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In a climate-change speech at Georgetown University, President Obama argued that: 

“confronting climate change need not threaten economic growth: that investing in 

windmills, solar panels and other types of clean-energy technology could spur scientific 

innovation and generate jobs” (New York Times, July 2, 2013). 

Over the past three decades, green energy has emerged as an important topic of our social 

and economic life. It is now more widely accepted that the adoption of renewable energy sources 

such as wind, solar, geothermal, ocean, biomass, and waste-to-energy can significantly contribute 

to environmental protection. Also, the diversification resulting from increased shares of renewable 

energy sources could also lead to greater energy security in the face of uncertainty in fossil fuel 

markets. During this period various environmental policies, both at the federal level and the state 

level, have been implemented to encourage the development of renewable energy. As the quote 

from President Obama illustrates, these policies are often promoted as not only attempts to 

accelerate the switch from conventional fossil fuels to renewable energy sources, but also as efforts 

to cultivate innovation in environmentally friendly renewable technologies that will speed up 

“green growth.”   

However, in the United States it has been state governments, not the federal government, 

that have been leaders in policies promoting renewable energy (see Carley 2011). As states race 

to encourage the growth of renewable energy within their borders, they hope that such policies 

will promote innovative solutions to position their state as leaders in the renewable energy field. 

For instance, in his 2013 State of the State Address, New York Governor Andrew Cuomo 

introduced a series of renewable energy initiatives by stating that “(t)he economy of tomorrow is 

the clean tech economy. We all know it, it’s a foot race—whatever state, whatever region gets 
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there first wins the prize, and we want it to be New York.”1 A state of Texas report on the 

renewable energy industry proudly notes that “Texas ranked No. 4 in the nation in clean energy-

related patents” in 2012, and cites awards made through the Texas Emerging Technology Fund as 

helping “to create long-term economic benefits to the state through investments in early-stage 

technology companies, regional innovation centers, and academic research recruitment.”2   

As the Trump Administration moves to roll back climate initiatives proposed under 

President Obama, the role of states becomes even more important.  As of February 2018, fourteen 

states have pledged reduce greenhouse gases in their states to levels consistent with the Paris 

Agreement.3 California pledged to reduce greenhouse gas emissions to 40 percent below 1990 

levels by 2030.4 As a result of the changing political landscape, variation in policies used across 

states will continue and is likely to increase. Understanding how different state-level policies affect 

innovation becomes even more important. 

Despite the hope that state-level renewable energy policies will promote innovation within 

state borders and help states become leaders in renewable energy innovation, little is known about 

the effect of state-level renewable energy policies on innovation. Existing studies focus on 

national-level policies, providing evidence that national-level renewable energy policies promote 

innovation (Johnstone et al. 2010, Verdolini and Gaelotti, 2011, Nesta et al. 2014). Only a few 

studies consider both foreign and domestic policies, with mixed results. Dechezleprêtre and 

Glachant (2014) study the effect of both domestic and foreign policies for the promotion of wind 

innovation. While both promote innovation activity, they find the marginal effect of policies 

                                                
1 https://www.governor.ny.gov/press/01092013sostranscript, accessed May 22, 2014. 
2 “The Texas Renewable Energy Industry,” http://governor.state.tx.us/files/ecodev/Renewable_Energy.pdf, accessed 
May 22, 2014. 
3 https://www.usclimatealliance.org/, accessed February 28, 2018. 
4 https://www.arb.ca.gov/cc/pillars/pillars.htm, accessed February 28, 2018. 

https://www.governor.ny.gov/press/01092013sostranscript
http://governor.state.tx.us/files/ecodev/Renewable_Energy.pdf
https://www.usclimatealliance.org/
https://www.arb.ca.gov/cc/pillars/pillars.htm
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implemented at home to be 12 times higher. In contrast, Peters et al. (2012) find both domestic 

and foreign demand-pull policies are important for the development of solar PV technology.  

However, since the barriers to marketing renewable energy technologies across states may 

be lower than the barriers for marketing technologies across countries, the lessons from the above 

papers need not apply to innovation at the state level. Thus, in this paper we examine whether 

renewable energy policies enacted by a state induce innovation within the state. In addition, we 

ask whether these policies have spillover effects that facilitate innovation in neighboring states. 

The relative impact of state renewable energy policies on innovation within state and on innovation 

of neighboring states has important implications, since the existence of spillover effects may 

change the relative competitive advantage that states could obtain when competing with firms in 

neighboring states. If spillover effects do exist, coordinated policies across neighboring states may 

be more effective for promoting innovation than single-state policies. Finally, we look at the effect 

of specific policy initiatives on patenting, whereas both the papers by Dechezleprêtre and Glachant 

(2014) and Peters et al. (2012) use aggregate demand for renewable energy as a proxy for policy. 

This is important, as we find that the effect of policies are not homogeneous.   

We use data on wind energy patents granted in the U.S. between 1983 and 2009 to track 

innovation across states. Using patents allows us to identify the location of invention, using the 

inventor’s address listed on each patent. Because many states have zero patents in a given year, 

we use fixed-effects Tobit models to regress patent counts on a series of policy variables 

representing the existence or level of renewable energy policies within a state and a spatially 

weighted average for each of these policies implemented in other states. Our regressions control 

for state energy market conditions, socioeconomic conditions, and the renewable energy potential 

of each state. We find important differences across policy types. For renewable energy rules and 
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mandates such as interconnection policies and renewable portfolio standards it is overall demand 

that matters. Policies in other states increase innovation, but own-state policies do not.  In contrast, 

for financial incentives such as tax incentives and subsidy policies, locating in the state is typically 

required to take advantage of the credits. Thus, for these policies, own-state policies induce 

innovation, and we find some evidence that similar policies in other states have a negative effect 

on patent applications.  

The rest of this paper is structured as follows. We begin by providing background on wind 

energy production and the relevant policies used to promote wind energy in the U.S. The next 

section gives a brief overview of the related literature. The third section presents our estimation 

strategy. Instead of using a Poisson count model for which the zero outcome probability would 

have to be inflated, making the incorporation of fixed and random effects problematic, we follow 

the suggestion of Calel and Dechezleprêtre (2016) and use a fixed-effects Tobit model, letting the 

censoring probability be the probability of a zero outcome. We derive a lower bound for the 

marginal effect of state-level policies, using analysis by Honoré (2008). The fourth section 

describes the data used in this study. The fifth section presents the empirical results. The last 

section concludes and provides some issues for further discussions. 

 

1. Background on Wind Energy in the U.S. 

Although the adoption of renewable energy sources has been increasing very rapidly, only 

recently have their costs fallen enough to be competitive with traditional energy sources under 

ideal conditions. Thus, during the time frame of our study, wind energy was not viable without 

government intervention favoring its development. Among non-hydro renewable sources, wind 

energy has experienced the highest growth, as its costs are closest to being competitive with fossil 
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fuels (Timilsina et al. 2013).  In 2016, just 5.6 percent of electricity in the United States came from 

wind energy. While small, this represents 66 percent of all non-hydro renewable electricity 

production in the U.S.  Moreover, wind generation is growing rapidly, having increased 88 percent 

between 2011 and 2016 (EIA 2017). Variation across stats is also important.  Twelve states, 

primarily in the Southeast, produced almost no wind power during our sample period. Of the 13 

states generating the most wind power, most are in the central U.S., which is where wind energy 

potential is highest (Lopez et al. 2012).  

