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1 Introduction

Most standard macro and growth models rely on very restrictive behavioral assumptions about

households — infinitely lived, often representative, agents who are capable of solving complex

maximization problems without any behavioral biases or limitations, and of implementing the

optimal decisions without any inconsistencies or mistakes. It is an uncomfortable stage of intro-

ductory graduate courses when these assumptions are introduced and students rightfully ask

whether everything depends on them. A natural conjecture is that these assumptions do matter:

not only do general equilibrium effects become notoriously complicated and the set of indirect

effects correspondingly rich; we would also expect the specific departure from full rationality —

e.g., systematic mistakes, ambiguous beliefs, overoptimism or dynamic inconsistency — to have

a first-order impact on how the economy responds to changes in policy or technology. In this

paper, we show that robust results about the long-run response of a one-sector neoclassical econ-

omy to changes in policy or technology can nonetheless be obtained in the presence of general

behavioral preferences.

Suppose, for example, we would like to analyze the implications of a reduction in the capital

income tax rate on the long-run level of the capital stock. Starting from an initial steady-state

equilibrium, we can break this analysis into two steps: first, we determine the direct response,

measuring the impact of the policy change at the given vector of prices (determined by the initial

capital-labor ratio). We refer to such a policy change as a “local positive shock” if the average of

the direct responses of households leads to an increase in aggregate savings. Second, we have to

determine the subsequent equilibrium response, which involves tracing the change in prices and

the resulting change in household behavior and the capital stock necessary for the economy to

settle into a new steady-state equilibrium. It is this second step that is generally challenging.

To illustrate this, suppose that there are two groups of households. The first is responsive to

the after-tax rate of return to capital and increases its savings. This raises the capital stock and

wages, creating a negative income effect on savings. If the second group has a powerful income

effect or behavioral biases that make it reduce its savings, its equilibrium (indirect) response might

dominate the response of the first group, making it impossible to say anything about how the

long-run capital stock will change.

Against this background, the current paper establishes that in the “behavioral neoclassical

growth model” — meaning the one-sector neoclassical growth model but allowing for a rich set

of consumer behaviors, heterogeneity, and uncertainty, as well as for incomplete markets and

distortions — these equilibrium effects will never reverse the direct response.1 So if the direct

1Note that here “neoclassical” only refers to the production side of the economy and does not presume or impose
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response is a local positive shock, the long-run capital stock will necessarily increase; and if the

direct response is a local negative shock, the long-run capital stock will decrease.2 Notably, only

minimal regularity conditions are imposed: the result remains valid under a rich set of behav-

ioral biases and limitations on rational decision-making. Also noteworthy is that these strong

predictions about aggregate behavior are true even though nothing general can be said about

individual behavior — many groups of individuals, not just those that are making mistakes or

are subject to severe behavioral biases, may react in the opposite way and reduce their savings in

equilibrium. But there will always be sufficiently many other households who increase their sav-

ings for the economy’s aggregate equilibrium response to move in the right direction (meaning

in the same direction as the initial impulse).

The intuition for this result can be seen at two complementary levels. The first is economic in

nature and it is related to an idea that already appears in Becker (1962) that “aggregation” dis-

ciplines economic behavior. Though we cannot say anything about individual behavior, we can

determine the behavior of market-level variables (that is, aggregates such as the capital stock and

income per capita). This is because even if many households respond in the opposite direction

of the direct response, in equilibrium enough households have to move in the same direction

as the direct response. The second intuition for our result is more mathematical. To develop

this intuition, suppose that the steady-state equilibrium is unique, and focus on a local positive

shock. This initial response then increases the capital stock, and the only way the new steady-

state equilibrium could have lower capital stock is when the equilibrium response goes in the

opposite direction and more than offsets the impact of this initial positive shock. This in turn can

only be the case if a higher capital stock induces lower savings. But even if this were the case, the

equilibrium response could not possibly overturn the direct response. This is because the eco-

nomic force leading to lower savings would not be present if the new steady-state equilibrium

ended up with a lower capital stock, and thus the indirect equilibrium response would in this

case reinforce rather than overturn the direct effect of a positive shock. When there are multiple

steady-state equilibria, this reasoning would not apply to all of them, but a similar argument can

be developed for extremal (greatest and least) steady-state equilibria, and under multiplicity, it

is these equilibria to which our conclusions apply.

any rationality requirements on households. Nor does it impose complete markets. For example, according to this
terminology a version of the Ramsey-Cass-Koopmans model with dynamically inconsistent preferences (Laibson
(1997)) and/or various distortions on the producer side is a behavioral neoclassical growth model, and so is the
Aiyagari model (Aiyagari (1994)) with or without fully rational households.

2As we explain later (see in particular footnote 22), this direct response may or may not correspond to the observed
impact effect of a shock because it needs to be evaluated at the “long-run beliefs” of households. When there is no
uncertainty or when long-run and short-run beliefs coincide, the direct response is the same as the impact effect.
Otherwise, the two differ.
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To establish that these conclusions and intuitions hold under fairly general specifications

of mistakes and behavioral assumptions, we develop a general framework that nests a rich set

of behavioral models of consumption-saving decisions. We then go through several canonical

models of behavioral deviations from infinite-horizon maximization and show that they satisfy

the weak regularity conditions we require for our conclusions to apply. These include mod-

els with non-time-separable preferences, (quasi-)hyperbolic discounting, preferences featuring

self-control and temptation problems, various models of complexity-constrained maximization,

models of sparse maximization and models of mistakes and non-rational expectations (see ref-

erences below).

It is useful to step back at this point and clarify what the message of the paper is. Beyond

providing a general framework for obtaining (qualitative) comparative statics under a rich set

of behavioral assumptions, the paper characterizes when, in the context of the behavioral neo-

classical growth model, behavioral richness and biases matter. Our main result says that any

biases that work through the equilibrium responses, while maintaining that the initial changes

in the environment correspond to a local positive shock, do not matter for qualitative conclusions

(though of course they may be quantitatively important). But conversely, our result also clarifies

that any behavioral biases that determine whether a given change in policy or environment is

a local positive or negative shock will matter greatly. For example, we illustrate in Section 5.4

that a shock such as a reduction in the capital income tax rate that is a local positive shock with

forward-looking perfect maximizers may become a local negative shock for an economy that

houses a fraction of biased agents. In this scenario, our main theorem applies in reverse, and

shows that because behavioral biases have turned the initial change in environment into a nega-

tive shock, all equilibrium responses coming from rational behavior or markets will not be able

to reverse this, and the impact on the long-run equilibrium will (robustly) be the exact opposite

of what one might have expected with fully rational agents. We should also reiterate at this point

that our results are on long-run (steady-state) responses and do not characterize the dynamics of

an economy.

Our paper is related to several literatures. The first, already mentioned, is Becker (1962)’s

seminal paper which argues that market demand curves will be downward sloping even if

households are not rational because their budget constraints will put pressure for even ran-

dom behavior to lead to lower demand for goods that have become more expensive. Machina

(1982) makes a related type of observation about the independence axiom in expected utility

theory. Though related to and inspired by these contributions, our main result is very different.

While Becker’s argument is about whether an increase in price will lead to a (partial equilibrium)
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change in aggregate behavior consistent with “rational behavior”, our focus is about taking the

initial change in behavior, whether or not it is rational, as given and then establishing that un-

der general conditions on the objectives and behavioral biases and constraints of households the

(general) equilibrium responses will not reverse this direct effect.

As our overview in the next section clarifies, the second literature we build on is robust com-

parative statics (Topkis (1978), Vives (1990), Milgrom and Shannon (1994), Milgrom and Roberts

(1994), Milgrom (1994), Quah (2007)). Not only do we share these papers’ focus on obtaining

robust qualitative comparative static results, but we also use similar tools, in particular a version

of the “curve-shifting” arguments of Milgrom and Roberts (1994) (see also Acemoglu and Jensen

(2015)) which allow us to derive robust results in non-monotone economies.3 Nevertheless, our

main theorem is not an application of any result we are aware of; rather, it significantly extends

and strengthens the approach used in the robust comparative statics literature. We provide a

detailed technical discussion of the relationship of our results to the previous literature in Ap-

pendix A. Most significantly, the notion of local positive shock used here for deriving global

comparative static results requires behavior to increase only at a specific capital-labor ratio (or

vector of prices) rather than the much stronger notion that behavior increases everywhere im-

posed in this literature.4 As a result, we are able to establish that any initial change that is a

local positive shock — in the sense that the sum of the initial responses of all agents is posi-

tive at the initial capital-labor ratio — combined with weak regularity conditions leads to sharp

comparative static results.5

In this context, it is also useful to compare our results to those of our earlier paper, Acemoglu

and Jensen (2015), where we analyzed a related setup, but with three crucial differences. First,

and most importantly, there we focused on forward-looking rational households, thus eschew-

ing any analysis of behavioral biases and their impacts on equilibrium responses. Second, and

as a result of the first difference, we did not have to deal with the more general problem consid-

ered here, which requires a different mathematical approach. Third, we imposed considerably

stronger assumptions to ensure that the direct response of all households went in the same di-

3See p.590 in Acemoglu and Jensen (2015) for additional discussion of such non-monotone equilibrium compara-
tive statics results.

4See for example Lemma 1 (and Figures 1-3) in Milgrom and Roberts (1994) or Definition 5 in Acemoglu and
Jensen (2015). Milgrom and Roberts (1994) also use local assumptions, but just to derive local comparative statics
results (see Figure 7 and the surrounding discussion); this is different from our results, which are global despite being
based on local assumptions.

5The literature on mean field games is also related, especially since some papers in this literature, in particular
Light and Weintraub (2018), investigate comparative statics. Nevertheless, like the majority of the papers in ro-
bust comparative statics, these works also focus on changes in environments that correspond to uniform and global
changes (for example, Theorem 3 in Light and Weintraub (2018)). See also Ahn, Kaplan, Moll, Winberry and Wolf
(2018) and Achdou, Han, Lasry, Lions and Moll (2018) for applications of related ideas to the analysis of Bewley-
Aiyagari-style models.
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rection at all prices, which we do not do in the current paper.

Finally, our paper is related to several recent works that incorporate rich behavioral biases

and constraints into macro models. These include, among many others, Laibson (1997), Har-

ris and Laibson (2001), Krusell and Smith (2003), Krusell, Kuruscu and Smith (2010), and Cao

and Werning (2017) who study the dynamic and equilibrium implications of hyperbolic dis-

counting (building on earlier work by Strotz (1956), and Phelps and Pollak (1968)). Particularly

noteworthy in this context is Barro (1999) who shows that many of the implications of hyper-

bolic discounting embedded in a neoclassical growth model are similar to those of standard

preferences, but this is in the context of a model with a representative household and does not

contain any comparative static results for this or other classes of behavioral preferences, which

are our main contribution. Gul and Pesendorfer (2001, 2004) and Fudenberg and Levine (2006,

2012) develop alternative approaches to temptation and self-control and their implications for

dynamic behavior. Koopmans (1960), Epstein and Hynes (1983), Kreps and Porteus (1978), Lu-

cas and Stokey (1984) and Epstein and Zin (1989, 1991) develop richer models of dynamic be-

havior with non-time-separable preferences, and Becker and Boyd (1997) and Backus, Routledge

and Zin (2004) develop certain macroeconomic implications of such preferences. Gilboa (1987),

Schmeidler (1989) and Gilboa and Schmeidler (1995) develop models of decision-making with

max-min features resulting from lack of unique priors, and Hansen and Sargent (2001, 2010)

and Hansen, Sargent and Tallarini (1999) discuss related preferences in various macroeconomic

applications. Recent important work by Gabaix (2014, 2017) considers the macroeconomic im-

plications of bounded rationality resulting from the inability of individuals to deal with complex

problems and their need to reduce it to a sparse optimization problem, while Sims (2003) and

Woodford (2013) consider the consequences of other complexity constraints on optimization.

Finally, there are several examples of models featuring (systematic) mistakes and near-rational

behavior including Simon (1956), Luce (1959), McFadden (1974), McKelvey and Palfrey (1995),

and Train (2009). In the context of expectation formation and their implications for macroeco-

nomics classic references include Cagan (1956), Nerlove (1958) and more recently Fuster, Herbert

and Laibson (2012) and Beshears et al (2013). None of these papers develop comparative statics

for macroeconomic models that apply under general behavioral preferences.

The rest of the paper is organized as follows. Section 2 provides an informal overview of our

approach and main results. In Section 3, we describe our general setup and also present a num-

ber of behavioral dynamic consumption choice models that are covered by our results. Section

4 contains our main results. Section 5 investigates individual behavior. We provide sufficient

(but strong) conditions under which certain changes in environment are local positive shocks

5



and demonstrate that even though we have sharp results on aggregate behavior, generally very

little can be said about individual behavior. Section 6 verifies that the assumptions we impose on

individual behavior hold in many of the most popular behavioral models of limited rationality.

Section 7 concludes, while Appendix A contains an abstract discussion of our comparative stat-

ics results and some additional results in this respect, and Appendix B contains omitted proofs

from the text.

2 Overview of the Argument

The objective of this section is to provide a non-technical overview of our argument, which is

helpful both to understand our main results and as a roadmap for the rest of the paper.

To motivate our main focus, suppose the government reduces the capital income tax rate in

order to increase the capital stock and aggregate output in the long run. Such a policy may be

expected to achieve this objective if both of the following are true: (1) the direct response to the

policy at the initial capital-labor ratio goes in the right direction and increases aggregate savings;

(2) as the economy adjusts to this initial impetus and prices change as a result of the responses

of all of the households in the economy, this initial impact will not be undone. The first supposi-

tion is only about individual responses — since we are holding prices constant. This is what we

summarize with the term local positive shock. Though sometimes determining whether a change

in parameters or policy is a local positive shock may be far from trivial, economically this is a

straightforward step because it involves no statement about equilibrium behavior, i.e., about how

the capital-labor ratio and individual behaviors adjust jointly and settle into a new equilibrium.

On the other hand, even with forward-looking rational households, equilibrium responses are

quite complex, for example because of countervailing income and substitution effects. They be-

come much richer once we depart from the benchmark of forward-looking, perfectly rational

decision-making. In fact, the general presumption in the literature is that this richness makes

equilibrium analysis very difficult or impossible. Our main result stands in contrast to this pre-

sumption: under fairly weak regularity conditions, local positive shocks will always lead to an

increase in the long-term capital stock in the context of a general class of neoclassical growth

models, and thus once we are able to determine that a change in environment is a local positive

shock, almost no additional work is necessary for determining the direction of change of the

long-run equilibrium, even under very general behavioral preferences and biases.

To explain these ideas more clearly, let us now focus on the one-sector neoclassical growth

model with exogenous labor supply (which we normalize to unity). Suppose that the per

capita production function is f(k) and satisfies all the standard assumptions where k as usual
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denotes the capital-labor ratio. As in the rest of our analysis, we allow distortions or taxes

which the households also take as given, and thus the rental rate of return on capital is

R(k) = (1 − τ(k))f ′(k) − δ, and the wage rate is w(k) = (1 − ω(k))(f(k) − f ′(k)k), where δ is

the depreciation rate, and τ(k) and ω(k) denote the distortions that apply, respectively, to capital

and labor. These distortions could result from taxes, contracting frictions or monopoly distor-

tions. Each household takes these functions as given and we assume that they are real-valued

and smooth. The benchmark model without distortions is obtained by setting them equal to

zero.

The richness in our framework originates in the household side. We proceed in two steps: we

first suppose that there is a representative household and no uncertainty, and then we consider

the heterogenous agents setting under uncertainty.

2.1 The Main Result with a Representative Household

With a representative household (in a deterministic environment), the household side of the

economy can be summarized by a consumption function cw,R(k) where the subscripts w and R

designate the dependence of this function on the rate of return on capital and the wage (equiva-

lently, we can begin with the savings function sw,R(k) = (1 +R)k+w− cw,R(k)). The derivation

of this consumption function in the standard case with forward-looking fully rational agents is

straightforward. It can also be characterized similarly, even if with more work, when prefer-

ences are non-standard, such as quasi-hyperbolic ones as in Laibson (1997) or non-additive ones

as in Epstein and Hynes (1983), or when there are mistakes and additional constraints on ratio-

nal decision-making. In Section 3.1 we consider a variety of underlying behavioral consumption

and saving models, for example, incorporating limited attention or computational constraints

or hand-to-mouth consumption decisions (such as when cw,R(k) = α · ((1 + R)k + w) where

α ∈ (0, 1) is the constant average propensity to consume). In general, we allow consumption

to be multivalued (a correspondence) and the only substantive assumption we make is that the

consumption correspondence is upper hemi-continuous, and increases in the assets of the rep-

resentative household less than one-for-one, so that corresponding savings are increasing in as-

sets.6 In Section 6, we confirm that these restrictions are weak and reasonable — a diverse set of

preferences satisfy them. Here we focus on the simpler case with unique consumption decisions

and a continuous consumption function.

