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significantly reduced. The 2009 outbreak of bird flu does not break the qualitative pattern of 
“learning by suffering” but it does change the strength of learning.
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1 Introduction

An annual flu vaccine (or shot) is one of the least controversial and most widely-recommended

preventative health measures. The Center for Disease Control’s Advisory Committee on

Immunization Practices (ACIP) suggests that everyone six months or older get an annual flu

vaccine, absent pre-existing allergies or severe health conditions. This advice is consistent

with the vaccine’s well-established effectiveness at limiting both private and social risks of

getting the flu.

Despite the strength of these guidelines, the adherence rate for this advice is imperfect,

and, as we document below, likely less than previously thought.(Fiscella et al., 2006) Further,

using panel data, we demonstrate a striking pattern of vaccination over time. In particular,

we find that individuals in our sample “learn from suffering.” The learning is both positive

and negative: when individuals are un-vaccinated and subsequently get sick, they are more

likely to get a flu vaccine the following year. Alternatively, when individuals are vaccinated

and get the flu in spite of the vaccine, they are less likely to be vaccinated the following flu

season. This “learning by suffering” is robust across a series of specifications, even after we

control for individual fixed effects plus the region’s previous flu shot rate and flu illness rate.

The 2009 outbreak of bird flu does not break the qualitative pattern of “learning by

suffering” but it does change the strength of learning. This change suggests that individuals

interpret the signal of flu illness differently after they observe a new strain of flu virus, but

the new interpretation does not last long. It is most prominent in 2010, the first flu season

after the bird flu outbreak. As the threat of bird flu subdued, the strength of “learning by

suffering” gradually recovers towards its original levels before 2009.

To our best knowledge, we are the first to document “learning by suffering” of vacci-

nation using individual-level claims data. While “learning by suffering” is intuitive, it is

also surprising for this population: since the recommendation of flu vaccination has been

widespread for a long time, one would imagine that substantial learning, if ever needed, has

already taken place for most adults before age 65. It is also surprising that the learning

is contingent on individual experience, even after we control for region-wide factors. One

explanation is that self experience is most salient to individuals, individuals are uncertain
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about the strength of their own immune system, and the effectiveness of flu shot is per-

ceived to vary across individuals despite the universal recommendation of flu shot. These

individualized uncertainties encourage people to learn from self experience rather than take

the blanket recommendation at its face value.

According to the US Center of Disease Control, 66.2% of the elderly (65 or older) received

flu vaccine in the 2012-2013 flu season.1 In contrast, the average vaccination rate recorded

in our 5% sample of Medicare claim data is less than 40% every flu season from 2005-2006

to 2012-2013. While this discrepancy could be driven by some elderly getting flu vaccine

without filing a claim, it is also possible that some subjects over report vaccination when

they were asked whether they had received any flu shot in the past 12 months. Such over-

reporting, if it exists, may lead CDC to over-estimate the actual vaccination rate.2 While

this potential over-reporting is of interest to us, our main focus is on dynamic patterns of

learning that are a source of under-vaccination.

We also shed light on the potential mechanisms involved in individuals making flu shot

decisions. Moyer (2018) argues that the recent anti-vaccination movement has made it dif-

ficult to publish findings that highlight the limitations of vaccination. That is, the scientific

community fears individuals might over-respond to credible scientific research that, while still

valuable, a flu shot is not as effective in the general population as previously thought. Medi-

care beneficiaries respond strongly to their own experience in the immediate past, despite

their life-time exposure to the CDC recommendation.

The rest of the paper is organized as follows. Section 2 articulates our contribution to

the literature. Section 3 describes the data and related institutions. Section 4 presents the

empirical estimates. Section 5 discusses the implication of our findings for public health

policy.

1CDC report accessed at http://www.cdc.gov/flu/fluvaxview/coverage-1213estimates.htm on June 1,
2016.

2The CDC estimates are based on the National Immunization Survey conducted by the CDC National
Center for Immunization and Respiratory Diseases (NCIRD) and the Behavioral Risk Factor Surveillance
System (BRFSS) survey conducted by various states.
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2 Literature Review

Most of the economic literature of vaccine focuses on externality. Because vaccines protect

against infectious diseases, the vaccinated population generates a positive externality on

non-vaccinated people, while a non-vaccinated person may contract the disease and impose

a negative externality on others. Assuming vaccination incurs more private cost (in time,

discomfort, and side effects) than the marginal, private benefit of vaccination, the last un-

vaccinated individual has strong incentive to free ride on the vaccinated population. As a

result, the whole population is likely under-vaccinated absent government intervention.

In response, scholars have sought incentive-changing policies to mitigate under-provision.