To increase the share of renewable sources in the total energy supply, most states have 

introduced some form of renewable energy policy. By either decreasing the price of renewable 

energy relative to fossil fuels or increasing the demand for electricity generated from renewable 

sources, these policy measures improve the relative cost or benefit of renewable electricity 

generation compared to traditional fossil fuels. Examples of such policies include tax credits, 

subsidies, tradable renewable energy certificates, renewable energy portfolio standards (RPS), 

interconnection standards and net metering.5 Renewable portfolio standards require electricity 

supply companies to produce a specified proportion of the increased electricity production from 

renewable energy sources, such as wind, solar, biomass, or geothermal. These may be 

implemented using renewable energy certificates (REC), which are granted to certified generators 

for every unit of electricity produced from renewable sources. Earned REC can then be sold to 

electricity suppliers, who use the certificates to demonstrate that they are in compliance with 

regulatory obligations.  By the end of our sample, 39 states used RPS to promote renewable energy. 

Interconnection standards provide clear technical rules such as maximum capacity, 

connection voltage and connection procedure so that on-site distributed generations can connect 

                                                
5 Carley (2011) provides an overview of the various renewable energy policies used in the U.S. 
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to the electric utility grid conveniently and safely. With net metering, electricity meters record both 

energy inflows and outflows so that distributed generators can save excess electricity production 

for future credit. This enables consumer-based small-scale renewable energy facilities such as 

wind or solar power to interconnect with the grid. By the end of our sample, 43 states had 

interconnection standards, and 46 states had regulations covering net metering. 

 

2. Related Literature 

The existing literature on state-level renewable energy policies examines their impact on 

renewable technology deployment or renewable energy production. For example, using cross-

sectional time-series data from 1997 to 2009, Sarzynski et al. (2012) find that states with either 

subsidies or a renewable portfolio standard experienced more rapid growth in the capacity of grid-

tied PV technology than states without these policies. Using U.S. state-level data from 1998 to 

2006, Carley (2009) finds that RPS implementation has not increased the percentage of electricity 

generated from renewable energy sources relative to the total electricity generation, yet it has 

increased the total amount of electricity generated from renewable sources. By constructing a new 

measure for policy stringency that could more accurately characterize the incentives provided by 

RPS, Yin et al. (2010) find that RPS policy has significantly increased in-state renewable energy 

development. 

While no papers have examined the effect of these policies on innovation at the state level, 

there is a large literature studying the effect of environmental and energy policies on innovation at 

the national level. Lanjouw and Mody (1996) use pollution abatement expenditures as a measure 

of environmental policy stringency in Japan, the U.S. and Germany and find that the environmental 

patenting activity measured by the number of granted patents is correlated with abatement costs. 
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Using U.S. environmental technology manufacturing data, Brunnermeier and Cohen (2003) also 

find that environmentally related patent counts increase as pollution abatement expenditures 

increase. Examining the role of specific policy instruments, Popp (2003) examines the effects of 

the 1990 Clean Air Act, which introduced a market for sulfur dioxide (SO2) permits. Looking at 

the effects of the 1990 Clean Air Act on SO2 pollution control patents, he finds that this market 

oriented environmental regulation did not induce more innovation than the previous command and 

control regulations, but that innovation occurring after 1990 tended to be more environmentally 

friendly and more efficient in removing SO2 emissions. In another study of SO2 abatement 

technology, Dekker et al. (2012) find that both national policies and international environmental 

agreements provide incentives for innovation. 

Focusing on renewable energy policy innovation, Johnstone, Hascic and Popp (2010) use 

a panel data set of 25 countries across 26 years to examine the effect of a wide variety of policy 

tools, including tradable energy certificates, feed-in-tariffs, production quotas and public R&D, on 

innovations of renewable technology. They find that the effectiveness of each policy tool varies 

with the relative cost of different renewable technology sources compared to fossil fuels. Quantity-

based policies favor development of wind energy, which has the lowest cost among alternative 

energy technologies and is closest to being competitive with traditional energy sources. In contrast, 

direct investment incentives are necessary to support innovation in solar and waste-to-energy 

technologies, which are further from being competitive with traditional energy technologies.  

Nesta et al (2014) observe that renewable energy policies stimulate more innovation in countries 

with liberalized energy markets. Calel and Dechezleprêtre (2016) find that the European Union 

Emissions Trading Scheme has led to nearly a one percent increase in that continent’s low-carbon 

patenting. 
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Most closely related to our paper are studies that consider the relative effects of foreign 

and domestic environmental or energy regulations. Examining the effect of SO2 and nitrogen oxide 

(NOX)  regulations in the U.S., Japan, and Germany, Popp (2006) finds innovation responds to 

domestic, rather than foreign policy changes across these three countries, each of which are leaders 

in the pollution control field. In a study of 15 OECD countries, Peters et al. (2012) find both 

domestic and foreign demand-pull policies (such as RPS) are important for the development of 

solar PV technology, but that technology-push policies such as R&D subsidies only affect 

domestic innovation. In contrast, Dechezleprêtre and Glachant (2014) compare wind energy 

patents across OECD countries. While both domestic and foreign demand-pull renewable policies 

positively affect renewable technology innovation, the marginal effect of policies implemented at 

home is 12 times higher. Policies such as trade barriers and weak intellectual property rights 

dampen the influence of foreign policies. However, as the barriers to technology diffusion across 

states in the U.S. will be lower than the barriers across countries, neighboring state policies may 

have more influence than do policies in neighboring countries. Thus, we contribute to the existing 

literature by extending this work to examine the effects of state-level renewable energy policies 

on innovation both within and outside state borders.    

 

3. Model Specification 

To study the role of various renewable energy policies from both within state and out of 

state on wind energy innovation, we consider two major categories of renewable energy policies: 

1) financial incentives such as tax credits and various subsidy policies and 2) renewable energy 

related regulation rules and mandates such as interconnection standards, net metering and 

renewable portfolio standards. We include in the models both a series of variables representing the 
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existence or level of a state’s own renewable energy policies and a spatially weighted average of 

each of these variables implemented in other states. We control for other factors that could 

potentially affect the incentives for wind energy innovation by including variables for energy 

demand, supply and price, state social, economic and political factors. Detailed definitions and 

justifications for these variables are provided in the data section. The benchmark reduced-form 

regression equation is specified as: 

(1) Patentsit=β0+�Policyit-1� β1+Wit�Policyt-1� β2+(R&Dit-1) β3 

                      +�ElectricityConsumit-1� β4+�ElectricityPriceit-1� β5 

                      +�ElectricityConsumGrowthit-1� β6+�PopulationGrowthit-1� β7 

                      +�PerCapitaIncomeit-1� β8+(PoliticalIndexit-1) β9+ εit , 

where  i = 1, … , 48 represent states and t = 1983, … , 2009 represents time. The dependent variable 

is the number of wind technology patent applications for a given state in a given year. Our policy 

variables include a set of renewable technology policy variables such as a tax incentive index, a 

subsidy policy index, interconnection rules, net metering rules and renewable portfolio standards. 

