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I Introduction

Is a school’s causal impact on test scores a good measure of its overall impact on students?
Do parents value schools that improve high-stakes standardized tests? Do parents value school
impacts on outcomes other than high-stakes tests? To shed light on these issues, we use adminis-
trative data from many sources covering the full population of Trinidad and Tobago. To address the
first question, we estimate individual schools’ causal impacts on high-stakes test scores, low-stakes
test scores, dropout, teen motherhood, teen arrests, and labor market participation. Using the re-
lationship between these estimates, we examine whether school output is multidimensional (such
that test score impacts may not be related to school impacts on other dimensions). To address the
second and third questions, we link our estimated impacts to parents’ school rankings and explore
whether parents choose schools with causal impacts on these multiple outcomes — providing the

first exploration into whether parents may value school causal impacts on non-academic outcomes.

The motivations for this paper are twofold. First, we aim to better understand the multidimen-
sional nature of individual schools’ output. Researchers, practitioners, and policy-makers often
rely on school’s performance on standardized tests as a measure of quality. However, because
educational output may be multidimensional (Hanushek 1971; Heckman et al. 2006; Kautz et al.
2017; Jackson 2018; Jackson et al. forthcoming), schools that improve important longer-run out-
comes (such as crime, college-going, and earnings) may have little impact on test scores. As such,
policies that focus primarily on test score impacts to make decisions (such as school closures,
performance pay, accountability, etc.) may not necessarily improve longer-run outcomes that pol-
icymakers and parents value. To assess the importance of this, one must understand the joint

I However, to date,

distribution of individual school’s impacts across several different outcomes.
only four studies examine the causal impact of individual schools on different outcomes (Abdulka-
diroglu et al. 2014; Dobbie and Fryer 2015; Angrist et al. 2016; Place and Gleason 2019). To rely
on causal impacts, these studies focus on a small number of oversubscribed schools that admit stu-

dents using enrollment exams or randomized lotteries.> While focusing on oversubscribed schools

"'We now know that certain groups of schools that raise test scores may not improve other outcomes and vice versa.
For example, Deming (2011) finds that winning a school choice lottery can reduce crime with little impact on test
scores, Deming et al. (2014) find that school choice lotteries improve test scores and educational attainment (only for
girls). Beuermann and Jackson (2020) find that attending a preferred school in Barbados improves long run outcomes
but not test scores. Also, Booker et al. (2011) find that charter school attendance impacts on test score do not correlate
with their impacts on college outcome. All these studies examine groups of schools rather that individual school
impacts — precluding an analysis of the multidimensional nature of educational output by schools.

ZPlace and Gleason (2019) and Angrist et al. (2016) examine 31 and 26 oversubscribed charter schools, respectively.
Abdulkadiroglu et al. (2014) examine 6 elite selective enrollment schools, and Dobbie and Fryer (2015) examine a
single charter school. Dobbie and Fryer (2020) examine impacts of 57 charter schools in Texas. However, they do
not have exogenous variation so that the estimated school impacts may not capture causal impacts. In their words
“we assume unobserved determinants of students’ labor market outcomes are orthogonal to our school value-added
measures....our estimates should be interpreted with this strong identifying assumption in mind.”



overcomes selection biases, these studies examine a small number of schools that are necessarily
non-representative — limiting generalizability. Moreover, these studies examine individual schools’
impacts on test scores and related educational outcomes (such as college going) but do not relate
schools’ test score impacts to a broad set of nonacademic outcomes. As such, no studies have used
a quasi-experimental design to identify individual school’s causal impacts across a representative
group of schools and on a broad array of academic and non-academic outcomes simultaneously —
which is necessary to rigorously explore the multidimensional nature of school output. To help fill
this space, we rely on plausibly exogenous variation to uncover the causal impact of attending 132
individual public secondary schools in Trinidad and Tobago (98.5 percent of all public secondary

schools) on a wide array of academic and non-academic short- and longer-run outcomes.>

The second motivation for our work is to better understand parental preferences for schools.
In theory, by aligning schools’ incentives with parents’ preferences, school choice policies may
increase efficiency in educational production (Friedman 1955; Chubb and Moe 1990). However,
if parents cannot discern school causal impacts, school choice policies will do little to increase
education production or improve human capital. Indeed, there is a growing literature showing
that parental preferences for schools are not systemically related to school impacts on test scores
(MacLeod and Urquiola 2019; Beuermann and Jackson 2020). The few studies that directly exam-
ine preferences for school causal impacts conclude that parents may not value school impacts per se
(Rothstein 2006, Abdulkadiroglu et al. 2020) — casting doubt on the likely efficacy of school choice.
However, there are two reasons that this may not be the final word on this issue; (1) Parents may
value schools that improve outcomes largely unrelated to test-score impacts. If so, school choice
may improve outcomes valued by parents, but that are not well observed by the econometrician —
leading to wrong inferences about parental preferences and the benefits of school choice. (2) The
only study to link secondary schools’ causal impacts to parents’ school choices (Abdulkadiroglu
et al. 2020) does so in New York City, the largest public school district in the United States. Be-
cause New York City is a relatively low-information setting where “overchoice” (Schwartz 2004;
Iyengar and Kamenica 2010) may lead to sub-optimal decision making, it is unclear that their re-
sults would generalize to smaller and higher-information settings. Trinidad and Tobago provides
such an alternate setting. By linking our school impacts on a broad set of outcomes to parents’
rankings of schools, we provide the first examination of the extent to which parents tend to choose
schools that causally improve test scores and also key nonacademic outcomes. Our study, there-
fore, is the first to explore the relationship between school preferences and schools’ causal impacts

in a high-information setting where problems of overchoice are more limited.

We use data on all applicants to public secondary schools in Trinidad and Tobago between 1995

and 2012. These data contain students’ identifying information, scores on the Secondary Entrance

3This is about the same number of public secondary schools in Chicago, and more than in the state of Vermont.



Assessment (taken at age 11 at the end of 5th grade), and a ranked list of secondary schools the
student wished to attend. We link these data (at the student level) to scores on low-stakes national
exams taken three years later, high-stakes secondary school completion exams five years later, and
a national tertiary certification exam taken seven years later. We also link these student records to
official police arrest records, birth registry data, and retirement contribution fund data. We track

individual students over time through 33 years of age across a host of different types of outcomes.

To estimate the causal effects of attending individual schools, we rely on the fact that the Min-
istry of Education assigns most students to schools using a deferred acceptance algorithm (Gale
and Shapley, 1962). School assignments are based on both student choices and student test scores.
Conditional on the information used in the assignment process, the algorithm-based assigned school
is unrelated to both observed and unobserved student characteristics (Jackson, 2010). Exploiting
this fact, for each secondary school, we use the exogenous school assignment to that school as an
instrument for attending that school (relative to a well-defined set of counterfactual schools). We
implement several tests to support a causal interpretation of our estimates, and show that our rel-
ative school effects are approximately homogeneous. As such, differences in our effect estimates
across any two schools reflect the relative improvement in outcomes most children can expect from
attending one of these schools compared to the other— akin to others in the school effects literature
(e.g., Deutsch et al. 2020, Abdulkadiroglu et al. 2014; Dobbie and Fryer 2015; Angrist et al. 2016;
Dobbie and Fryer 2020; Place and Gleason 2019).

To infer parental preferences for schools, we rely on the fact that a ranked list of four sec-
ondary schools is submitted as part of the secondary-school application process. Under Deferred
Acceptance algorithms with unlimited choices, it is rational to list schools in order of true pref-
erence. Accordingly, standard rank-ordered logit models are identified on the assumption that the
top choice is preferred to all other schools, that the second is second-most preferred and so on.
Therefore, these models identify preference parameters under rational behaviour. However, under
Deferred Acceptance algorithms with limited choices, as in our setting, (a) not all school rankings
can be observed, and (b) applicants may be strategic by accounting for the likelihood of admission
when making choices (Chade and Smith, 2006) — so that the “truthful revealing” identifying as-
sumption may not apply.* To account for this, we use estimators that assume that behaviours may
be strategic, and therefore identify preferences under the proposed strategic behaviours— which
are suitable for our context. Intuitively, because the nature of strategic choices is a function of
admission probabilities, and we can obtain estimates of admission probabilities using historical

data, we can model how admission probabilities influence choices and uncover true preferences for

“4Researchers have addressed this by making some additional assumptions. Abdulkadiroglu et al. (2020) assume
that parents in New York City do not choose schools outside of their borough because such choices are uncommon.
Also, to account for strategic choices both Abdulkadiroglu et al. (2020) and Hastings et al. (2009) appeal to patterns in
the data to justify the assumption that choices made are not strategic.



schools. Specifically, we implement a modified multinomial logit model (McFadden, 1973) mod-
elling choices across all schools (making no assumption about what schools are in the choice set)
and explicitly account for possible strategic behaviours and other constraints (such as proximity)
that may cause an individual to not list her most preferred school as her top choice. Showing that
our findings are not an artifact of the chosen methodology, our main findings are similar in models

that do not account for strategic behaviors (as has been done by other researchers).

Schools have meaningful causal impacts on many outcomes. The standard deviation of school
impacts on low-stakes and high-stakes exams is about 0.45¢. The standard deviation of school im-
pacts are about 9 percentage points for dropout, 4 percentage points for teen arrests, 17 percentage
points for teen births, and 7 percentage points for formal labor-market participation. We next test
for whether school impacts on test scores capture effects on other outcomes. After accounting for
estimation errors, the correlations between school impacts on high-stakes tests and other outcomes
are modest. For example, the correlation between impacts on high-stakes exams and non-dropout
is 0.12, and that between impacts on high-stakes tests and being formally employed is 0.15. We
show that these low correlations are not due to high-achieving students being more responsive to
school impacts on academic outcomes and attending one set of schools while low-achieving stu-
dents being responsive to school impacts on nonacademic outcomes and attending another set of
schools. Rather, even among a homogeneous set of students, schools that improve high-stakes test

scores are often not those that improve broader adult well-being (which parents may value).

Next we analyze parental school choices to explore if parents’ school preferences are related
to schools’ causal impacts on various outcomes. We replicate results of existing studies. Par-
ents assign higher rankings to more proximate schools, higher-performing schools, and those with
higher-achieving peers (Burgess et al. 2015; Abdulkadiroglu et al. 2020). We also present sev-
eral novel results. Conditional on peer quality, proximity, and school-level average outcomes;
parents of higher-achieving children choose schools with larger positive causal impacts on high-
stakes exams. This pattern cannot be driven by treatment heterogeneity because school impacts
are largely homogeneous. These findings (from a high-information, modest-sized market) differ
from Abdulkadiroglu et al. (2020) who find that conditional on peer quality, parental preferences
are unrelated to schools’ test-score impacts in a large low-information setting — suggesting that
information and/or overchoice may play a role.

Looking to nonacademic outcomes, we find robust evidence that parents prefer schools that re-
duce arrests, reduce teen births, and increase formal labor-market participation. However, there are
key differences by student type. High-achieving students’ choices are relatively more strongly re-
lated to schools’ impacts on high-stakes exams than impacts on these nonacademic outcomes, while
the choices of low-achieving students’ are relatively more strongly related to schools’ impacts on

these non-academic outcomes than those on high-stakes exams. Because school impacts on these



outcomes are largely the same for students throughout the incoming test-score distribution, we can
rule out that our key results are driven by test-score impacts leading to more improved outcomes for
high-achieving children while labor market, teen birth, or crime impacts leading to more improved
outcomes for lower-achieving students. Because school impacts on these outcomes are largely the
same for students throughout the incoming test-score distribution, we can rule out that our key
results are driven by test-score impacts leading to more improved outcomes for high-achieving
children while labor market, teen birth, or crime impacts leading to more improved outcomes for
lower-achieving students. Because schools that improve test scores may not reduce teen mother-
hood, crime or improve labor market participation, these results have important implications for our
understanding of parental preferences for schools — particularly those of unprivileged populations.

We build on the school quality literature by presenting the first analysis of the relationships be-
tween schools’ causal impacts on several academic and non-academic outcomes — providing direct
evidence of the multidimensionality of school output.®> Our findings have important policy impli-
cations because test-score impacts are increasingly used for policy decisions. We also contribute to
the work on parental preferences by providing the first study of parental choices based on school
impacts on non-academic outcomes such as fertility, crime, and labor-market participation. We
show that parents may have strong preferences for schools that reduce crime, reduce teen births,
and increase labor market participation — impacts that are only weakly correlated with impacts on
test scores. If this pattern holds in other settings, it could explain why researchers have found a
weak link between parental preferences for schools and schools’ test score impacts. As such, our
results suggest that existing evaluations of school choice based solely on test-score impacts (with-

out regard for schools’ nonacademic output) may be very misleading about their welfare effects.

The remainder of this paper is as follows; Section II describes the Trinidad and Tobago con-
text and discusses the data. Section III presents our empirical strategy for estimating school causal
impacts. Section IV presents the magnitudes of the estimated school impacts and explores the po-
tential multidimensionality of school output. Section V discusses our choice models, and presents

estimates of the correlates of parental preferences. Section VI concludes.

II The Trinidad and Tobago Context and Data

The Trinidad and Tobago education system evolved from the English system. At the end of
primary school (after grade 5, around 11 years old), parents register their children to take the
Secondary Entrance Assessment (SEA) and provide a list of four ranked secondary school choices
to the Ministry of Education (MOE). The SEA is comprised of five subjects that all students take:

>Dobbie and Fryer (2020) examine the relationship between charter school impacts on test scores, high school
graduation, and earnings. However, they rely on selection on observables assumptions for identification so that the
documented relationships may be subject to selection biases.



mathematics, English language, sciences, social studies and an essay. Students are allocated to
secondary schools by the MOE based on the SEA scores and the school preferences submitted at

SEA registration using the deferred acceptance mechanism summarized in Section III below.

Secondary school begins in form 1 (grade 6) and ends at form 5 (grade 10). We focus on
public secondary schools of which there were 134 during our study period. Among these, there are
two types of schools: Government schools (fully funded and operated by the government which
enrol about 67 percent of students) and Government Assisted schools (managed by private bodies,
usually a religious board, and all operating expenses funded by the government - accounting for
30 percent of enrolment).® All schools provide instruction from forms 1 through 5 and teach the
national curriculum. Students take two externally graded exams at the secondary level, and one
at the tertiary level. The first secondary exam is the National Certificate of Secondary Education
(NCSE) taken at the end of form 3 (grade 8) by all students in eight subjec:ts.7 NCSE performance

does not affect school progression or admission to tertiary education, and is therefore low-stakes.

The second secondary exam is the Caribbean Secondary Education Certification (CSEC) taken
at the end of form 5 (grade 10) which is equivalent to the British Ordinary-levels exam. CSEC
exams are given in 33 subjects. To be eligible for university admission, one must pass five or more
subjects including English and mathematics. Students who qualify for university admission based
on CSEC performance could either apply and, if accepted, enroll in a tertiary institution or pursue
the Caribbean Advanced Proficiency Examination (CAPE). In addition, entry level positions in
the public sector require at least five CSEC subject passes. For these reasons, the CSEC is a
high-stakes exam. The third exam, the CAPE, is the equivalent of the British Advanced-levels
exam and was launched in 2005. The CAPE program lasts two years and includes three two-
unit subjects and two core subjects (Caribbean and Communication studies). Passing six CAPE
units is a general admission requirement for British universities. The post-secondary qualification
of a CAPE Associate’s Degree is awarded after passing seven CAPE units including the two core
subjects. Finally, students who obtain the highest achievable grade in eight CAPE units are awarded
Government sponsored full scholarships for undergraduate studies either in Trinidad and Tobago
or abroad (including the US, Canada or UK). Given this, the CAPE is a high-stakes exam.

Secondary School Applications Data: The data include the official administrative SEA covering
all students who applied to a public secondary school in Trinidad and Tobago between 1995 and
2012. These data include each student’s name, date of birth, gender, primary school, residential
census tract, religion, SEA scores, the ranked list of secondary school choices, and the administra-

tive school placement by the MOE. The final SEA dataset contains information on 329,481 students

There were 90 Government schools and 44 Government Assisted schools during our sample period. Private sec-
ondary schools serve a very small share of the student population (about 3.4 percent).

"NCSE academic subjects include mathematics, English, Spanish, sciences, and social studies. NCSE non academic
subjects include arts, physical education, and technical studies.

6



across 18 SEA cohorts. We link additional data to the SEA data by full name (first, middle, and
last), gender, and date of birth.

Examination Data: To track students’ exam performance and educational attainment we col-
lected data on the NCSE exams (taken 3 years after secondary school entry, typically at age 14), the
CSEC exams (taken 5 years after secondary school entry, typically at age 16) and the CAPE exams
(completed after 2 years of post-secondary school studies, typically at age 18). The NCSE was
launched in 2009 and data are available for years between 2009 and 2015. These data include the
scores for the eight subjects assessed. The NCSE data were linked to the 2006 through 2012 SEA
cohorts. The CSEC data are available for all years between 1993 and 2016. These data include the
scores for each subject examination taken. The CSEC data were linked to the 1995 through 2011
SEA cohorts. The CAPE data are available for years 2005 through 2016, and are linked to the 1999

through 2009 SEA cohorts. These data contain scores for each exam unit taken.®

Criminal Records: We obtained the official arrests records from the Trinidad and Tobago Police
Service. For each arrest that occurred in Trinidad and Tobago between January 1990 and May 2017,
these data include the offender’s full name, date of birth, gender, and date of arrest. To explore teen
crime, these data were linked to the 1995 through 2010 SEA cohorts.

Civil Registry: We obtained the official birth records from the Trinidad and Tobago Registrar
General. For each live birth in Trinidad and Tobago between January 2010 and September 2016,
these data include the mother’s full name, date of birth, gender, and date of the live birth. To explore
teen motherhood, these data were linked to the 2004 through 2010 SEA cohorts.

Labor Market Participation: We obtained the official registry of active contributors to the na-
tional retirement fund as of May 2017 from the National Insurance Board. These data include
all persons who were formally employed and, therefore, contributing to the national social secu-
rity system by May 2017. For each affiliate, the data include the full current name, full original
name prior to any name changes, date of birth, and gender. To explore formal employment among
individuals aged 27 through 33, these data were linked to the 1995 through 2002 SEA cohorts.

Table 1 presents summary statistics for all our matched datasets. The population is roughly
half female and there are about 231 students per school-cohort (column 1). About 90 percent of
students took the NCSE and 73.2 percent took at least one CSEC subject. The average student
passed 3.2 CSEC subjects and 34.6 percent passed five subjects including English language and
math (i.e. qualified for tertiary education). We also show the outcomes by sex and the selectivity of
the assigned school (by incoming SEA scores). Incoming SEA scores are 0.26 standard deviations

lower for males than for females, and average scores of those assigned to the top ranked schools

8We matched 97.44, 96.31, and 96.6 percent of all NCSE, CSEC, and CAPE individual records to the SEA data,
respectively. The non-match rate (between 3 and 4 percent) closely mimics the share of students served by private
schools (3.4 percent) who would not have taken the SEA.



are 1.4 standard deviations higher than those assigned to the bottom ranked schools. Females
have lower dropout rates by age 14 than males (92.1 versus 88.3 percent took the NCSE), score
0.43 standard deviations higher on the NCSE, and are more likely to qualify for tertiary education
(41.5 for females versus 27.5 percent for males). Students at the most selective schools score 0.85
standard deviations higher on the NCSE than the average student at less selective schools. They
also pass about 5 CSEC subjects on average, and 58.1 percent qualify for tertiary education; while
this is only accomplished by 11.6 percent of students at the least selective schools (column 5).

Looking at post-secondary education, about 19.8 percent of students took at least one CAPE
unit, 14.7 percent earned an Associate’s degree, and only 0.95 percent earned a CAPE scholarship.
Females passed 1.7 CAPE units, and 18.5 percent earned an Associate’s degree. In comparison,
males passed 1.1 units, and only 10.9 percent earned an Associate’s degree. At the most selective
schools, 33.6 percent of students took at least one CAPE unit and 25.8 percent earned an Associate’s
degree. Among those at less selective schools, only 4.4 percent took at least one CAPE unit and
2.3 percent earned an Associate’s degree.

Moving to nonacademic outcomes, 3.3 percent of the population had been arrested by age 18.
Arrests are concentrated among males of which 5.8 percent had been arrested by age 18. Arrests
rates are low (1.8 percent) among students from more selective schools, and are higher (4.7 percent)
among students at the least selective schools. A similar pattern is observed for teen motherhood.
While 6.9 percent of girls at the top schools had a live birth before age 19, as much as 15.2 percent
of females at the bottom schools did. Finally, 75.5 percent of the population is formally employed
(as an adult). However, formal employment is somewhat higher for males than for females, and for
those assigned to more selective schools than for those assigned to less selective schools. Next, we

describe how we estimate schools’ causal impacts on these key outcomes.

III Estimating School Impacts

We conceive of anything about the schooling environment that affects students as part of the
school effect (or value-added) - this includes practices, facilities, teacher quality, and peers. Our
first aim is to uncover the causal impact of attending each school j relative to other schools. As
such, this section describes the sources of exogenous variation that we exploit for this aim, outlines

the key identification assumptions, and shows empirically that these assumptions likely hold.

III.1 School Assignments

The Ministry of Education (MOE) uses a deferred acceptance mechanism to create an initial set
of school assignments for students. This assignment is unrelated to unobserved student or parent
actions and characteristics, so that conditional on the variables used by the assignment algorithm,

the initial assignments are unrelated to unobserved determinants of student outcomes. Following



Jackson (2010), we rely on this variation to uncover schools’ causal impacts.

School assignments are as follows: Parents submit a rank-ordered list of secondary schools they
wish their children to attend before they sit the SEA. Once the exams are scored, the top scoring
student is assigned to her top choice school, then the second highest scoring student is treated
similarly, and so on until all school slots are filed. Once a given school’s slots are filled, that school
is then taken out of the pool, and students who had that school as their top choice will be in the
applicant pool for their second choice. This process continues until all school slots are filled or all

students are assigned.” We refer to this rule-based initial assignment as the “tentative” assignment.