Most economic literature of vaccine focuses on a positive externality from vaccinated to non-

vaccinated population. (Chang, 2015; Ward, 2014; Chapman et al., 2012; Brenzel et al., 2007;

Bronchetti et al., 2015) Some even advocated for tort remedy, which holds non-vaccinated

people liable when they transmit a vaccine-preventable disease to others.(Reiss, 2013) The

efficacy of policy-driven incentives depends on the efficacy of vaccines, which may vary both

objectively and subjectively across individuals. Recent research has addressed how these two

factors interact and agree that individuals should receive external incentives to get vacci-

nated, though the magnitude of such incentives is a point of contention.(Naprawa and Reiss,

2014; Manski, 2010, 2014; Gostin, 2015; Kahan et al., 2010; Ryan and Nourmohammadi,

2010)

In contrast, our paper focuses on individual incentives while controlling for geographic

variation. More specifically, each state and county in the US estimate their region demand

for flu shot each year and guide flu shot supply in advance. Beside nationwide coordination

by the US Center of Disease Control, local governments also engage in local educational

campaigns in each flu season, some even provide free flu shots to the public via community

events. It is unclear whether these efforts are motivated by the free-riding problem, or simply

by an aim to reduce the cost of flu shot to individuals. Either way, we can control for a

combination of individual fixed effects and year fixed effects, and region-specific history of

flu and flu shot.

Our study is closer to the literature that strives to explain low vaccine take up at the

4



individual level. Some research has focused on two potential mechanisms to resolve the prob-

lem: providing information and reminders to patients (Milkman et al., 2011), and healthcare

provider communication.(Opel et al., 2015)3

Past immunization against influenza can be predicted by subject-estimated effectiveness

of the vaccination, periodic blood test, perceived severity of flu illness, side effects of vaccine,

health anxieties, and subjective probability of being infected.(Tsutsui et al., 2008) Others

have focused on the importance of opportunity cost, as captured by labor-force participation.

(Carman and Mosca, 2011) Risk perception has also been used to understand the take-up

rates of HPV vaccines.(Kahan et al., 2010)

There is evidence that inattention is not a leading cause of under-vaccination, though

that work is focused on a different, younger population than we consider. (Bronchetti et al.,

2015) Rather, informed decisions to not get the vaccine, and lack of follow-through are more

important. The regulatory environment(McConeghy, 2014; Calandrillo, 2003) may also play

a role.

To our knowledge, we are the first to empirically document a novel mechanism in vacci-

nation take up, namely the evolution of individual beliefs on their own disease susceptibility

and vaccine effectiveness. Our research design allows us to identify the effect of learning

while controlling for chronic health condition, risk preference, and opportunity cost via in-

dividual fixed effects. In addition, we explore how the learning process changes before and

after the 2009 outbreak of bird flu, which complements an experimental study on belief co-

ordination after the outbreak. (Engle-Warnick et al., 2013) Our region-wide controls also

capture aggregate peer effects inside a particular region, no matter whether individual vac-

cination decisions are negatively correlated due to free-riding or positively correlated due to

the desire to conform to peers.(Bodine-Baron et al., 2013; Rao et al., 2007)

Absent a thorough understanding of individual behavior, attempts to fix it via pub-

lic health awareness campaigns or more effective vaccines may not work or be counter-

productive. A better understanding of individual take-up behavior also helps on the supply

side. (Finkelstein, 2004; Scherer et al., 2007; Dai et al., 2015) In complement, our findings

3There is a broader literature on encouraging preventive care, with or without externalities, cf. Stone
et al. (2002).
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suggest that demand for vaccines is related to individual perception of vaccine quality and

the evolution of individual perception has lasting effects in future demand of vaccines.

3 Data and Institutional Detail

We start with the baseline population, which is a 5% random sample of Medicare fee-for-

service (FFS) population for the years 2005-12.4 We follow this people from when they enter

Medicare FFS until they exit it, primarily due to death. We restrict our study sample to

those individuals who are 65 or older, and whose primary eligibility criteria for Medicare

FFS is old age. Medicare FFS also covers individuals on SSI disability and end-stage renal

dialysis. These individuals enter Medicare FFS due to a pre-existing health problem, and

are excluded. For the sample, we observe each beneficiary’s age, gender, race and ZIP code

of residence.

We observe billed medical events for our 5% sample. Principally, we consider claims for

services offered in three main settings: hospital inpatient admissions5, and outpatient care

offered in either hospital or non-hospital settings, such as ambulatory surgical centers or

a doctor’s office.6 All claims list two key pieces of information: CPT codes describing the

services provided, and ICD-9 codes characterizing the health circumstances of the individual.