R&D expenditures include all R&D activity within state i to control for the overall level of 

innovative activity within each state. Electricity consumption, electricity consumption growth and 

electricity price control for the energy market demand and supply. Population growth and state per 

capita income may also affect the demand for renewable energy. The political index uses League 

of Conservation Voters (LCV) Senate and House scores to represent each state’s preferences 

toward pro-environmental legislation. 

Our particular interest is in the effect of a state’s own policies (β1) and the effect of those 

polices implemented elsewhere (β2). To aggregate policies from other states, we use a spatial 

weight vector, Wit . We use two versions of spatial weight matrices: one dividing log of population 
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by distance, and a second with identical non-zero weights only when states share a common border. 

Aichele and Gelbermayr (2012), in their study of Kyoto commitments and carbon net trade, use 

weights that divide population, rather than log population, by distance. But in their case, the most 

populous country, the United States, is separated from most countries in the sample by large 

distances, so that the effect of the large U.S. population is mitigated by large distances. This is not 

the case with California in our data. Using log population rather than population results in lower 

weights for the most populous states. 

(2) Wijt=

log(Population)jt-1

Distanceij

∑
log(Population)jt-1

Distanceij

N
j=1

�    i, j=1, …, N, i≠j  , t=1983, …  , 2009. 

Wijt is element 𝑗𝑗  of the spatial weight vector Wit, which characterizes the effect of a renewable 

energy policy implemented in state j on innovation in state i in year t. We normalize the weights 

for each state-year to sum to one. This matrix places more weight on states that are closer 

geographically and on those with larger populations (and thus larger potential markets).   

The second spatial weight matrix is the contiguity spatial weight matrix created by Anselin 

(1988): 

(3)   Wijt=
Neighborij

∑ Neighborij
N
j=1

�      , 

where 

Neighborij=1 if state i and state j are neighbors 

                                       =0 otherwise . 

In this spatial weight matrix, spillovers occur only between states with common borders.  
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3.1 Estimation Technique 

Our goal is to study the role of various state policies for renewable energy in determining 

the level of within-state and out-of-state wind-energy innovation. State-wide innovation is 

measured by the number of patents granted in that state over the course of a year. A standard way 

of econometrically modeling the determinants of the annual number of patents for a panel of states 

over time is to assume that the number of patents follows a Poisson distribution that varies by state 

and year and to estimate by maximum likelihood. 

A potential drawback to this approach is the fact that the mean of a Poisson distribution is 

equal to its variance. Many empirical studies conclude that the sample variance significantly 

exceeds the sample mean, resulting in over-dispersion. This over-dispersion can be resolved by 

incorporating controls for state-level unobservables, most commonly with a Gamma-distributed 

random effect (see Hausman, Hall and Griliches 1984). Alternatively, in a panel setting, one can 

estimate fixed-effects Poisson models, making use of the fact that the Poisson model is one of the 

few members of the Generalized Linear Model class for which fixed-effects can be removed in a 

straightforward manner. 

The second potential drawback of the Poisson model is the possibility of an overabundance 

of zero values in relation to reasonable estimates of the mean. This has led researchers to develop 

zero-inflated Poisson models in which the probability of a zero value is estimated and may depend 

on covariates. In principle, there is nothing to prevent incorporation of random effects using 

Heckman-Singer non-parametric maximum likelihood methods (see Heckman and Singer 1984). 

Majo and van Soest (2011) develop a two-stage fixed-effects zero-inflated Poisson model and 

apply it to health-care utilization. A possible drawback of the Majo and van Soest approach is that 

individuals with a zero in any time period must be dropped in the second stage, which estimates a 
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truncated Poisson model. Otherwise, for large panels where many individuals have positive counts 

in all time periods, the Majo and van Soest approach is a straightforward method of consistently 

estimating coefficients on time-varying variables. 

In this paper, we use a regression-based approach to modeling the determinants of counts 

in a panel setting. One of the first studies to consider classical regression to estimate counts is 

Jorgensen (1961). In a cross-sectional analysis, if it is reasonable to formulate the mean µi in the 

form xi′β, ordinary least squares estimates are consistent. A promising way of dealing with the 

under-estimation of the probability of a zero value is the censored regression or Tobit model (Tobin 

1958). These models are now commonplace and STATA, which we use for the estimation, allows 

users to estimate them with random or fixed effects. The random effects models are completely 

parametric and assume that both random effects and disturbances are normally distributed. The 

fixed-effects models are semi-parametric in that they require symmetrically but not necessarily 

normally distributed errors. Chay and Powell (2001) review fixed-effects models developed by 

Powell (1984, 1986, 1994), Honoré (1992), Honoré and Powell (1994), and Honoré, Kyriazidou, 

and Udry (1997). The results that we present are for the Honoré (1992) specification. 

Calel and Dechezleprêtre (2016) use firm-level data to find the effect of the European 

Union Emissions Trading System on technological change. They develop an empirical likelihood 

treatment effect model with censoring, citing the difficulty of modeling patent development at the 

firm level. In the present paper, we are seeking the effect of state policies on patent development 

at the state level, which we are able to model directly in Tobit panel settings. 
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4. Data 

In this study, we use patent count data for the 48 contiguous U.S. states spanning 27 years 

from 1983 to 2009. We stopped at 2009 because we felt that there is a clear structural break at that 

point due to the passing of the American Recovery and Reinvestment Tax Act,6 section 1603 of 

which offers renewable energy project developers cash payments in lieu of investment tax credits.7 

We use state-level R&D data, electricity consumption, production and price information, state 

demographic, economic and political factors as control variables. All dollar values are 2009 

dollars, adjusted using the Consumer Price Index. Finally, aggregate global wind capacity over 

this period controls for international trends that increase demand for wind innovation. Details 

about the source, collection and manipulation of these data are given in this section. 

 

4.1 Dependent Variable 

Our dependent variable is the number of patent applications for a specific state in each 

year. Using patents enables us to identify the location of invention, so that we can track wind 

innovation across states. While patents are a measure of the output of the innovation process, 

economists have found that patents provide a good indicator of innovation activity (see Griliches 

1990). Moreover, due to the detail available on patent documents, patents are widely used in 

studies of environmental innovation (see Popp et al. 2010 for a review). 

Data on relevant patent information comes from an on-line database provided by Delphion. 

Detailed descriptive information available includes the patent class, source country, corporate 

address and application date. We use the International Patent Classification (IPC) to identify wind 

energy patents granted by the U.S. patent office, searching for patents in IPC class F03D.  Using 

                                                
6 https://www.treasury.gov/initiatives/recovery/Documents/Status%20overview.pdf accessed November 27, 2018 
7 Applications were due July 31, 2009. 

https://www.treasury.gov/initiatives/recovery/Documents/Status%20overview.pdf
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the address of the corporate assignee, we assign each patent to a state. If a patent has inventors 

from multiple states, the patent is assigned to each of those different states. We use the earliest 

application date on the patent to identify the year of invention. Year fixed effects will control for 

any remaining truncation bias due to patents pending for more than four years.8 Our data include 

1,474 patents.  As shown in Figure 1, most growth in patent applications occurs during the 2000s.  

Our counts of patents by state per year include many zeros, as 826 of our 1,296 state-year pairs 

have zero patents.  Nearly 80 percent of all observations have either 0 or 1 patent. The largest 

number of patent applications for a state in a single year is 32, in South Carolina in 2009. Eight 

states (California, Connecticut, Florida, New York, Massachusetts, Pennsylvania, South Carolina, 

and Texas) have more than 50 patent applications in total, on average more than 2 patents every 

year.  

