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Early contributions to the theory of bond options suggest that 

techniques for pricing options on stock can be adapted with relatively minor 

refinementaj Subaequent research indicates potential difficulties. For 

example, Gourtadon (1982) and Buser and Hendershott (1984) show that call 

values are sensitive to multiple unobservable parameters even in the simple 

case of a one-factor interest-rate process. Brennan and Schwartz (1983, 

1985) and Dietrich-Campbell and Schwartz (1986) conclude that call values 

are sensitive to the number as well as the nature of interest rate factors. 

Difficulties in specifying and estimating numerous unobservable parameters 

of an uncertain interest rate process would thus appear to present a 

formidable barrier to the implementation of bond option pricing models.2 

In this paper, we re-examine alternative models for pricing debt 

options and conclude that practical application is not substantially more 

difficult than in the case of stock options. The term structure and 

volatility of interest rates serve as summary characteristics of the economy 

for bond options, just as the stock price and volatility of stock returns 

are summary characteristics of the economy for stock options. Traditional 

comparative-static experiments that reportedly test for the specific effects 

of a given parameter (or model) are misleading in so far as the summary 

characteristics of the economy typically change in the experiment. We 

1. See Cox, Ingersoll and Ross (1976/1985), Brennan and Schwartz (1977), 
and Dunn and Mcconnell (1981). 

2. For additional attempts to estimate the factor structure of interest 
rates, see Oldfield and Rogalski (1981), Marsh and Rosenfeld (1983) and 
Gultekin and Rogslski (1985). 
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control for these fundamental determinants of bond option values and show 

that alternative models of the interest-rate process produce similar 

estimates of bond option values. Accordingly, even if researchers disagree 

about the determinants of either the term structure or the level of 

volatility of interest rates, they should still agree on the implications of 

a given term structure and level of volatility for bond option values. 

Our results are robust with respect to the interest rate environment. 

Cases of high versus low interest-rate uncertainty are examined for three 

term structures: steeply upward sloping; gently upward sloping; and downward 

sloping. To guard against the chance that our results are unique to one 

particular contract, we examine three very different options including: (I) 

a 2-year call option on a 10-year zero-coupon bond, <2) a 2-year call option 

on a 30-year coupon bond, and (3) the borrower's option to prepay a 30-year 

fully-amortizing mortgage. 

The remainder of our paper is divided into six sections. The first 

presents our formal assertions about the fundamental determinants of bond 

option values. Section II describes the alternative models of the interest 

rate process that we consider. Procedures for comparing alternative models 

are discussed in Section III, and simulation results are presented in 

Sections IV and V. A brief summary concludes the paper. 

I. Properties of Bond-Option Values 

Cox, Ingersoll and Ross (1976/85), hereafter CIR, show that the 

equilibrium value of any interest-dependent claim can be represented as a 

solution to a fundamental pricing equation subject to appropriate boundary 
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conditions. We describe this equation in detail in the next section. Here 

we simply let denote the set of parameter values which, together with the 

current interest rate, r, describes the fundamental pricing equation. The 

primary contention of this paper is that as few as two characteristics of 8 

may be sufficient to value options on default-free debt. The measures that 

we propose are y, the slope of the term structure of yields on default-free 

zero-coupon bonds, and a, the level of interest-rate volatility. 

These summary characteristics allow us to clarify and extend two 

propositions that have been established for specific options and specific 

models of the interest-rate process. Our third proposition asserts that 

any remaining bond-option pricing effects are of secondary importance. 