A key feature of the mechanism is that each school has a test score cutoff above which ap-

t.10 Because the exact

plicants are tentatively assigned to the school and below which they are no
location of cutoffs is a function of the entire distribution of test scores and choices in a given cohort
(which is not known to parents), the initial assignment cannot be gamed. As such, conditional on
school choices and smooth functions of the SEA score, the tentative assignments are beyond par-
ent, student or school administrator control and are therefore unrelated to unobserved determinants
of student outcomes.!! In reality, the official MOE placements differ from the initial assignments
because principals at Government Assisted schools are allowed to admit up to twenty percent of
the incoming class at their discretion.'> This discretion is often not used by principals. However,
to avoid bias, we follow Jackson (2010) and do not rely on the official MOE placement, but rather

use only the exogenous variation in the tentative rule-based assignment to identify school impacts.

II1.2 Identification Framework

One can write the outcome Y of student i at school j (that is, ¥;;) as below.

Yij=Vv;j+o;+Vij+&; (D)

See Appendix A for a more detailed description. Because all schools have the same preferences for students, this
is similar to a serial dictatorship game. If students listed a complete ranking of all schools, this would essentially be
serial dictatorship. However, because the lists are not complete, it is deferred acceptance (Gale and Shapley, 1962).

19This mechanism generates higher cutoffs for schools that tend to be higher ranked by parents so that a more
preferred school will be more selective. Appendix Figure B1 shows the distribution of cutoffs for each district in the
country. There is a considerable overlap of cutoffs across all districts. Indeed, Appendix Table B1 shows that all
districts have schools with cutoffs below the 10" percentile and above the 75 percentile, and most have schools with
cutoffs above the 90" percentile. As such, parents from all district have access to both more and less selective schools.

"Note that given the realized distribution of test scores and choices, the assignment system is deterministic. How-
ever, if we consider each student’s test score and preferences to be a random draw from a distribution, then any individ-
ual pupil’s chance of being tentatively assigned to a school (which is a deterministic function of these random draws
relative and their own preferences and scores) is essentially random (conditional on their test scores and choices). As
such, we argue that the deterministic outcome of these random draws is exogenous to the focus family.

12Government Assisted schools account for about 30 percent of national enrollment. Therefore, students admitted
upon discretion of principals at these schools could account at most for 6 percent of national enrollment.



In (1), v; is the fixed “value-added” of school j to outcome Y, o; is the fixed ability of student i,
and g&; is an idiosyncratic error term. To allow for heterogeneous school impacts there is also a
“match” effect between student i and school j, v;;. This may be due to treatment heterogeneity
along observed or unobserved dimensions, and can take any form. Average outcomes for students

at school j compared to those at j’ can be written as (2).

Djy=[V;=Yy]=80;;+A;;+M;;+E;j 2)

where, 8; s = [v; — v;] reflects differences in value-added, A; y = [0;|; — &/ ] reflects differences
in the average incoming ability among individuals attending different schools, M; j = [V;; — V; ;]
are differences in average match quality for the different individuals across schools, and E; v =
[€;j — & ] is the difference in the idiosyncratic errors.

Application choices: Students apply to a particular ranked portfolio of schools among all pos-
sible portfolios (¢ € C) to maximize some perceived payoff (which may be a function of match).
As such, E[M; 7|C = c| = U; ji ., where U; y . may or may not be equal to zero.

Exogenous school assignments, conditional on choices and smooth functions of incoming
test scores: For ease of exposition, we assume that all students comply with their school assign-
ment. Students with (C = c) receive school assignments that are unrelated to unobserved ability
conditional on smooth functions of test scores f(SEA;), so that E[A; | f(SEA;),C = c] = 0. How-
ever, because the assignment is conditional on C = ¢, E[M; y|f(SEA;),C =c] =E[M; 7|C = c] =
U ji . Intuitively, if students who choose C = ¢ have a higher match for school j than school j',
even with random assignment to schools conditional on C = ¢, there could be some differential
match effects across those assigned to different schools. As such, for each ¢ € C, in expectation,
the difference in outcomes conditional on smooth functions of test scores reflects true differences

in value-added plus a differential match for individuals for whom C = ¢, as in (3).

ED; y|f(SEA;),C =c| = 0, i + Kt e 3)
N L

Difference in value-added  Differential match for C = ¢

Due to the match term in (3), the differences in outcomes across schools for one group may not
reflect differences across those same schools for those who made different choices or have different
incoming test scores. However, for ease of exposition, we follow convention in this literature (e.g.,
Angrist et al. 2021; Mountjoy and Hickman 2020; Angrist et al. 2020), and assume constant value-
added effects so that y1; s . = 0 and E[D; 7| f(SEA;),C = c] = 6; y for all school pairs j and ;.
Aggregating across all choice groups it follows that E[D; »|f(SEA;),C] = 6; ;.

Identifying assumptions: Under the framework above, [D; y|f(SEA),C] is an unbiased es-

timate of the difference in fixed value-added across schools (8; ;) if: (1) school assignments are
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unrelated to potential outcomes conditional on choices and smooth functions of scores, and (2)
there are no differential match effects on average across schools (this condition is satisfied under

fixed value-added). We present evidence that these two conditions hold in Sections III.6 and III.7.

III.3 Identifying Variation

Because there are multiple test-score cutoffs embedded in the assignment algorithm, the as-
signment mechanism generates two sources of exogenous variation that we can exploit (Cattaneo
et al., 2020; Jackson, 2010): (a) variation around the cutoffs for each school (based on applicants
scoring just above and just below each cutoff) and (b) variation across cutoffs (based on all students

including those far away from the cutoffs). We discuss each in turn.
Variation around individual cutoffs (Discontinuity Variation):

The first source of exogenous variation is the variation around individual cutoffs. Consider the
scenario illustrated in the top panel of Figure 1: Choice group 1 (left) lists school 1 as their top
choice and school 3 as their second. The assignment cutoff for school 1 is 82 such that (among
those in choice group 1) students who score 82 and below are assigned to school 3, while those
who score above 82 are assigned to school 1. The lower left panel presents hypothetical outcome
data for this group (hollow circles) who score between 70 and 90. The outcome increases smoothly
with incoming test scores and there is a discontinuous jump in outcomes at the admission cutoff —
coinciding to the discontinuous jump in likelihood of attending school 1 (relative to school 3) at the
cutoff. With controls for the smooth relationship between incoming SEA scores and the outcome,
the cutoff effect is the discontinuous jump in outcomes at the cutoff, which is the value-added
of school 1 relative to that of school 3 —i.e. 6;3. This is the standard variation exploited in a
regression discontinuity (RD) design. This model can be implemented by regressing the outcome
on smooth functions of SEA scores and an “Assigned to School 17 indicator, using data only among
choice group 1. This variation is valid so long as the location of the cutoffs relative to the scores of
students are unrelated to potential outcomes. In Appendix A we present several empirical tests to
show that this condition likely holds. That is, scoring above the cutoff is not associated with a jump
in density, or change in predicted outcomes but is strongly associated with an increased likelithood

of attending ones preferred school.
Variation across cutoffs (Difference in Difference Variation):

Because there are multiple cutoffs (one for each school each year), the RD variation is not all
the identifying variation embedded in the assignment mechanism. We illustrate how, under certain
conditions, one can estimate the same parameter 0; 3 (the value-added of school 1 relative school
3) by comparing individuals away from the cutoff to those with the same test score who applied to
different schools (i.e., using variation across cutoffs). To see this, consider a second set of students

(choice group 2) who list school 2 as their top choice and school 3 as their second choice. School
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2 has a higher cut-off than school 1 such that applicants to school 2 who score above 92 on the
SEA are granted admission (top right panel of Figure 1). The lower left panel presents hypothetical
outcome data for choice group 2 (black circles) who score between 70 and 90. As with choice
group 1, outcomes increase smoothly with incoming test scores. However, because this group does
not face a cutoff between 70 and 90, there is no corresponding jump in outcomes for this group.
Students who score below 82 in both choice groups are assigned to school 3. Among these students,
any difference in outcomes among students with the same test score cannot reflect a schooling effect
or a test score effect, and must be attributed to differences in potential outcomes among those who
make different choices. The lower left panel shows this difference as the “Choice Group Effect”. If
the choice group effect and test score effects are additively separable, then the choice group effect
can be estimated using the difference in outcomes across choice groups among individuals assigned

to the same school (i.e., students scoring below 82) with the same incoming test score.

In the lower right panel, after accounting for the choice group effect (by subtracting it from the
outcomes in choice group 2), the outcomes of both choice groups are similar among those scoring
below 82 because they attend the same school, have the same incoming scores, and differences
attributable to choices have been adjusted for. If choice effects and test score effects are additively
separable, then the choice-group-adjusted outcomes for choice group 2 will approximate the coun-
terfactual outcomes of high-scoring students in choice group 1 had they not been assigned to school
1. If so, the difference in choice-adjusted outcomes across choice groups among individuals with
the same incoming scores between 83 and 92 will be roughly equal to the cutoff effect. That is,
with some additional parametric assumptions, a difference-in-difference type model using variation

across cutoffs can identify the same relative school effect as the RD variation within cutoffs.

By similar logic, even though there is no cutoff between schools 1 and 2 for these two choice
groups, one can use the choice-adjusted outcomes for those in choice group 1 who score above 92
(the cutoff for school 2) to estimate the effect of attending school 2 relative to school 1 (9271).13
The difference-in-difference (type) variation can be exploited by using data from multiple choice
groups and then including choice group fixed effects, smooth functions of test scores, and indicator
variables for being assigned to each school. This example illustrates that under additive separability
of choices and test scores, and if the effect of schools is similar at all test score levels, the RD models
and the DiD models will yield the same relative school estimates (see Cattaneo et al. (2020) for a

general discussion of this). In Section I11.6, we show that these assumptions likely hold.

Blntuitively, so long some students in different choice groups are assigned to the same school with the same (or
similar) incoming test scores, any differences in outcomes across choice groups cannot be to due difference in school
value added or incoming test scores and must therefor be due to different potential outcomes among those who make
different choices. Under the additivity assumption, the choice group effect can be identified among such individuals.
With the additional assumptions that the relationship between test scores is the same across choice groups and the
difference in school effect is the same at all incoming test score levels, the relative value-added of all schools in the
choice groups can be identified.
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Making Comparisons Across all Schools:

The set of students described above allow one to estimate the relative effects for schools 1,
2, and 3 among applicants to these schools. However, we aim to compare the causal effect of
attending each school to that of any other particular school. With different groups of students who
make different choices (and therefore face a different set of cutoffs) one can estimate impacts for
other sets of schools (say schools 3, 4, and 5). If there are considerable relative match effects and
school effects are very heterogeneous by incoming achievement, then the relative effects of schools
2 and 3 for one choice group (at a given incoming achievement level) may be very different from
the relative effects of those same schools 2 and 3 for a different choice group (at a given incoming
achievement level). If so, it would be difficult to assess the relative impacts for schools that are not
directly listed in the same choice group. However, if the relative school effects are approximately
homogeneous, then school effects will be additive (i.e., the effect of attending school 1 relative to 5
is equal to the effect of attending school 1 relative to 3 plus the effect of attending school 3 relative
to 5), and each school can be linked to all other schools through a chain of overlapping within-
group comparisons and one can compare the effect of each school to that of every other school.'*

In Section IT1.8 we show that this additivity condition likely holds in our setting.!

II1.4 Relying Only on the Identifying Variation

We exploit variation both within and across cutoffs as discussed in Section III.3. We will refer to
assigned school 7 and attended school j. Based on the algorithm, students are tentatively assigned
to school 7 if they (a) had school 7 in their list of choices, (b) scored above the cutoff for school
7, and (c) did not score above the cutoff for a more preferred school in their choices. Under the
testable modelling assumptions discussed above (i.e., (1) scoring above the test score cutoffs is
unrelated to potential outcomes (as shown empirically in Appendix A), (2) additive separability
of test scores and school choices in determining outcomes, and (3) additivity of school effects),
conditional on smooth flexible functions of incoming SEA scores and explicit controls for student
choices, differences in outcomes among students with different initial tentative assignments will

reflect true differences in value-added. One can therefore obtain assigned school’s causal effects

14Suppose choice group A allows a comparison of schools 1, 2, and 3, while choice group B allows a comparison of
schools 4, 5, and 6. So long as there is some other group that has one school from each group (say schools 2, 4, and 9)
then all schools in 1, 2, 3, 4, 5, 6, and 9 can be compared to each-other. This example highlights that if each school can
be linked to all other schools through a chain of overlapping within-group comparisons, the effects of all schools can
be compared to all other schools. This identification requirement is similar to that for estimating teacher value-added
while also controlling for school effects (Mansfield, 2015).

I3Tf school effects are additive, it implies minimal match effects or treatment effect heterogeneity so that differences
of effects across schools (even those that do not have overlapping applicants) will be equal to the relative impacts of
attending one school over another for all students.
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by estimating (4) by Ordinary Least Squares (OLS).
Yi’L’ct = Z(Ii,’t : eéTT) +f(SEAl> + )Lc + X:té + St + Eiter (4)

In (4), Y;z¢; is the outcome for student i who was assigned to school 7, and belongs to choice group
c and SEA cohort ¢. I; 7 is an indicator equal to 1 if student i was assigned to school T. f(SEA;) is
a smooth function of the incoming SEA score.'® X, is a vector of individual-level characteristics
(measured at SEA registration) including sex, district of residence fixed effects, and religion fixed

effects. S; denotes SEA cohort fixed effects; while &z, is an individual-level disturbance.

Key variables for our analysis are the choice group fixed effects A.. These identify separate
intercepts for groups of individuals who made the same school choices in the same order.!” Im-
portantly, the choice-group indicators identify groups of individuals who may have the same SEA
score but are subject to different school cutoffs — which allows for the difference-in-difference
identification across cut-offs (using individuals away from the cutoff as outlined above).'® The
estimated é{TTs from (2) identify the average Intention-to-Treat (ITT) effect of being tentatively

assigned to each school 7 (relative to the same comparison school).!”

IIL.S Using Instruments to Obtain Causal School Attendance Impacts

To estimate Treatment-on-the Treated (TOT) effects of attending school j relative to other

schools, we use the rule-based school assignments as instruments for actual school attendance.?’

16For all our main results, we model f(SEA;) with a Sth-order polynomial. However, our results are unchanged
when using alternative polynomial orders (Appendix Figure B2).

713 most years, students could list four choices. However, for SEA cohorts 2001-2006 the MOE allowed students to
list up to 6 different school choices (instead of the usual 4). Therefore, we grouped students with unique combinations
of the first 4 choices within one set of fixed effects, and included separate sets of fixed effects for choices 5 and 6.

18In principle one could efficiently rely only on the discontinuity variation by using the “tie breaking” approach
proposed in Abdulkadiroglu et al. (2019). However, this would preclude our use of the variation away from the cutoffs
which is instrumental to our ability to compare school effects across them.

9Note that because we condition on individuals rank-ordered choice lists and proximity to the school, our approach
is similar to Abdulkadiroglu et al. (2020) who assume that “any omitted variable bias afflicting OLS value-added esti-
mates is due either to spatial heterogeneity captured by distances to each school (D;) or to the preferences underlying
the rank-ordered lists submitted to the assignment mechanism.” (Page 1513). However, unlike Abdulkadiroglu et al.
(2020) where additionally “noncompliance with the assignment mechanism, are presumed to be unrelated to poten-
tial outcomes,” we observe both the initial assignment and the school attended. Therefore, we do not rely on the
additional identifying assumption of random compliance.

20Noncompliance with the algorithm-based assignment may occur for two reasons. First, as explained before, prin-
cipals at Government Assisted schools are allowed to replace as much as the bottom 20 percent of students tentatively
assigned to their schools with any student of their choosing (see Appendix A for a detailed description of this process).
The second source of noncompliance is that students may self-select and therefore not attend the schools to which they
are placed. Specifically, students (and parents) may attempt to transfer to schools other than their initial placement or
decide to attend a private school if they do not like their initial placement. While the first source of noncompliance is
specific to the Trinidad and Tobago context, the second would exist in most contexts. As both sources of noncompli-
ance are not random and may be related to students’ potential outcomes, this would render estimated impacts based on
attended schools (without a convincing source of exogenous variation) biased.
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Identification of individual school effects requires one instrument per alternative (Kirkeboen et al.,
2016). We satisfy this condition in our setting by using indicators for being assigned to each school
as instruments for attending each school. Ideally, all 134 schools would have strong first stages,
but this is not the case. As such, to avoid being under-identified, we exclude the school assignment
and attendance indicators of the schools with the weakest first stages which, therefore, serve as
the omitted category in the estimation of individual school impacts.?! We can obtain clean causal
estimates for at least one outcome for 98.5 percent of all public secondary schools in the nation

(i.e., 132 schools). The resulting two-stage least squares (2SLS) model is as follows:
Ii,j = Z(Ii,’r . 71'1;]') —l—fj(SEA,') + Aj./c +X£t8j + SJ'J + Uijcz, for each ] eJ (5)

Yijer = 2(I5j 0] “™) + f(SEA;) + Ae + X8 + S + & (6)

The endogenous variables are the 132 individual school attendance indicators (/; ;) and the ex-
cluded instruments are the 132 individual school assignment indicators (/; r). We code a student as
attending school j if the student was enrolled in school j at the time of writing the CSEC exam:s.
Therefore, attended school j and assigned school 7 are the same for those who comply with the
exogenous assignment. While each attended school has its own assignment instrument, all 132
school assignment indicators enter as regressors in each of the 132 first stages denoted by (5). The
éjTOT"’ from the second stage equation (6) is an unbiased causal estimate of the effect of attending
school j relative to the omitted set of schools for those who comply with the assignment. Note:
Because all analyses compare school estimates from the same model the particular set of schools

in the omitted category does not affect any of our conclusions.

We implement the approach outlined above to estimate individual schools’ causal impacts on
several outcomes. These outcomes include multiple high-stakes test scores, low-stakes test scores,
school dropout, arrests by age 18, teen motherhood, and formal labor-market participation. Because
we have several test outcomes, we combine similar outcomes into indexes. We created a “High-
Stakes Exams” index by running a factor analysis (using the principal-component factor method)
on all the CSEC and CAPE outcomes and then predicting the first unrotated factor.?> Using this
same approach, we computed a “Low-Stakes Exams” index grouping both NCSE academic and
non-academic performance. Appendix Table B2 shows the individual outcomes that comprise each
index and the weights used to compute each index. Both indexes were standardized to have zero

mean and unit variance. Other dimensions have been coded so that higher values reflect better

21See Appendix C for a detailed description of the school exclusion criteria.

22The first principal component represents the maximum variance direction in the data (Jolliffe, 2002). While the
sum of standardized variables has been used in other studies (e.g. Kling et al. 2007), there is no conceptual reason to
put equal weight on each measure in our context. We prefer to use the method that best summarizes all the data. As it
turns out, our measure and the sum of standardized variables has a correlation of 0.99 so that the distinction is minimal.
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outcomes. These are binary indicators denoting no dropout by age 14, no live birth by age 19, no

arrests by age 18, and adult (age 27+) formal labor market participation.

III.6 Testing Identification Assumption I: No Selection to Schools

As outlined in Section III.2, our two identifying assumptions are (a) no selection and (b) no
differential match effects. We discuss the first here. We have already established that there is no
selection in RD models using variation through admission cutoffs (Appendix A). However, as dis-
cussed in Section II1.3, we do not only rely on the RD variation (at individual cutoffs) and highlight
additional parametric assumptions under which we can exploit DiD variation (across cutoffs). To
show that the no selection assumption also holds in our main models (which use variation both
within and across cutoffs), we demonstrate that the two additional parametric assumptions under
which the RD and DiD models uncover the same parameter hold, and more importantly, that our

main estimates are consistent with what one would obtain if one used only the RD variation.
Similar School Effects by Incoming Achievement

The first parametric assumption was that the relative school effects are the same for all incoming
achievement levels. Recent work (i.e., Oosterbeek et al. 2020) shows this need not hold. We test
this using a re-weighting method motivated by Solon et al. (2015). Because we use variation across
cutoffs, we use variation among all admitted students to compute relative school effects. Because
schools admit students across a wide range of incoming scores (especially non-selective schools
— see Appendix Figure B3), one can estimate relative school effects only among students with (or
around) a particular incoming score. We approximate this by estimating (5) and (6) while weighting
the regression on individuals at different points in the incoming test score distribution.>3 That is,
where pct,; is the percentile of student i in the SEA distribution, we estimate each school’s treatment
effect (OJ-TOT’V) while weighting each observation by (1 + %)*1. This puts heavy weight on
students with incoming scores close to the X" percentile and low weight on those far away from
that percentile (see Appendix Figure B4 for the weights by SEA score). We do this for the 25",
50", and 75" percentiles. As pointed out in Solon et al. (2015), because weighting uncovers effects
that are typical for individuals who receive more weight, the differences between unweighted and

weighted estimates will be informative on the extent of heterogeneity by incoming achievement.

We document minimal heterogeneity by incoming achievement in two ways. First, we assess

the extent to which unweighted and weighted estimated school effects differ using paired ¢-tests

23We can only approximate this because not all schools admit students at all incoming achievement levels. See
Appendix Figure B3 for the distributions of incoming test scores by school selectivity. While almost all schools
admit students around the 75" percentile, effects weighted at that percentile will be largely representative of effects
for students close to that percentile. However, because the most selective schools do not admit students at the 25th
percentile, school effects weighted at this percentile will be largely representative of effects for students close to that
percentile for the least selective half of schools, but will reflect marginal effects for the lowest-scoring admits for
schools that admit student exclusively above this achievement level.
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(Appendix Table B3).>* Based on 1,399 pairwise z-tests (by school-outcome-percentile), in less
than 2 percent of cases does one reject that the estimates are the same (at the 5 percent significance
level).?> Second, we show that the unweighted estimates are very good predictors of the weighted
ones. In Appendix Figure B5, we plot the weighted effects (and the prediction 95% confidence
interval) against the unweighted (or average) school impacts. While there is some evidence that
the average effects are not always the same as those evaluated at the 75 percentile, they are
very similar so that for all three percentiles, the average-weighted effects are close to the 45°
line.2® As such, our assumption that school effects are the same by incoming achievement is largely
supported by the data. However, because school effects may not be identical throughout the entire
incoming score distribution, we show that our conclusions still hold when (a) limiting the analysis
to a homogeneous set of students, and (b) conducting the analysis among subgroups of students
among which there is strong evidence of homogeneous effects. Note, moreover, that we will show

that our main estimates are consistent with those that use the RD variation only.
Robustness to Interactions

The second assumption was that there are no interaction effects between incoming SEA scores
and school choices. A key difference between a model that uses the DiD variation (as we do) and
one that relies only on variation at cutoffs (not across) is that our model excludes interactions be-
tween school choices and incoming test scores. If the interactions are important for identification,
then our school estimates (using the DiD variation without interactions) will be biased relative to
flexible models that rely only on variation at cutoffs by accounting for interactions. As such, one
can test the importance of the additive separability assumption between school choices and incom-
ing scores by seeing if our estimates are robust to the inclusion of interactions between test scores
and school choices. Note that we cannot fully control for all the possible interactions (because
this is the level of the variation). However, the stability of our estimates to the inclusion of inter-
actions between coarse measures of test scores and choices may be informative. We, therefore,
estimate models controlling for these interactions and compare the resulting estimated school im-
pacts, éjTOT"’, to those that we obtained without these extra controls (reported in Appendix D). In

all cases, the correlations between the resulting effects is close to 1. That is, consistent with the test

2%Note that we implement a conservative estimate of the standard error of the differences by assuming that the
correlation between the errors for the two estimates of the same school is 1.

