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1 Introduction

A long line of research attempts to interpret exchange rate dynamics through the lens

of pricing kernels. Backus, Foresi, and Telmer (2001) (B/F/T hereafter) show that

with complete markets, currency depreciation rates equal the ratio of the two pricing

kernels. Building on this observation, the asset market view (AMV) of exchange

rates treats dynamic pricing kernels as primitives (Brandt, Cochrane, and Santa-

Clara, 2006). Dynamic (i.e., conditional) pricing kernels are specified and estimated,

with the goal of producing plausible exchange rate dynamics. The AMV approach

has become the dominant paradigm in international financial economics.

The challenge in the AMV literature is matching observed exchange rate dynam-

ics with those implied by the two estimated pricing kernels. Results hinge on both

the functional forms for pricing kernels and the data used in estimation. Condi-

tional pricing kernels are staples of the term structure literature, thus a natural first

step towards implementing the AMV is to use domestic bond prices to estimate the

domestic pricing kernel and foreign bond prices to estimate the foreign pricing ker-

nel. Indeed, this is the approach pursued, explicitly or implicitly, by B/F/T, Bansal

(1997), and many others.

While the specific details of implementation vary across papers, the key conclusion

from this literature is that the depreciation rate inferred from the ratio of pricing

kernels falls short of capturing the dynamics of depreciation rates that we observe

in the data. A typical finding is that the variation in depreciation rates, inferred via

the AMV, has little to do with the observed ones, referred to as the FX volatility

anomaly (Brandt and Santa-Clara, 2002), and that the inferred depreciation rates

cannot replicate the FX forward premium anomaly, that is, the well-documented vi-
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olations of the uncovered interest parity (UIP) hypothesis (B/F/T). B/F/T conclude

that modern term structure models cannot simultaneously fit the key properties of

exchange rates while also fitting yields.

The more recent empirical literature attempts to both understand why the origi-

nal paradigm fails and to produce models that are more successful at explaining

FX dynamics. Since the AMV fails empirically, the proposed solutions attempt to

depart from it. One branch rejects the AMV by pursuing an incomplete market ap-

proach that breaks the equivalence between depreciation rates and the ratio of pricing

kernels. (e.g., Brandt and Santa-Clara, 2002). Another branch of this literature at-

tempts to save the AMV framework by arguing that even if markets are incomplete

one could still obtain depreciation rates via the the ratio of pricing kernels as long

as those pricing kernels are estimated via variance minimization (e.g., Brennan and

Xia, 2006, Sarno, Schneider, and Wagner, 2012). In practice, this literature takes us

to the same approach as B/F/T as it infers pricing kernels using bond term struc-

ture models. Besides conceptual issues arising with both approaches, none of the

proposed solutions is capable of capturing both the volatility and forward premium

anomalies at once while also matching salient features of yields. Thus the challenge

posed by B/F/T is still unresolved.

In this paper, we explain why the AMV fails empirically at inferring the depreciation

rate when local currency bonds are used to estimate the respective pricing kernels.

Then, we show how to successfully build a model that jointly matches features of

depreciation rates and bond yields. Our model can resolve both the FX volatility and

the FX forward premium anomalies, meeting the challenge posed by B/F/T. The key

feature of a successful joint model of depreciation rates and yields is that the pricing

kernel needs to include a shock to its martingale component that is uncorrelated with
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shocks to its transitory component.

We demonstrate that returns on local currency bonds do not span FX depreciation

rates. We do so in our sample of five countries (Australia, Germany, Japan, UK, and

USA). We regress FX returns on bond returns, both in levels and in logs. Further,

as a robustness check, we consider samples before and after the Global Financial

Crisis (GFC). The R2 from these regressions are low. Therefore, one cannot use

information in bonds alone to infer the dynamics of depreciation rates. Moreover,

we can conclude that there must be shocks that impact depreciation rates that do

not impact bonds.

Using this evidence, we build an international term structure model that simultane-

ously fits yields and depreciation rates. We take the perspective of a domestic (U.S.)

investor who buys domestic and foreign bonds. To value foreign bonds, this investor

discounts future cash flows on foreign bonds converted to domestic currency using

their domestic pricing kernel. As a result, we abandon the AMV approach of esti-

mating foreign and domestic pricing kernels and hoping their ratio equals observed

depreciation rates. Nevertheless our approach allows computing the pricing kernel

denominated in foreign currency via multiplication of the USD pricing kernel and

the depreciation rate.

The domestic pricing kernel in our model is subject to two types of innovations. The

first type impacts both bonds and depreciation rates while the second one impacts

depreciation rates but not bonds. Our interpretation of the latter innovation is

motivated by the literature on the multiplicative decomposition of the pricing kernel

into the martingale and transitory components (Alvarez and Jermann, 2005, Hansen

and Scheinkman, 2009). The element of the martingale component that is orthogonal
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to the transitory component does not affect bond prices (e.g., Mehra and Prescott,

1985). Therefore, we label the additional innovation in our model that impacts

depreciation rates but not bonds (in combination with the convexity term associated

with its exponential) as the purely martingale component of the pricing kernel.

We refer to this model as UFX (FX rates are unspanned by bonds). This model

requires using data on US and foreign bond prices as well as exchange rates to

identify all elements of the pricing kernel. This is in contrast to the approach that

posits that FX is spanned by bonds (which we refer to as the SFX approach). An

SFX model may be estimated with or without data on exchange rates. The latter

is the predominant approach in the literature, and that is what we focus on in our

analysis.

A lot of variations are possible within the affine framework. One could include macro

variables (Brennan and Xia, 2006, Jotikasthira, Le, and Lundblad, 2015), UIP-based

expectations of depreciation rates (Sarno, Schneider, and Wagner, 2012), or stochas-

tic volatility (Anderson, Hammond, and Ramezani, 2010, Brandt and Santa-Clara,

2002). While all of these elements are important, they do not speak directly to our

thesis about unspanned FX. Macroeconomic variables cannot help with spanning FX

because of the macro disconnect puzzle. Expectations of depreciation rates cannot

span depreciation rates themselves. FX volatility is, of course, time-varying and

adding that feature is an obvious extension if one is interested in FX option valu-

ation or other aspects of FX dynamics. But, on its own, it cannot span FX. We

intentionally consider the simplest version of a term structure model that relies on

bond yield principal components as driving variables so that we can highlight the

advocated mechanism.
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We show that both the UFX and SFX models match yields equally well. However,

exchange rates implied by the SFX model are grossly misspecified. Its behavior is

in line with findings reported by previous studies. Thus, the evidence is consistent

with exchange rates that are unspanned by bonds.

In contrast, the UFX model implies realistic exchange rate behavior. The UFX

model matches all the FX moments discussed by B/F/T and, in particular, both

FX anomalies. We also consider evidence about the term structure of cross-sectional

carry risk premiums from Lustig, Stathopolous, and Verdelhan (2019), known as

the slope carry. That carry premiums decline with bonds’ maturity is a natural

complement to the B/F/T facts in the realm of FX-bond interaction. These authors

argue that exchange rates should not feature the martingale component to explain

the evidence. As we argue, such a property would imply the ability of local bonds

to span depreciation rates. The UFX model is capable of matching the slope carry

evidence despite featuring the martingale component in exchange rates.

The SFX model does not allow one to explore how currency risk premiums connect

bond yields and bond risk premiums of different countries because it fails to capture

their joint dynamics. We use the UFX model to interpret the differences between

international yield curves. We decompose news about the currency risk premium at

a given horizon into news about the expected future path of the depreciation rate

and the cross-country bond yield differential. The latter contributes very little at

short horizons with the contribution growing to about 50% at long horizons.

In our results, the quantitative impact of the purely martingale component is large.

The innovations contribute 89 to 96 percent of the variation of depreciation rates, de-

pending on the specific currency. The maximal Sharpe ratio associated with market
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prices of these innovations averages 0.3 on the monthly scale.

The flip side of using bonds to infer pricing kernels is an asset-pricing exercise in val-

uation of international bonds. We show that the differences in domestic and foreign

bonds must be related to depreciation rates. Specifically, cross-country differences

between yields reflect expected future depreciation rates and the associated currency

risk premiums. Further, cross-country differences between bond risk premiums reflect

currency risk premiums.

The main lesson from our empirical study is that it is important to model a purely

martingale component of a pricing kernel to capture FX dynamics. The presence

of such a component suggests that a rich collection of international bonds does not

span exchange rates. Following the literature on the FX macro disconnect, we refer

to this finding as the FX bond disconnect. This lack of bond spanning should be a

starting point for any equilibrium joint model of exchange rates and bond returns.

2 Background motivation

In this section we introduce definitions and notation used throughout the paper.

After introducing these concepts, we revisit existing developments in the literature.
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2.1 Bonds and currencies

Suppose Mt,t+n is an n-period pricing kernel expressed in USD. Then the USD-

denominated value of any zero-coupon bond of maturity n is

P n
t = Et(Mt,t+n ·Gt,t+n),

where Gt,t+n is the cash flow growth between time t and t+n. If the bond is issued in

USD, then Gt,t+n = 1; we denote its price by Qn
t and its yield is ynt = −n−1 logQn

t ≡

−n−1qnt . If the bond is issued in foreign currency, then Gt,t+n = St+n/St with St

representing the nominal value of one unit of foreign currency in USD; its log is

st = logSt. We denote the foreign bond price by Q∗nt and its yield is y∗nt . We use

∆ to denote the time-series difference operator, e.g., ∆st+1 = st+1 − st, and ∆c to

denote the US - other country difference operator, e.g., ∆cy
∗n
t = ynt − y∗nt .

2.2 Pricing kernels and currencies

Following B/F/T, we use affine no-arbitrage term structure models as a tool for in-

vestigating the relationship between bonds and currencies. A long-standing tradition

in this literature is to specify dynamics of the pricing kernel Mt,t+n expressed in USD

and that same kernel expressed in foreign currency, M∗
t,t+n. The latter implies a value

of a foreign-currency-denominated foreign-issued bond

Q∗nt = Et

(
M∗

t,t+n

)
.
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Next, researchers infer the depreciation rate via the ratio of the estimated pricing

kernels

St+1

St

=
M∗

t,t+1

Mt,t+1

. (1)

Examples include, but are not limited to, Ahn (2004); Backus, Foresi, and Telmer

(2001); Brennan and Xia (2006); Dahlquist and Hasseltoft (2013); Jotikasthira, Le,

and Lundblad (2015); Kaminska, Meldrum, and Smith (2013); Sarno, Schneider, and

Wagner (2012).

Most papers report that the depreciation rates imputed from the ratio of estimated

pricing kernels (1) do not resemble the observed depreciation rates. Most promi-

nently, researchers document the volatility anomaly and the inability to match the

forward premium puzzle. These results might simply manifest a model misspecifi-

cation. However, the inherent empirical flexibility of affine models and the sophisti-

cation of the authors involved suggest to us that bonds on their own do not possess

the information needed to capture the behavior of exchange rates.

2.3 Complete markets and spanning

In this paper we argue that, in order to understand the described empirical evidence,

one needs to explicitly account for local bonds’ inability to span exchange rates. The

difference between market completeness and this lack of spanning plays an important

role in this paper. Thus, we define them here to clarify the distinction between the

two.
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2.3.1 Market completeness and the AMV

A market is complete if one can trade the full set of Arrow-Debreu securities, or has

access to assets which can replicate these securities. This concept is pertinent for the

justification of the relationship (1). As B/F/T discuss in detail, no-arbitrage implies

that pricing kernels satisfy:

Et

(
M∗

t,t+1 ·R∗t+1

)
= Et

(
Mt,t+1 ·

St+1

St

·R∗t+1

)
, (2)

where R∗t+1 is a foreign-currency denominated gross return on an asset. This relation

holds if a pair of domestic and foreign pricing kernels satisfies equation (1). If markets

are complete this pair is unique. Empirical implementation of this relation usually

relies on the market completeness argument to justify taking the ratio of the two

estimated pricing kernels, a.k.a. the AMV. Implicitly such an approach requires that

the estimated pricing kernels match the true pricing kernels up to estimation noise.

Put differently, bonds span exchange rates.

Here we connect to the literature that recognizes that financial markets are likely to

be incomplete (e.g., Brennan and Xia, 2006, Sarno, Schneider, and Wagner, 2012).

These authors argue that the AMV still holds if one instead considers minimum

variance pricing kernels. This argument tries to tether a model-free line of reasoning

that goes back to Hansen and Jagannathan (1991); Hansen and Richard (1987) to

affine models. It fails in two dimensions.

First, the authors continue to estimate affine term structure models in which bonds

span depreciation rates. In terms of actual implementation, their approach is es-

sentially the same as B/F/T and Bansal (1997) and it is indistinguishable from the
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AMV approach. Second, Burnside and Graveline (2019) and Sandulescu, Trojani,

and Vedolin (2018) show that minimum variance pricing kernels do not allow the

ratio of pricing kernels to reproduce the FX rate, despite the previous claim that

they do.

Sandulescu, Trojani, and Vedolin (2018) establish that if one minimizes the pricing

kernel’s entropy (variance of the log pricing kernel in conditionally log normal mod-

els), then the ratio of the two pricing kernels recovers the exchange rate correctly

even if markets are incomplete. Specifically, they project the USD pricing kernel on

returns of both the U.S. and foreign assets. Their approach requires conversion of

foreign returns into USD returns by using the observed exchange rate. Thus, the ap-

proach relies on exchange rate data as one of the inputs. The model that we advocate

in the sequel, UFX, requires exchange rate data as an input to estimation as well.

We estimate the log pricing kernel whose variance is the smallest out of all pricing

kernels that match bond prices, similar to the entropy-based approach. The pri-

mary difference is that empirical implementation of the model-free projection-based

view typically produces estimates of pricing kernels that price assets correctly only

on average. Thus, this approach is not helpful to researchers who are interested in

estimation of joint bond and FX dynamics.

2.3.2 Spanning regressions

Our thesis is that returns on local currency bonds do not span FX rates. As a result

this feature has to be accommodated in a model. One can think of regressing returns

(payoffs with prices equal to 1) of an asset of interest on returns (payoffs) of another

set of assets. An R2 < 1 implies that the former asset is unspanned by the latter.
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That is what we do next in the context of local bonds spanning exchange rates.

To realize a return on an exchange rate, one must convert domestic currency into

foreign currency, purchase a foreign (riskless) bond, sell it at a later date and then

convert the proceeds back to the domestic currency. In order to avoid exposure to

interest rate risk, this has to be a buy-and-hold strategy: RFX
t+1 = St+1/St×1/Q∗1t . A

return on a domestic n-period bond is Rn
t+1 = Qn−1

t+1 /Q
n
t . Thus, one can regress RFX

t+1

on a set of bond returns Rn
t+1 for a variety of horizons n.

It is tempting to take returns on foreign bonds, R∗nt+1 = Q∗,n−1
t+1 /Q∗nt , convert them to

USD returns, St+1/St×R∗nt+1, and add them on the right-hand side of the regression.

But that would correspond to using exchange rates to span themselves. Thus, to

check if the exchange rate is spanned by foreign bonds, one must take the perspective

of a foreign-currency investor: R∗,FX
t+1 = St/St+1×1/Q∗1t , and regress these on foreign

bond returns R∗nt+1.

We work with monthly data from the US, UK, Australia, Japan, and Germany/Eurozone

from January 1983 to April 2019 making for T = 436 observations per country. All

data is aligned to the end of the month.