The claims list the date(s) of service, provider identifiers (NPI or UPIN), and biller type—

doctor’s office, clinic, or, importantly, bulk billers, typically used for mass immunization.

We use these CPT and ICD-9 codes to identify the utilization of flu shots, as well as

incidence of the flu. The various codes for flu shots and the flu are distinct; that is, the

codes for treatment for flu-like symptoms are different than those for administration of the

flu shot. Medicare billing practice has established several key codes in effect for billing these

services during this time period. These codes are listed in Table 1. The bird flu outbreak

of 2009-10 is included in our sample; CMS specified several new ICD-9 codes to reflect this

4One notable consequence of this is that we do not observe the medical claims for individuals who enter
into the Medicare Part C, or Medicare Advantage, program.

5Technically, we use the MedPAR files, which are summary files for all inpatient admissions and skilled-
nursing facility stays.

6We also have access to the prescription drug use by way of Medicare Part D plans starting in 2006. Flu
shots are billed under Medicare Part B; if a patient received a prescription for, e.g., Tamiflu, to treat flu-like
symptoms, the visit where the prescription was written would be in the claims data.
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and other new forms of the flu. We also include the broader category of respiratory illness,

which may be confused by patients or practitioners for the flu.

We construct flu seasons that begin in August and end the following July. With the

exception of the 2009-10 bird flu season, this is consistent with the CDC’s construction of

flu seasons and reflects patterns of flu-shot take-up and flu evident in the data. Figure 1

plots the number of claims for flu shots and flu-related (by ICD-9 code) claims. Nearly 80

percent of flu shots are deployed by November, and flu outbreaks tend to begin in January.

This likely reflects the two-week lag between when the flu shot is administered and when it

can credibly provide protection against the flu. That is, someone who receives the flu shot

in the midst of an outbreak will not be protected against that outbreak for some period of

time. This is why the CDC emphasizes timely flu shots early in the season. Because of this

timing, we will include flu shot outcomes in the 2012 season, since most of the flu shots likely

have been taken by the end of our data (December 31, 2012). We do not use the outcomes

on the flu using the 2012 flu season measures, since it is much more likely to be incomplete.

The one interesting exception to this pattern was the 2009 bird flu season. As seen in

Figure 2, the seasons before and after 2009 exhibit the standard timing (i.e., flu-related

medical visits peak some time after peak vaccine administration), while the bird flu season

outbreaks began around the time that the flu vaccine was being distributed. Further, this

irregular timing contributed to the poor match between the flu strains in standard vaccine

and those that were prevalent in the outbreaks. Below, we will evaluate if the take-up and

other behavioral patterns varied pre- and post-2009 season.

Sample means are reported in Table 2. The take-up rate for our sample (roughly 35-40

percent by year) is substantially lower than self-reported measures for a similar population

(age 65+). There are two potential reasons for this gap. The first and more concerning one

is that individuals may get flu shots outside of the Medicare billing system. Seniors may

choose to pay out of pocket to a provider, even though they do not face a co-pay for flu

shots in Medicare FFS. (The provider might refuse Medicare FFS, and expect more money

out-of-pocket from a beneficiary than from CMS.) County health systems may be one source,

though CMS, through its bulk billing system, does provide reimbursement services for these

kinds of providers. Employers might also offer flu shots outside of the billing system, but
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individuals of this age are not likely to be employed.

Alternatively, it may be the case that self-reported measures of preventative care overstate

the actual utilization. This appears to be true for a wide array of preventative health

care services, such as mammograms, Pap smears and cholesterol tests, when claims-based

measures are compared to self-reported measures in the Medicare population for services

that are covered and there is little reason to leave the Medicare insurance billing system

(Fiscella et al., 2006).

Similar issues may arise for our measure of flu illness. We code an individual as having

had the flu if one of her medical claims during a flu season has ICD-9 codes for the flu.

A person may experience flu-like symptoms, not be formally diagnosed with the flu, but

believe they suffered from the flu and behave accordingly. Alternatively, a beneficiary may

be diagnosed with the flu on the medical claim, but not be aware of it, or not believe the

diagnosis when told by the provider.

Principally, this is important because we are measuring the response of the individual to

realizations (or perceptions thereof) of the risk of the flu that they face, and the effectiveness

of the vaccine at preventing the flu. To the extent that believing or disbelieving is a time-

invariant characteristic, our specifications with person-fixed effects will control for that. We

do this with both personal and aggregated (from the claims data) measures of flu incidence

and vaccine failure rate. We compare these two measures with the CDC’s own measures of

flu incidence and effectiveness rate, as well as include year-fixed effects which should control

for average annual differences.