2Looking at individual outcomes, for all outcomes one cannot reject equality of effects between the average and
those evaluated at the 25" percentile or the median for any school. The only estimates that appear to differ are for
dropout and arrests evaluated at the 75" percentile. Even among these, the vast majority are the same — but insofar as
out average effect may not reflect estimates for all students, it would only be for a small number of school effects for
only these two outcomes among the highest achieving students.

26The slope predicting the percentile-weighted effects using the average effect is 0.998 for the 25" percentile, 0.923
for the 50/ percentile, and 0.707 for the 75" percentile. Only for the 75" percentile does one reject that the slope is
equal to one at the 5 percent level.
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above, our estimates are likely the same as those using the RD variation alone.
Regression Discontinuity Variation vs. All Variation

While the tests above indicate that the assumptions required for the RD and DiD models to yield
the same effects are largely satisfied, they do not directly show that our estimates are the same as
an RD model - which is the condition we require. Here, we validate our school estimates (that use
variation both within and across cutoffs) using only local RD variation through individual cutoffs
that do not exploit any variation across cutoffs. If the results using all the variation are similar to
those obtained using only the RD variation right around individual cutoffs, it would indicate that
either (a) the additional DiD identifying assumptions are satisfied, or (b) any violations of the DiD

identifying assumptions are not severe enough to lead to appreciable bias. Indeed, we show this.

For each school in each SEA cohort, we estimate the RD effect of scoring above the rule-based
assignment cutoff for that school in that cohort. As pointed out in Kirkeboen et al. (2016), this is
the difference in school quality between attending the preferred school versus attending the set of
counterfactual schools for those applying to that school in that cohort. We also obtain an estimate
of the effect of scoring above the cutoff on the impact of the attended school (i.e., éjTOT’V) relative
to that of the same set of counterfactual schools.”’ The actual cutoff effect is the change in actual
outcomes evaluated at a particular cutoff with flexible functions of test scores specific to that cutoff
(i.e., not relying on variation across cutoffs). As such, if our school IV estimates reflect the causal
impact of attending school j relative to the counterfactual schools, then the RD effect on actual

outcomes should be similar to the RD effect on our estimated IV school impacts.?

To show this, we regress the RD effects on actual outcomes on the RD effects on the estimated
IV school impacts and test if the slope is statistically distinguishable from 1. We first implement
this test using the raw school effects. Following Hastings et al. (2015), to account for noisiness in
the RD estimated effects, we weight each RD estimate by the inverse of its squared standard error.

Additionally, to account for estimation errors in the RD effects on school impacts, we implement

27 All RD estimated effects of scoring above the cutoff for each school in each year use the optimal bandwidths
derived from Imbens and Kalyanaraman (2012).

28 A similar test was implemented in Hastings et al. (2015) and Beuermann and Jackson (2020). This is also similar
in spirit to the random assignment validation of school value-added in Deming et al. (2014). See Appendix D for
further discussion of this test.
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Empirical Bayes estimates of each cutoff effect.”” The binned scatter-plot, pooled across outcomes
(Figure 2) presents the relationship for the raw school impacts (left) and the Empirical Bayes es-
timates (right) — the conclusions are the same. Using the raw estimates, we fail to reject that the
estimated slope coefficient is different from 1 (p-value = 0.48). The slopes using the Empirical
Bayes estimates (with or without weights) are close to 1, and both yield p-values well above 0.5.
This test (in addition to the two previous tests) indicate that the "no selection” condition which we

showed holds for the RD variation likely also holds for our preferred models.

III.7 Testing Identification Assumption II: No Differential Match Effects

Now we focus on the second identifying assumption. While we assumed that value-added
is fixed for exposition purposes, here we test the specific identifying assumption we require: no
differential match effects on average across schools. Following Kirkeboen et al. (2016) we test
for differential match bias within choice groups (what they refer to as comparative advantage) and
assess whether students who list school m over school k experience larger benefits from attending
school m versus school k than those who ranked school k over school m. To this aim, for every pair
of schools m and k, we estimate (7) among individuals who list both schools in their choices. All

common variables are defined as before.
Y =l O 4 (hn Ti—pm) - Op o + Lo OUKT + F(SEA) + Ac +X/8 +5, + ¢ )

In (7), I is an indicator denoting being assigned to school m, and I, is an indicator denoting
whether the individual was neither assigned to school m nor school k. Because the omitted school
assignment is school %, fokT (the coefficient on 7,,,) captures the effect of being assigned to school
m relative to school k. The variable I;_;_,, is an indicator that denotes individuals who list school
k above m (as opposed to school m above k). The direct effect of this difference in preferences is
already accounted for in A.. The interaction effect between being assigned to school m relative to k
and listing school k above m (i.e., 9,5 ;ff ) captures the differential effect of being assigned to school

m relative to k for those who chose k before m relative to those who listed m before k.

2Specifically, for any particular outcome, the predicted RD effect for school j is the weighted difference in estimated
school impacts between those just above and below the cutoff for school j. We can express the estimated parameter
as Cé,- = Yen ax(0) — Luep b (01) = Yaen ar(6k + &) — Yren b (6x + &), where A is the set of schools the students
attend above the cutoff, B the set of schools the students attend below the cutoff, a; and by the proportions in which they
do so and & the estimation error for the school impact 6. If we assume that the school impacts are not independent
within each cutoff, but that the estimation errors are, we can approximate the variance of this estimated parameter
as Var(Céj) = Y w03 + LvimCovg + YL wiSEZ, where o is given by the magnitude of the school impacts, Covyg is
approximated by the covariance between each pair of schools the students applied to and SE,? is given by the square
of the standard error of the school impact. If we also include the squared standard error of the RD estimate, SE 3 the

Y ukO'g +Y viuCoveg
(X uye Gg-‘rz vimCovg)+(L wkSE,%+SE§)

reliability ratio of our RD estimate is given by 4; = . Therefore, our Empirical Bayes

estimate of the predicted effect of cutoff j is [A; x ééj].
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If, for any pair of schools, students who prefer school m over k experience larger relative effects

from attending school m over k, then GPref

would be negative. We estimate this model for all pairs
of schools, and capture Gk’mf for each pair. We then test for whether the average and the median
of these estimates differ from zero.’® We find small average and median effects failing to reject
that these are equal to zero at the 10 percent level (see Appendix Table B4) — suggesting minimal

differential match effects of this sort.

III.8 Testing for Additivity of School Effects

Finally, as detailed in Section IIL.3, even if we can identify relative school effects among indi-
viduals who make similar choices (as shown in Sections III.6 and II1.7), our ability to compare all
schools against each other relies on the assumption that school effects are additive. This condition
holds with fixed value-added, but we show that this particular condition holds empirically. We
define the parameter 91 TT as the effect of being assigned to school m relative to being assigned to
school k. If school effects are additive, then 91 T — G,I,ZZT + 9{7 {T_ If school effects are not addi-
tive, then this condition will generally not hold. As such, to test for additivity, we implement the
sample analog of this test. That is, we test whether 6/ = 91 T4 91 TT  Specifically, for each
pair of schools m and k, we restrict the data to students that had both schools in their choices. We
then estimate equation (8), where I, is an indicator for being assigned to school m, and 1., ; is an

indicator connoting assignment to a school other than school m or school k. 3!
e O+ Lemi 005 + F(SEA) + A+ X8+ S, + € (8)

In equation (8), because the omitted school assignment is school k, G,ZTkT captures the effect of

being assigned to school m relative to school k. We then find all intermediate schools / such that

6! TkT‘”"" = 91 TT + 91 IT can be computed. As is typical in the value-added literature, because we

will use this sum of estimates as a regressor, we form Empirical Bayes estimates by multiplying
each raw sum of effects 67/ by an estimate of their reliability A, .>> That is, our Empirical

30Because we do not account for estimation errors, this test is biasing roward rejecting the null of no match effects.
31Estimated standard errors are clustered at the assigned school level.
32Where oﬁm is the variance of the sum of the two school effects to create the indirect estimate, and Ge sum 18

the variance of the estimation error for the indirect effect, the reliability ratio of our indirect school effect can be
2

written as: A = % To compute an estimate of the relrabrhty ratio, we assume that the estimation errors are

+ e.sum
is (SE 2 —|—SE 2 ) We then make the additional

standard assumption that the estimation errors are uncorrelated with the true effects Therefore the total variance of
the estimated indirect school effects is GA = 035um +E(SEy)?, where E(SE;)? is the sum of the squared expected
um

Osum

uncorrelated across schools. Therefore, our empirical estimate of o, e sum

standard errors SEG and SEek, which are approxrmated by the mean standard error of the estimates (alternatively, we
also approximated them with the median standard error of the estimates yielding equivalent results) By subtracting
our estimates of E(SE )2 from the overall variance of the estimated indirect effects, we estimate 69 sum- The estimated

reliability ratio, imk, is then computed using these two estimates (Kane and Staiger, 2008).
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Bayes estimate of the indirect effect is imk ééTkT“”". Using (9) we test whether = 1, to implement

a formal test of additivity of school effects.

A A AT Tgum
Onl = a+BlAub, "] +€ 9)

We implement this test on sets of school pairs that have at least 100 observations assigned to school
m, school k, or school [ across all SEA cohorts — this corresponds to about 15 observations per
school per cohort. A binned scatterplot of the direct estimates against the indirect estimate (i.e., the
sum) is presented in Figure 3. The datapoints line up remarkably well along the 45 degree line, and
the null hypothesis that the effects are additive (i.e. B = 1) is not rejected. This suggests that our

school effects are additive — indicating that the fixed value-added assumption is reasonable.

IV Magnitude of the School Impacts

To assess the magnitude of the school impacts on each outcome, we estimate the standard
deviation of these impacts. Because the school effects are estimated with error and noise, simply
reporting the variance of the estimated effects would overstate the magnitude of schools’ actual
impacts. As is common practice in the school and teacher effects literatures (e.g., Kane and Staiger
2008; Chetty et al. 2014), to account for this, we rely on the correlations between school effects
across years to identify the variance of persistent school effects. Following Jackson (2013), we do
this in two steps. First we estimate the IV impacts of each school with two different sub-samples.
é;g?n") and other including odd cohorts (é}:aodzv). Let p €
{even,odd}. These two school estimates contain a persistent school effect (QJ.TOT) and a transitory

One comprising even SEA cohorts (

effect (U;,). In a second step, under the assumption of joint normality of these components and

the covariance structure in (10), we uncover Maximum Likelihood estimates of the variance of the

persistent school impacts (G;TOT) and of the transitory school impacts (Gﬁ).33
pror Zrorl 0
J ~N 07 grortJ , (10)
Hjp 0 Gul (Jxp)

Table 2 reports estimates of the standard deviation of the persistent school impacts for each
outcome along with their 90 percent confidence intervals estimated by bootstrap (column 1).3* To

aid interpretation, all outcomes are coded so that higher values reflect better outcomes.

High-stakes exams: The persistent school effects for the high-stakes dimension have a standard

3The key assumption here is that the error terms are uncorrelated across even and odd cohorts. As such, the
covariance between the even and odd effects reflects the variance of the persistent effect.

34To be conservative, we exclude outlier schools with estimates lying 46 away from the median. In Appendix Table
BS5 we also show estimates of the standard deviation of the persistent school impacts without removing outliers; as well
as estimates using weighted school effects. All estimates are qualitatively similar.
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deviation of 0.441 (with a 90% confidence interval between 0.4 and 0.48). This indicates that
attending a school at the 85" percentile of the impact distribution compared to attending a school at
the median (for five to seven years) would increase high-stakes test performance by approximately
0.44 standard deviations. These estimated school impact sizes are larger than those found for school
impacts on test scores in North Carolina (Jackson 2013; Deming 2014), and than those of attending
Promise Academy in the Harlem Children’s Zone (Dobbie and Fryer, 2015); but on the same order
of magnitude as that of attending high-impact Boston urban charter schools (Angrist et al., 2013).

Low-stakes exams: The magnitude of the school impacts on high-stakes and low-stakes tests are
very similar. The standard deviation of the persistent school effect on the low-stakes index is 0.473
(with a 90% confidence interval between 0.43 and 0.51). That is, attending a school at the 85h
percentile of the impact distribution compared to a school at the median (for three years) would
increase low-stakes test performance by approximately 0.47 standard deviations.

Dropout: Because all students take the NCSE exams around age 14, our measure of dropout is
not being registered for the NCSE exams. The estimated standard deviation of the persistent school
impacts is 0.09 — indicating that attending a school at the 85/ percentile of the impact distribution
compared to attending a school at the median would reduce high school dropout by approximately
9 percentage points. Our estimated impact of attending a school with 10 higher impact on dropout
is similar than that of attending a charter high school (Booker et al., 2011) or winning a lottery to a
choice school in North Carolina (Deming et al., 2014). As such, our estimates are in line with what
one might expect based on existing studies.>

Crime: The standard deviation of the persistent school effects is 0.037, which means that being
assigned to a school at 85" percentile of the impact distribution as opposed to the median would
reduce the likelihood of being arrested as a teenager by 3.7 percentage points. Relative to the
average arrest rate of 3.3 percent, this is a sizable reduction in teen arrests. Our estimates are larger
than, but generally in line with Deming (2011) who finds that winning a lottery to attend a better
school reduced arrests among high-risk youth by about fifty percent. The confidence interval does
not include zero so that these school impacts are real and persistent over time.

Teen motherhood: The standard deviation of the persistent school effects on teen motherhood
1s 0.173. The 90 percent confidence interval is between 0.15 and 0.19. Going from a school at the
median to one at the 85" percentile of the impact distribution would reduce teen live births by 17.3
percentage points. While there are many studies of the impact of teen motherhood on schooling, we

believe that this is the first study to examine the distribution of individual schools’ causal impacts

33The charter school and choice school literatures find impacts on high school completion between 10 and 15 per-
centage points. Our estimates suggest that these choice schools may be more than 16 above the typical school.
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on teen motherhood.>® Given that the teen live birth rate is around 10 percent on average, these

represent large economically important relative impacts.

Labor market participation: The final outcome we examine is participating in the formal la-
bor market. We examine school effects on the likelihood that a student is observed with positive
earnings in the formal labor market (i.e. contributing to the national social security system).The
standard deviation of the persistent school effects on this outcome is 0.07 (with a 90% confidence
interval between 0.06 and 0.08). Going from a school at the median of the impact distribution to
one at the 85" percentile would increase the likelihood of being formally employed by 7 percentage

points. This impact is economically meaningful.

The fact that schools have economically meaningful impacts on an array of different outcomes is
not surprising. However, the policy implications of this result depends on the extent to which these
school impacts are all well-measured by a school’s impact on high-stakes exams. If school impacts
across these outcomes are highly correlated, then school impacts on high stakes exams would
identify those schools that will improve life outcomes. Using these estimates to inform policy (such
as allocating funds, school closures, or rewards) would likely improve all outcomes. However, if
those schools that improve high-stakes exams are a different set of schools than those that improve
labor market participation or those that reduce crime, it would mean that commonly used test-
based measures of school quality are incomplete. In such a scenario, using school impacts on high
stakes exams to inform policy could have deleterious impacts on other outcomes and could lead
to multitasking problems (Holmstrom and Milgrom, 1991). We examine the relationship between

school impacts across these different outcomes below.

IV.1 Is School Quality Unidimensional?

Many recent education policies (e.g., No Child Left Behind in the U.S. or League Tables in
the U.K.) are predicated on the idea that schools that raise test scores are better schools. While
this may be true on average, if school quality is multidimensional, school impacts on test scores
may not capture impacts on other important dimensions of quality. To assess this, we explore the
relationship between estimated school impacts on high stakes test scores and other outcomes. To
avoid attenuated correlations due to estimation errors in the estimated school effects, we obtain
Maximum Likelihood estimates of the true correlations between each pair of outcomes (as in Ab-
dulkadiroglu et al. 2020).3” Following the notation in equation (10), consider two outcomes 1 and
62TjOT

2 so that O]TJ.OT is the persistent effect of school j on outcome 1 and is the persistent effect

361n related work, Jackson (2019) finds that converting existing coeducation school to single-sex reduced the teen
birth rate by 4 percentage points. Dobbie and Fryer (2015) find that females admitted the a charter school in Harlem
Children’s zone are 10.1 percentage points less likely to be pregnant in their teens. Beuermann and Jackson (2020) find
that attending a preferred school in Barbados decreases the teen motherhood rate by about 6 percentage points.

37The scatterplots of the raw school effects are shown in Appendix Figure B6
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of school j on outcome 2. Similarly, u;;, and L, are the transitory effects of school j in period
p on outcomes 1 and 2. Under the assumption that the effects on outcomes 1 and 2 follow a joint
normal distribution as in equation (11), one can estimate the correlation (net of estimation errors)

between the effects on any two outcomes 1 and 2, (that is, pi»), by Maximum Likelihood.?3

91TjOT G;]TOTIJ p120'917070'9270711 0 0
TOT 2
92j ~~lo. p]ZGQITOTGQZTOTIJ GBZTOTIJ 0 0 (1
Hijp 0 0 i L p) 0
H2jp 0 0 0 oplyxyp

Table 2 presents correlations between equally weighted (or average) school impacts on high
stakes tests and the other outcomes (column 2). School impacts on high-stakes tests do not explain
large shares of school effects on the other outcomes. The correlation between school impacts on
the high-stakes and low-stakes exam indexes is only 0.1 (with a 90% CI that includes zero). While
this may seem low, recall that in addition to the difference in stakes, the low stakes exams include
non-academic subjects such as physical education and arts. Indeed, the correlation between school
impacts on the high-stakes exams and the low-stakes academic exams is 0.2, while that for the low-
stakes non-academic exams is 0.01 (Appendix Table B5). The correlation with dropout is 0.12,
and with being formally employed is 0.15. This suggests that schools that improve high-stakes
exams are associated with relatively small improvements in these other outcomes. The correlations
between performance on high-stakes and arrests are moderate and positive (0.28), while that with
no teen motherhood is slightly negative and statistically indistinguishable from zero. This suggests
that schools that improve high-stakes exams performance also tend to reduce arrests, on average,
but that only about 7.8 percent (i.e. 0.28 x 0.28 = 0.078) of the variation in school impacts on
reduced arrests can be explained by effects on high-stakes exams, and vice versa. While this may
seem low, a disconnect between school impacts on high-stakes and other outcomes like low-stakes

exams and crime has been documented in other settings (e.g. Mbiti et al. 2019; Deming 2011).
Correlations of School Effects Across Outcomes by Incoming Achievement:

One may worry that the low correlations for school impacts across outcomes may reflect stu-
dents who are marginal for different outcomes attending different schools. For example, suppose
only low-achieving students are marginal for high school dropout, while only high-achieving stu-

dents are marginal for high-stakes exams. Also, suppose that school A only admits high achievers

8Intuitively, the raw correlation can be uncovered based on the correlation between even SEA cohorts for one
outcome and odd cohorts for another, and vice versa. To dissattenuate this raw correlation on must divide by the
square root of the product of the reliability ratios for each measure (Spearman, 1904). The reliability of each measure
is obtained using the correlation between even and odd year estimates for that same outcome. Doing this calculation
manually yields very similar results (see Appendix Table B6).
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and B low achievers. Even if both schools have the same potential impacts on dropout and high-
stakes exams, school A will appear to improve high-stakes exams while school B will only appear

to influence dropout.>”

To assess this possibility, we use the weighted school impacts (as discussed
in Section IIL.6) to obtain the Maximum Likelihood estimates of the correlations of impacts across
outcomes for students at different points in the achievement distribution. By weighting the school
impacts at the same point in the achievement distribution for all outcomes, we ensure that the result-
ing correlation of impacts across outcomes is not due to differences in the students being compared,
but rather due to differences in school effectiveness (for the same set of students). Appendix Figure
B3 shows that roughly 90 percent of all schools admit students close to the 75/ percentile, so that
there is common support in this range. As such, school effects weighted around the 75" percentile
are comparable across schools and represent students that are quite similar — allowing us to estimate

correlations of school effects across outcomes for students that are largely similar.

We present the Maximum Likelihood estimated correlations between the estimated school im-
pacts on high-stakes and other outcomes when we center the weights at the 75" percentiles of the
SEA distribution in Table 2 (column 3).*’ Generally, even among students with the same incoming
level of achievement, the correlations between schools high stakes exams impacts and those on
other outcomes are low. Using weights centered on the 75th percentile increases the correlations
with teen arrests to 0.41, but all other correlations remain below 0.2. Taken together, the results
do not support the notion that these low correlations are mainly due to different schools serving
students who are marginal for different outcomes — suggesting that the low correlations reflect
different schools having impacts on different outcomes.

The patterns in Table 2 indicate that (a) schools have economically meaningful impacts on a
range of outcomes and (b) impacts on these different dimensions are not strongly related. This
suggests that school impacts on no single outcome serves as a “summary measure” for school
quality. As such, the extent to which parents choose different schools for their children may have
to do with the extent to which they value school impacts on different dimensions. We showed that
school impacts on non-academic dimensions are economically meaningful and large. As such, the
fact that parents may not choose schools that improve test scores (e.g. Abdulkadiroglu et al. 2020;

MacLeod and Urquiola 2015) may reflect parents choosing schools that improve other outcomes

3Tmagine two schools. Both schools have effect 1 on high stakes and 1 on dropout. However, only students below
60 have a dropout effect and only student above 40 have a high stakes effect. School 1 ability is uniformly distributed
between 0 and 60. In this scenario, the effect on high-stakes for the average admit to school 1 is [1 for 33% of students
above 40] = 0.33. Also, the effect on dropout for the average admit to school 1 is [1 for all students] = 1. In contrast,
School 2 ability is uniformly distributed between 40 and 100. As such, the effect on high-stakes for the average admit
to school 1 is [1 for all 100% of students] = 1. Also, the effect on dropout for the average admit to school 1 is [1 for
33% of students below 60] = 0.33. In this highly stylized example, the correlations between the effects would be -1
even though they would have the same effect had they admitted the same students.