US government yields are downloaded from the Federal Reserve and are constructed

by Gurkaynak, Sack, and Wright (2007). All foreign government zero-coupon yields

with maturities 12, 24, 36, 48, 60, 84 and 120 months are downloaded from their re-

spective central banks or government divisions (Federal Reserve, Bank of England,

Japanese Ministry of Finance, Bundesbank, and the Reserve Bank of Australia).

That government bond yields are reliably available for maturities of one year and

above is a typical issue in international finance. Thus, we follow a long tradition
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in the literature, and compute 1-month foreign interest rates by adding forward

premiums to the US one-month yields (e.g., Dahlquist and Hasseltoft, 2016). One-

period forward nominal exchange rates used for this computation are obtained from

Datastream. US yields are from CRSP.1

The corresponding nominal exchange rates are from Datastream. Prior to the in-

troduction of the Euro, we use the German Deutschemark and splice these series

together beginning in 1999. Prior to 1987, only the 60 and 120 month yields are

available for Australia. Prior to August 1986, the 120 month yield is missing for

Japan.

One practical problem with these regressions is that we do not have data on bonds

with maturities that are one month apart to compute monthly returns. Thus, the

regression could be implemented at an annual frequency only. We regress RFX
t+12 on

Rn
t+12, n = 24, 36, 48, 60, . . . , 120. The R2, regular and adjusted, from these regres-

sions are reported in the top panel of Table 1, in the column labeled “$ returns.”

The amount of variation in currency returns that can be hedged with bonds is quite

modest, ranging between 15% for the British pound and 34% for the Japanese yen.

The column labeled “FC returns” (FC stands for foreign currency) in the Table

reports the R2 from this regression, which are of a similar magnitude as the USD-

denominated returns. This evidence establishes that bonds are unable to span the

space of currency payoffs.

That one can use only assets traded in a given country for replicating the corre-

sponding FX rate suggests why the documented lack of spanning is a natural result.

1This approach ignores the cross-currency Treasury basis which reflects the relative convenience
yield (Jiang, Krishanmurthy, and Lustig, 2018). It is difficult to assess the quantitative effect of
this omission in our case because these authors study the 12-month horizon due to the same data
availability issues.
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In fact, it would be unusual if one would be able to trade bonds of a given country

in such a way that they trace out its FX rate. This point does not have to be about

bonds alone. While clearly outside of the focus of this paper, we illustrate this by

complementing the bond returns with MSCI stock index returns of the corresponding

countries in the last two columns of Table 1. The resulting R2 are similar to the ones

without equities. The main asset classes are only weakly related to exchange rates.2

In order to better connect the evidence to affine models that we advocate in the

paper, we also estimate the same regressions for log returns. We report the results

in the bottom panel of Table 1. The evidence is very similar to that of gross returns.

Lastly, an important concern arising in the post Global Financial Crisis (GFC) world

is whether bonds’ inability to span exchange rates was affected by dramatic policy

changes, which in particular led to near-zero interest rates throughout the world.

To address this issue head-on we repeat the same regressions (gross returns only for

brevity) in the pre- and post-GFC subsamples. Table 2 reports the results. We leave

out the GFC itself by omitting the entire year of 2008.

Quantitatively, we observe an increase in the adjusted R2 in both pre- and post-

GFC periods as compared to the full sample. This is a manifestation of a structural

change in the covariance structure of exchange rates and bond returns. Comparing

the R2 across the two subsamples, the post-GFC one features generally higher values,

especially from the perspective of foreign currency returns. The largest values are for

the Euro and British pound, which are close to 50%. Adding equity returns, increases

the R2 further, although not uniformly. For instance, FC returns for the Euro and

2One can think of more creative equity portfolios that could have a stronger relation to exchange
rates, e.g., global firms, or commodity-intensive industries. Going down this path would lead to an
investigation of market completeness, which is not the point of our paper. Our objective here is to
illustrate that it is natural that some “typical” assets have low correlation with exchange rates.
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British pound are not affected, while the Japanese nearly double. Qualitatively, the

evidence tells us the same story as the full sample: bonds cannot span exchange

rates. We discuss below how to extend our advocated model to accommodate ultra-

low interest rates and the zero lower bound.

These results imply that models whose innovations to bond returns also span depre-

ciation rates will not be able to fit the two types of assets jointly. In the next section

we advocate a modeling approach that breaks bond spanning.

3 Breaking the spanning of exchange rates with

bonds

We first present a model that possesses features that are sufficient to achieve lack

of spanning of exchange rates with bonds. Subsequently, we discuss the model’s

interpretation and possible extensions.

3.1 Model

We assume the N -dimensional state xt follows a VAR(1):

xt = µx + Φxxt−1 + Σxεt εt ∼ N (0, I) , (3)

It is important for the subsequent analysis that, under the null, the dimension N

captures dynamics of all yields in their entirety. No other additional state variable
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helps improve the description of yields. The U.S. short interest rate is:

it = δ0 + δ>x xt. (4)

We model the dynamics of the pricing kernel expressed in USD as

− logMt,t+1 = it +
1

2
λ>t λt +

1

2
γ>t γt + λ>t εt+1 + γ>t ηt+1, (5)

where λt are market prices of risk associated with shocks εt and γt is the market

price of risk of the additional K-dimensional vector of shocks ηt+1 that are in the

pricing kernel.

The shocks ηt+1 are central to breaking the spanning of depreciation rates with

bonds in the model. First, they capture priced risks to which bonds are not exposed.

Therefore, without loss of generality, we assume that ηt+1 is independent of the vector

εt+1. Second, since the short interest rate it is not exposed to ηt, USD-denominated

credit-risk free bond yields will not be affected by the shock.

Indeed, the prices of U.S. zero-coupon bonds with maturity n are given by the stan-

dard pricing condition

Qn
t = Et

(
Mt,t+1 ·Qn−1

t+1

)
.

Assuming market prices of ε-risk to be

λt = λ0 + λxxt, (6)
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US yields are linear functions of the factors xt only

ynt = an + b>n,xxt.

Expressions for the bond loadings can be found in Appendix A.1.

Third, bonds’ inability to span depreciation rates is achieved by allowing the extra

risk ηt+1 to affect the latter. The K-dimensional vector of depreciation rates has

dynamics

∆st+1 = µs + Φsxxt + Σsxεt+1 + Σsηt+1. (7)

where we assume the dimension of the shock ηt equals the number of foreign coun-

tries in our sample. This is an oversimplification. One could explore multiple shocks

per country, or, alternatively, impose some structure, e.g., common versus country-

specific shocks. Our dataset with four foreign countries is not rich enough to dis-

tinguish between all these possibilities. The depreciation rate of country i is e>i ∆st,

where ei is a unit vector. In the following, we avoid using country specific labels

to conserve on notation and use ∆st, or St/St−1 in levels, when discussing specific

countries.

We model the depreciation rate as opposed to the log exchange rate as a stationary

variable in line with the large literature that views the log nominal exchange rate

as being close to a unit root process. Anderson, Hammond, and Ramezani (2010)

and Lustig, Stathopolous, and Verdelhan (2019) consider the alternative specification

where the nominal exchange rate is stationary in log-levels. We revisit the importance

of this assumption in light of the evidence on the term structure of currency carry
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risk premiums presented in the latter paper.

In our subsequent empirical work, we stay in the Gaussian framework and assume

ηt ∼ N (0, I) and the market price of η-risk is

γt = γ0 + γxxt (8)

Then, equation (2) implies that the prices of zero-coupon foreign currency bonds

with maturity n are given by

Q∗nt = Et

(
Mt,t+1 ·

St+1

St

·Q∗n−1
t+1

)
. (9)

As a result, foreign yields are linear functions of the factors

y∗nt = a∗n + b∗>n,xxt.

where the bond loadings can be found in Appendix A.2. Thus, foreign credit-risk

free bond yields are not affected by the shock η.

Since domestic and foreign bonds are only functions of xt, the extra innovations

Σsηt in (7) help match the variation in depreciation rates that are not captured by

bonds. Also, because of this extra degree of freedom, the model’s ability to capture

realistic dynamics of the conditional mean of depreciation rates is not sacrificed.

These dynamics are important for matching the forward premium as well as more

recent empirical evidence on portfolios of currencies.
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3.2 Discussion

3.2.1 Interpretation of the pricing kernel shock

This discussion naturally leads to the question of the economic nature of the shocks

η. It is customary in the no-arbitrage literature to select shocks on the basis of assets

that a model should explain. The vast majority of the international bond literature

is an exception to this because of the literature’s attempt to explain depreciation

rates using bonds via the AMV. B/F/T is the prime example of this literature as

they explicitly assume that bond returns span all of the shocks in the pricing kernel.

Otherwise, there is nothing special in adding an extra shock relative to those that

span bonds.

There is one important requirement for the shock: it cannot affect bonds precisely

because bonds cannot span depreciation rates. There is nothing esoteric in such a

requirement from an economic perspective. For example, an i.i.d. shock to con-

sumption growth has a permanent effect on the marginal utility of the representative

agent and does not impact bond prices (e.g., Alvarez and Jermann, 2005, Mehra and

Prescott, 1985). More generally, this shock is related to the martingale component

of the pricing kernel (Hansen and Scheinkman, 2009). We use this parallel to the

equilibrium literature and refer to such shocks, in combination with the convexity

term γ>t γt/2, as the purely martingale component of the pricing kernel. The modifier

“purely” emphasizes the element of the martingale component that is orthogonal to

the transitory component of the pricing kernel.

Our specification is natural in the context of baseline international open-economy

models with an exogenous stream of consumption in each country. For instance,
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the long-run-risk model of Bansal and Shaliastovich (2013) features country-specific

shocks that in equilibrium affect bond returns and pricing kernels. By assuming

complete financial markets, the authors derive the depreciation rate which becomes

a function of both domestic and foreign shocks. Thus, bonds, which are subject

to country-specific shocks only, are not able to span exchange rates. To assess this

point quantitatively, we simulate 100,000 observations from this model economy and

implement regressions of RFX
t+12 on Rn

t+12, and of R∗FX
t+12 on R∗nt+12 n = 12, 24, . . . , 120

that match the first column of Table 1. We have results for the UK only because

that is what Bansal and Shaliastovich (2013) used to estimate the model in their

paper. We find that the R2 and adjusted R2 are 4.54% and 4.53%, respectively.

Thus, bonds cannot span currencies in this model.

Qualitatively, the same results may arise in real business cycle models. In the case of

complete financial markets, e.g., Backus, Kehoe, and Kydland (1994), an exchange

rate can be replicated by the full set of Arrow-Debreu securities. Unless the theo-

retical setting is such that bonds are capable of completing financial markets, one

would expect bonds to be unable to replicate exchange rates.

One strand of the literature argues for incomplete financial markets in order to be

able to understand the empirical evidence on the lack of consumption risk sharing.

In such a setting, depending on the dynamics of output shocks or how relative prices

of imports and exports (terms of trade) react to these shocks, one could obtain a

nearly perfect risk sharing (Baxter and Crucini, 1995, Cole and Obstfield, 1991), or

lack thereof (e.g., Corsetti, Dedola, and Leduc, 2008). The latter result is consistent

with our advocated framework.
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3.2.2 Extensions

Depending on the intended application, the specification can be extended in a number

of ways. For instance, one could contemplate a less restrictive version of the model.

One could allow the depreciation rate in (7) to feedback on itself or enter into the

conditional mean dynamics of xt. In that case, one would need to impose additional

restrictions as in Duffee (2011) to ensure that bond yields do not depend on the

depreciation rate. There is little empirical evidence that depreciation rates predict

themselves or interest rates, so this extension is likely to be more relevant in other

settings. For completeness, we outline these restrictions in Appendix B.1.

Yet another interesting possibility to explore is whether the price of risk γt associated

with the purely martingale component depends on the state of the macroeconomy.

That entails making γt in (8) dependent on macro variables, such as output growth

or economic uncertainty. To ensure that such a dependence is meaningful, that is,

it cannot be spanned by yield factors, additional assumptions as in Joslin, Priebsch,

and Singleton (2014) are needed. Appendix B.2 outlines such a specification.

Lastly, given the split-sample evidence on bond spanning presented earlier, one could

capture the associated non-linearity by explicitly accounting for the zero lower bound

(ZLB) interest rate environment post-GFC. For instance, Feunou, Fontaine, Le, and

Lundblad (2021) build on the approach of Black (1995), Kim and Singleton (2012),

and Xia and Wu (2016) by developing a ZLB extension of a Gaussian model in a

way that allows for tractable estimation. Appendix Appendix B.3 sketches a model

that satisfies the ZLB along these lines.
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3.2.3 Connection to existing work

B/F/T and many authors following them explore so-called square-root, or CIR, state

variables instead of the Gaussian ones used here, that is, making Σx time-varying.

This distinction plays no role here. We are simply looking for models that are

capable of a realistic fit to both domestic and foreign yield curves. Starting from Dai

and Singleton (2000) and many papers following them, the literature has concluded

that Gaussian models are more flexible in capturing yield co-movement and risk

premiums. These models have been a de-facto standard in the literature since then.

A square-root factor can help capture time-varying volatility of interest rates, but,

absent data on interest rate derivatives, it is hard to identify empirically (Bikbov

and Chernov, 2011).

Jotikasthira, Le, and Lundblad (2015) regress depreciation rates on bond yields and

conclude that an additional foreign exchange factor would be required. However,

they do not specify a model with a set of factors or additional innovations that

matches the FX anomalies. Specifically, they never state how the extra factor or

innovation should appear in an affine model.3

Brandt and Santa-Clara (2002) feature equations similar to (3)-(5). However, they

focus on modeling the wedge between the depreciation rate and the ratio of the two

pricing kernels. That approach conflates bonds’ inability to span exchange rates with

market incompleteness. It leads the authors to introduce additional features such

as stochastic volatility of depreciation rates, that is, time-varying Σs, and further

3To clarify, Jotikasthira, Le, and Lundblad (2015) model inflation and output as unspanned
factors in their model. Their reason for doing so is different from ours. They use them to capture
predictability of bond returns with these two macro variables rather than to model realistic FX
dynamics. Inflation and output do not span FX, as evidenced by the FX macro disconnect puzzle.
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shocks in order generate the associated time variation in variance. This structure

requires complicated restrictions to ensure internal consistency (Burnside and Grav-

eline, 2019, section 3.3). The paper does not explain the role of ε and η in the pricing

kernel. “Bond spanning” or any idea like that is not mentioned.

Anderson, Hammond, and Ramezani (2010) do the reverse: they understand that

market incompleteness is not central to the empirical success of modeling bonds and

exchange rates jointly. However, the model they propose does not articulate the role

of breaking bond spanning clearly. As a result, they follow Brandt and Santa-Clara

(2002) by focusing on stochastic volatility of depreciation rates. As we explained

above, while stochastic volatility could be a welcome modeling feature, it is not

needed to generate lack of spanning by bonds in a model.

By modeling the price of all bonds from the perspective of the USD investor, we avoid

using the AMV and do not have to take a stand on whether markets are complete

or incomplete. This is because the valuation relationship (9) applies regardless of

market completeness. We can focus exclusively on building a model without bond

spanning of depreciation rates. We achieve that by introducing an extra vector of

shocks η to the pricing kernel. One can recover FC-denominated pricing kernels from

the USD denominated one and the corresponding depreciation rates. Furthermore, if

markets are complete then such FC-denominated pricing kernels would match foreign

pricing kernels.

That is the point of departure from the exploration of incomplete markets in affine

settings studied by B/F/T and Lustig and Verdelhan (2019). These authors specify

a model of the domestic and foreign pricing kernels, Mt,t+1 and M∗
t,t+1, respectively.

