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ABSTRACT

We propose a way to formalize the relationship between descriptive analysis and structural 
estimation. A researcher reports an estimate ĉ of a structural quantity of interest c that is exactly 
or asymptotically unbiased under some base model. The researcher also reports descriptive 
statistics γ̂ that estimate features γ of the distribution of the data that are related to c under the 
base model. A reader entertains a less restrictive model that is local to the base model, under 
which the estimate ĉ may be biased. We study the reduction in worst-case bias from a restriction 
that requires the reader's model to respect the relationship between c and γ specified by the base 
model. Our main result shows that the proportional reduction in worst-case bias depends only on 
a quantity we call the informativeness of γ̂   for ĉ. Informativeness can be easily estimated even 
for complex models. We recommend that researchers report estimated informativeness alongside 
their descriptive analyses, and we illustrate with applications to three recent papers.
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1 Introduction

Empirical researchers often present descriptive statistics alongside structural estimates that answer

policy or counterfactual questions of interest. One leading case is where the structural model is

estimated on data from a randomized experiment, and the descriptive statistics are treatment-

control differences (e.g., Attanasio et al. 2012a; Duflo et al. 2012; Alatas et al. 2016). Another

is where the structural model is estimated on observational data, and the descriptive statistics are

regression coefficients or correlations that capture important relationships (e.g., Gentzkow 2007a;

Einav et al. 2013; Gentzkow et al. 2014; Morten 2019). Researchers often provide a heuristic

argument that links the descriptive statistics to key structural estimates, sometimes framing this

as an informal analysis of identification.1

Such descriptive analysis has the potential to make structural estimates more interpretable.

Structural models are often criticized for lacking transparency, with large numbers of assumptions

and a high level of complexity making it difficult for readers to evaluate how the results might

change under plausible forms of misspecification (Heckman 2010; Angrist and Pischke 2010). If

a particular result were mainly driven by some intuitive descriptive features of the data, a reader

could focus on evaluating the assumptions that link those features to the result.

In this paper, we propose a way to make this logic precise. A researcher is interested in a scalar

quantity of interest c (say, the effect of a counterfactual policy). The researcher specifies a base

model that relates the value of c to the distribution F of some data (say, the joint distribution of

the data in a randomized experiment). The researcher reports an estimate ĉ of c that is unbiased

(either exactly or asymptotically) under the base model. A reader of the research may not accept

all of the assumptions of the base model, and may therefore be concerned that ĉ is biased.

The researcher also reports a vector γ̂ of descriptive statistics (say, sample mean outcomes

in different arms of the experiment). These statistics uncontroversially estimate some features

γ = γ (F ) of the distribution F (say, population mean outcomes in different arms). Because the

base model specifies the relationship between c and F , it also implicitly specifies the relationship

between c and γ, which may or may not be correct.

Suppose the researcher is able to convince the reader of the relationship between c and γ specified

by the base model (say, by arguing that the counterfactual policy is similar to one of the arms of

the experiment). Should this lessen the reader’s concern about bias in ĉ, even if the reader does

not accept the base model in its entirety?

We answer this question focusing on the worst-case bias when the alternative model contem-

1See, for example, Fetter and Lockwood (2018, pp. 2200-2201), Spenkuch et al. (2018, pp. 1992-1993), and the
examples discussed in Andrews et al. (2017, 2020).
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plated by the reader is local to the base model in an appropriate sense. To outline our approach,

it will be useful to define the base model as a correspondence F0 (·), where F0 (c) is the set of

distributions F consistent with a given value of c under the model. The identified set for c given

some F under the base model is found by taking the preimage of F under F0 (·). We assume that

c is point identified under the base model, so that for any F consistent with the base model, the

identified set given F is a singleton.

The reader contemplates a model that is less restrictive than the base model. We describe the

reader’s model by a correspondence FN (·), where FN (c) ⊇ F0 (c) is the set of distributions F

consistent with a given value of c under the reader’s model. Because FN (c) ⊇ F0 (c) for all c, the

identified set for c given some F is larger under the reader’s model than under the base model, and

may not be a singleton. Moreover, ĉ may be biased under the reader’s model. Let bN denote the

largest possible absolute bias in ĉ that can arise under FN (·), where this bound may be infinite.

To formalize the idea that the reader’s model is local to the base model, we suppose that each

F̃ ∈ FN (c) lies in a neighborhood N (F ) of an F consistent with the base model, so that

(1) FN (c) = ∪F∈F0(c)

{
F̃ ∈ N (F )

}
.

We take the neighborhood N (F ) to contain distributions F̃ within a given statistical distance of

F .

To formalize the possibility that the researcher convinces the reader of the relationship between

c and γ prescribed by the base model, we consider restricting attention to the elements F̃ ∈ N (F )

such that γ
(
F̃
)

= γ (F ). This results in the restricted correspondence FRN (·)

(2) FRN (c) = ∪F∈F0(c)

{
F̃ ∈ N (F ) : γ

(
F̃
)

= γ (F )
}
.

If F0 (·) implies that only certain values of γ are consistent with a given value of c, then FRN (·)

preserves that implication whereas FN (·) may not. For this reason FN (c) ⊇ FRN (c) ⊇ F0 (c) for

all c, i.e., the correspondence FRN (·) is less restrictive than the base model, but more restrictive

than the reader’s model. Let bRN denote the largest possible absolute bias in ĉ that can arise under

FRN (·). Because FRN (·) is more restrictive than FN (·), we know that bRN ≤ bN .

We focus on characterizing the ratio bRN/bN , which lies between zero and one. Section 2 shows

how to derive the correspondences FN (·), FRN (·) , and F0 (·), and the worst-case biases bN and

bRN , from explicitly parameterized economic models. Section 3 provides an exact characterization

of bRN/bN in a linear model with normal errors. Section 4 provides an approximate characterization

of bRN/bN in more general nonlinear models, obtained via a local asymptotic analysis. Sections 3
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and 4 show that under given conditions the ratio bRN/bN (or its asymptotic analogue) is equal to
√

1−∆, where ∆ is a scalar which we call the informativeness of the descriptive statistics γ̂ for the

structural estimate ĉ. Informativeness is the R2 from a regression of the structural estimate on the

descriptive statistics when both are drawn from their joint (asymptotic) distribution. Intuitively,

when informativeness is high, γ̂ captures most of the information in the data that determines ĉ.

We propose informativeness as a way to formalize the colloquial notion of the extent to which γ̂

“drives” ĉ.

Informativeness can be estimated at low cost even for computationally challenging models.

Section 5 shows that a consistent estimator of ∆ can be obtained from manipulation of the estimated

influence functions of ĉ and γ̂. In the large range of settings in which estimated influence functions

are available from the calculations used to obtain ĉ and γ̂, the additional computation required

to estimate ∆ is trivial. We recommend that researchers report an estimate of informativeness

whenever they present descriptive evidence as support for structural estimates.

Section 6 implements our proposal for three recent papers in economics, each of which reports or

discusses descriptive statistics alongside structural estimates. In the first application, to Attanasio

et al. (2012a), the quantity c of interest is the effect of a counterfactual redesign of the PROGRESA

cash transfer program, and the descriptive statistics γ̂ are sample treatment-control differences for

different groups of children. In the second application, to Gentzkow (2007a), the quantity c of

interest is the effect of removing the online edition of the Washington Post on readership of the print

edition, and the descriptive statistics γ̂ are linear regression coefficients. In the third application,

to Hendren (2013a), the quantity c of interest is a parameter governing the existence of insurance

markets, and the descriptive statistics γ̂ summarize the joint distribution of self-reported beliefs

about the likelihood of loss events and the realizations of these events. In each case, we report an

estimate of ∆ for various definitions of γ̂, and we discuss the implications for the interpretation

of ĉ. These applications illustrate how estimates of ∆ can be presented and discussed in applied

research.

Important limitations of our analysis include the use of asymptotic approximations to describe

the behavior of estimators, and the use of a purely statistical notion of distance to define sets of

alternative models. Ideally one would like to use exact finite-sample properties to characterize the

bias of estimators, and economic knowledge to define sets of alternative models. We are not aware

of convenient procedures that achieve this ideal in the generality that we consider. We therefore

propose the use of informativeness as a practical option to improve the precision of discussions of

the connection between descriptive statistics and structural estimates in applied research.

Our results are related to Andrews et al. (2017). In that paper, we propose a measure Λ of the
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sensitivity of a parameter estimate ĉ to a vector of statistics γ̂, focusing on the case where γ̂ are

estimation moments that fully determine the estimator ĉ (and so ∆ = 1).2 In Online Appendix A,

we generalize our main result to accommodate the setting of Andrews et al. (2017) and so provide

a unified treatment of sensitivity and informativeness.

In a related paper, Mukhin (2018) derives informativeness and sensitivity from a statistical-

geometric perspective, and notes strong connections to semiparameteric efficiency theory. Mukhin

also shows how to derive sensitivity and informativeness measures based on alternative metrics for

the distance between distributions, and discusses the use of these measures for local counterfactual

analysis.

Our work is also closely related to the large literature on local misspecification (e.g., Newey 1985;

Conley et al. 2012; Andrews et al. 2017). Much of this literature focuses on testing and confidence

set construction (e.g. Berkowitz et al. 2008; Guggenberger 2012; Armstrong and Kolesár, 2019) or

robust estimation (e.g., Rieder 1994; Kitamura et al. 2013; Bonhomme and Weidner 2018). Rieder

(1994) studies the choice of target parameters and proposes optimal robust testing and estimation

procedures under forms of local misspecification including the one that we consider here. Bonhomme

and Weidner (2018) derive minimax robust estimators and accompanying confidence intervals for

economic parameters of interest under a form of local misspecification closely related to the one we

study. Armstrong and Kolesár (2019) consider a class of ways in which the model may be locally

misspecified that nests the one we consider, derive minimax optimal confidence sets, and show that

there is limited scope to improve on their procedures by “estimating” the degree of misspecification,

motivating a sensitivity analysis. In contrast to this literature, we focus on characterizing the

relationship between a set of descriptive statistics and a given structural estimator, with the goal of

allowing readers of applied research to sharpen their opinions about the reliability of the researcher’s

conclusions, thus improving transparency in the sense of Andrews et al. (2020).

Our use of statistical distance to characterize the degree of misspecification relates to a number

of recent papers. Our results cover the Cressie-Read (1984) family, which nests widely studied

measures including the Kullback-Leibler divergence, Hellinger divergence, and many others, up to

a monotone transformation. Kullback-Leibler divergence has been used to measure the degree of

misspecification by, for example, Hansen and Sargent (2001), Hansen and Sargent (2005), Hansen et

al. (2006), Hansen and Sargent (2016), and Bonhomme and Weidner (2018). Hellinger divergence

has been used by, for example, Kitamura et al. (2013).

Finally, our work relates to discussions about the appropriate role of descriptive statistics in

structural econometric analysis (e.g., Pakes 2014).3 It is common in applied research to describe

2The present paper draws on the analysis of “sensitivity to descriptive statistics” in Gentzkow and Shapiro (2015).
3See also Dridi et al. (2007) and Nakamura and Steinsson (2018) for discussion of the appropriate choice of
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the data features that “primarily identify” structural parameters or “drive” estimates of those pa-

rameters.4 As Keane (2010) and others have noted, such statements are not directly related to

the formal notion of identification in econometrics (see also Andrews et al. 2020). Their intended

meaning is therefore up for grabs. If researchers are prepared to reinterpret these as statements

about informativeness, then our approach provides a way to sharpen and quantify these statements

at low cost to researchers.

2 Setup and Key Definitions

The introduction describes our approach in terms of correspondences between the quantity of

interest c and the distribution F of the data. In this section we first show how to derive these cor-

respondences from explicitly parameterized economic models, and then use these correspondences

to define the worst-case biases that we characterize in our analysis. Section 4 defines analogous

objects in a local asymptotic framework.

Suppose that, under the base model considered by the researcher, both the distribution of the

data F and the quantity of interest c are determined by a structural parameter η ∈ H. Formally,

under the base model, we have that F = F (η) and c = c (η) so the correspondence F0 (·) is given

by

F0 (c) = {F (η) : η ∈ H, c (η) = c} .

Because the structural parameter η determines the distribution F , it also determines γ = γ (η) =

γ (F (η)).

Suppose further that, under the reader’s model, the distribution of the data F is determined

by η and by a misspecification parameter ζ ∈ Z (say, indexing economic forces omitted from the

researcher’s model) that is normalized to zero under the base model. Formally, under the reader’s

model we have that F = F (η, ζ), with F (η, 0) = F (η) for all η ∈ H, and correspondingly that

γ = γ (η, ζ) = γ (F (η, ζ)), with γ (η, 0) = γ (η) for all η ∈ H. We focus on settings where forms of

misspecification indexed by ζ are rich, in the sense that the range of F (η, ζ) under ζ ∈ Z does not

depend on η. For simplicity we continue to write the quantity of interest as a function of η alone,

c = c (η). Forms of misspecification that affect the mapping from η to c but preserve its range are

equivalent to those we study.5

moments to match when fitting macroeconomic models.
4Andrews et al. (2017, footnotes 2 and 3) provide examples.
5Specifically, consider a model where the distribution of the data is F = F (η, ζ) as above, while the quantity of

interest is c = c̃ (η, ζ), and the range of c̃ (η, ζ) under η ∈ H for any ζ ∈ Z is the same as that of c (η) under η ∈ H. In
this case, the sets {(c (η) , F (η, ζ)) : η ∈ H, ζ ∈ Z} and {(c̃ (η, ζ) , F (η, ζ)) : η ∈ H, ζ ∈ Z} are both Cartesian prod-
ucts, equal to {c (η) : η ∈ H} × {F (η, ζ) : η ∈ H, ζ ∈ Z}. Consequently, the correspondences F (·) that we consider
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We formalize the idea that the reader’s model is local to the base model as follows. Let r (η, ζ) ≥

0 denote some Cressie-Read (1984) divergence between the distribution F (η) and the distribution

F (η, ζ), so that r (η, 0) = 0 for all η ∈ H. For any distribution F = F (η) consistent with the

base model, we define the neighborhood N (F ) to consist of all distributions F (η, ζ) such that the

divergence r (η, ζ) is less than some scalar bound µ ≥ 0:

N (F ) = {F (η, ζ) : η ∈ H,F (η) = F, ζ ∈ Z, r (η, ζ) ≤ µ} .