We are now in a position to define a key object in our analysis, the market correspondence,

6Upper hemi-continuity in particular allows for the consumption function or the market correspondence to have
jumps which is possible under some of the preferences we would like to nest, such as (quasi-)hyperbolic discounting

(see Laibson (1997), p.452).
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given by

M(k) = f(k) + (1− δ)k −G(k)− cw(k),R(k)(k) , (1)

where G(k) = τ(k)f ′(k)k + ω(k)(f(k) − f ′(k)k) is government consumption or waste created

from distortions (below, we allow part or all of tax revenues and spending on distortions to be

rebated to households). A steady-state equilibrium (or equilibrium or steady state for short) naturally

satisfies

M(k) = k,

and the characterization of this steady-state equilibrium is depicted in Figure 1 as the intersection

between the market correspondence (the solid curve) and the 45◦ line. For simplicity, we start

here with the case in which the shape of this market correspondence is such that there exists a

unique intersection, denoted by k∗ in the figure.

Figure 1: Market correspondences before and after a reduction in capital income taxes

Now with the help of this figure, we can clarify the discussion in the Introduction and pro-

vide an informal version of our main result. Let us first emphasize one feature of the market

correspondence in Figure 1: the graph begins above and ends below the 45◦ line. Ending below

the 45◦ line has the obvious meaning and follows directly from non-negativity of consumption

and boundedness of feasible net output. As for beginning above the 45◦ line, this is automati-

cally satisfied since f(0) = G(0) = 0, hence 0 =M(0). The graph in Figure 1 lies (strictly) above

the 45◦ line for k close to 0 which allows us to focus on the non-trivial steady state. This out-

come is guaranteed under a standard Inada condition on f (at k = 0) if the average propensity

to consume (APC) is bounded away from unity.7

7If the APC converged to 1 very rapidly, this could generate a “savings trap”: the market correspondence would
begin strictly below the 45◦ line and there would be multiple equilibria (unless the trivial equilibrium is the only one).
We discuss multiplicity of equilibria below and in detail in Section 4.
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Suppose that the economy starts at k∗. Consider a change in policy, for example a reduction

in the capital income tax which shifts the function τ(k) down to τ̂(k). Letting ∆(k) = (τ(k) −
τ̂(k))f ′(k) > 0 denote the change in the capital income tax for capital-labor ratio k, the policy

thus increases the after-tax rate of return at capital-labor ratio k from R(k) to R(k) + ∆(k). It

is intuitive that such a cut in the capital income tax should encourage more savings at a given

vector of factor prices or equivalently at the initial capital-labor ratio k∗ — before any of the

equilibrium responses kick in.8 Mathematically, this amounts to

sw(k∗),R(k∗)+∆(k∗)(k
∗) ≥ sw(k∗),R(k∗)(k

∗) . (2)

To see how this relates to the notion of local positive shock discussed previously, note that

since−∆(k)k is the change in tax revenue, the market correspondence must change to the dashed

curve in Figure 1, given by

M̂(k) = f(k) + (1− δ −∆(k))k −G(k)− cw(k),R(k)+∆(k)(k) . (3)

Crucially, if we evaluate (1) and (3) at k = k∗, we see that (2) will hold if and only if,

M̂(k∗) ≥M(k∗) . (4)

Equation (4) says that the market correspondence “shifts up” at k∗ and is the definition of a

local positive shock at k∗ in this setting. Intuitively, it requires that the direct response to the change

in the capital income tax is to increase savings at the initial capital-labor ratio k∗. Notably, we

are not requiring that the market correspondence shifts up everywhere, and indeed in the figure,

M̂(k∗) > M(k∗), but this inequality is reversed at other levels of the capital-labor ratio. The

local nature of this condition critically implies that we do not need information about how prices

change in order to determine whether the change in policy will be a local positive shock, since

we are focusing only on behavior at the capital-labor ratio k∗ (thus only on behavior for a given

vector of prices). In particular, we do not need information about how such changes in prices

affect the effective tax in the new equilibrium k∗∗.

Our main result traces the implications of changes in equilibrium prices following such a

local positive shock. The main conclusion is that, as illustrated in Figure 1, the capital-labor ratio

in the new steady state will necessarily greater than at the original steady state. This result is

proved formally in Theorem 1 below and is informally summarized here.

8The statement that a local positive shock increases savings at the initial vector of prices needs to be qualified for
the case in which the change in policy or parameters encapsulated in θ directly impacts these prices, for example,
when it takes the form of a direct tax or a cap on the wage rate or the interest rate. This is the reason why we typically
emphasize the effect of a change in policy (or parameters) at the initial capital-labor ratio rather than at the initial
vector of prices.
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Result 1 Consider the market correspondence before a change in the environment (e.g., a reduc-

tion in the capital income tax rate),M, changes to M̂, where M̂(k∗) ≥M(k∗), and suppose that

the regularity conditions mentioned above are satisfied. Then the new (steady-state) equilibrium

k∗∗ satisfies k∗∗ ≥ k∗ if and only if the change in the environment is a local positive shock at k∗.

Intuitively, given the regularity conditions, all we need to know is that the initial change in

the environment or policy is a local positive shock at k∗. This can be seen geometrically in Figure

1. Even though the new market correspondence M̂(k) may be below the one before the change,

M(k), for many capital-labor ratios, the new steady-state equilibrium cannot fall below k∗. The

intuition for this result was already discussed in the Introduction and will be provided in greater

detail below.

How important are the assumptions made so far, in particular, the representative household

assumption, the assumption that there is no uncertainty, and the restriction to a unique steady-

state equilibrium? We next explain that these restrictions can be relaxed.

Figure 2: Extreme steady states satisfy the conclusion of Result 1, middle steady state does not.

Take first the assumption that there is a unique equilibrium. Figure 2 depicts a situation in

which the market correspondence intersects with the 45◦ line multiple times. It is well known

(e.g., Milgrom and Roberts (1994)) that in this case middle equilibria may have perverse compar-

ative statics, but we can establish similar results about extremal (greatest and least) equilibria.

For example, the following is illustrated in Figure 2.

Result 2 Suppose that the market correspondence satisfies the regularity conditions mentioned

above. Let k∗+ be the greatest equilibrium and consider a local positive shock at k∗+ so that

M̂(k∗+) ≥M(k∗+). Then the greatest equilibrium after the shock k∗∗+ satisfies k∗∗+ ≥ k∗+.
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2.2 Incorporating Uncertainty and Heterogeneity

Extending the previous observations to an environment with heterogenous households and un-

certainty is conceptually straightforward, but necessitates a different mathematical approach,

and developing such an approach is one of the main technical contributions of our paper. The

added complication with heterogeneity comes from the fact that we can no longer work with

a simple consumption function but need to take changes in the distribution of income into ac-

count. We show, however, that once the market correspondence is appropriately developed, the

same insights hold. We now sketch this argument.

Suppose that prices and the aggregate capital stock are deterministic (no aggregate uncer-

tainty) with households represented by the unit interval, [0, 1]. Once again take the capital-labor

ratio k > 0 as given, and additionally fix an asset distribution, which is a measurable mapping

λ : (k, i) 7→ λi that assigns a (possibly random) asset level λi to each household i in such a way

that
∫ 1

0 λ
i di = k. This formulation is general enough to nest both the case in which there is a de-

terministic distribution of assets and/or preferences and the case where consumption decisions

are random.9 For a given asset distribution λ, we then define

Mλ(k) = f(k) + (1− δ)k −G(k)−
∫
ciw(k),R(k)(λ

i) di. (5)

Note that (5) is no more than an “accounting identity” (we are not at this point determining

or restricting the asset distribution λ). What makes the definition useful is the next result which

shows that by considering a suitably chosen set of asset distributions, we get a correspondence

that gives us steady-state equilibria as fixed points and inherits the qualitative features of the

simple case in (3).10

Result 3 There exists a set of asset distributions Λ such that k∗ is a (steady-state) equilibrium if and only

ifMλ(k∗) = k∗ for some λ ∈ Λ. Furthermore, under the regularity conditions imposed above, the market

correspondence

M(k) = {Mλ(k) : λ ∈ Λ} (6)

is convex-valued and upper hemi-continuous, and its graph begins above and end below the 45◦ line. An

equilibrium in this case is defined as

k ∈M(k).
9We discuss the technical details involved in defining the integral in the text (or in applying the appropriate law of

large numbers). Note also that when λi is a random variable, cθ,iw(k),R(k)(λ
θ,i(k)) will also be a random variable, even

if consumption is deterministic. When consumption is itself random, cθ,iw(k),R(k)(λ
θ,i(k)) will be a random variable

even if λi is not. In either case (or when both apply), we again need to use a law of large numbers when defining the
integral.

10For further details and proof, see Section 3.3. Specifically, the market correspondence (6) only coincides with
average savings in equilibrium (see the discussion prior to Lemma 1).
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This result is an informal version of our key lemma, Lemma 1, upon which the rest of our

analysis builds. Results 1 and 2 generalize to environments with heterogeneity and uncertainty

using this foundation. The main implication is that even though we do not know the equilibrium

distribution of income/assets, the situation is conceptually no different from the representative

household case. It is then straightforward to see graphically that analogues of Results 1 and 2

with heterogeneity and uncertainty hold once the market correspondence construction of Result

3 is used. This then is what allows us to establish the main message of this paper for a rich

class of models featuring behavioral biases, mistakes, and other limits on rational behavior (see

Sections 3 and 6).

Figure 3: A market correspondence with the properties described in Result 3.

Two more observations are worth making. First, as we saw above, in the case with a repre-

sentative household, a change in the environment is a local positive shock if the representative

household increases its savings at the initial capital-labor ratio. A natural generalization to the

case with heterogeneous households may appear to be to require that all households increase

savings. Indeed, this is the type of assumption one typically adopts in the analysis of supermod-

ular economies or games. However, what we need is much weaker than this, and a shift up of the

market correspondenceM(k) at k∗ could result from some households increasing their savings

while a significant fraction change their behavior in the opposite direction (see Section 5). Sec-

ond, with a representative household, the fact that the equilibrium capital-labor ratio increases

implies that the household has raised its savings in response to the change in the environment.

With heterogeneity, there is no analogue of this result. In fact, as we show in Section 5.3, nothing

can be said about how individual behavior changes in general. All we know is that aggregate

savings increase so that the equilibrium capital-labor ratio increases, but this could be accompa-
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nied by a complex set of countervailing responses from some households in the economy. That

our results hold without any implications at the individual level explains why we are able to

obtain results without imposing rigid behavioral assumptions on households.

3 The Behavioral Neoclassical Growth Model and the Market Corre-
spondence

This section presents our general model, formally defines the market correspondence, introduces

Assumption 1, which encapsulates the key restrictions we impose on household behavior, and

proves our key lemma (which establishes Result 3 from the previous section). Before moving to

these key building blocks of our analysis, we start with a quick look at some of the behavioral

models we incorporate in our general model. Our aim here is to provide high-level summary

the types of behaviors our analysis focuses on. That these behavioral models satisfy our key

Assumption 1 is established in Section 6.

3.1 Behavioral Consumption and Saving Models

The following examples are meant to briefly introduce some of the types of behaviors our general

message applies to. We treat these, as well as a number of other models (for example Epstein

and Zin (1989) type objectives, and quantal-response equilibrium) formally in Section 6. There,

we also show that they all satisfy Assumption 1 below, and so by Lemma 1 lead to market

correspondences that are qualitatively similar to the illustration in Figure 3. In all cases, this

is also true with heterogenous households and any mix of the behaviors described next (e.g.,

in Sections 5.3-5.4 we consider situations where some agents are “rational” while others follow

rules-of-thumb).

3.1.1 Hyperbolic, Quasi-Hyperbolic, and General Delay Discounting

Consider the general delay discounted additive utility objective U(c0, c1, c2, . . .) = u(c0) +

f(1)u(c1) + f(2)u(c2) + . . .. As shown by Strotz (1956), the only case where a household at

date t + 1 will necessarily wish to consume/save what it planned to consume/save at date t, is

when f(t) = δt (geometric discounting). In all other cases, the objective will be dynamically in-

consistent (and first-best behavior will be time-inconsistent, see Strotz (1956), Phelps and Pollak

(1968), Loewenstein and Prelec (1992), Laibson (1997)). In such situations, the standard approach

is to model the decision as a game between a sequence of temporal selves. We show in Example

1 below that such behavioral models fit into our general framework.
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3.1.2 Random Utility, Mistakes, and Approximate Rational and Satisficing Behavior

Consider as in the previous model an additive objective but assume now that utility at each date

is random: U(c0, c1, c2, . . .) = uε0(c0) + f(1)uε1(c1) + f(2)uε2(c2) + . . .. The random variable εt

is interpreted as the household’s idiosyncratic tastes/biases (McFadden (1974), p.108). There are

two (mathematically equivalent) interpretations. The first is that the agent is uncertain about his

future preferences, and if the objective is dynamically inconsistent, he is consequently uncertain

about the behavior of future selves (see the previous example).11 In the second interpretation,

u0 is a temporal self’s true objective, and if εt 6= 0, the agent consequently makes a mistake

and maximizes an objective that departs from this true objective. In either situation, the agent’s

savings function — and when relevant, the savings function of future selves — will be a behav-

ioral process (Train (2009), p.3). In the second interpretation, this behavioral process describes

approximate rational behavior in the sense of Luce (1959). If the distribution εt is uniform on

[−a, a], a > 0, this can also be interpreted as satisficing/ε-optimizing behavior in the sense of

Simon (1956).12

3.1.3 Sparse Maximization and Inattention

An individual faced with an infinite (or even just a long) time horizon may, optimally or as a rule-

of-thumb, opt to keep down mental costs involved in estimating, assessing and using objective

probabilities and calculating the optimal decision (Sims (2003)). One way to capture this in dy-

namic consumption and saving problems is to take as objective
∑T

t=1 β
tu(ct) where T is finite; so

that the agent looks only T periods into the future at any point in time. Since at any future date,

he will also look T periods into the future, such preferences are dynamically inconsistent; and

the current self will thus take as given the expected (inattentive) behavior of future selves. This

may be interpreted as a simple version of “sparse maximization” in the sense of Gabaix (2014,

2017). It can be combined with the random utility model above by taking the the time-horizon of

future selves as an idiosyncratic characteristic of the household, so that the maximization prob-

lem becomes
∑ε

t=1 β
tu(ct), where ε ∈ {1, 2, . . . , T̂} and the probability distribution over ε reflects

the household’s (subjective) beliefs about future selves’ time-horizon. Here, the sparsity of the

planning horizon at future dates is uncertain from the point of view of today, and the agent is

uncertain about how inattentive/sparse future selves will be. Other, richer types of sparsity con-

straints following Gabaix (2014, 2017) can also be incorporated into this framework, for example,

by reducing the set of choice variables, restricting the dependence of consumption and saving

11The game between temporal selves will in this situation be a Bayesian game.
12Whether an agent maximizes a function that is ε away from the true objective or ε-maximizes the true objective

amounts to the same as long as the decision function is continuous in ε.
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decisions on the states of nature, or more generally considering “sparse maximization” as we

discuss further below.

3.1.4 Systematically Wrong Beliefs

In dynamic consumption and saving models, current consumption and savings depend on

households’ beliefs about future prices and parameters. If these beliefs are systematically wrong

(i.e., wrong period after period), any perfect commitment solution conditioned on these beliefs

will not satisfy the budget constraints of the household, and is therefore inadmissible. The obvi-

ous solution is again to deal with the resulting dynamic inconsistency (which is now embedded

in the belief structure) by modeling the dynamic consumption choice problem as a game between

temporal selves. We show in Section 6 (Example 3) that this type of departure from perfectly ra-

tional behavior is covered by our setup as well.

3.1.5 Ambiguity

It is natural that households’ beliefs/expectations, even if rational, are based on incomplete in-

formation about the objective probabilities governing any random disturbances. If the axioms of

Savage (1954) are not satisfied, these (subjective) beliefs will not be uniquely determined (note

that this has nothing to do with whether the beliefs are right or wrong). As we discuss in Ex-

ample 5 in Section 6, most models of ambiguity are covered by our setup as well. In particular,

agents/households may entertain multiple beliefs (Gilboa (1987), Schmeidler (1989), Gilboa and

Schmeidler (1995)).

3.1.6 Rules-of-Thumb

Since our starting point below is savings and consumption functions, simple decision rules with-

out any micro-foundation (rules-of-thumb) fit into the framework as well provided that they sat-

isfy Assumption 1 below (in this context, this assumption is quite weak). For example, an agent

might at any date simply save a fraction of current income with that fraction depending on some

current variables such as a measure of the environment’s variability. Just like the systematically

wrong beliefs of Section 3.1.4, rules-of-thumb may include “highly irrational” behaviors.

3.2 Markets and Production

The production side is the same as the canonical neoclassical growth model (e.g., Acemoglu

(2009)) augmented with general distortions.
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Labor is in fixed supply and normalized to unity so we can use capital, capital-labor ratio and

capital-per-worker interchangeably and denote it by k. Markets clear at all times, and production

is described by a profit maximizing aggregate constant returns firm with a smooth (per capita)

production technology y = f(k) that satisfies f(0) = 0, f ′ > 0, and f ′′ < 0. We also impose that

there exists k̄ > 0 such that f(k) < k all k ≥ k̄, which ensures compactness. This condition is

implied by the standard Inada conditions when these are imposed. The rate of depreciation is

δ ∈ [0, 1].