Then they discuss conditions under which markets could be incomplete and how
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many assets are required to span the markets.

4 Results

4.1 Empirical approach

Our model should be able to jointly explain bonds of 8 maturities per each of the 5

countries and the corresponding 4 depreciation rates (versus the USD). Our model

fits into the traditional state-space framework. As pointed out by Joslin, Singleton,

and Zhu (2011), estimation of the model is simplified tremendously if one rotates

the model into a set of observable factors that are assumed to be measured without

error. That is the approach we implement here.

The choice of bond factors is motivated by the basic idea that three PCs explain

almost all variation in the yield curve in a given country (Litterman and Scheinkman,

1991; Duffee, 2011). Next, we follow Sarno, Schneider, and Wagner (2012) and reduce

the number of yield factors per country from three to two. This sacrifices the quality

of fit to yields somewhat in exchange for tractability in a five-country setting. Lastly,

we specify foreign variables as cross-country spreads over their U.S. counterparts,
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defined as U.S. variables minus foreign variables. Specifically, we select xt to be

xt =


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=



1st PC from US bonds

2nd PC from US bonds

1st PC from US vs German bonds

2nd PC from US vs German bonds

1st PC from US vs UK bonds

2nd PC from US vs UK bonds

1st PC from US vs Australian bonds

2nd PC from US vs Australian bonds

1st PC from US vs Japanese bonds

2nd PC from US vs Japanese bonds



. (10)

Our proposed model in Section 3.1 dictates that data on depreciation rates must be

used during estimation. Otherwise, the effect of the purely martingale component is

not econometrically identified. In order to distinguish shocks to the purely martingale

component in Equation (7) from observation errors in a state-space model, we require

the vector of depreciation rates, (∆set ,∆s
£
t ,∆s

A$
t ,∆sUt )>, to be fit perfectly. We refer

to this model as the UFX model (unspanned foreign exchange rates).

We also estimate another model labeled as SFX (spanned foreign exchange rates) to

establish a benchmark. In this model, we set ηt = 0 while keeping the dimension

of xt the same, N = 10. The SFX model does not require depreciation rates for

estimation because, under the null, bond yields contain all the information about

the shocks. While one could add depreciation rates as extra data in estimation, we

choose not to do so. The primary reason is that most of the literature follows the

same approach making it an appropriate benchmark. Another dimension of a typical
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implementation is to specify the domestic and foreign pricing kernels and then infer

the depreciation rate via the AMV. Appendix B.4 connects our version of the bond

spanning model to that approach.

Our estimation strategy has two ingredients. First, for both the UFX and SFX

models, the state xt is observable and is a linear transformation of yields. Since all

the state variables in xt are observable, the free parameters that govern the dynamics

of the state, µx,Φx,ΣxΣ>x , are identifiable directly from the VAR in equation (3).

These parameters therefore require no identifying restrictions.

Second, we follow Joslin, Singleton, and Zhu (2011) and estimate risk premiums by

specifying the risk-adjusted dynamics of the latent state that is rotated from the

observed one so that the risk-adjusted persistence matrix of the latent state x̃t is di-

agonal. This dramatically simplifies identification of the risk-adjusted parameters as

well as estimation. The extension to international yield curves is straightforward be-

cause depreciation rates are akin to macro variables in a single-country setting (e.g.,

Joslin, Priebsch, and Singleton, 2014). The mapping into risk-adjusted parameters

and identifying restrictions are discussed in Appendix C.

In the UFX model, the dynamics of the depreciation rate, µs, Φsx, and Σsx, are

identified directly from their dynamics in (7). In the SFX model, the parameters

pertaining to the depreciation rate dynamics, that is, µs, Φsx, and Σsx are identified

off the foreign yield curve. To see that, set Σs, γ0 and γx to zero in the foreign bond

loadings derived in Appendix A.2.

Given that we are jointly modeling the yield curve of five countries, the number of

state variables is relatively large in order to fit the data. The number of parameters
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is consequently also large, especially for the VAR factor dynamics of the state xt.

Therefore, we impose two sets of overidentifying restrictions on the model.

We start with ex-ante restrictions. We assert that the persistence of the US factors is

not affected by the foreign factors, while the persistence of foreign countries is affected

by their own and US factors (e.g., the persistence of the UK factors is affected by

the UK and US factors, but not by the German, Australian, or Japanese ones).

These restrictions represent a US-centric view of the world, which is consistent with

many international studies. Although we impose fewer restrictions, our approach is

qualitatvely similar to that of Graveline and Joslin (2011).

We also impose ex-post restrictions on the parameters of Σx. We eliminate parame-

ters that are insignificant across multiple countries at a time. Specifically, we treat

each country in a symmetric fashion; a parameter is only restricted to zero in the

persistence or covariance matrices if it can be restricted for all countries.

4.2 Properties of the estimated models

We start by discussing the models’ implications for bond pricing in the first subsec-

tion. The remaining subsections are dedicated to various properties of the estimated

exchange rate dynamics. In particular, we address the B/F/T challenge, quantitative

importance of the unspanned shocks, and properties of the slope carry returns.

4.2.1 Estimates and fit to yields

We report the estimated parameters in Appendix D. Each model, SFX or UFX,

has three groups of parameters pertaining to the VAR(1) dynamics of the state
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xt, dynamics of depreciation rates ∆st, and “valuation”. The last group contains

the diagonal risk-adjusted persistence matrix of the rotated state x̃t and the factor

loadings of interest rates and depreciation rates on that state. As x̃t corresponds

to the latent factor rotation, the interpretation of the respective parameters is not

intuitive. The main takeaway is that the valuation parameters are significant. Also,

most of the VAR(1) parameters are significant.

Insignificant parameters are primarily associated with the properties of the depreci-

ation rates in the UFX model. Our attempts to zero them out one-by-one and do

so symmetrically across all countries led to counter intuitive results. This indicates

the joint significance of these parameters, so we chose not to restrict them during

estimation. Specifically, starting with the innovations η, almost all of the elements

of Σs associated with the purely permanent component are significant. Elements

of Σsx that reflect the effect of shocks to bonds on depreciation rates are primarily

significant for the US shocks; this makes sense given our recursive identification of

shocks that places the US first.

When we move to Φsx, which reflects the conditional expectation of depreciation

rates, the US state variables are significant for AUD and JPY but insignificant oth-

erwise. The remaining parameters that reflect the foreign yield factors ability to

forecast depreciation rates are significant for AUD and JPY and insignificant for

EUR and GBP. Amongst these, the loadings on the cross-country difference in the

first PCs (e.g., x3t = ∆cpc
1,e
t , x5t = ∆cpc

1,£
t , x7t = ∆cpc

1,A$
t , x9t = ∆cpc

1,U
t ) are of

particular interest. These state variables are approximately equal to short interest

rate differentials ∆cy
∗1
t and, thus, connect to the UIP regressions. All four of them

are negative and significantly different from 1 consistent with UIP violations. Alter-

natively, one can relate their values to predictability of currency excess returns by
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subtracting 1. That version of the parameters is significantly less than zero for all

four depreciation rates.

In contrast, many parameters comprising Φsx in the SFX model are significant. With-

out FX data, these parameters are identified off the foreign yield curve only. They

essentially act as extra valuation parameters by expressing the pricing kernel in units

of foreign currency. This happens without the discipline of matching exchange rates

that are controlled by the same parameters. Thus, significance arises from the lack

of this tension and the fit to a rich collection of foreign bonds.

We report the fit to yields along two dimensions. First, Table 3 displays pricing errors.

Second, Table 4 compares the key moments of yields (mean, standard deviations,

serial correlation) in the data and in the model. The overall message from this set of

Tables is that both the SFX and UFX models fit the given collection of domestic and

foreign yields similarly in terms of small errors, similar values of summary statistics,

and values of estimated parameters that are related to yields.

4.2.2 Backus, Foresi, and Telmer

The results of B/F/T represent a challenge to affine no-arbitrage models. It appears

to be difficult to replicate a certain set of stylized facts about interest rates and

exchange rates simultaneously. They propose a model that succeeds in matching

some of the properties of FX and yet generates unrealistic yield curves. Indeed,

B/F/T state: “The implied yield curve ... is hump shaped with long yields reaching

as high as 80 percent per annum.” We revisit their analysis in the context of our

models.
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Table 5 replicates Table I of B/F/T in our sample and complements it by displaying

model implications for the same set of facts. Both models do well in replicating facts

about interest rates. This is not surprising given their similar fit to yields discussed

earlier.

The differences in FX implications are drastic. While the UFX model matches the

depreciation rate by construction, we need to infer them in the case of the SFX

model. Given the estimated innovations to the yield factors xt and depreciation

rate parameters identified off foreign yield curves, we use Equation (7) to infer esti-

mated realizations of depreciation rates. Figure 1 displays the inferred and observed

depreciation rate. They are clearly different in terms of their scale and dynamic

patterns.

According to Table 5, the inferred depreciation rate is 4 to 6 times more volatile in

the SFX model than in the data, and the mean could be greater by two orders of

magnitude (GBP or AUD), or have the wrong sign (JPY). The SFX model is nowhere

close to the results of UIP regressions with positive and large slope coefficients. One

way to interpret the SFX results is that bonds do not span FX rates, so it is incorrect

to set the shock η to the purely martingale component to zero. Indeed, the UFX

model replicates all of these moments perfectly, by construction. It does so without

any sacrifice of the fit to yields, as discussed earlier.

To clarify, while the B/F/T methodology is close to the SFX model, it is not iden-

tical. B/F/T construct their model to match the UIP violations and the volatility

of the depreciation rate. Thus, they use information about depreciation rates, but

not about their joint dynamics with yields. That is why they can match some basic

facts about currencies, but the resulting model cannot match yields. This is a man-
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ifestation of unspanned currencies. The only way for B/F/T to succeed empirically

is to incorporate this lack of spanning into their model of exchange rates.

4.2.3 Variance decomposition and risk premiums

Moving beyond the baseline summary statistics highlighted by B/F/T, we investigate

the quantitative importance of the unspanned shock η for variation in yields and

depreciation rates. Further, we study the impact of prices of risk associated with

this shock.

As our model nicely fits into the VAR framework, we can use a variance decom-

position to quantify the impact of various innovations on both yield factors and

depreciation rates. To minimize the impact of the order of variables that is required

for such a decomposition, we organize innovations into 3 groups: US yields, non-US

(foreign) yields, and depreciation rates. Table 6 presents the results.

The first two rows demonstrate the impact of the innovations ε and η on the US

yield factors, x1t and x2t. By assumption, these factors are autonomous, so 100% of

the variation is explained by the US innovations. The next eight rows display the

impact on foreign yield factors. By construction, η has no impact on these either.

US innovations have a large contribution to these factors (partially because the US

is ordered first): the smallest impact of 55% is for x8t = ∆cpc
2,A$
t and the largest

impact of 92% is for x5t = ∆cpc
1,£
t .

Moving on to the impact on the depreciation rates, which are ordered last, the

smallest impact from the unspanned shock η is 89% for JPY. Thus, the shocks η are

exceptionally important for capturing the risk of depreciation rates.

30



Does that translate into importance of risk premiums? Because η is orthogonal

to ε, we can decompose the maximal Sharpe ratio (MSR) implied by our model

(conditional volatility of the pricing kernel) into the contributions emanating from

pricing the two types of shocks,
√
λ>t λt and

√
γ>t γt, respectively. Figure 2 displays

the time series of these MSRs.

The MSR associated with bond risks is consistent with the evidence reported else-

where: the average is 0.78 with values ranging between 0.32 and 2.40. Overall, we

observe a downward trend with elevated levels post-2008 and in the latter part of

our sample. The MSR associated with exclusively currency risks averages 0.33. It is

more stable than the bond MSR and significantly different from zero. It is statisti-

cally significantly lower than the bond MSR in the early part of the sample. Starting

in the mid 1990s, the two are much closer to each other and their confidence bands

often overlap. Thus, economically, the prices of risk associated with η are important.

Earlier, we demonstrated in split samples that bonds cannot span depreciation rates

in both the pre- and post-GFC environment. Figure 2 suggests that the prices of

risk from spanned and unspanned shocks became more closely aligned, although the

alignment started pre-GFC in 2005. Furthermore, we observe statistically significant

and economically large departures between the two in the immediate aftermath of

2008 and at the end of our sample.

4.2.4 The term structure of carry risk premiums

Lustig, Stathopolous, and Verdelhan (2019) establish a new property of depreciation

rates that extends the B/F/T challenge about the FX-bond interaction. Specifi-

cally, they implement the cross-sectional carry one-month trading strategy replacing
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the traditional borrowing and lending that uses the one-month bond with bonds at

longer maturities. Thus, the strategy is exposed to both FX and interest rate risks.

Next, the authors achieve cross-sectional dispersion in returns by sorting currencies

according to the slope of their domestic bond term structure; this strategy is known

as the slope carry. This adds another maturity element to the approach. Lustig,

Stathopolous, and Verdelhan (2019) demonstrate that cross-sectional carry returns

decline with the maturity of the bonds used in the trading strategy.

We follow the same steps to establish the evidence in our sample. Our data set has a

more limited cross-section of maturities (10 years versus 15 years). We use the slope

as the sorting variable, defined as the difference between the 120-month and 12-

month yields. The red dashed line and 95% confidence bands in Figure 3 display our

estimates. It is qualitatively similar to Lustig, Stathopolous, and Verdelhan (2019)

both in terms of point values and with substantive statistical uncertainty around

them. Note that the dashed lines and the associated confidence bands are the same

in both panels (A) and (B) of the Figure. They look different because of the scale.

Next, we construct the estimate from the UFX and SFX models. Specifically, we

generate 25000 random simulated samples of length T = 436 from each model. For

each sample, we implement the LSV cross-sectional sort to produce time-series of

carry trades, by maturity. We compare the red dashed line to the average results

across the 25000 samples from these Monte Carlo simulations (blue solid line). Also,

we display the uncertainty bands of these results across the samples by plotting the

the 2.5th and 97.5th percentiles.

The UFX model matches both the sample average and statistical uncertainty. That is

not the case for the SFX model, as the 2.5th percentile from the data barely touches
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the 97.5th percentile from the model. The SFX-implied average returns deviate from

the data by orders of magnitude, consistent with the B/F/T evidence of the previous

section.

As the slope carry strategy is exposed to both yield and exchange rate fluctuations,

a model’s success in matching this pattern is contingent upon successfully capturing

the joint distribution of these assets. We’ve demonstrated that the UFX model does

a good job in this respect, and, while matching the new pattern is not necessarily

guaranteed, this result is to be expected. In contrast, the SFX model does not

capture the dynamics of depreciation rates, so its failure to capture the slope carry

trade is not surprising.

A subtle point here is that if the average slope carry return is literally zero when using

consol bonds as a source of funding, then the corresponding nominal exchange rate

must be stationary (Backus, Boyarchenko, and Chernov, 2018, Lustig, Stathopolous,

and Verdelhan, 2019). A stationary exchange rate does not have a martingale com-

ponent at all (martingale components of the USD- and FC-denominated pricing

kernel are identical). As we discussed throughout the paper, this property implies

counterfactually that local bond returns can span depreciation rates.

So how is it possible that our model can replicate the evidence on the slope carry?