 

4.2 Policy Variables 

With available data from the Database of State Incentives for Renewables and Efficiency 

(DSIRE), which outlines operational policy instruments across the country and the date of 

enactment and amendment for each policy instrument by each state, we constructed variables for 

five different renewable energy policies. Subsidy policies include grants, loans and rebates. We 

construct the subsidy index by separately counting the existence of loans, grants and rebates, 

following Caley (2009). Thus, the subsidy index ranges from zero to three, indicating the number 

of different types of subsidy policies in existence. Similarly, using state corporate, personal, 

property and sales tax incentives, the tax incentive index ranges from zero to four indicating the 

number of types of tax incentives in existence for a state in a given year. 

                                                
8 We last accessed the patent data in 2014.  Any remaining truncation bias is small, as 86% of patents in our sample 
are granted within four years or less. 
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We have include three variables for rules, regulations and mandates for renewable energy 

at the state level described earlier in section 1: interconnection rules, net metering and renewable 

portfolio standards. We construct dummy variables indicating the existence of the various policies 

within the state, coded as one if the policy is in effect in a given year. All the data on financial 

incentives and regulation rules and mandates for renewable energy are extracted from DSIRE. 

Table 1 presents summary statistics. The mean value of the tax incentive index is 0.866. 

Since the tax incentive index characterizes the different kinds of corporate, personal, sales and 

property taxes present in a state, this means that states have about one out of the four kinds of tax 

incentives on average across these years. Similarly, a mean value of 0.294 for the subsidy policy 

index means that states on average have at least one kind of subsidy policy in 29.4 percent of the 

years. For variables indicating the existence of regulatory rules and mandates, states have a 

renewable portfolio standard policy in effect in 14.5 percent of the years, interconnection rules in 

19.2 percent of years, and net metering policies in 29.2 percent of years.9 

To study the spillover effect of policies enacted in other states on innovation in that state, 

we also included a series of spatially weighted averages of policy variables in the regression. If a 

large proportion of nearby states have adopted some form of renewable energy policy, this will 

increase the potential market for any wind innovations produced, as well as possibly having 

“demonstration effects” on renewable technology adoption in the home state. As noted earlier, our 

weighted outside-state policy variables are created by multiplying each policy variable by one of 

                                                
9 In our robustness checks, we include additional policy variables to proxy for the stringency of state policies.  We 
replace the dummy variables with a count variable indicating the number of times a policy has been amended, 
assuming that amended policies are more stringent and thus more effective in promoting renewable energy adoption 
and innovation. The variable equals zero if there is no policy in effect, takes a value of one when a policy is first 
enacted, and adds one to the policy variable each time the policy is amended. Similar cumulative policy variables 
are used by Yin and Powers (2010) and Menz and Vachon (2006).   
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the two spatial weight matrices presented in section 3. Table 2 presents summary statistics for the 

weighted policy variables.10 

 

4.3 Control variables 

4.3.1 R&D Data 

We use total state R&D investment to control for the general scientific capacity of the state. 

Total funds spent for business R&D performed in each state from 1982 to 2007 come from the 

Industrial Research and Development Information System (IRDIS) database,11 which contains 

data produced by the National Science Foundation’s Survey of Industry Research and 

Development (SIRD) from 1953 to 2007. The R&D data for 2008-2009 come from the Business 

Research and Development and Innovation Survey (BRDIS). 12  In 2009, the total business 

spending on R&D activity in the United States was $282 billion, of which $225 billion was funded 

by companies themselves. Businesses in California lead in R&D investment, accounting for over 

23 percent of the nation’s business R&D expenditures.  

 

4.3.2 State Electricity Information 

We include state electricity consumption, state electricity consumption growth, and 

electricity price per British Thermal Unit (BTU) to control for potential underling trends in a state’s 

electricity markets. These data are extracted from the EIA’s State Energy Data System (SEDS),13 

which contains detailed information on state energy consumption, production and prices by source 

                                                
10 Leenders (2002) provides a discussion of how to use a spatial weight matrix to model social influence. 
11 http://www.nsf.gov/statistics/iris/history_data.cfm, accessed February 27, 2018.  Note that all control variables are 
lagged one year, so that we begin with data from 1982.   
12 http://www.nsf.gov/statistics/infbrief/nsf12309/, accessed February 27, 2018. 
13 http://www.eia.gov/beta/state/seds/seds-data-complete.php?sid=US, accessed February 27, 2018. 

http://www.nsf.gov/statistics/iris/history_data.cfm
http://www.nsf.gov/statistics/infbrief/nsf12309/
http://www.eia.gov/beta/state/seds/seds-data-complete.php?sid=US
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from 1960 to 2010.  State electricity consumption and state electricity consumption growth reflect 

demand for electricity. When electricity consumption is high and increasing, the state will be under 

pressure to build more capacity. While this may provide an incentive for renewable energy 

deployment, which could lead to renewable technology innovation, it may also make costlier 

energy sources such as wind less attractive. Because wind energy was costlier than conventional 

sources during the time frame of our sample, we include energy prices in our estimations as wind 

energy will be more competitive in states that have higher or more volatile conventional electricity 

prices.  

 

4.3.3 State Social, Economic and Political Factors 

We also control for relevant socioeconomic factors. State population and state personal 

income data are from the Regional Economic Account of the Bureau of Economic Analysis 

(BEA).14 We include state population growth because states with high population growth will be 

under more pressure to construct more capacity for electricity generation, creating a potential 

market for additional wind energy. Wealthier consumers may have a higher valuation for a clean 

environment and thus be more likely to prefer energy produced from renewable sources, so that 

per capita state income may affect demand for wind energy.15 We use the log of state per capita 

income adjusted to 2009 U.S. dollars.  

Political preferences are also important. Research in political science and public 

administration provides evidence that a state’s institutional framework and other political 

structures could affect both policy adoption and the outcomes of policy implementation. For 

                                                
14 http://www.bea.gov/regional/downloadzip.cfm, accessed February 27, 2018. 
15 Moreover, Sarzynski et al. (2012) suggest that states with higher per capita income may have more consumers 
that could afford to invest in renewable technology with a high upfront cost. Rodberg and Schachter (1980) find 
evidence that higher income households are more likely to claim solar income tax credits. 

http://www.bea.gov/regional/downloadzip.cfm
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example, Steinmo and Tolbert (1998) find that state political and economic institutions explain 

state tax policy variation. Ringquist and Clark (2007) argue that state policy efforts could be 

affected by interparty competition and interest groups. Sapat (2004) claims that the beliefs of 

political figures and organizational culture could also impact government performance. In this 

study we use League of Conservation Voters (LCV) voting scores to account for institutional 

factors that may affect pro-environmental legislation that is important for renewable energy 

development and renewable technological innovation. The LCV voting scores data are from the 

National Environmental Scorecard, published yearly by Congress since 1970.16  A higher LCV 

score indicates greater support for environmental initiatives. 