As explained already in Section 2, our description allows for taxes and distortions ω(k) and

τ(k) on labor and capital, and the wage and interest rate are therefore

w(kt) ≡ (1− ω(kt))(f(kt)− f ′(kt)kt) , (7)

and

R(kt) ≡ (1− τ(kt))f
′(kt)− δ . (8)

The simplest example of such a distortion is a proportional tax, τ(kt) = τ on capital income and

ω(kt) = ω. Other examples include distortions from contracting frictions or markups due to

imperfect competition. When τ(k) = ω(k) = 0 for all k, we recover the benchmark case with no

distortions.

We allow proceeds from these distortions to be partially rebated to households (which will be

the case when they represent taxes and some of the tax revenues are redistributed the households

or when they result from markups that generate profits). The total amount of resources that is not

rebated back to households (hence is either wasted or consumed by the government) is denoted

by

G = G(kt) . (9)

If nothing is rebated back to households, then

G(kt) = ω(kt)(f(kt)− f ′(kt)kt) + τ(kt)f
′(kt) . (10)

On the other hand, if the only source of distortions is taxes and the government rebates every-

thing back to consumers (e.g., in the form of lump-sum transfers), then G(kt) = 0.

3.3 Households and the Market Correspondence

We have already provided in Sections 2 and 3.1 some examples of the set of behaviors we would

like to incorporate on the household side. We now formalize this by developing an abstract

representation of household behavior (consumption/saving decisions) and then impose an as-

sumption directly on this behavior (Assumption 1). We argue that this assumption is not very
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restrictive and also quite natural. We show in Section 6 that all of the behavioral household

preferences outlined in Sections 2 and 3.1, as well as several others, satisfy it.

There is a continuum of households [0, 1] with a typical household denoted by i ∈ [0, 1]. Any

randomness is such that there is no aggregate uncertainty so capital kt is deterministic at each

date and factor prices are therefore given by (7) and (8).

The key object in our approach is the consumption/savings correspondence of households.

Our focus on “correspondences” is motivated by our desire not to assume uniqueness, since this

would rule out many of the behaviors discussed in Section 2 (for example, quasi-hyperbolic dis-

counting, which typically leads to such non-uniqueness, see e.g. Laibson (1997), p.452). House-

hold i ∈ [0, 1]’s saving decisions will depend on:

1. its current asset level ai ∈ Ai ⊆ R;

2. after-tax interest and wage rates, R and w, which are assumed to be constant over time (the

fact that these are constant is a consequence of our focus on steady states);

3. a random disturbance zi ∈ Zi (where Zi ⊆ Rm), which represents any idiosyncratic ran-

domness in the labor endowment or interest rate processes, or in preferences;

4. the households’ beliefs P i about future variables (conditional on their current observations

and the current value of zi). We are currently leaving what exactly beliefs incorporate

unspecified, because it will vary from model to model but typically households’ beliefs

will include expectations about the stochastic processes of income, policy variables and

factor prices R and w.

We denote by θM the “true model”, which encapsulates all relevant information on the

stochastic process that governs zt = (zit)i∈[0,1], actual policies, features of the production tech-

nology, market clearing conditions, and so forth (in brief, it includes everything in this section).

We do not impose that households actually observe or use all of this information when form-

ing beliefs; in the case of adaptive expectations, for example, they use none of it (see Section 6

which contains a detailed treatment of beliefs in the context of an explicit model of individual

behavior).

We assume throughout that (zit)i∈[0,1] is a Markov process with a unique invariant (ergodic)

distribution µz .13 Crucially, due to our long-run (steady state) focus, we also assume that beliefs

P i are time-invariant. Since, as noted above, P i is conditioned on the current value of zi, this as-

sumption does not mean that individual beliefs are time-invariant, but simply that the mapping
13As in Acemoglu and Jensen (2015), we can allow for multiple invariant distributions and then deal with the

multiplicity of steady states that results once again focusing on the results for the greatest and least equilibria.
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from current values of zi (and possibly from other current observations) into beliefs and expecta-

tions is stationary. Nevertheless, it does impose one important restriction: We are only focusing

on models in which there exist well-defined ergodic or “long-run” expectations as represented

by P i.14 This restriction is naturally satisfied in models without uncertainty, with “dogmatic be-

liefs” (for example, as discussed in Section 3.1.4 and in Example 3 below), in models with rational

expectations as well as models with well-defined learning rules. It rules out models in which the

beliefs of a positive measure of the households fail to converge to an ergodic distribution, P i

(= limt→∞ P
i
t ). We return to this issue in Section 4.

A simple and familiar example is the Aiyagari model (Aiyagari (1994)), where zi are i.i.d.

labor endowment shocks zi ∼ µzi , and agents have rational expectations so beliefs about future

prices coincide with actual (equilibrium) prices and beliefs about the future realizations of the

labor endowment shock coincides with the objective probability measure, µzi . For this reason,

as in models with rational expectations more generally, beliefs can be suppressed/ignored alto-

gether. In general we do not assume that zi are independent across households as long as any

dependency is consistent with the absence of aggregate uncertainty (the simplest case is when

beliefs are independent conditioned on prices and policy). Beliefs P i will clearly not be indepen-

dent since they depend on the same set of information (prices, the model, etc.).

As a shorthand, we define an “environment”, denoted by θ = (θM , (P i)i∈[0,1]), to summarize

the true model θM and beliefs (P i)i∈[0,1]. Given an environment θ, we can then define the sav-

ing correspondence of household i as Sθ,i
w,R,zi

(ai) ⊆ Ai, which maps current variables, the model

and the current asset level of the household, ai, into a set of feasible asset levels for next period

(or into a set of “gross savings”). We now state our main assumption on these saving corre-

spondences, and return in Section 6 to verifying that this assumption is satisfied for the class of

preferences we study in this paper.

Assumption 1 For each i ∈ [0, 1], the savings correspondence Sθ,i
w,R,zi

(ai) has compact range, and

is upper hemi-continuous in w, R, and ai and measurable in zi, and is increasing in ai.

Several points of clarification are useful at this point. First, a correspondence is measurable if

the inverse image of any open set is Borel-measurable (Aubin and Frankowska (1990), p.307).

Second, the savings correspondence Sθ,i
w,R,zi

(ai) is increasing in ai if and only if it is ascend-

ing in the sense of Topkis (1978), or more explicitly, Sθ,i
w,R,zi

(ai) is increasing if its greatest and

14Since savings decisions are not assumed to be unique, households may have multiple beliefs (for Assumption 1
below to hold, the set of such beliefs must be (weak∗-) upper hemi-continuous in w, R, and z and have a compact
range). Multiple beliefs arise if we (as modelers) are unable to discriminate between different possible household
beliefs (footnote 18). Note also that beliefs may be non-additive as described in Example 3.1.5 above and in Section 6.
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least selections are (weakly) increasing in ai. In words, next period’s assets lie within an inter-

val that weakly increases with current assets (when Si is single-valued, it simply means that

next period’s asset holdings do not decrease if the current period’s asset holdings increases).

Third, the savings correspondence Sθ,i
w,R,zi

(ai) is said to have a compact range if for fixed w and R,

Sθ,i
w,R,zi

(ai) ⊆ Āi, all zi and ai for some compact subset Āi ⊂ R (note that Āi may depend on w

and R so it is possible for households’ savings to go to infinity as prices go to 0 or infinity). A

compact range ensures that for fixed prices, the households never accumulate infinite assets or

amass arbitrary debts both of which would present problems for existence of steady states. One

normally derives the lower bound on accumulation from more fundamental transversality con-

ditions or borrowing constraints and the upper bound by bounding the set of feasible consump-

tion/savings sequences using effective compactness (Section 3.2). Imposing it directly is without

much loss of generality in this setting. Finally, note that when Si is upper hemi-continuous and

has a compact range, greatest and least selections/savings functions always exist.

In what follows, instead of the saving correspondence Sθ,i
w,R,zi

(ai), it turns out to be more con-

venient to work with the induced saving distribution, denoted by Sθ,iw,R(ai). Mathematically, this

corresponds to the probability distribution of gross savings of a household, interpreted as ran-

dom variables on Ai, induced by the stochastic saving decisions of the household. The induced

saving distribution captures in a succinct way both the random nature of savings resulting from

shocks zi impacting the household (as in Aiyagari (1994) model, for example) and any stochastic

elements resulting from the fact that ai itself is a random variable or from additional randomiza-

tion or indeterminacy in the household’s behavior.15 Using this induced saving distribution and

a similarly defined induced consumption distribution Ciw,R, we now proceed to introduce our

notion of equilibrium and the key objects for our equilibrium analysis, the market correspon-

dence.16

In the next definition, we define a state-state equilibrium in terms of the corresponding

capital-labor ratio and the factor prices are then derived from this capital-labor ratio.

Definition 1 (Equilibrium) The capital-labor ratio k∗ ∈ R+ represents a (steady-state) equilibrium

15Formally, let Qθ,i(ai, B) =
∫
Zi

1
S
θ,i

w,R,zi
(ai)

(B)µzi(dz
i) be the transition correspondence of savings (where µzi

denote the marginal distribution of the invariant distribution of zt = (zit)i∈[0,1]). For a random variable âi on Ai

with distribution ηit, we can now define Sθ,iw,R(âi) as the set of random variables on Ai with distributions, ηθ,it+1(B) =∫
ai∈B Q

θ,i(ai, B)ηθ,it (dai). Thus Sθ,iw,R(âi) is the adjoint Markov correspondence (or rather, the set of random variable
with distributions given by the adjoint; see the Appendix in Acemoglu and Jensen (2015) for more details).

16Alternatively, we could work in distributional strategies but the current approach is more natural in the macroe-
conomic context.

Note also that when the shock/random disturbance is in a stationary state, we may — even if savings and the
random disturbance are in general correlated — “disintegrate” this stationary distribution to get the marginal distri-
bution of savings as described (see the Appendix of Acemoglu and Jensen (2015) for details).
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if equilibrium prices w∗ = w(k∗) and R∗ = R(k∗) are given by (7) and (8), the gross savings

(assets) of household i is given by (the random variable) â∗,i ∈ Sθ,iw∗,R∗(â∗,i) for almost every i ∈
[0, 1], and the capital market clears, that is, k∗ =

∫
â∗,i di.

In this definition we are implicitly assuming that the integral
∫
â∗,i di is well-defined from

some version of the law of large numbers.17 Note also that the set of equilibria explicitly de-

pends on the environment θ, and so do the functions designating the relationship between factor

prices and the capital-labor ratio, w(k) and R(k) (for example, because θ includes taxes on factor

payments or direct regulations on prices). Nevertheless, to simplify the notation we suppress

the dependence of these functions on θ when this will cause no confusion. We return to the

comparative statics of equilibria when the environment θ changes in Section 4.

We are now ready to formally define the market correspondence which was introduced in

Section 2.

Definition 2 (Market Distributions and the Market Correspondence) Let Cθ,i denote the con-

sumption correspondence and Sθ,i denote the savings correspondence of household i ∈ [0, 1].

Also, let G(k) denote government consumption and distortionary waste given the capital-labor

ratio k.

• A measurable mapping λ : (i, k) 7→ λi(k) where λi(k) is a random variable on Ai ⊆ R is a

market distribution, if

λi(k) =
âi(k)∫
âi(k) di

k, for all (i, k) (11)

where (âi(k))i∈[0,1] solve the fixed point problem,

âi(k) ∈ Sθ,iw(k),R(k)(
âi(k)∫
âi(k) di

k) , i ∈ [0, 1] . (12)

• The market correspondenceMθ : R→ 2R is

Mθ(k) = {Af(k) + (1− δ)k −G(k)}−

{c ∈
∫
Cθ,iw(k),R(k)(λ

i(k)) di : λi(k) is a market distribution} . (13)

17There is a large literature on laws of large numbers and their application in the presence of continuum of random
variables as in our economy (Al-Najjar (2004), Uhlig (1996), Sun (2006)). Here and everywhere else in this paper we
remain agnostic about precisely which formulation of the law of large numbers has been applied in the background.
This “agnostic” approach is also the one taken in Acemoglu and Jensen (2015) where

∫
ai(k) di is simply assumed

to equal (or be one-to-one) with a real number. This approach has the advantage of not committing to a specific
interpretation and therefore comes with maximum generality. On the downside, we must be careful to not push the
generality of the setting too far: In the Aiyagari model, for example, any sensible application of a law of large numbers
will require that the labor endowments’ conditional distributions are at least pairwise independent conditioned on k.
For further details and references, see Acemoglu and Jensen (2010, 2015)).
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Note that λi(k) may be correlated across households (this will happen, for example, if house-

holds are subject to correlated shocks). But conditional on k, the definition of M requires that

the integral
∫
Cθ,iw(k),R(k)(λ

i) di has a degenerate distribution (
∫
Cθ,iw(k),R(k)(λ

i) di interchangeably

denotes both this distribution and its point of unit mass). With a representative household with

consumption correspondence C, (11) reduces to λi = k for all i, (12) becomes redundant, and

(13) collapses toMθ(k) = Af(k)+(1−δ)k−
∫
Cθw(k),R(k)(k) di. If, in addition, Cθ is single-valued

and we suppress θ, this brings us back to (1).

We are now ready to state and prove a formal version of Result 3 from the previous section

which enables us to analyze models with rich heterogeneity in terms of behavior and preferences

in a tractable manner. In particular, the next lemma establishes that we can work directly with

the market correspondence defined as in Definition 2 (without specifying the exact distribution

λ) and fixed points of the market correspondence will be steady-state equilibria. The proof of

this lemma uses the Fixed Point Comparative Statics Theorem of Acemoglu and Jensen (2015)

(Theorem 4, p.601, which itself builds on Smithson’s generalized fixed point theorem) as well as

Richter’s Theorem (Aumann (1965)), but the most critical component is the observation that for a

given k,Mθ(k) equals the set of fixed points of a convex valued correspondence whose least and

greatest selections are decreasing, and therefore it is itself convex-valued (see also the discussion

immediately after the proof).

Lemma 1 If all households satisfy Assumption 1, the market correspondenceMθ is a compact-

and convex-valued upper hemi-continuous correspondence that begins above and ends below

the 45◦ line. Furthermore, k ∈Mθ(k) if and only if k is a steady-state equilibrium.

Proof. Since Af(k) + (1− δ)k −G(k) equals aggregate income after taxes and net of any waste,

Mθ(k) = Af(k) + (1− δ)k −G(k)−
∫

((1 +R(k))ai + liw(k)− Sθ,iw(k),R(k)(
âi(k)∫
âθ,i(k) di

k) di

=

∫
Sθ,iw(k),R(k)(

âi(k)∫
âi(k) di

k) di .

Hence

Mθ(k) = {
∫
âi(k) di : âi(k) ∈ Sθ,iw(k),R(k)(

âi(k)∫
âi(k) di

k) , a.e. i ∈ [0, 1]} (14)

That k ∈ Mθ(k) thus means that there exists (âi(k)) which satisfies (12) and such that k =∫
âi(k) di. Substitute this into (12) to see that âi(k) ∈ Sθ,iw(k),R(k)(â

i(k)) which means that âi(k)

is an invariant distribution for household i. Comparing with Definition 1, we conclude that

k ∈Mθ(k) if and only if k is an equilibrium.
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Let Aik(K) ≡ {âi ∈ P(Āi) : âi ∈ Sθ,iw(k),R(k)(âi
k
Q)} where P(Āi) is the set of probabil-

ity measures on the compact range Āi ⊆ R of the savings correspondence equipped with the

weak ∗-topology, and K > 0. Since Sw,R,zi(ai) is increasing and upper hemi-continuous in ai,

the adjoint Markov correspondence Sw,R(âi) is type I and type II monotone and upper hemi-

continuous in âi (see the Appendix in Acemoglu and Jensen (2015)), so it follows from the fixed

point comparative statics Theorem 3 in Acemoglu and Jensen (2015) that Aik(K) is type I and

type II monotone in K−1. By Theorem 4 in that same paper,
∫
Aik(·) di has decreasing least

and greatest selections. Since
∫
Aik(·) di is convex valued by Richter’s theorem (see Aumann

(1965)), and a convex and real-valued correspondence whose least and greatest selections are

decreasing must have a convex set of fixed points,Mθ(k) = {K : K ∈
∫
Aθ,ik (K) di} is therefore

convex. That the market correspondenceMθ(k) = {K : K ∈
∫
Aθ,ik (K) di} is also upper hemi-

continuous is seen by noting that its graph is {(k,K) : (K, k,K) ∈ Graph[
∫
Aθ,ik (K) di]} where

Graph[
∫
Aθ,ik (K) di] = {(K, k, Z) : Z ∈

∫
Aθ,ik (K) di} is a closed set since

∫
Aθ,ik (K) di is upper

hemi-continuous in k andK (this is shown by the same argument using now that Sw(k),R(k)(â
i k
K )

is upper hemi-continuous in âi as explained above, as well as in k and K since w(k) and R(k)

are continuous in k). That Mθ(k) is compact follows now from boundedness (savings corre-

spondences have compact ranges). Finally,Mθ(k) begins above the 45 ◦ line and ends below it.