“OIn Appendix Table B5S we also show estimated correlations when we center the weights at the 25" and 50"
percentiles of the SEA distribution. Similarly, all estimates suggest moderate to low correlations.
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(that are weakly related to test score impacts). We explore these possibilities in Section V.

V Estimating Preferences for Schools

In this section we will use the estimated school impacts and the set of secondary school choices
to (a) examine the extent to which parents choose schools based on their causal impacts, and (b)
explore the extent to which they choose schools with casual impacts on outcomes other than high-
stakes tests. As in all studies of this type (e.g. Avery et al. 2013; Burgess et al. 2015; Abdulka-
diroglu et al. 2020; Hastings et al. 2006), we infer that parents “value” or “prefer’” schools that they
rank more highly. However, we cannot observe preferences for school attributes directly. Rather,
by observing the attributes of preferred schools we can assess the extent to which preferences for
schools are correlated with particular school attributes. As such, even though the relationships be-
tween school preferences and school attributes we present are robust across several models and to
the inclusion of a rich set of controls, as in other studies of parent choices we cannot entirely rule
out that unobserved determinants of parent choices may affect our results.

Most discrete choice models infer preferences under the assumptions that the top ranked choice
is the most preferred option of all options, the second is the second preferred, and so on. When
choices are unlimited and assignments are based on deferred acceptance it is rational for individuals
to make choices in this way. Accordingly, assuming rational choices, preferences can be inferred
using the standard discrete choice models. However, under deferred acceptance assignment with a
limited set of choices (as in our setting and in many others), these choices may be strategic such
that the top-ranked school may not be the most preferred option of all options, and the second may
not be the second preferred, and so on. Because more desirable schools will tend to have higher
admission cutoffs (Jackson 2010), this kind of strategic choice is quite likely to occur among low-
scoring applicants who can only feasibly attend a smaller number (and less desirable set) of schools
than higher-scoring applicants. As such, standard models that assume the choices are truthful to
infer preferences may not be appropriate for our setting. Instead, we propose a modification to the
standard mutlinomial logit model that does not assume, or require, truthfully revealing choices.
Similar to Agarwal and Somaini (2018) we do not take the rank-order lists as true preferences,
but rather assume that the submitted list is an optimal choice of a lottery over possible school
assignments. Our model accounts for rational strategic behaviours explicitly, allowing one to infer

preferences for schools so long as choice behaviours are rational.

V.1 A Model of School Choices

To model school choices, we make a distinction between the ex post utility of attending a school
and the ex ante utility of applying to a school. We rely on theoretical results about rational choices

under deferred acceptance vis a vis these two concepts to infer preferences for schools. For ease
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of exposition, we assume one parent per child. We derive the choice probability from the utility-
maximizing behavior of parent i € N, on behalf of student i € N. Parents choose a finite number
(R) of schools among all schools in the nation. Each school is indexed by j € J. The ex-post utility

parent i derives from student i attending each school alternative j has the following general form:
Uij =U(X;,Zij, &) = 6(Xi,Zij) + €ij (12)

where U (-) is the function mapping school attributes and student characteristics to utility values
Uij, X; are observed student characteristics, Z;; are observed school-specific attributes that may

vary at the student i level (such as proximity to primary school), and &;; is a random error.

The school choice set is the same for all parents (i.e., J; = J Vi), and each parent submits a
single ranked-ordered list. Let Ul.rjf's indicate the utility parent i gets from school j that they ranked
in position s (r; = s), so that Ul.rj?l is their utility for the school ranked first, Uir]gz is their utility for the
school ranked second, and so on. Let Ul.rjf"’ indicate the utility parent i gets from attending school j
that they did not rank. Under the algorithm used to assign students to schools, among the ranked
schools, parents have incentives to truthfully reveal their preference rankings (Haeringer and Klijn
2009; Pathak and S6nmez 2013). If parents make rational choices then condition (1) below holds:

Condition (1): Ul-rjf“ >U"Vk#jeJ, a<bandb+#0: Parent i prefers their a-ranked
school over any other school k ranked below.

One could rely only on comparisons within the set of submitted choices to infer preferences about
schools (e.g. Avery et al. 2013; Beuermann and Jackson 2020). However, if not all schools are
ranked, comparisons made only among chosen schools can potentially be misleading about partic-
ular attributes if the set of choices is not random. To see this, imagine that all parents chose four
schools that are very close to home. If one were to look only within the set of schools listed, one
might infer that proximity is unrelated to choices when the opposite is true. To avoid this problem,
one must compare choices made (or at least one of the choices made) against all possible choices
(e.g. Hastings et al. 2009), or make assumptions about the set of options that could have been
chosen (e.g. Abdulkadiroglu et al. 2020). We follow the less restrictive approach and compare the
top choice to all the un-chosen schools (while explicitly accounting for proximity).

When parents are unconstrained in the number of schools they can list, then the top choice is
the most preferred school of all possible schools, that is U; ]?1 > Uy Vk # j € J (Roth and Oliveira
Sotomayor, 1992).4! However, when the number of choices is limited, parents may act strategically
so that the top listed choice is not necessarily the school they ex-post would prefer. Chade and

Smith (2006) demonstrate that when the number of choices is limited, it is rational for parents to

41 This condition is often assumed without testing it explicitly even when choices are constrained.
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maximize the expected value of the set of choices, where the expected value of applying to a set of
schools is a function of both the ex-post utility of attending the listed schools and the likelihoods
of being admitted to those schools.*> When listing a finite set of schools, it is rational to trade-
off the ex-post utility associated with attending a school against the probability of being admitted.
As shown in Chade and Smith (2006), if a parent’s ex-post most preferred school (i.e. the school
with the highest Uj;;) is not the top choice, it must be because the probability of admission to that
ex-post preferred school is too low. As such, the top choice school may not be the school with
the highest ex-post utility of attendance, but will be the school the highest ex-post utility given the
probability of admission. A useful empirical prediction from Chade and Smith (2006) is that with
strategic choices so long as the parents are rational, conditional on the probability of admission,
the top choice school must have higher ex-post utility than any unranked school. Where p;; is the

probability that student i is admitted to school j, this yields condition (2) below:

Condition (2): Uirjf" \pij > U;j“’] pixVk # j € J: Conditional on the admission probabilities,

parent i ex-post prefers their first-ranked school over any school not in the submitted choices.

The two conditions suggest that, where R; is the maximum number of alternatives ranked by parent
i, assuming rational choices, the probability that a parent i submits a particular ranking over all
schools is given by equation (13) below.

Prob[rji,rip,...,Ri] = Pr| U pij > Ul lpi Yk # j € J)

J/

Top choice preferred to all non-chosen schools conditional on admission probabilities (13)
. . ¥ViR.—1 TiR:
N (U > Ugm, 1 <m, Vme{2,..,R}) N ... 0 (U > U]

J/

—~
Higher ranked chosen ex-post schools are preferred to lower-ranked chosen schools

Therefore, if one had measures of the admission probabilities, and one correctly modelled how
admission probabilities influence choices, then one can infer ex-post preferences across all schools

based on the choices (even when the top choice is not the ex-post preferred school).

V.2 Modified Exploded Multinomial Logistic Model

Equation (13) defines the likelihood of observing a set of choices as a function of parent utilities
for schools and random errors. We make some assumptions on the form of U;;, the form of U; j\ Dijs
and the distribution of &;; to model equation (13) and use the observed choices to infer parental
preferences for school attributes. Following Hastings et al. (2009) and Abdulkadiroglu et al. (2020),

we parametrize O(-) as a linear-in-parameters function of the school characteristics. Where f is

“2When there are finite choices, as in our setting, rational agents will choose the portfolio of four schools that as a
whole provide the greatest expected utility. Once this set of schools is decided, they will order them by ex-post utility
(see Chade and Smith (20006)).
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a vector of deterministic components of school preferences the ex post utility of student i from

attending school j is
Uij:B/Zij-i-Eij (14)

To model strategic behaviours, we also parametrize U;j|p;;. In a simple behavioural model,
when choosing the top choice school, parents may trade-off admission probability against other
school attributes. This probability may enter the ex-ante utility additively. Alternatively, as sug-
gested in Chade and Smith (2006), individuals may make choices based on expected utility such
that the admission probability is multiplicative to the ex-post utility. To allow for both possibilities,
we implement a flexible model that includes the admission probabilities as a standalone predictor
of choices and also includes interactions of each observed characteristics with the these probabil-
ities. Note: For ease of exposition, we model behaviours with respect to g;; = 1 — p;; — i.e., the

probability of rejection of person i from school j. It follows that

Uijlpij = B1Zij+ B3 (Zijqij) + 7gij + € (15)

The parameter 7 captures the extent to which parents avoid schools that have low probability
of admission (and therefore low expected utility), while 3, captures the extent to which individuals
“discount” particular school attributes with the admission probability. 8| captures the relationship
between choices and school attributes when the probability of rejection is zero (i.e., the probability
of admission is 1). Importantly, this is the same parameter vector as in equation (14). Because we
impose no restriction on the sign or magnitude of the interaction parameters (i.e., both $, and @
can be positive, zero or negative), the model is sufficiently flexible to allow for individuals to be
risk loving, risk neutral, or to exhibit varying degrees of risk aversion.

We further assume that &; is distributed i.i.d. extreme value, that is F(&;;) = e~¢(~%/). Under
this standard distributional assumption (see Train (2009) and McFadden (1973)), and that of ratio-
nal strategic behaviours, the probability that parent i submits a particular ranking over schools (i.e.

Equation (13)) is simply a product of standard logit formulas.*> Accordingly, where the parameter

“3That is, where g; ;j is 1 minus the probability of admission for student i to school j, and parameter vector 8 =
[B1, B2, 7], the probability that parent i chooses the ranking {r;1,ri2,...,R;} is:
B exp(BiZi} + B (Z q;} ) + mq;))
 exp(BIZ + B2 g ) + gl ) + iy exp(BIZ + By (ZiP pli? + mpi)
exp(BiZ)) exp(BiZ;" ")
il exp(BiZi)  exp(B{Zf ) +exp(B{Zy")

Prob[r“,r,-z,...,Ri}
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vector B = [B1, B2, ], the log likelihood of observing all the choice lists for all parents is:

N N

logL(B) =) logli(B) =) _log (Problri,ri,...,Ri]). (16)
i=1 i=1

Under the aforementioned behavioural, functional form, and distributional assumptions, one can

estimate the relationship between school preferences and school attributes 3; by estimating this

model by maximum likelihood (i.e. finding the 8 vector that maximizes this expression).

Our model is conceptually similar to others in the literature but there are two key differences.
First, we include an additional choice to the standard exploded logit model: In our first pseudo-
observation, the individual chooses her first-ranked school over the set of all unranked schools
in Trinidad and Tobago. As discussed above, including this additional first pseudo-observation
allows us to anchor each individual’s choices to a common set of schools for all parents — making
the choices and preferences comparable across individuals. The second key difference is that, as
informed by the theory, when comparing the top choice to all unranked choices, we include the
rejection probability as a covariate in the model, but we do not include it when comparing schools
within the chosen list. These two modifications to the conventional multinomial logit model allow

us to anchor each individual’s choice set while also explicitly accounting for strategic behaviors.**

V.3 [Estimating Admission Probabilities

When we compare the top choice school to all un-chosen schools, we account for the probabil-
ity that student i would have been assigned to each school j had they applied. In many research
settings, this probability is difficult to uncover. Fortunately, because we have many years of admis-
sions data and students are assigned to schools based on a known algorithm, we can approximate
this probability with the historical likelihood that student i would have scored above the cutoff
for school j given their own incoming SEA score. We report these assignment probabilities for
four different schools by the percentile of incoming SEA scores in Figure 4. School A is a very
selective secondary school. Across all years, no student below the 82"¢ percentile scored above
the cuttoff for that school and all students above the 92"¢ percentile did. We show similar figures
for less selective schools in other panels. Depending on their incoming SEA score, students may
be marginal admits for some schools (predicted probabilities greater than zero and less than 1), be

virtually guaranteed assignment at some schools, and have virtually no chance at others.

Because there is uncertainty for any student regarding their exact score, we compute the like-

#0Our model differs from Hastings et al. (2005) and Hastings et al. (2006) in that it uses a version of the exploded
logit model with fixed coefficients, instead of estimating random coefficients by using mixed logit utility models.
Abdulkadiroglu et al. (2020) use the rank-ordered multinomial logit model to estimate a single measure of each school’s
popularity separately for different covariate cells, whereas we use the modified version of the same model to estimate
average population preferences for different school attributes.
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lihood that student i is within “striking distance” of a given cutoff as follows: For each school in
each year and each SEA score, we code the “rough” likelihood as O if the score was more than 5
percentile points below the cutoff; 0.5 if it was within 5 percentiles of the cutoff; and 1 if it was
above the cutoff by more than 5 percentiles. We then compute the probability of student i with a
particular SEA score being assigned to school j (p;;) as the average of these “rough” likelihoods
for that SEA score across all years (excluding the year when the student actually applied). We also
show these probabilities for the selected schools in Figure 4. In our choice models, we use these
rough probabilities and, to avoid extreme values, we truncate the rough probability at 0.05 and 0.95.
So long as students are somewhat aware of these relationships based on historical precedent, our
estimated probabilities proxy for the real admission probabilities used when making choices.
Indeed, in Appendix E we show that the admission probability strongly predicts school choices
consistent with rational strategic behaviours — that is, conditional on observable measures of school
quality, individuals are much less likely to rank schools at which their own rejection probability
is high. More concretely, on average, a 20 percent higher likelihood of admission is associated
with the same difference in choices as about a quarter of a standard deviation increase in incoming
peer achievement or increasing the distance to school by 1.5 kilometers (just under a mile). While
we emphasize the importance of modelling potential strategic behaviours, note that none of these
modelling choices is consequential for our conclusions, as our main results are robust to excluding

the admission probabilities all together.

V.4 Choice Parameter Estimates

We examine whether parents express preferences for schools based on their impacts on aca-
demic and non-academic dimensions, above and beyond easily observed school attributes. Our
full estimation sample includes 329,481 households making school choice decisions. We estimate
choice models separately for each (SEA score ventile) x (gender) cell to allow preferences to vary
based on the student’s gender and incoming achievement. Estimated standard errors are adjusted
for clustering at the school-district level. Because the point estimates of the modified exploded
multinomial logistic model are not easily interpretable, we report on the relative magnitudes and
statistical significance of the estimated coefficients. We report on the coefficients on the standalone
school attributes (i.e. B; from equation (15)) which represents the relationship between school
preferences and choices when there are no strategic considerations — i.e., when the probability of
admission is one.*> Except for the natural log of distance to school, all attributes have been stan-

dardized to be mean zero and unit variance (for this section of the analysis only).

We present results from two main models; (a) an Impacts Only Model (which includes schools’

43Qur main conclusions are the same when estimating more restrictive choice models that: (a) do not include neither
the additional pseudo-observation nor account for admission probabilities (ie., standard rank-ordered logit); and (b)
include the additional pseudo-observation but do not account for admission probabilities (See Appendix F).
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causal impact estimates for all outcomes, peer quality, and log distance), and (b) a Full Model that
includes schools’ causal impact estimates for all outcomes, the school-level averages for all the
outcomes, peer quality, and log distance. All specifications include control variables for whether the
secondary school is on the same island, whether it is all-girls, whether it is all-boys, the estimated
“rough” likelihoods of school rejection (but only when comparing the top choice to all unranked
schools) and interactions of these likelihoods with all school attributes. Because we seek to shed
light on the relationship between schools causal effects and choices, we focus the discussion on

these variables while others are included as controls.*®

To facilitate statistical inference, we pool estimates across different cells and report pooled
coefficients and standard errors in Table 3.* Note that, for each model, we test for the significance
of school impacts in six dimensions. To allow for a five percent type-I error among the six school
impacts estimates, we use a simple Bonferonni adjustment. This requires an individual alpha of
0.05/6=0.0083 or (with a two-sided alternative hypothesis) a 7-statistic of 2.64. Because these are
pooled averages across nonlinear models, while the reported z-statistics are valid for testing the
null of zero relationships, the pooled averages should be interpreted with caution. As such, the

coefficient estimates we use for interpretation come from the un-pooled models.

Before discussing the relationship between school impacts and school choices, we investigate
the importance of proximity and incoming peer quality. The coefficient estimates for each cell are
presented in Figure 5. With respect to distance, the figure reveals three key patterns. First, all
students rank closer schools more highly - for all cells the estimate on distance is negative (with
p-value<0.01) and the pooled models (Table 3) both have ¢-statistics over 20. Second, parents of
the highest-achieving students (the top 20 percent) are somewhat more responsive to distance than
those of lower-achieving students. Note that the patterns for the impacts only model (panel a) and
the full model (panel b) are largely the same — indicating that distance to school is largely unrelated
to other school attributes when shaping school preferences. Third, the relationship between choices
and proximity for parents of boys and girls are similar within each achievement group.

A second key attribute when choosing a school is the academic achievement of peers (Hastings
et al. 2005; Hastings et al. 2006; Hastings and Weinstein 2008). Figure 5 shows the coefficients
on the potential peers’ academic quality (the average SEA score of the incoming cohort). In both
models, one rejects that choices are unrelated to peer achievement for every cell at the 5 percent
level, and the pooled models (Table 3) both have z-statistics over 20. In the impacts only model
(panel a), parents of higher-achieving boys are more responsive to peer quality than low-achieving

counterparts. However, this difference largely goes away in the full model (panel b). Also, notice

46See Appendix G for the estimated coefficients on the school-level averages outcomes from the Full Model.
4TWe report the mean of the coefficient across cells. The standard error of this mean is computed assuming indepen-
dence across cells.
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that the magnitude of the estimated coefficients from the full model fall by over a third relative
to the impacts only model — suggesting that the association between school preferences and better

peers (higher incoming achievement) may partially reflect preferences for better average outcomes.

The importance of proximity and peer quality in shaping the schooling decision is consistent
with other studies (e.g., Hastings et al. 2005; Abdulkadiroglu et al. 2020). A comparison of the
coefficients on peer quality and proximity from the full models implies that, on average, increasing
peer quality by about 0.445 standard deviations (roughly the difference between a student’s top
choice school and the second choice school) is associated with the same difference in choices as
doubling the distance between the primary and secondary school. That is, the choice parameters
imply that parents may be willing to travel about 3.2 times farther to attend a secondary school with
one standard deviation higher in incoming peer scores. The average distance is about 6 kilometers,
so that this amounts to travelling an additional 13 kilometers (or 8 miles) to attend a school with one
standard deviation higher peer achievement. This relative relationship is largely similar throughout

the achievement distribution for both males and females.
V4.1 Impacts on Academic Qutcomes

The previous results suggest that parents in Trinidad and Tobago make similar choices to parents
in other settings and appear to make rational choices. We now turn to the importance of schools’
causal impacts. Figure 6 and Figure 7 plot the estimates separately for each outcome. In the top
panels, we plot coefficients on schools causal impacts from the impacts only model. In the bottom
panels, we plot coefficients on schools causal impacts from the full model (that also includes school
level averages). We focus on the relationship between choices and the school impacts, but we plot
the coefficients on school level average outcomes from the full model in Appendix G.

We first discuss the relationship between school preferences and school impacts on high-stakes
exams. Figure 6 (panel a) summarizes the impacts only results and reveals three patterns: (1)
School impacts on high stakes exams are associated with the choices of most parents, (2) The
choices of parents of high-achieving students are more strongly related to school impacts on high-
stakes exams than those of parents of lower-achieving students, and (3) at all levels of incoming
achievement, the choices of girls’ parents are more strongly related to school impacts on high-stakes
exams than that of parents of boys. These patterns are illustrated by the positive and significant re-
lationship between the individual’s score percentile and the coefficient magnitude (which is more
pronounced for girls). In the full model, as we control for school averages (i.e., average exam
scores and that for other outcomes), the relationship between school preferences and school im-
pacts on high-stakes exams is appreciably weaker (Figure 6, panel b) — indicating that some of the
association between school impacts and parent preferences may have been driven by peer quality or

average outcomes (as in Abdulkadiroglu et al. (2020)). While one can reject that the choices of par-
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ents of higher-achieving students are unrelated to school impacts on high-stakes (p-value<0.001),
in the full model the choices of parents of children with low incoming scores are largely unrelated
to school impacts on high-stake tests (indeed, the pooled z-statistics on high-stakes exam impacts
are 9.1 and 0.14 for those above and below the median, respectively).*® For those in the top 20
percent of incoming achievement, (taken at face value) the estimates imply that parents of girls and
boys may be willing to travel roughly 30 and 15 kilometers farther to attend a secondary school at
the 85" percentile of the high-stakes impact distribution than one at the median, respectively. This
pattern for high-achieving students stands in contrast to Abdulkadiroglu et al. (2020) who find that
after conditioning on peer quality, no parent’s school preferences are related to school impacts on

school exit exam performance. We discuss possible reasons for these differences in Section V.5.

Our next academic outcome is low-stakes exams. While there is strong evidence that certain
parents may prefer schools that raise high-stakes exam performance, there is weak evidence that
parents prefer schools that improve low-stakes exam performance (conditional on high-stakes per-
formance).*® Specifically, the impacts only model (Figure 6, panel a) renders small insignificant
estimates across most of the incoming achievement distribution for both boys and girls. In the full
model the point estimates are larger in magnitude, but are mostly not statistically different from
zero. Indeed, the pooled inference tests yields z-statistic of 2.05, which is below the threshold for
rejection on 2.64 to account for multiple hypothesis testing. The figure does suggest that (in the full
model only) parents of females choose schools with higher impacts on low-stakes exams while the
opposite is true for boys. However, this pattern only exists in particular sub-samples of the data and
is not robust across models (full and impacts only), so we take this as suggestive at best. In Trinidad
and Tobago, average school outcomes on high-stakes exams are made public, while average school
outcomes on low-stakes exams are not. As such, the stronger and more robust relationships be-
tween school preferences and high-stakes impacts than for low stakes impacts are consistent with
(a) parents discerning school impacts on high-stakes exams but not on low-stakes exams, or (b)
parents not caring about school impacts on low-stakes tests precisely because they are low stakes.