Proposition #1: For a given level of uncertainty about future interest 

rates, the value of a call option on a default-free bond is a decreasing 

function of the slope of the term structure. This result was illustrated by 

Courtadon (1982) and Buser, Hendershott and Sanders (1985) for specific 

contracts in the case of one-factor models. We extend and formalized the 

result. If 81 and 2 denote distinct models such that a(r,82) — a(r,81) and 

y(r,e2) 
> 

y(r,81), 
then 

C(r,82) 
< 

C(r,81). 
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Pronosition #2: For a given term structure, the value of a call option on a 

default-free bond is an increasing function of the level of uncertainty 

about future interest rates. As in the case of proposition #1, this result 

was established by Courtadon (1982) and Buser, Hendershott and Sanders 

(1985) for specific contracts in the case of one-factor models. We extend 

and formalize the result. If and 9 
2denote 

distinct models such that 

y(r,82) y(r,81) 
and 

o(r,82) 
> 

c(r,81), 
then 

C(r,82) 
> 

C(r,81). 

jion#3: Given appropriate controls for the effects of the term 

structure and the level of uncertainty about future interest rates, call 

values are relatively insensitive to the number or nature of the factor 

processes that generate interest rates. If 81 and 2 denote distinct models 

such that 
y(r,82) y(r,81) 

and 
u(r,82) 

— c(r,81), then C(r,82) C(r,81). 

Propositions 1, 2 and 3 together imply that there are two and only two 

fundamental determinants of bond option values, namely the term structure 

and the volatility of interest rates. In the next section we describe the 

various pricing models used to substantiate this claim. 

II, Models of the Interest Rate Process 

We begin this section with a general model of the interest-rate process 

and then specify one-factor and two-factor versions that we use to identify 

the determinants of bond option values. 
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General Model 

Cox, Ingersoll and Ross (1976/85), hereafter dR. present a general 

theory of interest-dependent claims based on the premise that the state of 

the economy is fully described by a finite number (M) of state variables or 

factors, X, which follow a joint diffusion process: 

— 
f1dt + udZ i — 1 K (1) 

where is a Wiener process with E(dZi] 
— 0, dZ — dt and 

dZdZj 
— 

Pijdt. 
The parameters of the process and 

oj) 
measure the drift and variance of 

the corresponding state variables and, in general, may vary with time (t) 

and the current values of the factors. 

Because the factors describe the economy completely, security values 

are uniquely determined. Hence, CIR are able to apply Ito's lemma and 

represent the instantaneous change in value of an arbitrary security V (with 

given boundary conditions and cash flow) as a related diffusion process 

dV — Fdt + GdZ . (2) 

In equation (2), F is the drift in the value of the contract, and C is the 

stochastic component of the price path. By virtue of Ito's lemma, these 

parameters are, respectively, 

K MM 
F — Vt +ilVifi + (3) 

and 
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H 
GdZ — E V.a dZ. (4) 

i—i 1 i 1 

To preclude arbitrage profits, CIR impose Merton's (1973) risk/return 

equilibrium condition on the drift in (3) and variance in (4) 

M 
F + S — rV ÷ 

In equation (5), 5 is the instantaneous cash flow for the security, ) is 

the market-determined price of the ith source of risk in the economy, and r 

is the instantaneous rate of return on riskless investments, hereafter 

referred to as the spot rate. CIR use expression (3) to rewrite (5) as: 

MM H 
1/2 + iEiVi(fi ai) + V + S - rV — 0. 

Equation (6) uniquely determines the value of any security subject to 

appropriate boundary conditions. Based on this observation, CIR refer to 

(6) as the Fundamental Partial Differential Equation for Contingent Claims. 

CIR also show that subject to an invertablity restriction it is possible to 

use interest rates as instrumental variables in place of the true, but 

possibly unobservable, state variables or factors. 

odels 
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Initial efforts to derive explicit models of the term structure [CIR 

(1976), Vasicek (1977) and Dothan (1978)1 focus on the simplest of cases: a 

single factor which, without loss of generality, is taken as the 

instantaneous riskless spot rate of interest (r). In terms of the notation 

of equation (1), the diffusion process is expressed as 

dr — fdt + adZ. (1') 

Various specifications of the drift and variance of this process have been 

employed such as a mean-reverting drift with constant elasticity of 

variance: 

f — k(u-r) (7) 

and a — sra. (8) 

In equation (7), k measures the expected rate of adjustment toward the long- 

run value u. In equation (8), s is the scale of the variation, and a is the 

elasticity of the variation in the process with respect to the level of the 

spot rate. Vasicek sets a equal to zero. CIR sets a equal to 0.5 (the 

"square-root" process), and Dothan sets a equal to 1. In each of the 

corresponding models, the risk premium in (5) is presumed to be a linear 

function of the level of interest rates:3 

3. Arbitrage considerations rule out certain combinations of (8) and (9) 
In particular, for cs,0, risk vanishes if r—0 which implies that the risk 
premium should be zero as well, i.e., a—0 in (9). The specific models 
we consider rule out the potentially inconsistent special cases. 
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Ac a + br. 

