𝑐𝑡𝑡+1

𝑏𝑏𝑡𝑡+1
𝑆𝑆𝑡𝑡+1, the conditional variance of the term 

should be the addition of two separate variances  

𝜎𝜎𝑡𝑡2(𝑉𝑉) + �
𝑐𝑐𝑡𝑡+1
𝑏𝑏𝑡𝑡+1

�
2
𝜎𝜎𝑆𝑆2 =  

1

𝜁𝜁𝑡𝑡 + 𝑡𝑡
𝜎𝜎𝜖𝜖2

+
𝑐𝑐𝑡𝑡+12

𝑏𝑏𝑡𝑡+12 𝜎𝜎𝑆𝑆2 

as desired.  

Plugging the results of the lemma, we obtain:  

𝔼𝔼�𝑡𝑡𝜃𝜃(𝑝𝑝𝑡𝑡+1) = �(1 + 𝜃𝜃)𝑎𝑎𝑡𝑡+1
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

�𝐸𝐸𝑡𝑡
𝑝𝑝 +  �(1 + 𝜃𝜃)𝑎𝑎𝑡𝑡+1 �1 −

𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

� + 𝑏𝑏𝑡𝑡+1�𝔼𝔼�𝑡𝑡(𝑉𝑉) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑝𝑝𝑡𝑡+1) = �𝑎𝑎𝑡𝑡+1 �1 −
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

� + 𝑏𝑏𝑡𝑡+1�
2

�
1

𝜁𝜁𝑡𝑡 + 𝑡𝑡
𝜎𝜎𝜖𝜖2

+
𝑐𝑐𝑡𝑡+12

𝑏𝑏𝑡𝑡+12 𝜎𝜎𝑆𝑆2�. 

 

𝑝𝑝𝑡𝑡 =  �(1 + 𝜃𝜃)𝑎𝑎𝑡𝑡+1
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

�𝐸𝐸𝑡𝑡
𝑝𝑝 +  �(1 + 𝜃𝜃)𝑎𝑎𝑡𝑡+1 �1 −

𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

� + 𝑏𝑏𝑡𝑡+1�𝔼𝔼�𝑡𝑡(𝑉𝑉)

− 𝛾𝛾 �𝑎𝑎𝑡𝑡+1 �1 −
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

� + 𝑏𝑏𝑡𝑡+1�
2

�
1

𝜁𝜁𝑡𝑡 + 𝑡𝑡
𝜎𝜎𝜖𝜖2

+
𝑐𝑐𝑡𝑡+12

𝑏𝑏𝑡𝑡+12 𝜎𝜎𝑆𝑆2�  𝑆𝑆𝑡𝑡       𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 < 𝑇𝑇 

𝑝𝑝𝑇𝑇 = (1 + 𝜃𝜃)𝔼𝔼�𝑡𝑡[𝑉𝑉] − 𝛾𝛾𝜎𝜎𝑇𝑇2(𝑉𝑉)    

To conclude, recall that 𝔼𝔼�𝑡𝑡[𝑉𝑉] =
𝑡𝑡
𝜎𝜎𝜖𝜖2
𝑡𝑡
𝜎𝜎𝜖𝜖2
+𝜁𝜁𝑡𝑡

 𝑉𝑉 + 𝜁𝜁𝑡𝑡
𝑡𝑡
𝜎𝜎𝜖𝜖
2+𝜁𝜁𝑡𝑡

𝐸𝐸𝑡𝑡
𝑝𝑝.  Matching coefficients to the price rule: 𝑝𝑝𝑡𝑡 =

𝑎𝑎𝑡𝑡𝔼𝔼(𝑉𝑉|𝑃𝑃𝑡𝑡) + 𝑏𝑏𝑡𝑡𝑉𝑉 − 𝑐𝑐𝑡𝑡𝑆𝑆𝑡𝑡,  we obtain the results. In particular, one can easily see that  𝑎𝑎𝑡𝑡 + 𝑏𝑏𝑡𝑡 =

(1 + 𝜃𝜃)(𝑎𝑎𝑡𝑡+1 + 𝑏𝑏𝑡𝑡+1) and  𝑎𝑎𝑇𝑇 + 𝑏𝑏𝑇𝑇 = 1 + 𝜃𝜃, which gives us 𝑎𝑎𝑡𝑡 + 𝑏𝑏𝑡𝑡 = (1 + 𝜃𝜃)𝑇𝑇−𝑡𝑡+1, as desired. 