 

4.3.4 Global Wind Power Capacity 

Finally, to control for the possible underlying trends in the development of the renewable 

energy industry worldwide, we also include in the estimations a variable for world-wide installed 

wind-power capacity as an indicator for the development level of wind power technology. This 

variable is not included in models that include individual year effects, as it is perfectly collinear 

with the year effects. Data on world-wide installed wind-power capacity and net annual addition 

are from the International Energy Agency.17  

 

5. Empirical Results 

Table 3 presents our main results. We present three specifications: models with and without 

year fixed effects and a model replacing year fixed effects with a time trend and squared time 

trend. Year effects control for time varying shocks common to all states, such as national policy 

                                                
16 http://scorecard.lcv.org/scorecard/archive, accessed February 27, 2018. 
17 http://www.iea.org/, accessed February 27, 2018. 

http://scorecard.lcv.org/scorecard/archive
http://www.iea.org/
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changes or scientific advances that create new opportunities for wind technology. Moreover, 

because our data uses successful patent applications, which cannot be observed before a patent is 

reviewed and granted, year effects control for any truncation bias in our data. However, as the 

weighted policy variables of outside states are highly correlated with individual year effects, we 

also present models omitting year effects or using time trends in place of year effects to 

demonstrate robustness of our results.  We discuss several robustness checks to our main results 

in section 5.1. 

Our results indicate that the effect of policy on innovation varies by policy type. Most 

importantly, for renewable energy rules and mandates such as renewable portfolio standards it is 

overall demand that matters. Across all specifications, the coefficients for own-state renewable 

energy mandates and rules are small and insignificant. In contrast, the aggregate impact of these 

policies from other states does matter. Other states’ renewable mandates consistently have a large 

significant impact on patenting, with the one exception being a loss of significance for outside 

state policies when including both state and year fixed effects due to the collinearity issues 

discussed above. In contrast, for financial incentives such as tax incentives and subsidy policies, 

states using tax incentives to promote wind energy see an increase in patenting in their own state.  

However, outside state financial incentives do not induce innovation within a given state. In fact, 

the coefficients of variables characterizing other state financial incentives are consistently 

negative.  We find limited evidence of the importance of other rules.   

A possible explanation for these two contrasting effects on innovation from renewable 

energy policies implemented by other states depends on an understanding of the implementation 

of each policy type. Renewable energy policy regulatory rules and mandates such as 

interconnection policy, net metering, and RPS implemented in one state make it more convenient 
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to connect to the grid and raise demand for wind energy. Wind turbine suppliers do not need to 

live in the state with an RPS to take advantage of this increased demand. Moreover, renewable 

portfolio standards implemented in one state provide incentives for utility companies to purchase 

electricity produced from renewable sources not only in their own state, but from neighboring 

states as well. By raising demand for wind energy both within the RPS state and in neighboring 

states, RPS policies increase innovation across state lines. However, although tax incentives and 

subsidy policies will make renewable technology more affordable to the general public and ensure 

a better market prospective for companies developing renewable technology, one has to be a 

resident of a state where these financial incentives are present to benefit from these tax incentives 

or subsidy policies. Thus, financial incentives only induce innovation within the state giving the 

incentive, and targeted financial incentives of neighboring states may even provide a negative 

competition effect on wind energy innovation. 

Table 4 compares the marginal effects for the two policies with consistently significant 

effects. For the marginal effect of the other-state RPS variable, we change the RPS variable from 

0 to 1 for the state (or states) indicated and then re-calculate the weighted other-state RPS policy 

variable for each state. Greene (1999) shows that the infinitesimal-change marginal effect for 

covariate xj in a censored regression model, no matter what the distribution of the disturbance, is 

 (4)             ∂E(y|x ) ∂xj⁄ = βj x Prob( 𝑦𝑦 uncensored), 

where y is the patent count, x is the covariate vector, and βj is the coefficient of xj . Honoré (2008) 

suggests that this formula can be used for infinitesimal-change marginal effects in his 

semiparametric fixed-effects Tobit model. The trick is to replace the probability in equation (4) by 

the sample proportion of uncensored observations, which maintains the consistency of the 

marginal effect. The final step is to recognize that for the discrete changes that we use, the 
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infinitesimal-change marginal effect is a lower bound, since the value of the latent variable can 

switch due to the discrete change. 

We present marginal effect lower bounds for the five states with the most patents, for five 

other nearby states, and the average and cumulative lower bounds for all 48 states in our sample.  

We choose the additional five states to provide variation in both population and geographic 

location. Column (1) shows the marginal effect of adding an additional own-state tax policy. 

Columns (2)-(5) show the marginal effects of the out-of-state RPS variable for all policies enacted 

in the year indicated at the top of each column. The states listed above each column are the states 

enacting a policy in that year. Column (6) shows the net effect of adding an RPS policy in the 17 

states that had not enacted such a policy by the end of 2008.18 This can be thought of as the 

marginal effect of moving from state-based polies to a national RPS policy. Because the policy 

variables are lagged one year, the marginal effects represent patent increases in the year after the 

policy change.  

On average, a state adding one additional tax incentive to its policy mix sees an increase 

of at least 0.95 patents per year, with an effect as large as 2.62 patents per year for California. The 

average lower bound for the various RPS policies enacted in a given year are smaller in the selected 

years, ranging from 0.09 in 2003 to 0.60 in 2007. The results also illustrate the importance of 

geography.  For example, the average lower bound of the effect of California on other states after 

RPS enactment is 0.09, but is as high as 0.28 for nearby Oregon and 0.60 for nearby Nevada.  

While the marginal effects of out-of-state RPS policies in a single state are smaller than for 

own-state taxes, both the last row and column (6) emphasize the impact of total market size.  

Because all states are affected by external RPS policies, the net effect on all patenting in the U.S. 

                                                
18 These 17 states are Alabama, Arizona, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Michigan, 
Mississippi, Nebraska, Ohio, Oklahoma, South Carolina, Tennessee, West Virginia and Wyoming. 
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is much larger.  Thus, the bottom row shows the total number of patents induced in all 48 states in 

our sample.  The sum of all marginal effect lower bounds from a new RPS policy is much larger, 

ranging from 4 to nearly 29 patents in a single year.  These are substantial effects.  For example, 

the increase in patents resulting from the policies enacted in 2007 account for 17 percent of all 

patents in 2008.  While this may seem large, note that several large states, such as Illinois and 

Virginia, enact policies in 2007.  Finally, in column (6) we ask what would happen if the 17 states 

that had not enacted an RPS by the end of our sample did so all at once.  The average lower bound 

for this effect is 1.39 patents per state, which yields a total increase of 56.65 patents. 

Overall, our results suggest the promise that enacting renewable energy policies can make 

a state a leader in wind innovation generally appears unfounded. With the exception of some 

targeted tax incentives, it is overall policy support (and thus overall demand) for wind energy, not 

demand within the state that matters. This result differs from the cross-country work of 

Decheztleprêtre and Glachant (2014) and Peters et al. (2014), who look at cross-country renewable 

energy patenting and find that domestic regulations are important.  It also differs from cross-

country work on innovation for other environmental technologies, such as Popp (2006), that finds 

domestic environmental policies to be important.  Looking across countries, Dechezleprêtre and 

Glachant (2014) find evidence that trade barriers diminish the influence of foreign environmental 

policy on local innovation.  Such barriers are not an issue across states.  Indeed, one of the states 

with the most wind patent activity, South Carolina, generates little energy from wind and has no 

renewable energy mandate. It does, however, have financial incentives for wind energy. For state 

officials looking to promote renewable energy industry within their states, other factors such as 

lower taxes may be more important than enacting environmental regulation within the state. 



