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1 Introduction

The effective lower bound (ELB) of nominal interest rates is one of the most discussed

economic issues of the past decade. The negative interest rate policy (NIRP) is among the

latest additions to unconventional monetary policy toolkits, in the hopes of providing further

stimulus to the economies that face the ELB. For example, in June 2017, the deposit rate of

the Swiss National Bank was at a record low of -0.75%, while the European Central Bank’s

(ECB) deposit facility rate was -0.4%. The total volume of outstanding bonds with negative

interest rates reached its peak at 15 trillion dollars in 2016.

As an emerging policy tool, it is important for policy makers and economists to under-

stand its implications. The first question is what is the NIRP’s impact on the yield curve?

Second, what are economic agents’ perceptions of this policy and how do they form expec-

tations? Third, because the zero lower bound (ZLB) is no longer binding, the NIRP creates

richer shapes for the short end of the yield curve. How do we accommodate them when we

model the term structure of interest rates? Understanding these questions is important to

European countries and Japan, which are currently implementing the NIRP. Such an under-

standing is also potentially important for the US economy, for which the NIRP remains a

future option if large negative shocks hit the economy.

We propose a new shadow rate term structure model (SRTSM) to address these questions,

and we focus on the Euro area. At the ELB, the short end of the yield curve displays three

different shapes. The first case is flat, similar to what we see in the US data when the ZLB

prevails but without the NIRP. Second, the yield curve could be downward sloping when

agents expect future cuts of the policy rate due to the NIRP. Third, on some days, it is

initially flat in the very short end and then downward sloping, implying market participants

expect no immediate action from the central bank, but they think the overall future monetary

policy is expansionary. To capture these shapes, we introduce two policy indicators: one for

the immediate monetary policy stance, and the other for the future monetary policy stance

at longer horizons. We model the discrete movement of the ECB’s deposit facility rate at
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the ELB with a simple and intuitive regime-switching model conditioning on the two policy

indicators. Our model is able to capture the three different shapes at the short end of the

yield curve that we see in the data. We then build the dynamics of the deposit rate into

an SRTSM using the Black (1995) framework, where the short term interest rate is the

maximum of the non-positive deposit rate and a shadow interest rate.

We use our model to extract the market’s expectations on the NIRP. Overall, expecta-

tions of financial market participants from our model agree with economists’ expectations

from the Bloomberg survey. Importantly, our model has the advantage over the Bloomberg

survey because we can extract the market’s expectations further into the future, whereas the

Bloomberg surveys are collected only one week before monetary policy meetings. We find

the June 2014 and December 2015 cuts were expected the month before, and the September

2014 cut was entirely unanticipated. Most interestingly, the March 2016 cut was expected 4

months before the actual cut.

We then evaluate the NIRP’s policy implications on the yield curve. For the four event

dates, the ECB lowered the deposit rate by 10 basis points, which lowered the short end of

the yield curve by the same amount. While the impact is dampened at longer maturities for

the first two dates, the NIRP caused a humped shape change of the yield curve for the last

two. We further decompose the NIRP into the rate cut itself and forward guidance. We find

for the first two dates, the NIRP worked through the rate cut itself. For the later two dates,

forward guidance became a significant part of the story, and it was the reason that drives

the humped shape.

We assess the risk premium associated with the NIRP. We first measure it as the dif-

ference between the risk-neutral and real world conditional expectations. We find most of

the time, the risk premium of the NIRP is positive or close to zero, which means agents

typically associate a rate cut with an expansionary monetary policy. One exception is four

months before the March 2016 cut, when the difference between the risk-neutral and physical

expectations was almost -10 basis points. Our interpretation is that agents took a cut in
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March 2016 as a sign of weak economic outlook. Relatedly, the NIRP drives a small but

positive term premium on the 10-year yield.

We compare our model to several alternatives including several SRTSMs proposed in the

literature and the Gaussian affine term structure model (GATSM). We find our new model

performs the best in terms of higher likelihood and lower pricing errors. The existing models

in the literature, on the other hand, do poorly.

After a brief literature review, the rest of the paper proceeds as follows. Section 2 models

the dynamics of the deposit rate, and Section 3 sets up the new SRTSM. Section 4 discusses

data, estimation, and estimates. Section 5 examines markets’ information on the NIRP,

while Section 6 assesses the NIRP’s impact on the yield curve. Section 7 compares our

model to alternatives, and Section 8 concludes.

Literature Earlier work has applied the SRTSM mostly to the Japanese and US yield

curve. For example, Kim and Singleton (2012) and Ichiue and Ueno (2013) focus on Japan,

whereas Krippner (2013), Christensen and Rudebusch (2014), Wu and Xia (2016), and Bauer

and Rudebusch (2016) focus on the United States. These papers kept the lower bound at a

constant level.