Our final academic outcome is dropout. As with low-stakes exams, the patterns suggest that
parents are not systematically more likely to chose schools that causally reduce dropout. In the

impacts only model, the relationship is not different from zero for most cells, but there is some

“8Looking at the school average high-stakes scores (Appendix G), the relationship between school choices and
school averages mirror those of school’s causal impacts - the choices of high-achieving males and females are associ-
ated with better school average high stakes performance, but not those of lower achieving males and females. These
patterns are consistent with Hastings et al. (2006) who find that parents value schools with better average outcomes,
or with MacLeod and Urquiola (2019) who argue that parents may value schools with better average outcomes if such
attributes serve as positive signals in the labor market for example.

49 An insignificant or small estimated coefficient could indicate that either parents don’t value that particular school
attribute or, alternatively, that parents care about it but they don’t have enough information about it. We favor the
interpretation that an insignificant school feature does not play an important role in the schooling decision, remaining
agnostic about which reason is more likely to occur in each particular case.
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suggestive evidence that higher achieving parents may be more likely to chose schools that causally
reduce dropout (Figure 6, panel a). In the full model, for none of the gender-by-achievement
cells can one reject that the coefficient on dropout impacts is zero (Figure 6, panel b). Consistent
with this, the pooled ¢-statistic in the full model is -0.411 so that one cannot reject that there is
no relationship on average. As with low-stakes exam impacts, there are suggestive patterns for
different samples, but these are generally not robust. As with the low-stakes exams, school-level
dropout rates are not publicly reported. As such, the lack of a strong relationship between school
impacts on dropout and school preferences may be because school impacts on dropout may be

particularly difficult for parents to observe and therefore respond to.
V.4.2 Impacts on Non-Academic Outcomes

Next we document the relationship between parent school choices and school impacts on non-
academic outcomes in Figure 7. Recall that all variables are coded so that positive values indicate
better outcomes. We start with teen motherhood. The patterns from the impacts only model (panel
a) reveal little association between school choices and impacts on teen motherhood for females, but
a positive relationship for males. The pooled ¢-statistic is 2.27, so that (after accounting for multiple
hypothesis testing), one does not reject that there is no association on average. However, in the full
model that also includes the teen motherhood rate (and the averages for all other outcomes), the
point estimates for females become positive at the lower end the distribution and many of the point
estimates (at the bottom of the achievement distribution) for both males and females are positive
and significantly different from zero at the 5 percent level (panel b). Consistent with this, in the full
model the pooled ¢-statistic is 6.44, so that the null of no association on average is rejected. This
relationship is driven primarily by those below the median on the distribution where this association
if very strong (pooled #-statistic is 10.5).

Taken together, the results indicate that parents of low-achieving students (both males and fe-
male) choose schools that causally reduce teen motherhood. In the full model, the point estimates
imply that the average parent of a male and female would be willing to increase their distance by
about 6.2 and 1.3 kilometers to send their child to a school that was at the 85 percentile of the
(non) teen motherhood effect distribution versus one at the median, respectively. These choice
patterns are even stronger for parents of students in the bottom half of the incoming achievement
distribution, where the average parent or a male and female would be willing to increase their dis-

tance by about 11 and 4.5 kilometers to send their child to a school that was at the 85/ percentile
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of the (non) teen motherhood effect distribution versus one at the median, respectively.’® While
it is true that only females can be mothers, both males and females are affected by teen pregnan-
cies, so that a response from both males and females is not unreasonable. However, the stronger
relationships for males is somewhat counterintuitive. This could reflect the fact that the choices of
females may be more strongly related to school impacts on academic outcomes in general (as is
the case), but we cannot rule out that school impacts on teen birth are correlated with some other

school attribute that parents are responding to.

Another important non-academic measure is teen arrests. There is robust and strong evidence
that the parent choices are related to school impacts on teen arrests. One can see this clearly in the
impacts only model in Figure 7 (panel a). Parents of boys and girls at all achievement levels are
more likely to chose schools that reduce teen arrests. The figure reveals that one can reject zero
association for most cells (the pooled ¢-statistic is 16.9), and that the relationship is stronger for
parents of high-achieving students. In the full model (with averages included), the relationships
are largely unchanged (panel b) — the point estimates all remain positive and the pooled z-statistic
is 9.08. In sum, both boys and girls choose schools that causally reduce arrests. Overall, parents
of the highest-achieving students appear to have the strongest preferences for schools that causally
reduce crime. Point estimates suggest that parents of students in the bottom decile may be willing
to increase their distance by about 3 kilometers to send their child to a school that was at the 85"
percentile of the (non) teen arrest impact distribution versus one at the median, while that for those
in the top decile is about 13 kilometers. These results are consistent with parents preferring schools
with a lower prevalence of risky behaviors (conditional on peer achievement and average test score

outcomes) and schools that reduce these behaviours (i.e., arrests) in their own children.

Given that most arrests are of males, the fact that parents of females are generally more re-
sponsive to school impacts on arrests than boys may seem odd. Similarly, because teen arrests are
more prevalent among low-achieving students, the greater responsiveness among high-achieving
students is not intuitive. We speak to these points in a number of ways. First, we point out that an
aversion to crime victimisation would lead one to prefer schools that causally reduce crime even if
one is not worried about ones own child committing a crime. As such, the reactions of high achiev-
ing parents and parents of girls may reflect an aversion to crime victimisation. Second, we show
that arrests do occur even among high achievers in Appendix Figure B7, such that being arrested is

not irrelevant for any group. Third, we point out that being arrested is an equilibrium outcome so

S0We also compare the implied distance a student would be willing to travel for a 16 increase in high-stakes exams
impacts vis-a-vis the distance a student would be willing to travel for a 10 increase in (non) teen motherhood impacts.
We find that low-achieving students may be willing to travel 5 to 10 kilometers farther to attend a school with 16 higher
(non) teen motherhood impact (reduce teen motherhood by 17.3 percentage points) than a school with 10 higher high-
stakes exam impact (raise scores by 0.440). For both, males and females this relation reverses as the incoming test
scores improve (Figure 8, left panel).
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that parents that value low arrests may send their children to schools that reduce arrests (and also
do other things to avoid arrests) leading them to have lower arrest rates in equilibrium. Finally,
the pattern for arrests across groups may reflect a differential responsiveness to school attributes in
any dimension across student types. To speak to this last point, we use the proximity estimates to
compute the implied distance a student would be willing to travel for a 10 increase in test score
value-added compared to a 10 increase in arrests value-added. Using this approach (which would
account for general differences in responsiveness to school quality across student achievement lev-
els and sex) the patterns are consistent with one’s intuitions. The middle panel of Figure 8 shows
that low-achieving males may be willing to travel 5 kilometers farther to attend a school with 1o
higher arrest value added (reduce arrests by 3.7 percentage points) than a school with 15 higher
high-stakes exam value added (raise scores by 0.440). In contrast, girls are similarly responsive to
arrests and high stakes exam value-added. Looking at students at the top of the achievement dis-
tribution, the relationships are flipped. These high achieving students (both boys and girls) would
travel farther for those same test score gains than for the reduction in arrests. In sum, when com-
pared to the relationship between school preferences and high stakes exam impacts, parents of boys
appear to place more relative weight on arrest value added than girls, and parents of low-achieving
students (particularly boys) appear to place more relative weight on arrest value added than those

of high-achieving students — patterns that align well with ones intuitions.

The last outcome we examine is formal employment at ages 27 and older. As with arrests,
There is robust and strong evidence that all parents choose schools with positive causal impacts on
employment (Figure 7). In the impacts only model (panel a), the pooled ¢-statistic is 13.8 - well
above the multiple hypothesis adjusted threshold for rejecting no association. This is largely similar
in the full model (panel b) — reinforcing the robustness of this relationship. In the full model, the
pooled ¢-statistic is 10.26 - leading one to reject the null of no association. In the full model, the
point estimates suggest that, on average, parents may be willing to increase their distance by about
5 kilometres to send their child to a school that was at the 85" percentile of the employment impacts
distribution versus one at the median. These patterns are noteworthy for two reasons. First, this is
the first direct demonstration that parents choose (i.e., prefer) schools that have causal impacts on
formal employment (above and beyond peer quality and impacts on academic outcomes). Second,
even though choices for children in the bottom half of the incoming achievement distribution are
largely unrelated to school impacts on high-stakes test scores, they are related to school impacts on
formal adult employment — suggesting that for more than half of the population, school impacts on

employment may matter more than impacts on high-stakes exams.

To directly compare the relationship between high-stakes test-score value added and choices
and those for formal labor market participation, the right panel of Figure 8 suggests that low-

achieving males and females may be willing to travel 4 and 1 kilometers farther to attend a school
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with 10 higher labor market value added (increase employment by 7 percentage points) than a
school with 10 higher high stakes exam value added (raise scores by 0.440), respectively. In stark
contrast, males and females at the top of the achievement distribution would travel about 3 and
10 kilometres farther for those same test score gains than for the increased employment. As with
the arrests effects, the pattern of choices suggest that low-achieving students may place greater
relative weight on school effects on non-academic outcomes (as compared to effects on academic
outcomes) than high-achieving students for whom schools’ test-score value added is very strongly

associated with school preferences.

In sum, we show that parents choose, and therefore likely value, schools that have higher causal
impacts on certain academic and non-academic outcomes. We show that this is not simply due to
parents choosing schools with better average outcomes or better peers. Also, consistent with school
quality being multidimensional, parents choose schools that have causal impacts on outcomes other
than high-stakes tests such as crime and formal labor-market participation. Importantly, the cor-
relations between school impacts on high stakes exams and impacts on arrests and formal labor
market participation are relatively low. This suggests that strong parental preferences for school
impacts on non-academic outcomes (that are largely unrelated to test score impacts) are a plausible
explanation for the weak link between parental preferences and school impacts on test scores.”!
It is important to point out that because school effects are very similar throughout the incoming
test score distribution, these patterns are not due to schools having different effects on children by
incoming achievement — a form of match effect.>> That is, we can rule out that our key results
are driven by test score impacts having larger marginal effects for high-achievement children while
non-academic impacts having larger effects on low-achieving children. Rather, our results likely

reflect differences in preferences (or differences in information).”>

S1Our models use the 2SLS estimated school impacts as explanatory variables across all years. Because the choice
year is included when forming this estimate, one may worry about mechanical correlation between the estimated
impacts and the desirability of the school. To assuage this concern, we estimate our choice models using leave-year-
out 2SLS estimates. Because the 2SLS estimates are based on several instruments, leave-year-out estimates can vary
a lot for the same school from year to year — introducing non-trivial estimation errors. As one might expect, (see
Appendix H), our results using both leave-year-out estimated impacts and leave-year-out school average outcomes are
noisier but qualitatively similar, and our central conclusions are unchanged.

In Appendix Table B7, the maximum likelihood based correlations between the average effects and those at the
25, 50" and 75" percentiles are all very high (above 0.88) for high stakes exams, low stakes exams, teen motherhood,
and formal employment. For teen arrests, they are somewhat lower (above 0.72) but are still high.

31t is worth noting that insofar as the equal-weighted school impacts are inaccurate measures of school impacts
for particular kinds of students (i.e., there are large match effects in unobserved dimensions), it would bias our results
toward zero — making it less likely to find any association between choices and estimated school impacts. As such, even
if there were considerable match effects in dimensions other than incoming achievement, any systematic relationships
we find between choices and school impacts would reflect real relationships.
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V.5 Discussion of Parental Preference Results

One of our key findings is that parents may value school impacts on multiple outcomes above
and beyond peer quality and average outcomes. The only other paper to formally test this notion
is Abdulkadiroglu et al. (2020) who find that parents do prefer schools that improve academic
outcomes, but not after controlling for peer quality. Our results are a nice counterpoint to their work
because we demonstrate that context matters. Also, by moving beyond academic outcomes and
examining parental preferences for non-academic outcomes such as crime, teen fertility, and labor
market participation, we shed light on the extent to which parents value school impacts beyond

academics — this is very important given that many school choice evaluations use test scores alone.

Another potential explanation for differences between our findings and Abdulkadiroglu et al.
(2020) is market size. Several studies show that when individuals are faced with too many options
they often opt for simplicity (e.g., [yengar and Kamenica 2010), are more likely to rely on heuristics
(e.g., Besedes et al. 2012) and less likely to make the optimal choice (e.g., Schram and Sonnemans
2011). Abdulkadiroglu et al. (2020) examine parent choices in the largest school district in the
United States (which offers over 700 programs at over 400 schools). Their setting is a context in
which sub-optimal behaviors are most likely to occur. In contrast, in our setting, individuals choose
from a set of 134 options. While this is by no means a small market, it is much smaller than New
York City (as are most markets), and therefore individuals’ choices are less likely to be subject to

errors induced by “overchoice.”

Our finding that school choices are related to school impacts on high-stakes examinations only
for parents of high-achieving students relates to the overall lack of robust achievement effects, on
average, of attending schools that parents prefer (Beuermann and Jackson, 2020). However, in
the Trinidad and Tobago context, school impacts may be easier to infer for relatively sophisticated
parents. Average incoming scores are well known and publicly reported. Additionally, school
averages for the high-stakes exams are also reported at the school level. As such, it is plausible for
a relatively sophisticated parent to observe schools with similar average outcomes and infer which
one likely has larger impacts (based on average incoming test scores). In settings where average
incoming scores are not reported or well known, this calculation may be much more difficult to
conduct — offering another plausible explanation for our finding that the preferences of some parents
(i.e., those of higher achieving students) are related to school’s test score impacts (conditional on
average outcomes) while some other studies do not find so. However, the fact that parents’ school
preferences are systematically related to schools’ causal impacts on arrests and employment (even
conditional on school averages and peer quality) suggests that some parents may be able to infer
school impacts even when information is imperfect (perhaps through some combination of knowing

the incoming student characteristics and reputation effects regarding average outcomes).
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VI Conclusions and Policy Implications

Individual schools have meaningful causal effects on an array of outcomes; these include low-
stakes test scores, dropout, teen motherhood, high-stakes school leaving exams, being arrested, and
formal labor market participation. However, consistent with school quality being multidimensional,
the correlations between school impacts on high-stakes tests and other outcomes is surprisingly
low. From a policy perspective, our results suggest that school impacts on test scores may not
be the best measure of a school’s impacts on longer-run outcomes. Accordingly, policymakers
should be cautious (and thoughtful) regarding using test score impacts in accountability systems

and incentive pay schemes and may wish to adopt a more holistic view of school quality.

Linking causal school impacts to choice data, we find that parents choose schools that have
larger positive impacts on high-stakes tests and also those that decrease crime and increase labor
market participation. These patterns persist even conditional on average school outcomes and peer
quality. These results suggest that parents may use reasonable measures of school quality when
making investment decisions for their children — a requirement for the potential benefits of school
choice (Friedman, 1955). The fact that parents do not only choose schools that improve academics
but also those that improve non-academic and longer-run outcomes suggests that the benefits to
school choice may extend to a wide range of outcomes (not just test scores). This result provides
a plausible explanation for the fact that parental preferences for schools are not strongly related to
school’s test score impacts (MacLeod and Urquiola, 2019). It also suggests that policy evaluations

based solely on test scores may be misleading about the effects of school choice on welfare.

We find important heterogeneity in parent choices. High-achieving students’ choices are more
strongly related to schools estimated impacts on high-stakes exams than impacts on non-academic
outcomes, while the choices of low-achieving students’ are more strongly related to school’s im-
pacts on non-academic outcomes than those on high-stakes exams. This suggests that market forces
may drive competition more strongly to raise test scores among schools serving high-achieving
populations and non-academic outcomes among schools serving low-achieving populations. If
these differences reflect parents’ true preferences, this may be efficient. However, if these dif-
ferences across parents reflect differences in information, there may be value to the provision of
information to parents regarding the causal impacts of schools (as opposed to school averages) on
a wide array of both academic and nonacademic outcomes.>* The provision of such information
may improve the decisions of all parents and could increase the potential allocative efficiencies and

competitive benefits of school choice.

>*A recent experimental study in Chile (Allende et al. 2019) find that a personalized information intervention led
parents to chose schools with higher causal impacts which in turn improved their children’s academic achievement.
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Tables and Figures

Table 1: Summary Statistics

All Schools Male Female Aboye Bel(_)w
median median
(H (2) 3) “4) (5)
Panel A: SEA data (cohorts: 1995 - 2012)
Female (%) 50.46 53.99 46.94
(50.00) (49.84) (49.91)
Admitted cohort size 231.17 233.75 228.78 168.15 325.16
(177.65) (176.52) (178.65) (130.07) (196.56)
Standardized SEA score 0.00 -0.13 0.13 0.70 -0.70
(1.00) (1.04) (0.94) (0.64) (0.78)
Individuals 329,481 163,217 166,264 164,519 164,962
Panel B: NCSE data (linked to SEA cohorts: 2006 - 2012)
Took NCSE (%) 90.22 88.34 92.10 95.18 82.54
(29.70) (32.10) (26.98) (21.42) (37.96)
Standardized NCSE score 0.00 -0.22 0.21 0.30 -0.55
(1.00) (1.00) (0.96) (0.90) (0.94)
Individuals 111,294 55,517 55,777 67,616 43,678
Panel C: CSEC data (linked to SEA cohorts: 1995 - 2011)
Took at least 1 subject (%) 73.22 66.96 79.36 86.98 59.78
(44.28) (47.04) (40.47) (33.66) (49.03)
Number of subjects passed 3.17 2.55 3.78 4.83 1.55
(3.09) (2.95) 3.11) (2.96) (2.25)
Qualified for tertiary (%) * 34.55 27.53 41.45 58.05 11.61
(47.55) (44.66) (49.26) (49.35) (32.04)
Individuals 313,580 155,322 158,258 154,921 158,659
Panel D: CAPE data (linked to SEA cohorts: 1999 - 2009)
Took at least 1 unit (%) 19.82 15.33 24.24 33.59 4.35
(39.86) (36.03) (42.85) (47.23) (20.40)
Number of units passed 1.40 1.06 1.73 2.40 0.27
(2.93) (2.61) (3.18) (3.54) (1.33)
Earned Associate Degree (%) 14.73 10.87 18.54 25.78 2.32
(35.44) (31.12) (38.87) (43.74) (15.05)
Earned scholarship (%) 0.95 0.66 1.23 1.78 0.01
(9.68) (8.11) (11.01) (13.23) (0.84)
Individuals 208,794 103,682 105,112 110,444 98,350
Panel E: Criminal records (linked to SEA cohorts: 1995 - 2010) - in percent
Arrested by 18 3.27 5.78 0.81 1.75 4.72
(17.79) (23.34) (8.97) (13.10) (21.22)
Individuals 297,948 147,544 150,404 145,288 152,660
Panel F: Birth records (linked to SEA cohorts: 2004 - 2010) - in percent
Live birth by 19 10.11 6.86 15.19
(30.15) (25.27) (35.90)
Individuals 43,834 26,715 17,119
Panel G: Labor market data (linked to SEA cohorts: 1995 - 2006) - in percent
Formally employed 75.52 79.38 71.77 78.28 73.64
42.99 40.45 45.01 41.24 44.06
Individuals 160,912 79,319 81,593 65,420 95,492

Notes: Standard deviations reported in parentheses below the means. *Qualification for tertiary education requires
passing five CSEC examinations including English language and mathematics. Columns (4) and (5) report statistics
differentiated by the rank of the assigned school based on the SEA score mean of students assigned to each school.
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Table 2: Standard Deviations and Correlations of Persistent School Impacts

School Level (cgror)

School Level Correlations
with High-Stakes

Outcome 75th %ile of
Size of Impact Average the achievement
distribution
(D (2) 3)
Standardized outcomes
High-Stakes Index 0.441 1.000 1.000
[0.397 , 0.483]
Low-Stakes Index 0.473 0.100 0.032

Binary outcomes
No Dropout by 14

Not arrested by 18
No live birth by 19

Formally employed 27+

[0.433, 0.508]

0.090
[0.077 , 0.100]
0.037
[0.032, 0.041]
0.173
[0.147 ,0.193]
0.070
[0.058 , 0.079]

[-0.042,0.224] [-0.106, 0.177]

0.121 0.117
[0.019,0.228] [-0.044, 0.290]
0.282 0.407
[0.164,0.419] [0.210, 0.619]
-0.036 0.174
[-0.171,0.087] [0.021,0.311]
0.152 0.014

[0.025,0.294] [-0.148 ,0.157]

Notes: All estimates shown were computed by bootstrap with 1,000 repetitions of the maximum likelihood
approach described in the text. We report the median as the point estimate, as well as the 5th and 95th
percentiles for the confidence intervals. Column (1) reports estimated standard deviations of the persistent
school impacts for each outcome. Column (2) reports estimated correlations of the persistent school impacts
on the high-stakes index (for the average student) with the persistent school impacts on other outcomes
(also for the average student). Column (3) reports estimated correlations of the persistent school impacts
on the high-stakes index (estimated with weights centered around the 75th percentile of the achievement
distribution) with the persistent school impacts on other outcomes (estimated with weights centered around

—pet:)2
the 75th percentile of the achievement distribution). We do this using weight; = (1 + (751#)_1, where
pct; is the student’s percentile in the incoming achievement distribution. We removed schools with outlier
estimated impacts (i.e. beyond 40 of the median school).
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Table 3: Inference Tests

Impacts Only Model Full Model
Pooled aver- Above median Below median Pooled aver- Above median Below median Female Male
age score score age score score
(1) 2 3) 4 (%) (©) @) (8)

Distance -0.236 -0.261 -0.211 -0.245 -0.275 -0.215 -0.226 -0.264

(0.008) (0.013) (0.010) (0.008) (0.012) (0.010) (0.011) (0.011)
Peer quality 0.906 1.101 0.711 0.555 0.598 0.512 0.503 0.607

(0.022) (0.041) (0.015) (0.019) (0.034) (0.018) (0.021) (0.032)
Standardized value-added on
High-Stakes Index 0.620 0.984 0.255 0.217 0.440 -0.005 0.331 0.103

(0.013) (0.022) (0.014) (0.030) (0.048) (0.035) (0.047) (0.035)
Low-Stakes Index 0.031 0.033 0.029 0.039 0.042 0.035 0.177 -0.100

(0.009) (0.013) (0.011) (0.019) (0.034) (0.016) (0.033) (0.019)
No Dropout by Age 14 0.054 0.119 -0.011 -0.007 0.045 -0.058 0.030 -0.043

(0.019) (0.032) (0.020) (0.017) (0.029) (0.016) (0.020) (0.027)
No Live Birth by Age 19 0.041 0.064 0.019 0.116 0.044 0.189 0.045 0.188

(0.018) (0.030) (0.020) (0.018) (0.032) (0.018) (0.024) (0.028)
Not Arrested by Age 18 0.390 0.532 0.247 0.227 0.337 0.118 0.276 0.178

(0.023) (0.034) (0.031) (0.025) (0.039) (0.031) (0.032) (0.038)
Formally Employed at Age 27+ 0.180 0.264 0.096 0.154 0.240 0.068 0.157 0.151

(0.013) (0.022) (0.014) (0.015) (0.026) (0.014) (0.016) (0.024)

Notes: This table presents pooled averages of the choice model estimates for log distance to the school, peer quality, and standardized value-added school attributes (i.e., f; from equation 15) for two
main models: (a) an Impacts Only Model, which includes schools’ causal impact estimates for all outcomes, peer quality, and log distance (presenting the aggregated pooled average (Column 1) and the
average by incoming achievement level (Columns 2 and 3)) and (b) a Full Model that includes schools’ causal impact estimates for all outcomes, the school-level averages for all outcomes, peer quality,
and log distance (presenting the aggregated overall average (Column 4), and the averages by incoming achievement level (Columns 5 and 6), and by gender (Columns 7 and 8)). All specifications include
control variables for whether the secondary school is on the same island, whether it is all-girls, whether it is all-boys, the estimated likelihoods of school rejection only when comparing the top choice with
all unranked schools, and interactions of these likelihoods with all school attributes. The pooled means are computed by taking the average across the point-estimates of all cells in a subgroup. Assuming
independence across cells, the pooled standard error is computed by summing all subgroup variances, dividing by the number of cells in the subgroup, and taking the squared-root of the ratio. The pooled
standard errors are presented in parentheses below each pooled average estimate.