23 
 

All estimated control variable coefficients are insignificant. Only two variables attain t-

statistics greater than 1.5. These are electricity price and global wind capacity. States with higher 

energy prices are expected to do more wind innovation, as higher electricity prices make wind 

energy more competitive with other energy sources.  The electricity price variable is significant at 

the 5 percent level, but only in the model with year effects. The best result for global wind capacity 

is in the model with time trends.  Other control variables have substantially less explanatory power.   

 

5.1 Robustness checks 

Our main finding is that own-state policies have a much smaller impact on wind-patenting 

activity than policy initiatives in other states. Our model lags both local and other state policies by 

one year. One potential concern may be that the timing of the innovative response differs across 

states. States with an existing wind industry may see rapid increases in patenting in response to 

new policy initiatives. In contrast, if states without an existing wind industry enact policies to 

encourage the development of such an industry, it may take time for the industry to develop. Thus, 

the effect of local policies may have a longer lag than out-of-state state policies. In Table 5 we 

consider different combinations of lags for in-state and out-of-state policies, allowing up to a three 

year lagged effect for each. Nonetheless, our main results remain – own-state policies, except the 

tax incentives, have no effect, even after three years. Moreover, the effect of out-of-state policies 

gradually disappears, becoming insignificant after three years. This is consistent with other studies 

finding that innovation responds quickly to policy incentives (e.g. Popp 2006). 

We might also be concerned that local policies are endogenous. While there is evidence of 

policy endogeneity in the effectiveness of renewable energy policy (e.g. Delmas and Montes-

Sancho 2011), it need not be the case that endogeneity exists in the case of renewable energy 
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innovation. In the case of renewable energy generation, policies focus on wind energy generated 

within the state. These wind farms are typically owned by local electric utilities or by independent 

power producers. However, the wind turbine equipment they purchase for generation need not be 

produced locally. Turbine producers are mostly large global companies, such as U.S.-based 

General Electric, Gamesa from Spain or Siemens from Germany. In 2010, nearly one-half of wind 

turbine capacity installed in the U.S. used General Electric turbines, with Siemens and Gamesa 

accounting for another 27 percent (Wiser and Bolinger 2013). Since most wind turbines come from 

a few large global producers, the location of these producers should be exogenous, and thus not 

influence policy to promote renewable energy generation in a given state.  

Endogeneity leads to two potential biases. One is that firms in states with a strong wind 

industry lobby for regulations to support the industry. This would lead to a positive bias in our 

coefficients. However, since our main result is that own-state policies have little effect, such bias 

does not seem to be an issue. Another possible bias is that states with unfavorable conditions for a 

wind industry enact regulations to support the development of wind energy. Here, we would see a 

negative bias on own state coefficients. Thus, to confirm our result of no effect for own-state 

policies, we want to ensure that such negative bias is not an issue. 

Unfortunately, given the discrete nature of our policy variables and the many policy types 

that states use, finding valid instruments for each of our five own-state policies is difficult, if not 

impossible. Instead, we run the following falsification test, regressing current patents on future 

own-state policies. If states lacking wind capacity are enacting policies to spur the development of 

wind technology, we would find a negative effect of future own-state policy on patenting. As 

shown in Table A1 of the appendix, this is not the case. Future own-state policies also have an 

insignificant effect. Thus, any potential bias here has little if any effect on our main conclusions.   



25 
 

Appendix Table A2 considers whether our results are sensitive to the weighting matrix 

used for outside state policies. While the magnitudes of our coefficients differ due to the different 

weights used, the pattern of results for in-state and out-of-state policies remains essentially the 

same.  Appendix Table A3 considers alternative policy measures. To proxy for the stringency of 

state policies, we replace the dummy variables with a count variable indicating the number of times 

a policy has been amended.  Under the assumption that amended policies would be more stringent 

and thus more effective in promoting renewable energy adoption and innovation, the variable 

equals zero if no policy in effect, takes a value of one when a policy is first enacted, and increases 

by one each time the policy is amended.  Similar cumulative policy variables are used by Yin and 

Powers (2010) and Menz and Vachon (2006).  In addition, we adjust our dummy variables for the 

RPS, omitting states whose RPS appears non-binding.  In the first alternative, we code RPS policy 

as 0 if the RPS standard is met with 100 percent compliance in the first year of implementation 

and remains at 100 percent afterwards.  In our second alternative, the variable takes value 0 if 

states with RPS have a target less than 5 percent in 2009.  As Appendix Table A3 shows, our main 

results are generally unchanged when using these alternative policy variables.  The one exception 

is that the coefficient on out-of-state RPS standards becomes insignificant when not including 

states whose RPS target is less than 5 percent. 

 

6. Conclusion 

In this study, we examine the effect of state renewable energy policies on patenting activity 

in individual states. Our results show that other states’ renewable portfolio standard mandates have 

the largest impact on innovation. Own state policies generally have no effect on innovation, with 
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the exception of a small effect from own state tax incentives. These results are robust to alternative 

model specifications. 

Given that the barriers to technology transfer across state lines are small, these results 

indicate that it is overall demand within the U.S, rather than in one particular state, that drives 

innovation. This surprising result suggests that enacting policies to promote renewable energy is 

not necessary to become a leader in the development of renewable energy technology.  Given the 

political popularity of efforts to promote green jobs, our finding that patenting activity does not 

coincide with state-level regulations suggests that the factors influencing the development of wind 

innovation across states is worthy of further study.  Are the trends in patenting across states with 

low wind energy a result of state-level industrial policies designed to increase manufacturing jobs 

within the state?  We leave this question for future research.  
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Table 1: Summary Statistics 

Variable Mean Std. Dev. Min. Max. 
Log R&D Investments (Millions 2009 USD) 7.137 1.795 1.189 11.12 
Electricity Consumption (Billion BTU) 11.84 0.992 9.450 13.99 
Electricity Consumption Growth (%) 2.273 3.652 -21.49 41.44 
Electricity Price (2009 USD per BTU) 3.339 0.299 2.705 4.098 
Population Growth (%) 1.002 1.036 -5.986 7.325 
Log Per Capita Income (2009 USD) 10.37 0.191 9.814 10.97 
Log Global Wind Capacity (Megawatts) 8.645 1.843 4.500 11.70 
LCV Senate Score 0.478 0.298 0 1 
LCV House Score 0.468 0.250 0 1 
Tax Incentive Index 0.866 1.074 0 4 
Subsidy Policy Index 0.294 0.545 0 3 
Interconnection Existence 0.168 0.374 0 1 
Net Metering Existence 0.292 0.455 0 1 
Renewable Portfolio Standard Existence 0.145 0.352 0 1 
Interconnection Cumulative 0.233 0.588 0 5 
Net Metering Cumulative 0.361 0.628 0 3 
Renewable Portfolio Standard Cumulative 0.215 0.585 0 4 

Note: Units are in parenthesis.  All dollar values in 2009 USD. 
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Table 2: Summary Statistics of Neighboring States’ Average Policy  