We then define the reader’s model FN (·) as in (1).6 The neighborhood N (F ) is increasing in µ.

Hence, larger values of µ imply imply a greater relaxation of assumptions as we move from the base

model F0 (·) to the reader’s model FN (·) . We suppress the dependence of N (F ) and FN (c) on µ

for brevity.

The base model specifies a relationship between c and γ in the sense that if the quantity of inter-

est takes value c, then the feature γ must take a value γ (η) for some η ∈ H such that c = c (η). The

reader’s model FN (·) need not respect the base model’s specification of the relationship between

c and γ. By contrast, the model FRN (·), defined in (2), respects the base model’s specification of

the relationship between c and γ in the sense that, for any F ∈ FRN (c), there is some η ∈ H such

that c = c (η), γ (F ) = γ (η), and F ∈ N (F (η)) .7 Hence, a given (c, γ) pair is compatible with

FRN (·) if and only if it is compatible with F0 (·) .

The researcher chooses an estimator ĉ that is unbiased under the base model in the sense

that EF [ĉ− c] = 0 for any F ∈ F0 (c), where EF [·] denotes the expectation when the data are

distributed according to F . The estimator ĉ may be biased under the reader’s model FN (·), and

indeed if we take µ to infinity the parameter c is completely unidentified under FN (·). The largest

absolute bias in ĉ that is possible under FN (·) is

bN = sup
c

sup
F∈FN (c)

|EF [ĉ− c]| .

Considering FRN (·) rather than FN (·) can reduce the worst-case bias in ĉ. The largest absolute

bias in ĉ that is possible under FRN (·) is

bRN = sup
c

sup
F∈FRN (c)

|EF [ĉ− c]| .

The proportional reduction in worst-case bias from limiting attention to FRN (·) is measured by

are the same whether constructed from the model with c = c (η) or that with c = c̃ (η, ζ).
6Specifically, FN (c) = {F (η, ζ) : η ∈ H, c (η) = c, ζ ∈ Z, r (η, ζ) ≤ µ} .
7To see that this is the case, note that FRN (c) = {F (η, ζ) : η ∈ H, c (η) = c, ζ ∈ Z, r (η, ζ) ≤ µ, γ (F (η, ζ)) = γ (η)} .
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the ratio bRN/bN , which is the primary focus of our analysis.

3 Informativeness in a Linear Normal Setting

To build intuition for our approach, we next specialize to a linear normal setting and provide an

exact characterization of the ratio bRN/bN . We illustrate with a stylized example, and conclude

the section with some further discussion of our approach and its limitations.

3.1 Characterization of Worst-Case Bias

Now suppose that H = Rp, Z = Rk, and that under F (η, ζ) the data Y ∈ Rk follow

(3) Y ∼ N (Xη + ζ,Ω)

for X and Ω known, nonrandom matrices with full column rank.

The quantity of interest is some linear function c (η) = L′η of the parameters, with L ∈ Rp×1 a

known, non-random vector. The researcher chooses a linear estimator ĉ = C ′Y for C a vector. The

researcher ensures that ĉ is unbiased for c under F0 (·) by choosing C ′ = L′M for some matrix M

with MX = Ip.

The researcher computes the vector γ̂ = Γ′Y of descriptive statistics, with Γ ∈ Rk×pγ a known,

non-random matrix. The vector γ̂ is trivially unbiased for γ (η, ζ) = Γ′ (Xη + ζ).

Absent any restriction on ζ the quantity of interest c is entirely unidentified. Intuitively, without

any restriction on ζ, the mean of the data Y is entirely unrestricted for any fixed η, making it

impossible to learn c = L′η. The reader’s model FN (·) limits the size of ζ. In particular, given (3),

the assumption that r (·, ·) is in the Cressie-Read family implies that r (η, ζ) is a strictly increasing

transformation of ‖ζ‖Ω−1 , for ‖V ‖A =
√
V ′AV . Thus, for this section we define N (·) based on the

restriction ‖ζ‖Ω−1 ≤ µ.8

Under the base model F0 (·), ĉ

γ̂

 ∼ N
 L′η

Γ′Xη

 ,Σ

 for Σ =

 σ2
c Σcγ

Σγc Σγγ

 =

 C ′ΩC C ′ΩΓ

Γ′ΩC Γ′ΩΓ

 .

We assume that σ2
c > 0 and that Σγγ has full rank.

8That is, we let
N (F ) =

{
F (η, ζ) : η ∈ H,F (η) = F, ζ ∈ Z, ‖ζ‖Ω−1 ≤ µ

}
.
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Definition. The informativeness of γ̂ for ĉ is

∆ =
ΣcγΣ−1

γγΣγc

σ2
c

∈ [0, 1] .

Informativeness is the R2 from the population regression of ĉ on γ̂ under their joint distribution.

Informativeness determines the ratio of worst-case biases bRN/bN .

Proposition 1. The set of possible biases under FN (·) is

{
EF [ĉ− c] : F ∈ FN (c)

}
= [−µσc, µσc]

for any c, while the set of possible biases under FRN (·) is

{
EF [ĉ− c] : F ∈ FRN (c)

}
=
[
−µσc

√
1−∆, µσc

√
1−∆

]
for any c. Hence, bN = µσc, bRN = µσc

√
1−∆, and

bRN
bN

=
√

1−∆.

All proofs are collected at the end of the paper.

Importantly, the value of ∆, and hence the proportional reduction in worst-case bias from

restricting from FN (·) to FRN (·), does not depend on µ. In addition to characterizing the worst-

case biases bRN and bN , Proposition 1 characterizes the set of possible biases under FN (·) and

FRN (·), showing in particular that any absolute bias smaller than the worst case is achievable.

Imposing additional restrictions on ζ, beyond those captured by FN (·) or FRN (·), could further

reduce the worst-case bias.

3.2 Example

To fix ideas, suppose that a researcher observes i.i.d. data from a randomized evaluation of a

conditional cash transfer program. The program gives each household a payment of size s if their

children attend school regularly. Households are uniformly randomized among subsidy levels s ∈

{0, 1, 2}. We can think of those receiving s = 0 as the control group.

The data consist of the average school attendance Ys of children assigned subsidy s ∈ {0, 1, 2}.

The quantity of interest c is the expected attendance at a counterfactual subsidy level s∗ > 2.

9



Under the base model the mean of Ys is given by

(4) η1 + η2s

for s ∈ {0, 1, 2, s∗}. Average attendance Ys is independent and homoskedastic across arms of the

experiment, with standard deviation ω.9

Under the base model F0 (·), c can be estimated by linear extrapolation of average attendance

from two or more of the observed subsidy levels s ∈ {0, 1, 2} to subsidy level s∗. We continue to

assume that the researcher chooses a linear estimator ĉ that is unbiased for c under F0 (·).10

Under the reader’s model FN (·), the estimator ĉ may be biased. Intuitively, if ζ 6= 0 then

the mean of Ys may be nonlinear in s, so that linear extrapolation to s∗ may produce a biased

estimate of c. The restriction to FRN (·) can lessen the scope for bias. The economic content of the

restriction depends on the choice of Γ, which in turn determines the descriptive statistic γ̂ = Γ′Y

and the informativeness ∆.

As a concrete example, suppose that a reader entertains that the effect of incentivizing school

attendance may be discontinuous at zero, with the mean of Ys for s ∈ {0, 1, 2, s∗} given by

(5) η̃0 + 1 {s > 0} η̃1 + sη̃2

for η̃ a composite of η and ζ with η̃1 6= 0.11 The model FN (·) allows that the mean of Ys may follow

(5), as long as η̃1 is sufficiently small.12 The bound bN thus reflects a worst case over scenarios that

include (5).

Whether the set FRN (·) allows that the mean of Ys may follow (5) depends on the choice of

Γ. If Γ =
(
e1 e2

)
for es the basis vector corresponding to subsidy s, so that γ̂ =

(
Y1 Y2

)
,

then under FRN (·) the mean of Ys is linear in s for s > 0, which is consistent with (5). If instead

9To cast this example into the notation of Section 3.1, take

X =

 1 0
1 1
1 2

 , Ω = ω2I3, L =

(
0
s∗

)
.

10For example, if we take M = (X ′X)
−1
X ′, then ĉ is the the ordinary least squares extrapolation to s∗, and is

also the maximum likelihood estimator of c under F0 (·).
11Specifically, choose η̃ so that

X̃η̃ = ζ +Xη

for

X̃ =

 1 0 0
1 1 1
1 1 2

 .

12In particular, to ensure that a given η̃ is consistent with ‖ζ‖Ω−1 ≤ µ, it suffices that |η̃1| ≤ ωµ.
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Γ =
(
e0 e1

)
, so that γ̂ =

(
Y0 Y1

)
, then under FRN (·) the mean of Ys is linear in s for

s 6= 2, which is not consistent with (5). The bound bRN thus reflects a worst case over scenarios

that may or may not include (5), depending on the choice of Γ.

The informativeness ∆ measures the extent to which the restriction to FRN (·) lessens the scope

for bias, bRN/bN =
√

1−∆. Again imagine a reader who entertains that the mean of Ys may follow

(5). Learning that ∆ is close to one for γ̂ =
(
Y1 Y2

)
might be reassuring to this reader because

the restriction from FN (·) to FRN (·) greatly lessens the scope for bias in ĉ while still allowing for

(5). Learning that ∆ is close to one for γ̂ =
(
Y0 Y1

)
might not be as reassuring, because in this

case the restriction from FN (·) to FRN (·) rules out (5).

3.3 Discussion

3.3.1 Relationship to Analysis of Identification

Our analysis is distinct from an analysis of identification. We focus on the behavior of a particular

estimator ĉ under misspecification, taking as given that c is identified under the base model. This

is distinct from asking whether the identification of c is parametric or nonparametric, and from

asking how the identified set changes under misspecification. To see the latter point, consider a case

where γ̂ is an unbiased estimator of c under F0 (·), but differs from ĉ.13 An analysis of identification

would conclude that c is point-identified under FRN (·), whereas our analysis would conclude that

the estimator ĉ may be biased under FRN (·).

We can connect our analysis to an analysis of identification if we consider identification from

the distribution of ĉ alone. In particular, Proposition 1 implies that the identified set for c based on

the distribution of ĉ is [ĉ− µσc, ĉ+ µσc] under FN (·) and
[
ĉ− µσc

√
1−∆, ĉ+ µσc

√
1−∆

]
under

FRN (·). Under this interpretation, the ratio bRN/bN measures how much the identified set shrinks

when we restrict from FN (·) to FRN (·).

3.3.2 Interpretation and Limitations

We pause here to discuss some other aspects and limitations of our approach.

First, our analysis focuses on bounding the absolute bias of the estimator ĉ. Since the variance

of ĉ is unaffected by misspecification, there is a one-to-one relationship between absolute bias and

MSE. So, for fixed µ, ∆ governs the extent to which restricting from FN (·) to FRN (·) reduces the

maximal MSE for ĉ. Unlike for absolute bias, however, the ratio of worst-case MSEs under FN (·)

and FRN (·) depends in general on µ.

13For instance, γ̂ might be an estimator based on matching a statistically non-sufficient set of moments, while ĉ
might be the maximum likelihood estimator.

11



Second, the correspondence FRN (·) requires that the relationship between c and γ specified

by the base model be correct local to each point in the base model. This is more restrictive

than requiring that the pair (c, γ) be globally consistent with the base model, which yields the

correspondence FGN (·) with

(6) FGN (c) =
(
FN (c) ∩

(
∪F ∗∈F0(c)

{
F̃ : γ

(
F̃
)

= γ (F ∗)
}))

for all c. If any (c, γ) pair is possible under F0 (·), then FGN (·) is equivalent to FN (·), but FRN (·)

need not be. More generally FN (c) ⊇ FGN (c) ⊇ FRN (c) ⊇ F0 (c), and the ratio of worst case

bias under FGN (·) to worst-case bias under FN (·) is bounded below by
√

1−∆.

Third, we see the use of statistical distance to define the neighborhoods N (F ) as a key potential

limitation of our analysis. While defining neighborhoods in this way provides a practical default for

many situations, it also means that the informativeness ∆ depends on the sampling process that

generates the data. To illustrate, suppose we are interested in estimating the average treatment

effect c of some policy, that ĉ is a treatment-control difference from an RCT, and that γ̂ is the control

group mean from the same RCT. If the control group is much larger than the treatment group,

variability in ĉ will primarily be driven by the treatment group mean, and the informativeness of γ̂

for ĉ will be low. If, on the other hand, the control group is much smaller than the treatment group,

variability in ĉ will primarily be driven by the control group mean, and the informativeness of γ̂

for ĉ will be high. Thus, the informativeness of the control group mean for the average treatment

effect estimate in this setting depends on features of the experimental design, and not solely on

economic objects such as the distribution of potential outcomes.

4 Informativeness Under Local Misspecification

This section translates our results on finite-sample bias in the linear normal model to results on

asymptotic bias in nonlinear models with local misspecification. We first introduce our asymptotic

setting and state regularity conditions. We then prove our main result under local misspecification,

develop intuition for the local misspecification neighborhoods we consider, and discuss a version of

our analysis based on probability limits.