The former is obvious since f(0) = 0 and therefore Mθ(0) = {0}. The latter is true since con-

sumption is non-negative and thereforeMθ(k) ≤ Af(k), and the function on the right-hand-side

eventually will lie below the 45 ◦ line (the production technology is effectively compact).

The market correspondence being convex-valued is a non-trivial property, in particular, it

does not simply follow from a convexification argument as in Aumann (1965) (even though we

are also implicitly using a convexication argument as part of the proofs). In fact, if Si were not

increasing (and consequently, the correspondence
∫
Aθ,ik (·) di in the proof did not necessarily

have decreasing least and greatest selections), the market correspondence would not necessarily

be convex-valued.

4 Robust Comparative Statics in the Behavioral Neoclassical Growth
Model

The previous section developed our general framework (the behavioral neoclassical growth

model), and showed how this subsumes a broad range of non-standard preferences, biases, mis-

perceptions, and near-rational behaviors. Lemma 1 then established that under Assumption 1,

all of these household behaviors can be encoded in the market correspondenceMθ of Definition
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2 and that steady-state equilibria correspond to points whereMθ’s graph intersects with the 45◦

line. Our main result in this section will show that at the same level of generality, any change

in the environment θ that is a local positive shock (defined below) leads to greater capital-labor

ratio in the long run while a local negative shock leads to a lower capital-labor ratio.

Recall that the environment θ = (θM , (P i)i∈[0,1]) contains all of the exogenous variables, pa-

rameters and policy variables of the model as well as specifications of how beliefs about exoge-

nous or endogenous objects are formed.18 The set of possible environments is denoted by Θ and

is taken to be an ordered set to facilitate our comparative static analysis. For any given envi-

ronment θ ∈ Θ the associated market correspondence Mθ of Definition 2 then determines the

set of (steady-state) equilibria {k∗ : k∗ ∈ Mθ(k∗)} when Assumption 1 holds (Lemma 1). In the

following definition, k∗ is such a steady-state equilibrium given an (initial) environment θ∗ ∈ Θ.

Definition 3 (Local Positive and Negative Shocks) A change in environment from θ∗ ∈ Θ to

θ∗∗ ∈ Θ is a local positive shock at k∗ if there exists a k̃ ∈Mθ∗∗(k∗) with k̃ ≥ k∗. If this inequality is

reversed, the change in environment is a local negative shock at k∗.

Figure 4: A local positive shock at k∗.

Intuitively, a local positive shock simply shifts the market correspondence up at the equilib-

rium k∗ (Figure 4). Crucially, we show in Section 5.1 that this notion is equivalent to an increase

in average (gross) savings at k∗.

18Here we are allowing savings correspondences to be set-valued, which is useful for two separate reasons. First,
saving decisions are potentially non-unique. Second, even if saving decisions are uniquely determined, it is possible
that multiple specifications of how beliefs are formed are consistent with steady-state behavior. In this latter case, the
relevant set of limiting beliefs may even depend on the transition path of the economy (as in some learning models),
but our focus will continue to be on the greatest and least equilibria.
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Several things are important to note here. First, we have defined a local positive shock

starting from the initial state state, k∗, for simplicity.19 This is without loss of generality since

throughout we focus on the consequences of a change in policy or parameters starting from an

initial steady-state equilibrium.

Secondly, and more importantly, what makes this a local definition is that it is defined with

reference only to the initial level of the capital-labor ratio (here k∗). In contrast, a “global positive

shock” would impose a shift up of the market correspondents everywhere — that is, it would

require Mθ∗∗(k) > Mθ∗(k) for all k according to some set order (e.g., the strong set order of

Topkis (1978)). In contrast, as Figure 4 shows, our definition does not rule out the possibility that

Mθ∗∗(k) <Mθ∗(k) for k 6= k∗. In fact, even with this focus on a specific capital-labor ratio, k∗,

ours is the weakest possible definition of a positive shock, because it does not even require that

maxMθ∗∗(k∗) > maxMθ∗(k∗), but only that there exists k̃ ∈Mθ∗∗(k∗) with k̃ ≥ k∗ ∈Mθ∗(k∗).20

Finally, in an economy with no uncertainty, a local positive (or negative) shock is simply

about how households respond to a change in parameters or policy at the initial capital-labor

ratio k∗ or equivalently at a given vector of prices determined via (7)-(8) from k∗ (with the caveat

already noted in footnote 8). More generally, this is true whenever households’ belief formation,

i.e., the rule that maps current observations and information about the model into beliefs about

future variables, is fixed (e.g., with rational expectations or with dogmatic expectations). When

the belief formation varies over time (as we illustrate in the next footnote), a local positive shock

is a statement about how households respond to a change in parameters or policy conditioning

given that long-run belief formation or the equilibrium belief formation associated with θ∗∗.21

This means, in particular, that when behavioral biases take the form of beliefs that change over

time, what is relevant for our definition of a local positive shock is not initial beliefs, but beliefs

after a sufficient amount of time has elapsed for the belief formation to be stationary.22 ThatMθ∗∗

19It is straightforward to give a definition of local positive (or negative) shock that applies starting from any capital-
labor ratio. One that is equivalent to Definition 3 is the following: a change in environment from θ∗ ∈ Θ to θ∗∗ ∈ Θ is
a local positive shock at k if there exists a k̃ ∈ Mθ∗∗(k) with k̃ ≥ min{k,maxMθ∗(k)}. If this inequality is reversed,
the change in environment is a local negative shock at k. The equivalence follows immediately: since k∗ is a steady
state, min{k∗,maxMθ∗(k∗)} = k∗. Intuitively, in this definition the first term of min{k,maxMθ∗(k)} is included
because what is relevant for a local positive shock is the part of the market correspondence that lies below the 45◦ line
(before the change in parameter).

20For example, a definition that requires maxMθ∗(k) ≥ maxMθ∗∗(k) would imply Definition 3, but is clearly not
implied by it. One drawback of a stronger definition would be that the equivalence between a local positive shock
and an increase in average savings established in Section 5 would no longer be true, and as a consequence of this, the
“if” part, but not the “only if”, of Theorem 1 would apply with this stronger definition.

21Note that in the latter case, there will frequently be multiple admissible equilibrium belief formations which we
cannot discriminate between given our focus on steady states. See footnote 18.

22For example, consider a representative household economy with the only deviation from the benchmark neoclas-
sical model that the representative household has incorrect expectations in the short run, so when there is, say, a cut
in the capital income tax rate, the representative household does not at first understand this (see, for example, Gabaix
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should condition on how beliefs are formed in the long run can be seen from the following: if

Mθ∗∗ were not conditioned on the equilibrium beliefs associated with θ∗∗, then its fixed points

would not correspond to steady-state equilibria.

In the following two sections, we investigate various sufficient conditions that verify Defini-

tion 3.23

The next theorem provides our main result in the simplest case in which we focus on

economies with a unique steady-state equilibrium. We provide generalizations of this result

to settings with multiple steady states below.

Theorem 1 (Local Positive Shocks, Unique Steady State) Assume that households satisfy As-

sumption 1. For environments θ∗, θ∗∗ ∈ Θ let k∗ ∈ Mθ∗(k∗) and k∗∗ ∈ Mθ∗∗(k∗∗) denote the

associated (non-trivial steady state) equilibria and assume that these are unique. Then k∗∗ ≥ k∗

if and only if the change in environment from θ∗ to θ∗∗ is a local positive shock at k∗. Similarly,

k∗∗ ≤ k∗ if and only if the change in environment from θ∗ to θ∗∗ is a local negative shock at k∗.

Proof. Consider the case of a local positive shock.

Sufficiency: Since the change to θ∗∗ is a local positive shock, there exists k̃ ∈ Mθ∗∗(k∗) with

k̃ ≥ k∗. Since Mθ∗∗ ends below the diagonal, it must begin above and end below the 45◦ line

on the interval [k∗,+∞). Mθ∗∗ is also upper hemi-continuous and convex valued (Lemma 1),

hence it intersects the 45 degree line at some point k∗∗ on [k∗,+∞). This yields a steady-state

equilibrium k∗∗ ≥ k∗ given environment θ∗∗, and by assumption, this is the unique steady-state

equilibrium.

Necessity: Assume that k∗∗ ≥ k∗ and that the change from θ∗ to θ∗∗ is not a positive shock at

k∗. So supMθ∗∗(k∗) < k∗ since the market correspondence is closed. But then since the market

correspondence ends below the 45◦ line and is upper hemi-continuous and convex valued,Mθ∗∗

must intersect with the 45◦ at least twice on the interval [k∗,+∞). This contradicts that the

economy has a unique interior steady state given θ∗∗.

The case of a local negative shock is proved by an analogous argument and is omitted.

(2017), Section 5). In this case, the initial belief formation differs from the way beliefs are formed after some amount of
time, given by some large enough T , has elapsed because the household initially misperceives the change in policy. In
fact, it may well be that the change in policy corresponds to a local negative shock if we condition on initial beliefs but
to a local positive shock when we condition on long run beliefs. Then the relevant definition of the local shock is the
latter. Thus after the policy shock, we will first experience a negative impact effect on average savings. Nevertheless,
the change in policy is still a local positive shock and the long-run capital-labor ratio will increase.

23It is useful to bear in mind that in one instance, namely the case with a representative household, we already
know the answer from Section 2: The change in environment is a local positive shock if and only if it raises the
representative household’s savings given k∗. See equation (2) and the surrounding discussion of its relationship with
local positive shocks.

25



Theorem 1 provides our sharpest result focusing on the case where the steady-state equilib-

rium is unique before and after the environment changes. It shows how all we need to know

is that the change in environment is a local positive shock. Given the relatively weak regularity

conditions we have imposed on the market correspondence, we can then conclude that the full

equilibrium effect will be to increase the capital-labor ratio in the new steady state. Conversely,

for a local negative shock, the new steady state will always involve a lower capital-labor ratio.

The intuition for this result was already provided in the Introduction. Briefly, even though

there is a large amount of heterogeneity and potential biases and mistakes, the aggregate behav-

ior cannot go the wrong way, because of the “market discipline” coming from the fact that some

agents must be increasing their savings as a result of the initial impetus coming from the local

positive shock, and this initial effect cannot be undone by the indirect equilibrium responses. It

is also

useful to spell out why these indirect effects can never win out. Note first that, by definition,

a local positive shock increases savings at the initial capital-labor ratio. Therefore, the only way

we may end up with a paradoxical result where the new steady-state equilibrium involves a

lower capital-labor ratio than the initial one is when this higher level of savings induces so much

dissaving from some households that the indirect equilibrium response more than offsets the

initial impetus. (Such a paradoxical result is impossible if the equilibrium responses led to more

saving than dissaving). But if this indirect effect did indeed overwhelm the initial local positive

shock, that would mean that in the new steady state there would be a lower capital-labor ratio

and thus there would be no reason for the dissaving to offset the initial impetus. This contradicts

the possibility that the indirect effect could more than offset the initial impact coming from the

local positive shock.

The rest of this section is devoted to generalizing this result to cases in which we do not

necessarily have uniqueness. Note that as an immediate consequence of Lemma 1, the set of

equilibria is always non-empty and compact.24 So even if the non-trivial equilibrium is not

unique, the set of equilibria is nonetheless guaranteed to reside in a closed interval which allows

us to study the interval marked by the greatest and least equilibria.

The next theorem shows that the conclusions of Theorem 1 directly carry over to the case in

which the shocks we are considering are “small” (meaning that we can choose them to be small

enough given the setting).25

24The set of steady states is given by the intersection between a compact set (the graph of the market correspon-
dence) and a closed set (the 45◦ line). The intersection is therefore compact and also non-empty (since the graph of
the market correspondence is connected and begins above and ends below the 45◦ line).

25Throughout by the least steady state we are referring to the least non-trivial steady state, thus excluding k = 0.
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Theorem 2 (Greatest and Least Steady States under Multiplicity I) Let the assumptions of The-

orem 1 hold and define k∗− = inf{k : k ∈ Mθ∗(k)} as the least steady state and k∗+ = sup{k : k ∈
Mθ∗(k)} as the greatest steady state when the environment is θ∗ ∈ Θ, and analogously k∗∗− and

k∗∗+ when the environment is θ∗∗ ∈ Θ. Assume in addition thatMθ is upper hemi-continuous in

θ ∈ Θ (where now Θ is a topological space). Consider an infinitesimal change in the environment

to θ∗∗. Then, k∗∗− ≥ k∗− if and only if the change in environment is a local positive shock at k∗−,

and k∗∗+ ≥ k∗+ if and only if the changing environment is a local positive shock at k∗+.

Proof. Since the market correspondence is compact-valued, a sufficiently small change in the en-

vironment can lead to existing equilibria disappearing but not to the creation of new equilibria.

In particular, no new equilibrium can be created below the least equilibrium which must there-

fore increase by the argument used to prove Theorem 1. This argument obviously also applies to

the the greatest equilibrium; and in both cases necessity follows by the argument from Theorem

1 as well.

If there are multiple equilibria and the change in environment is not small in the sense of the

previous result (or we are unwilling or unable to place a topology on the set of possible envi-

ronments Θ), we can still identify how the greatest equilibrium will respond when the change

in environment is a local positive shock and how the least equilibrium will respond when the

change in environment is a local negative shock.

Theorem 3 (Greatest and Least Steady State under Multiplicity II) Let the assumptions of The-

orem 1 hold and consider k∗ = sup{k : k ∈ Mθ∗(k)} (the greatest steady state) of the environ-

ment θ∗ ∈ Θ. Then if a change from θ∗ to a new environment θ∗∗ ∈ Θ is a local positive shock at

k∗, the economy’s greatest steady state increases, i.e., sup{k : k ∈ Mθ∗∗(k)} ≥ k∗. Analogously,

consider k∗ = inf{k : k ∈ Mθ∗(k)} (the least steady state) of the environment θ∗ ∈ Θ. Then if a

change from θ∗ to a new environment θ∗∗ ∈ Θ is a local negative shock at k∗, the economy’s least

steady state decreases, i.e., inf{k : k ∈Mθ∗∗(k)} ≤ k∗.

Proof. Let k∗ denote the greatest steady state. Repeating the argument used to prove the “suf-

ficiency” part of Theorem 1,Mθ∗∗ must have a fixed point on [k∗,+∞). The result for the least

steady-state is proved analogously.

Finally, we can pin down the behavior of both the greatest and least steady states if we are

willing to impose that the change in environment is a local positive shock at the greatest steady

state and that the reverse change is a local negative shock at the least steady state (and analo-

gously for a local negative shock).
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Theorem 4 (Greatest and Least Steady States under Multiplicity III) Let the assumptions of

Theorem 1 hold and denote by kθ− = inf{k : k ∈ Mθ(k)} the least steady state, and by

kθ+ = sup{k : k ∈ Mθ(k)} the greatest steady state for an environment θ ∈ Θ. Consider two

environments θ∗, θ∗∗ ∈ Θ. Then if the change from θ∗ to θ∗∗ is a local positive shock at kθ
∗

+ , and

the change from θ∗∗ to θ∗ is a local negative shock at kθ
∗∗
− , the economy’s greatest and least steady

states increase as the environment changes from θ∗ to θ∗∗.

Proof. Since the change from θ∗∗ to θ∗ is a local negative shock at kθ
∗∗
− , we may apply Theorem

3 with θ∗ and θ∗∗ interchanged to conclude that kθ
∗
− ≤ kθ

∗∗
− . That the greatest steady state must

increase follows directly from Theorem 3.

Appendix A contains additional results along the lines of the previous theorems. Although

important for theoretical applications, the details are less central to our substantive results, hence

its relegation to Appendix A. In addition, we also provide there a detailed comparison with

related equilibrium comparative statics results in Milgrom and Roberts (1994) and Acemoglu

and Jensen (2013).

5 Local Positive Shocks and Individual Behavior

Recall from Section 2 (e.g., equation (2) and the surrounding discussion) that in a deterministic

environment with a representative household the market correspondence is given by the repre-

sentative household’s gross savings less government consumption and waste from distortions.

This implies that a change in the environment from θ∗ to θ∗∗ is a local positive shock at the

equilibrium k∗ ∈Mθ∗(k∗) if and only if the direct effect on savings is positive, that is,

sθ
∗∗

wθ
∗∗ (k∗),Rθ∗∗ (k∗)(k

∗) ≥ sθ∗
wθ∗ (k∗),Rθ∗ (k∗)(k

∗) (15)

where we have conditioned factor prices on the environment for emphasis, though in what fol-

lows we will suppress this dependence for notational convenience whenever doing so can cause

no confusion.