Table 2 also reports the incidence of the flu shot, conditional on decisions and outcomes

of the previous year. Three broad patterns are evident: people who get a flu shot in one

year are more likely to get it the following year; people who get the flu one year are more

likely to get a flu shot in the following year; and people who get both are less likely to get

a flu shot in the following year than if they did not get flu (but did get a flu shot). This

pattern is evident in the raw cross-tabulations, and it will be repeated below in regressions.

The magnitudes will vary by specification or by group, but the qualitative pattern is the

same. Such robustness suggests that individuals do learn by suffering.
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4 Who Gets a Shot When?

4.1 Main Specification

We now consider the determinants and patterns of individual take-up. Consider the following

linear equation, characterized for person i, living in region r, at time t:

sirt = β1sirt−1 + β2firt−1 + β3sirt−1 × firt−1 + αi + τt + εirt, (1)

where sirt = 1 if person i living in region r got a flu shot in flu season t; firt−1 = 1 if person

i living in region r got a flu shot in flu season t− 1; αi is an individual fixed effect, while τt

is a flu-season fixed effect. Alternate specifications that do not exploit the panel nature of

the data replace the individual fixed effect (αi) with a county- or other geography-specific

fixed effect (αr).

A few characteristics of Equation 1 are worth mentioning. First, we are predicting present

day outcomes using the previous year’s outcomes. Specifications that include individual fixed

effects will limit the variation available to identify the βs. Importantly, this means that they

are identified from people who do not always get the flu shot or get the flu. As we will argue,

this is likely a differentially selected population.

Second, a great deal of the relevant variation in flu-shot effectiveness will be common

across regions, since the effectiveness of the flu shot depends upon the make-up of the flu

shot made at the national level. The flu shot inoculates individuals against particular strains

of the flu, whether or not those are the prevalent strains of the flu present nationally. This

national variation will be picked up in the season fixed effects. Thus, the variation being

exploited here is all individual or region-season specific.

The various controls allow for us to exclude certain explanations for the behavior that are

not learning. For example, there may be robust differences in public health infrastructure

(e.g., education and awareness campaigns, or public health clinics that provide access to the

flu shot) across counties, and that may confound some of these patterns. To the extent that

those differences do not vary over time, our county- and MSA-fixed effects should account for

this. Alternatively, individuals may vary in their risk aversion, and that could influence their
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willingness to engage in preventive care. To the extent that risk aversion is fixed for a person

over time, the individual fixed effects should account for this. Likewise, static susceptibility

to illness or knowledge of health risks is accounted for in the individual fixed effects.

After including these controls, we argue that the correlation between an individual’s flu

shot take up in year t and her flu shot and flu outcome in t − 1 is driven by “learning

by suffering.”’ One alternative to the learning explanation is mean reversion in the errors:

individuals face idiosyncratic costs to an activity that fluctuate over time. A person might

face low costs in one year and take up an activity; in the following year, by simple mean

reversion, an individual is likely to receive a higher cost and less likely to engage in that

same activity. This person is not “learning” that they dislike something; they are just

responding to idiosyncratic shocks. Note that this mean-reversion explanation cannot explain

the positive relationship between flu shot in two consecutive years. Thus, in order for mean

reversion to explain the had-flu/flu shot interaction coefficient, the mean reversion must

systematically impact persons who get the flu conditional on getting a flu shot. We believe

this type of conditional error is unlikely.

4.2 Baseline Results

The first column of Table 3 reports the baseline estimates of the learning parameters. All

specifications include individual fixed effects. There are three coefficients of interest. All are

probabilities relative to the omitted category of neither having had the flu shot nor having

had the flu in the previous year. This ommited category has a thirty-three percent take-up

rate of the flu shot the following year. Take, for instance, the estimate for β1, in the “Had

shot” row. After accounting for individual-fixed effects, individuals who had the flu shot

in the previous year were 3.3 percentage points (or ten percent, against the baseline of 33

percent) more likely to get a flu shot, presuming they did not get the flu the previous year.

Had they the flu the previous year (β2, “Had flu” row), but not the flu shot the previous

year, they would have been 4.8 percentage points more likely to get a flu shot.

The estimates are quite substantial; all correspond to at least a three percentage point

change in the underlying likelihood of getting a flu shot, against a baseline population average

of thirty percent. The medical advice that nearly all persons should get a flu shot did not
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vary over this period; so to the extent that the “rational” decision is to follow medical advice,

there should be no variation to identify the point estimates. Even if individuals thought they

should “learn” from experience, there is little reason to think that they should adjust their

priors so quickly, particularly since these individuals are over 65 years old, and have already

had a great deal of exposure to both flu risk and the flu shot.7

In Table 3 column one, the sum of the three key coefficients (β1, β2, β3) is practically zero,

suggesting that persons who get the flu shot and the flu in one season are as likely to have

a flu shot the following year as someone who neither had the flu shot nor had the flu in the

previous year. When a person is given preventative care and the person still gets sick, it is

as though they did not take the preventive care and did not get sick in spite of it.