In finite samples with finite maturities, it is difficult to discern if that return is zero

indeed. In our sample where the longest maturity is 120 months, the average slope

carry returns are significantly different from zero. In the Lustig, Stathopolous, and

Verdelhan (2019) sample these returns cross zero at about 140 months and continue

declining for longer maturities, but they are insignificant at any horizon. The issue

is similar to testing a unit root versus the alternative of a highly persistent process,
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because in finite samples such processes behave similarly.

5 International yields and risk premiums

In this section we highlight implications of our analysis for international yield curve

modeling. Our results suggest that if one were interested in fitting yields only, the

SFX model would be sufficient for that task. However, even a modest departure

from this objective would render SFX-based analysis incomplete. This conclusion

arises from relationships shared by international bonds and exchange rates. We first

describe this relationship. Next, we provide examples of applications of yield-curve

modeling that extend beyond matching yields.

5.1 Relation between bonds and currencies

Equation (2) combined with conditional log-normality implies

q∗nt = logEt

(
e
∑n

i=1 mt+i−1,t+i+∆st+i

)
= qnt + Et

(
n∑

i=1

∆st+i

)
+

1

2
vart

(
n∑

i=1

∆st+i

)
+ covt

(
n∑

i=1

mt+i−1,t+i,
n∑

i=1

∆st+i

)
.

After multiplying both sides by −n−1, we get the interest rate differential:

∆cy
∗n
t = esnt − srpnt + vsnt . (11)

Here esnt ≡ n−1Et (
∑n

i=1 ∆st+i) is the average expected depreciation rate, and

srpnt ≡ −n−1covt (
∑n

i=1 mt+i−1,t+i,
∑n

i=1 ∆st+i) is the (ex-ante) currency “risk pre-
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mium.” We use the quotation marks because srpnt does not reflect the convexity term

vsnt ≡ (2n)−1vart (
∑n

i=1 ∆st+i). The currency risk premium measures the additional

compensation that an investor in foreign bonds requires in order to be exposed to

future shocks to the exchange rate.

Also, there is a simple currency-related connection between the excess returns on

bonds from different countries. The USD bond one-period excess returns, in logs,

are:

rxnt+1 ≡ qn−1
t+1 − qnt + q1

t = −(n− 1)yn−1
t+1 + nynt − y1

t (12)

with a similar expression for the foreign currency, rx∗nt+1. Note that the reference rate

for foreign excess returns is the short rate of the respective country, y∗1t . Therefore,

rx∗nt+1 does not depend on the currency of that country. In logs, this is equivalent

to using the US short rate y1
t as a reference irrespective of the country and then

constructing currency-hedged bond returns.

Combining equations (12) and (11) we get:

∆crx
∗n
t+1 = (n− 1) · srpn−1

t+1 − n · srpnt + srp1
t (13)

− (n− 1) · vsn−1
t+1 + n · vsnt − vs1

t

− unt+1 + u1
t+1,

where, for a given horizon j, ujt+1 = Et+1

(∑j
i=1 ∆st+i

)
− Et

(∑j
i=1 ∆st+i

)
– is

the surprise in expectations of the depreciation rate. Therefore, ignoring convexity,

differences in expected log excess returns are driven by the differences in currency

risk premiums across different horizons.
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5.2 Applications of yield-curve modeling

Equations (11) and (13) demonstrate that researchers studying bond yields and bond

risk premiums in the international context might be able to explain their properties

by connecting them to currency risk premiums. The issue is that, while it would be

natural to think that factors driving one type of risk premium should show up as

factors driving the other, that is not the case because exchange rates are unspanned

by bonds. There is at least one innovation that affects currency risk premiums but

does not appear in bond risk premiums.

Therefore, the observed differences between bond yields or risk premiums, on their

own, do not allow a researcher to identify the currency risk premiums, srpnt , even if

the variance of the depreciation rate is constant. In the case of the yield differential,

the premium is “contaminated” by the expected depreciation rate. In the case of

the bond premium differential, the premium is affected by the different timing and

horizons. One needs an explicit model of the depreciation rate that accounts for the

lack of spanning to disentangle the currency premium and other components.

The UFX model helps because it implies a realistic measure of srpnt by directly

capturing the joint behavior of depreciation rates and prices of risk. We illustrate

this in two different applications. First, we show that one would not be able to

obtain the same result in an affine model that does not feature unspanned exchange

rates, that is, in the SFX model. Second, we demonstrate that evidence about srpnt

is useful for thinking about equilibrium models.

In the first application we ask whether it is still possible to decompose the yield

differential, ∆cy
∗n
t , into the currency risk premium and expected depreciation rate
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using the SFX model. As we have shown, the only way to use the SFX model itself

is to use the AMV to infer an implicit depreciation rate and the corresponding risk

premiums. That approach leads to a grossly misspecified depreciation rate (and non-

nonsensical results for the decomposition of ∆cy
∗n
t ). To give the model the benefit of

the doubt, an alternative approach would be to stick with the SFX implications for

the joint distribution of innovations in yields and depreciation rates, but replace the

SFX implications for srpnt with an established approach. We illustrate this strategy

using the UIP regression to infer currency risk premiums.

In the second application, we implement this decomposition inside of an equilibrium

model. This allows us to check whether that particular aspect of the relationship

between cross-country differences in yields and currency risk premiums is captured

by a structural model.

5.3 Decomposition of cross-country differences in yields

We start with equation (11) and, following Campbell (1991), define news, at horizon

n, about differences in yields, the expected depreciation rate, and currency risk

premium

Nn
∆y,t ≡ ∆cy

∗n
t − Et−1 (∆cy

∗n
t ) ,

Nn
s,t ≡ esnt − Et−1 (esnt ) ,

Nn
srp,t ≡ srpnt − Et−1 (srpnt ) .
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Then, equation (11) implies

Nn
∆y,t = Nn

s,t −Nn
srp,t, (14)

var(Nn
∆y,t) = var(Nn

s,t) + var(Nn
srp,t)− 2cov(Nn

s,t, N
n
srp,t).

Thus, one can quantify the role of each component in the variation of the interest

rate differential.

The same news components are affecting the decomposition of cross-country differ-

ences in bond risk premiums in equation (13). The difference in premiums can be

re-written in terms of yields:

∆crx
∗n
t = −(n− 1)∆cy

∗n−1
t + n∆cy

∗n
t−1 −∆cy

∗1
t−1.

Thus, news about the difference can be expressed in term of news about yields:

Nn
∆rx,t = ∆crx

∗n
t − Et−1 (∆crx

∗n
t ) = −(n− 1)Nn−1

∆y,t.

In the sequel, we use the different approaches to estimate srpnt and the correspond-

ing news to construct the news decomposition. Anticipating the results, note that

var(Nn
∆y,t) would be much smaller than any of the components on the right hand

side simply because interest rates are, overall, much less variable than depreciation

rates. So, for instance, reporting var(Nn
s,t) as a percentage of var(Nn

∆y,t) is not that

informative.
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Thus, we turn equation (14) around and work with:

Nn
srp,t = Nn

s,t −Nn
∆y,t.

The corresponding equation for variances is:

var(Nn
srp,t) = var(Nn

s,t) + var(Nn
∆y,t)− 2cov(Nn

s,t, N
n
∆y,t). (15)

5.4 Decomposition results

To conserve space, we report our results for the British pound only in Figure 4.

Results for other currencies are qualitatively similar and available in Appendix E.

We start with the UFX model, as a realistic benchmark. Given that the model is

essentially a VAR, we compute the decomposition in equation (15) directly from

the model. Conveniently, the covariance term is close to zero. That is not surprising

given the overall theme of a weak relationship between depreciation rates and interest

rates.

When n = 1 news about the cross-country yield differential has a very small contri-

bution to the news about the currency premium, which is intuitive. As the horizon

grows, the share of news about the cross-country yield differential starts growing

and reaches about 50% at the 2-year horizon. The relative importance of the two

components equalizes at around 40 months. The news about the differences in yields

dominate after that.

Next, as discussed above, we combine the SFX model with the UIP regression. The

latter is used to establish a basic measure of currency risk premiums that is popular in
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the literature without taking a stand on spanning of currencies with bonds. Jointly,

they form a restricted VAR. Thus, again, we can use standard techniques to construct

news.

The difference between the two approaches is striking. First, the contribution of both

est and ∆cy
∗n
t is greater than 100% at horizons below 15 months. That coincides with

a positive covariance between the two components of the currency risk premiums.

Second, even at longer horizons the pattern is qualitatively different from that of the

UFX model. In the SFX model, the contribution of ∆cy
∗n
t is declining with horizon

and it always stays above that of est.

Finally, we implement the same decomposition using the long-run-risk model of

Bansal and Shaliastovich (2013). We have demonstrated that bonds cannot span

exchange rates in this model, so it would be interesting to check how that relates to

the decomposition of the currency risk premium. We use the formulas and estimated

parameters reported by the authors to describe the joint evolution of exchange rates,

yields, and state variables. Thus, we again obtain a VAR structure that allows us to

compute the decomposition in equation (15).

Their paper estimates the US/UK model only at a quarterly frequency. We express

quarterly horizons in months to facilitate the comparison with our estimated models.

Finally, the authors report their theoretical UIP regressions in terms of real variables,

while our evidence is based on nominal values. For robustness, we compute the

decompositions from the model of Bansal and Shaliastovich (2013) for both real and

nominal variables.

Both real and nominal economies are qualitatively similar to the results from the

UFX model in that the contribution of ∆cy
∗n
t is small in the short term and increases
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with the horizon. In fact the real economy decomposition looks nearly identical to

UFX. In the nominal case, the contribution of the difference in yields passes 100%

at 60 months. Thus, despite a similar pattern, it misses the mark quantitatively.

6 Conclusion

We model the joint dynamics of international yield curves and exchange rates. In

order to account for the associated risks, we develop a model where some of the

innovations in currency depreciation rates do not affect bond yields. This feature of

the model implies that innovations to bonds do not span exchange rates. To identify

such innovations we combine estimation of yield curves with estimation of exchange

rate dynamics. We find drastic differences in results relative to our benchmark

model in which bonds span exchange rates. Both models fit yields accurately but

the benchmark model implies exchange rates that are grossly incompatible with the

observed data.

Besides capturing realistic behavior of exchange rates, our main model speaks to the

sources of the differences between the US and foreign yield curves, and their respec-

tive bond risk premiums. Both differences are driven by currency risk premiums,

and our model allows a researcher to decompose news about differences in bonds

into news about currency risk premiums and expected depreciation rates. We show

that a model that does not incorporate depreciation rates into estimation attributes

too large of a contribution of news about the cross-country differences in yields to

news about currency risk premiums.
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Figure 1
SFX-implied and observed depreciation rates

(A) Euro (B) British pound
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Notes: We plot the depreciation rates implied by the SFX model (blue, vertical axis left)

against the observed depreciation rates (red, vertical axis right).
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Figure 2
Maximal Sharpe ratios
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Notes: We decompose conditional volatility of the pricing kernel into the components as-

sociated with bond innovations ε,
√
λ>t λt (blue line, Bond MSR), and depreciation rate

innovations η that are unspanned by bonds,
√
γ>t γt (red line, FX MSR). The correspond-

ing 95% confidence bands are depicted in lighter colors.
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Figure 3
Term structure of carry returns

(A) UFX (B) SFX
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Notes: We plot the unconditional average annual return of a cross-sectional carry trade as

a function of maturity of the bonds that are used for borrowing and lending. The trading

strategy uses the slope of the yield curve (120-month yield minus 12-month yield) as the

sorting variable to create cross-sectional dispersion.
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Figure 4
News-based decomposition of currency risk premiums,
British pound

(A) UFX (B) SFX
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Notes: We plot the percentage contribution to news about British pound risk

premiums, according to 1 = var(Nn
s,t)/var(N

n
srp,t) + var(Nn

∆y,t)/var(N
n
srp,t) −

2cov(Nn
s,t, N

n
∆y,t)/var(N

n
srp,t) across the different horizons n. We use three models to

compute the decomposition: UFX, SFX, and real and nominal versions of the Bansal-

Sahalistovich model.

50



Table 1: Spanning regressions of currency returns on bond and equity returns

FX Type of R2 Bond returns Bond and equity returns
$ returns FC returns $ returns FC returns

Gross returns

Euro R2 22.41 16.74 24.57 17.09
R2

adj 20.73 14.93 22.75 15.08
British pound R2 17.27 17.30 22.36 17.41

R2
adj 15.47 15.50 20.47 15.41

Australian dollar R2 21.44 24.45 25.84 26.53
R2

adj 19.50 22.59 23.80 24.52
Japanese yen R2 35.03 5.85 35.11 15.44

R2
adj 33.62 3.58 33.54 13.17

Log returns

Euro R2 17.66 16.92 21.10 17.38
R2

adj 15.87 15.11 19.19 15.38
British pound R2 14.52 16.53 22.66 16.71

R2
adj 12.66 14.71 20.79 14.69

Australian dollar R2 23.02 25.25 27.79 26.99
R2

adj 21.12 23.40 25.81 24.99
Japanese yen R2 27.09 5.43 27.38 12.85

R2
adj 25.50 3.15 25.62 10.50

We report the R2, regular and adjusted, expressed in percent for spanning regressions. We regress
annual currency returns of a given country (obtained by investing in a foreign one-period bond) on
annual bond returns of maturities n = 2, 3, . . . , 10 years expressed in the same units (USD, denoted
$ returns, or foreign currency, denoted FC returns). We also combine bond returns with MSCI
equity index returns in the last two columns.
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Table 2: Spanning regressions of gross currency returns on bond and equity returns
in sub samples

FX Type of R2 Bond returns Bond and equity returns
$ returns FC returns $ returns FC returns

January 1984 to December 2007

Euro R2 31.59 14.74 31.60 16.94
R2

adj 29.38 11.98 29.13 13.94
British pound R2 13.96 16.75 14.47 20.83

R2
adj 11.16 14.05 11.37 17.96

Australian dollar R2 21.09 24.66 21.95 24.67
R2

adj 17.99 21.70 18.53 21.37
Japanese yen R2 38.89 13.81 38.98 13.81

R2
adj 36.91 10.52 36.78 10.15

January 2009 to April 2019

Euro R2 26.91 50.26 39.75 51.84
R2

adj 21.14 46.33 34.41 47.58
British pound R2 29.04 56.88 53.27 56.90

R2
adj 23.44 53.48 49.14 53.08

Australian dollar R2 49.16 47.06 70.01 47.35
R2

adj 45.14 42.88 67.36 42.69
Japanese yen R2 40.68 35.64 40.84 75.62

R2
adj 36.00 30.56 35.60 73.47

We report the R2, regular and adjusted, expressed in percent for spanning regressions. We regress
annual currency returns of a given country (obtained by investing in a foreign one-period bond) on
annual bond returns of maturities n = 2, 3, . . . , 10 years expressed in the same units (USD, denoted
$ returns, or foreign currency, denoted FC returns). We also combine bond returns with MSCI
equity index returns in the last two columns.
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Table 3: Yield pricing errors across countries

SFX UFX
USA GER UK AU JP USA GER UK AU JP

y12
t 0.06 0.11 0.10 0.11 0.11 0.06 0.11 0.10 0.11 0.11
y24
t 0.06 0.08 0.07 0.06 0.06 0.06 0.08 0.07 0.06 0.06
y36
t 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04 0.04
y48
t 0.04 0.02 0.03 0.02 0.03 0.04 0.02 0.03 0.02 0.03
y84
t 0.03 0.05 0.04 0.04 0.06 0.03 0.05 0.04 0.04 0.06

y120
t 0.08 0.09 0.09 0.07 0.08 0.08 0.09 0.08 0.07 0.07

Posterior mean estimates of the yield pricing errors in annualized percentage points for the US,
Australia, Euro, Japan, and UK for both the SFX and UFX model, 100 × [diag(ΣyΣ>y × 12)]1/2.