We assume that a researcher observes an i.i.d. sample Di ∈ D for i = 1, ..., n. The researcher

considers a base model which implies that Di ∼ F (η), for η ∈ H a potentially infinite-dimensional

parameter. The implied joint distribution for the sample is ×ni=1F (η). The parameter of interest

remains c (η) . The researcher computes (i) a scalar estimate ĉ of c and (ii) a pγ × 1 vector of

descriptive statistics γ̂.

12



As in Section 2, to allow the possibility of misspecification we suppose that under the reader’s

model Di ∼ F (η, ζ) for some (η, ζ) ∈ H × Z, where F (η, 0) = F (η) for all η ∈ H. The joint

distribution for the sample under the reader’s model is ×ni=1F (η, ζ). Defining the correspondences

FN (·) and FRN (·) as in Section 2, we are interested in the ratio of worst-case biases bRN/bN .

While Section 3 exactly characterizes bRN/bN in the linear normal model, we are not aware of

similarly tractable expressions in general nonlinear settings. In this section, we therefore instead

approximate bRN/bN by characterizing the first-order asymptotic bias of the estimator ĉ under

sequences of data generating processes in which (η, ζ) approaches a base value (η0, 0) ∈ H × Z at

a root-n rate.

Formally, define H and Z as sets of values such that for any h ∈ H and z ∈ Z, we have

η0 + th ∈ H and tz ∈ Z for t ∈ R sufficiently close to zero.14 For Fh,z (th, tz) = F (η0 + thh, tzz),

we consider behavior under sequences of data generating processes

S (h, z) =

{
×ni=1Fh,z

(
1√
n
,

1√
n

)}∞
n=1

.

The statement that (η, ζ) approaches (η0, 0) at a root-n rate should not be taken literally to

imply that the data generating process depends on the sample size, but is instead a device to approx-

imate the finite-sample behavior of estimators in situations where the influence of misspecification

is on the same order as sampling uncertainty.15 Section 4.4 instead considers fixed misspecification

and develops results based on probability limits.

Throughout our analysis, we state assumptions in terms of the base distribution F0 = F (η0) .

If these assumptions hold for all η0 ∈ H then our local asymptotic approximations are valid local

to any point in the base model, though many of the asymptotic quantities we consider will depend

on the value of η0. Section 5 discusses consistent estimators of these quantities that do not require

a priori knowledge of η0.

4.1 Regularity Conditions

We next discuss a set of regularity conditions used in our asymptotic results. Our first assumption

requires that ĉ and γ̂ behave, asymptotically, like sample averages.

14For η0 + th 6∈ H or tz 6∈ Z we may define distributions arbitrarily.
15The order 1√

n
perturbation to the base-model parameter η is a common asymptotic tool to analyze the local

behavior of estimators (see for example Chapters 7-9 of van der Vaart, 1998). Setting the degree of misspecification
proportional to 1√

n
is likewise a common technique for modeling local misspecification (see e.g. Newey (1985),

Andrews et al. (2017), and Armstrong and Kolesár (2019)).

13



Assumption 1. Under S (0, 0) ,

(7)
√
n (ĉ− c (η0) , γ̂ − γ (η0)) =

1√
n

(
n∑
i=1

φc (Di) ,

n∑
i=1

φγ (Di)

)
+ op (1) ,

for functions φc (Di) and φγ (Di), where EF0 [φc (Di)] = 0, EF0 [φγ (Di)] = 0. For

Σ =

 σ2
c Σcγ

Σγc Σγγ

 =

 EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
EF0 [φγ (Di)φc (Di)] EF0

[
φγ (Di)φγ (Di)

′]
 ,

Σ is finite, σ2
c > 0, and Σγγ is positive-definite.

The functions φc (Di) and φγ (Di) are called the influence functions for the estimators ĉ and

γ̂, respectively. Asymptotic linearity of the form in (7) holds for a wide range of estimators (see

e.g. Ichimura and Newey 2015), though it can fail for James-Stein, LASSO, and other shrinkage

estimators (e.g. Hansen 2016). Asymptotic linearity immediately implies that ĉ and γ̂ are jointly

asymptotically normal under S (0, 0).

We next strengthen asymptotic normality of (ĉ, γ̂) to hold local to η0 under the base model.

We impose the following.

Assumption 2. Let γ (η) denote the probability limit of γ̂ under ×ni=1F (η), and assume that for

all h ∈ H, γ (η0 + th) exists for t sufficiently close to zero. For any h ∈ H, cn (h) = c
(
η0 + 1√

n
h
)

,

and γn (h) = γ
(
η0 + 1√

n
h
)

, under S (h, 0) we have

√
n

 cn (h)− c (η0)

γn (h)− γ (η0)

→
 c? (h)

γ? (h)

 ,

and moreover

√
n

 ĉ− c (η0)

γ̂ − γ (η0)

→d N

 c? (h)

γ? (h)

 ,Σ

 .

The first part of Assumption 2 requires that cn (h) and γn (h) be asymptotically well-behaved, in

the sense that with appropriate recentering and scaling they converge to limits that can be written

as functions of h. Under this assumption, we can interpret c? (h) as the local parameter of interest,

playing the same role in our local asymptotic analysis as the parameter c does in the normal model.

The second part of Assumption 2 requires that (ĉ, γ̂) be a regular estimator of (c (η) , γ (η)) at η0

under the base model (see e.g., Newey 1994), and is again satisfied under mild primitive conditions
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in a wide range of settings. In particular, this assumption implies that ĉ is asymptotically unbiased

for our local parameter of interest c? (h) under S (h, 0).

We next assume the distributions F (η, ζ) have densities f (d; η, ζ) with respect to a common

dominating measure ν. For (th, tz) ∈ R2, if we consider the perturbed distributions Fh,z (th, tz)

with densities fh,z (d; th, tz) then the information matrix for (th, tz), treating (h, z) as known, is

Ih,z (th, tz) = EFh,z(th,tz)


(

∂
∂th

fh,z(Di;th,tz)

fh,z(Di;th,tz)

)2 ∂
∂th

fh,z(Di;th,tz)

fh,z(Di;th,tz)

∂
∂tz

fh,z(Di;th,tz)

fh,z(Di;th,tz)

∂
∂th

fh,z(Di;th,tz)

fh,z(Di;th,tz)

∂
∂tz

fh,z(Di;th,tz)

fh,z(Di;th,tz)

(
∂
∂tz

fh,z(Di;th,tz)

fh,z(Di;th,tz)

)2

 .

We consider the two-dimensional submodels obtained by fixing (h, z),
{
Fh,z (th, tz) : (th, tz) ∈ R2

}
,

and impose a sufficient condition for these models to be differentiable in quadratic mean at zero.

Assumption 3. For all h ∈ H, z ∈ Z, there exists an open neighborhood of zero such that for

(th, tz) in this neighborhood, (i)
√
fh,z (d; th, tz) is continuously differentiable with respect to (th, tz)

for all d ∈ D and (ii) Ih,z (th, tz) is finite and continuous in (th, tz).

Assumption 3 imposes standard conditions used in deriving asymptotic results, and holds in a

wide variety of settings; see Chapter 7.2 of van der Vaart (1998) for further discussion.

Finally, we require that the forms of misspecification we consider be sufficiently rich. To state

this assumption, let us define sh (d) = ∂
∂th

log (fh,z (d; 0, 0)), sz (d) = ∂
∂tz

log (fh,z (d; 0, 0)) as the

score functions corresponding to h and z, respectively.

Assumption 4. The set of score functions sz (·) includes all those consistent with Assumption 3,

in the sense that for any s (·) with EF0 [s (Di)] = 0 and EF0

[
s (Di)

2
]
<∞ there exists z ∈ Z with

EF0

[
(s (Di)− sz (Di))

2
]

= 0.

Assumption 4 requires that the set of score functions sz (Di) implied by z ∈ Z include all those

consistent with Assumption 3.16 Intuitively, this means that the set of nesting model distributions

holding η fixed at η0, {F (η0, ζ) : ζ ∈ Z}, looks (locally) like the set of all distributions, and so is

the local analogue of the richness condition discussed in Section 2. If this assumption fails, the

local asymptotic bias bounds we derive below continue to hold, but need not be sharp.

Under Assumption 4, the nesting model allows forms of misspecification against which all spec-

ification tests that control size have trivial local asymptotic power.17 This highlights an important

16That the score function sz (Di) has mean zero and finite variance under Assumption 3 follows from Lemma 7.6
and Theorem 7.2 in van der Vaart (1998).

17In particular, for h ∈ H, Assumption 4 implies that there exists z ∈ Z such that EF0

[
(sh (Di)− sz (Di))

2] = 0.
Arguments along the same lines as e.g. Chen and Santos (2018) then imply that S (h, 0) and S (0, z) are asymptotically
indistinguishable, and thus that no specification test which controls the rejection probability under S (h, 0) has
nontrivial power against S (0, z).
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aspect of our local analysis. A possible justification for bounding the degree of misspecification

(see, e.g., Huber and Ronchetti 2009, p. 294, as quoted in Bonhomme and Weidner 2018) is that

specification tests eventually detect unbounded misspecification with arbitrarily high probability, so

conditional on non-rejection it is reasonable to focus on bounded, and in particular local, misspec-

ification. By contrast, we allow some forms of misspecification that are statistically undetectable

absent knowledge of the true parameters. Hence, restrictions on the magnitude of misspecification

in our setting should be understood as a-priori restrictions on the set of models considered, rather

than a-posteriori restrictions based on which models survive specification tests.

4.2 Main Result Under Local Misspecification

We can now derive the analogue of Proposition 1 in our local asymptotic framework. As a first

step, we note that under our assumptions,
√
n (ĉ− c (η0) , γ̂ − γ (η0)) is asymptotically normal with

variance Σ. Moreover, we obtain a simple expression for its asymptotic mean.

Lemma 1. If Assumptions 1-3 hold, then under S (h, z) for any (h, z) ∈ H ×Z,

√
n

 ĉ− c (η0)

γ̂ − γ (η0)

→d N

 c̄ (S (h, z))

γ̄ (S (h, z))

 ,Σ

 ,

where  c̄ (S (h, z))

γ̄ (S (h, z))

 =

 EF0 [φc (Di) (sh (Di) + sz (Di))]

EF0 [φγ (Di) (sh (Di) + sz (Di))]

 .

Moreover, c? (h) = EF0 [φc (Di) sh (Di)], and γ? (h) = EF0 [φγ (Di) sh (Di)] .

Recall that c? (h) is the parameter of interest in our local asymptotic analysis. We can thus

interpret c̄ (S (h, z)) − c? (h) = EF0 [φc (Di) sz (Di)] as the first-order asymptotic bias of ĉ under

S (h, z), analogous to EF [ĉ− c] under the normal model.

As in the normal model we restrict the degree of misspecification. We first consider the case of

correct specification. Let

S0 (c?) = {S (h, 0) : h ∈ H, c? (h) = c?}

denote the set of sequences in the base model such that the local parameter of interest takes value

c?. Limiting attention to sequences S ∈ S0 (c?) imposes correct specification, and is analogous to

limiting attention to F0 (c).

To relax the assumption of correct specification, next suppose we bound the degree of local
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misspecification by µ ≥ 0. For S ∈ S0 (·) =
⋃
c? S0 (c?) , let us define the neighborhood

N (S) =

{
S (h, z) : h ∈ H, S (h, 0) = S, z ∈ Z, EF0

[
sz (Di)

2
] 1

2 ≤ µ
}
.

For reasons elaborated in Section 4.3 below, N (S) is a sequence-space analogue of the neighborhood

N (F ) defined in Section 2. Taking a union over N (S) for S ∈ S0 (c?) yields

SN (c?) =
⋃

S∈S0(c?)

{
S̃ ∈ N (S)

}
,

which we can interpret as the sequence-space analogue of FN (c).

Finally, let us define a restricted set of sequences as

SRN (c?) =
⋃

S∈S0(c?)

{
S̃ ∈ N (S) : γ̄

(
S̃
)

= γ̄ (S)
}
.

Limiting attention to sequences S ∈ SRN (c?) is analogous to limiting attention to the set FRN (c).

Let b?N and b?RN denote the worst-case first–order asymptotic bias under SN (·) and SRN (·),

respectively:

(8) b?N = sup
c?

sup
S∈SN (c?)

|c̄ (S)− c?|

(9) b?RN = sup
c?

sup
S∈SRN (c?)

|c̄ (S)− c?| .

Our main result under local misspecification is analogous to Proposition 1 under the normal model.

Proposition 2. Under Assumptions 1-4, the set of first-order asymptotic biases for ĉ under S ∈

SN (·) is {
c̄ (S)− c? : S ∈ SN (c?)

}
= [−µσc, µσc] ,

for any c? such that SN (c?) is nonempty, while the set of first-order asymptotic biases under

S ∈ SRN (·) is {
c̄ (S)− c? : S ∈ SRN (c?)

}
=
[
−µσc

√
1−∆, µσc

√
1−∆

]
,

for any c? such that SRN (c?) is nonempty. Hence,

b?RN
b?N

=
√

1−∆.
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4.3 Scaling of Perturbations

Under regularity conditions, the bound EF0

[
sz (Di)

2
]
≤ µ in the definition of N (S) can be inter-

preted as a bound on the asymptotic Cressie-Read divergence of Fh,z

(
1√
n
, 1√

n

)
from Fh,z

(
1√
n
, 0
)

.

Specifically, we consider divergences of the form

(10) rh,z (th, tz) = EFh,z(th,0)

[
ψ

(
fh,z (Di; th, tz)

fh,z (Di; th, 0)

)]

for ψ (·) a twice continuously differentiable function with ψ (1) = 0 and ψ′′ (1) = 2. A leading class

of such divergences is the Cressie-Read (1984) family, which takes

ψ (x) =
2

λ (λ+ 1)

(
x−λ − 1

)
.

Many well-known measures for the difference between distributions, including Kullback-Leibler

divergence and Hellinger distance, can be expressed as monotone transformations of Cressie-Read

(1984) divergences for appropriate λ.