Substituting equations (7) (8) and (9) into a one-factor variant of 

equation (6) yields a class of one-factor models of the following form: 

l/2s2r2°V11 
+ [(ku-a) - 

(k+b)r]V1 + Vt + 8 - rV — 0. 

Two-factor models were initially proposed by CIR and Richard (1978) 

in these models, the spot rate is the sum of two factors:4 

r — r1 + r2. 

That is, X1 r1 and X2 r2, 
Both factors are presumed to exhibit mean 

reversion: 

f1 —k(u1-r1) 
and f2 

— 
k2(u2-r2), (7') 

where u1 and u2 are 
constants. We allow for a general elasticity of 

variation: 

— 
s1r? and — s2r'. (8') 

4. CIR and Richard (1978) interpret the additive factors as the real 
interest rate and inflation, Ayres and Barry (1979) take the factors to 

be a long rate and the spread between the short rate and the long rate. 
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We further presume that risk premia are linear in the corresponding factors. 

— 
a1 + b1r1 and 

A2a2 
— + b2r2. (9') 

Substituting equations (7'), (8') and (9') into equation (6) with M—2 yields 

a class of two-factor models of the following form: 

l/2[sr°V11 + srV22 + 2ps1s1rrV121 + [(k1u1- a1) 

- 
(k1-s- b1)r1jV1 

+ [(k2u2- a2) - (k2+ b2)r2JV2 + V + 5 - rV — 0. (6) 

Together equations (6') and (6") describe the various models examined 

in this paper. In the next section we discuss how to compare alternative 

models without contaminating the experiment with changes in the term 

structure or interest-rate volatility. 

III. Procedures for Comparing Alternative Models 

Risk-Neutral Analogs for Risk-Averse Models 

CIR observe that it is always possible to construct a risk-neutral 

analog for any risk-averse specification of the fundamental equation (6). 

In the case of a single-factor mean-reverting model (6'), the mean and speed 

of adjustment for the matching risk-neutral process are: 

u — (ku-a)/(k+b), (11) 
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and k°k+b, (12) 

Because the risk-neutral analog replicates the pricing equation exactly, 

security values should be identical as well. Hereafter, we presume that the 

risk-neutral transformation has been made, so that we can omit the notation 

"°" without fear of ambiguity. 

QnflctotAnalogsfor Tyo-Faptor ModJs 

To obtain a aingle-factor analog for a risk-neutral model 
with two 

additive mean-reverting factors, we choose a apeed of adjustment for 
a 

single-factor model with a decay rate equal to 
a weighted average of the 

decay rates in the two-factor model. That is, we find k such that: 

exp(-kT) 
— 

exp(-k1T)r1/r 
+ 

exp(-k2T)r2/r. 
(13) 

In meen-reverting modela, the volatility of interest rates over a given 

period of time varies directly with the instantaneous 
variance of the 

process and inversely with the speed of adjustment which dampens 
shocks to 

the process. We capture both effects by choosing an instantaneous variance 

for a matching one-factor model such that: 

22a 22a a a 22m ar — + 
2ps1r1s2r2 

+ 
.af.a 

k2 k k1k2 
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When considering models with positive interest-rate elasticity, we set 

volatility at the current spot rate equal to volatility in the inelastic 

case. 

sr°/k — s°/k. (15) 

Equations (13), (14) and (15) are not based on precise analytic 

rules. Nevertheless, these ad hoc controls reflect our intuition about 

models of the interest rate process, and, as we show in the remainder of the 

paper, they provide an adequate summary of interest-rate volatility for the 

purpose of pricing bond options. 