Here ΣyΣ>y is the covariance matrix of the measurement errors for yields of maturity
n = 12, 24, 36, 48, 84, 120.
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Table 4: Sample moments of observed yields versus model-implied yields

mean st.dev. autocorr

data SFX UFX data SFX UFX data SFX UFX

USA

y12
t 4.094 3.980 3.988 0.871 0.850 0.850 0.993 0.992 0.992
y24
t 4.378 4.286 4.294 0.882 0.844 0.843 0.992 0.992 0.992
y36
t 4.622 4.564 4.567 0.874 0.840 0.839 0.991 0.991 0.991
y48
t 4.836 4.809 4.807 0.860 0.837 0.836 0.990 0.990 0.990
y84
t 5.337 5.376 5.372 0.814 0.830 0.831 0.989 0.989 0.989

y120
t 5.675 5.763 5.764 0.780 0.825 0.823 0.988 0.988 0.988

GER

y∗12
t 3.419 3.192 3.207 0.794 0.775 0.773 0.993 0.992 0.992
y∗24
t 3.610 3.483 3.507 0.799 0.778 0.775 0.992 0.993 0.993
y∗36
t 3.806 3.742 3.760 0.799 0.782 0.780 0.992 0.993 0.993
y∗48
t 3.984 3.970 3.978 0.793 0.784 0.783 0.992 0.992 0.992
y∗84
t 4.399 4.491 4.473 0.759 0.777 0.778 0.991 0.991 0.990

y∗120
t 4.670 4.823 4.796 0.724 0.757 0.762 0.991 0.989 0.989

UK

y∗12
t 5.288 5.159 5.181 1.116 1.094 1.096 0.984 0.985 0.984
y∗24
t 5.393 5.308 5.341 1.081 1.058 1.064 0.992 0.992 0.992
y∗36
t 5.506 5.451 5.480 1.051 1.035 1.041 0.992 0.991 0.991
y∗48
t 5.612 5.586 5.600 1.027 1.018 1.023 0.991 0.991 0.991
y∗84
t 5.854 5.904 5.883 0.973 0.983 0.979 0.990 0.990 0.990

y∗120
t 5.974 6.100 6.050 0.922 0.951 0.939 0.989 0.990 0.990

AU

y∗12
t 5.773 5.613 5.655 0.996 0.974 0.980 0.985 0.985 0.984
y∗24
t 5.845 5.777 5.803 0.964 0.959 0.959 0.986 0.986 0.986
y∗36
t 5.972 5.949 5.963 0.947 0.951 0.948 0.986 0.987 0.987
y∗48
t 6.097 6.010 6.094 0.935 0.943 0.940 0.987 0.987 0.987
y∗84
t 6.356 6.405 6.385 0.912 0.913 0.913 0.988 0.987 0.987

y∗120
t 7.319 7.382 7.359 1.070 1.057 1.067 0.991 0.990 0.990

JP

y∗12
t 1.812 1.537 1.570 0.721 0.706 0.709 0.991 0.986 0.987
y∗24
t 1.874 1.748 1.767 0.703 0.712 0.710 0.990 0.989 0.989
y∗36
t 1.993 1.942 1.950 0.706 0.715 0.710 0.990 0.989 0.990
y∗48
t 2.131 2.124 2.138 0.707 0.714 0.708 0.989 0.989 0.988
y∗84
t 2.520 2.591 2.555 0.709 0.695 0.694 0.989 0.988 0.988

y∗120
t 2.380 2.505 2.453 0.575 0.573 0.573 0.992 0.990 0.991

Sample moments from the yield data vs sample moments of model-implied yields. All yields have
been annualized and multiplied by 100.
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Table 5: Properties of Currency Prices and Interest Rates

Panel A: Summary statistics

mean SFX UFX st.dev. SFX UFX autocorr SFX UFX

∆st
Euro 0.899 -16.502 0.899 10.68 38.61 10.68 0.026 0.152 0.026
British pound -0.595 -19.621 -0.595 10.09 69.00 10.09 0.051 -0.021 0.051
Australian dollar -0.906 -27.959 0.906 11.49 77.23 11.49 0.054 0.018 0.054
Japanese yen 2.052 -7.674 2.052 10.81 46.95 10.81 0.046 -0.083 0.046

Short rates
USA 3.485 3.686 3.680 0.788 0.868 0.863 0.988 0.992 0.992
Germany 2.659 2.842 2.824 0.770 0.781 0.781 0.984 0.992 0.992
UK 4.861 5.000 4.969 1.134 1.160 1.156 0.991 0.994 0.994
Australia 6.142 6.266 6.253 1.182 1.195 1.198 0.981 0.986 0.986
Japan 0.952 1.291 1.193 0.685 0.684 0.675 0.963 0.988 0.983

y1
t − y∗1t

Germany 0.722 0.734 0.746 0.670 0.692 0.688 0.984 0.989 0.989
UK -1.480 -1.420 -1.399 0.628 0.604 0.605 0.974 0.979 0.979
Australia -2.935 -2.878 -2.867 0.762 0.746 0.746 0.959 0.968 0.968
Japan 2.429 2.284 2.380 0.614 0.635 0.637 0.965 0.989 0.986

Panel B: UIP regressions

∆st+1 = a+ b (y1
t − y∗1t ) + εt+1

â SFX UFX b̂ SFX UFX

Euro 0.0011 -0.0195 0.0011 -0.260 6.454 -0.270
(0.0017) (0.0058) (0.0017) (0.973) (3.688) (0.945)

British pound -0.0014 -0.0170 -0.0015 -0.879 -2.582 -0.975
(0.0015) (0.0065) (0.0015) (1.095) (5.457) (1.156)

Australian dollar -0.0020 -0.0066 -0.0022 -0.693 5.186 -0.770
(0.0021) (0.0134) (0.0020) (0.684) (6.066) (0.703)

Japanese yen 0.0044 -0.0003 0.0043 -1.316 -1.545 -1.277
(0.0023) (0.0082) (0.0023) (0.907) (2.895) (0.856)

In panel A we report the sample mean, standard deviation, and autocorrelation of the data.
We compare them to the sample moments from model implied values from the UFX and SFX
models. Depreciation rates, short rates, and interest rate differentials are annualized and multi-
plied by 100. In panel B we compare the UIP regression coeffcients in the data and in the two models.
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Table 6: Variance decompositions: UFX model.

US yields foreign yields FX

x1t 1 0 0
x2t 1 0 0
x3t 0.70 0.30 0
x4t 0.62 0.38 0
x5t 0.44 0.56 0
x6t 0.28 0.72 0
x7t 0.46 0.54 0
x8t 0.34 0.66 0
x9t 0.43 0.57 0
x10t 0.57 0.43 0
∆set 0.08 0.02 0.90
∆s£t 0.03 0.01 0.96
∆sA$

t 0.03 0.01 0.96
∆sUt 0.08 0.03 0.89

The table displays how much variation in each variable is attributable to innovations in US yields,
foreign yields, and depreciation rates. The numbers are obtained using a VAR-based variance
decomposition. We group the yield of the four non-US countries together; the same goes for the
depreciation rates.
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Appendix A Bond prices

Appendix A.1 Domestic bonds in the UFX model

The U.S. short rate is

it = δ0 + δ>x xt

The price of a one month bond is

Q1
t = Et [Mt,t+1] = exp

(
ā1 + b̄>1,xxt

)
which implies initial loadings ā1 = −δ0 and b̄1,x = −δx.

The price of an n-period U.S. bond is

Qnt = Et
[
Mt,t+1Q

n−1
t+1

]
= Et

[
exp

(
−δ0 − δ>x xt −

1

2
λ>t λt −

1

2
γ>t γt − λ>t εt+1 − γ>t ηt+1 + ān−1 + b̄>n−1,xxt+1

)]
= exp

(
ān−1 − δ0 − δ>x xt −

1

2
λ>t λt −

1

2
γ>t γt

)
Et
[
exp

(
−λ>t εt+1 − γ>t ηt+1 + b̄>n−1,x [µx + Φxxt + Σxεt+1]

)]
= exp

(
ān−1 − δ0 − δ>x xt + b̄>n−1,x [µx + Φxxt]− λ>t Σ>x b̄n−1,x +

1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

)
= exp

(
ān−1 − δ0 − δ>x xt + b̄>n−1,x [µx + Φxxt]− (λ0 + λxxt)

>
Σ>x b̄n−1,x +

1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

)
= exp

(
ān + b̄>n,xxt

)
where the loadings are

ān = ān−1 − δ0 + b̄>n−1,x (µx − Σxλ0) +
1

2
b̄>n−1,xΣxΣ>x b̄n−1,x

b̄n,x = (Φx − Σxλx)
>
b̄n−1,x − δx

Domestic yields are yt = an + b>n,xxt with an = −n−1ān and bn,x = −n−1b̄n,x.

Appendix A.2 Foreign bonds in the UFX model

The depreciation rate of country i has dynamics.

∆sit+1 = e>i µs + e>i Φsxxt + e>i Σsxεt+1 + e>i Σsηt+1
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where ei is a unit vector that has a one in location i. In the following, we drop the country specific
subscript. The price of a one month bond is

Q∗1t = Et

[
Mt,t+1

St+1

St

]
= exp

(
−δ0 − δ>x xt −

1

2
λ>t λt −

1

2
γ>t γt + e>i µs + e>i Φsxxt

)
Et

[
exp

([
Σ>sxei − λt

]>
εt+1 +

[
Σ>s ei − γt

]>
ηt+1

)]
= exp

(
−δ0 − δ>x xt −

1

2
λ>t λt −

1

2
γ>t γt + δs,0 + e>i µs + e>i Φsxxt

)
exp

(
1

2

(
Σ>sxei − λt

)> (
Σ>sxei − λt

)
+

1

2

(
Σ>s ei − γt

)> (
Σ>s ei − γt

))
= exp

(
−δ0 − δ>x xt + e>i µs + e>i Φsxxt +

1

2
e>i ΣsxΣ>sxei − λtΣ>sxei +

1

2
e>i ΣsΣ

>
s ei − γ>t Σ>s ei

)
= exp

(
−δ0 − δ>x xt + e>i µs + e>i Φsxxt +

1

2
e>i ΣsxΣ>sxei +

1

2
e>i ΣsΣ

>
s ei

)
exp

(
− (λ0 + λxxt) Σ>sxei − (γ0 + γxxt)

>
Σ>s ei

)
= exp

(
ā∗1 + b̄∗>1,xxt

)
where

ā∗1 = δs,0 − δ0 + e>i (µs − Σsxλ0 − Σsγ0) +
1

2
e>i
(
ΣsxΣ>sx + ΣsΣ

>
s

)
ei

b̄∗1,x = (Φsx − Σsxλx − Σsγx)
>
ei − δx
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Using the same calculations as above, the price of an n-period foreign bond is

Q∗nt = Et

[
Mt,t+1

St+1

St
Q∗,n−1t+1

]
= exp

(
ā∗n−1 − δ>x xt −

1

2
λ>t λt −

1

2
γ>t γt + e>i µs + e>i Φsxxt + b̄∗>n−1,x [µx + Φxxt]

)
Et

[
exp

([
Σ>sxei + Σ>x b̄

∗
n−1,x − λt

]>
εt+1 +

[
Σ>s ei − γt

]>
ηt+1

)]
= exp

(
ā∗n−1 − δ0 − δ>x xt −

1

2
λ>t λt −

1

2
γ>t γt + e>i µs + e>i Φsxxt + b̄∗>n−1,x [µx + Φxxt]

)
exp

(
1

2

(
Σ>sxei + Σx

̂̄bn−1,x − λt)> (Σ>sxei + Σ>x b̄
∗
n−1,x − λt

)
+

1

2

(
Σ>s ei − γt

)> (
Σ>s ei − γt

))
= exp

(
ā∗n−1 − δ0 − δ>x xt + b̄∗>n−1,xµx + e>i µs + b̄∗>n−1,xΦxxt + e>i Φsxxt

)
exp

(
1

2
b̄∗>n−1,xΣxΣ>x b̄

∗
n−1,x + b̄∗>n−1,xΣxΣ>sxei +

1

2
e>i ΣsxΣ>sxei +

1

2
e>i ΣsΣ

>
s ei

)
exp

(
− (λ0 + λxxt) Σ>x b̄

∗
n−1,x − (λ0 + λxxt) Σ>sxei − (γ0 + γxxt)

>
Σ>s ei

)
= exp

(̂̄an + b̄∗>n−1,xxt
)

where the loadings are

ā∗n = ā∗n−1 − δ0 + b̄∗>n−1,x (µx − Σxλ0) + e>i (µs − Σsxλ0 − Σsγ0) +
1

2
b̄∗>n−1,xΣxΣ>x b̄

∗
n−1,x

+b̄∗>n−1,xΣxΣ>sxei +
1

2
e>i
(
ΣsxΣ>sx + ΣsΣ

>
s

)
ei

b̄∗n,x = (Φx − Σxλx)
>
b̄∗n−1,x + (Φsx − Σsxλx − Σsγx)

>
ei − δx

Foreign yields are y∗nt = a∗n + b∗>n,xxt with a∗n = −n−1ā∗n and b∗n,x = −n−1b̄∗n,x.

Appendix B Extensions and alternative specifica-

tions

Appendix B.1 Unspanned factors in Gaussian models

We can consider more general dynamics for the domestic short rate, yield factors xt and depreciation
rates

it = δ0 + δ>x xt + δ>s ∆st

xt = µx + Φxxt−1 + Φxs∆st−1 + Σxεt

∆st = µs + Φsxxt−1 + Φs∆st−1 + Σsxεt + Σsηt
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This model allows lagged values of the depreciation rate to predict itself or the yield factors. In
addition, the market prices of risk can also depend on the depreciation rate.

λt = λ0 + λxxt + λs∆st

γt = γ0 + γxxt + γs∆st

In order for the shock ηt to not influence yields, we need the following restrictions to hold

δs = 0,

λs = Φxs,

γs = Φs.

If these restrictions hold, then foreign and domestic yields are linear functions of only the yield
factors xt and depreciation rates are unspanned meaning that both domestic and foreign yields are
only a function of the yield factors

ynt = an + b>n xt

y∗nt = a∗n + b∗>n xt

The model in the main text is the special case when λs = γs = 0.

Appendix B.2 Spanned and unspanned macro factors

Another model extension is to add a vector of observable macro variables mt to the model. The
short rate, depreciation rate, and dynamics of the factors are

it = δ0 + δ>x xt + δ>f ft + δ>s ∆st

mt = µm + Φmmt−1 + Φmxxt−1 + Φms∆st−1 + Σmεt

xt = µx + Φxmmt−1 + Φxxt−1 + Φxs∆st−1 + Σxmεt + Σxεt

∆st = µs + Φsmmt−1 + Φsxxt−1 + Φs∆st−1 + Σsmεt + Σsxεt + Σsηt

This model allows shocks to macro variables to contemporaneously impact exchange rates and yield
factors. The dynamics of the conditional mean are also much more flexible for all variables. The
log-stochastic discount factor in this model is

− logMt,t+1 = it +
1

2
ψ>t ψt +

1

2
λ>t λt +

1

2
γ>t γt + ψ>t εt+1 + λ>t εt+1 + γ>t ηt+1.