Online Appendix B shows that under regularity conditions

(11) lim
n→∞

n · rh,z (th, tz) = EF0

[
sz (Di)

2
]
.

Hence, Cressie-Read (1984) divergences yield the same asymptotic ranking over values of z, and

therefore over sequences S (h, z), as that implied by EF0

[
sz (Di)

2
]
.18 Online Appendix C shows

that bounds on EF0

[
sz (Di)

2
]

also correspond to bounds on the asymptotic power of tests to

distinguish elements of N (S) from S.

4.4 Non-Local Misspecification

To clarify the role of local misspecification in our results it is helpful to consider the analogue of ∆

under non-local misspecification. Suppose now that the reader believes the data follow ×ni=1F (η, ζ),

where (η, ζ) do not change with the sample size. Let us denote the probability limits of ĉ and γ̂

under F by c̃ (F ) and γ (F ) , respectively. We assume for ease of exposition that these probability

limits exist.

To simplify the analysis, let us further fix a value η0 of the base model parameter, so the true

value of the parameter of interest is c (η0). Suppose that for a divergence r of the form considered

18In equation (11) we scale by n to obtain a nontrivial limit, as the divergence between Fh,z
(

1√
n
, 0
)

and

Fh,z
(

1√
n
, 1√

n

)
tends to zero as n→∞.
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in Section 4.3, r (η, ζ) = EF (η,0) [ψ (f (Di; η, ζ) /f (Di; η, 0))], the reader believes that the degree of

misspecification is bounded in the sense that r (η0, ζ) ≤ µ. Given this bound, the probability limit

of |ĉ− c (η0)| is no larger than

b̃N (µ) = sup {|c̃ (F (η0, ζ))− c (η0)| : ζ ∈ Z, r (η0, ζ) ≤ µ} ,

where we now make the dependence on µ explicit. This is a non-local analogue of the bias bound

b?N , fixing η = η0. We can likewise bound the probability limit of |ĉ− c (η0)| under an analogue of

FRN (·),

b̃RN (µ) = sup {|c̃ (F (η0, ζ))− c (η0)| : ζ ∈ Z, r (η0, ζ) ≤ µ, γ (F (η0, ζ))− γ (F0) = 0} .

This is a non-local analogue of bias bound b?RN , again fixing η = η0.

Provided that b̃N (µ) and b̃RN (µ) are both finite and non-zero, we can define a non-local ana-

logue ∆̃ (µ) of informativeness ∆ by

√
1− ∆̃ (µ) =

b̃RN (µ)

b̃N (µ)
.

Online Appendix D shows that, under regularity conditions, an analogue of ∆̃ (µ) based on finite

collections of ζ values converges to ∆ as µ → 0. This provides a sense in which ∆ approximates

∆̃ (µ) when the degree of non-local misspecification is small.

5 Implementation

In a wide range of applications, convenient estimates Σ̂ of Σ are available from standard asymptotic

results (e.g., Newey and McFadden 1994) or via a bootstrap (e.g., Hall 1992). Given such an

estimate one can construct a plug-in estimate

(12) ∆̂ =
Σ̂cγΣ̂−1

γγ Σ̂γc

σ̂2
c

.

Provided Σ̂ is consistent under S (0, 0), consistency of Σ̂ and ∆̂ under the sequences we study

follows immediately under our maintained assumptions that σ2
c > 0 and Σγγ has full rank.

Assumption 5. Σ̂
p→ Σ under S (0, 0).

Proposition 3. Under Assumptions 3 and 5, Σ̂
p→ Σ and ∆̂

p→ ∆ under S (h, z) for any h ∈ H,

z ∈ Z.
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Mukhin (2018) provides alternative sufficient conditions for consistent estimation of informativeness,

and also derives results applicable to GMM models with non-local misspecification.

5.1 Implementation with Minimum Distance Estimators

We have so far imposed only high-level assumptions (specifically Assumptions 1 and 5) on ĉ, γ̂,

and Σ̂. While these high-level assumptions hold in a wide range of settings, minimum distance

estimation is an important special case that encompasses a large number of applications. To

facilitate application of our results, in this section we discuss estimation of Σ in cases where c (η)

can be written as a function of a finite-dimensional vector of parameters that are estimated by GMM

or another minimum distance approach (Newey and McFadden 1994), and γ̂ is likewise estimated

via minimum distance.

Formally, suppose that we can decompose η = (θ, ω) where θ is finite-dimensional and c (η)

depends on η only through θ, so we can write it as c (θ). We assume that c (θ) is continuously

differentiable in θ.

The researcher forms an estimate ĉ = c
(
θ̂
)

where θ̂ solves

(13) min
θ
ĝ (θ)′ Ŵ ĝ (θ)

for ĝ (θ) a kg-dimensional vector of moments and Ŵ a kg × kg-dimensional weighting matrix. The

researcher likewise computes γ̂ by solving

(14) min
γ
m̂ (γ)′ Ûm̂ (γ) ,

for m̂ (γ) a km-dimensional vector of moments and Û a km × km-dimensional weighting matrix.

Provided Ŵ and Û converge in probability to limitsW and U , while
√
nĝ (θ (η0)) and

√
nm̂ (γ (η0))

are jointly asymptotically normal under S (0, 0) ,

√
n

 ĝ (θ (η0))

m̂ (γ (η0))

→d N

0,

 Σgg Σgm

Σmg Σmm

 ,

existing results (see for example Theorem 3.2 in Newey and McFadden, 1994) imply that under

S (0, 0) and standard regularity conditions,

√
n

 ĉ− c (θ (η0))

γ̂ − γ (η0)

→d N (0,Σ) , Σ =

 Λcg 0

0 Λγm

 Σgg Σgm

Σmg Σmm

 Λcg 0

0 Λγm

′ .
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Here Λcg = −C (G′WG)−1G′W and Λγm = − (M ′UM)−1M ′U are the sensitivities of ĉ with

respect to ĝ (θ (η0)) and of γ̂ with respect to m̂ (γ (η0)) as defined in Andrews et al. (2017), and

C = ∂
∂θ c (θ (η0)).

We can consistently estimate C by Ĉ = ∂
∂θ c
(
θ̂
)

. If ĝ (θ) and m̂ (γ) are continuously differ-

entiable then under regularity conditions (see Theorem 4.3 in Newey and McFadden, 1994) we

can likewise consistently estimate G by Ĝ = ∂
∂θ ĝ

(
θ̂
)

and M by M̂ = ∂
∂γ m̂ (γ̂).19 Hence, given

consistent estimators Σ̂gg, Σ̂gm, and Σ̂mm we can estimate Σ by

Σ̂ =

 Λ̂cg 0

0 Λ̂γm

 Σ̂gg Σ̂gm

Σ̂mg Σ̂mm

 Λ̂cg 0

0 Λ̂γm

′

for Λ̂cg = −Ĉ
(
Ĝ′Ŵ Ĝ

)−1
Ĝ′Ŵ and Λ̂γm = −

(
M̂ ′ÛM̂

)−1
M̂ ′Û .

What remains is to construct estimators
(

Σ̂gg, Σ̂gm, Σ̂mm

)
. When θ̂ and γ̂ are GMM or ML

estimators, we can write

ĝ (θ) =
1

n

n∑
i=1

φg (Di; θ) , m̂ (γ) =
1

n

n∑
i=1

φm (Di; γ) ,

for (φg (Di; θ) , φm (Di; γ)) the moment functions for GMM or the score functions for ML. We can

then estimate Σ by

(15) Σ̂ =
1

n

n∑
i=1

 φ̂c (Di)
2 φ̂c (Di) φ̂γ (Di)

′

φ̂γ (Di) φ̂c (Di) φ̂γ (Di) φ̂γ (Di)
′

 ,

for

φ̂c (Di) = Λ̂cgφg

(
Di; θ̂

)
= −Ĉ

(
Ĝ′Ŵ Ĝ

)−1
Ĝ′Ŵφg

(
Di; θ̂

)
and

φ̂γ (Di) = Λ̂γmφm (Di; γ̂) = −
(
M̂ ′ÛM̂

)−1
M̂ ′Ûφm (Di; γ̂) .

In the GMM case, φg

(
Di; θ̂

)
and φm (Di; γ̂) are available immediately from the computation

of the final objective of the solver for (13) and (14), respectively. In the case of MLE, the score is

likewise often computed as part of the numerical gradient for the likelihood. The elements of Λ̂cg

and Λ̂γm are likewise commonly precomputed. The weights Ŵ and Û are directly involved in the

19If ĝ (θ) and m̂ (γ) are not continuously differentiable, as sometimes occurs for simulation-based estimators, we
can estimate G and M in other ways. For example, we can estimate the jth column of G by the finite difference
(ĝ (θ + ejεn)− ĝ (θ − ejεn)) /2εn for ej the jth standard basis vector, where εn → 0 and εn

√
n→∞ as n→∞. See

Section 7.3 of Newey and McFadden (1994) for details on this approach and sufficient conditions for its validity.
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calculation of the objectives in (13) and (14), respectively. When ĝ (θ) and m̂ (γ) are differentiable,

Ĝ and M̂ are used in standard formulae for asymptotic inference on θ and γ, and the gradient Ĉ

is used in delta-method calculations for asymptotic inference on c.20

In this sense, in many applications estimation of Σ will involve only manipulation of vectors

and matrices already computed as part of estimation of, and inference on, the parameters θ, γ, and

c.

Recipe. (GMM/MLE With Differentiable Moments)

1. Estimate θ̂ and γ̂ following (13) and (14), respectively, and compute ĉ = c
(
θ̂
)

.

2. Collect
{
φg

(
Di; θ̂

)}n
i=1

and {φm (Di; γ̂)}ni=1 from the calculation of the objective functions

in (13) and (14), respectively.

3. Collect the numerical gradients Ĝ = ∂
∂θ ĝ

(
θ̂
)

, M̂ = ∂
∂γ m̂ (γ̂), and Ĉ = ∂

∂θ c
(
θ̂
)

from the

calculation of asymptotic standard errors for θ̂, γ̂, and ĉ.

4. Compute Λ̂cg = −Ĉ
(
Ĝ′Ŵ Ĝ

)−1
Ĝ′Ŵ and Λ̂γm = −

(
M̂ ′ÛM̂

)−1
M̂ ′Û using the weights Ŵ

and Û from the objective functions in (13) and (14), respectively.

5. Compute φ̂c (Di) = Λ̂cgφg

(
Di; θ̂

)
and φ̂γ (Di) = Λ̂γmφm (Di; γ̂) for each i.

6. Compute Σ̂ as in (15).

7. Compute ∆̂ as in (12).

6 Applications

In this section we present and interpret estimates of ∆ for three structural articles in economics,

each of which estimates the parameters η of a base model via maximum likelihood. In each case,

we estimate the informativeness of each vector γ̂ for the estimator ĉ following the recipe in Section

5.1. Because in each case model estimation is via maximum likelihood and γ̂ can be represented as

GMM, the recipe applies directly.

6.1 The Effects of PROGRESA

Attanasio et al. (2012a) use survey data from Mexico to study the effect of PROGRESA, a random-

ized social experiment involving a conditional cash transfer aimed in part at increasing persistence

20Note that in cases where the function c (θ) depends on features of the data beyond θ, for example on the
distribution of covariates, our formulation implicitly treats those features as fixed at their sample values for the
purposes of estimating ∆. Online Appendix E discusses how to account for such additional dependence on the data,
and presents corresponding calculations for some of our applications.
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in school. The paper uses the estimated base model to predict the effect of a counterfactual inter-

vention in which total school enrollment is increased via a budget-neutral reallocation of program

funds.

The estimate of interest ĉ is the partial-equilibrium effect of the counterfactual rebudgeting on

the school enrollment of eligible children, accumulated across age groups (Attanasio et al. 2012a,

sum of ordinates for the line labeled “fixed wages” in Figure 2, minus sum of ordinates for the line

labeled “fixed wages” in the left-hand panel of Figure 1).

Attanasio et al. (2012a) discuss the “exogenous variability in [their] data that drives [their]

results” as follows (p. 53):

The comparison between treatment and control villages and between eligible and

ineligible households within these villages can only identify the effect of the existence

of the grant. However, the amount of the grant varies by the grade of the child. The

fact that children of different ages attend the same grade offers a source of variation

of the amount that can be used to identify the effect of the size of the grant. Given

the demographic variables included in our model and given our treatment for initial

conditions, this variation can be taken as exogenous. Moreover, the way that the grant

amount changes with grade varies in a non-linear way, which also helps identify the

effect.

Thus, the effect of the grant is identified by comparing across treatment and control

villages, by comparing across eligible and ineligible households (having controlled for

being “non-poor”), and by comparing across different ages within and between grades.

(p. 53)

Motivated by this discussion, we define three vectors γ̂ of descriptive statistics, which correspond

to sample treatment-control differences from the experimental data. The first vector (“impact

on eligibles”) consists of the age-grade-specific treatment-control differences for eligible children

(interacting elements of Attanasio et al. 2012a, Table 2, single-age rows of the column labeled

“Impact on Poor 97,” with the child’s grade). The second vector (“impact on ineligibles”) consists

of the age-grade-specific treatment-control differences for ineligible children (interacting elements

of Attanasio et al. 2012a, Table 2, single-age rows of the column labeled “Impact on non-eligible,”

with the child’s grade). The third vector consists of both of these groups of statistics.