Figure 1: Exemplar of Variation

Choice Group 1:
School 1 is top choice
School 3 is bottom choice

Choice Group 2:
School 2 is top choice
School 3 is bottom choice
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Notes: In the top panels, the Y-axis represents the probability of student i being assigned to her top choice; while the
X-axis represents the student’s SEA score. The top left panel shows the cutoff for school 1 and the top right panel
shows the cutoff for school 2. In both panels those who score below the cutoff for the preferred school are assigned to
school 3. This figure illustrates the two different sources of variation. The RD variation identifies the effect of being
assigned to school 1 (with respect to school 3) by comparing the outcomes of the Low scoring group (hollow circles
right below the cutoff for school 1 in the bottom left panel) to the Medium scoring group (hollow circles right above the
cutoff for school 1 in the bottom left panel). Thi is labeled as ”Cutoff Effect”. The Difference in Difference variation
comes from making comparisons across cutoffs even among students who are away from the cutoff. For example, the
difference in outcomes between the Low scoring group at Choice Group 1 (hollow circles in bottom left panel) and the
Low scoring group at Choice Group 2 (solid circles in bottom left panel) will reflect differences in choices (as both
groups were assigned to the same school 3) — labeled as ”Choice Group Effect”. Therefore, provided that the effects of
choices and test scores on outcomes are additively separable, the Cutoff Effect of attending school 1 versus 3 can also
be identified exploiting obsevations away from the cutoff after Choice Group Effects are accounted for (graphically
shown in the bottom right panel).
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Figure 2: Predicted Cutoff Effects versus Actual Cutoff Effects
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Notes: In both panels, the X-axis represents the estimated coefficients on an indicator for scoring above the rule-based
cutoff resulting from an RD model that controls for a fifth degree polynomial of the SEA score, gender, district of
residence at SEA registration, and religion; estimated for each school j and for each outcome where the estimated TOT
school impacts (éjTOT’V) enter as dependent variables. The Y-axis represents the estimated coefficients on an indicator
for scoring above the rule-based cutoff resulting from an RD model that controls for a fifth degree polynomial of the
SEA score, gender, district of residence at SEA registration, and religion; estimated for each school j and for each
outcome where the individual level outcomes enter as dependent variables. Estimated slope and p-values resulting
from testing for whether the slope differs from both 0 and 1 are shown below the graph. The short dashed line shows
the 45° relationship. Schools have been grouped in 50 bins across the X-axis. Outliers above 4 standard deviations
away from the median were removed. In the left panel, we show unweighted results. In the right panel, all school
estimated effects are adjusted by the reliability ratio described in the text. We show unweighted results and results
were all school estimated effects are weighted by the inverse of the squared standard error of each estimated coefficient
for the real outcome.
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Figure 3: Additivity of the School Effects.
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Notes: Both panels display estimated relative school effects pooled across all outcomes. The left panel shows results
where the estimated effects were obtained with least 100 students assigned to m, [ or k. The right panel restricts this to
at least 150 students. We show slopes and standard errors for the unweighted relationship and weighted by the sum of
observations used to estimate each pair m — [ and [ — k. The p-values associated with the hypothesis that the slope is 0
and that the slope is 1 are shown below these for each estimation. The short dashed line shows the 45° relationship. We
use the mean of the estimated standard errors of the school effects when computing the reliability ratio. Similar results
are obtained when employing the median of the standard errors. In this case, slopes are slightly lower, in average
0.03 units less than when using the mean and we still fail to reject all slopes being different from 1 at the 5% level.
Observations have been grouped in 100 bins across the X-axis.
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Figure 4: Estimated Admission Probabilities for Selected Schools
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Notes: The X-axis represents the SEA score percentile. The Y-axis represents the likelihood of being assigned to a
given school. School A is a very selective secondary school, where the school algorithm-based assignment cutoff has
always been above the gond percentile. School B, on the other hand, is a less selective school where students above
the 30" percentile have always scored above the cutoff. Historical probabilities are depicted with black hollow circles.
“Rough” probabilities (calculated as described in the text) are depicted with gray diamonds.
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Figure 5: Proximity and Incoming Peer Quality

(a) Impacts Only Model
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x(gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Model, which includes schools’ causal impact estimates for all outcomes, peer quality, and
log distance and Panel (b) displays estimates from the Full Model, which includes schools’ causal impact estimates
for all outcomes, the school-level averages for all outcomes, peer quality, and log distance. All specifications include
control variables for whether the secondary school is on the same island, whether it is all-girls, whether it is all-boys,
the estimated likelihoods of school rejection only when comparing the top choice with all unranked schools, and
interactions of these likelihoods with all school attributes. The dashed lines represent the associated 95% confidence
intervals.
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Figure 6: Academic Outcomes

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x (gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Model, which includes schools’ causal impact estimates for all outcomes, peer quality, and
log distance and Panel (b) displays estimates from the Full Model, which includes schools’ causal impact estimates
for all outcomes, the school-level averages for all outcomes, peer quality, and log distance. All specifications include
control variables for whether the secondary school is on the same island, whether it is all-girls, whether it is all-boys,
the estimated likelihoods of school rejection only when comparing the top choice with all unranked schools, and
interactions of these likelihoods with all school attributes. The dashed lines represent the associated 95% confidence
intervals.
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Figure 7: Non-Academic Outcomes

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x (gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Model, which includes schools’ causal impact estimates for all outcomes, peer quality, and
log distance and Panel (b) displays estimates from the Full Model, which includes schools’ causal impact estimates
for all outcomes, the school-level averages for all outcomes, peer quality, and log distance. All specifications include
control variables for whether the secondary school is on the same island, whether it is all-girls, whether it is all-boys,
the estimated likelihoods of school rejection only when comparing the top choice with all unranked schools, and
interactions of these likelihoods with all school attributes. The dashed lines represent the associated 95% confidence
intervals.
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Figure 8: Relative Comparisons of Choice Model’s Estimated Coefficients
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Notes: This figure presents the difference between the choice model’s estimates on the school impacts of three non-
academic outcomes and the choice model’s estimate on the school impacts of the high-stakes index, scaled by the log
distance estimate. The X-axis represents the individual score ventile. The connected lines represent the difference
between the choice model estimate on the non-academic impacts and the choice model estimate on the high-stakes
impacts divided by the log distance cell estimate (and scaled by 6 for ease of interpretation). This difference is com-
puted separately for each (SEA score ventile) x (gender) cell. The estimates result from the Full Model, which includes
schools’ causal impact estimates for all outcomes, the school-level averages for all outcomes, peer quality and log
distance, control variables (whether the secondary school is on the same island, whether it is all-girls, whether it is all
boys), the estimated likelihoods of school rejection only when comparing the top choice with all unranked schools, and
interactions of these likelihoods with all school attributes.
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Appendix: NOT FOR PUBLICATION

Appendix A: School Placement Rules and Validity of the Regres-

sion Discontinuity Identification Strategy

The School Assignment Algorithm

School slots are assigned in rounds such that the most highly subscribed/ranked school fills its
spots in the first round, then the next highly subscribed school fills its slots in the second round,
and so on until all school slots are filled. This is done as follows: (1) the number of school slots
at each school n; is predetermined based on capacity constraints. (2) Each student is tentatively
placed in the applicant pool for her first choice school and is ranked by SEA score. (3) The school
at which the n’jh ranked student has the highest SEA score is determined to be the most highly
subscribed/ranked school and the top 7;; students in the applicant pool for top-ranked school j; are
assigned to school j;. The SEA score of the n’ﬁ student is the cutoff score for school j;. (4) The
top-ranked school slots and the assigned students are removed from the process, and the second
choice becomes the new “first choice” for students who had the top-ranked school as their first
choice but did not gain admission. (5) This process is repeated in round two to assign students to
the second highest ranked school j; and determine the cutoff score for the second-ranked school,
and this is repeated in subsequent rounds until all slots are filled. This assignment mechanism
is a deferred acceptance algorithm (Gale and Shapley 1962) in which students have incentives to
truthfully reveal their rankings among chosen schools.

However, there is an important exception to the school assignment algorithm-based rule. Specif-
ically, Government assisted schools (which are privately managed public schools — akin to Charter
schools in the US) can admit up to 20 percent of their incoming class at the principal’s discretion.
As such, the rule is used to admit at least 80 percent of the students at these schools, while the
remaining students can be hand-picked by the principal before the next-highest ranked school fills
any of its slots. For example, suppose the highest ranked school has 100 slots and is a Government
assisted school. The top 80 applicants to that school will be admitted, while the principal can hand-
pick up to 20 other students at her discretion. The remaining 20 students would be chosen based on
for example family alumni connections, being relatives of teachers, religious affiliation, and so on.
These hand-picked students may list the school as their top choice, but this need not be the case.
Students receive one admission decision and are never made aware of other schools they would
have been admitted to had they not been hand-picked. Only after all the spots (including both ad-
mitted students based on the algorithm and on the hand-picking) at the highest ranked school have
been filled will the process be repeated for the remaining schools. As such, school admissions are
based partly on the described deterministic function of student test scores and student choices and
partly on the endogenous selection of students by school principals at Government assisted schools.

In addition, there are other circumstances by which the attended school would differ from the
algorithm-based assigned school. First, students who do not score high enough to be assigned to
a school on their choice list receive an administrative placement from the Ministry of Education
(made to the administrative school zoned to the students’ residential location). Finally, due to
unforeseen circumstances some schools may have less capacity than expected or may close (this
may happen due to flooding etc.). In such rare cases, the Ministry will place students to schools
based on open slots in nearby schools, open slots in other schools in the choice list, and proximity.
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Simulating the School Assignments Using the Algorithm-Based Rule

Because the assignment algorithm is known and we have the same data used by the Ministry
of Education to tentatively assign students, we can identify the algorithm-based assignment cutoffs
and, therefore, the algorithm-based school assignments (i.e. those that would have been the actual
school allocations if Government assisted schools could not select any of their own students). This
algorithm-based or tentative assignment removes the part of the actual admission process that may
be driven by endogenous selection and leaves only the variation in the assignments that are known
deterministic functions of students’ test scores and school choices.

Following Jackson (2010) and Pop-Eleches and Urquiola (2013), we stack the data across all
application pools for each year to each school (that is, we stack data for all the cutoffs into a
single cutoff) into one single database. As such, we stack all application cutoffs and re-center
the SEA scores for applicants to each school in each year around the algorithm-based assignment
cutoff for that school-year.>> Scoring above zero means scoring above the cutoff for a preferred
school. Figure A1 shows the relationship between actually attending to one’s preferred school as a
function of one’s incoming test score relative to the assignment cutoff for that school.”® Consistent
with our assignment cutoffs capturing real exogenous variation in actual school attendance, there is
a sudden increase in the likelihood of attending a preferred school as one’s score goes from below
to above the assignment cutoff. Appendix Table A2 reports this first-stage estimated coefficient
evidencing its high significance. This shows that there are meaningful differences in preferred
school attendance associated with scoring above versus below an assignment cutoff that are not
due to selection or hand-picking. Next, we provide direct supporting evidence on the exogeneity of
the algorithm-based assignment cutoffs.

Testing the Exogeneity of the Assignment Cutoffs

The RD variation used in this paper is driven by the assignment cutoffs. As such, here we
present evidence that this identification strategy is likely valid. One key diagnostic is to test for
smoothness of density across the simuled cutoffs (McCrary 2008). As such, we formally test for
any differential density across simulated cutoffs within each of our SEA cohorts by regressing the
density of observations at each relative SEA score on an indicator for scoring above the cutoff
along with smooth functions of the relative score.’’” We estimate this for each school cutoff in each
year and report the average f-statistic associated with the null hypothesis of no differential density
for each cohort along with the proportion of cutoffs that yield p-values smaller than 0.1. As one
can see in Appendix Table Al, these tests reveal no statistically significant relationship between
scoring above the cutoff and the density. Therefore, there is little evidence of gaming around the
cutoffs regarding the density of observations at each test score.

3 Specifically, for each school we find all students who list that school as their top choice, re-center those students’
SEA scores around the simulated cutoff for that school, and create a sample of applicants for each school. To mimic
the sequential nature of the algorithm, we remove students assigned to their top choice schools, replace students’ first
choice with their second choice, and repeat this process with their second, third, fourth, fifth, and sixth choices. The
applicant samples for all schools are then stacked so that every student has one observation for each school for which
she/he was an applicant. We use four or six choices, as relevant per cohort limit. Only for SEA cohorts 2001-2006
students were allowed to list up to 6 school choices. Therefore, most of SEA cohorts in our data (1995-2000 and
2007-2012) could list up to 4 school choices.

SWe consider that one student attended school j if the student was enrolled in school j at the time of writing the
CSEC examinations.

>TWe implement these tests using the rddensity command in Stata.
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The validity of the identification strategy also requires that there be no sorting of students around
the cutoff (i.e. that latent outcomes are smooth through the cutoff). Given that students are unaware
of the location of the cutoffs and are forced to make school choices before they take the SEA
examinations, it is very unlikely that there is any sorting around the test score cutoffs. However,
to provide further evidence that the variation employed (due to the cutoffs) is valid, we compute
predicted outcomes (using the available baseline information) and test for whether scoring above
the assignment cutoff is associated with any significant change in predicted outcomes.

Specifically, we first regress our outcomes on the number of SEA attempts (repeater status
in 5th grade), the student’s sex, the student’s religion, selectivity of the student’s primary school
(measured by the average SEA scores of each primary school-year), selectivity of the student’s
secondary school choices (measured by the average SEA scores of the incoming class to each
school choice-year), month of birth (to measure quarter of birth effects), age at SEA, and SEA
cohorts fixed effects. These variables are relatively good predictors of the examination indexes
such that, as shown in column 1 of Appendix Table A2, they yield adjusted R-squares ranging from
0.27 to 0.31. However, the predictive power for the nonacademic binary outcomes is low.

We then take the fitted values from these prediction regressions as our predicted outcomes. If
there was some gaming of the cutoff, one would likely see that scoring above the cutoff (conditional
on smooth functions of the relative SEA score) should be associated with better “predicted” scores.
However, with no gaming there should be no relationship between scoring above the cutoff and
one’s predicted outcomes. To test for this, we estimate the following model using our stacked
database:

Y == -Above;y —|—f(SEA,'t) + Fy + Eijr (17)

ijt

where Ygt is the predicted outcome for individual i who attended school j at time ¢. Above;r; is an
indicator for scoring above the algorithm-based assignment cutoff for school 7. Among those who
comply with the cutoff, j=t7. f(SEA;) is a 5th order polynomial of the incoming SEA score net
of the cutoff score for preferred school 7. Fr; is a cutoff fixed effect for applicants to school 7 in
year t. The inclusion of cutoff fixed effects ensures that all comparisons are among students who
applied to the same school in the same year. Because the same individual can enter the data for
multiple cutoffs, the estimated standard errors are clustered at the individual level.

Consistent with no gaming, column 2 of Appendix Table A2, shows that there is no relationship
between scoring above the cutoff and one’s predicted outcomes. The estimated coefficients, 7, are
small in magnitude and statistically indistinguishable from zero — indicating no gaming across the
assignment cutoffs. As an additional check on this model, we estimated model (17) for different
bandwidths around the cutoff. Figure A2 presents these results visually. As one can see for any
choice of bandwidth, there are no effects of scoring above the cutoff on predicted outcomes. Taken
together, the patterns suggest that the variation due to the algorithm-based assignment cutoffs is
likely exogenous and, therefore, valid to identify causal school impacts.

Finally, Appendix Table A2 also reports the estimated RD effects on the actual outcomes
(columns 4 -7) showing that reduced-form effects of scoring above the school assignment cut-
off are associated, on average, with significant improvements in students’ examination indexes and
that these estimates are not sensitive to the inclusion of baseline sociodemographic controls in the
model.
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Reconciling Null Pooled Cutoff Impacts with Other Results

One may wonder how scoring above a cut-off for a preferred school on average could be unre-
lated to outcomes while there are real differences in value-added across schools. This could occur
if (a) school choices are unrelated to value-added, (b) school preferences are heterogeneous, or (c)
there is little variability in value-added among choices. We discuss each below.

e (a) Consider the hypothetical scenario where school choices are entirely random. In this
hypothetical scenario, preferred schools are not higher value-added on average, and there
would be no pooled cut-off effect even if there are real differences in value-added across
schools. This hypothetical scenario highlights that there could be no aggregate cut-off effects
if preferences for school (among those at the cut-offs) are not strongly related to value-added
in all dimensions. This example is not meant to explain why the results differ between Table
2 and Table A2, but rather to underscore the fact that a lack of an aggregate cut-off effect
does not imply a lack of school effects.

e (b) A more plausible explanation for small cut-off effects despite there being real differences
in value-added is that preferences for schools are heterogeneous. That is, some people may
rank high value-added schools more highly, while others do not so that on average the pooled
threshold effect is small. Indeed, we document clear differences in the choice behaviors of
parents of children at the top versus the bottom of the incoming test score distribution so that
this is not unreasonable.

e (c) Another possibility is that many parents may choose schools that are very similar in
value-added along those dimensions. For example, a parent who wishes to have their child
attend a school that reduces crime may list four schools that are all high value-added in
that dimension. In such a case, there are real differences in school value-added, choices
are heavily influenced by school value-added, but there would be no effect on value-added
through an admission threshold. This scenario may hold (or approximately hold) for many
parents in the data such that many individual cut-offs end up having very low signal-to-noise
ratios.

A related question (in light of scenario (a) above) is whether the lack of an aggregate cut-off ef-
fect implies that our choice models must be wrong (i.e., that parents do choose schools with impacts
on non-academic outcomes conditional on proximity, admission probability, peer characteristics,
and average outcomes). We argue that it does not for three reasons.

1. As we discuss above, the pooled average results may conceal considerable heterogeneity and
could be explained by the heterogeneity in preferences for schools that are suggested by our
choice patterns (scenario b above).

2. Also, given scenario (c) above, if parents have strong preferences for an attribute, the schools
listed may all have similar levels of value-added for that attribute. In this scenario, that
attribute will strongly predict being listed as a top choice school, but there may be little
difference in value-added among the choices made (and thus no cut-off effect in the RD
model).
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3. It is important to point out that our choice models show relationships that are conditional on
peer quality, proximity, school-level averages and include school impacts in multiple dimen-
sions. As such, it is possible that the preferred school is not a higher value-added school
unconditionally (which is what Table 2 will speak to), but is only higher value-added con-
ditional on all the other predictors of choices. To give a hypothetical example, suppose
John values proximity and arrests value-added. In the choice models with both included,
one would find that John is more likely to rank schools with high proximity and high value-
added. However, if for some reason, John lives far away from the high value-added schools
and has a heavy weight on proximity, there may be little difference in the arrests value-added
of John’s choices (and he may even list a lower value-added school above a higher one). This
example is merely meant to illustrate that because the choice models represent conditional
relationships, the patterns we document are not directly relatable to the pooled cut-off effects.
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Table Al. Testing for differential density around the school assignment cutoff

p-value mean p-value mean

SEA Cohort <1 T stat SEA Cohort <1 Tstat
1995 9.46% -0.04 2004 12.77% -0.19
1996 10.81% -0.02 2005 7.69% 0.03
1997 16.22% -0.16 2006 11.46% -0.02
1998 10.53% -0.09 2007 11.70% -0.02
1999 17.11% 0.11 2008 9.89% 0.22
2000 11.11% 0.06 2009 543% -0.04
2001 11.58% -0.05 2010 11.39% -0.08
2002 13.68% 0.18 2011 8.86% -0.01
2003 1596% 0.21 2012 15.79% 0.21

Notes: This table shows the percentage of school assignment cutoffs for which
the p-value corresponding to the test of differential density across the cutoff is
less than 10% in each SEA cohort. For all cohorts together it is 11.69%. The
table also reports the average of T-Statistics of differential density tests of all
school assignment cutoffs for each SEA cohort included in the study.