The market prices of risk are

ψt = ψ0 + ψmmt + ψxxt + ψs∆st

λt = λ0 + λmmt + λxxt + λs∆st

γt = γ0 + γmmt + γxxt + γs∆st

60



As in the previous section, we need restrictions to ensure that foreign and domestic yields are not
functions of the depreciation rate.

δs = 0,

ψs = Φms,

λs = Φxs,

γs = Φs.

Yields are a function of the macroeconomic factors mt.

Macroeconomic factors can either be spanned or unspanned at the same time that depreciation
rates are unspanned. If a researcher wants macroeconomic factors to be unspanned as in Joslin,
Priebsch, and Singleton (2014), then additional restrictions that can be imposed are

δm = 0,

ψm = Φm,

λm = Φxm,

γm = Φm.

Under these restrictions, yields are only a function of the yield factors xt.

The interesting feature of this last setup is that one can test if risk premiums γt associated with
the unspanned innovation in the depreciation rate ηt depend exclusively on the macro variables.
Empirically, Φms = 0 (FX disconnect), Φxs = Φs = 0. The coefficient γx is ex-ante unrestricted, so
one could test if that is equal to zero. If that is the case, γt is a function of factors mt only.

Appendix B.3 Zero lower bound

The USD pricing kernel has exactly the same form as in Equation (5) with the same linear depen-
dence of prices of risk on the state xt. Following Black (1995), we change the functional form of
the short interest rate to accommodate the zero lower bound:

it = max(δ0 + δ>x xt, 0).

The challenge in the international setting is to specify the depreciation rate so that the foreign short
interest rate would not break the ZLB either, that is, we would like that rate to have the form

i∗t = max(δ∗0 + δ∗>x xt, 0).

Thus the depreciation rate has to be such that it satisfies

i∗t = − logEt

(
Mt,t+1 ·

St+1

St

)
. (B.1)
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For simplicity, we specify a single depreciation rate. We guess its functional form as:

∆st+1 = it − i∗t + µ̃s + Φ̃sxxt + Σsxεt+1 + Σsηt+1.

Compared to the main model in Equation (7) the innovations and innovation exposures (amount of
risk) are identical. The conditional mean has changed. To emphasize that the parameters in this
specification are different, we use a hat ·̂ over them. This functional form already assumes that the
foreign interest rate stays above zero.

Next, we solve for the values of µ̃s and Φ̃sx that make Equation (B.1) hold. Substituting the
dynamics for ∆st+1 and mt,t+1 into (B.1) and solving, one obtains:

µ̃s = −1

2

(
ΣsxΣ>sx + ΣsΣ

>
s

)
+ λ>0 Σsx + γ>0 Σs,

Φ̃sx = λ>x Σsx + γ>x Σs.

Finally, one can use the approximation developed by Xia and Wu (2016) to value bonds of both
domestic and foreign countries. As a last step, we can use the estimation methods for models at the
ZLB developed by Feunou, Fontaine, Le, and Lundblad (2021), who extend the method of Joslin,
Singleton, and Zhu (2011) to ZLB models.

Note that the ZLB affects the conditional mean of the depreciation rate via the interest rate
differential, but not its volatility. This effect could be quite small, as, depending on parameter
values,

it − i∗t ≈ δ0 + δ>x xt − δ∗0 − δ∗>x xt.

We leave careful analysis of these effects for future research.

Appendix B.4 Spanned FX model and the AMV approach

In the SFX model we posit the dynamics of the log pricing kernel expressed in USD as

− logMt,t+1 = it +
1

2
λ>t λt + λ>t εt+1.

For simplicity, assume that a single depreciation rate has dynamics

∆st+1 = µs + Φsxxt + Σsxεt+1. (B.2)

These two assumptions allow us to denominate the pricing kernel in foreign currency (FC) via

− logM∗t,t+1 = − logMt,t+1 −∆st+1

= −µs − Φsxxt + it +
1

2
λ>t λt +

(
λ>t − Σsx

)
εt+1.
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Now, consider the AMV approach. The USD pricing kernel has the identical representation. Typi-
cally, the FC pricing kernel has a similar functional form:

− logM∗t,t+1 = i∗t +
1

2
λ∗>t λ∗t + λ∗>t εt+1, (B.3)

i∗t = δ∗0 + δ∗xxt,

λ∗t = λ∗0 + λ∗xxt.

The AMV assumes market completeness and infers the depreciation rate via

∆st+1 = logM∗t,t+1 − logMt,t+1

= it − i∗t +
1

2

(
λ>t λt − λ∗>t λ∗t

)
+ (λt − λ∗t )

>
εt+1.

If λx = λ∗x, then the FC pricing kernel and inferred depreciation rate can be expressed as

− logM∗t,t+1 =
1

2
(λ0 − λ∗0)>(λ0 − λ∗0)− λ>t (λ0 − λ∗0) + i∗t +

1

2
λ>t λt + (λt − [λ0 − λ∗0])

>
εt+1,(B.4)

∆st+1 =
1

2

(
λ>0 λ0 − λ∗>0 λ∗0

)
+ (λ0 − λ∗0)

>
λxxt + it − i∗t + (λ0 − λ∗0)

>
εt+1. (B.5)

Comparing equations (B.3) and (B.4), or equations (B.2) and (B.5), we conclude that they have
identical functional form. Thus, the two perspectives are empirically equivalent.

A natural question is whether removing the restriction λx = λ∗x can help the model fit both yields
and depreciation rates without breaking the bond spanning. The previous version of this paper has
implemented such a model and the answer is no. The restriction turns out to be helpful rather than
hurting in a very specific sense. It helps combat parameter proliferation.

Appendix C Estimation

Appendix C.1 Observables

We stack the U.S. and foreign nominal yields of different maturities into vectors yt =
(
y1t , . . . , y

120
t

)>
and y∗t =

(
y∗1t , . . . , y

∗120
t

)>
as well as their bond loadings, e.g. A = (a1, . . . , a120)

>
, B =

(b1,x, . . . , b120,x)
>

and A∗ = (a∗1, . . . , a
∗
120)

>
, B∗ =

(
b∗1,x, . . . , b

∗
120,x

)>
. For each country, the matu-

rities include 1, 12, 24, 36, 48, 60, 84, and 120 months. In our data set, yields are missing for some
countries and maturities.

63



When we include depreciation rates in the model, we write

∆st =


∆set
∆s£t
∆sA$

t

∆sUt

 .

In our application, the vector ∆st includes the depreciation rates from the Euro, U.K., Australia,
and Japan.

We stack all the observables together in a vector Yt. For the UFX model, the vector of observables
is

Yt =

 ∆st
yt
y∗t

 .

For the SFX model that does not include depreciation rates, this vector of observables is

Yt =

(
yt
y∗t

)
.

Appendix C.2 Augmented state vector

To implement the UFX model for estimation, it is easiest to write the dynamics in terms of an
augmented state vector zt that combines the yield factors xt and the depreciation rates ∆st. The
state vector zt contains only observable variables. We define zt as

zt =

(
xt

∆st

)
The dynamics of the augmented state zt are

zt = µz + Φxzt−1 + Σzwt

=

(
µx
µs

)
+

(
Φx 0
Φsx 0

)(
xt−1

∆st−1

)
+

(
Σx 0
Σsx Σs

)(
εt
ηt

)
These dynamics form the basis of a linear, Gaussian state space form, which we discuss further
below.

For the SFX model, the augmented state zt and the yield factors xt are the same since depreciation
rates are not used in estimation. In this case, zt = xt.

For the UFX model, we can then write yields and depreciation rates as a linear function of the
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augmented state

∆st = ω0 + ω>z zt

yt = A+Bzzt

y∗t = A∗ +B∗zzt

The vectors A and A∗ contain the bond loadings as defined above. The remaining matrices are
defined as

ω0 = 0

ω>z =
(

0 I
)

Bz =
(
B 0

)
B∗z =

(
B∗ 0

)
where B and B∗ are the bond loadings for the U.S. and foreign countries.

Appendix C.3 Rotating the latent state vector to observ-
ables

Next, we define two matrices W1 and W2 that create linear combinations of the observables Yt.

Together, the concatenated matrix
(
W>1 ;W>2

)>
must be full rank. These linear combinations are

Y
(1)
t = W1Yt

Y
(2)
t = W2Yt

The vector Y
(1)
t is a linear combination of observables that we assume to be measured without

error. The vector Y
(2)
t is a linear combination (of yields) observed with error.

Following the term structure literature, the matrix W1 is chosen so that the augmented state vector
zt is a linear combination of observables

zt =

(
xt

∆st

)
= Y

(1)
t = W1Yt

with xt defined as in the text for both the UFX and SFX models. For the SFX model, the matrix
W1 includes eigenvectors of the sample covariance matrix associated with the first two principal
components for each country. For the UFX model, the matrix W1 includes four rows of the unit
vector that select out of Yt the depreciations rates ∆st as well as the eigenvectors of the sample
covariance matrix associated with first two principal components for each country.

Let qj denote the j-th eigenvector of the sample covariance matrix for yields across all 8 maturities
for a given country. We use a superscript to denote a country, e.g. q$j is an eigenvector for the
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United States. The matrix W1 written in terms of blocks of the first two eigenvectors for each
country is

W1 =



0 q$,>1 0 0 0 0

0 q$,>2 0 0 0 0

0 q$,>1 −qe,>1 0 0 0

0 q$,>2 −qe,>2 0 0 0

0 q$,>1 0 −q£,>1 0 0

0 q$,>2 0 −q£,>2 0 0

0 q$,>1 0 0 −qA$,>
1 0

0 q$,>2 0 0 −qA$,>
2 0

0 q$,>1 0 0 0 −qU,>1

0 q$,>2 0 0 0 −qU,>2

I4 0 0 0 0 0



.

The identity matrix I4 in the last row selects out the depreciation rates, which are ordered first in
Yt.

The matrix W2 are linear combinations of Yt that are not used when defining zt. Specifically, in our
work, we choose W2 to equal the remaining eigenvectors of the sample covariance matrix associated
with the third through eighth principal components from each country. Recall that the first two
principal components are used to define W1.

In this appendix, we use a ‘tilde’ to denote any parameters θ̃, factor loadings B̃, or state variables
x̃t (or z̃t) under the latent factor rotation. Consider the UFX model. The augmented state vector
z̃t is defined as

z̃t =

(
x̃1t
x̃2t

)
For the UFX model, this is a N +M × 1 vector of latent factors.

To implement this observables rotation in practice, we note that the observables Yt are related to
the latent state vector z̃t as

Yt =

 ∆st
yt
y∗t

 =

 ω0

Ã

Ã∗

+

 ω>z
B̃z
B̃∗z

 z̃t = C̃ + D̃z̃t

where the vector C̃ and matrix D̃ contain the stacked intercepts and factor loadings under the
latent factor rotation. The observed factors zt are related to the latent factors z̃t through the linear
transformation

zt = Γ0 + Γ1z̃t. (C.6)

Next, we pre-multiply Yt above by W1 and substitute out the latent state vector z̃t = Γ−11 (zt − Γ0)
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for the observed state

W1Yt = W1C̃ +W1D̃z̃t

= W1C̃ +W1D̃Γ−11 (zt − Γ0)

= W1

(
C̃ − D̃Γ−11 Γ0

)
+W1D̃Γ−11 zt.

To guarantee that the observed state is zt = W1Yt, the rotation matrices Γ0 and Γ1 in (C.6) must
satisfy the restrictions

Γ0 = W1C̃ (C.7)

Γ1 = W1D̃ (C.8)

for any parameters θ in the model. Moreover, the matrix Γ1 must be invertible.

Appendix C.4 Parameterization and identification

The risk premium parameters λ0 and λx require identifying restrictions that are not easy to impose
directly. The term structure literature solves the problem of imposing the necessary identifying
restrictions by parameterizing the model in terms of the identifiable risk-adjusted parameters under
a latent factor rotation. Under the latent factor rotation, the restrictions are easy to impose. We
follow this literature and explain how to impose these restrictions in this appendix.

Appendix C.4.1 UFX model

In the appendix, we use Q to denote parameters under the risk neutral measure. The risk neutral
dynamics under the latent factor rotation are

∆st = ω̃0 + ω̃>z z̃t

it = δ̃0 + δ̃>z z̃t

z̃t = µ̃Qz + Φ̃Qz z̃t−1 + Σ̃zw
Q
t

In this model, there is only one set of risk-adjusted parameters.

Under this rotation, the model is identified by imposing the following restrictions on the factor

67



loadings for the U.S. short rate and the depreciation rates

(
δ̃z ω̃ez ω̃£

z ω̃A$
z ω̃U

z

)
=



1 ω̃e1 ω̃£
1 ω̃A$

1 ω̃U
1

1 ω̃e2 ω̃£
2 ω̃A$

2 ω̃U
2

δ̃3 1 ω̃£
3 ω̃A$

3 ω̃U
3

δ̃4 1 ω̃£
4 ω̃A$

4 ω̃U
4

δ̃5 ω̃e5 1 ω̃A$
5 ω̃U

5

δ̃6 ω̃e6 1 ω̃A$
6 ω̃U

6

δ̃7 ω̃e7 ω̃£
7 1 ω̃U

8

δ̃8 ω̃e8 ω̃£
8 1 ω̃U

8

δ̃9 ω̃e9 ω̃£
9 ω̃A$

9 1

δ̃10 ω̃e10 ω̃£
10 ω̃A$

10 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(C.9)

The number of ones in each column is consistent with the matrix W1 used to define the observable
factors. For example, two observable factors are the first two U.S. principal components, which
implies two ones in δ̃z. For each foreign country, there are three observable factors. These include
the depreciation rate and the first two principal components (minus the first two PC’s from the
United States). Therefore, each column ω̃z needs three restrictions.

To identify the factors’ location, the drifts are set to zero under the latent factor rotation

µ̃Qz = 0

The intercepts δ̃0 and ω̃i0 for each country i are estimable.

Finally, we assume that the risk-adjusted autocovariance matrix is a diagonal matrix of eigenvalues.

Φ̃Qz =

(
Φ̃Qx 0
0 0

)
=



φ̃Q1 0 0 . . . 0 0

0 φ̃Q2 0 . . . 0 0
...

...
. . .

...
...

...

0 . . . . . . φ̃QN . . . 0
...

... . . . . . .
...

0 . . . . . . . . .
. . .

...
0 . . . . . . . . . . . . 0


The matrix Φ̃Qz has dimension N + M × N + M . We emphasize that the last M eigenvalues in
this matrix are zero (the lower right block). In general, the matrix Φ̃Qz is required to be a matrix
of eigenvalues to streamline identification. The eigenvalues may be distinct and real, complex,
or repeated. We follow the standard approach in the term structure literature and assume that
this matrix is diagonal, which is consistent with distinct, real eigenvalues ordered from largest to
smallest.
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Appendix C.4.2 SFX model

In the SFX model, the identifying restrictions are exactly the same as the UFX model. In the SFX
model, we set the matrix Σs = 0.

Appendix C.5 Prior distributions

• Let Sy = ΣyΣ>y with dimension dy2 ×dy2 . Note that Y
(2)
t has dimension dy2 ×1. We assume

Sy has a diffuse inverse Wishart distribution Sy ∼ Inv-W
(
Ωy, νy

)
with degrees of freedom

νy = 0 and scale matrix Ωy = 0.