Table I reports the estimated informativeness of each vector of descriptive statistics. The

estimated informativeness for the combined vector is 0.28. This is largely accounted for by the

age-grade-specific treatment-control differences for eligible children.
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Table I. Estimated informativeness of descriptive statistics for the effect of a counterfactual rebud-
geting of PROGRESA (Attanasio et al. 2012a)

Descriptive statistics γ̂ Estimated informativeness ∆̂

All 0.283
Impact on eligibles 0.227
Impact on ineligibles 0.056

Notes: The table shows the estimated informativeness ∆̂ of three vectors γ̂ of descriptive statistics
for the estimated partial-equilibrium effect ĉ of the counterfactual rebudgeting on the school enroll-
ment of eligible children, accumulated across age groups (Attanasio et al. 2012a, sum of ordinates
for the line labeled “fixed wages” in Figure 2, minus sum of ordinates for the line labeled “fixed
wages” in the left-hand panel of Figure 1). Vector γ̂ “impact on eligibles” consists of the age-grade-
specific treatment-control differences for eligible children (interacting elements of Attanasio et al.
2012a, Table 2, single-age rows of the column labeled “Impact on Poor 97,” with the child’s grade).
Vector γ̂ “impact on ineligibles” consists of the age-grade-specific treatment-control differences for
ineligible children (interacting elements of Attanasio et al. 2012a Table 2, single-age rows of the
column labeled “Impact on non-eligible,” with the child’s grade). Vector γ̂ “all” consists of both
of these groups of statistics. Estimated informativeness ∆̂ is calculated according to the recipe in
Section 5.1 using the replication code and data posted by Attanasio et al. (2012b).

Restricting from FN (·) to FRN (·) reduces the worst-case bias by an estimated factor of 1 −
√

1− 0.28 ≈ 0.15 in the sense of Proposition 2. Further reduction in the worst-case bias would

require including in γ̂ descriptive statistics that are orthogonal to the treatment-control differences

we consider, thus imposing that FRN (·) respects the relationship specified by the base model F0 (·)

between c and the features of the distribution of the data estimated by these orthogonal statistics.

To illustrate the distinction between informativeness and identification highlighted in Section

3.3.1, now let c be the partial-equilibrium effect of the actual program on the school enrollment of

eligible children, accumulated across age groups. The parameter c is nonparametrically identified,

and can be nonparametrically estimated by comparing the school enrollment of eligible children in

treatment and control villages (as in Attanasio et al. 2012a, Table 2, column labeled “Impact on

Poor 97”). The parameter c can also be estimated parametrically using the researcher’s estimated

model (as in Attanasio et al. 2012a, sum of ordinates for the line labeled “fixed wages” in the

left-hand panel of Figure 1). The descriptive statistics γ̂ have an informativeness of 1 for a natural

nonparametric estimator, and an estimated informativeness of 0.31 for the parametric estimator,

indicating that assumptions beyond those required for nonparametric identification are necessary

to guarantee that the parametric estimator is unbiased in the sense of Proposition 2.
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6.2 Newspaper Demand

Gentzkow (2007a) uses survey data from a cross-section of individuals to estimate demand for print

and online newspapers in Washington DC. A central goal of Gentzkow’s (2007a) paper is to estimate

the extent to which online editions of papers crowd out readership of the associated print editions,

which in turn depends on a key parameter governing the extent of print-online substitutability.

The estimate of interest ĉ is the change in readership of the Washington Post print edition that

would occur if the Post online edition were removed from the choice set (Gentzkow 2007a, Table

10, row labeled “Change in Post readership”).

Gentzkow (2007a) discusses two features of the data that can help to distinguish correlated

tastes from true substitutability: (i) a set of instruments—such as a measure of Internet access

at work—that plausibly shift the utility of online papers but do not otherwise affect the utility of

print papers; and (ii) a coarse form of panel data—separate measures of consumption in the last

day and last five weekdays—that make it possible to relate changes in consumption of the print

edition to changes in consumption of the online edition over time for the same individual (p. 730).

Motivated by Gentzkow’s (2007a) discussion, we define three vectors γ̂ of descriptive statistics.

The first vector (“IV coefficient”) is the coefficient from a 2SLS regression of last-five-weekday

print readership on last-five-weekday online readership, instrumenting for the latter with the set of

instruments (Gentzkow 2007a, Table 4, Column 2, first row). The second vector (“panel coefficient”)

is the coefficient from an OLS regression of last-one-day print readership on last-one-day online

readership controlling for the full set of interactions between indicators for print readership and

indicators for online readership in the last five weekdays. Each of these regressions includes the

standard set of demographic controls from Gentzkow (2007a, Table 5). The third vector γ̂ consists

of both the IV coefficient and the panel coefficient. Thus, the first two vectors have dimension 1,

and the third has dimension 2.

Table II reports the estimated informativeness of each vector of descriptive statistics. The

estimated informativeness of the combined vector is 0.51. This is accounted for almost entirely by

the panel coefficient, which alone has an estimated informativeness of 0.50. The IV coefficient, by

contrast, has an estimated informativeness of only 0.01.

Gentzkow’s (2007a) discussion of identification highlights both the exclusion restrictions under-

lying the IV coefficient and the panel variation underlying the panel coefficient as potential sources

of identification, and if anything places more emphasis on the former. Based on Gentzkow’s (2007a)

discussion, and the large literature showing that exclusion restrictions can be used to establish non-

parametric identification in closely related models (Matzkin 2007), it is tempting to conclude that

accepting the relationship specified by the base model between the counterfactual c and the pop-
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Table II. Estimated informativeness of descriptive statistics for the effect of eliminating the Post
online edition (Gentzkow 2007a)

Descriptive statistics γ̂ Estimated informativeness ∆̂

All 0.514
IV coefficient 0.009
Panel coefficient 0.503

Notes: The table shows the estimated informativeness ∆̂ of three vectors γ̂ of descriptive statistics
for the estimated effect ĉ on the readership of the Post print edition if the Post online edition were
removed from the choice set (Gentzkow 2007a, table 10, row labeled “Change in Post readership”).
Vector γ̂ “IV coefficient” is the coefficient from a 2SLS regression of last-five-weekday print read-
ership on last-five-weekday online readership, instrumenting for the latter with the set of excluded
variables such as Internet access at work (Gentzkow 2007a, Table 4, Column 2, first row). Vector
γ̂ “panel coefficient” is the coefficient from an OLS regression of last-one-day print readership on
last-one-day online readership controlling for the full set of interactions between indicators for print
readership and for online readership in the last five weekdays. Each of these regressions includes
the standard set of demographic controls from Gentzkow (2007a, Table 5). Vector γ̂ “all” consists
of both the IV coefficient and the panel coefficient. Estimated informativeness ∆̂ is calculated
according to the recipe in Section 5.1 using the replication code and data posted by Gentzkow
(2007b).

ulation value of the IV coefficient would greatly limit the scope for bias in Gentzkow’s (2007a)

estimator ĉ.

Our findings suggest otherwise. When γ̂ consists only of the IV coefficient, restricting from

FN (·) to FRN (·) reduces the worst-case bias in ĉ by an estimated factor of only 1−
√

1− 0.01 < 0.01

in the sense of Proposition 2. By contrast, when γ̂ consists only of the panel coefficient, restricting

from FN (·) to FRN (·) reduces the worst-case bias in ĉ by an estimated factor of 1−
√

1− 0.50 ≈

0.29. Intuitively, a reader interested in evaluating the scope for bias in ĉ may wish to focus more

attention on the assumptions of the base model that relate c to the population value of the panel

coefficient (e.g., restrictions on the time structure of preference shocks), than on assumptions that

relate c to the population value of the IV coefficient (e.g., exclusion restrictions).

6.3 Long-term Care Insurance

Hendren (2013a) uses data on insurance eligibility and self-reported beliefs about the likelihood of

different types of “loss” events (e.g., becoming disabled) to recover the distribution of underlying

beliefs and rationalize why some groups are routinely denied insurance coverage. We focus here on

Hendren’s (2013a) model of the market for long-term care (LTC) insurance.

The estimate of interest ĉ is the minimum pooled price ratio among rejectees (Hendren 2013a,

Table V, row labeled “Reject,” column labeled “LTC”). The minimum pooled price ratio determines
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Table III. Estimated informativeness of descriptive statistics for the minimum pooled price ratio
(Hendren 2013a)

Descriptive statistics γ̂ Estimated informativeness ∆̂

All 0.700
Fractions in focal point groups 0.005
Fractions in non-focal point groups 0.018
Fraction in each group needing LTC 0.676

Notes: The table shows the estimated informativeness ∆̂ of four vectors γ̂ of descriptive statistics
for the “minimum pooled price ratio” ĉ (Hendren 2013a, Table V, row labeled “Reject,” column
labeled “LTC”). Vector γ̂ “fractions in focal point groups” consists of the fraction of respondents
who report exactly 0, the fraction who report exactly 0.5, and the fraction who report exactly 1.
Vector γ̂ “fractions in non-focal point groups” consists of the fractions of respondents whose reports
are in each of the intervals (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5), (0.5, 0.6], (0.6, 0.7], (0.7, 0.8],
(0.8, 0.9], and (0.9, 1). Vector γ̂ “fraction in each group needing LTC” consists of the fractions of
respondents giving each of the preceding reports who eventually need long-term care. Vector γ̂ “all”
consists of all three of the other vectors. Estimated informativeness ∆̂ is calculated according to the
recipe in Section 5.1 using the replication code and data posted by Hendren (2013b), supplemented
with additional calculations provided by the author.

the range of preferences for which insurance markets cannot exist (Hendren 2013a, Corollary 2 to

Theorem 1). This ratio is a key output of the analysis, as it provides an economic rationale for the

insurance denials that are the paper’s focus.

Hendren (2013a) explains that the parameters that determine the minimum pooled price ratio

are identified from the relationship between elicited beliefs and the eventual realization of loss events

such as long term care (pp. 1751-2).

Motivated by Hendren’s (2013a) discussion, we define four vectors γ̂ of descriptive statistics.

The first vector (“fractions in focal-point groups”) consists of the fraction of respondents who report

exactly 0, the fraction who report exactly 0.5, and the fraction who report exactly 1. The second

vector (“fractions in non-focal-point groups”) consists of the fractions of respondents whose reports

are in each of the intervals (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5), (0.5, 0.6], (0.6, 0.7], (0.7, 0.8],

(0.8, 0.9], and (0.9, 1). The third vector (“fraction in each group needing LTC”) consists of the

fraction of respondents giving each of the preceding reports who eventually need long-term care.

The fourth vector γ̂ consists of all three of the other vectors.

Hendren’s (2013a) discussion suggests that the third vector will be especially informative for

the minimum pooled price ratio.

Table III reports the estimated informativeness of each vector of descriptive statistics. The

estimated informativeness of the combined vector is 0.70. The estimated informativeness is 0.01

with respect to the fractions in focal point groups, 0.02 with respect to the fractions in non-focal-
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point groups, and 0.68 with respect to the fraction in each group needing LTC. When γ̂ consists

only of the fraction in each group needing LTC, restricting from FN (·) to FRN (·) reduces the

worst-case bias in ĉ by an estimated factor of 1−
√

1− 0.68 ≈ 0.43. This finding seems consistent

with the author’s discussion.

7 Conclusions

Descriptive analysis has become an important complement to structural estimation. It is common

for a researcher to report descriptive statistics γ̂ that estimate features γ of the distribution of the

data that are in turn related to the quantity c of interest under the researcher’s model. A reader

who accepts the relationship between the features γ and the structural quantity c specified by the

researcher’s model, and who believes that the statistics γ̂ play an important role in “driving” the

structural estimate ĉ, may then be more confident in the researcher’s conclusions.

We propose one way to formalize this logic. We define a measure ∆ of the informativeness of

descriptive statistics γ̂ for a structural estimate ĉ. Informativeness captures the share of variation

in ĉ that is explained by γ̂ under their joint asymptotic distribution. We show that, under some

conditions, informativeness also governs the reduction in worst-case bias from accepting the rela-

tionship between γ and c specified by the researcher’s model. In this sense, descriptive analysis

based on statistics with high informativeness can indeed increase confidence in structural estimates.

Informativeness can be computed at negligible cost even for complex models, and we provide

a convenient recipe for computing it. We show in the context of our applications that reporting

informativeness can sharpen the interpretation of structural estimates in important economic set-

tings. We recommend that researchers report estimated informativeness alongside their descriptive

analyses.

Proofs

Proof of Proposition 1 First consider F ∈ FN (c) . By the definition of FN (·) there exist

η ∈ Rp, ζ ∈ Rk such that F = F (η, ζ) and c = c (η) . Note, moreover, that since c (η) = L′η while

EF [ĉ] = L′η + C ′ζ, EF [ĉ− c] = C ′ζ. Thus, our task reduces to showing that{
C ′ζ : ζ ∈ Rk, ‖ζ‖Ω−1 ≤ µ

}
= [−µσc, µσc] .

Note, however, that C ′ζ = C ′Ω
1
2 Ω−

1
2 ζ, so by the Cauchy-Schwarz inequality, |C ′ζ| ≤ σc ‖ζ‖Ω−1 .

Hence, to prove the result we need only show that any bias c̄ with |c̄| ≤ µσc can be achieved. To
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this end, pick such a |c̄| ≤ µσc. Consider ζ = c̄
σ2
c
ΩC and note that C ′ζ = c̄ and ‖ζ‖Ω−1 = c̄

σc
≤ µ,

as desired.

Next consider F ∈ FRN (c) . By the definition of FRN (·) there exist η ∈ Rp, ζ ∈ Rk such that

F = F (η, ζ), c = c (η) , and Γ′ (Xη + ζ) = Γ′Xη. Thus, our task reduces to showing that{
C ′ζ : ζ ∈ Rk, ‖ζ‖Ω−1 ≤ µ,Γ′ζ = 0

}
=
[
−µσc

√
1−∆, µσc

√
1−∆

]
.