IV. Call Options on Zero-Coupon Bonds 

Closed-form solutions for the value of a call option on a zero-coupon 

bond have been developed by CIR (equation 32, p.396), Ball and Torous (1983, 

equation 8, p528), and Jamshidian (1987, equation 7a, p7). In all three 

formulas, the price of the option (C) is a weighted difference between the 

values of two default-free bonds: 
B1, 

the underlying zero-coupon bond; and 

82, 
a zero-coupon bond with maturity equal to that of the option: 

C — 
B1N1 

- 
B2KN2. (16) 
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In equation (16), K is the exercise price of the option, and the weights are 

determined by parameters of the respective models. CIR employ the square- 

root form of elastic volatility (a—l/2), and use the chi-square distribution 
to define and 

N2. Volatility is inelastic in the Jamshidian model (a-O) 

and N1 and N2 are determined by the normal distribution. 

Equation (16) bears a striking resemblance to the familiar Black- 

Scholes (1972) equation for a stock option; the long bond (B1) corresponds 

to the stock, and the short bond (B2) corresponds to the present value 

factor (exp-rT). Ball and Torous draw the analogy even more tightly by 

observing that their version of (16) is identical to Merton's (1973) 

extension of the Black-Scholes equation that incorporates stochastic 

interest rates. 

The closed-form solutions of CIR and Jamshidian correspond to special 

cases of the one-factor model represented by equation (6'). By focusing on 

these cases, we can examine our basic propositions without relying on 

numerical methods. We can then use the closed-form results to verify the 

numerical procedures that are required under more general conditions. 

Economic Environments 

Panel A of Table 1 reports option values for four specifications of 

one-factor models that have been fit to nine very different economic 

environments; three term structure slopes are examined for each of three 

different levels of interest rate volatility, The slopes cover the gamut 

from a downward sloping yield curve (minus 100 basis points) to a steeply 

upward sloping yield curve (plus 300 basis points). The intermediate case 
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corresponds to a "normal" slope of plus 100 basis points. The choice of 

volatility levels ranges from a value that is low by historical standards 

(so_0.0l5) to one that is high (s°—0.045). An intermediate case was chosen 

as well (s0_003) 

Each of the models was fit to the prespecified economic environments in 

two. In a "risk neutral" approach, we set the risk aversion parameters 

equal to zero and varied the mean to generate each of the term structures. 

In a "risk averse" approach, we set the mean equal to the initial spot rate 

in order to minimize the role played by expectations. We then used equation 
(12) to solve for the risk-aversion parameter. As noted previously, models 

paired in this way should produce identical value estimates for interest- 

dependent claims. In all cases, the initial spot rate is 0.10 and the speed 

of mean reversion is 0.25. Specific parameter values for each case examined 

are identified in Panel B of Table 1. 

Results 

The rows of Panel A are organized into four groups each of which 

corresponds to a distinct version of the one-factor model. In turn, each 

group of rows contains three price estimates: (1) a value based on numerical 

integration with 12 changes in interest rates per year; (2) a value based on 

numerical integration with 96 changes in interest rates per year; and (3) a 
value based on the closed-form solution (which presumes that interest rates 

change continuously). 
Values computed by numerical methods differ little from values computed 

by closed-form solutions. The error based on 96 intervals per year is never 

more than one Cent per hundred dollar face amount of bonds. With 12 
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intervals, the numerical solutions are systematically higher (by 2 to 7 

cents). Yet even these estimates are within 10 percent of the closed-form 

solutions and serve as a verification of our numerical procedures. As 

previously noted, we must rely exclusively on these procedures for the 

balance of the paper because closed-form solutions do not exist for the 

additional contracts examined. 