• The matrix Σz is lower triangular. For the UFX model, this matrix has diagonal elements
σs and σx, associated with the depreciation rates and yield factors. For the SFX model, the
matrix contains only the values σx associated with the yield factors. For the depreciation
rates, we place an inverse Gamma prior distribution on the variances σ2

s,j ∼ IG (αs, βs) for
j = 1, . . . ,M . For the yield factors, we place an inverse Gamma prior distribution on the
variances σ2

x,j ∼ IG (αx, βx) for j = 1, . . . , N . We calculate the OLS estimate of Σz from the
VAR and choose the hyperparameters {αs, βs, αx, βx} to match the first moment and have
a large variance.

• The location parameters in the model include the unconditional means µ̄z of the VAR factor
dynamics and the drifts δ̃0 and ω̃i0 for each country i under the latent factor rotation. First,
we calculate the unconditional sample mean of the factors ˆ̄µz. Our prior for each element
of µ̄z is a normal distribution centered at the sample mean. Then, we choose the variance
of this distribution to be large enough to cover the support of the observed data for each
factor. Our prior distribution over the risk neutral parameters δ̃i and ω̃i0 are also normal
distributions. For the short rate parameters δ̃0 ∼ N

(
µδ, σ

2
δ

)
, we set the mean of the normal

distribution equal to µδ = 0.01 and the variance σ2
δ large enough to cover the support of

the observed short rate. For the depreciation rate parameters ω̃i0 ∼ N
(
µω, σ

2
ω

)
, we set the

mean of the normal distribution equal to zero µω = 0.005 and the variance σ2
ω large enough

to cover the support of the observed depreciation rates.

• For the UFX model, we parameterize the matrix Φ̃∗x as a matrix of eigenvalues.

– Φ̃∗x is a diagonal matrix of real, ordered eigenvalues. Let a1 = −1 and b = 1. We
parameterize them as Φ̃∗x,11 = a1 + (b − a1)U1 and Φ̃∗x,jj = aj−1 + (b − aj−1)Uj for
j = 2, . . . , N . This transformation ensures that they are increasing and contained in
the interval [−1, 1]. We then place priors on Φ̃∗x,jj via Uj ∼ Beta (12, 12).

For the SFX model, we impose the same prior.

• Consider the UFX model. For each of the free parameters in the factor loadings δ̃i,x and/or

δ̃s,x, we place an independent normal prior distribution on each separate element. The prior
has mean zero and variance 1.5. The priors are the same for the SFX model.
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Appendix C.6 Log-likelihood function

The log-likelihood function is

L = log p (Y1, . . . , YT |θ) =
T∑
t=1

log p (zt|zt−1, θ) +
T∑
t=1

log p
(
Y

(2)
t |zt; θ

)
where x0 are assumed to be known. The density p (zt|zt−1; θ) is determined by the VAR dynamics
of the factors zt while the second term comes from the linear combination of yields observed with
error

Y
(2)
t = C(2) +D(2)zt + Σyet, et ∼ N (0, I) ,

where C(2) = W2C and D(2) = W2D and

C = C̃ − C̃Γ−11 Γ0,

D = D̃Γ−11 .

This likelihood function assumes that there are no missing values in either Y
(1)
t or Y

(2)
t . In practice,

this is not the case. We impute these missing values during the MCMC algorithm using the Kalman
filter.

Appendix C.7 Estimation

Let θ denote all the parameters of the model and define z1:T = (z1, . . . , zT ) and Y1:T = (Y1, . . . , YT ).
In practice, some data points are missing which implies that some of the factors zt are missing.
We use Y o1:T and Y m1:T to denote the observed and missing data, respectively. The joint posterior
distribution over the parameters and missing data is given by

p (θ, Y m1:T |Y o1:T ) ∝ p (Y o1:T |θ) p (θ) ,

where p (Y o1:T |θ) is the likelihood and p (θ) is the prior distribution. We use Markov-chain Monte
Carlo to draw from the posterior.

Appendix C.7.1 MCMC algorithm

We provide a brief description of the MCMC algorithm for the UFX model. The MCMC algorithm
for the SFX model has similar steps. Let Sy = ΣyΣ′y and Sz = ΣzΣ

′
z denote the covariance

matrices. We use a Gibbs sampler that iterates between drawing from each of the full conditional
distributions.
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• Place the model in linear, Gaussian state space form as described in Appendix C.7.2. Draw

the missing data and location parameters
(
Y m1:T , µ̄z, δ̃0, ω̃

e
0 , ω̃

£
0 , ω̃

A$
0 , ω̃U

0

)
from their full con-

ditional distribution using the Kalman filter and simulation smoothing algorithm. Given the
full data Y o,mt = (Y ot , Y

m
t ), we can recalculate the factors zt = W1Y

o,m
t .

• Let z̄t = zt−µ̄z denote the demeaned factors. We draw the free elements of Φz from their full
conditional distribution using standard results for Bayesian multiple regression. We write
the VAR as a regression model

z̄t = Xtφz + Σzεt

where φz = vec (Φz) and the regressors Xt contain lagged values of z̄t−1. Draws from this
model are standard.

• Draw the free elements of Sz from their full conditional using a random-walk Metropolis
algorithm. In this step, we avoid conditioning on the parameters Sy,Φz by analytically
integrating these parameters out of the likelihood.

• Draw the eigenvalues of the risk neutral matrix Φ∗z from their full conditional using random-
walk Metropolis. To avoid conditioning on Sy,Φz, we draw from the marginal distribution
that analytically integrates these values out of the likelihood.

• Draw the free elements in the factor loadings δ̃z and
{
ω̃ez , ω̃

£
z , ω̃

A$
z , ω̃U

z

}
from their full con-

ditional using random-walk Metropolis. To avoid conditioning on Sy,Φz, we draw from the
marginal distribution that analytically integrates these values out of the likelihood.

• The full conditional posterior of Sy is an inverse Wishart distribution Sy ∼ Inv-Wish
(
ν̄, Ω̄

)
where ν̄ = ν + T and Ω̄ = Ω +

∑T
t=1 ete

>
t .

Appendix C.7.2 State space form

In our data set, some of the yields contain missing values. We impute them using the Kalman filter.

Recall that C(2) = W2C and D(2) = W2D, where C =
(
ω>0 A> A∗>

)>
and D collects all the factor

loadings. Given that zt = Y
(1)
t , we can write the model in VAR form as(

Y
(1)
t

Y
(2)
t

)
=

(
µz

C(2) +D(2)µz

)
+

(
Φz 0

D(2)Φz 0

)(
Y

(1)
t−1
Y

(2)
t−1

)
+

(
Σz 0

D(2)Σz Σy

)(
wt
et

)
Next we translate this system back into the original observed data Yt using the fact that

Yt =

(
W1

W2

)−1(
Y

(1)
t

Y
(2)
t

)
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to get

Yt =

(
W1

W2

)−1(
µz

C(2) +D(2)µz

)
+

(
W1

W2

)−1(
Φz 0

D(2)Φz 0

)(
W1

W2

)
Yt−1

+

(
W1

W2

)−1(
Σz 0

D(2)Σz Σy

)(
wt
et

)
This structure implies that Yt as defined in Appendix C.1 follows a reduced-rank VAR of the form

Yt = µY + ΦY Yt−1 + ΣY εY,t εY,t ∼ N (0, I)

where

µY =

(
W1

W2

)−1(
µz

C(2) +D(2)µz

)
ΦY =

(
W1

W2

)−1(
Φz 0

D(2)Φz 0

)(
W1

W2

)

ΣY =

(
W1

W2

)−1(
Σz 0

D(2)Σz Σy

)
εY,t =

(
wt
et

)

We place this model in the following linear, Gaussian state space form

Yt = Zαt + d+ ut ut ∼ N (0, H) , (C.10)

αt+1 = Tαt + c+Rvt vt ∼ N (0, Q) . (C.11)

where the initial condition is α1 ∼ N
(
a1|0, P1|0

)
.

Let µ̄ =
(
µ̄>x , δ̃0, ω̃

e
0 , ω̃

£
0 , ω̃

A$
0 , ω̃U

0

)>
denote the vector of location parameters. The vector of inter-

cepts µY can be written as a linear function of these location parameters

µY = Sµ,0 + Sµ,1µ̄

We draw the location parameters jointly with the missing data by including them in the state
vector. We define the system matrices from (C.10)-(C.11) as

d = 0 Z =
(

I 0
)

H = 0 Q = ΣY Σ>Y

αt =

(
Yt
µ̄

)
T =

(
ΦY Sµ,1
0 I

)
c =

(
Sµ,0

0

)
R =

(
I
0

)
a1|0 =

(
Sµ,1m̄µ

m̄µ

)
P1|0 =

(
ΣY Σ>Y + Sµ,1VµS

>
µ,1 Sµ,1Vµ

VµS
>
µ,1 Vµ

)
where the prior on the location parameters is µ̄ ∼ N (m̄µ, Vµ). We use the Kalman filter and
simulation smoothing algorithm to draw the missing values and parameters jointly.
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Appendix D Estimated parameters in the affine

models
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Table Appendix D.1: Parameter estimates, state dynamics; SFX model.
xSt x1t x2t x3t x4t x5t x6t x7t x8t x9t x10t

µ̄x × 1200 Φx

x1,t+1 12.911 0.991 -0.010 0 0 0 0 0 0 0 0
(0.265) (0.005) (0.043) (—) (—) (—) (—) (—) (—) (—) (—)

x2,t+1 1.849 -9.41e-04 0.959 0 0 0 0 0 0 0 0
(0.151) (0.002) (0.014) (—) (—) (—) (—) (—) (—) (—) (—)

x3,t+1 1.757 -0.010 0.043 0.990 4.70e-04 0 0 0 0 0 0
(0.246) (0.004) (0.035) (0.007) (0.023) (—) (—) (—) (—) (—) (—)

x4,t+1 0.432 0.002 0.012 -0.027 0.915 0 0 0 0 0 0
(0.154) (0.002) (0.018) (0.004) (0.015) (—) (—) (—) (—) (—) (—)

x5,t+1 -2.818 -0.013 -0.020 0 0 0.966 0.023 0 0 0 0
(0.245) (0.006) (0.038) (—) (—) (0.012) (0.037) (—) (—) (—) (—)

x6,t+1 0.381 -0.007 -0.024 0 0 -0.035 0.865 0 0 0 0
(0.124) (0.002) (0.017) (—) (—) (0.006) (0.018) (—) (—) (—) (—)

x7,t+1 -5.834 -0.015 -0.059 0 0 0 0 0.968 0.014 0 0
(0.254) (0.008) (0.048) (—) (—) (—) (—) (0.014) (0.056) (—) (—)

x8,t+1 0.401 -0.019 0.017 0 0 0 0 -0.044 0.762 0 0
(0.118) (0.005) (0.028) (—) (—) (—) (—) (0.008) (0.034) (—) (—)

x9,t+1 6.442 -6.27e-04 0.031 0 0 0 0 0 0 0.983 -0.020
(0.262) (0.005) (0.054) (—) (—) (—) (—) (—) (—) (0.010) (0.050)

x10,t+1 0.571 0.002 0.208 0 0 0 0 0 0 -0.039 0.711
(0.133) (0.003) (0.032) (—) (—) (—) (—) (—) (—) (0.007) (0.030)

Σx ×
√

12× 100

x1,t+1 0.295 0 0 0 0 0 0 0 0 0
(0.010) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x1,t+1 0.023 0.091 0 0 0 0 0 0 0 0
(0.004) (0.003) (—) (—) (—) (—) (—) (—) (—) (—)

x1,t+1 0.161 0.014 0.145 0 0 0 0 0 0 0
(0.010) (0.008) (0.005) (—) (—) (—) (—) (—) (—) (—)

x1,t+1 -0.001 0.020 -0.005 0.092 0 0 0 0 0 0
(0.006) (0.005) (0.004) (0.003) (—) (—) (—) (—) (—) (—)

x1,t+1 0.079 0.018 0.125 0 0.196 0 0 0 0 0
(0.012) (0.011) (0.011) (—) (0.007) (—) (—) (—) (—) (—)

x1,t+1 -0.009 0.019 0 0.053 0.001 0.090 0 0 0 0
(0.006) (0.005) (—) (0.005) (0.005) (0.003) (—) (—) (—) (—)

x1,t+1 0.115 7.06e-04 0.060 0 0.065 0 0.272 0 0 0
(0.018) (0.015) (0.013) (—) (0.014) (—) (0.011) (—) (—) (—)

x1,t+1 -0.047 0.023 0 0.050 0 0.024 -0.024 0.150 0 0
(0.013) (0.009) (—) (0.008) (—) (0.008) (0.008) (0.005) (—) (—)

x1,t+1 0.121 0.037 0.072 0 0.048 0 0.022 0 0.172 0
(0.012) (0.010) (0.009) (—) (0.009) (—) (0.009) (—) (0.006) (—)

x1,t+1 0.010 0.049 0 0.059 0 0.021 0 0.008 -0.015 0.097
(0.007) (0.006) (—) (0.005) (—) (0.005) (—) (0.005) (0.005) (0.003)

Posterior mean and standard deviation (in parenthesis) of µ̄x,Φx,Σx from the SFX model (µ̄x
denotes the unconditional mean of the state). The state variables are: x1t = pc1,$t , x2t = pc2,$t ,

x3t = ∆cpc
1,$
t − pc1,et , x4t = ∆cpc

2,e
t , x5t = ∆cpc

1,£
t , x6t = ∆cpc

2,£
t , x7t = ∆cpc

1,A$
t ,

x8t = ∆cpc
2,A$
t , x9t = ∆cpc

1,U
t , x10t = ∆cpc

2,U
t .
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Table Appendix D.2: Parameter estimates; SFX model.

xSt x1t x2t x3t x4t x5t x6t x7t x8t x9t x10t

µ̄s × 1200 Φsx

∆set+1 -8.820 0.019 -0.079 0.319 -0.798 0.018 0.089 -0.011 0.027 -0.009 0.098
(4.453) (0.001) (0.010) (0.003) (0.014) (0.003) (0.010) (0.002) (0.012) (0.003) (0.011)

∆s£t+1 -26.388 -0.042 -0.027 -0.020 -0.068 0.350 -0.765 0.022 0.047 0.039 0.134
(2.313) (0.002) (0.011) (0.004) (0.010) (0.004) (0.009) (0.003) (0.010) (0.002) (0.011)

∆sA$
t+1 -34.904 -0.008 -0.012 -0.048 -0.096 0.039 0.072 0.341 -0.818 0.007 0.130

(6.777) (0.003) (0.014) (0.004) (0.012) (0.003) (0.008) (0.003) (0.012) (0.003) (0.013)
∆sUt+1 -10.306 0.018 -0.107 -0.005 -0.122 0.007 0.055 -0.002 0.080 0.330 -0.545

(2.868) (0.002) (0.015) (0.004) (0.015) (0.005) (0.016) (0.003) (0.016) (0.003) (0.019)

Σsx ×
√

12× 100

∆set+1 11.692 -29.032 -18.544 -16.194 0 0 0 0 0 0
(5.783) (5.657) (11.304) (9.982) (—) (—) (—) (—) (—) (—)

∆s£t+1 -29.891 7.691 0 0 54.766 -27.499 0 0 0 0
(1.904) (6.937) (—) (—) (4.531) (12.636) (—) (—) (—) (—)

∆sA$
t+1 -22.907 -52.833 0 0 0 0 -47.338 25.051 0 0

(8.764) (9.531) (—) (—) (—) (—) (7.252) (9.113) (—) (—)
∆sUt+1 -12.310 11.530 0 0 0 0 0 0 42.301 -15.294