Let us first show that for any ζ with ‖ζ‖Ω−1 ≤ µ and Γ′ζ = 0, C ′ζ satisfies these bounds. To this

end, define C̃ = C − ΓΛ′ for Λ = ΣcγΣ−1
γγ , and note that for any ζ with Γ′ζ = 0, C̃ ′ζ = C ′ζ. Note,

next, that
∣∣∣C̃ ′ζ∣∣∣ ≤√C̃ ′ΩC̃ ‖ζ‖Ω−1 by the Cauchy-Schwarz inequality, and that

C̃ ′ΩC̃ = σ2
c − ΣcγΣ−1

γγΣγc = σ2
c (1−∆) ,

from which the result follows. We next want to show that for any c̄ with |c̄| ≤ µσc
√

1−∆ there

exists ζ with ‖ζ‖Ω−1 ≤ µ and Γ′ζ = 0 such that C ′ζ = c̄. This result is trivial if ∆ = 1, so let us

suppose that ∆ < 1, and pick some c̄ with |c̄| ≤ µσc
√

1−∆. Define ζ = c̄
σ2
c (1−∆)

ΩC̃ and note that

Γ′ζ = 0 and C ′ζ = C̃ ′ζ = c̄, while

‖ζ‖2Ω−1 =
c̄2

σ2
c (1−∆)

,

which is bounded above by µ2.

Proof of Lemma 1 By Lemma 7.6 of van der Vaart (1998), Assumption 3 implies that
√
fh,z (Di; th, tz)

is differentiable in quadratic mean in the sense that for all (h, z) ∈ H ×Z,∫ (√
fh,z (Di; th, tz)−

√
fh,z (Di; 0, 0)− 1

2
(thsh (d) + tzsz (d))

√
fh,z (Di; 0, 0)

)2

dν (d) = o
(∥∥(th, tz)

′∥∥2
)

as (th, tz) → 0. Hence, Theorem 7.2 of van der Vaart (1998) implies that under S (0, 0), defining

Fn = ×ni=1F ,

log

dFnh,z
(
th√
n
, tz√

n

)
dFn0

 =
1√
n

n∑
i=1

(thsh (Di) + tzsz (Di))−
1

2

(
th

tz

)′
Ih,z (0, 0)

(
th

tz

)
+ op (1)

and that EF0 [sh (Di)] = EF0 [sz (Di)] = 0. Since EF0

[
sh (Di)

2
]

and EF0

[
sz (Di)

2
]

are finite,

Assumption 1, the Central Limit Theorem, and Slutsky’s Lemma imply that under S (0, 0) , for

g (Di;h, z) = sh (Di) + sz (Di) ,(
log

(
dFnh,z

(
1√
n
, 1√
n

)
dFn0

)
1√
n

∑
φc (Di)

1√
n

∑
φγ (Di)

′

)′
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→d N



−1

2EF0

[
g (Di;h, z)

2
]

0

0

 ,Σ∗

 ,

for

Σ∗ =


EF0

[
g (Di;h, z)

2
]

EF0 [g (Di;h, z)φc (Di)] EF0

[
g (Di;h, z)φγ (Di)

′]
EF0 [g (Di;h, z)φc (Di)] EF0

[
φc (Di)

2
]

EF0

[
φc (Di)φγ (Di)

′]
EF0 [g (Di;h, z)φγ (Di)] EF0 [φγ (Di)φc (Di)] EF0

[
φγ (Di)φγ (Di)

′]
 .

By Le Cam’s first lemma (see Example 6.5 of van der Vaart 1998) the convergence in distribution

of log
(
dFnh,z

(
1√
n
, 1√

n

)
/dFn0

)
to a normal with mean equal to −1

2 of its variance implies that the

sequences ×ni=1F0 and ×ni=1F
n
h,z

(
1√
n
, 1√

n

)
are mutually contiguous. Le Cam’s third lemma (see

Example 6.7 of van der Vaart 1998) then implies that under S (h, z) ,(
log

(
dFnh,z

(
1√
n
, 1√
n

)
dFn0

)
1√
n

∑
φc (Di)

1√
n

∑
φγ (Di)

′

)′

→d N




1
2EF0

[
g (Di;h, z)

2
]

EF0 [φc (Di) g (Di;h, z)]

EF0 [φγ (Di) g (Di;h, z)]

 ,Σ∗

 .

Together with contiguity, Assumption 1 implies that

√
n
(
ĉ− c (η0) , γ̂′ − γ (η0)′

)
− 1√

n

(∑
φc (Di) ,

∑
φγ (Di)

′
)

= op (1) ,

under S (h, z) , from which the result is immediate for(
c̄ (S (h, z))

γ̄ (S (h, z))

)
=

(
EF0 [φc (Di) g (Di;h, z)]

EF0 [φγ (Di) g (Di;h, z)]

)
=

(
EF0 [φc (Di) (sh (Di) + sz (Di))]

EF0 [φγ (Di) (sh (Di) + sz (Di))]

)
.

Finally, note that Assumption 2 implies c? (h) = c̄ (S (h, 0)) and γ? (h) = γ̄ (S (h, 0)) . Conse-

quently, by the results above we have c? (h) = EF0 [φc (Di) sh (Di)], and γ? (h) = EF0 [φγ (Di) sh (Di)] .

Proof of Proposition 2 Let us first consider the case with S ∈ SN (c?) , with SN (c?) nonempty.

By the definition of SN (c?) and Lemma 1, for any S ∈ SN (c?) there exist (h, z) ∈ H × Z with

S = S (h, z) and c? (h) = c?. For this (h, z) we can write

c̄ (S)− c? = EF0 [φc (Di) (sh (Di) + sz (Di))]− EF0 [φc (Di) sh (Di)] = EF0 [φc (Di) sz (Di)] .
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Writing c̄z = EF0 [φc (Di) sz (Di)] for brevity, our task thus reduces to showing{
c̄z : z ∈ Z, EF0

[
sz (Di)

2
]
≤ µ2

}
= [−µσc, µσc] .

Note, however, that by the Cauchy-Schwarz inequality

|c̄z| ≤
√
EF0

[
φc (Di)

2
]√

EF0

[
sz (Di)

2
]
≤ µσc.

Hence, for any z ∈ Z with EF0

[
sz (Di)

2
]
≤ µ2, c̄z necessarily satisfies the bounds. Going the other

direction, for any c̄ with |c̄| ≤ µσc, if we take s∗ (Di) = c̄
σ2
c
φc (Di) , we have EF0 [s∗ (Di)φc (Di)] =

c̄, while EF0

[
s∗ (Di)

2
]

= c̄2/σ2
c ≤ µ2. By Assumption 4, however, there exists z ∈ Z with

EF0

[
(s∗ (Di)− sz (Di))

2
]

= 0, so c̄z = c̄ and EF0

[
sz (Di)

2
]
≤ µ2, as desired.

For the case with S ∈ SRN (c?) , note that by the definition of SRN (c?) and Lemma 1, for any

S ∈ SRN (c?) there exist (h, z) ∈ H ×Z with S = S (h, z), c? (h) = c?, and

EF0 [φγ (Di) (sh (Di) + sz (Di))]− EF0 [φγ (Di) sh (Di)] = EF0 [φγ (Di) sz (Di)] = 0.

Thus, writing γ̄z = EF0 [φγ (Di) sz (Di)] for brevity, our task reduces to showing that{
c̄z : z ∈ Z, γ̄z = 0, EF0

[
sz (Di)

2
]
≤ µ2

}
=
[
−µσc

√
1−∆, µσc

√
1−∆

]
.

Let Λ = Σ−1
γγΣγc. For φ̃c (Di) = φc (Di)− Λ′φγ (Di) , note that if γ̄z = 0 then

EF0 [φc (Di) sz (Di)] = EF0

[
φ̃c (Di) sz (Di)

]
.

The Cauchy-Schwarz inequality then implies that

∣∣∣EF0

[
φ̃c (Di) sz (Di)

]∣∣∣ ≤√EF0

[
φ̃c (Di)

2
]√

EF0

[
sz (Di)

2
]

=
√
σ2
c − ΛΣγγΛ′

√
EF0

[
sz (Di)

2
]

= σc
√

1−∆

√
EF0

[
sz (Di)

2
]
.

Hence, we see that for z such that EF0

[
sz (Di)

2
]
≤ µ2,

c̄z ∈
[
−µσc

√
1−∆µ, µσc

√
1−∆

]
,

which are the bounds stated in the proposition.

To complete the proof it remains to show that these bounds are tight, so that for any (c̄, µ)

with

c̄ ∈
[
−µσc

√
1−∆, µσc

√
1−∆

]
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there exists z ∈ Z with c̄z = c̄, γ̄z = 0, and EF0

[
sz (Di)

2
]
≤ µ2.This result is trivial if ∆ = 1, so

let us suppose that ∆ < 1 and pick some c̄ with |c̄| ≤ µσc
√

1−∆. Now define

s∗ (Di; c̄) = φ̃c (Di)
c̄

σ2
c (1−∆)

.

Note that EF0 [φγ (Di) s
∗ (Di; c̄)] = 0, while

EF0 [φc (Di) s
∗ (Di; c̄)] = EF0

[
φ̃c (Di)

2
] c̄

σ2
c (1−∆)

= c̄.

Moreover,

EF0

[
s∗ (Di; c̄)

2
]

=
c̄2

σ2
c (1−∆)

.

However, by the definition of c̄ we know that |c̄| ≤ µσc
√

1−∆, so EF0

[
s∗ (Di; c̄)

2
]
≤ µ2. By

Assumption 4, however, there exists z ∈ Z with

EF0

[
(sz (Di)− s∗ (Di; c̄))

2
]

= 0,

and thus z yields c̄z = c̄, γ̄z = 0, and EF0

[
sz (Di)

2
]
≤ µ2 as desired.

Proof of Proposition 3 As shown in the proof of Lemma 1, under Assumption 3 the log likeli-

hood ratio log
(
dFnh,z

(
1√
n
, 1√

n

)
/dFnh,z

(
1√
n
, 1√

n

))
converges under S (0, 0) to a normal distribution

with mean equal to −1
2 times its variance. Le Cam’s First Lemma thus implies that the distribu-

tion of the data under S (h, z) is mutually contiguous with that under S (0, 0). Hence, to establish

convergence in probability under S (h, z), it suffices to establish convergence in probability under

S (0, 0) . Consistency of ∆̂ under S (0, 0) is implied by Assumption 5, the Continuous Mapping The-

orem (see e.g. Theorem 2.3 of van der Vaart 1998), and the maintained assumptions that σ2
c > 0

and Σγγ has full rank.
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A Sensitivity and Informativeness

Proposition 2 considers the effect of limiting attention to forms of misspecification that do not

affect γ̂. In some cases, however, researchers may be interested in forms of misspecification with a

non-zero, but known, effect on γ̂. In such cases, our assumptions again imply a relationship between

the biases in ĉ and γ̂.

This relationship depends on the sensitivity of ĉ to γ̂. This is the natural extension of the

sensitivity measure proposed in Andrews et al. (2017) to the current setting.

Definition. The sensitivity of ĉ with respect to γ̂ is

Λ = ΣcγΣ−1
γγ .

To build intuition, note that sensitivity characterizes the relationship between ĉ and γ̂ in

the asymptotic distribution under the base model. If we assume, as in Section 3, that ĉ and

γ̂ are normally distributed in finite samples, then Λ is simply the vector of coefficients from the

population regression of ĉ on γ̂. In this case, element Λj of Λ is the effect of changing the realization

of a particular γ̂j on the expected value of ĉ, holding the other elements of γ̂ constant.

Andrews et al. (2017) show that for ĉ = c (η̂), η̂ a minimum distance estimator based on

moments ĝ (η), and γ̂ = ĝ (η0) the estimation moments evaluated at the true parameter value,

under regularity conditions sensitivity translates the effect of misspecification on γ̂ to the effect on

ĉ, in the sense that

c̄ (S (h, z))− c̄ (S (h, 0)) = Λ (γ̄ (S (h, z))− γ̄ (S (h, 0))) .

Our next proposition extends this result.
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Proposition 4. Suppose that Assumptions 1-4 hold, and let

SRN (c?, γ̄) = ∪S∈S0(c?)

{
S̃ ∈ N (S) : γ̄

(
S̃
)
− γ̄ (S) = γ̄

}
.

Provided µ (γ̄)2 = µ2 − γ̄′Σ−1
γγ γ̄ ≥ 0, the set of possible biases under S ∈ SRN (·, γ̄) is

{
c̄ (S)− c? : S ∈ SRN (c?, γ̄)

}
=
[
Λγ̄ − µ (γ̄)σc

√
1−∆,Λγ̄ + µ (γ̄)σc

√
1−∆

]
,

for any c? such that SRN (c?, γ̄) is nonempty.

Proposition 4 extends the results of Andrews et al. (2017) to the case where γ̂ need not be

a vector of estimation moments, and thus we may have ∆ < 1. It likewise extends Proposition 2.

The resulting set of first-order asymptotic biases for ĉ is centered at Λγ̄ with width proportional to
√

1−∆.

Unlike in Proposition 2, the degree of misspecification now enters the width through µ (γ̄) =√
µ2 − γ̄′Σ−1

γγ γ̄. Intuitively, µ (γ̄) measures the degree of excess misspecification beyond
√
γ̄′Σ−1

γγ γ̄,

which is the minimum necessary to allow γ̄
(
S̃
)
− γ̄ (S) = γ̄. If the degree of excess misspecification

is small then the first-order asymptotic bias of ĉ is close to Λγ̄, while if the degree of excess

misspecification is large then a wider range of biases is possible.

Proof of Proposition 4 The proof is similar to that for Proposition 2 in the main text. By

Lemma 1 we again have

c? (h) = EF0 [φc (Di) sh (Di)] .

Note, next, that by the definition of SRN (c?, γ̄) and Lemma 1, for any S ∈ SRN (c?, γ̄) there exist

(h, z) ∈ H ×Z with S = S (h, z), c? (h) = c?, and

EF0 [φγ (Di) (sh (Di) + sz (Di))]− EF0 [φγ (Di) sh (Di)] = EF0 [φγ (Di) sz (Di)] = γ̄.