A few studies have worked on the new development in Europe, where the policy lower

bound kept moving down to negative numbers after the NIRP. For example, Lemke and

Vladu (2016) and Kortela (2016). However, none of these papers allow agents to be forward-

looking in terms of the future movement of the policy rate, which is an important feature of

our model. And this feature allows our model to fit the short end of the yield curve much

better than the ones in the literature.

Our paper relates to the regime-switching literature, with the seminal paper by Hamilton

(1989). Applications of this class of model in the term structure literature include Ang and

Bekaert (2002), Bansal and Zhou (2002), and Dai et al. (2007). These papers allow the

parameters of the dynamics to take several different values. In contrast, these parameters
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Figure 1: Yield Curves
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Notes: Yield curves in July 2013, February 2016, and July 2016. X-axis: maturity. Y-axis: yield in
percentage points. Red solid dots correspond to ELB.

are constant in our model, and the deposit rate follows a regime switching process. Several

papers are similar to ours in that sense, which model discrete movements of central banks’

policy rates, for example, Rudebusch (1995), Piazzesi (2005), and Renne (2012). While

Renne (2012) also uses a regime-switching process to model the discrete values of the ECB’s

policy rate, we allow a discrete policy rate only at the ELB. Otherwise, the state variables

follow a Gaussian vector autoregression (VAR) as in the literature. The advantages of our

model are twofold. First, it significantly reduces the state space for the regime-switching

process. Second, when the ELB is not binding, our model is essentially the GATSM, which

is the preferred model in the literature.

2 Modeling the short end of the yield curve with NIRP

The ELB introduces several new shapes for the short end of the yield curve. See the red solid

dots in Figure 1. In July 2013, the front end of the yield curve was flat. This flatness was the

basic pattern we see in the data when the US experienced the ZLB, and most efforts in the

term structure literature for the ZLB focus on this feature.1 However, the NIRP introduced

additional patterns: in both February 2016 and July 2016, for example, the yield curves were

1See Christensen and Rudebusch (2014), Wu and Xia (2016), and Bauer and Rudebusch (2016), for
example.

5



downward sloping, implying future decreases in the policy rate. Interestingly, the very short

ends for the two months are different: in February 2016, an easing future monetary policy

stance was expected throughout all horizons, whereas in July 2016, the very short end of the

curve was flat, suggesting the cut would not happen in the next month.

We build a simple and intuitive model to capture these shapes in the short end of the

yield curve in Figure 1. We model the risk-neutral Q dynamics of the deposit rate. When

the ELB is binding, the forward rate at maturity n is approximately the Q expectation of

the deposit rate n-periods later. Hence the Q dynamics dictate the shape of the yield curve.

The physical dynamics take the same form with different parameter values.

We plot the dynamics of the deposit rate in Figure 2, and summarize some basic data fea-

tures: (1) the deposit rate is discrete and rdt∈{0,−0.1,−0.2,−0.3,−0.4, ...} percentage point,

and (2) the policy rate either stays where it was or moves down by 0.1%, which we formalize

with the following dynamics2:


Qt(r

d
t+1 = rdt − 0.1) = αQ1,t

Qt(r
d
t+1 = rdt ) = 1− αQ1,t,

(2.1)

where Qt is the conditional probability under the Q measure.

The simplest model with αQ1,t = αQ1 implies one shape of yield curve. See the left panel

of Figure 3. This model is a slightly more flexible version of the existing model (see Wu and

Xia (2016)), which imposes the restriction αQ1 = 0. However, it cannot capture the other

shapes in the data; see Figure 1. In particular, it cannot capture both a flat curve (left

panel) and a downward sloping curve (middle and right panels).

To separate these two shapes, we introduce a binary random variable ∆t, which captures

agents’ forecast of the ECB’s next move. ∆t = 1 indicates a high probability of a cut next

period, whereas ∆t = 0 implies monetary policy is more likely to stay put. We augment

2In the data, we have not observes the deposit rate move back up since the ELB. For a possible way to
incorporate future upward movements, see Wu and Xia (2017).
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Figure 2: Deposit rate
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Notes: Sample spans from July 2012 to June 2017.

(2.1) with ∆t:

Qt(r
d
t+1 = rdt − 0.1) = Q(rdt+1 = rdt − 0.1|rdt ,∆t) = αQ1,∆t

, (2.2)

and αQ1,∆t=1 > αQ1,∆t=0 grants the interpretation of ∆t.

We model the dynamics of ∆t as a two-state Markov chain process:


Qt(∆t+1 = 0|∆t = 0) = αQ00,t

Qt(∆t+1 = 1|∆t = 1) = αQ11,t.