The results in Panel A clearly support proposition 1; call values fall 

sharply as the term structure is increased. Moreover, the percentage effect 

is roughly uniform across term structures. At the low level of volatility 

call values fall by approximately 50% when the slope of the term structure 

is changed from downward to normal, Call values fall by 50% again when the 

slope of the term structure is changed from normal to steeply upward. Ac 

the high level of volatility the percentage decline is roughly 40% in the 

analogous experiments. 

The results in Panel A also support proposition 2; call values are 

substantially larger in cases of higher volatility. However, the effect is 

not uniform, The percentage change in call values declines with the level 

of volatility and increases with the slope of the term structure. 

With respect to proposition 3 (model-specific effects) , the value of 

the call option is clearly insensitive to whether risk aversion or risk 

neutrality is used to generate the term structure; values are identical in 

all cases as required by the theory. The effect of the elasticity parameter 

is more difficult to evaluate. Call values are reliably lower for the 

square-root process; the difference exceeds the numerical approximation 

error if volatility is moderate or high and the term structure is not 

steeply upward sloping. However, even in extreme cases, the value of the 
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call option is only 12% less in the elastic model. These results suggest 

two possibilities: 1) there is a small but nontrivial negatIve relationship 

between bond call values and elasticity; or 2) our ad hoc procedures for 

standardizIng the levels of volatility in the models are not sufficiently 

precise. In support of the second possibility, we note that models with 

different elasticities cannot provide the same level of volatility at all 

interest rates, Our procedures standardize volatility at the prevailing 

interest rate, but in so doing, we assure that a model with hIgher 

elasticity has a lower probability of very low interest rates (the range 

most relevant for call options). A lower risk-adjusted 

V. Calls on Coupon Bonds and Amortizing Mortgages 

The results reported in Table 1 could be contract specific. To guard 

against this possibIlity, we repeat our analysis of bond-option values for 

two additional types of contracts. These additIonal results are identified 

in Table 2. Panel A reports simulated values for a two-year option to call 

a 30-year bond with a semiannual coupon that is set such that the 
bond is 

initially priced at par. The exercise price for the option is the par value 

of the bond. Panel B provides estimates of the prepayment option in a fully 

amortizing 30-year fixed-rate mortgage with a coupon such that 
the mortgage 

value plus the option equals par. The exercise price for the option is the 

amortized value of the mortgage. Under this specification, the values 

reported in Panel represent "points" charged at the origination of the 

mortgage. 
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The construction of Panels A and B differs from that for Panel A of 

Table 1 in three respects. First, we only report numerical results based on 

12 changes in interest rates per year. Second, we only report results for 

risk-neutral specifications because, as in the case of Table 1, results for 

appropriately matched risk-averse models are identical. Third, we expand 

the class of models to include two-factor models as well as well as one- 

factor models, and we examine the unit-elastic case in addition to the 

inelastic and square-root specifications of the interest-rate process. 

Economic Enviroents 

To design appropriate tests of our claim that one-factor analogs can be 

found for two-factor price structures, we must take care to avoid trivial 

comparisons. For example, we should not focus on cases where the factors 

are highly correlated or where one factor clearly dominates the other. Even 

factors that are uncorrelated but which are similar in structure (symmetric) 

can be replicated by one-factor models with relative ease. These concerns 

suggest that the speeds of adjustment should differ for the individual 

factors. Yet neither speed of adjustment should be so large that it 
inhibits volatility nor so small that it enhances volatility to a point 

where its factor dominates the remaining factor. These considerations, in 

conjunction with reasonable empirical bounds on interest-rate movements, 

helped to shape the following experiments. 
The option values shown in Panels A and B of Table 2 are computed for 

an interest rate of 0.10. The respective initial values for two-factor 

models are r1— 0.07 and r2 0.03. We also Set k1 0.25 and 
Ic2— 0.50. These 
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choices meet our objectives for nontrivial asymmetric processes. In 

particular, while the k values differ, neither factor is dominated in the 

uncertainty structure because it has a speed of mean reversion that is too 

large (which would inhibit volatility), nor does either factor dominate by 

virtue of too little mean reversion (which would enhance volatility). From 

(13), the value for a matching one-factor model is k — 0.2619 for T * 30. 