Thus, writing γ̄z = EF0 [φγ (Di) sz (Di)] and c̄z = EF0 [φc (Di) sz (Di)] for brevity, our task reduces

to showing that{
c̄z : z ∈ Z, γ̄z = γ̄, EF0

[
sz (Di)

2
]
≤ µ2

}
=
[
Λγ̄ − µ (γ̄)σc

√
1−∆,Λγ̄ + µ (γ̄)σc

√
1−∆

]
.

Define s (Di; γ̄) = φγ (Di)
′Σ−1

γγ γ, and

εz (Di) = sz (Di)− s (Di; γ̄z) .

Note that EF0 [φγ (Di) εz (Di)] = 0 and EF0 [s (Di; γ̄z) εz (Di)] = 0 by construction. We can write

cz = EF0 [φc (Di) sz (Di)] = EF0

[
φc (Di)φγ (Di)

′]Σ−1
γγ γ̄z + EF0 [φc (Di) εz (Di)]
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= Λγ̄z + EF0 [φc (Di) εz (Di)] .

Next, define

φ̃c (Di) = φc (Di)− Λφγ (Di)

and note that

EF0 [φc (Di) εz (Di)] = EF0

[
φ̃c (Di) εz (Di)

]
.

The Cauchy-Schwarz inequality then implies that

∣∣∣EF0

[
φ̃c (Di) εz (Di)

]∣∣∣ ≤√EF0

[
φ̃c (Di)

2
]√

EF0

[
εz (Di)

2
]

=
√
σ2
c − ΛΣγγΛ′

√
EF0

[
εz (Di)

2
]

= σc
√

1−∆

√
EF0

[
sz (Di)

2
]
− γ̄′zΣ−1

γγ γ̄z.

Combining these results we see that for z such that γ̄z = γ̄ and EF0

[
sz (Di)

2
]
≤ µ2,

c̄z ∈
[
Λγ̄ − σc

√
1−∆

√
µ2 − γ̄′Σ−1

γγ γ̄,Λγ̄ + σc
√

1−∆

√
µ2 − γ̄′Σ−1

γγ γ̄

]
,

which are the bounds stated in the proposition. In particular,

0 ≤ EF0

[
εz (Di)

2
]
≤ µ2 − γ̄′zΣ−1

γγ γ̄z,

so if γ̄z = γ̄ we must have γ̄′Σ−1
γγ γ̄ ≤ µ2 in order that EF0

[
sz (Di)

2
]
≤ µ2. Hence, if µ2− γ̄′Σ−1

γγ γ̄ < 0

there exists no z with γ̄z = γ̄ and EF0

[
sz (Di)

2
]
≤ µ2.

To complete the proof it remains to show that these bounds are tight, so that for any (c̄, γ̄, µ)

with

(16) c̄ ∈
[
Λγ̄ − σc

√
1−∆

√
µ2 − γ̄′Σ−1

γγ γ̄,Λγ̄ + σc
√

1−∆

√
µ2 − γ̄′Σ−1

γγ γ̄

]

there exists z ∈ Z with c̄z = c̄, γ̄z = γ̄, and EF0

[
sz (Di)

2
]
≤ µ2. If ∆ < 1, define

s∗ (Di; c̄, γ̄) = s (Di; γ̄) + φ̃c (Di)
c̄− Λγ̄

σ2
c (1−∆)

.

Note that

EF0 [φγ (Di) s
∗ (Di; c̄, γ̄)] = γ̄

while

EF0 [φc (Di) s
∗ (Di; c̄, γ̄)] = Λγ̄ + EF0

[
φ̃c (Di)

2
] c̄− Λγ̄

σ2
c (1−∆)

= c̄.
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Moreover,

EF0

[
s∗ (Di; c̄, γ̄)2

]
= EF0

[
s (Di; γ̄)2

]
+ EF0

[
φ̃c (Di)

2
] (c̄− Λγ̄)2

σ4
c (1−∆)2

= γ̄′Σ−1
γγ γ̄ +

(c̄− Λγ̄)2

σ2
c (1−∆)

.

However, by (16) we know that

|c̄− Λγ̄| ≤ σc
√

1−∆

√
µ2 − γ̄′Σ−1

γγ γ̄

and thus that
(c̄− Λγ̄)2

σ2
c (1−∆)

≤
(
µ2 − γ̄′Σ−1

γγ γ̄
)

so EF0

[
s∗ (Di; c̄, γ̄)2

]
≤ µ2. By Assumption 4, however, there exists z ∈ Z with

EF0

[
(sz (Di)− s∗ (Di; c̄, γ̄))2

]
= 0,

and thus z yields c̄z = c̄, γ̄z = γ̄, and EF0

[
sz (Di)

2
]
≤ µ2 as desired. In cases with ∆ = 1, on the

other hand, we can use s∗ (Di; c̄, γ̄) = s (Di; γ̄) .

B Asymptotic Divergence

This section studies the asymptotic behavior of the divergence

(17) rh,z

(
1√
n
,

1√
n

)
= EFh,z(th,0)

ψ
fh,z

(
Di;

1√
n
, 1√

n

)
fh,z

(
Di;

1√
n
, 0
)


as n → ∞, where as in the main text we assume that ψ (1) = 0 and ψ′′ (1) = 2. To derive our

results we impose the following assumption.

Assumption 6. For t = (th, tz) ∈ R2 and fh,z (Di; t) = fh,z (Di; th, tz) , fh,z (Di; t) is twice contin-

uously differentiable in t at 0, and there exists an open neighborhood B of zero such that

EF0

[
sup
t∈B

(∣∣∣∣ ∂∂tz fh,z (Di; t)

∣∣∣∣+

∣∣∣∣ ∂2

∂t2z
fh,z (Di; t)

∣∣∣∣+

∣∣∣∣∣fh,z (Di; th, 0)

fh,z (Di; 0)
ψ′
(
fh,z (Di; t)

fh,z (Di; t)

) ∂
∂tz
fh,z (Di; t)

fh,z (Di; t)

∣∣∣∣∣
)]

,

EF0

 sup
(t,t̃)∈B2

∣∣∣∣∣∣fh,z (Di; th, 0)

fh,z (Di; 0)
ψ′

(
fh,z

(
Di; t̃

)
fh,z (Di; t)

)
∂2

∂t2z
fh,z

(
Di; t̃

)
fh,z (Di; t)

∣∣∣∣∣∣
 ,

and

EF0

 sup
(t,t̃)∈B2

∣∣∣∣∣∣fh,z (Di; th, 0)

fh,z (Di; 0)
ψ′′

(
fh,z

(
Di; t̃

)
fh,z (Di; t)

)(
∂
∂tz
fh,z

(
Di; t̃

)
fh,z (Di; t)

)2
∣∣∣∣∣∣

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are finite.

Under this assumption, we obtain the asymptotic approximation to divergence discussed in

the main text.

Proposition 5. Under Assumptions 3 and 6,

lim
n→∞

n · rh,z
(

1√
n
,

1√
n

)
= EF0

[
sz (Di)

2
]
.

Proof of Proposition 5 Recall that rh,z

(
1√
n
, 1√

n

)
can be written as in (17). Assumption 6 and

Leibniz’s rule implies for n sufficiently large we can exchange integration and differentiation twice,

so by Taylor’s Theorem with a mean-value residual,21

n · rh,z
(

1√
n
,

1√
n

)
=

n · EF0


fh,z(Di;tn)
fh,z(Di;0)

(
ψ
(
fh,z(Di;tn)
fh,z(Di;tn)

)
+ ψ′

(
fh,z(Di;tn)
fh,z(Di;tn)

) ∂
∂tz

fh,z(Di;tn)

fh,z(Di;tn)
1√
n

+

1
2

(
ψ′
(
fh,z(Di;t̃n)
fh,z(Di;tn)

) ∂2

∂t2z
fh,z(Di;t̃n)

fh,z(Di;tn) + ψ′′
(
fh,z(Di;t̃n)
fh,z(Di;tn)

)(
∂
∂tz

fh,z(Di;t̃n)
fh,z(Di;tn)

)2
)

1
n

)


for tn =
(

1√
n
, 0
)
, t̃n =

(
1√
n
, t̃z,n

)
and t̃z,n ∈

[
0, 1√

n

]
. Thus, since ψ (1) = 0 by assumption,

n · rh,z
(

1√
n
,

1√
n

)
=

EF0


√
nψ′ (1)

∂
∂tz

fh,z(Di;tn)

fh,z(Di;0) +

1
2
fh,z(Di;tn)
fh,z(Di;0)

(
ψ′
(
fh,z(Di;t̃n)
fh,z(Di;tn)

) ∂2

∂t2z
fh,z(Di;t̃n)

fh,z(Di;tn) + ψ′′
(
fh,z(Di;t̃n)
fh,z(Di;tn)

)(
∂
∂tz

fh,z(Di;t̃n)
fh,z(Di;tn)

)2
)
 .

Assumption 6 and Leibniz’s rule imply that for n sufficiently large,

EF0

[
∂
∂tz
fh,z (Di; tn)

fh,z (Di; 0)

]
=

∫
∂

∂tz
fh,z

(
d;

1√
n
, 0

)
dν (d) =

∂

∂tz

∫
fh,z

(
d;

1√
n
, 0

)
dν (d) = 0.

Hence, we see that

n · rh,z
(

1√
n
,

1√
n

)
=

21Specifically, note that for q(th, tz) = rh,z (th, tz) we can write

q(th, tz) = q(th, 0) +
∂

∂tz
q(th, 0)tz +

1

2

∂2

∂t2z
q(th, t̃z)t

2
z

with t̃z ∈ [0, tz].
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EF0

1

2

fh,z (Di; tn)

fh,z (Di; 0)

ψ′(fh,z (Di; t̃n
)

fh,z (Di; tn)

)
∂2

∂t2z
fh,z

(
Di; t̃n

)
fh,z (Di; tn)

+ ψ′′

(
fh,z

(
Di; t̃n

)
fh,z (Di; tn)

)(
∂
∂tz
fh,z

(
Di; t̃n

)
fh,z (Di; tn)

)2
 .

Since ψ′′ (1) = 2, the Dominated Convergence Theorem and Assumption 6 imply that

EF0

1

2

fh,z (Di; tn)

fh,z (Di; 0)

ψ′(fh,z (Di; t̃n
)

fh,z (Di; tn)

)
∂2

∂t2z
fh,z

(
Di; t̃n

)
fh,z (Di; tn)

+ ψ′′

(
fh,z

(
Di; t̃n

)
fh,z (Di; tn)

)(
∂
∂tz
fh,z

(
Di; t̃n

)
fh,z (Di; tn)

)2


→ 1

2
EF0

ψ′ (1)

∂2

∂t2z
fh,z (Di; 0)

fh,z (Di; 0)
+ ψ′′ (1)

(
∂
∂tz
fh,z (Di; 0)

fh,z (Di; 0)

)2


= EF0

1

2
ψ′ (1)

∂2

∂t2z
fh,z (Di; 0)

fh,z (Di; 0)
+ sz (Di)

2

 .
However, Assumption 6 and Leibniz’s rule imply that

EF0

 ∂2

∂t2z
fh,z (Di; 0)

fh,z (Di; 0)

 =

∫
∂2

∂t2z
fh,z (d; 0) dν (d) =

∂2

∂t2z

∫
fh,z (d; 0) dν (d) = 0,

so

lim
n→∞

n · rh,z
(

1√
n
,

1√
n

)
= EF0

[
sz (Di)

2
]
,

as we wanted to show.

C Asymptotic Distinguishability

In Section 4.3 of the paper, and Section B above, we discuss that the neighborhoods studied in our

local asymptotic analysis correspond to bounds on the asymptotic Cressie-Read divergence between

Fh,z

(
1√
n
, 0
)

and Fh,z

(
1√
n
, 1√

n

)
. In the section, we show that they also correspond to bounds on

the asymptotic power of tests to distinguish S (h, z) and S (h, 0).

Proposition 6. Under Assumption 3, the most powerful level α test of the null hypothesis

H0 : (D1, ..., Dn) ∼ ×ni=1Fh,z

(
1√
n
, 0

)
against

H1 : (D1, ..., Dn) ∼ ×ni=1Fh,z

(
1√
n
,

1√
n

)

has power converging to 1−FN(0,1)

(
vα −

√
EF0

[
sz (Di)

2
])

for vα the 1−α quantile of the standard

normal distribution.

The proof of Proposition 6 shows that the most powerful test corresponds asymptotically to a
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z-test, where the z-statistic has mean

√
EF0

[
sz (Di)

2
]

under H1.

Proof of Proposition 6 By the Neyman-Pearson Lemma (see Theorem 3.2.1 in Lehmann and

Romano 2005), the most powerful level-α test of H0 : (D1, ..., Dn) ∼ ×ni=1Fh,z

(
1√
n
, 0
)

against

H1 : (D1, ..., Dn) ∼ ×ni=1Fh,z

(
1√
n
, 1√

n

)
rejects when the log likelihood ratio

log

(
dFnh,z

(
1√
n
,

1√
n

)
/dFnh,z

(
1√
n
, 0

))
exceeds a critical value vα,n chosen to ensure rejection probability α under H0 (and may randomize

when the log likelihood ratio exactly equals the critical value). Here we again abbreviate ×ni=1F =

Fn.

By Assumption 3 and the quadratic expansion of the likelihood in the proof of Lemma 1,

however, we see that under S (0, 0) , for g (Di;h, z) = sh (Di) + sz (Di) ,

(
log

(
dFnh,z

(
1√
n
,0
)

dFn0

)
log

(
dFnh,z

(
1√
n
, 1√
n

)
dFn0

) )′
→d N

 −1
2EF0

[
g (Di;h, 0)2

]
−1

2EF0

[
g (Di;h, z)

2
]  , Σ̃


for

Σ̃ =

 EF0

[
g (Di;h, 0)2

]
EF0 [g (Di;h, 0) g (Di;h, z)]

EF0 [g (Di;h, 0) g (Di;h, z)] EF0

[
g (Di;h, z)

2
]  .