 Variable Mean Std. Dev. Min Max 

Contiguity 
Weighting 

Tax Incentive 0.908 0.729 0 3.667 
Subsidy Policy 0.294 0.314 0 2 
Interconnection Dummy Variable 0.209 0.306 0 1 
Net Metering Dummy Variable 0.336 0.352 0 1 
Renewable Portfolio  
Standard Dummy Variable 0.168 0.274 0 1 
Interconnection Cumulative 0.306 0.545 0 5 
Net Metering Cumulative 0.436 0.542 0 3 
Renewable Portfolio  
Standard Cumulative 0.261 0.466 0 2.667 

Log(Population)/
Distance 
Weighting 

Tax Incentive 0.964 0.548 0.330 2.597 
Subsidy Policy 0.328 0.258 0 1.416 
Interconnection Dummy Variable 0.199 0.251 0 0.952 
Net Metering Dummy Variable 0.321 0.271 0.009 0.963 
Renewable Portfolio  
Standard Dummy Variable 0.171 0.221 0 0.896 
Interconnection Cumulative 0.287 0.405 0 1.915 
Net Metering Cumulative 0.407 0.398 0.009 1.643 
Renewable Portfolio  
Standard Cumulative 0.263 0.380 0 1.971 
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Table 3: Semiparametric Fixed-Effects Tobit Results 
               (standard errors in parentheses) 

  No Year Effects Year Effects Trend 

Neighbor Tax Incentive 1.079 0.409 0.259 
(3.411) (8.194) (5.533) 

Neighbor Subsidy Policy -2.336 -10.70 -4.179 
(5.990) (10.70) (7.208) 

Neighbor Interconnection 0.339 -6.133 4.723 
(6.391) (12.96) (6.295) 

Neighbor Net Metering 3.145 3.498 0.954 
(3.845) (7.090) (4.379) 

Neighbor RPS 10.45 14.54 11.02 
(4.414) (11.86) (5.914) 

Tax Incentive Index 2.763 2.462 2.617 
(1.337) (1.183) (1.259) 

Subsidy Policy Index 0.857 0.831 0.854 
(0.962) (0.803) (0.940) 

Interconnection 0.703 0.551 0.641 
(1.326) (1.427) (1.217) 

Net Metering 0.0291 -0.208 0.0825 
(1.748) (1.320) (1.561) 

RPS -0.428 -0.156 -0.419 
(1.350) (1.217) (1.305) 

Log Inflation Adjusted R&D -0.0692 0.176 0.0528 
(1.182) (1.025) (1.038) 

Log Electricity Consumption 2.143 0.357 0.402 
(6.261) (6.351) (6.648) 

Electricity Consumption Growth -0.142 -0.146 -0.0986 
(0.0721) (0.0676) (0.0693) 

Log Electricity Price 4.702 6.530 6.702 
(3.728) (3.803) (4.311) 

Population Growth 
0.0789 -0.0143 0.0479 
(0.443) (0.484) (0.470) 

Log Per Capita Income -4.877 -4.418 -6.909 
(8.599) (10.71) (9.240) 

Log Global Wind Capacity 
0.0568  -0.897 
(0.395)  (0.573) 

   
LCV Senate Score -0.232 0.0457 -0.473 

(1.320) (1.459) (1.367) 

LCV House Score 0.730 -0.420 0.490 
(2.177) (2.199) (2.030) 

trend   0.533 
  (0.580) 

trend2   -0.001 
    (0.025) 

N 1296 1296 1296 
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Table 4: Semiparametric Fixed-Effects Tobit Marginal Effect Lower Bounds 

 
 (1)  (2) (3) (4) (5) (6) 
Year of Policy: 2008  1999 2003 2004 2007 2008 

 Own State 
Tax Policy 

 ME, OR, 
NJ, & TX CA MD, NM, 

NY, & RI 

IL, MN, 
NH, NC, 
ND, VA, 
& WA 

17 
States 
RPS 

California 2.62  0.87 N/A 0.48 1.23 2.21 
New York 2.04  1.42 0.11 0.97 1.55 2.68 
South Carolina 0.58  0.16 0.03 0.16 0.48 1.05 
Texas 2.13  0.32 0.21 0.56 1.11 3.70 
Massachusetts 1.84  1.21 0.08 2.64 1.76 1.85 
Pennsylvania 1.55  0.89 0.08 1.39 1.25 2.52 
Connecticut 1.55  1.03 0.07 1.77 1.13 1.63 
Florida 1.45  0.35 0.08 0.29 0.63 2.09 
Oregon 1.45  0.13 0.28 0.19 1.20 1.17 
Nevada 1.16  0.37 0.60 0.21 0.54 1.01 
Mean 0.95  0.35 0.09 0.37 0.60 1.39 
Sum 45.56   16.98 4.21 17.99 28.99 56.65 
 
 
NOTES:  
The table shows the marginal effects of various policy initiatives for the five states with the most 
wind patents (in bold), along with other selected states.  Because the policy variables are lagged 
one year, the marginal effects represent patent increases in the year after the policy change.  The 
probability of censoring for the fixed-effect results is the sample proportion of censored cases for 
the given state across all sample years. 
 
Column 1 shows the own-state marginal effect of adding an additional tax policy in 2008.  
Columns 2-5 show the marginal effect of the other state RPS variable for all policies enacted in 
the year indicated at the top of each column.  The states listed above each column are the states 
enacting a policy in a given year.  Column 6 shows the net effect of adding an RPS policy in 
2008 in the 17 states that had not enacted such a policy by the end of our sample.  This shows 
what would have happened had the U.S. moved to a national policy in 2008. 
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Table 5: Sensitivity to Policy Lag Structure (standard errors in parentheses) 

In State Policy Lags  1 1 1 2 2 2 3 3 3 

Out of State Policy Lags 1 2 3 1 2 3 1 2 3 

Neighbor Tax Incentive 0.259 3.532 -5.529 1.108 1.954 -5.650 1.714 3.291 -4.877 
(5.533) (7.471) (6.215) (5.215) (6.580) (5.447) (5.349) (7.200) (5.606) 

Neighbor Subsidy Policy -4.179 -11.29 -7.135 -4.523 -8.817 -7.748 -5.110 -11.25 -8.507 
(7.208) (8.552) (9.102) (6.523) (7.759) (8.308) (6.271) (8.499) (9.223) 

Neighbor Interconnection 4.723 -5.924 3.750 -2.122 -8.537 1.387 1.067 -9.608 -2.192 
(6.295) (6.061) (6.263) (5.145) (5.927) (5.940) (4.824) (7.264) (6.838) 

Neighbor Net Metering 0.954 6.187 1.458 4.574 8.796 3.048 2.971 9.123 1.903 
(4.379) (3.897) (5.291) (5.632) (4.319) (5.637) (5.560) (5.193) (5.805) 

Neighbor RPS 11.02 17.66 11.36 14.40 18.32 13.17 14.80 21.12 17.95 
(5.914) (7.551) (10.83) (6.396) (8.099) (9.843) (5.484) (8.171) (10.43) 

Tax Incentive Index 2.617 2.588 2.705 3.931 3.520 3.805 3.235 2.971 3.132 
(1.259) (1.192) (1.349) (1.488) (1.307) (1.514) (1.707) (1.461) (1.622) 

Subsidy Policy Index 0.854 0.408 0.870 0.638 0.551 0.722 -0.166 -0.211 -0.004 
(0.940) (0.787) (0.918) (0.822) (0.730) (0.752) (1.007) (0.911) (0.894) 