The purpose of this section is to extend the previous equivalence between changes in savings

and local positive shocks to the general setting of this paper. This section also contains two key

examples that formally demonstrate two of the main conclusions that were highlighted in the

Introduction (Sections 5.3-5.4). To simplify the exposition in this section, we assume throughout

that the function describing non-rebated tax income and waste, G(k), is given.
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5.1 Necessary and Sufficient Conditions in Terms of Savings

We now derive an analogue of equation (15) describing a local positive shock in the general

environment with uncertainty and heterogeneous agents. To do so, we need a bit of additional

terminology and notation. Consider an equilibrium k∗ ∈ Mθ∗(k∗), where as in the previous

section θ∗ ∈ Θ should be thought of as the default environment. Equilibrium prices w(k∗) and

R(k∗) continue to be given by (7)-(8). Let us fix these market prices (i.e., fix k∗) but change the

environment to θ∗∗, and let E[âθ
∗∗,i(k∗)] denote the mean asset holdings of household i in the new

environment (but starting at the capital-labor ratio k∗ and the associated prices).26 Intuitively,

E[âθ
∗∗,i(k∗)] is the answer we get from asking the agent how much she expects to save on average

if the environment changes to θ∗∗ from the default environment θ∗ when all prices (the capital-

labor ratio) remain forever the same. To simplify notation, we assuming this subsection that this

mean asset holding is uniquely determined for all households, but as explained in Remark 1, the

results here can be easily extended to the case with multiple equilibrium asset holdings.

Definition 4 (Changes in Mean Asset Holdings) Let k∗ ∈ Mθ∗(k∗) be a steady in the environ-

ment θ∗ ∈ Θ. The population’s mean asset holdings increase at k∗ when the environment changes from

θ∗ to θ∗∗ if
∫
E[âθ

∗∗,i(k∗)] di ≥
∫
E[âθ

∗,i(k∗)] di. If the inequality is reversed, the population’s mean

asset holding decreases at k∗ when the environment changes from θ∗ to θ∗∗.

The definition is intuitive: We simply average over the asset holdings (or gross savings) of

households in the old and new environments at given after-tax prices and trace the direction of

change. The next proposition connects this with local positive shocks showing that, in equilib-

rium, the two are equivalent. While this result is intuitive in light of the overview in Section 2,

it is far from trivial because the market correspondence is formally defined by solving a fixed

point problem and equalizingMθ(k) with the means of the set of solutions (see (14) in the proof

of Lemma 1).

Proposition 1 (Mean Asset Holdings and Local Shocks) Assume that households satisfy As-

sumption 1, and let k∗ ∈ Mθ∗(k∗) be either the least steady state inf{k : k ∈ Mθ∗(k)} or the

greatest steady state sup{k : k ∈ Mθ∗(k)} given some θ∗ ∈ Θ. Then the change in environment

from θ∗ to θ∗∗ is a local positive shock at k∗ if and only if the population’s mean asset holdings

increase at k∗ when the environment changes from θ∗ to θ∗∗. Similarly, the change in environ-

ment is a local negative shock if and only if the population’s mean asset holdings decrease at

k∗.
26Note that âθ

∗∗,i(k∗) is determined by âθ
∗∗,i(k∗) ∈ Sθ

∗∗,i
wθ

∗
(k∗),Rθ∗ (k∗)

(âθ
∗∗,i(k∗)).
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Proof. From the proof of Lemma 1 we haveMθ(k) = {K : K ∈ Fk(K, θ)}where

Fk(K, θ) = {
∫
ai di : ai ∈ Sθ,iw(k),R(k)(

ai

K
k) a.e. i}

Note that Fk∗(·, θ∗) as well as Fk∗(·, θ∗∗) are upper hemi-continuous, convex valued, and begin

above and end below the diagonal (the latter follows from the fact that it is decreasing in K, see

the proof of Proposition 1). Let k∗ be the the greatest equilibrium. By the same argument as

the one used to prove sufficiency in Theorem 3, it follows that if there is a k̂ ∈ Fk∗(k∗, θ∗∗) with

k̂ ≥ k∗, then there exists K ∈ Fk∗(K, θ∗∗) with K ≥ k∗. But since Fk∗(k∗, θ∗∗) is the population’s

mean asset holdings at k∗ in environment θ∗∗, and we have assumed this is greater than or equal

to k∗, we have K ∈ Mθ∗∗(k∗) ⇔ K ∈ Fk∗(K, θ
∗∗). So the change in environment is a local

positive shock. This argument also applies if k∗ is the least equilibrium since F is decreasing in

K. We remark that in the multiple steady-state asset distributions case discussed in Remark 1

below, Fk∗(k∗, θ∗∗) is not single-valued but once again the argument goes trough as long as F ’s

maximum is greater than or equal to k∗. To see that an increase in mean asset holdings is also

necessary for a local positive shock use that if there does not exist k̂ ∈ Fk∗(k∗, θ∗∗) with k̂ ≥ k∗,

then because Fk(K, θ∗∗) is convex valued with least and greatest selections that are decreasing

in K, there is not a K ∈ Fk∗(K, θ∗∗) with K ≥ k∗, and so the change from θ∗ to θ∗∗ is not a local

positive shock at k∗.

Remark 1 (Multiplicity of Equilibrium Asset Distributions) If agent i’s steady-state asset dis-

tribution is not uniquely determined from k, we consider the greatest mean asset holdings:

Aθ,i+ (k) = sup{E[âi] : âi ∈ Sθ,iw(k),R(k)(â
i)}. From here we define the greatest average asset hold-

ings across the agents (given θ and the steady state k): Aθ+(k) =
∫
Aθ,i+ (k) di. With these in

hand, the following natural generalization of Proposition 1 holds: Let k∗ ∈ Mθ∗(k∗) be either

the least steady state inf{k : k ∈ Mθ∗(k)} or greatest steady state sup{k : k ∈ Mθ∗(k)} given

some θ∗ ∈ Θ. Then the change in environment from θ∗ to θ∗∗ is a local positive shock at k∗ if and

only if k∗ ≤ Aθ∗∗+ (k∗) (see the proof of Proposition 1). Note that trivially the left-hand side of this

inequality, k∗, is the average asset holding across the households at the steady state k∗. So, the

necessary and sufficient condition is that the greatest average asset holding after the change in

environment is above the average asset holdings before the change.

5.2 The Case of Uniform Direct Effects

A particularly simple case of changes in the environment that are covered by Definition 4 is when

almost every individual’s direct effects go in the same direction — which is clearly sufficient and
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very far from being necessary for a local positive or negative shock.27

Definition 5 (Individual Direct Effects) Let k∗ be an equilibrium given θ∗ and denote by âi

household i’s associated steady state assets. We say that household i’s asset holdings increases

(or that its direct effect is positive) at k∗ when the environment changes from θ∗ to θ∗∗ if

Sθ
∗∗,i
wθ∗∗ (k∗),Rθ∗∗ (k∗),zi

(ai) ≥ Sθ
∗,i
wθ∗ (k∗),Rθ∗ (k∗),zi

(ai) a.e. zi ∈ Zi and ai ∈ Support(âi). (16)

If the inequality is reversed, we say instead that the household’s asset holdings decreases when

the environment changes from θ∗ to θ∗∗.

In Acemoglu and Jensen (2015) we imposed such uniform direct effects and also required

that individuals’ savings levels increase for all k and so for all possible prices (rather than just

the initial capital-labor ratio as we are doing here and in Definition 4). Appendix A provides

additional discussion of the relationship of our approach here to our and others’ previous work.

Note also that in the deterministic case, Support(âi) in the definition contains just a single

element (namely the economy’s steady state). So Definition 5 reduces to (15) when there is no

uncertainty and the savings correspondence is single-valued. As an example, consider indi-

viduals with idiosyncratic labor endowment shocks who may be borrowing constrained as in

Aiyagari (1994). Light (2017) shows that such agents will increase savings (and asset holdings)

if the interest rate increases in the standard case with CRRA preferences and rate of risk aver-

sion weakly below unity (Light (2017), Theorem 1). Hence individual direct effects are positive.

See also Acemoglu and Jensen (2015) who identify a variety of changes in environments whose

direct effects are positive (in the strong sense of holding for all prices as mentioned a moment

ago).

Proposition 2 (Uniform Increases in Asset Holdings are Local Positive Shocks) Let k∗ ∈
Mθ∗(k∗) be either the least equilibrium inf{k : k ∈ Mθ∗(k)} or the greatest equilibrium

sup{k : k ∈ Mθ∗(k)} given some θ∗ ∈ Θ. If almost every household’s asset holdings increases at

k∗ when the environment changes from θ∗ to θ∗∗ ∈ Θ, then the change in environment from θ∗ to

θ∗∗ is a local positive shock at k∗. Similarly, if almost every household’s asset holdings decreases

at k∗ when the environment changes from θ∗ to θ∗∗ ∈ Θ, then the change in environment from

θ∗ to θ∗∗ is a local negative shock at k∗.

27More explicitly, the statement in (16) is that supSθ
∗∗,i
w(k∗),R(k∗),zi

(ai) ≥ supSθ
∗,i
w(k∗),R(k∗),zi

(ai) and

inf Sθ
∗∗,i
w(k∗),R(k∗),zi

(ai) ≥ inf Sθ
∗,i
w(k∗),R(k∗),zi

(ai) (this is the standard ordering of sets which was also used in Section 3).
Note also that we suppress the dependence of the wage and interest on the environment as mentioned immediately
after (15) above.

31



Proof. Since savings correspondences are increasing in assets under Assumption 1, it follows

directly from Theorems 3-4 in Acemoglu and Jensen (2015) that (almost) every household’s mean

asset holdings must increase. The conclusion then follows from Proposition 1.

The sufficient conditions provided in this proposition for local positive (or negative) shock

are not the only possible ones. One can alternatively use stochastic dominance relations (see

Jensen (2018)) to establish that a change in environment is a local positive shock without impos-

ing uniformity of direct effects.

5.3 Indeterminacy of Individual Behavior

This section illustrates that although, as our main results show, comparative statics of some

generality can be established for aggregate outcomes (such as the capital-labor ratio and con-

sequently prices), little can be said in general about how individuals will respond to changes

in the environment, including to policy changes. Even in the very special case where ev-

ery household’s mean asset holdings increase at the initial capital-labor ratio k∗, i.e., where

E[âθ
∗∗,i(k∗)] ≥ E[âθ

∗,i(k∗)] for all i ∈ [0, 1], a strictly positive measure subset A ⊂ [0, 1] of house-

holds may end up reducing their gross savings and mean asset holdings in the new equilibrium

k∗∗, that is, E[âj,θ
∗∗

(k∗∗)] < E[âj,θ
∗
(k∗)] for j ∈ A. In the benchmark model with forward-looking

rational households this may be the case because of countervailing income and substitution ef-

fects. In this subsection we demonstrate that when we depart from this benchmark by allowing

richer models of consumption and saving behavior, even less can be said about individual be-

havior.

We now illustrate this claim in the context of the simple example of a reduction in capital

income taxes as in our discussion in Section 2. Recall from our discussion there that ∆(k) is

defined as the change in the rate of return to capital due to the change in tax policy from τ̂(k) to

τ(k). Here we allow this change in the rate of return to capital to be individual specific, and write

it as ∆j(k) = (τ j(k)− τ̂ j(k))f ′(k). This might be because taxes vary across households. We also

assume for concreteness that there will be a corresponding decline in government consumption

as taxes on capital income decline. Finally, let us assume that the (non-trivial) equilibrium is

unique and all saving correspondences are single-valued (all of the simplifying assumptions

stack the deck against establishing that little can be said about individual behavior). Observe

next that if a household j reduces savings at every state of the world zj and asset level aj , i.e.,

sj,θ
∗∗

w(k∗),R(k∗)+∆j(k∗),zj
(aj) < sj,θ

∗

w(k∗),R(k∗),zj
(aj) for all zj and aj , (17)
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then it must reduce its mean asset holdings in equilibrium.28

Let us now start with the benchmark case where all households have rational expectations

and maximize geometrically (dynamically consistent) discounted CRRA objectives with rates of

risk aversion below unity. If ∆j(k∗) ≥ 0 for all j, direct effects will then be uniformly positive

(see the paragraph after Definition 5), so from Proposition 2 this is a local positive shock. There-

fore, from Theorem 1, we have k∗∗ > k∗, and the equilibrium wage rate will increase and the

equilibrium interest rate will decline, that is, w(k∗∗) > w(k∗) andR(k∗∗) < R(k∗).29 It is useful to

note that any household that does not benefit from the tax reduction (i.e., for which ∆j(k∗) = 0)

will display zero direct effect. But critically, such a household will still adjust its savings as a

result of the indirect (equilibrium) effects originating from the changes in the equilibrium wage

and interest rate just described. Because in this benchmark case household savings are increas-

ing in the interest rate (holding assets constant), we have sj
w(k∗),R(k∗∗),zj

(aj) < sj
w(k∗),R(k∗),zj

(aj)

and the lower equilibrium interest rate will push towards lower gross savings for these di-

rectly unaffected households. Similarly, provided that the household in question is not bor-

rowing constrained, the response to the increase in the equilibrium wage is negative too:

sj
w(k∗∗),R(k∗∗),zj

(aj) < sj
w(k∗),R(k∗∗),zj

(aj).30 Combining these two inequalities, we can conclude

that (17) must hold. This discussion thus establishes that in the benchmark case with forward-

looking rational households (and dynamically consistent objectives), any household j that is not

borrowing constrained and is not affected by the tax reduction must reduce its mean asset hold-

ings in equilibrium — even as gross savings averaged across households necessarily increases

since k∗∗ > k∗ from Theorem 1.

A similar construction shows that behavioral factors make predictions about individual re-

sponses even more challenging. Suppose that the capital income tax is reduced for all households

and income and substitution effects are such that when all households fully optimize they will

all increase gross savings (as in the case of uniform direct effects studied in the previous sub-

28This can be proved by the exact same argument as the one used to prove Proposition 2.
29Note that we have here put strict inequalities. Due to space limitations, we have throughout the paper avoided

making a clear distinction between “weak” changes and “strict” changes in equilibrium. But by simply looking at a
market correspondence (e.g. Figure 3), it is clear that the equilibrium change will in fact be strict unless the maximal
element of the market correspondence remains exactly the same at k∗ as the environment changes. This cannot
happen if any positive measure of agents strictly increase their mean asset levels with the change in environment
(keeping everything else fixed as described in Section 5.1). In the current example, this is guaranteed for any subset
of households whose rate of risk aversion is strictly below unity and who also experiences a strict reduction in the
capital income tax.

30Under forward looking behavior and with no borrowing constraint, a permanent increase in w is equivalent to
increasing wealth by wzj

R
and adjusting consumption correspondingly: sj

w,R,zj
(aj) = sj0,R,0(a+ wzj

R
)− wzj

R
. Clearly

savings must therefore be decreasing in w (unless the marginal propensity to save is above 1 which is a case we can
safely discard in equilibrium). See also footnote 8 in Cao and Werning (2017) who use this same observation to lump
labor income into wealth (i.e., work with the savings function sj0,R,0(a+ wzj

R
) in place of sj

w,R,zj
(aj)).
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section). But suppose, instead, that a subset of households have systematically incorrect beliefs

and misperceive the tax cut as unchanged capital income taxes. Then under these mistaken be-

liefs, the same argument as in the previous paragraph applies and shows that the gross savings

of this set of agents will decline rather than increase. This simple example thus illustrates that

optimization mistakes will make predicting individual behavior even more difficult. Though the

case of systematically incorrect beliefs about the tax cut is extreme, it is straightforward to intro-

duce other constraints on optimization or behavioral biases which will deliver the same point

— even in cases where we would have been able to characterize individual behavior with fully

optimizing (etc) agents, richer behavioral preferences add another layer of indeterminacy.

This indeterminacy of individual behavior further underscores the power of our approach: a

strategy attempting to determine how aggregates change based on individual changes would not

be able to make progress for the simple reason that nothing much can be said about individual

behavior. Our results show that even though individual behavior is indeterminate, we can still in

considerable generality say how aggregates change in response to local positive or local negative

shocks.

5.4 When Behavioral Biases Matter

The results presented so far do not imply that behavioral biases are unimportant. Rather, they

establish that in the context of the one-sector neoclassical growth model, if despite these biases a

change in policies or parameters of the model is a local positive shock, then the long-run impact

on the capital-labor ratio will be positive. Therefore, behavioral biases do not matter for the

direction of long-run comparative statics provided that they do not change whether an initial

impetus is a local positive or negative shock. But conversely, in this subsection we show that,

with a very similar reasoning, behavioral biases matter greatly — and change the direction of

comparative statics — when they alter whether a change in policies or parameters is a local

positive or negative shock.

This is straightforward to see using a slight modification of the example from the previous

subsection. Suppose again that there is a cut in the capital income tax rate, now for all house-

holds, but differently from before, suppose also that the proceeds of taxes are being rebated to

households in a lump sum fashion, so the tax cut is accompanied with a reduction in transfers.