(4.391) (7.387) (—) (—) (—) (—) (—) (—) (5.594) (8.009)

Posterior mean and standard deviation (in parenthesis) of the parameters µ̄s,Φsx and Σsx of the

SFX model. The state variables are: x1t = pc1,$t , x2t = pc2,$t , x3t = ∆cpc
1,$
t − pc

1,e
t , x4t = ∆cpc

2,e
t ,

x5t = ∆cpc
1,£
t , x6t = ∆cpc

2,£
t , x7t = ∆cpc

1,A$
t , x8t = ∆cpc

2,A$
t , x9t = ∆cpc

1,U
t , x10t = ∆cpc

2,U
t .
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Table Appendix D.3: Parameter estimates; SFX model.
x̃St x̃1t x̃2t x̃3t x̃4t x̃5t x̃6t x̃7t x̃8t x̃9t x̃10t x̃11t x̃12t x̃13t x̃14t

δ̃0 δ̃>z

0.015 1 1 0.819 0.766 0.096 -0.587 -1.876 -0.221 0.531 0.433 0 0 0 0
(0.003) (—) (—) (0.049) (0.050) (0.030) (0.125) (0.357) (0.068) (0.098) (0.085) (—) (—) (—) (—)

ω̃e0 ω̃e,>z

0.001 0.402 0.656 1 1 0.252 0.024 1.627 1.307 2.015 0.453 1 0 0 0
(0.002) (0.052) (0.107) (—) (—) (0.021) (0.043) (0.374) (0.145) (0.178) (0.184) (—) (—) (—) (—)

ω̃£
0 ω̃£,>

z

-0.020 1.592 -1.200 0.836 1.887 1 1 -1.545 -0.879 -1.744 -0.196 0 1 0 0
(0.004) (0.118) (0.261) (0.137) (0.132) (—) (—) (0.331) (0.095) (0.184) (0.180) (—) (—) (—) (—)

ω̃A$
0 ω̃A$,′

z

-0.025 1.764 -2.797 -1.135 -1.356 -0.527 -0.734 1 1 1.732 -3.121 0 0 1 0
(0.010) (0.168) (0.235) (0.088) (0.080) (0.032) (0.082) (—) (—) (0.110) (0.476) (—) (—) (—) (—)

ω̃U
0 ω̃U,′

z

-4.28e-05 0.959 0.923 1.847 2.368 0.544 -0.350 -0.679 0.366 1 1 0 0 0 1
(0.005) (0.092) (0.108) (0.082) (0.058) (0.027) (0.083) (0.229) (0.051) (—) (—) (—) (—) (—) (—)

Φ̃∗x

x̃1,t+1 0.999 0 0 0 0 0 0 0 0 0 0 0 0 0
(1.70e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃2,t+1 0 0.996 0 0 0 0 0 0 0 0 0 0 0 0
(—) (2.23e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃3,t+1 0 0 0.992 0 0 0 0 0 0 0 0 0 0 0
(—) (—) (4.90e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃4,t+1 0 0 0 0.988 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (5.35e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃5,t+1 0 0 0 0 0.982 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (4.39e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃6,t+1 0 0 0 0 0 0.974 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (7.38e-04) (—) (—) (—) (—) (—) (—) (—) (—)

x̃7,t+1 0 0 0 0 0 0 0.963 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (0.001) (—) (—) (—) (—) (—) (—) (—)

x̃8,t+1 0 0 0 0 0 0 0 0.957 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (0.002) (—) (—) (—) (—) (—) (—)

x̃9,t+1 0 0 0 0 0 0 0 0 0.943 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (0.002) (—) (—) (—) (—) (—)

x̃10,t+1 0 0 0 0 0 0 0 0 0 0.870 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (0.006) (—) (—) (—) (—)

Posterior mean and standard deviation (in parenthesis) of the parameters of the SFX model. The
state variables are reported under the latent factor rotation, x̃t, which corresponds to the diagonal
persistence matrix Φ̃∗x. Parameterization is discussed in Appendix C.4.1.
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Table Appendix D.4: Parameter estimates; UFX model.

xUt x1t x2t x3t x4t x5t x6t x7t x8t x9t x10t

µ̄x × 1200 Φx

x1,t+1 11.836 0.991 -0.010 0 0 0 0 0 0 0 0
(0.119) (0.005) (0.045) (—) (—) (—) (—) (—) (—) (—) (—)

x2,t+1 1.866 -9.71e-04 0.958 0 0 0 0 0 0 0 0
(0.088) (0.002) (0.014) (—) (—) (—) (—) (—) (—) (—) (—)

x3,t+1 1.480 -0.010 0.044 0.990 0.001 0 0 0 0 0 0
(0.117) (0.004) (0.036) (0.007) (0.023) (—) (—) (—) (—) (—) (—)

x4,t+1 0.462 0.003 0.014 -0.028 0.912 0 0 0 0 0 0
(0.096) (0.002) (0.018) (0.004) (0.015) (—) (—) (—) (—) (—) (—)

x5,t+1 -2.514 -0.013 -0.022 0 0 0.965 0.025 0 0 0 0
(0.117) (0.005) (0.039) (—) (—) (0.012) (0.038) (—) (—) (—) (—)

x6,t+1 0.330 -0.008 -0.022 0 0 -0.037 0.859 0 0 0 0
(0.084) (0.002) (0.017) (—) (—) (0.006) (0.018) (—) (—) (—) (—)

x7,t+1 -5.691 -0.013 -0.065 0 0 0 0 0.972 0.040 0 0
(0.118) (0.008) (0.049) (—) (—) (—) (—) (0.014) (0.055) (—) (—)

x8,t+1 0.499 -0.018 0.028 0 0 0 0 -0.045 0.742 0 0
(0.080) (0.005) (0.027) (—) (—) (—) (—) (0.008) (0.030) (—) (—)

x9,t+1 6.997 -1.89e-04 0.026 0 0 0 0 0 0 0.981 -0.018
(0.118) (0.005) (0.054) (—) (—) (—) (—) (—) (—) (0.011) (0.049)

x10,t+1 0.489 0.003 0.214 0 0 0 0 0 0 -0.041 0.705
(0.077) (0.003) (0.032) (—) (—) (—) (—) (—) (—) (0.007) (0.030)

Σx ×
√

12× 100

x1,t+1 0.305 0 0 0 0 0 0 0 0 0
(0.010) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x2,t+1 0.023 0.091 0 0 0 0 0 0 0 0
(0.005) (0.003) (—) (—) (—) (—) (—) (—) (—) (—)

x3,t+1 0.159 0.011 0.148 0 0 0 0 0 0 0
(0.009) (0.007) (0.005) (—) (—) (—) (—) (—) (—) (—)

x4,t+1 -0.006 0.020 -0.004 0.094 0 0 0 0 0 0
(0.006) (0.005) (0.004) (0.003) (—) (—) (—) (—) (—) (—)

x5,t+1 0.063 0.013 0.133 0 0.201 0 0 0 0 0
(0.013) (0.012) (0.012) (—) (0.007) (—) (—) (—) (—) (—)

x6,t+1 -0.016 0.019 0 0.055 0.003 0.090 0 0 0 0
(0.006) (0.005) (—) (0.005) (0.004) (0.003) (—) (—) (—) (—)

x7,t+1 0.106 0.003 0.069 0 0.070 0 0.271 0 0 0
(0.017) (0.014) (0.014) (—) (0.013) (—) (0.009) (—) (—) (—)

x8,t+1 -0.044 0.025 0 0.051 0 0.027 -0.024 0.149 0 0
(0.012) (0.008) (—) (0.008) (—) (0.008) (0.008) (0.005) (—) (—)

x9,t+1 0.111 0.032 0.080 0 0.054 0 0.021 0 0.173 0
(0.011) (0.010) (0.010) (—) (0.009) (—) (0.008) (—) (0.006) (—)

x10,t+1 0.004 0.049 0 0.060 0 0.023 0 0.010 -0.014 0.097
(0.007) (0.006) (—) (0.006) (—) (0.005) (—) (0.005) (0.005) (0.003)

Posterior mean and standard deviation (in parenthesis) of the parameters µ̄x,Φx, and Σx of the

UFX model. The state variables are: x1t = pc1,$t , x2t = pc2,$t , x3t = ∆cpc
1,$
t −pc

1,e
t , x4t = ∆cpc

2,e
t ,

x5t = ∆cpc
1,£
t , x6t = ∆cpc

2,£
t , x7t = ∆cpc

1,A$
t , x8t = ∆cpc

2,A$
t , x9t = ∆cpc

1,U
t , x10t = ∆cpc

2,U
t .



Table Appendix D.5: Parameter estimates; UFX model.

xUt x1t x2t x3t x4t x5t x6t x7t x8t x9t x10t

µ̄s × 1200 Φsx

∆set+1 1.288 0.189 0.336 -0.403 0.473 0 0 0 0 0 0
(1.803) (0.231) (1.355) (0.406) (1.174) (—) (—) (—) (—) (—) (—)

∆s£t+1 -0.742 0.064 0.415 0 0 -0.076 -0.380 0 0 0 0
(1.720) (0.224) (1.226) (—) (—) (0.449) (1.218) (—) (—) (—) (—)

∆sA$
t+1 -0.533 -0.671 1.786 0 0 0 0 -0.994 -3.126 0 0

(1.949) (0.273) (1.382) (—) (—) (—) (—) (0.435) (1.458) (—) (—)
∆sUt+1 1.315 0.330 8.564 0 0 0 0 0 0 -0.796 -4.751

(1.906) (0.261) (1.581) (—) (—) (—) (—) (—) (—) (0.546) (1.543)

Σsx ×
√

12× 100

∆set+1 -1.213 0.262 -1.173 -0.278 0 0 0 0 0 0
(0.528) (0.508) (0.365) (0.377) (—) (—) (—) (—) (—) (—)

∆s£t+1 -1.361 0.614 0 0 0.389 0.498 0 0 0 0
(0.501) (0.469) (—) (—) (0.373) (0.377) (—) (—) (—) (—)

∆sA$
t+1 0.318 -0.933 0 0 0 0 0.399 0.087 0 0

(0.535) (0.519) (—) (—) (—) (—) (0.506) (0.534) (—) (—)
∆sUt+1 -1.899 0.591 0 0 0 0 0 0 -1.097 -0.637

(0.519) (0.514) (—) (—) (—) (—) (—) (—) (0.470) (0.463)

Σs ×
√

12× 100

ηet η£t ηA$
t ηUt

∆set+1 10.516 0 0 0
(0.369) (—) (—) (—)

∆s£t+1 6.671 7.510 0 0
(0.421) (0.250) (—) (—)

∆sA$
t+1 4.558 1.573 10.317 0

(0.549) (0.497) (0.366) (—)
∆sUt+1 4.690 0.005 -0.463 9.469

(0.485) (0.462) (0.469) (0.329)

Posterior mean and standard deviation (in parenthesis) of the parameters µ̄s,Φsx,Σsx, and Σs
in the UFX model. The state variables are: x1t = pc1,$t , x2t = pc2,$t , x3t = ∆cpc

1,$
t − pc1,et ,

x4t = ∆cpc
2,e
t , x5t = ∆cpc

1,£
t , x6t = ∆cpc

2,£
t , x7t = ∆cpc

1,A$
t , x8t = ∆cpc

2,A$
t , x9t = ∆cpc

1,U
t ,

x10t = ∆cpc
2,U
t .
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Table Appendix D.6: Parameter estimates; UFX model.
x̃Wt x̃1t x̃2t x̃3t x̃4t x̃5t x̃6t x̃7t x̃8t x̃9t x̃10t x̃11t x̃12t x̃13t x̃14t

δ̃0 δ̃>z

0.017 1 1 -0.477 -0.552 -0.284 -0.692 -1.298 0.167 0.655 0.262 0 0 0 0
(0.002) (—) (—) (0.078) (0.072) (0.051) (0.082) (0.228) (0.242) (0.121) (0.099) (—) (—) (—) (—)

ω̃e0 ω̃e,>z

0.005 0.283 -0.003 1 1 0.256 0.065 1.428 1.237 1.233 0.942 1 0 0 0
(6.94e-04) (0.075) (0.160) (—) (—) (0.053) (0.082) (0.229) (0.066) (0.113) (0.178) (—) (—) (—) (—)

ω̃£
0 ω̃£,>

z

0.009 1.146 2.003 -0.223 1.225 1 1 -1.702 -1.020 -1.337 -0.098 0 1 0 0
(0.002) (0.092) (0.109) (0.206) (0.222) (—) (—) (0.335) (0.193) (0.203) (0.239) (—) (—) (—) (—)

ω̃A$
0 ω̃A$,′

z

0.003 0.827 2.100 -2.064 -2.136 -0.563 -0.541 1 1 1.040 -3.093 0 0 1 0
(0.001) (0.029) (0.130) (0.297) (0.445) (0.116) (0.127) (—) (—) (0.140) (0.464) (—) (—) (—) (—)

ω̃U
0 ω̃U,′

z

0.010 0.746 0.472 1.507 2.233 0.316 -0.576 -0.417 0.705 1 1 0 0 0 1
(0.002) (0.052) (0.098) (0.139) (0.217) (0.098) (0.153) (0.320) (0.188) (—) (—) (—) (—) (—) (—)

Φ̃∗x

x̃1,t+1 0.998 0 0 0 0 0 0 0 0 0 0 0 0 0
(2.37e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃2,t+1 0 0.996 0 0 0 0 0 0 0 0 0 0 0 0
(—) (2.03e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃3,t+1 0 0 0.992 0 0 0 0 0 0 0 0 0 0 0
(—) (—) (4.72e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃4,t+1 0 0 0 0.988 0 0 0 0 0 0 0 0 0 0
(—) (—) (—) (6.46e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃5,t+1 0 0 0 0 0.981 0 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (7.71e-04) (—) (—) (—) (—) (—) (—) (—) (—) (—)

x̃6,t+1 0 0 0 0 0 0.974 0 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (0.001) (—) (—) (—) (—) (—) (—) (—) (—)

x̃7,t+1 0 0 0 0 0 0 0.964 0 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (0.002) (—) (—) (—) (—) (—) (—) (—)

x̃8,t+1 0 0 0 0 0 0 0 0.958 0 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (0.001) (—) (—) (—) (—) (—) (—)

x̃9,t+1 0 0 0 0 0 0 0 0 0.943 0 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (0.003) (—) (—) (—) (—) (—)

x̃10,t+1 0 0 0 0 0 0 0 0 0 0.873 0 0 0 0
(—) (—) (—) (—) (—) (—) (—) (—) (—) (0.007) (—) (—) (—) (—)

Posterior mean and standard deviation (in parenthesis) of the parameters of the UFX model. The
state variables are reported under the latent factor rotation, x̃t, which corresponds to the diagonal
persistence matrix Φ̃∗x. Parameterization is discussed in Appendix C.4.1.
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Appendix E Additional results on news decompo-

sition

Figure Appendix E.1
News-based decomposition of currency risk premiums

(A) Euro, UFX (B) Euro, SFX
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(C) Japanese yen, UFX (D) Japanese yen, SFX
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(E) Australian dollar, UFX (F) Australian dollar, SFX
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Notes: We plot the percentage contribution to news about currency risk premiums, accord-

ing to 1 = var(Nn
s,t)/var(N

n
srp,t) + var(Nn

∆y,t)/var(N
n
srp,t) − 2cov(Nn

s,t, N
n
∆y,t)/var(N

n
srp,t)

across the different horizons n. We use the UFX and SFX models to compute the decom-

position.
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