As mentioned above, respiratory illnesses (any ICD-9 codes between 480 and 490) may be

confused for the flu. We replace the flu-related indicators with the broader respiratory-illness

category in the second column of Table 3. The same patterns remain, and two of the three

grow stronger, particularly the interaction of having had a respiratory illness and having had

a flu shot. Thus, this learning-by-suffering corresponds to a broader class of suffering than

that specifically diagnosed as the flu. (For the balance of the paper, we return to the more

narrow definition of the flu-related illness.)

There are many ways to suffer from the flu, and some may be more severe than others. In

order to assess the role of the intensive margin in learning by suffering, we include additional

indicators if the flu-related illness involved admission to a hospital. The results for this

specification are in the third column of Table 3. The interaction of being admitted for the

flu in spite of having the flu shot further decreases the likelihood that the person subsequently

received a flu shot, relative to receiving outpatient care for the flu shot. That is, the more

suffering, the more intense the learning.

To check the role of geographic variation in the specification with individual fixed effects,

we add county-level averages to the fourth column of Table 3. Among the county averages,

the only statistically significant coefficient is the previous year’s flu shot average against

subsequent flu shot take up. We are hesitant to interpret the regional-average coefficients

7When we limit our sample to exclude those who always or never got the flu shot while in the sample,
the results remain practically the same. This exercise reduces our sample size, but The results for this
specification are available upon request.
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as evidence of region-wide learning. We view these regional averages as controls for factors

that may change over time within a region. Further, adding these regional averages do not

change how individuals learn from their own experience of flu and flu shot.

Finally, as we have seen, the 2009 flu season was unusual, due to the Bird flu. The 2009

season is included in these results, but the patterns remain even if we drop 2009.

4.3 Does the Learning Attenuate Over Time?

It is theoretically ambiguous if the learning attenuates over time. Assuming the underlying

truth of individual susceptibility and vaccine effectiveness does not change over time and

the degree of noise remains stable, Bayesian learners should give equal weight to each year’s

experience. However, if the underlying truth evolves over time, one should give more weight

to recent than remote experience.

To test this, Table 4 reports the point estimates for two separate specifications both of

which include three years worth of lags, instead of just one. We focus on the 2008 season,

since it allows us to consider three years of prior experience, while avoiding the 2009 Bird Flu

season (see below). Because only one year of observations are used, individual-fixed effects

are not feasible. However, these estimates do account for county-level fixed effects. Thus

any county-level variation that drives either flu risk or flu shot take-up is absorbed, and the

coefficients reflect the remaining variation.

Results suggest that the effect of prior experience does attenuate over time. The signs and

magnitudes reported in Table 4 are comparable to the baseline in Table 3. One explanation

is that people believe their individual susceptibility to the flu virus evolves over time, and

so does the effectiveness of flu shot. This belief implies that recent experience is more

informative. Another possibility is that recent experience is just more salient to individuals

when they predict the likelihood of flu or the effectiveness of flu shot.

12



4.4 Did the Bird Flu Outbreak of 2009 Break the Learning Pat-

tern?

The patterns just described are consistent with the notion that individuals are learning over

time in a way that privileges their own personal experience. One way to test whether or

not individuals can learn about their learning is to assess these patterns before and after a

well-established shift in knowledge and expectations.

The Bird Flu (H1N1) Outbreak of the 2009 season provides such an opportunity. The

2009 flu season was distinct from the other seasons, in that the flu oubreaks started earlier

than in other years. This is evident in Figure 2, which plots the histogram of office-based

claims for flu care by date, separately for 2009 season and other season. According to the

CDC’s official history of the season, the H1N1 virus represented a genetically distinct strain

of the flu. Along several dimensions, this flu season was distinct from previous flu season;

to the extent that foretold changes in future seasons, one’s ability to learn from previous

evidence may wane if the external validity of previous evidence is put into question.

The fifth column of Table 3 reports the point estimates for Equation 1, with interactions

for the main estimates of interest with two post-2009 indicators: three interactions for the

2010 season, whose flu and flu shot outcomes are drawn from the 2009 season; and another

three interactions for 2011 and 2012 combined. Individual fixed effects are included in this

specification. The flu shot outcomes for the 2009 flu season are excluded from the estimation

sample, since the timing of the flu season and supply issues were unusual that year. These

outcomes are used as explanatory variables for the 2010 outcomes. Flu shot behavior that

year may have reflected the general uncertainty of that season and the expanded public

health efforts that accompanied it. Because we are interested in changes in behavior before

and after that season, it is excluded as an outcome from this particular analysis.