Table A2. First Stage and Reduced-Form Effects

Predicted Outcomes Actual Outcomes
Pre(;lguon Effect p-value Effect p-value Effect p-value
ey 2 3) “4) &) (6) (7
First Stage:
Attended preferred school 0.200 <0.001 0.200 <0.001
Reduced-Form Effects:
High-Stakes Index 0.31 -0.003  0.173 0.062 <0.001 0.062 <0.001
Low-Stakes Index 0.27 0.000  0.968 0.048 <0.001 0.050 <0.001
No Dropout by 14 0.10 -0.001  0.095 -0.004  0.08 -0.004 0.07
No live birth by 19 0.03 0.000  0.578 -0.001  0.86 -0.001  0.79
Not arrested by 18 0.04 0.000 0.634 0.000 0.83 0.000 0.86
Formally employed 27+ 0.02 -0.001  0.173 -0.004 038 -0.004 0.36
Cutoff fixed effects Yes Yes Yes
Sociodemographics No No Yes

Notes: This table reports estimated coefficients on ‘Above’ from equation (17). Models were estimated using ob-
servations within a bandwidth of +/-1.25 standard deviations from the school assignment cutoff. Sociodemographics
include sex, primary school district fixed effects, and religion fixed effects. Estimated standard errors are clustered at
the individual level in all regressions. P-values for the null of 7=0 shown next to the estimated coefficients.
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Figure Al. Discontinuity in Preferred School Attendance Through Assignment Cutoffs

At Preferred School

O_

T T T T T T T T T T
-500 -400 -300 -200 -100 0 100 200 300 400 500
SEA Score minus School Assignment Cutoff

Notes: The Y-axis represents the likelihood of preferred school attendance (i.e. the school where the student was
enrolled at the time of taking the CSEC examinations). The X-axis is the SEA score relative to the deferred acceptance
rule-based assignment cutoff. The circles are means corresponding to 7-point bins of the relative score. The solid lines
are the fitted school attendance rates generated by fitting a fifth degree polynomial of the relative score fully interacted
with an indicator for scoring above the school assignment cutoff. The gray vertical bars depict the 90 percent confidence

intervals for each bin average.
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Figure A2. Reduced-form effects on predicted outcomes by bandwidth
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Notes: This figure reports estimated coefficients on *Above’ resulting from equation (17). The estimated coefficients
are reported for each bandwidth between +/-0.5sd an +/-1.25sd from the school assignment cutoff. The 90 (95) percent
confidence intervals of the estimated coefficients are presented in dark (light) gray.
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Appendix B: Appendix Tables and Figures

Table B1. Minimum and maximum cutoffs by district

Cutoff by SEA percentile

District
Minimum  Maximum

(H (2)
Caroni 4 97
North Eastern 1 82
Port of Spain 7 97
South Eastern 1 91
St. George East 1 98
St. Patrick 1 92
Tobago 3 77
Victoria 1 98

Notes: We show the minimum and maximum cutoffs
as SEA percentiles for each district across all years.
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Table B2: Weights Used to Compute Indexes

High-Stakes Index Weight
Number of CSEC subjects passed 0.202
CSEC tertiary qualification 0.192
CSEC tertiary qualification attempt 0.140
CAPE scholarship 0.068
CAPE scholarship attempt 0.213
Number of CAPE units passed 0.219
CAPE Associate’s degree 0.213
Low-Stakes Index Weight
NCSE Total Academic 0.546
NCSE Total Non academic 0.546

Notes: Indexes are computed from a separate factor analysis (us-
ing the principal-component factor method) applied to the individ-
ual outcomes that integrate each index. The weights for individual
outcomes within the indexes are determined by predicting the first
underlying principal-component applied separately to each group
of outcomes that integrate each index. The computed indexes are
standardized to have zero mean and unit variance. CSEC tertiary
qualification is obtained when passing 5 subjects including En-
glish language and mathematics. “CSEC tertiary qualification at-
tempt” denotes that the student took 5 subjects including English
language and mathematics. CAPE scholarship is awarded when
passing eight CAPE units (including Caribbean and Communica-
tion studies) with the maximum possible grade. “CAPE schol-
arship attempt” denotes that the student took eight CAPE units
(including Caribbean and Communication studies). CAPE asso-
ciate’s degree is awarded when passing seven CAPE units (includ-
ing Caribbean and Communication studies). NCSE academic sub-
jects include mathematics, English, Spanish, sciences, and social
studies. NCSE non academic subjects include arts, physical edu-
cation, and technical studies.
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Table B3: Two sample test for average and weighted 2SLS

Assuming Correlation =0

Assuming Correlation = 1

Avg - 25th  Avg-50th Avg - 75th

Avg - 25th  Avg-50th Avg - 75th

(1 (2) 3) “4) (5) (6)
All Outcomes 0.00 0.00 0.00 0.00 0.00 4.63
High-Stakes Index 0.00 0.00 0.00 0.00 0.00 0.00
Low-Stakes Index 0.00 0.00 0.00 0.00 0.00 2.02
No Dropout by 14 0.00 0.00 0.00 0.00 0.00 8.25
Not arrested by 18 0.00 0.00 0.00 0.00 0.00 16.49
No live birth by 19 0.00 0.00 0.00 0.00 0.00 0.00
Formally employed 27+ 0.00 0.00 0.00 0.00 0.00 0.00

Notes: We report the percentage of schools where the difference in the average and weighted value-added is significant at the
95% level. We adjust the difference dividing it by its standard error, which is estimated for the following two scenarios: when
the correlation between the estimated value-addeds is assumed to be 0 and when it is assumed to be 1. This will affect the
variance of the difference through the covariance term. We then report the percentage of cases where the adjusted difference is

greater than 1.96.

Table B4: Testing for Differential Match Effects

Mean p-value Median p-value
(D (2) 3) 4)
High-Stakes Index 0.702 0.323  0.015  0.179
Low-Stakes Index 0.2 0.146  -0.016 0.486
No Dropout by 14 0.051 0.502  0.006  0.735
Not arrested by 18 -2.939 0304  0.003 0.558
No live birth by 19 -2.199 0.1 -0.036  0.185
Formally employed 27+  0.08 0.295 0.015 0.443

Notes: We show results for a mean and median test for the interaction effect,

P
Gk

m

"ef from (7). Neither is rejected for being equal to zero at the 10% level.

Hence, we find no evidence of differential effect of being assigned to school
m relative to k for those who chose k before m relative to those who listed

m before k.
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Table B5: Standard Deviation of Persistent School Impacts and Maximum Likelihood Correlations Between 2SLS School Impacts

School Level (Ggror)

School Level (correlations)

Size of impacts for Students at the

Correlations with High-Stakes at the

QOutcome Size of Impact 25th %ile of median of 75th %ile of Correlation 25th %ile of median of 75th %ile of
the achievement the achievement the achievement the achievement the achievement the achievement
distribution distribution distribution distribution distribution distribution
(D 2 3) (C)] )] (6) @) ®)
Standardized Outcomes
High-Stakes Index
All Schools 0.441 0.516 0.495 0.444 1.000 1.000 1.000 1.000
[0.397,0.483] [0.464,0.562] [0.445,0.534] [0.400, 0.481]
Dropping Outliers 0.441 0.516 0.495 0.444 1.000 1.000 1.000 1.000
[0.397,0.483] [0.464,0.562] [0.445,0.534] [0.400, 0.481]
Low-Stakes Index
All Schools 0.493 0.864 0.814 0.441 0.091 0.102 0.160 0.000
[0.452,0.530] [0.715,0.962] [0.759,0.861] [0.389, 0.481] [-0.045,0.219] [-0.028,0.253] [0.037,0.257] [-0.136,0.141]
Dropping Outliers 0.473 0.764 0.814 0.410 0.100 0.173 0.173 0.037

Low-Stakes Index (Academic)
All Schools

Dropping Outliers

Low-Stakes Index (Non Academic)
All Schools

Dropping Outliers

[0.433, 0.508]

0.390
[0.360, 0.414]
0.390
[0.360, 0.414]

0.618
[0.560 , 0.664]
0.607
[0.549 , 0.657]

[0.683, 0.826]

0.699
[0.637,0.754]
0.699
[0.637,0.754]

0.950
[0.778 , 1.055]
0.831
[0.743,0.903]

[0.760 , 0.859]

0.608
[0.566 , 0.646]
0.608
[0.566 , 0.646]

0.971
[0.898 , 1.032]
0.970
[0.898 , 1.036]

[0.365 , 0.448]

0.324
[0.283,0.357]
0.324
[0.283,0.357]

0.600
[0.538 , 0.653]
0.597
[0.542 , 0.650]

[-0.042, 0.224]

0.196
[0.076, 0.312]
0.196
[0.076 , 0.312]

0.011
[-0.141,0.145]
0.024
[-0.129 , 0.159]

[0.047 , 0.289]

0.184
[0.047 , 0.292]
0.184
[0.047 , 0.292]

0.068
[-0.067 , 0.214]
0.132
[-0.014 , 0.262]

[0.041 , 0.285]

0.147
[0.020, 0.260]
0.147
[0.020, 0.260]

0.151
[0.035, 0.275]
0.166
[0.046, 0.287]

[-0.110, 0.167]

0.207
[0.086 , 0.337]
0.207
[0.086 , 0.337]

-0.098
[-0.248 , 0.037]
-0.087
[-0.229, 0.047]

Notes: All estimates shown were computed by bootstrap with 1,000 repetitions of the maximum likelihood approach described in the text. We report the median as the point estimate, as well as the 5th and 95th percentiles
for the confidence intervals. Columns (1) - (4) report estimated standard deviations of the persistent school impacts for each outcome; where school impacts have been estimated without weights (column 1), and with weights
centered at the 25th, 50th and 75th percentile of the incoming achievement distribution (columns 2 to 4 respectively). Column (5) - (8) report estimated correlations of the persistent school impacts on the high-stakes index
with the persistent school impacts on other outcomes; where school impacts have been estimated without weights (column 5), and with weights centered at the 25th, 50th and 75th percentile of the incoming achievement
distribution (columns 6 to 8 respectively). We do this using weight; = (1 + W)’], where X = 25,50,75 and pct; is the student’s percentile in the achievement distribution. For the first row of each outcome, we removed
schools with outlier estimated impacts (i.e. beyond 4o of the median school). Estimates reported in the second row of each outcome were obtained without removing outliers.
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Table B5 (continued): Standard Deviation of Persistent School Impacts and Maximum Likelihood Correlations Between 2SLS School

Impacts
School Level (cyror) School Level (correlations)
Size of impacts for Students at the Correlations with High-Stakes at the
Outcome Size of Impact 25th %ile of median of 75th %ile of Correlation 25th %ile of median of 75th %ile of
the achievement the achievement the achievement the achievement the achievement the achievement
distribution distribution distribution distribution distribution distribution
(H 2 3 4 )] (6) @) 3
Binary Outcomes
No Dropout by 14
All Schools 0.148 0.197 0.135 0.170 0.117 0.002 0.102 0.238
[0.091,0.162] [0.175,0.215] [0.089 , 0.146] [0.074 , 0.183] [-0.009 , 0.266] [-0.166,0.135] [-0.065,0.354] [0.006, 0.487]
Dropping Outliers 0.090 0.190 0.090 0.070 0.121 -0.012 0.238 0.117

Not arrested by 18
All Schools

Dropping Outliers

No live birth by 19
All Schools

Dropping Outliers

Formally employed 27+
All Schools

Dropping Outliers

[0.077 , 0.100]

0.068
[0.041 , 0.077]
0.037
[0.032, 0.041]

0.367
[0.295 , 0.414]
0.173
[0.147 , 0.193]

0.160
[0.078 , 0.191]
0.070
[0.058 , 0.079]

[0.171 , 0.206]

0.072
[0.056 , 0.083]
0.053
[0.048 , 0.059]

0.287
[0.254,0.311]
0.287
[0.254 ,0.313]

0.132
[0.086 , 0.149]
0.083
[0.065 , 0.098]

[0.081 , 0.098]

0.134
[0.051, 0.150]
0.045
[0.039, 0.050]

0.324
[0.200, 0.369]
0.202
[0.165 , 0.232]

0.453
[0.093, 0.484]
0.086
[0.072, 0.097]

[0.058 , 0.080]

0.075
[0.033, 0.083]
0.020
[0.017, 0.023]

0.450
[0.339, 0.527]
0.131
[0.107, 0.150]

0.306
[0.115, 0.349]
0.090
[0.076, 0.103]

[0.019, 0.228]

0.084
[0.004 , 0.262]
0.282
[0.164 , 0.419]

0.022
[-0.115, 0.092]
-0.036
[-0.171, 0.087]

0.076
[-0.014 , 0.233]
0.152
[0.025, 0.294]

[-0.142,0.117]

-0.099
[-0.235,0.182]
0.055
[-0.059, 0.205]

0.030
[-0.110, 0.151]
0.025
[-0.124 ,0.161]

0.193
[0.091 , 0.298]
0.165
[0.046 , 0.297]

[0.121, 0.345]

-0.006
[-0.112,0.199]
0.097
[-0.022 , 0.226]

-0.115
[-0.230, -0.004]
-0.064
[-0.188,0.071]

-0.429
[-0.493,0.184]
0.106
[-0.043 ,0.237]

[-0.044 , 0.290]

-0.085
[-0.220 , 0.257]
0.407
[0.210, 0.619]

-0.079
[-0.260, 0.099]
0.174
[0.021,0.311]

-0.049
[-0.245 , 0.308]
0.014
[-0.148 , 0.157]

Notes: All estimates shown were computed by bootstrap with 1,000 repetitions of the maximum likelihood approach described in the text. We report the median as the point estimate, as well as the 5th and
95th percentiles for the confidence intervals. Columns (1) - (4) report estimated standard deviations of the persistent school impacts for each outcome; where school impacts have been estimated without weights
(column 1), and with weights centered at the 25th, 50th and 75th percentile of the incoming achievement distribution (columns 2 to 4 respectively). Column (5) - (8) report estimated correlations of the persistent
school impacts on the high-stakes index with the persistent school impacts on other outcomes; where school impacts have been estimated without weights (column 5), and with weights centered at the 25th,

50th and 75th percentile of the incoming achievement distribution (columns 6 to 8 respectively). We do this using weight; = (1 +

(X—per;)?®

160 )", where X = 25,50,75 and pct; is the student’s percentile in the

achievement distribution. For the first row of each outcome, we removed schools with outlier estimated impacts (i.e. beyond 40 of the median school). Estimates reported in the second row of each outcome
were obtained without removing outliers.



Table B6. Standard Deviation of Persistent School Impacts and even-odd year Correlations Be-
tween 2SLS School Impacts

School Level correlations

School Level (Gejmr) with high-stakes

Outcome 75th %ile of
Size of Impact Average the achievement
distribution
(D (2) (3
Standardized outcomes
High-Stakes Index 0.432 1.000 1.000
[0.373, 0.488]
Low-Stakes Index 0.454 0.105 0.073
[0.406 , 0.505] [-0.066 ,0.272] [-0.146,0.271]
Binary outcomes
No Dropout by 14 0.084 0.088 0.183
[0.069 , 0.099] [-0.050,0.228] [-0.103,0.413]
Not arrested by 18 0.034 0.272 0.353
[0.028 , 0.040] [0.112,0.418] [0.117,0.604]
No live birth by 19 0.149 -0.001 0.172
[0.117,0.178] [-0.180,0.163] [-0.051,0.447]
Formally employed 27+ 0.053 0.291 -0.013
[0.035, 0.069] [0.055,0.536] [-0.246,0.215]

Notes: The table reports standard deviations and correlations of persistent school effects across different
outcomes. Correlations were computed comparing even and odd years as described in the text. To dis-
satenutate this raw correlation, one must divide by the square root of the product of the reliability ratios
for each measure. Correlations in the second column were computed with estimated school impacts for the
average student and those in the third column were computed using school impacts with weights centered

around the 75th percentiles of the achievement distribution. We do this using weight; = (1 + %)*l,
where pct; is the student’s percentile in the achievement distribution. We removed schools with outlier esti-
mated impacts (i.e. beyond 40 of the median school). We bootstrap the even-odd correlations approach for
1,000 repetitions. Results shown correspond to the median (for the point estimates) and the 5th and 95th

percentiles for the confidence intervals.
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Table B7. Maximum Likelihood Correlations Using Different Weights for 2SLS estimates

Correlation between average school impacts
and school impacts weighted around the

25th %ile of median of 75th %ile of
the achievement the achievement the achievement

distribution distribution distribution

(1) (2) (3)

High-Stakes Index 0.99 0.99 0.97
[0.96, 1.00] [0.98 , 1.00] [0.95, 0.99]

Low-Stakes Index 0.90 0.91 0.91
[0.86, 0.94] [0.88, 0.94] [0.86, 0.94]

No Dropout by 14 0.95 0.86 0.52
[0.86, 1.00] [0.80, 0.93] [0.34, 0.65]

Not arrested by 18 0.93 0.73 0.74
[0.86, 0.99] [0.65, 0.80] [0.60, 0.85]

No live birth by 19 0.92 0.89 0.93
[0.87, 0.96] [0.77 , 0.99] [0.82, 1.00]

Formally employed 27+ 0.99 1.00 0.92
[0.85, 1.00] [0.94 , 1.00] [0.83, 1.00]

Notes: The table reports correlations of persistent school effects for each outcome across the
different weighted estimates. Correlations were computed using the maximum likelihood ap-
proach described in the text. We show correlations between estimated school effects for the
average student and those weighted around the 25th percentile, the median, and the 75th per-
centile of the students’7 SEA score distribution. Weighted school impacts are estimated using
weight; = (1 + %)", where X = 25,50,75 and pct; is the student’s percentile in the
achievement distribution. We removed schools with outlier estimated impacts (i.e. beyond 40 of
the median school). We bootstrap the maximum likelihood approach for 1,000 repetitions. Re-
sults shown correspond to the median (for the point estimates) and the 5th and 95th percentiles
for the confidence intervals.
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Figure B1. Distribution of cutoffs by district
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Notes: We show the distribution of cutoffs for all school-years by district. Cutoffs are shown as the SEA percentile

they correspond to in each year.
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Figure B2. Estimated School Impacts with alternative SEA polynomials
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Notes: The left panel displays estimated 2SLS school impacts with a 3rd degree polynomial of the SEA score (Y-axis)
against the preferred estimated school impacts with a 5th degree polynomial of the SEA score (X-axis). The right
panel displays estimated 2SLS school impacts with a 4th degree polynomial of the SEA score (Y-axis) against the
preferred estimated school impacts with a 5th degree polynomial of the SEA score (X-axis). Estimated slopes and tests
for whether they differ from O and 1 are shown below each panel.
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Figure B3. Common support of incoming scores by selectivity of assigned school (10% groups)
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Notes: The X-axis represents the SEA score percentile. The Y-axis represents the density of students for each SEA
score percentile. We plot one curve for different levels of school selectivity, going from the least selective on the left
to the most selective schools on the right. As expected, as the selectivity of the school increases, the distribution of
students by SEA percentiles shifts to the right. However, we can see there is still overlap of students between less and

more selective schools.

74



Figure B4. Distribution of weights centered around 25th, median and 75th percentile
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Notes: The X-axis represents the SEA score percentile. The Y-axis represents the density of students for each SEA
score percentile. Each of the three weights is highly concentrated around the respective percentile (25th, 50th, 75th)

but includes the whole range of students.
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Figure BS5. Predicted weighted 2SLS effects from average 2SLS effects
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Notes: We plot weighted 2SLS estimated school impacts (around the 25th percentile, median and 75th percentile) in
the Y-axis against the average 2SLS estimated school impacts (X-axis) in each panel. Prediction intervals have been
computed by grouping the school estimates in 20 bins across the X-axis.
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Figure B6. Scatter plots of the raw school effects
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Figure B7. Outcomes by SEA score ventile
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Notes: The X-axis represents the SEA score ventile. The Y-axis represents each outcome for students in standardized
units for high-stakes and low-stakes indexes and in percentages for the other outcomes. Arrests are much higher in
males and in the lower ventiles, but it still occurs in the top ventiles of the SEA score.
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Appendix C: Selection of excluded schools

Our analysis focuses on all public secondary schools in Trinidad and Tobago between the years
1995 and 2012. Therefore, all private schools, temporary schools, and non-traditional secondary
schools (such as junior life centers that focus on life skills rather than the national academic cur-
riculum) are excluded. Our analysis therefore focuses on 134 public secondary schools (which
account for over 95 percent of student enrolment).

In our 2SLS models, we estimate one first stage regression for each of these 134 schools, where
the school attendance indicator is the dependent variable; while each of the 134 schools algorithm-
based assignment indicators plus all controls listed in equation (5) enter as regressors. For each
school, we assess the point estimates on the own-school algorithm-based assignment indicator
from each first stage regression. If the the own-school assignment indicator resulted is less than a
15 percentage-point increase in the likelihood of attendance, the school was identified as having a
weak fist stage and we, therefore, excluded both the assignment and attendance indicators when es-
timating individual school’s causal impacts. In addition, for those outcomes that are only observed
for more recent cohorts (such as low stakes, dropout, and pregnancy which are only observed for
cohorts after 2004 compared to 1995 for crime and formal employment, and 1999 for high stakes
exams), we drop the next lowest compliance school in Tobago.

This threshold of 15 percentage points was chosen because lower thresholds resulted in the
inclusion of schools that triggered weak identification for all schools. Using higher thresholds
yielded very similar results. Therefore, we used the lowest threshold for which the full 2SLS model
was well identified. Because some outcomes are not observed for all SEA cohorts, the first stages
are somewhat different. As such, in order to avoid weak identification (only for those outcomes
observed with recent cohorts only) an additional low-compliance school in Tobago needed to be
dropped to avoid weak identification.

We do not exclude any individual observations when estimating the final 2SLS model. There-
fore, the low-compliance schools for which the assignment and attendance indicators were excluded
serve as the omitted category. Note that because not all schools were operating across during the
entire analysis period, and because not all outcomes are observed for all the SEA cohorts; the total
number of schools for which value-added estimates are observable varies across outcomes.