Scale parameters are chosen as follows, First, we assume that the two 

factors are uncorrelated (p—O) in order to maximize separation between the 

factors. This structure presents the greatest challenge for the task of 

finding a matching one-factor model, For a similar reason we choose 

different levels of variance for the individual factors. In the low 

volatility case, we set s and s°2equal to 0.02 and 0.01, respectively. 

Based on (14) the corresponding value for a matching one-factor model is 

s°—0.02l6. In the high volatility case, the respective volatility constants 

are 0.03 and 0.015 and 0,0324. 

As in Table I, option values are reported for three term structures 

which can be generated either by varying the mean-reverting rate (u) with b 

— 0 or by varying the risk-aversion parameter (b) with u — r. In the two- 

factor case, the ratios of the means to the corresponding spot rates (u1/r1 

and 
u2/r2) 

are held constant. Parameter values for the various cases are 

listed in Panel C of Table 2. 

Results 

The additional simulations indicate that our findings for propositions 

I and 2 in the case of options on zero-coupon bonds are not contract 
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specific. In Panels A and B of Table 2, an increase in the slope of the 

term structure clearly lowers call values, and an increase in volatility 

clearly raises call values. In addition, the patterns for the effects 

appear to be similar to those established for call options on zero-coupon 

bonds. For either the coupon bond or the mortgage, an increase in the slope 

of the term structure (from downward to normal or from normal to steeply 

upward) cuts the value of the option by roughly one third in the case of low 

volatility and by roughly one fourth in the case of high volatility. The 

percentage effect of a change in volatility increases with the slope of the 

term structure but at a much lower rate than in the zero-coupon case; the 

increase is roughly 40% with the downward sloping term structure and 70% 

with a steeply upward term structure. 

The additional simulations also confirm our earlier findings regarding 

model-specific effects. Option values are insensitive to whether risk 

aversion or expectations accounts for the slope of the term structure. 

(Results are omitted because they are identical.) Option values are also 

insensitive to the number of interest-rate factors used to generate the term 

structure. Only the elasticity parameter emerges as a potential model- 

specific determinant of simulated option values; call values are noticeably 

smaller when the elasticity parameter is increased. Patterns in the effect 

are similar to those established for options on zero-coupon bonds. The 

percentage effect of increasing elasticity is greatest when volatility is 

high and the yield curve is downward sloping; differences in value estimates 

are as large as 10% for the bond option and 15% for the mortgage option. 

Part of the effect we have attributed to elasticity may in fact be due 

to our inability to match volatilities precisely at all interest rates. 
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Accordingly, even the apparent effect of elasticity could be due more to the 

general effect of volatility than to a truly model-specific effect, In 

support of this interpretation, we note that the apparent effects of 

elasticity are uniform in sign and magnitude. Specifically, call values 

decline at a uniform rate as elasticity is increased, and the magnitude of 

the effect declines as the slope of the term structure is increased. These 

patterns suggest that it may be possible to improve on our procedures for 

controlling for differences in volatility. For example, the apparent effect 

of elasticity might be reduced if interest-rate expectations were used ifl 

the volatility control.5Alternatively, we note that even if models are 

constructed to provide comparable levels of volatility at the prevailing 

interest rate, an increase in elasticity reduces the probability of very low 

interest rates (the range most relevant for call options). Thus it might be 

more appropriate to standardize models on the basis of the probability of 

interest rate less than some critical value. 

Although we are guardedly optimistic that such improvements are 

possible, the pursuit of such refinements is beyond the intended scope of 

this paper. Our purpose was simply to show that differences in estimates 

between models are far less than is currently perceived, provided that 

5. Alternatively, it might be possible to extract an implied variance 

measure for one model that equates the option estimate with a matching model 
for some benchmark case. Such an adjustment would be contract-specific, 

contrary to the spirit of our current investigation. Nevertheless the 

technique would be of interest if it could be shown to improve the fit 

between models for all contracts over the full range of economic 
environments. 
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comparable term structures are used and some attempt, however crude, is made 

to impose comparable levels of interest-rate volatility. 