If all households have rational expectations and dynamically consistent recursive preferences,

this policy change would be a local positive shock and thus increase the long-run capital-labor

ratio. Suppose, instead, that a fraction α ∈ (0, 1) have systematic (permanent) misperceptions

and do not understand the implications of the capital income tax cut for their after tax returns

34



(even after an arbitrary number of periods), but do perceive the reduction in their non-capital

income resulting from lower transfers; they may consequently reduce their savings. As a result,

if this behavioral group of consumers have sufficiently high marginal propensity to save out of

transfers, the cut in capital income tax may reduce their gross savings and turn the reduction in

capital income tax into a local negative shock rather than the local positive shock that it would

have been absent these behavioral consumers. But then by Theorem 1, the long-run capital labor

ratio will decline — rather than increase — in response to this policy change.

Though this simple example may appear too simplistic or too extreme, its message is much

more general. In the next proposition, we provide a more general result in this direction, showing

that for any fraction α > 0 of behavioral agents, a cut in the capital income tax rate can become

a local negative shock even though it is a local positive shock absent the behavioral agents. For

concreteness, we suppose that the non-behavioral agents with rational expectations have general

recursive preferences as in Epstein and Hynes (1983) or Lucas and Stokey (1984), and that the

behavioral agents perceive the tax reduction as an indication that “better economic times lie

ahead”, which makes them reduce precautionary savings so that Sθ
∗∗

w,R̃
< Sθ

∗

w,R̃
for all w and R̃.

Proposition 3 Suppose that a fraction α ∈ (0, 1) households have behavioral preferences and reduce their

savings in response to a cut in the capital income tax. The remaining households have rational expectations

and recursive, dynamically consistent preferences as in Epstein and Hynes (1983) or Lucas and Stokey

(1984). Then for any α > 0, there exist recursive preferences for the remaining 1− α ∈ (0, 1) households

such that despite their increased savings, the tax cut is a local negative shock and thus the steady-state

capital labor ratio decreases from k∗ to k∗∗ < k∗ following the tax reduction.

Proof. See Appendix B.

6 Foundations of Individual Behavior

With the exception of Sections 5.2-5.4, we have so far taken consumption and savings correspon-

dences as primitives in order to nest a wide range of behavioral models. While this strategy

has the advantage of simplicity (we could directly impose Assumption 1), it begs the question

whether this assumption is likely to be verified in interesting applications, including in the be-

havioral models we discussed in Section 3.1. This is the question we turn to in this section. Our

conclusion is that with all of the behavioral preferences discussed or mentioned so far, Assump-

tion 1 is satisfied, and therefore, these models are indeed naturally covered by our results.

We start with a brief summary before presenting our formal analysis. The key Definition 6

provides our main microfoundation of savings functions (a savings correspondence is simply
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defined as the union of all savings functions). The set of behavioral models covered by this

definition is extensive and includes, among others, models incorporating various types of un-

certainties and general beliefs (which may feature ambiguity in the sense of Gilboa (1987) and

Schmeidler (1989)). The main restriction imposed in this definition is that behavior must be

“time-stationary”, meaning that it does not depend on calendar time (given the relevant state

variables). With any dynamically consistent objective, this follows automatically (Strotz (1956)),

and the set of savings functions determined in Definition 6 will therefore coincide with the sav-

ings functions implied by standard recursive dynamic programming formulations. In this cate-

gory we find non-additive objectives as in Epstein and Zin (1989), and as a special case therefore

Kreps and Porteus (1978) (see Example 6). Extensions of these models to ambiguity are also cov-

ered. In the deterministic case the definition includes recursive utilities a la Koopmans (1960)

(see also Epstein and Hynes (1983) and Lucas and Stokey (1984)). But crucially, as we explain

below in Example 4, behavioral models featuring mistakes or approximate rationality (includ-

ing the Luce (1959)-model and satisficing behavior a la Simon (1956)) fit into this dynamically

consistent category as well.31

If the objective is dynamically inconsistent, time-stationarity, and thus Definition 6, still ap-

ply, but now the relevant saving functions are given by the (Bayesian) Nash equilibria of the

game played by households’ temporal selves (e.g., Phelps and Pollak (1968), Laibson (1996, 1997),

Balbus, Reffett and Wozny (2015)). The obvious example is models of delay discounting (e.g.,

hyperbolic or quasi-hyperbolic discounting as in Example 1), but dynamic inconsistency arises

naturally in a number of other behavioral consumption decision models as well for reasons that

are otherwise unrelated to discounting. For example, with “incorrect” beliefs/expectations (Ex-

ample 3), a self at any date will generally observe a different outcome than the one that previous

selves’ foresaw and based their decisions on (in this case, dynamic inconsistency is embedded in

the belief structure). As a second example, if agents’ time horizon is of length T <∞— because

of myopia or as a result of sparsity constraints as in (Gabaix (2014, 2017)) — selves at differ-

ent dates will not “agree” on an overall objective which again leads to dynamic inconsistency

(Example 2).

In the dynamically consistent case we show in Proposition 5 that savings correspondences

satisfy Assumption 1 under the most general non-additive specification of Epstein and Zin (1989)

if consumption at different dates are Edgeworth-Pareto complements in the sense of Chipman

(1977), i.e., if the marginal utility of future consumption is non-decreasing in current consump-

tion. In the dynamically inconsistent case, a little more care is necessary. Nonetheless, Proposi-

31It is possible to “pair” approximate rationality with dynamic inconsistency, too, as in Example 4.
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tion 4 establishes that if the underlying utility function exhibits weak separability in current and

future consumption (not necessarily over the entire consumption stream), then once again sav-

ings correspondences will satisfy Assumption 1. We are not familiar with any behavioral model

that simultaneously features dynamical inconsistency and non-separability between consump-

tion of the current self and the consumption of future selves, but for such a model a different line

of argument will need to be developed.

We end this section by showing that at the same level of generality as the previous results,

it is possible to establish that some changes in preferences are positive shocks. In particular, we

show that when a household becomes more patient, it increases its savings, and thus a shift in

preferences towards greater patience is a positive shock for all the preferences we are considering

here.

6.1 Time-Stationary Saving Correspondences

At any date t, household i is influenced by zit, where zit is a Markov process with invariant

distribution µzi (see Section 3.3). For concreteness, we assume here that zi = (εi, li, σi) where

li is the household’s labor endowment, εi is a random utility parameter and σi an index of the

extent of uncertainty faced or perceived by agent i. In addition, zi could also contain random

shocks to capital income, to taxes, etc. We also simplify the exposition by assuming that there are

no direct (lump sum) taxes/transfers, so given assets ait at date t, household i’s income equals

(1 + Rt)a
i
t + wtl

i
t where wt and Rt are the after-tax wage and interest rates determined from (7)

and (8).32 Given its income at date t, the household chooses (gross) savings a′ and consumes

ct = (1 + Rt)a
i + wtl

i
t − a′. At date t + 1, the process repeats itself given the new asset level

ait+1 = a′, and Rt+1, wt+1, and the next realization of zi, zit+1.

At every date, the household’s objective is to maximize utility conditioned on its beliefs

(or expectations) about future variables (Rτ , wτ , z
i
τ )∞τ=t+1 and its own anticipated future sav-

ings behavior. Beginning with the former, recall from Section 3.3 that θM denotes a complete

description of the model, including all future taxes and the stochastic process governing zit. Be-

liefs are formed by combining this information with current observations through a mapping

P i : (w,R, zi, θM ) 7→ P i(·;w,R, zi, θM ) where P i(·;w,R, zi, θM ) is a probability measure, and we

simplify the notation by writing it as P i(·). For any measurable set B, the household thus be-

lieves that with probability P i(B) ∈ [0, 1] the future sequence (wτ , Rτ , z
i
τ )∞τ=t+1 lies in B (see the

paragraph prior to Condition C below for details on the measurable space this statement refers

to). In the notation of the previous sections, the “environment” is thus θ = (θM , (P i)i∈[0,1]). Note

32With lump sum income taxes/transfer T it ∈ R at date t, income will instead be (1 +Rt)a
i
t +wtl

i
t +T it . The beliefs

described next will then implicitly include beliefs about these lump sum taxes/transfers.
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that since households form beliefs about future after-tax prices as well and these depend on taxes

and distortions as described in Section 3.2, P i implicitly incorporates beliefs about future taxes

(tax policy) and distortions. Crucially, we do not impose rational expectations or that house-

hold beliefs are correct conditioned on θM ; in fact, beliefs could be completely independent of

the model θM as in the case of adaptive expectations, and expectations may temporarily or even

permanently deviate from actual outcomes (the latter would be an instance of systematic mis-

perceptions, see Section 3.1 and Example 3 below).33 Finally note that we are not assuming that

beliefs are additive measures, in particular, households may entertain multiple simultaneous

beliefs about the future (Gilboa (1987), Schmeidler (1989), Gilboa and Schmeidler (1995)).

Apart from beliefs, the date t savings decision of a household’s “current self” also depend

on the anticipated savings behavior of its “future selves” (though as will become clear, the

random utility parameter implies that the current self may be uncertain — or even wrong —

about future selves’ behavior). Thus savings ai,′ at date t = 0 implies an anticipated ran-

dom consumption stream that depends not only on beliefs but also on anticipated future be-

havior: c0 = (1 + R0)ai + w0l
i
0 − ai,′, c1 = (1 + R1)ai,′ + w1l

i
1 − sw1,R1,zi1

(a′), c2 = (1 +

R2)sw1,R1,zi1
(ai,′) + w2l

i
2 − sw2,R2,zi2

(sw1,R1,zi1
(ai,′)), . . .; where sw,R,zi(âi) is the savings function

of a “future self” with assets âi and beliefs P̃ i(·) = P i(·;w,R, zi, θM ), and the stochastic pro-

cess (wt, Rt, z
i
t)
∞
t=1 has distribution P i(·) (= P i(·;w0, R0, z

i
0, θ

M )). We follow Epstein and Zin

(1989) in defining utility directly on these random consumption streams, so given the sav-

ings decision ai,′ utility of the date 0 self equals U ε
i
0,i(c0, c1, c2, . . .) where U ε

i
0,i is the house-

hold’s utility function and c0, c1, c2, . . . the random consumption stream just defined. As in

Epstein and Zin (1989), U ε
i
0,i need not have an expected utility representation; but if it does

U ε
i
0,i(c0, c1, c2, . . .) =

∫
uε
i
0,i(ĉ0, ĉ1, ĉ2, . . .) P

θ,i

w0,R0,zi0
(d(wt, Rt, z

i
t)
∞
t=1), where ĉt equals ct condi-

tioned on the realization at date t, and uε
i
0,i(ĉ0, ĉ1, ĉ2, . . .) = U ε

i
0,i(δĉ0 , δĉ1 , δĉ2 , . . .) with δx denoting

a degenerate distribution with unit mass as x. Note that through the random utility parameter

εit, a “current self” may be uncertain about the behavior of “future selves” (see Example 4 be-

low). Note finally that, unlike for example Epstein and Zin (1989), we do not assume that U ε0 is

time stationary/dynamically consistent (recursive), and for example discounting could be quasi-

geometric as in Laibson (1997) (Example 1).

The previous description is quite general and the key behavioral restrictions our formulation

imposes is the time-stationarity (also called time invariance; see Halevy (2015)) of both the belief

33For example, the household may expect the (future) interest rate to be equal to σitRt, where Rt is the (perfect
foresight after-tax) interest rate and σit is i.i.d. random noise with mean γ ∈ R+ and captures the extent of uncertainty
faced by the agent. If γ = 1, the household is on average correct about the interest rate but is not able to predict it
perfectly; if γ 6= 1, the household would be making systematic mistakes in predicting the interest rate.
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formation process and utility. The justification would be that our description begins at some

date where actual beliefs and utilities have converged to time-independent limits (see Section

3.3 and Section 4 for detailed discussion of this approach’s limitations, in particular, which types

of beliefs formations are ruled out). It then follows that, conditioned on initial conditions (ait,

wt, Rt, and zit), the decision problem of the “current self” at date t is the same as the decision

problem any “future self” would face if it were to face the (exact) same initial conditions.34 We

impose in the next definition such time-stationarity formally by defining the savings function of

a household as a (symmetric) Nash equilibrium of the Bayesian game between future selves and

the current self (time-consistency is then a special case). Note that under time-stationarity, there

is no loss of generality in focusing on the self at date t = 0 as in the description above.

Let ai ∈ R denote household i’s borrowing constraint which may be explicit and occasionally

binding as in Aiyagari (1994), or may be derived from a more fundamental transversality condi-

tion (see Aiyagari (1994), pp.665-666). The upper bound ai ∈ R comes with no loss of generality

within the general setting of this paper since it may be chosen so that it never binds in equilib-

rium (P i-almost surely and for almost every agent) under effective compactness in production

(see Section 3.2).

Definition 6 (Time-Stationary Savings Functions and the Savings Correspondence) si
w,R,zi

:

R → R is a time-stationary savings function (TSSF) if for all ai, w, R, and a.e. zi = (li, εi, σi), and

conditioned the random sequence (wt, Rt, z
i
t)
∞
t=1 with distribution P i(·) = P i(·;w,R, zi, θM ):

siw,R,zi(a) ∈ arg max
a′∈[ai,āi]:a′≤(1+R)ai+wli

U i,ε
i
((1 +R)ai + wli − a′, (1 +R1)a′+

w1l
i
1 − siw1,R1,zi1

(a′), (1 +R2)siw1,R1,zi1
(a′) (18)

+ w2l
i
2 − siw2,R2,zi2

(siw1,R1,zi1
(a′)), . . .)] .

The savings correspondence Sθ,i
w,R,zi

: R → 2R is defined as the union of all time-stationary

savings functions.

As a final remark, we have tried to strike a balance between generality and expositional

simplicity here; in particular, we have assumed that the households can be ascribed specific

beliefs (possibly non-additive as in the case of ambiguity).35

34Note that without time-stationarity, savings functions would not be time invariant and steady states would not
exist.

35With set-valued beliefs that cannot be discriminated amongst, i.e., when P θ,i
M

w,R,zi
is a set of measures (see also

footnote 18), there will be “multiple versions” of an individual associated with each of the possible beliefs. One then
determines the set of TSSFs for each belief in the set of beliefs (each “version” of the household) and takes the union as
above to obtain the savings correspondence. Since we already allow savings to be set-valued, this poses no additional
problems for any of our results as long as the set of beliefs as a correspondence varies upper hemi-continuously with
w, R, and ziand has a compact range.
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As in Epstein and Zin (1989), all sets are equipped with the Borel σ-algebra and the topology

on probability measures and on random sequences is the weak convergence topology (Epstein

and Zin (1989), p.940). Throughout the following we impose very weak continuity conditions

on utility and beliefs, as well as compactness on the set of random utility parameters.

Condition C U i,ε
i
(c0, c1, c2, . . .) is continuous in (εi, c0, c1, . . .), P i(B;w,R, zi, θM ) is continuous

in (w,R, z) for any measurable set B, and εi ∈ Ei where Ei ⊆ R is compact.

6.2 Models With Dynamic Inconsistency

From now on we omit the household index i to simplify notation. We begin with the case where

the objective in (6) is not required to be dynamically consistent. As explained previously, we

limit attention to weakly separable utilities (i.e., utility functions satisfying (19) below). Recall

that for a measure P on a setB and a measurable functionU : B → R, a certainty equivalent (also

known as a generalized mean) is a function of the type µP [U ] = g−1
(∫
g(U(b))P (db)

)
, where g

is strictly increasing. The integral is here the Lebesgue integral if the measure P is additive, and

the Choquet integral if P is non-additive. We then have:

Proposition 4 Assume that

U ε(c0, c1, c2, . . .) = H
(
uε0(c0) + βh

(
µP (·;w,R,z,θM )[Ũ

ε(c1, c2, . . .)]
))

, (19)

where H and h are strictly increasing functions, uε0 is concave for all ε, µP (·;w,R,z,θM ) is a certainty

equivalent based on the household’s beliefs conditioned on w, R, z and θM , and β > 0 is a

positive constant (“patience”). Then if Condition C holds, the savings correspondence Sθw,R,z(a)

satisfies Assumption 1.

As with all other results in this section, the proof is relegated to Appendix B. We next show

that several leading cases of behavioral preferences are covered by this proposition.

Example 1 (Hyperbolic, Quasi-Hyperbolic, and General Delay Discounting) Deterministic mod-

els with non-geometric discounting were introduced in Section 3.1 (see 3.1.1). Under perfect foresight,

we can suppress beliefs entirely (by setting all variables on the right-hand side of (18) equal to their ac-

tual values); and it is clear that any such model of delay discounting is then a special case of (4) by

taking H , h, and the certainty equivalent equal to the identity function. These models are therefore

covered by Proposition 4, and Assumption 1 is satisfied if u0 is continuous and concave. Under hy-

perbolic discounting Ũ ε(c1, c2, . . .) =
∑∞

t=1(1 + αt)−
γ
αu0(ct) (Loewenstein and Prelec (1992)), and

under quasi-hyperbolic discounting, Ũ ε(c1, c2, . . .) = β
∑∞

t=1 δ
tu0(ct) (Laibson (1997)). More generally,
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Ũ ε(c1, c2, . . .) =
∑∞

t=1 f(t)u0(ct) where f(t) is date t discounting. These are all admissible within our

general framework because we do not insist that the agent’s decision problem can be cast as a dynamic

programming problem. Note also that the extension to random environments and/or general beliefs is

straightforward in light of the general specification in (4).