The point estimates reported in Table 3 indicate that the three parameters of interest in

Equation 1 were attenuated for the 2010 Bird Flu season, relative to prior patterns. This is

particularly true for those indicators involving having had the flu, where the magnitude of the

2010 interaction drives down the 2010 pattern, based from the 2009 results, to nearly zero.

However, the interaction between the 2011 and 2012 indicator and those two coefficients of
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interest shrinks, demonstrating that this attenuation was short-lived. That is, individuals’

response to getting sick in 2010 returned to patterns more similar to the pre-Bird flu seasons.

However, the response to having had a flu shot in the previous year, which was practically

the same in 2010 vis-a-vis pre-2009 patterns, is itself driven down to near-zero after 2010.

5 Measuring the Aggregate Implications

We now consider the aggregate implications of these dynamic patterns. That is to say, how

do these patterns influence the incidence of the flu or the flu shot rate? Further, given

that the incidence of the flu inherently fluctuates due to environmental factors, such as the

transmission rate, the dynamics described above may amplify or mitigate consequences of

those fluctuations.

Consider the following Markov transition:

st+1 = (1 − st)(1 − ft)π00 + (st)(1 − ft)π10 + (1 − st)(ft)π01 + (st)(ft)π11

ft+1 = st · est + (1 − st) · enst (2)

where π·· are the probabilities of getting the flu shot, conditional on getting sick and having

had the flu shot in the previous period. We introduce two additional variables: est measures

the incidence of the flu in individuals who do get the flu shot, while enst is the incidence of

the flu in people who do not get the flu shot, with enst > est if the flu shot is a prophylaxis

against the flu.8 Our initial measures of π·· are taken from Table 2. The first equation is

clearly Markov, as it relates state variables in period t to an outcome in t + 1. The second

equation is less obviously so, since it relates state variables in t to an outcome that occurs in

period t but is indexed as period t+ 1. Due to the timing (people choose to get the flu shot

or not prior to the severity of the flu season, or the preventive value of the flu shot, being

realized), it is period t’s flu realization that informs the decision whether or not to get the flu

shot in period t+ 1. Given the six parameters (the four πs and the two es), we can calculate

a steady state levels of the flu shot and the flu. Note that this may not match any particular

8The ratio of the two es is not directly related to the flu shot effectiveness measure used above, since they
measure similar, though, distinct things.
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year’s flu shot and flu rates, since those are consequences of idiosyncratic variation in the

parameters.

We first consider how variation in the four πs alters the steady state values of s = st+1 = st

and f = ft+1 = ft. Figure 3 plots the path to convergence in s and f for the baseline

parameter values. It takes five periods for the values of st and ft to converge to within one

percent of their steady state values. The steady-state values were calculated by repeated

iteration of the transition functions in Equation 2 until the difference between iterations was

less than 1 × 10−10.

As documented in Table 5, removing, or at least adjusting, the way individuals respond to

personal outcomes can substantially change the equilibrium levels of behavior. The first row

reports the behavioral parameters and equilibrium outcomes using the conditional means

of behavior in Table 2. The second row reports the same, but we remove the learning-

by-suffering patterns (β1 through β3) from the panel estimates of Table 3. We call this

parametrization “no learning by suffering.”

Removing these “learning” patterns decreases the rate of the flu shot and increases the

rate of the flu. The main mechanism through the third column, which reflects the year-

on-year rates of individuals who get the flu shot but do not get the flu—the largest group

whose patterns are adjusted. The flu shot rate falls four percentage points (over ten percent

against a baseline of 35 percentage points), while the flu rate grows one one-hundredth of one

percent. Figure 4 plots out the flu incidence and flu shot rates as they transition year-to-year

as governed by Equation 2. The convergence to these new equilibrium values appears to take

about five years.

The final column of Table 5 maps the new equilibrium flu incidence, r̃t, into discounted

spending on the flu over a ten year period, relative to the baseline behavior and flu incidence

(rt) of the first row.

PDV =
10∑
t=0

δt(r̃t − rt)cfluPOPMFFS (3)

The average sum of all medical spending on the flu for a diagnosed case (cflu) is approx-

imately $1,000. This averages across those who receive just outpatient care and those who

are admitted to the hospital, and focuses exclusively on the care that is directly linked to the
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flu diagnosis. The flu rate is multiplied by POPMFFS, 55 million, which is (approximately)

the number of Medicare FFS beneficiaries in this time period. We use a one-year discount

factor, δ, of 0.98.