VI. Conclusions 

The -value of a given call option on a default-free bond is a decreasing 

function of the slope of the term structure and an increasing function of 

the volatility of interest rates. Little else seems to matter. In 

particular, bond option values are not sensitive to either the number of 

factors driving the interest-rate process or the reason that the term 

structure has a given slope. Bond option values appear to be moderately 

sensitive to the degree of interest-rate elasticity in volatility, but even 

this result may say more about our ad hoc controls for volatility than it 

does about the fundamental determinants of bond option values. Thus we 

conclude that even if elaborate models of the interest-rate process are 

required to estimate volatility, they are not needed to price bond options. 

In the absence of analytic results, we can not claim confirmation for 

all possible specifications of multiple factor models. Nevertheless, we 

regard our simulations as sufficiently compelling to encourage, if not 

require, future advocates of multiple factor models of bond-option values to 

make relevant comparisons vis a vis a comparable one-factor models. As a 

minimum, the slope of the term structure and the level of interest-rate 

volatility must be the same for competing models. 
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Table I. 

Two-Year Call Option on a Ten-Year Zero-Coupon Bond 

Panel A 

Option Value Per Hundred Dollar Face Amount of Bonds 
for Alternative Models and Economic Environments 

Slope of the Term Structure 
Downward Normal Steeply Upward 

Volatility Volatility Volatility 
Mod llizh k2 Mod izh 1& Mod liigh 

(1) 
Inelastic Risk Neutral 

Numerical(12) 1.28 2.21 3.17 0.64 1.42 2.21 0.27 0.89 1.53 
Numerical(96) 1,25 2.19 3.16 059 1.37 2.17 0.24 0.83 1.47 
Closed Form 1.24 2.19 3.16 0.58 1.37 2.17 0.24 0.83 1.47 

(2) 
Inelastic Risk Averse 

Numerical(l2) 1.28 2.21 3.17 0.64 1.42 2.21 0.27 0.89 1.53 
Numerical(96) 1.25 2.19 3.16 0.59 1.37 2.17 0.24 0.83 1.48 
Closed Form 1.24 2.19 3.16 0.58 1.37 2.17 0.24 0.83 1.47 

(3) 
Square Root Risk Neutral 

Numerical(l2) 1.26 2.10 2.81 0.64 1.35 L96 0.28 0.86 1.37 

Nuxnerical(96) 1.23 2.07 2.80 0.58 1.30 1.92 0.24 0.80 1.31 
Closed Form 1.22 2.06 2.79 0.58 1.29 1.91 0.25 0.79 1.30 

(4) 
Square Root Risk Averse 

Numerical(12) 1.26 2.10 2.81 0.64 1.35 1.96 0.28 0.86 1.37 

Numerical(96) 1.23 2.07 2.80 0.58 1.30 1.92 0.24 0.80 1.31 
Closed Form 1.22 2.06 2.79 0.53 1.29 1.91 0.25 0.79 1.30 

Contract assumptions: 
The exercise price for the option at time t is lO0exp[-R(T-t)J, where R is 
the original yield and T-t is the remaining term to maturity. 

Parameters for case-by-case results are shown in Panel B, 
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Table 1 

Panel B: 

Parameter Values 

Exogenous Parameters: 

r—0.lO and k—025 in all models. 

Model (1) Inelastic Risk Neutral: -a-'b-0; u endogenous. 

Model (2) Inelastic Risk Averse: a—O; bO; ur; a endogenous 

Model (3) Square Root Risk Neutral: —l/2; a—b.-0; u endogenous 

Model (4) Square Root Risk Averse: a.l/2; a—0; ur; b endogenous 

Values of the Endogenous Parameters 
That Make 10-Year Slope of the Term Structure: 

Downward Normal Steeply Upward 
(-100 bp) (100 bp) (300 bp) 

For Volatility For Volatility For Volatility 
Low Mod High Low Mod High Low Mod High 