Example 2 (Finite Planning Horizons, Sparse Maximization) A deterministic, perfect foresight

model with a finite planning horizon, U ε(c1, c2, . . .) =
∑T

t=1 β
tu(ct), immediately fits into (19) and

so Assumption 1 is satisfied if u is continuous and concave. Extensions to random environments (possibly

with ambiguity) are straightforward and can also be shown to satisfy Assumption 1 under Condition C.

As mentioned in Section 3.1.3, the finite planning horizon model may be viewed as a particularly sim-

ple (reduced-form) expression of sparsity in the sense of Gabaix (2014, 2017). Richer forms of sparsity

constraints, for example, in the form of additional restrictions on the set of choice variables, can also be

incorporated into our setup. A particularly fruitful approach is to replace the max operator in (18), with

the “sparse max” operator of Gabaix. As explained in Gabaix (2017), the “sparse max” formulation is

quite tractable and also implies a “sparse” Bellman operator which is a monotone contraction (see Gabaix

(2017), Lemma 3.6). General savings correspondences for sparse maximization can then be derived from

this formulation and naturally satisfy Assumption 1 (which can be proved formally from slight modifica-

tions of Proposition 4).

Example 3 (Systematically Wrong Beliefs) Imagine that a household systematically (i.e., period after

period) forms incorrect beliefs, or misperceives a key economic variable such as the relevant interest rate

(the behavioral agent considered in Section 5.3 falls into this category and can therefore be formally mi-

crofounded along the lines described next). As a simple illustration that also fits into (19), imagine that

(objectively) the world is deterministic, and that the household has perfect foresight with respect to all

variables except for the interest rate which it systematically overestimates. Specifically, at any date t, the

beliefs P are such that the household expects the interest rate at any future period t′ to equalRt′+ σ̂ > Rt′

(note that in this case z = (ε, l, σ), where σ = 0, is fixed/deterministic in the “true model”, and the agents

expectations of z, (ε, l, σ̂) are deterministic too). To simplify, assume also that the utility objective is addi-

tive with geometric discounting. By Definition 6, the agent’s TSSF is then determined by the requirement

that for all a and for σ ∈ {0, σ̂}:

sw,R,ε,l,σ(a) ∈ arg max
a′:(1+R+σ)a+wl≥a′

uε
(
(1 +R+ σ)a+ wl − a′

)
+ βuε

(
(1 +R+ σ̂)a′+

wl − sw,R,ε,l,σ̂(a′)
)

+ β2uε
(
(1 +R+ σ̂)sw,R,ε,l,σ̂(a′) (20)

+wl − sw,R,ε,l,σ̂(sw,R,ε,l,σ̂(a′))
)

+ . . . .

To find the TSSF, first solve (20) with σ = σ̂ in order to determine what may be called “the misperceived

savings function” of the future selves, sw,R,ε,l,σ̂ (note that this problem is recursive and it can therefore
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be solved by standard dynamic programming techniques). Then solve (20) for σ = 0 given sw,R,ε,l,σ̂ to

obtain the actual savings function, sw,R,ε,l,σ(a). This same two-step procedure generalizes to arbitrary

misperceptions/systematically wrong beliefs: First, solve a standard (possibly stochastic) dynamic pro-

gramming problem given the household’s (wrong) beliefs to find the misperceived savings function of the

future selves; then solve the current self’s optimization problem given this misperceived savings function.

Note that in this example, a perfect commitment solution would not satisfy the budget identities

at t = 1, 2, . . ., and it is therefore inadmissible. Thus dynamic inconsistency is embedded in the be-

liefs/misperceptions.

While it seems implausible that an individual should period after period suffer from the same mis-

conception as in the example just given, more realistic cases of misperceptions similarly fit into this

framework. We already presented a more realistic instance of savings behavior resulting from this type

of microfoundation in Section 5.3. For a second example, imagine that the agent’s beliefs about σ above is

not deterministic but stochastic and has the correct mean 0 and non-zero variance. This would be a type of

“anxiety” (worrying about the future when in reality, i.e., in the true model, there is actually nothing to

worry about), and if the TSSF is increasing and convex in savings, it would make the household save more

than under correct beliefs. Economically, this behavioral model thus predicts savings above what the pure

precautionary motive predicts (see Jensen (2018) on convexity of savings functions and the relationship

with precautionary savings).

In the next subsection we consider a number of additional examples (such as ambiguity) that

fit into the dynamically consistent case. But each of these might in addition also feature dynamic

inconsistency. If so, the examples would still be covered by Proposition 4 if the objective is

weakly separable.

6.3 Dynamically Consistent Recursive Models

We next turn to the second part of Assumption 1 (the savings correspondence increasing in a)

in the case where preferences are dynamically consistent. Here we provide results for the most

general recursive preferences in Epstein and Zin (1989), which as a special case include Kreps and

Porteus (1978) and in the deterministic case reduces to the class of recursive utilities (Koopmans

(1960)).36 The certainty equivalent mentioned in the proposition was defined in the previous

subsection. Supermodularity of W has the usual meaning (e.g., Topkis (1978)) and is equivalent

to assuming that consumption at different dates are Edgeworth-Pareto complements (Chipman

(1977)). Again the proof has been placed in Appendix B.

36For a survey covering both cases see Backus, Routledge and Zin (2004).
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Proposition 5 Suppose that

U ε(c0, c1, c2, . . .) = W (uε(c0), βµP (·;w,R,z,θM )[U
ε′(c1, c2, . . .)]) , (21)

where µP (·;w,R,z,θM ) is a certainty equivalent based on the household’s beliefs conditioned on w,

R, z and θM , uε is concave and increasing, the time-aggregator W (u, U) is concave in u, and

increasing and supermodular in (u, U), and β > 0 is a positive constant (“patience”). Then if

Condition C holds, the savings correspondence Sθw,R,z(a) satisfies Assumption 1.

We next discuss several applications of this proposition.

Example 4 (Random Utility, Mistakes, Approximate Rational, Satisficing Behavior, Over-

optimism, and Quantal Response Equilibrium) The random utility models introduced in Section

3.1.2 fit straightforwardly into (21) if the objective is dynamically consistent, and into (19) if it is not.

This is the case, for example, when beliefs P (·) = P (·;w,R, z, θM ) are probabilistically correct given the

model θM (i.e., under rational expectations). But Proposition 5 continues to apply beyond the simple case

and ensures that Assumption 1 holds under natural continuity, concavity, and in the case of (21), com-

plementarity conditions (these ensure that goods are normal as explained in Chipman (1977)). To expand

on Section 3.1.2, imagine that εt (objectively, i.e., as expressed through µz) is i.i.d. with mean 0 but that

the agent through P (·;w,R, z, θM ) (incorrectly) believes that εt first-order stochastically dominates the

objective probability (and in particular has mean greater than 0). If savings increases in ε, the agent is

then “overly optimistic” about his future frugality which causes him too save less today than he would

if his beliefs were correct. At the following date, the agent will of course be “disappointed” for not living

up to his own expectations — but with a TSSF he goes on to assume that next year he will start saving

more.37 If instead ε parametrizes selves’ subjective beliefs, a TSSF is the quantal response equilibrium

(McKelvey and Palfrey (1995)) of the game the current self plays with future selves.

Example 5 (Ambiguity) If a household has incomplete information about the objective probabilities gov-

erning the random disturbances in z, then even under rational expectations (P (·) = P (·;w,R, z, θM )

probabilistically correct given the model θM and current observations) it cannot be attributed unique sub-

jective beliefs unless it satisfies the axioms of Savage (1954) (note that this has nothing to do with whether

the subjective beliefs are right or wrong). Since we have allowed for beliefs P (·) to be non-additive, in

which case the objective in (18) is the agent’s Choquet Expected Utility (CEU), most models of ambiguity

are immediately covered by the previous results. In particular, non-additive P (·) may reflect “multiple

priors”since CEU with convex capacities equals the minimum expected utility over the probabilities in the
37This situation also leads to dynamic inconsistency, and in that case, we have to assume weak separability in order

to apply Proposition 4.
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capacity’s core (Schmeidler (1989)). Note that ambiguity is also covered in the dynamically inconsistent

case of the previous subsection provided that the underlying utility function is weakly separable.

Example 6 (Epstein-Zin and Kreps-Porteus Preferences) Equation (21) corresponds to the general

recursive specification of Epstein and Zin (1989). Epstein and Zin’s focus is on the case where W is a

CES function (Epstein and Zin (1989), p. 946). If, in addition, the certainty equivalent is just the mean

of (U(·))α raised to the power 1
α , this yields Kreps-Porteus preferences (Kreps and Porteus (1978), see also

Epstein and Zin (1989), p. 947-948):

U(c0,m) =
[
cρ0 + β (Em[(U(·))α])

ρ
α )
] 1
ρ
.

The conditions in Proposition 5 hold under the assumptions imposed by Epstein and Zin (in particular,

the CES aggregator satisfies the proposition’s conditions). Hence Assumption 1 will be satisfied by the

implied savings correspondence.

Example 7 (Self-Control and Temptation) We have so far focused on the Epstein-Zin type formulation

of dynamic choices where preferences are defined over random consumption streams. Gul and Pesendor-

fer (2001, 2004), instead, model temptation and self-control by defining preferences directly on choice

problems which are combinations of decisions today and the resulting continuation problem. Specifically,

consider as above an agent with assets a at date 0 and therefore income (1 + R0)a + w0l
i
0. If the agent

saves a1 (and so consumes (1+R0)a+w0l
i
0−a1), this implies (random) income (1+R1)a1 +w1l

i
1 at the

following date, and so recursively a new choice problem (a continuation problem in the language of Gul

and Pesendorfer). As discussed in Gul and Pesendorfer (2004), Section 6, this formulation is mathemat-

ically simpler than hyperbolic models of preference reversal because it implies unique optimal payoffs (so,

as in our general dynamically consistent case, there is no need to resolve multiplicity by considering game-

theoretic interaction between multiple selves). In particular, this approach leads to well-defined recursive

programs and therefore the resulting savings correspondences satisfy Assumption 1 under continuity and

compactness conditions on primitives (exactly as in our general formulation above) and are increasing in

assets provided that the fundamental utilities are concave.

6.4 The Effects of Changes in Patience

In this subsection, we show that when a household becomes more patient, i.e., when β increases

in either of the specifications covered in the previous two subsections, then savings increase. It

then follows from Proposition 2 that a change to a more patient environment — meaning that

a subset of households become more patient while the rest do not change their preferences —
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is a local positive shock.38 The cases with dynamic consistency and dynamic inconsistency are

covered separately.

Proposition 6 If a household satisfies the conditions of Proposition 4 with U concave and continuously

differentiable, and the optimal strategies are linear in assets, then a change to a more patient environment

is a local positive shock at any k′ ≥ 0.

Since savings will equal zero if assets a = 0, the only smooth class of additive utility functions

that lead to linear strategies is the isoelastic one (i.e., the one where period utility function equal

to either α log x or 1
1−ρx

1−ρ, ρ > 0, see Pollak (1971), p. 402). If U is not additive, a sufficient

condition is that u0 and Ũ are homogenous of the same degree.

Proposition 7 If a household satisfies the conditions of Proposition 5 and has additive subjective beliefs,

then a change to a more patient environment is a local positive shock at any k′ ≥ 0.

7 Concluding Remarks and Future Directions

A common conjecture is that equilibrium analysis becomes excessively challenging in the pres-

ence of behavioral preferences and biases, thus implicitly justifying a focus on models with

time-additive, dynamically consistent preferences and rational expectations. In this paper, we

demonstrated that, in the context of the behavioral neoclassical growth model — the one-sector

neoclassical growth model enriched with the large class of behavioral preferences — this con-

jecture is not necessarily correct. Results concerning the direction of change in the long run (or

“robust comparative statics” for the steady-state equilibrium) can be obtained for a wide range

of behavioral preferences and rich heterogeneity. Put simply, our main results state the follow-

ing: for any change in policy or underlying production or preference parameters of the model,

we first determine whether this is a local positive shock; this step involves no equilibrium analysis,

but only the determination of whether at given prices (and thus given the initial capital-labor

ratio), there will be greater savings. The emphasis on “local” in local positive shock is precisely

to underscore that all of this is at given prices, and there is no presumption or necessity that such

a shock will increase savings at other prices or capital-labor ratios. Then under mild regularity

conditions (satisfied for all behavioral preferences we have discussed in this paper), no matter

how complex the equilibrium responses are, they will not overturn the direction of the initial

change and thus the steady-state equilibrium will involve a greater capital-labor ratio (and the

38As usual, some households might lower their savings as long as there are enough households to ensure that on
average, the direct effect is positive (Section 5.1).
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changes in prices that this brings). Conversely, if the initial change is a local negative shock, then

the long-run capital-labor ratio will decline. No further information than whether a change in

policy or parameters is a local positive or negative shock (and the verification of the mild regular-

ity conditions, which we have already established for a range of behavioral models) is necessary

for these conclusions.

At the root of this result is a simple and intuitive observation: in the one-sector model, the

only way the direction of the impact of the initial impetus (say a local positive shock) can be

reversed is by having the equilibrium response to this initial shock to go strongly in the opposite

direction. For example, savings could decline strongly in response to a higher capital-labor ratio.

But either such an equilibrium response would still not overturn the initial local positive shock,

in which case the conclusion about the steady-state equilibrium applies. Or it would overturn it

and reduce the long-run capital-labor ratio, but in this case the perverse effect would go in the

direction of strengthening, not reversing, the initial local positive shock.

This intuition also clarifies the limitations of our results. A similar logic would not ap-

ply if the economy had multiple state variables rather than the single state variable as in our

(one-sector) behavioral neoclassical growth model. In such richer circumstances, similar results

would necessitate supermodularity conditions for the set of state variables or a result that in

the relevant problems the vector of state variables could be reduced to be functions of a single

overall state variable. One example in which this latter approach can be used straightforwardly

is an extension of our setup to a multi-sector neoclassical growth model. For brevity, we did

not develop the details of this model, but the main idea is simple. Suppose that we have a n-

sector growth model with no irreversibilities, neoclassical production functions in each sector

and competitive capital markets (though distortions that differ across sectors can be introduced

for additional generality). Then the marginal return to capital has to be equalized across different

sectors, which determines an allocation of the overall capital stock across sectors and enables us

to have a reduced-form problem just as a function of the overall capital stock. Then similar com-

parative static results can be developed for this overall capital stock in this type of multi-sector

environment. Beyond this case, extending our results to other settings with multiple state vari-

ables is far from trivial, and would typically necessitate strong supermodularity/monotonicity

conditions (in contrast, our current results require no such monotonicity assumptions).

One obvious limitation of our approach bears repeating at this point: our focus has been on

comparative statics, and thus on qualitative rather than quantitative results. Many questions

in modern macroeconomics necessitate quantitative analysis, and the quantitative impact of a

policy change may critically depend on behavioral biases and the exact structure of preferences
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even if the direction of long-run change does not. An obvious but challenging area for future re-

search is to investigate when certain quantitative conclusions may not depend on appropriately

introduced behavioral biases or heterogeneity (for example, in the sense that as behavioral as-

sumptions are changed, quantitative change in some key variables remains near changes implied

by a benchmark model).

We should also again emphasize that our results should not be read as implying that behav-

ioral biases and deviations from the benchmark model of time-additive, dynamically consistent

preferences and rational expectations are unimportant. What we have established is that they do

not change the direction of long-run responses in the one-sector neoclassical growth model pro-

vided that they do not alter the direction of the initial impulse. But we have also demonstrated

via examples how behavioral considerations can easily turn a change in policy or parameters

that would have otherwise been a local positive shock into a local negative shock. Then our

result works in reverse: no matter what the equilibrium responses are, this impact of behavioral

considerations cannot be reversed and the long-run response of the economy will be the opposite

of the response of an economy inhabited by households with standard preferences and rational

expectations. In this instance, therefore, the power of behavioral biases and richer preferences to

impact macroeconomic equilibrium outcomes is amplified. In this light, another important and

challenging area is to characterize in greater detail what types of realistic behavioral consider-

ations, and under what circumstances, will change the direction of initial changes in policy or

parameters from a local positive to a local negative shock.
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Appendix A. Changes in the Environment: A Topological Approach,
Discussion of Related Literature

Since this section’s observations may be of independent interest and apply not only to market

correspondences, we are going to view the market correspondenceM : K × Θ → 2R, K ⊆ R,

more abstractly and impose any necessary assumptions directly. Denote by mθ
S(k) = infMθ(k)

and mθ
L(k) = supMθ(k) the least and greatest selections, and by kθS = inf{k ∈ K : k ∈ Mθ(k)}

and kθL = sup{k ∈ K : k ∈ Mθ(k)} the least and greatest fixed points (when they exist, which

of course they do if M is a market correspondence). Now equip Θ with an order as well as

a topology (in the simplest situation where we consider a change in just a single parameter, Θ

may be taken to be a subset of R, and these would therefore be the usual/Euclidean order and

topology, respectively). A function m : Θ→ R is said to be (i) increasing if θ ≤ θ̂⇒m(θ) ≤ m(θ̂)

for all θ, θ̂ ∈ Θ, and (ii) locally increasing at θ∗ ∈ Θ if θ ≤ θ̂⇒ m(θ) ≤ m(θ̂) for all θ, θ̂ in an open

neighborhood of θ∗. Finally, say thatM begins above and ends below the 45◦ line if m∗(inf K, θ) ≥
inf K and m∗(supK, θ) ≤ supK.