 

Proposition 6. From the update equations in Proposition 5, note that: 
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𝜁𝜁𝑇𝑇−1 = 𝜁𝜁𝑇𝑇 −
1
𝜎𝜎𝑆𝑆2

(1 + 𝜃𝜃)2𝑇𝑇2

𝛾𝛾2𝜎𝜎𝜖𝜖4
 

And in general, one can obtain from the above update equations:  

𝜁𝜁𝑡𝑡−1 = 𝜁𝜁𝑡𝑡 −
1
𝜎𝜎𝑆𝑆2

⎝

⎜
⎜
⎛ 𝑡𝑡
𝜎𝜎𝜖𝜖2𝛾𝛾

⋅
1

(1 + 𝜃𝜃)𝑇𝑇+1−𝑡𝑡 �1 + 𝑡𝑡
𝜁𝜁𝑡𝑡+1𝜎𝜎𝜖𝜖2

� +
𝜁𝜁𝑡𝑡 + 𝑡𝑡𝜁𝜁𝑡𝑡

𝜎𝜎𝜖𝜖2𝜁𝜁𝑡𝑡+1
𝜁𝜁𝑡𝑡+1 − 𝜁𝜁𝑡𝑡

𝑏𝑏𝑡𝑡+1 ⎠

⎟
⎟
⎞

2

 

𝑏𝑏𝑡𝑡 =

𝑡𝑡
𝜎𝜎𝜖𝜖2

𝑡𝑡
𝜎𝜎𝜖𝜖2

+ 𝜁𝜁𝑡𝑡
��1 −

𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

� (1 + 𝜃𝜃)𝑇𝑇+1−𝑡𝑡 +
𝜁𝜁𝑡𝑡
𝜁𝜁𝑡𝑡+1

𝑏𝑏𝑡𝑡+1� 

Hence, one immediate obtains that 𝑏𝑏𝑡𝑡 ≥ 0. Plugging the inequality above, one obtains:  

𝜁𝜁𝑡𝑡−1 ≥ 𝜁𝜁𝑡𝑡 −
1
𝜎𝜎𝑆𝑆2

𝑡𝑡2

𝜎𝜎𝜖𝜖4
1

(1 + 𝜃𝜃)2(𝑇𝑇+1−𝑡𝑡)  

Hence, we have a linear lower bound on 𝜁𝜁𝑡𝑡−1 in terms of the preceding 𝜁𝜁𝑡𝑡. The series of lower bound, together 

with the first update equation, implies that 𝜁𝜁0 can grow arbitrarily large as 𝜁𝜁𝑇𝑇 increases.  

On the other hand, by the first update equation one can send 𝜁𝜁𝑇𝑇−1 arbitrarily close to 0, as 𝜁𝜁𝑇𝑇 ↦
1
𝜎𝜎𝑆𝑆
2

(1+𝜃𝜃)2𝑇𝑇2

𝛾𝛾2𝜎𝜎𝜖𝜖4
. Hence, as 𝜁𝜁𝑡𝑡−1 ≤ 𝜁𝜁𝑡𝑡 for all 𝑡𝑡, by induction one can show that 𝜁𝜁𝑡𝑡 can go arbitrarily close to 0 as 𝜁𝜁𝑇𝑇 

decreases. Consequently, as all of the transition functions are continuous, we can conclude via the intermediate 

value theorem that there exists an equilibrium such that 𝜁𝜁0 = 1
𝜎𝜎𝑉𝑉
2. 

 