The ten-year medical spending on the flu increases by nearly fifty-million dollars were

the learning-by-suffering patterns of the flu shot take-up removed. With the fixed effects

estimates removed from the transition probabilities (i.e, βs removed from their corresponding

πs), the flu rate increases because the flu shot rate decreases. Individuals are more likely to

get a flu shot in a subsequent season (β1 > 0) when the flu shot appears to work—i.e., when

the person gets a flu shot and they do not get the flu. A secondary effect (β2 > 0) is that

people are more likely to get the flu shot when they didn’t get a flu shot and got the flu. The

magnitude of these effects on the overall spending pattern is proportional to the likelihood

of their occurance; thus, the coefficients tied to getting the flu (β2 and β3) are weighed less

heavily in the overall spending patterns since they change the behavior of fewer people.

The third row of Table 5 halves the differences between the raw patterns and those with

the learning parameters. That is, the new πs are π·· − β·
2

. The rates of the flu and the flu

shout split the difference from the raw patterns and those adjusted by removing the βs.

We also consider another hypothetical: What do these dynamic patterns tell us about the

efficacy of interventions that increase the use of the flu shot. We consider a one-time increase

in the flu-shot rate to twenty percent over the steady-state rate for the baseline parameters.

That is, an increase from roughly 36 percent to 42 percent. The one-time increase in the

flu shot rate, and the associated decrease in the flu rate, deteriorate quickly. Under the full

learning (i.e., the raw dynamic patterns observed in the data), the flu shot rate falls roughly

two percentage points per year. Correspondingly, the flu rate quickly returns to the steady

state value within five periods. Both are plotted at the blue lines in Figure 5. Flat orange

lines plot the flu shot rate and flu rate if the one-time increase in the flu shot persisted.

We also apply the “no learning” dynamics, i.e., those that remove the fixed-effects es-

timates from the raw dynamics, as in the second row from Table 5 . The increase to 42

percent take-up rate is larger than for the full learning specification. The pace at which the

flu shot rate falls from this one-time increase is just as stark; the subsequent decreases in the

flu shot rate are four to five percent for the next three periods, with a return to the steady
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state value after five periods.

The strong attrition from a one-time increase in the flu shot rate can lead to substantial

overstatements in the savings associated with (purportedly permanent) increases in the flu

shot rate. The (discounted) ten year savings in flu spending from a permanent twenty-

percent increase in the full-learning flu shot rate are over $116 million. Those savings fall to

$28.5 million after accounting for the full-learning transitions. The no-learning equilibrium

flu shot rate is lower, so the cost savings to a permanent increase in the flu shot rate is $179

million. The savings that account for the no-learning transitions is only $39.5 million.

6 Conclusion

An annual flu vaccine (or shot) is one of the least controversial and most widely-recommended

preventative health measures. The Center for Disease Control’s Advisory Committee on

Immunization Practices (ACIP) suggests that everyone six months or older get an annual flu

vaccine, absent pre-existing allergies or severe health conditions. This advice is consistent

with the vaccine’s well-established effectiveness at limiting both private and social risks of

getting the flu.

We document that the individual decision to take up the flu shot responds strongly

to personal, idiosyncratic circumstances. While the medical community urges nearly all

individuals to get the flu shot in spite of personal particulars, individual decisions appear to

be strongly linked to them. Future advocacy campaigns may well take these patterns into

account.
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Figure 1: The number of flu shot claims and outpatient claims with flu ICD-9 code. The
red line on the flu shot graph marks August 1, the start of the flu season. The flu
treatment figure shifts the day of year, so that day one is August 1.
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Figure 2: The number of flu shot claims and outpatient claims with flu ICD-9 code, separtely
by 2009 season or not 2009 season. The 2009 flu season was the bird flu season,
which began earlier than other seasons. All figures shift the day of year, so that
day one is August 1.
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Figure 3: Convergence to steady state flu rate and flu shot rates from initial guess. Calcu-
lations made at baseline parameter values.
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Figure 4: Convergence to steady state flu rate and flu shot rates for changes to behavioral
parameters. Calculations start at full learning equilibrium and the dynamics are
then governed by the various changes to learning.
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Figure 5: Divergence from one-time boost in flu rate and flu shot rates, by varying behavioral
parameters. Calculations start at one-time twenty-percent increase in the flu shot
rate and the dynamics are then governed by the various changes to learning.
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Table 1:
Disease ICD-9 Code
hline Flu 487.0