Interconnection 0.641 0.660 0.657 1.183 1.069 0.709 0.941 1.363 0.785 
(1.217) (1.178) (1.117) (1.304) (1.365) (1.299) (2.497) (2.460) (2.329) 

Net Metering 0.0825 -0.778 -0.148 -1.746 -2.171 -1.514 -0.926 -1.999 -1.186 
(1.561) (1.266) (1.323) (1.137) (1.185) (1.247) (1.419) (1.357) (1.328) 

RPS 
-0.419 -0.029 -0.249 0.0079 0.052 -0.096 0.248 0.713 0.757 
(1.305) (1.228) (1.252) (1.250) (0.985) (0.998) (1.643) (1.599) (1.467) 

 

 



36 
 

Figure 1 
 Total Number of New Patents in the 48 States  

By Year of Application (1983-2009) 
 

Data Source: Authors’ calculation, using data from Delphion  
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Appendix: Robustness Checks 

Table A1: Semiparametric Fixed-Effects Tobit Results with Lead Own-State Policy Variables 
                 (standard errors in parentheses) 

  No Year Effects Year Effects Trend 

Neighbor Tax Incentive -0.381 -2.632 -0.125 
(3.285) (7.885) (5.677) 

Neighbor Subsidy Policy -1.425 -10.39 -3.389 
(6.083) (11.26) (7.531) 

Neighbor Interconnection 8.460 1.129 12.66 
(6.526) (13.96) (6.776) 

Neighbor Net Metering 1.130 3.897 0.313 
(4.509) (6.725) (5.689) 

Neighbor RPS 5.975 10.37 7.809 
(4.700) (10.12) (5.196) 

Tax Incentive Index(t+1) 1.086 1.157 1.024 
(0.744) (0.870) (0.798) 

Subsidy Policy Index(t+1) 1.340 0.840 1.166 
(1.073) (0.895) (1.105) 

Interconnection(t+1) 1.894 2.088 2.080 
(1.305) (1.408) (1.410) 

Net Metering(t+1) 1.169 -0.145 0.630 
(1.391) (1.288) (1.558) 

RPS(t+1) -0.836 -0.448 -0.749 
(1.633) (1.365) (1.481) 

Log Inflation Adjusted R&D -0.155 0.286 0.0173 
(1.272) (1.026) (1.140) 

Log Electricity Consumption 3.338 1.100 1.068 
(7.194) (7.530) (8.002) 

Electricity Consumption Growth -0.145 -0.143 -0.103 
(0.072) (0.070) (0.077) 

Log Electricity Price 6.288 7.168 8.085 
(3.488) (3.119) (3.552) 

Population Growth -0.0175 -0.216 -0.0607 
(0.532) (0.541) (0.553) 

Log Per Capita Income -6.837 -5.671 -9.228 
(10.15) (11.75) (10.85) 

Log Global Wind Capacity -0.303  -1.015 
(1.460)  (0.617) 

LCV Senate Score 1.077 -0.115 -0.505 
(2.511) (1.541) (1.477) 

LCV House Score 
0.126 -0.336 0.637 

(0.512) (2.355) (2.108) 

Trend   0.742 
  (0.688) 

trend2   -0.0148 
    (0.0287) 

N 1296 1296 1296 
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Table A2: Semiparametric Fixed-Effects Tobit Results with Contiguity Weighting 
                   (standard errors in parentheses) 

  No Year Effects Year Effects 

Neighbor Tax Incentive 0.827 -0.253 
(1.181) (1.944) 

Neighbor Subsidy Policy -1.219 -2.362 
(2.144) (2.691) 

Neighbor Interconnection 3.913 1.348 
(2.795) (4.976) 

Neighbor Net Metering 0.775 0.233 
(1.483) (2.057) 

Neighbor RPS 4.710 5.094 
(3.000) (3.701) 

Tax Incentive Index 2.578 1.994 
(1.274) (1.102) 

Subsidy Policy Index 0.846 0.864 
(0.787) (0.838) 

Interconnection 0.913 0.711 
(1.186) (1.420) 

Net Metering -0.247 -0.0671 
(1.250) (1.140) 

RPS 0.0231 -0.0932 
(1.212) (1.122) 

Log Inflation Adjusted R&D -0.116 0.134 
(1.221) (1.191) 

Electricity Consumption 3.236 0.564 
(6.610) (6.075) 

Electricity Consumption Growth -0.148 -0.138 
(0.0739) (0.0647) 

Electricity Price 5.955 6.464 
(4.740) (3.581) 

Population Growth -0.0822 -0.182 
(0.509) (0.510) 

Log Per Capita Income -0.0962 0.911 
(8.505) (8.959) 

Log Global Wind Capacity -0.917 
 

(1.305) 
 

LCV Senate Score -0.0033 -0.321 
(2.089) (1.420) 

LCV House Score 
-0.0109 -0.453 
(0.434) (2.214) 

N 1296 1296 
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Table A3: Semiparametric Fixed-Effects Tobit Results with Alternative Policy Variables 
                   (standard errors in parentheses) 

  Cumulative Policy RPS Alternative 1 RPS Alternative 2 

Neighbor Tax Incentive 0.700  0.885  0.362  
(6.078)  (5.075)  (5.962)  

Neighbor Subsidy Policy -3.118  -3.885  -0.855  
(5.516)  (6.297)  (6.715)  

Neighbor Interconnection -6.719  3.836  4.247  
(8.953)  (6.399)  (6.370)  

Neighbor Net Metering 9.383  0.433  1.757  
(6.288)  (4.425)  (4.241)  

Neighbor RPS 9.454  14.44  1.074  
(5.252)  (6.842)  (9.872)  

Tax Incentive Index 2.445  2.687  2.816  
(1.206)  (1.242)  (1.268)  

Subsidy Policy Index 0.620  0.696  0.890  
(0.859)  (0.912)  (0.968)  

Interconnection -0.368  0.687  0.125  
(1.036)  (1.226)  (1.249)  

Net Metering -0.974  -0.196  0.376  
(1.121)  (1.541)  (1.610)  

RPS -0.297  1.548  0.353  
(0.957)  (1.590)  (1.209)  

Log Inflation Adjusted R&D -0.225  0.0962  -0.0260  
(0.768)  (0.992)  (1.090)  

Log Electricity Consumption 1.258  -0.609  -0.958  
(6.557)  (6.250)  (6.635)  

Electricity Consumption 
Growth 

-0.112  -0.096  -0.081  
(0.062)  (0.068)  (0.062)  

Log Electricity Price 6.277  5.065  8.068  
(4.015)  (4.158)  (4.526)  

Population Growth 0.0738  0.135  -0.0093  
(0.446)  (0.453)  (0.479)  

Log Per Capita Income -5.880  -9.782  -3.864  
(8.601)  (8.281)  (8.775)  

Log Global Wind Capacity -0.602  -0.720  -0.850  
(0.472)  (0.530)  (0.594)  

LCV Senate Score -0.783  -0.791  -0.422  
(1.402)  (1.374)  (1.428)  

LCV House Score 0.416  0.0842  1.309  
(1.712)  (1.918)  (1.895)  

trend 0.278  0.586  0.336  
(0.387)  (0.508)  (0.597)  

trend2 -0.002  -0.009  0.004  
(0.017)  (0.022)  (0.026)  

N 1296  1296  1296  
 