Le Cam’s third lemma thus implies that under S (h, 0) ,(
log

(
dFnh,z

(
1√
n
,0
)

dFn0

)
log

(
dFnh,z

(
1√
n
, 1√
n

)
dFn0

) )′
→d

N

 1
2EF0

[
g (Di;h, 0)2

]
−1

2EF0

[
g (Di;h, z)

2
]

+ EF0 [g (Di;h, 0) g (Di;h, z)]

 , Σ̃

 ,

while under S (h, z) , (
log

(
dFnh,z

(
1√
n
,0
)

dFn0

)
log

(
dFnh,z

(
1√
n
, 1√
n

)
dFn0

) )′
→d

N

 −1
2EF0

[
g (Di;h, 0)2

]
+ EF0 [g (Di;h, 0) g (Di;h, z)]

1
2EF0

[
g (Di;h, z)

2
]  , Σ̃

 .
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Since

log

dFnh,z
(

1√
n
, 1√

n

)
dFnh,z

(
1√
n
, 0
)
 = log

dFnh,z
(

1√
n
, 1√

n

)
dFn0

− log

dFnh,z
(

1√
n
, 0
)

dFn0

 ,

and sz (d) = sh (d) = 0 when h = z = 0, g (Di;h, 0)− g (Di;h, z) = −g (Di; 0, z) we see that

log

dFnh,z
(

1√
n
, 1√

n

)
dFnh,z

(
1√
n
, 0
)
→d

N
(
−1

2EF0

[
g (Di; 0, z)2

]
, EF0

[
g (Di; 0, z)2

])
Under S (h, 0)

N
(

1
2EF0

[
g (Di; 0, z)2

]
, EF0

[
g (Di; 0, z)2

])
Under S (h, z) .

Hence, since EF0

[
g (Di; 0, z)2

]
= EF0

[
sz (Di)

2
]

and vα,n corresponds to the 1− α quantile of the

log likelihood ratio under the null, we have that

log

(
dFnh,z

(
1√
n
, 1√
n

)
dFnh,z

(
1√
n
,0
)
)
− vα,n√

EF0

[
sz (Di)

2
] →d


N (−vα, 1) under S (h, 0)

N

(√
EF0

[
sz (Di)

2
]
− vα, 1

)
under S (h, z)

for vα the 1− α quantile of a standard normal distribution, from which the result follows.

D Non-Local Misspecification

This section develops our informativeness measure based on probability limits, rather than first-

order asymptotic bias.

Under Assumptions 1, 3, and 4, provided the estimators ĉ and γ̂ are regular in the sense

discussed in Newey (1994), Theorem 2.1 of Newey (1994) implies that the probability limits c̃ (·)
and γ (·) are asymptotically linear functionals, in the sense that

(18)
limtz→0 ‖c̃ (F0,z (0, tz))− c (η0)− tzEF0 [sz (Di)φc (Di)]‖ /tz = 0 for all z ∈ Z

limtz→0 ‖γ (F0,z (0, tz))− γ (F0)− tzEF0 [sz (Di)φγ (Di)]‖ /tz = 0 for all z ∈ Z.

Assumption 2 would be implied by an assumption that (ĉ, γ̂) are regular in the base model, so

the assumption of regularity of (ĉ, γ̂) in the nesting model can be understood as a strengthening

of Assumption 2. See Newey (1994) and Rieder (1994) for discussion. Since (18) only restricts

behavior as tz → 0 for fixed z, rather than studying ∆̃ (r̄) as defined in the main text let us instead

consider an analogue defined using finite collections of paths. Specifically, continuing to define

rh,z (th, tz) = EFh,z(th,0)

[
ψ
(
fh,z(Di;th,tz)
fh,z(Di;th,0)

)]
, for each z ∈ Z let

t̄ (z, µ) = inf {tz ∈ R+ : r0,z (0, tz) ≥ µ}

denote the largest value of t such that r0,z (0, tz) < µ for all tz < t̄ (z, µ) . Let Z+ ⊂ Z denote the
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set of z ∈ Z with EF0

[
sz (Di)

2
]
> 0.

Let Q ⊂ Z+ denote a finite subset of Z+, and let Q denote the set of all such finite subsets.

Finally, let

b̃N (µ,Q) = sup {|c̃ (F0,z (0, tz))− c (η0)| : z ∈ Q, tz < t̄ (z, µ)}

denote the analogue of b̃N (µ) based on the finite set of paths Q, and for ε > 0 let

b̃RN,ε (µ,Q) = sup {|c̃ (F0,z (0, tz))− c (η0)| : z ∈ Q, tz < t̄ (z, µ) , ‖γ (F0,z (0, tz))− γ (F0)‖ ≤ ε√µ}

denote the analogue of b̃RN (µ,Q) based on Q which allows the probability limit of γ̂ to change by

at most ε
√
µ. Because b̃RN,0 (µ,Q) may equal 0 even for large µ due to the approximation error in

(18), we consider limits as ε ↓ 0 (i.e., as ε→ 0 from above). Based on these objects, we define the

analogue of ∆̃ (µ) as

∆̃ (µ,Q) = sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

b̃RN,ε (µ,Q1)

b̃N (µ,Q2)
,

provided the limit exists.

Proposition 7. Suppose Assumptions 1, 3, and 4 hold, that the estimators ĉ and γ̂ are regular,

and that Assumption 6 holds for h = 0 and all z ∈ Z+. For ψ (·) twice continuously differentiable

and ψ (1) = 0, ψ′′ (1) = 2,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
µ↓0

b̃RN,ε (µ,Q1)

b̃N (µ,Q2)
=
√

1−∆.

It is important that we take the limit as µ ↓ 0 inside the limit as ε ↓ 0 and the sup and inf,

since this order of limits allows us to take advantage of the approximation result (18).

Proof of Proposition 7 Note, first, that our Assumptions 1, 3, and 4 imply the conditions of

Theorem 2.1 of Newey (1994) other than regularity of (ĉ, γ̂). Specifically, conditions (i) and (ii) of

Theorem 2.1 in Newey (1994) follow from our Assumptions 3 and 4. Condition (iii) is implied by

our Assumption 1. Regularity of (ĉ, γ̂) is assumed, so Theorem 2.1 of Newey (1994) implies (18).

Note, next, that for any z ∈ Z+, the proof of Proposition 5 implies that

lim
tz↓0

r0,z (0, tz) /t
2
z = EF0

[
sz (Di)

2
]
.

Hence, as µ ↓ 0, t̄ (z, µ) /
√
µ→ E

[
sz (Di)

2
]− 1

2
. For all z ∈ Z+, (18) implies that

limµ↓0 suptz≤t̄(z,µ) ‖c̃ (F0,z (0, tz))− c (η0)− tzEF0 [sz (Di)φc (Di)]‖ /tz = 0

limµ↓0 suptz≤t̄(z,µ) ‖γ (F0,z (0, tz))− γ (F0)− tzEF0 [sz (Di)φγ (Di)]‖ /tz = 0,
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and thus that {
1
√
µ

(c̃ (F0,z (0, tz))− c (η0) , γ (F0,z (0, tz))− γ (F0)) : tz ≤ t̄ (z, µ)

}

→
{
t̃z (EF0 [sz (Di)φc (Di)] , EF0 [sz (Di)φγ (Di)]) : t̃z ≤ EF0

[
sz (Di)

2
]− 1

2

}
in the Hausdorff sense as µ ↓ 0. Correspondingly, for any Q ∈ Q,{

1
√
µ

(c̃ (F0,z (0, tz))− c (η0) , γ (F0,z (0, tz))− γ (F0)) : z ∈ Q, tz ≤ t̄ (z, µ)

}

→
{
t̃z (EF0 [sz (Di)φc (Di)] , EF0 [sz (Di)φγ (Di)]) : z ∈ Q, t̃z ≤ EF0

[
sz (Di)

2
]− 1

2

}
.

Hence, for any nonempty Q ∈ Q

1
√
µ
b̃N (µ,Q)→ max

 |EF0 [sz (Di)φc (Di)]|

EF0

[
sz (Di)

2
] 1

2

: z ∈ Q

 as µ ↓0.

Matters are somewhat more delicate for b̃RN,ε (µ,Q) . Note, in particular, that for ε > 0, as

µ ↓ 0 we have
1
√
µ
b̃RN,ε (µ,Q)→

sup

{
t̃zEF0 [sz (Di)φc (Di)] : z ∈ Q, t̃z ≤ EF0

[
sz (Di)

2
]− 1

2
, t̃z ‖EF0 [sz (Di)φγ (Di)]‖ ≤ ε

}

= sup

{
t̃zEF0 [sz (Di)φc (Di)] : z ∈ Q, t̃z ≤ min

{
EF0

[
sz (Di)

2
]− 1

2
,

ε

‖EF0 [sz (Di)φγ (Di)]‖

}}
,

where we define ε/0 =∞ for ε > 0. Consequently,

1
√
µ
b̃RN,ε (µ,Q)→

sup

{
t̃z |EF0 [sz (Di)φc (Di)]| : z ∈ Q, t̃z ≤ min

{
EF0

[
sz (Di)

2
]− 1

2
,

ε

‖EF0 [sz (Di)φγ (Di)]‖

}}
.

Note, however, that by the Cauchy-Schwarz inequality and EF0

[
sz (Di)

2
]
<∞, EF0 [sz (Di)φc (Di)]

is finite for all z ∈ Z, so for any z with EF0 [sz (Di)φγ (Di)] 6= 0,

ε

‖EF0 [sz (Di)φγ (Di)]‖
EF0 [sz (Di)φc (Di)]→ 0
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as ε ↓ 0. Hence, as ε ↓ 0,

sup

{
t̃z |EF0 [sz (Di)φc (Di)]| : z ∈ Q, t̃z ≤ min

{
EF0

[
sz (Di)

2
]− 1

2
,

ε

‖EF0 [sz (Di)φγ (Di)]‖

}}

→ max

 |EF0 [sz (Di)φc (Di)]|

EF0

[
sz (Di)

2
] 1

2

: z ∈ Q0


for Q0 = {z ∈ Q : EF0 [sz (Di)φγ (Di)] = 0}, where we define this max to be zero if Q0 is empty.

This immediately implies that

lim
ε↓0

lim
µ↓0

b̃RN,ε (µ,Q1)

b̃N (µ,Q2)
=

max

{
|EF0 [sz (Di)φc (Di)]| /EF0

[
sz (Di)

2
] 1

2
: z ∈ Q1,0

}
max

{
|EF0 [sz (Di)φc (Di)]| /EF0

[
sz (Di)

2
] 1

2
: z ∈ Q2

}
for Q1,0 = {z ∈ Q1 : EF0 [sz (Di)φγ (Di)] = 0} , provided the denominator on the right hand side is

non-zero.22

To complete the proof, note that for Q0 the set of possible Q0,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
µ↓0

b̃RN,ε (µ,Q1)

b̃N (µ,Q2)
=

supQ0∈Q0
max

{
|EF0 [sz (Di)φc (Di)]| /EF0

[
sz (Di)

2
] 1

2
: z ∈ Q0

}
supQ∈Qmax

{
|EF0 [sz (Di)φc (Di)]| /EF0

[
sz (Di)

2
] 1

2
: z ∈ Q

} .

The proof of Proposition 2 shows, however, that

max
z∈Z+

|EF0 [sz (Di)φc (Di)]| /EF0

[
sz (Di)

2
] 1

2
= σc

and

max
z∈Z+:EF0

[sz(Di)φγ(Di)]=0
|EF0 [sz (Di)φc (Di)]| /EF0

[
sz (Di)

2
] 1

2
= σc

√
1−∆.

Hence,

sup
Q1∈Q

inf
Q2∈Q

lim
ε↓0

lim
µ↓0

b̃RN,ε (µ,Q1)

b̃N (µ,Q2)
=
√

1−∆,

as we wanted to show.

E Accounting for Richer Dependence of ĉ on the Data

In Section 5, for cases where the function c (θ) depends on the distribution of the data other than

through θ, we effectively fix the distribution of the data at the empirical distribution for the purposes

22If the denominator on the right hand side is zero, we define the limit as +∞.
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of estimating ∆ and Λ. Here we discuss how to allow for uncertainty about the distribution of data

in a special case, and present corresponding calculations for our applications.

Suppose in particular that

(19) ĉ =
1

n

∑
i

c
(
θ̂;Di

)
for some function c (·). In contrast to the setup in Section 5, here we allow that ĉ depends on the

data directly, and not only through the dependence of ĉ on θ̂.

In this case, one can show that the recipe in Section 5 applies, with the modification that

(20) φ̂c (Di) = c
(
θ̂;Di

)
+ Λ̂cgφg

(
Di; θ̂

)
where φg

(
Di; θ̂

)
and Λ̂cg are as defined in Section 5, and Ĉ in the definition of Λ̂cg is now given

by the gradient of 1
n

∑
i c (θ;Di) with respect to θ at θ̂.

The proof of this result, which we omit, proceeds by noting that we can augment the GMM pa-

rameter vector as (c, θ), and correspondingly augment the moment equation as (c (θ;Di)− c, φg (Di; θ)),

following which we can derive the estimated influence function for ĉ as we would for any element

of θ̂.

In the cases of Attanasio et al. (2012a) and Gentzkow (2007a), we can represent the calculation

of ĉ in the form given in (19) and thus calculate ∆̂ using the modified estimated influence function

in (20). In the case of Attanasio et al. (2012a), the estimates in Table I change from 0.283, 0.227,

and 0.056, respectively, to 0.277, 0.221, and 0.055. In the case of Gentzkow (2007a), the estimates

in Table II change from 0.514, 0.009, and 0.503, respectively, to 0.517, 0.008, and 0.507.
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