After estimating the school effects for each outcome, the main analysis removes any remaining
outlier estimates (those more than 40 away from the median estimate for that outcome). Appendix
Table C1 shows the total number of schools for which we can observe each outcome (column 1), the
total number of schools for which we estimate value-added for each outcome (column 2), and the
total number of schools for which we have value-added for each outcome after removing outliers
(column 3). The outcome with the most remaining schools is teen arrests, with 127 schools and
the least is teen motherhood with 103 (note that this relatively low number is mechanical as this
outcome is missing for the 17 all-boys schools).
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Table C1. Schools by outcome

Non-private schools

1 @ 3)
High-Stakes Index 134 126 126
Low-Stakes Index 134 124 124
No Dropout by 14 134 127 124
Not arrested by 18 134 130 127
No live birth by 19 115 103 103

Formally employed 27+ 117 111 108

Notes: We show the total number of schools available for
each outcome. The first column shows the total number
of non-private schools in the cohorts where we have in-
formation for each outcome. In the second column we
show the remaining amount of schools once we take out
those with low first stages. We estimate value-addeds
for all these. Finally, we take out outliers from our esti-
mates and show the remaining number of schools in the
last column.
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Appendix D: Testing the Validity of the Difference in Difference
Variation Across Cutoffs

Robustness to Interactions

Our identification relies that there are no considerable interaction effects between test scores
and choices. In order to test for this, we estimate our base model defined in (5) and (6) with
four different interactions between choices and SEA scores. The first interaction considers the
selectivity of choices. For this, we include an interaction between the polynomial of the student’s
own SEA score and the selectivity of each of the first 4 choices, this being approximated by the
average peer SEA score of those assigned to that choice.

Ii,j = Z(I,"T . 7'[?1-]') +fj (SEAL) +Z(gj7k(SEAi) . SEAchoicek) +}Lj,c +X;t5j —l—SjJ + Vijet, for each ] eJ
(18)
Yijer =E(I0j- 0] ™) + f(SEA)) + £(2(SEA) - SEA hoice,) + A + XS+ S+ €ijer (19)

Where gi(SEA;) is a fifth order polynomial and SEA pice, is the mean total SEA scores for
incoming assigned students for each choice k.

The second interaction is between SEA scores and student’s choice sets fixed effects. Instead
of using one fixed effect per choice set, we use two, one for those below the median SEA score in
that choice set and one for those above.

I,"j = Z(I,’;; . 77,'1;]') —l—fj(SEAi) + )Lj,ci —f—X;téj + Sj,t + Vijet, for each ] eJ (20)

Yijer = Z(I1 - 0] O™) + F(SEA;) + Aei + Xie8 + S, + &ijer 1)

Now, instead of A, we will have A.; which will take one value if student i with choiceset ¢ is
above the median SEA score within that choice set and another if it is below.

The third interaction is between the student’s SEA score and its n-th choice of school:

Ii,j = Z(Im- . 7'L'~cj) +fj(SEAi) —l—Z(SEAi 'Ij,i,k) + A,j’C +X;t5j + Sj’, + Vijet foreach jeJ (22)

Yijer = X(I5j - 0] %) + F(SEA;) + Z(SEA; - Iig) + Ac + X8 + S + €ijer (23)
Where [; ; is an indicator equal to 1 if the n-th choice of student i is school k. This is done for

the first 4 choices.

Finally, the fourth interaction is between the student’s SEA score polynomial and its 1st choice
of school:

L j =2l 7ej) + fi(SEA;) + 2(gj k(SEA:) - 1 i k) + Ajc +Xiy 0+ Sjs + Vijer, foreach jeJ
(24)
Yijer = 2(Lij - QJ'TOTIV) + f(SEA)) +Z(8k(SEA;) - Iig) 4 A + X8 + S, + €ijer (25)

Where g (SEA;) is a fifth order polynomial and /;  is an indicator equal to 1 if the first choice of
student i is school k. Results for all four models are shown in Figure D1
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Figure D1: Robustness of School Impacts to Interactions Between Choices and Incoming Scores
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Notes: We show the relationship between the estimated school impacts with the interacted model (y-axis) and the
model without interactions (x-axis). Each panel shows results for one of the interacted models. Estimated slope and
p-values resulting from testing for whether the slope differs from both 0 and 1 are shown below the graph. The short
dashed line shows the 45° relationship.
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Regression Discontinuity Variation vs. All Variation

Existing papers that have explored parental preferences for school causal impacts have either
relied on school average outcomes (which may not reflect their impacts per se) or estimated school
impacts that may be biased due to selection.”® If one’s measures of school effectiveness do not
accurately reflect schools’ causal impacts, it may distort one’s conclusions regarding parental pref-
erences for school effectiveness. For this reason, validating the estimated school impacts as re-
flecting causal impacts is important. A key strength of our context and data is that we are able
to validate our estimated school impacts using exogenous variation only. We test the validity of
our value-added estimates by exploring if they are consistent with what one would obtain using
plausibly exogenous variation only.

Under the algorithm used to create the tentative school assignments (discussed in Appendix A),
each school has a minimum score above which applicants are tentatively admitted and below which
they are not. As such, the marginal effect of being tentatively assigned to each school (relative to the
next lowest ranked school) can be estimated with a regression discontinuity design. That is, among
students who are applicants to a given school 7, the causal effect of being tentatively assigned
to school 7 is simply the effect of scoring above the admission cutoff for school 7 (conditional
on smooth functions of ones incoming SEA score). In our setup, students are considered to be
applicants to a school if that school is in their ranked list and they do not score above the cutoff for
a more preferred school. Note, therefore, that students can be applicants to more than one school.>

To obtain the reduced-form Regression Discontinuity (RD) effect of being tentatively assigned
to any school 7, we estimate RD models for each outcome among all applicants to school 7.0
Under the RD identifying assumptions, the reduced-form effect of being tentatively assigned to
school 7 on outcome Y, is captured by estimating the equation below.

Y;; = Aboveir - y: + f(SEA;) + X6 + & (26)

Where Y;; is the outcome of student i who attended school j, and Above;; is an indicator for scoring
above the algorithm-based assignment cutoff for school 7. Among those who comply with the
cutoff, j=7. The parameter y; captures the difference in outcomes (all else equal) between those
exogenously assigned to a preferred school T (due to scoring above the cutoff) versus scoring
below the cut off and attending the student’s counterfactual school ¢ (that is, the school that the
students would have attended had they not scored above the cutoff for school 7). As such, in the
neighborhood of the cutoff,

E[7Y:|Xi,SEA;] = E(Y;j|Above = 1) — E(Y;4|Above = 0) (27)

To simplify equation (27), we consider this expression for compliers and for non-compliers.

31n related work Abdulkadiroglu et al. (2020) examine parents responsiveness to school impacts that rely on selec-
tion on observables assumptions (similar to our estimates). However, they are unable to validate these school impact
estimates using exogenous variation in school attendance.

MFor example, a student that was assigned to her first choice will only appear once as a (successful) applicant
to her top choice school. However, a student who is assigned to her second choice school will appear twice: as an
(unsuccessful) applicant to her top choice school and as a (successful) applicant to her second choice school.

®That is we estimate separate reduced-form models where, in each one, we consider all persons who applied to a
particular school 7 in each year.
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Under the assumption of unconfoundedness (Rubin 1990), it follows that E[Y;; — Y;,|X;, SEA;] =
GJ-TOT — GqT OT | That is, if there is no selection on observables, the average difference in outcomes
between observationally equivalent individuals who attended school j and school ¢ reflects the
difference in causal impacts between school j and school g. Among the compliers, school j is
school 7 if they score above the cutoff.! As such, for compliers, E[};|X;, SEA;] = 079 —E [GqT on,

where E [GqT OT] is the average impact of the counterfactual schools for the applicants to school 7.
Among non-compliers, the cutoff does not change the school attended so that E[;|X;, SEA;] = 0.
It follows that for the average applicant to school 7, equation (27) can be written as equation (28)
below.

E[7:|X;,SEA;] = pr x (61 T —E[6]“T]) (28)

In words, in expectation, the estimated effect of scoring above the cutoff for school 7 is the differ-
ence between the impact of attending preferred school 7 and that of attending the average counter-
factual school g, all times the compliance rate (p;). This is simply the weighted cutoff effect for
the compliers and the non-compliers.

Consider now, estimating this same model, but replacing each student’s actual outcome with

the predicted TOT impact of the school they attended, éjTOT’V, as below.
09" = Aboveir - §i + f(SEA;) +X{5 + & (29)

The parameter ; is the difference in predicted TOT school impacts (all else equal) between those
scoring above the cutoff for preferred school 7 versus not. In the neighborhood of the cutoff, the
RD effect on the predicted TOT impacts of an individual’s attended school is E[{;|X;, SEA;] =
E (éjTOT’V |Above = 1) — E(éqT 9Tv | Above = 0). Using the same logic as above for compliers and
non-compliers, it follows that

E[&|X:,SEA]] = pr x (E[67 “™V] — E[§T"v]) (30)

In words, in expectation, the estimated difference in predicted school TOT impacts of scoring above
the cutoff for school 7 is the difference between the estimated TOT impact of attending preferred
school 7 and that of the average counterfactual school ¢, all times the compliance rate (pz).

Inspection of (28) and (30) reveals that if our treatment on the treated estimated impacts for
attended school j and the average counterfactual school g are unbiased, then by the law of iter-
ated expectations, E[(;|X;, SEA;] = E|[7¢|X;, SEA;]. In words, if the estimated TOT school impacts
(éTT 9Tiv) are consistent estimates of the causal effect of attending school 7, then for each applicant
school, the RD estimates using the actual outcomes as left hand side variables and the RD estimates
using the TOT school impacts of the attended school j as left hand side variables, should be equal
in expectation.

This motivates a validation test of our TOT school estimates. In related work, Hastings et al.
(2015) implement a very similar test to validate the reliability of using predicted versus actual
earnings when disseminating information on the expected returns to attend alternative colleges and
majors. To implement this test, first, we estimate ¥; and {; for each preferred school 7 (using the
optimal bandwidth from Imbens and Kalyanaraman (2012)). Following Hastings et al. (2015), to

611n most instances school g will be the next ranked school in the choice list, but could be any fallback school (such
as a private school or Government Assisted school that can admit students irrespective of their SEA scores).
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account for estimation errors in the RD effects on school impacts, we implement Empirical Bayes
estimates of each cutoff effect.> We then regress the former estimated coefficients on the latter
(to account for noisiness in the RD estimated effects, we weight each estimate by the inverse of its
squared standard error when doing this regression). Finally, we test for whether the estimated slope
is statistically indistinguishable from 1. The results from this approach are reported in Figure 2 in
the main text.

62Specifically, for any particular outcome, the predicted RD effect for school j is the weighted difference in estimated
school impacts between those just above and below the cutoff for school j. We can express the estimated parameter
as Z_fé/_ = Yea ar(00) — Lien bi(0) = Yiea ar(6k + &) — Yien bi(6r + &), where A is the set of schools the students
attend above the cutoff, B the set of schools the students attend below the cutoff, a; and by the proportions in which they
do so and & the estimation error for the school impact 6. If we assume that the school impacts are not independent
within each cutoff, but that the estimation errors are, we can approximate the variance of this estimated parameter
as Var(Céj) = Zuko'g + Y vimCovg +):wkSE,f, where Gg is given by the magnitude of the school impacts, Covg is
approximated by the covariance between each pair of schools the students applied to and SE,? is given by the square
of the standard error of the school impact. If we also include the squared standard error of the RD estimate, SE ¢ the
reliability ratio of our RD estimate is given by

Yy ukcg + Y viCovg

A=
J (Z ung +ZvlmCOV9) + (ZWkSEI% +SE§)

(3D

Our Empirical Bayes estimate of the predicted effect of cutoff j is therefore [A; x ﬁéj]
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Appendix E: Influence of Admission Probabilities on School Choices

As discussed in Section V.3, a key conditioning variable in our analysis is the admission proba-
bility. Figure E1 plots admission probabilities for all the range of SEA scores differentiated by the
priorities of the submitted school choices. Consistent with rational behavior, students rank more
selective schools (where the probability of accessing them is almost null for students below the
80th percentile of the incoming test score distribution) higher within their choices.

Figure E2 shows the coefficients on the rejection probabilities from a choice model that includes
these probabilities (only in first pseudo-observation) alone but without interacting these probabili-
ties with the school’s causal impacts or average outcomes.%>

More desirable schools (for both observed and unobserved reasons) are those with higher rejec-
tion probabilities, by construction. As such, positive coefficients on rejection probabilities would
indicate that there are unaccounted-for school attributes that are positively correlated with the re-
jection probabilities. However, if the school attributes included accurately reflect those dimensions
of school quality that parents care for, the coefficients on the rejection probabilities should be neg-
ative. In the impacts only model, the point estimates for all groups are negative (Figure D2, left) —
that is, conditional on peer quality, proximity and impacts on key outcomes, parents are less likely
to choose schools to which their child is less likely to be admitted. In the full model(Figure D2,
right), as expected, the coefficients on the rejection probabilities become more negative — indicating
that schools that are more desirable tend to have better average outcomes. The fact that the coef-
ficients on the rejection probabilities are negative for all groups provides empirical validation of
the theoretical predictions from Chade and Smith (2006), and suggests that our included variables
appropriately capture relevant determinants of parents’ school choices.

63We estimate this model to provide a more easily understandable relation between school choices and rejection
probabilities (as opposed to the main model with interactions where the estimated coefficients on the rejection proba-
bilities are not directly interpretable.
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Figure E1. Likelihood of getting into each choice by SEA score percentile
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Notes: The X-axis represents the SEA score percentile. The Y-axis represents the likelihood of being assigned to a
given choice. This probability is higher for the top SEA percentiles. The top choice, which are usually more selective
schools, have higher cutoffs and a lower probability of assignment for each SEA percentile in the distribution. As
we move to the next preferred choices, the probability of being assigned to that given choice increases for all SEA
percentiles.
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Figure E2: Rejection Probability
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile) x (gender) cell, for two main models: The left panel displays esti-
mates from the Impacts Only Model, which includes schools’ causal impact estimates for all outcomes, peer quality,
and log distance and the right panel displays estimates from the Full Model, which includes schools’ causal impact
estimates for all outcomes, the school-level averages for all outcomes, peer quality, and log distance. All specifications
include control variables for whether the secondary school is on the same island, whether it is all-girls, whether it
is all-boys, and the estimated likelihoods of school rejection only when comparing the top choice with all unranked
schools. The dashed lines represent the associated 95% confidence intervals.
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Appendix F: Choice Model using Alternative Specifications

Rank-Ordered Logit: We first present estimates from this standard model which neither includes
the first pseudo-observation nor the rejection probabilities. See Figures F1-F3.

Figure F1. Academic Outcomes using Rank-Ordered Logit Model

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x(gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Rank Ordered Logit Model, which includes schools’ causal impact estimates for all outcomes,
peer quality, and log distance and Panel (b) displays estimates from the Full Rank Ordered Logit Model, which includes
schools’ causal impact estimates for all outcomes, the school-level averages for all outcomes, peer quality, and log
distance. All specifications include control variables for whether the secondary school is on the same island, whether
it is all-girls, whether it is all-boys, only comparing ranked schools. The dashed lines represent the associated 95%
confidence intervals.
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Figure F2. Non-Academic Outcomes using Rank-Ordered Logit Model

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x(gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Rank Ordered Logit Model, which includes schools’ causal impact estimates for all outcomes,
peer quality, and log distance and Panel (b) displays estimates from the Full Rank Ordered Logit Model, which includes
schools’ causal impact estimates for all outcomes, the school-level averages for all outcomes, peer quality, and log
distance. All specifications include control variables for whether the secondary school is on the same island, whether

it is all-girls, whether it is all-boys, only comparing ranked schools. The dashed lines represent the associated 95%
confidence intervals.
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Figure F3. Comparison of Choice Model’s Estimated Coefficients (Rank-Ordered Logit Model)

No Live Birth by Age 19 Not Arrested by Age 18 Formally Employed at Age 27+
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Notes: This figure presents the difference between the choice model’s estimates on the school impacts of three non-
academic outcomes and the choice model’s estimate on the school impacts of the high-stakes index, scaled by the log
distance estimate. The X-axis represents the individual score ventile. The connected lines represent the difference
between the choice model estimate on the non-academic impacts and the choice model estimate on the high-stakes im-
pacts divided by the log distance cell estimate (and scaled by 6 for ease of interpretation). This difference is computed
separately for each (SEA score ventile) x (gender) cell. The estimates result the Ranked Ordered Logit Model, which
includes schools’ causal impact estimates for all outcomes, the school-level averages for all outcomes, peer quality and
log distance, control variables (whether the secondary school is on the same island, whether it is all-girls, whether it is
all boys) only for the ranked schools.
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No Rejection Probabilities: We also present results from a model that includes the first pseudo-
observation but does not account for rejection probabilities in any form. See Figures F4-F6.

Figure F4. Academic Outcomes using The Model without Rejection Probabilities

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x(gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Model using the model without rejection probabilities, which includes schools’ causal impact
estimates for all outcomes, peer quality, and log distance and Panel (b) displays estimates from the Full Model using
the model without rejection probabilities, which includes schools’ causal impact estimates for all outcomes, the school-
level averages for all outcomes, peer quality, and log distance. All specifications include control variables for whether
the secondary school is on the same island, whether it is all-girls, and whether it is all-boys. The dashed lines represent
the associated 95% confidence intervals.
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Figure F5. Non-Academic Outcomes using The Model without Rejection Probabilities

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x(gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Model using the model without rejection probabilities, which includes schools’ causal impact
estimates for all outcomes, peer quality, and log distance and Panel (b) displays estimates from the Full Model using
the model without rejection probabilities, which includes schools’ causal impact estimates for all outcomes, the school-
level averages for all outcomes, peer quality, and log distance. All specifications include control variables for whether
the secondary school is on the same island, whether it is all-girls, and whether it is all-boys. The dashed lines represent
the associated 95% confidence intervals.
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Figure F6. Comparison of Choice Model’s Estimated Coefficients (Model without Rejection Prob-
abilities)

No Live Birth by Age 19 Not Arrested by Age 18 Formally Employed at Age 27+
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Notes: This figure presents the difference between the choice model’s estimates on the school impacts of three non-
academic outcomes and the choice model’s estimate on the school impacts of the high-stakes index, scaled by the log
distance estimate. The X-axis represents the individual score ventile. The connected lines represent the difference
between the choice model estimate on the non-academic impacts and the choice model estimate on the high-stakes
impacts divided by the log distance cell estimate (and scaled by 6 for ease of interpretation). This difference is com-
puted separately for each (SEA score ventile) x (gender) cell. The estimates result from the Full Model (but without the
inclusion of rejection probabilities), which includes schools’ causal impact estimates for all outcomes, the school-level
averages for all outcomes, peer quality and log distance, control variables (whether the secondary school is on the same
island, whether it is all-girls, whether it is all boys).
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Appendix G: School-Level Average Outcomes

This appendix plots the estimated coefficients on the school average outcomes from the Full
Model described in the text, which includes schools’ causal impact estimates for all outcomes, the
school-level averages for all outcomes, peer quality and log distance, control variables (whether the
secondary school is on the same island, whether it is all-girls, whether it is all boys).

Figure G1. Average Outcomes (Full Model)
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Notes: The X-axis represents the SEA score ventile. The connected lines represent the estimated coefficients of the
standalone average outcomes, computed separately for each (SEA score ventile) x (gender) cell, for the Full Model,
which includes schools’ causal impact estimates for all outcomes, the school-level averages for all outcomes, peer
quality, and log distance. All specifications include control variables for whether the secondary school is on the same
island, whether it is all-girls, whether it is all-boys, the estimated likelihoods of school rejection only when comparing

the top choice with all unranked schools, and interactions of these likelihoods with all school attributes. The dashed
lines represent the associated 95% confidence intervals.
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Appendix H: Choice Model with Out of Sample Impacts and Av-
erages

This appendix reports estimates from the same choice models described in the text but using
leave-year-out school impacts and average outcomes. That is, for each SEA cohort, we estimate
schools’ causal impacts and compute average outcomes disregarding the information of the cohort
for which these calculations are being implemented.

Figure H1. Academic Outcomes using Out of Sample Estimated Impacts and Average Outcomes

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x(gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Model using out of sample estimates of schools’ causal impacts for all outcomes, peer quality,
and log distance and Panel (b) displays estimates from the Full Model using out of sample estimates of schools’
causal impacts for all outcomes, out of sample school-level averages for all outcomes, peer quality, and log distance.
All specifications include control variables for whether the secondary school is on the same island, whether it is all-
girls, whether it is all-boys, the estimated likelihoods of school rejection only when comparing the top choice with
all unranked schools, and interactions of these likelihoods with all school attributes. The dashed lines represent the
associated 95% confidence intervals.
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Figure H2. Non-Academic Outcomes using Out of Sample Estimated Impacts and Average Out-
comes

(a) Causal Impact (Impacts Only Model)
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(b) Causal Impact (Full Model)
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Notes: The X-axis represent the individual SEA score ventile. The connected lines represent the estimated coefficients,
computed separately for each (SEA score ventile)x(gender) cell, for two main models: Panel (a) displays estimates
from the Impacts Only Model using out of sample estimates of schools’ causal impacts for all outcomes, peer quality,
and log distance and Panel (b) displays estimates from the Full Model using out of sample estimates of schools’
causal impacts for all outcomes, out of sample school-level averages for all outcomes, peer quality, and log distance.
All specifications include control variables for whether the secondary school is on the same island, whether it is all-
girls, whether it is all-boys, the estimated likelihoods of school rejection only when comparing the top choice with
all unranked schools, and interactions of these likelihoods with all school attributes. The dashed lines represent the
associated 95% confidence intervals. 97



Figure H3. Comparison of Choice Model’s Estimated Coefficients (Out of Sample Estimated Im-
pacts and Average Outcomes)

No Live Birth by Age 19 Not Arrested by Age 18 Formally Employed at Age 27+
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Notes: This figure presents the difference between the choice model’s estimates on the school impacts of three non-
academic outcomes and the choice model’s estimate on the school impacts of the high-stakes index, scaled by the log
distance estimate. The X-axis represents the individual score ventile. The connected lines represent the difference
between the choice model estimate on the non-academic impacts and the choice model estimate on the high-stakes
impacts divided by the log distance cell estimate (and scaled by 6 for ease of interpretation). This difference is com-
puted separately for each (SEA score ventile) x (gender) cell. The estimates result from the Full Model using out of
sample estimates, which includes schools’ causal impact estimates for all outcomes, the school-level averages for all
outcomes, peer quality and log distance, control variables (whether the secondary school is on the same island, whether
it is all-girls, whether it is all boys), the estimated likelihoods of school rejection only when comparing the top choice
with all unranked schools, and interactions of these likelihoods with all school attributes.
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