487.1
487.8

Avian Flu 488.01
488.02
488.09

H1N1 488.11
488.12
488.19

Novel A 488.81
488.82
488.89
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Table 2:
Mean Flu Vaccination Rate Flu Illness Rate

All 100 35.29 0.43
1=Men 40.3 32.34 0.38
1=Women 60.7 37.21 0.46
1=White 80.7 38.59 0.40
1=Black 8.14 21.41 0.39

65 <Age< 75 = 53.3 31.27 0.37
Age75+ 46.7 39.88 0.49

Flu Shot Ratet
Had Shott−1 Did Nott−1

Had Flut−1 70.04 27.22
Did Nott−1 74.37 13.56

Notes: Sample means for the 5% Sample of Medicare beneficiaries. Race as characterized by RTI race
code. Age as determined at the end of the calendar year. Vaccination rate and flu illness rate are
determined by ICD-9 and CPT codes represented on beneficiaries’ Medicare FFS claims.
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Table 3:
(1) (2) (3) (4) (5)

Previous year outcomes
Shot x flu -0.0747*** -0.145*** -0.0704*** -0.0736*** -0.0869***

(0.00346) (0.00114) (0.00363) (0.00346) (0.00512)
Had flu 0.0481*** 0.0345*** 0.0470*** 0.0473*** 0.0626***

(0.00244) (0.000796) (0.00259) (0.00244) (0.00355)
Had shot 0.0334*** 0.0435*** 0.0334*** 0.0296*** 0.0906***

(0.000421) (0.000428) (0.000421) (0.000420) (0.000555)

Admitted x shot -0.0407***
(0.0100)

Admitted 0.00774
(0.00615)

Geographic area average
Shot x flu -0.00973

(0.0767)
Had flu -0.0128

(0.0489)
Had shot 0.349***

(0.00306)
2010 x 0.0543***

Shot x flu (0.00952)
2010 x -0.0513***

Had flu (0.00705)
2010 x -0.00933***

Had shot (0.000625)

2011-2 x -0.00741
Shot x flu (0.00888)

2011-2 x -0.0149**
Had flu (0.00614)

2011-2 x -0.0903***
Had shot (0.000519)

Broader flu definition x
Constant 0.330*** 0.329*** 0.330*** 0.218*** 0.324***

(0.000277) (0.000280) (0.000277) (0.00103) (0.000290)

Ni,t 14,583,592 14,583,592 14,583,592 14,583,592 12,507,052
Ni 2,823,971 2,823,971 2,823,971 2,823,971 2,822,076

Notes: Estimates for OLS panel models, with robust standard errors clustered at the individual level. All
specifications include individual fixed effects. The outcome of interest is whether or not an individual
received a flu shot in season t, depending upon various individual-level outcomes in season t− 1.
Specification 3 also includes county-level averages of the outcomes for the previous year. Ni,t is the number
of person-season observations in each specification and Ni is the number of persons observed in the panel.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 4:
Lag Specification, 2008 Season Observations Only

Year Flu Shot Had Flu Shot x flu
2007 0.0919*** 0.399*** -0.116***

(0.00557) (0.000973) (0.00780)
2006 0.0477*** 0.210*** -0.0608***

(0.00759) (0.00101) (0.0107)
2005 0.0363*** 0.124*** -0.0425***

(0.00616) (0.000898) (0.00906)
Constant 0.157

(.)
N = 1,775,626
R2 0.439

Notes: Estimates for OLS models, with robust standard errors clustered at the county level. This table
reports the point estimates for one regression, using the 2008 flu shot decision as the outcome of interest.
The control variables are whether the person had the flu, had a flu shot, and those two interacted, for each
of the previous three years, in addition to county fixed effects. Each column reports the point estimates for
a sets coefficient; each row corresponds to a corresponding lag (i.e., the year of that outcome).
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 5:
Had Shot? No Yes No Yes Steady State Values ∆ 10-Year Spend
Had Flu? No No Yes Yes Had Shot Had Flu

Baseline 0.1356 0.2722 0.7437 0.7004 35 0.396
No L-b-S 0.1356 0.1022 0.6956 0.7751 31 0.408 $49,189,701

Half L-B-S 0.1356 0.1872 0.71965 0.73775 33 0.402 $25,601,375

Notes: The relationship between steady state flu shot rate and flu incidence and behavioral parameters and
flu risk. All numbers are percentage points. The first column corresponds to the probability of getting a flu
shot if in the excluded category (did not get the flu or the flu shot in the previous year). Each row
corresponds to changes to the behavioral parameters, by removing (Row 2) or mitigating by half (Row 3)
the learning-by suffering (L-b-S).
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