Model s - 0.015 QQ 0.045 0.015 0.03 0.015 03 0.045 

(1) u — .0855 .0895 .0961 .1171 .1211 .1277 .1487 .1527 .1593 

(2) a — - .0036 - .0026 - .0010 .0043 .0053 .0069 .0122 .0132 .0148 

(3) u — .0854 .0889 .0944 .1172 .1213 .1278 .1490 .1537 .1612 

(4) k — .2135 .2223 .2360 .2930 .3033 .3195 .3726 .3844 .4030 

b — - .0365 - .0277 - .0140 .0430 .0533 .0695 .1226 .1344 .1530 
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Table 2 

Calls on Coupon Instruments 

Panel A 

Value of a Two-Year Call Option 
on a Thirty-Year Coupon Bond 

Slope of the Term Structure 
Downward Normal Steeply Upward 

Volatility Volatility Volatility L fligh L ugh L ugh 
Inelastic: 
Two Factors 3.30 4.71 2.32 3.64 1.61 2.84 
One Factor 3.30 4.72 2.31 3.64 1.60 2.83 

Square Root: 
Two Factors 3.20 4.42 2.26 3.43 1.56 2.67 
One Factor 3.21 4.47 2.27 3.48 1.56 2.70 

Unit Elastic: 
Two Factors 3.11 4.19 2.20 3.25 1.52 2.53 
One Factor 3.12 4.26 2.22 3.32 1.53 2.60 

Contract assumptions: 
The initial face value of the bond is $100, and the coupon is set to 

initially price the bond at par. The exercise price for the option is 

$100. 

Model parameters for case-by-case results are shown in Panel C. 
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Table 2 

Panel 

Value of a Homeowner's Option to Prepay a 

Thirty-Year Fixed-Rate Mortgage 

Slope of the Term Structure 
Downward Normal Steeply Upward 

Volatility Volatility Volatility 
Model Low jg w ugh L Eigh 

Inelastic: 
Two Factors 5.32 7.49 3.56 5.58 2.28 4.07 
One Factor 5.38 7,52 3.53 5.54 2.24 3.99 

Square Root: 
Two Factors 4.95 6.66 3.38 5.08 2.24 3.79 
One Factor 4.99 6.83 3.38 5,19 2.25 3.88 

Unit Elastic: 
Two Factors 4.68 6.12 3.25 4.70 2.19 3.58 
One Factor 4.81 6.31 3.25 4.77 2.23 3.70 

Contract assumptions: 
The face amount of the mortgage is $100, and the coupon is set such that a 
noncallable mortgage would initially be priced at par. That is, the value 
of the prepayment option represents the "points" or initial discount from 
par for the mortgage. The exercise price for the option at time t is the 

outstanding loan balance. 

Model parameters for case-by-case results are shown in Panel C. 
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Table 2 

Panel C 

Parameter Values 

Exogenous parameters: 

a1— a2— b1— b2— U; 

Ic1— 0.25; k2— 0.50; Ic — 0.2619; 

0.07; r2— 0.03; 
r = 0.10; 

u1— ur1/r; u2— ur2/r; 

0.02; SL_ 0.01; sGL_ 0.0216; 

SH_ 0.03; SH_ 0.015; s — 0.0324. 

Values of the Mean That Make the 
30-Year Slope of the Terni Structure 

Downward Normal Steeply Upward 
(-100 bp) (100 bp) (300 bp) 

Volatility Volatility Volatility 
Low High Low High Low High 

1QI a — QJ.Z .22!± 

Inelastic (a—O): 
Two Factors u — .0918 .0957 .1144 .1182 .1369 .1408 
One Factor u — .0917 .0956 .1146 .1186 .1375 .1415 

Square Root (a—l/2): 
Two Factors u — .0914 .0945 .1145 .1183 .1376 .1420 
One Factor u — .0913 .0946 .1148 .1188 .1383 .1430 

Unit Elastic (a—i): 
Two Factors u — .0914 0949 .1152 .1197 .1390 .1450 
One Factor u — .0913 .0946 .1152 .1197 .1395 .1455 
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