(2.3)

If these probabilities are time invariant, that is, αQ00,t = αQ00, αQ11,t = αQ11, this model

implies two different shapes for the yield curve: one for ∆t = 1 and one for ∆t = 0. The

middle panel of Figure 3 provides an example of the two shapes. The blue line captures

that the yield curve in the state ∆t = 0 is flat, which corresponds to a long period of time

in the data during which the short end of the yield curve is flat, such as the left panel of

Figure 1. The red dashed line is for the state ∆t = 1, which sees a non-negligible probability

of the deposit rate moving down. This can explain the shape in the middle panel of Figure 1.

However, this model cannot capture the shape in the right panel of Figure 1. In this plot,
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Figure 3: Expected paths of the deposit rate
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Notes: The chart plots expected future paths of the deposit rate EQt (rdt+h|∆t,∆
l
t, r

d
t ). The left panel cor-

responds to the case in which the transition probability for rdt is a constant: αQ1 = 0.1. The middle panel

corresponds to the case in which the transition probability for rdt depends on ∆t: α
Q
1,∆t=0 = 0, αQ1,∆t=1 = 0.1,

and the constant transition probabilities for ∆t are αQ00 = 1;αQ11 = 0.95. The right panel corresponds to
the case in which the dynamics of rdt depends on both ∆t and ∆l

t. The parameters taken from the esti-

mates in Table 1: αQ1,∆t=0 = 0;αQ1,∆t=1 = 0.75;αQ
00,∆l

t=0
= 1;αQ

00,∆l
t=1

= 0.82;αQ
11,∆l

t=0
= 0.0012;αQ

11,∆l
t=1

=

0.75;αl,Q
00 = 1;αl,Q

11 = 0.88.

the market expects no immediate cut, but does expect a higher probability of a cut in future

meetings.

To accommodate this possibility, we devise a separation between the immediate monetary

policy stance ∆t and the longer-term monetary policy stance ∆l
t. ∆l

t = 1 implies an easier

monetary policy in longer horizons, whereas ∆l
t = 0 implies a lower possibility for future

cuts. We introduce this channel by allowing the dynamics of the state variable ∆t to depend

on ∆l
t, and (2.3) becomes


Qt(∆t+1 = 0|∆t = 0) = Q(∆t+1 = 0|∆t = 0,∆l

t) = αQ
00,∆l

t

Qt(∆t+1 = 1|∆t = 1) = Q(∆t+1 = 1|∆t = 1,∆l
t) = αQ

11,∆l
t
.

(2.4)

We impose the identification restriction that αQ
00,∆l

t=0
> αQ

00,∆l
t=1

, and the basic intuition is

if the economy is currently at the ∆t = 0 state meaning no immediate cut, the probability
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of a future cut for ∆l
t = 0 is less than for ∆l

t = 1. We further assume


Q(∆l

t+1 = 0|∆l
t = 0) = αl,Q

00

Q(∆l
t+1 = 1|∆l

t = 1) = αl,Q
11 .

(2.5)

Our final model, constituting (2.2), (2.4), and (2.5), can capture various shapes of the

yield curve; see the right panel of Figure 3. ∆t = 1 corresponds to the case in which the

market highly expects a cut in the next period (see the red dashed line and purple dash-

dotted line), whereas ∆t = 0 corresponds to no immediate cut in the coming month (see the

blue solid line and yellow dotted line). ∆l
t = 1 implies the market expects cuts not necessarily

immediately but in the future (see the yellow dotted and purple dash-dotted lines). When

∆l
t = 0, agents do not anticipate much more policy actions past the next month (see blue

solid and red dashed lines). The combination of ∆t = 0 and ∆l
t = 1 mimics the shape in the

right panel of Figure 1.

3 A new shadow rate term structure model

This section incorporates the dynamics for the deposit rate introduced in Section 2 to an

SRTSM, which we use to model the entire yield curve. Following Black (1995), the short-

term interest rate rt is the maximum function of the shadow rate st and a lower bound. The

innovation of our paper is that the lower bound is time varying:

rt = max(st, rt). (3.1)

Next, we describe how to model the lower bound and shadow rate, and then discuss how to

price bonds.
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3.1 Deposit rate and lower bound

The deposit rate is by definition the lower bound of the Euro OverNight Index Average

(EONIA), and hence it naturally serves as the lower bound of the Overnight Index Swap

(OIS) curve based on EONIA. We use a discrete-time model with month-end observations as

in much of the term structure literature.3 However, central banks do not meet at the end of

the month. For our ELB sample, the ECB meets 8 to 12 times a year, at most once a month,

and the meeting dates range from the 1st to the 27th day of the month. We will treat this

calendar effect when we translate the deposit rate into the lower bound, because otherwise

the date mismatch could be misleading. For example, suppose the meeting occurs on the

16th day of the next month for a 30-day month, and suppose agents predict the central bank

will cut the deposit rate by 10 basis points with 100% chance. Then we will observe the one

month forward rate reduce by 5 basis points, because we know nothing will happen between

now and the 15th. If we do not treat the calendar effect, we will simply interpret the 5 basis

point change in the forward rate as a 50% chance for a 10 basis point cut.