Theorem 5 (Abstract Shifts in Fixed Point Correspondences) Consider an upper hemi-continuous

and convex valued correspondence M : K × Θ → 2R where K is a compact subset of R and Θ is a

compact subset of an ordered topological space. Assume also that the graph begins above and ends below

the 45◦ line for all θ ∈ Θ. Then the least and greatest fixed points kθS and kθL are increasing in θ if for all

θ∗ ∈ Θ, mθ
L(kθ

∗
L ) and mθ

S(kθ
∗
S ) are locally increasing in θ at θ∗.

Proof. Consider the greatest fixed point kθ
∗
L given some θ∗ ∈ Θ. To simplify notation, we take

Θ ⊆ R (but the argument is true in general). Since mθ
L(kθ

∗
L ) ≥ mθ∗

L (kθ
∗
L ) = kθ

∗
L for θ∗ + ε >

θ > θ∗, mθ
L(·) begins above the 45◦ line and ends below it on the interval [kθ

∗
L , supK]. Since

M has convex values,Mθ(·) therefore has a fixed point on this interval, and so kθL ≥ kθ
∗
L . This

argument clearly extends to any θ > θ∗ (not necessarily in a neighborhood) since we may reach

any such θ in a finite number of steps (Θ is compact so any open cover contains a finite subcover).

The more difficult case is when θ∗ − ε < θ < θ∗. Assume for a contradiction that kθL > kθ
∗
L .

Consider θn, where θ < θn < θ∗. Since θn > θ, it follows from the first part of the proof that

kθ
n

L ≥ kθL > kθ
∗
L . Note that these inequalities hold for any θn ∈ (θ, θ∗). Since K is compact,

we may consider a sequence n = 0, 1, 2, . . . with θn ↑ θ∗ and such that limn→∞ k
∗(θn) exists.

kθnL ∈ Mθn(kθnL ) for all n and M has a closed graph, hence limn→∞ k
θn
L ∈ Mθ∗(limn→∞ k

θn
L ).

But since limn→∞ limn→∞ k
θn
L ≥ kθL > kθ

∗
L , this contradicts that kθ

∗
L is the greatest fixed point.

The parallel statement for the least fixed point kθ
∗
S is shown by a dual argument (in this case the

situation where θ∗ − ε < θ < θ∗ is simple while the limit sequence argument must be used for
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the case where θ∗ + ε > θ > θ∗).

Corollary 1 (Local Positive Shocks, Topological Case) Let the assumptions of Theorem 1 hold and

assume in addition that Θ is a compact subset of an ordered topological space and that the market corre-

spondenceMθ(k) is upper hemi-continuous in (θ, k). Then the greatest and least steady states kθS and kθL
are increasing in θ if for all θ∗ ∈ Θ and all θa < θb in a neighborhood of θ∗, the change in the environment

from θa to θb is a local positive shock at kθ∗L as well as a local positive shock at kθ∗S .

It is useful at this point to briefly contrast the main results of our paper, including those

presented in this Appendix, to other equilibrium comparative static results in the literature. Most

of the results in the literature are similar to those of Milgrom and Roberts (1994) who show that

when the equivalent of our market correspondence M is “continuous but for jumps up” and

its graph shifts up (meaning that mθ
L(k) and mθ

S(k) are increasing in θ for all k), then the least

and the greatest fixed points increase (see, for example, their Corollary 2).39 Let us refer to this

well-known result as the “for all k curve shifting theorem”. Theorem 5 is very different from

this result. It shows instead that ifM is upper hemi-continuous in (k, θ) (rather than just in k,

cfr. footnote 39), the same conclusion requires only that the correspondence shifts up at the least

and the greatest fixed points, kθS and kθL. The results presented in Section 4 similarly require only

local shifts in steady states. That we only need to verify thatM shifts up locally, in particular, at

the steady states, is the key technical contribution of the paper and plays a critical role for all of

our our results.40

To explain a little further, let us consider a particularly simple case where a dynamic economy

can be reduced to a fundamental equation of the form

G(kt, kt−1, θ) = 0 , (22)

where θ ∈ R is an exogenous parameter, kt ∈ R is capital, or the capital-labor ratio, at date t and

G : R3 → R a smooth function. In this case, the market correspondence can be defined as

Mθ(k) = {k̂ : G(k̂, k, θ) = 0} . (23)

In the Ramsey-Cass-Koopmans model, for example, G(kt, kt−1, θ) = 0 ⇔ kt = g(kt−1, θ), and

then Mθ(k) = g(k, θ). Clearly, k∗ is a steady state given θ if and only if k∗ ∈ Mθ(k∗). Note,

39 M is continuous but for jumps up if it has convex values, lim supxn↑xm
∗(xn, t) ≤ mθ

L(k), and
lim infxn↓xm∗(x

n, t) ≥ mθ
S(k).

Acemoglu and Jensen (2013) shows that if M is upper hemi-continuous in k and has convex values, then it is
continuous but for jumps up.

40The other important technical ingredient is the definition of the market correspondence M and our Lemma 1,
which enables us to work with a simple, albeit abstract, mapping.
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however, that (22) — even in the more general form 0 ∈ G(kt, kt−1, θ) where G is a correspon-

dence — is not general enough to nest our behavioral neoclassical growth model (because we

also need to condition on the distribution of assets). Nevertheless, (22) is useful to provide the

technical intuition for our main results since both in the case of (23) and our Definition 2, the

market correspondence is constructed by conditioning on the information that the capital-labor

ratio in question, k, has to be consistent with a steady-state equilibrium. In particular, the fact

that, with the conditioning on the steady state k∗, (23) a one-dimensional fixed point problem

allows us to use “curve shifting” arguments without imposing any type of monotonicity on the

dynamical system defined by (22) (see also Acemoglu and Jensen (2015) for a related discussion

of non-monotone methods). GivenMθ(k) and this construction, Theorem 5 and the results pre-

sented in Section 4 enable us to predict how the greatest and the least steady states vary with θ

whenMθ(k) shifts up locally starting at these steady states (and provided thatM satisfies the

relevant theorem’s regularity conditions).

The added generality and flexibility is considerable. In many applications, including the

problem of equilibrium analysis in the behavioral neoclassical growth model we focus on in

this paper, the conditions for the “for all k curve shifting theorem” will not hold even if (22)

applies. This is for both substantive and technical reasons. Substantively, in economies such as

the behavioral neoclassical growth model the possible heterogeneity in the responses of agents

to changes in the environment would often preclude such uniform shifts. To see the technical

problem, suppose that we were checking these conditions using the implicit function theorem.

That would amount to verifying that dk
dθ > 0 for all k̃ while G(k, k̃, θ) = 0 holds. But since the

implicit function theorem requires as a minimum thatDkG(k, k̃, θ) 6= 0, and “running through all

k̃’s” will almost invariably violate this condition for some k̃, this method will generally fail (order

theoretic methods are of no help here either; and of course, it is not enough to show that dk
dθ > 0

for almost every k̃ because any point we fail to check may precisely be a point where the market

correspondence “jumps”). When we only need to check local conditions, these difficulties are

bypassed.
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Appendix B: Omitted Proofs (For Online Publication)

Proof of Proposition 3. Consider household i ∈ [1− α, 1]. Under recursive utility with smooth

patience function ρ : c 7→ R (here c is consumption), the mean asset holding ai given prices w

and R is determined as usual from the Euler condition:

ρ((1 +R)ai + w) = R . (B1)

Hence, by the implicit function theorem, a small change in R implies that the asset holding

changes to ai + dai where:

dai =
(ρ′)−1 − ai

1 +R
dR . (B2)

Now consider a steady state k∗ beginning with an arbitrary choice of patience function ρ (of

course we must have (ρ′)−1 > ai so that a reduction in taxes increases savings, in particular, the

household must exhibit increasing marginal impatience in the sense of Epstein and Hynes (1983)

and Lucas and Stokey (1984)). Now pick any ε > 0 and replace ρ with a new patience function

that satisfies (i) ρ̃((1 + R)ai + w) = ρ((1 + R)ai + w) so that the mean asset holding remains the

same (in particular then, the original equilibrium remains the same), and (ii) ρ̃′((1 +R)ai +w) =

1/(ε+ai). Inserting into (B2), we see that dai = ε/(1 +R), and so the aggregate change in (mean)

assets of households in the set [1 − α, 1] is D(ε) = (1 − α)ε/(1 + R). Since the equilibrium k∗ is

independent of ε, it is clear that for any α > 0 we can pick ε > 0 such that D(ε) + C < 0. Hence

for any α > 0, we can make the behavioral agents dominate the direct effects given k∗ and so

turn the tax reduction into a local negative shock. The rest of the proposition follows from our

main comparative static results (Theorems 1-4).

Proof of Proposition 4. Throughout this proof we omit the superscript θ to simplify notation.

We may ignore the monotonic transformation H and write (18) as:

sw,R,z(a) ∈ arg max
a′:(1+R+σ)a+wl≥a′

uε0((1 +R+ σ)a+ wl − a′) +M(a′) ,

where M is a function that does not depend on a. Since uε0((1 +R+ σ)a+wl− a′) is supermod-

ular in (a, a′) if and only if uε0 is concave, it follows from Topkis’ theorem (Topkis (1978)) that

the smallest and largest optimal savings functions must be increasing in a. Hence the savings

correspondence Sw,R,z(a) is increasing in the sense of Assumption 1. Next, note that if Sw,R,z(a)

is upper hemi-continuous in z, it is measurable in z, i.e., the inverse image of every open set

is measurable (Aubin and Frankowska (1990), Proposition 8.2.1). To establish both the upper

hemi-continuity and measurability requirements of Assumption 1, it therefore suffices to show

that under Condition C, Sw,R,z(a) is upper hemi-continuous in w, R, a, and z. The proof is the
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same in each case and in fact, the statement is true if we consider (w,R, a, z) jointly. Nonethe-

less, to simplify notation we establish the claim only for a. What follows is a sketch only. A

detailed proof can be found in Jensen (2018b). We begin with the case where u0 is strictly con-

cave. Let an → a, and bn = sw,R,z(an) ∈ Sw,R,z(an) for all n where sw,R,z is a TSSF. Without loss

of generality, index again by n a subsequence with bn → b. We first show that b ∈ Sw,R,z(a). By

definition,

bn ∈ arg max
a′:(1+R+σ)an+wl≥a′

uε0((1 +R+ σ)a+ wl − a′) +M(a′)

Under Condition C, M is continuous from below (respectively, above) if and only if sw,R,z(·)
is continuous from below (respectively, above). In particular, M is continuous if and only if

sw,R,z(·) is continuous. For any a, we can pass to yet another subsequence (again indexed by n)

such that the convergence an → a is monotone. Since u0 is strictly concave, sw,R,z is increasing,

and it follows then that bn → b monotonically. In case (an) (and therefore (bn)) is an increasing

sequence, the conclusion that

b ∈ arg max
a′:(1+R+σ)a+wl≥a′

uε0((1 +R+ σ)a+ wl − a′) +M(a′)

follows by a standard continuity argument provided that sw,R,z , and therefore M is continuous

from below. In the second case of decreasing (an) and (bn) the conclusion follows if sw,R,z is

continuous from above. Crucially, it may be shown that if sw,R,z is a TSSF, then so is both its

lower continuous and its upper continuous closures.41 Further, since an increasing function is

continuous except for at an at most countable number of points, sw,R,z(a) coincides with its lower

and upper continuous closures nearly everywhere (as a minimum, at all points

of continuity). Because of this we may from the beginning in the argument above replace

sw,R,z with, as appropriate, the lower or upper continuous closure without having to change

the sequences (an) and (bn). But then the previous argument may be applied to conclude

that b ∈ Sw,R,z(a). If there are only a finite number of TSSFs, this argument implies up-

per hemi-continuity of Sw,R,z(a) (since then for any sequence (an) and any sequence (bn) with

bn ∈ Sw,R,z(an) all n, there exist convergent subsequences with bn = sw,R,z(an) all n for some

fixed TSSF). If Sw,R,z is the union of an infinite family of TSSFs, a slightly more subtle argument

is required using that if sn is a sequence of TSSFs, then its pointwise limit is also a TSSF. Finally,

to extend the proof from the case where u0 is strictly concave to the case where u0 is merely

assumed to be concave, one uses a standard approximation argument: consider a sequence of

41Let sw,R,z be an increasing function. Then the lower continuous closure is defined by sw,R,z(a) =
liman↑a sw,R,z(a). The upper continuous closure is defined similarly, replacing an ↑ a with an ↓ a. These are al-
ways well-defined for increasing functions since an increasing function is continuous except at an at most countable
number of points (and the points of discontinuity are of the jump type).
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strictly concave functions un0 that converge pointwise to u0; repeat the above argument for all n;

use that continuity of the maximum operator implies that the limit is optimal for u0. That Sw,R,z

has a compact range follows immediately from upper hemi-continuity and boundedness of the

set of feasible savings levels.

Proof of Proposition 5. We may suppress ε and set β = 1 to simplify notation. Let

V (a, z) = maxa′W (u((1 + R + σ)a+ wl − a′), µPz [V (a′, z′)]) denote the value function and note

that this is increasing in a under the assumptions of the Proposition. Furthermore V is a contin-

uous function under Condition C. From continuity of the value function, it follows follows that

the savings correspondence will be upper hemi-continuous (and hence have a compact range

and be measurable in z as explained in the proof of Proposition 4). It remains therefore only to

be shown that the savings correspondence is increasing in a. This follows from the argument

used in the proof of Proposition 4 if we can show that W (u((1 +R+σ)a+wl−a′), µPz [V (a′, z′)])

is supermodular in a and a′. Since the objective is concave in a, it is differentiable almost ev-

erywhere in a and when the derivative exists it equals: (1 + R + σ)W ′1(u((1 + R + σ)a + wl −
a′), µPz [V (a′, z′)]) · u′((1 + R + σ)a + wl − a′). By Theorem 4 in Jensen (2007), it is sufficient for

increasing differences/supermodularity in a and a′ that this term is increasing in a′ between any

two points where it is well-defined. Since u is concave, u′((1 + R + σ)a + wl − a′) is increasing

in a′. Since W ′1(u, U) is decreasing in u, and increasing in U , and u((1 + R + σ)a + wl − a′) is

decreasing in a′ and µPz [V (a′, z′)] is increasing in a′, W ′1(u((1 +R+ σ)a+wl− a′), µPz [V (a′, z′)])

is increasing in a′. Since the product of two increasing functions is increasing, the conclusion

follows.

Proof of Proposition 6. We may take w = 0 without loss of generality. In the weakly additive

case, utility is

u((1− α)(1 +R)a) + βU(α(1− α1)(1 +R)2a, α(1− α1)α1(1 +R)3a, . . .)

Compute the first-order condition and set α1 equal to α:

−(1 +R)au′((1− α)(1 +R)) + βDaU(α(1− α)(1 +R)2a, α(1− α)α(1 +R)3a, . . .) = 0

Note that DaU(α(1 − α)(1 + R)2a, α(1 − α)α(1 + R)3a, . . .) > 0, so differentiating with respect

to β we get something positive. The lhs goes to +∞ as α → 0 and to −∞ as a → 1. Hence the

conclusion follows from a standard curve shifting theorem.

Proof of Proposition 7. Let V n+1(a, z;β) = maxa′W (u((1+R+σ)a+wl−a′), βµPz [V n(a′, z′;β)])

and note that if V n is increasing in β, then V n+1 is increasing in β. Further, DaV
n+1(a, z, β) =
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D1W (u((1+R+σ)a+wl−a′), βµPz [V n(a′, z′;β)])·(1+R+σ), and sinceW (u, U) is supermodular

in u and U , DaV
n+1(a, z, β) is increasing in β if and only if βµPz [V n(a′, z′;β)] is increasing in β.

A sufficient condition for βµPz [V n(a′, z′;β)] to be increasing in β is that V n(a′, z′;β) is increasing

in β for all a′ and z′. By iteration, we conclude that the value function V (a, z;β) is supermodular

in a and β. From this the conclusion follows by the same argument as that used in the proof of

Proposition 5.
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