We incorporate this calendar effect when we model the lower bound. Suppose the number

of days between the end of the current month t and the next meeting date is a fraction γt

of the month from t to t+ 1. When the ELB is binding, the monthly lower bound rt is the

average of the overnight deposit rate for the month:

rt ≈ γtr
d
t + (1− γt)EQt (rdt+1)

= rdt − (1− γt)α1,∆t × 0.1. (3.2)

Note we only align the ECB’s meeting schedule with our monthly data for the current month,

that is, as of time t,

rt+n = rdt+n, ∀n ≥ 1. (3.3)

3For example, see Hamilton and Wu (2012b), Bauer et al. (2012), and Wright (2011).
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We assume rt = 0 if the economy is not at the ELB.

3.2 Shadow rate and factors

The shadow rate is an affine function of the latent yield factors, often labeled as “level,”

“slope,” and “curvature”:

st = δ0 + δ′1Xt,

whose physical dynamics follow a first-order vector autoregression:

Xt = µ+ ρXt−1 + Σεt, εt ∼ N(0, I). (3.4)

Similarly, the risk-neutral Q dynamics are

Xt = µQ + ρQXt−1 + ΣεQt , ε
Q
t ∼ N(0, I).

3.3 Standard bond prices results

This section describes bond prices in general and how to price forward rate when the lower

bound is a constant. All the results we present here are standard in the literature. The new

results of our paper will be organized in Subsection 3.4.

The no-arbitrage condition specifies that prices for zero-coupon bonds with different

maturities are related by

Pnt = E
Q
t [exp(−rt)Pn−1,t+1] .

The n-period yield relates to the price of the same asset as follows:

ynt = − 1

n
log(Pnt).

11



Following Wu and Xia (2016), we model forward rates rather than yields for the simplicity

of the pricing formula. Define the one-period forward rate fnt with maturity n as the return

of carrying a zero-coupon bond from t + n to t + n + 1 quoted at time t, which is a simple

linear function of yields:

fnt = (n+ 1)yn+1,t − nynt.

Therefore, modeling forward rates is equivalent to modeling yields. Note that f0t = y1t = rt.

3.3.1 Forward rates with a constant lower bound

If the lower bound were a constant r, Wu and Xia (2016) show the forward rate can be

approximated by

fnt ≈ r + σQn g

(
an + b′nXt − r

σQn

)
, (3.5)

where the function g(·) is

g(z) = zΦ(z) + φ(z), (3.6)

and Φ(·) is the normal cumulative distribution function, while φ(·) is the normal probability

density function.

Inside the g function, an + b′nXt is the n-period forward rate from the GATSM; see, for

example, Ang and Piazzesi (2003) and Bauer et al. (2012). The coefficients an and bn follow

a set of difference equations whose solutions are

an = δ0 + δ′1

(
n−1∑
j=0

(
ρQ
)j)

µQ − 1

2
δ′1

(
n−1∑
j=0

(
ρQ
)j)

ΣΣ′

(
n−1∑
j=0

(
ρQ
)j)′

δ1

b′n = δ′1
(
ρQ
)n
.
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In addition, (σQn )2 ≡ VQt (st+n) is the conditional variance of the future shadow rate, and

(σQn )2 =
n−1∑
j=0

δ′1(ρQ)jΣΣ′(ρQ′)jδ1.

3.4 New bond prices results

Next, we derive the pricing formula in our new model. We begin by describing the distribu-

tion of the lower bound.

3.4.1 Distribution of the lower bound

The probability distribution of interest for pricing purpose is the risk-neutral probability

distribution of the lower bound n periods into the future Qt(rt+n). It can be written as the

sum of the joint distributions of the lower bound and ∆, ∆l states:

Qt(rt+n) =
∑

∆t+n,∆l
t+n

Qt(rt+n,∆t+n,∆
l
t+n). (3.7)

The right-hand side can be written as

Qt(rt+n,∆t+n,∆
l
t+n) =

∑
rdt+n−1,∆t+n−1,∆l

t+n−1

Qt(rt+n−1,∆t+n−1,∆
l
t+n−1)

×Qt(rt+n,∆t+n,∆
l
t+n|rt+n−1,∆t+n−1,∆

l
t+n−1), (3.8)
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where the transition probability can be decomposed as follows

Qt(rt+n,∆t+n,∆
l
t+n|rt+n−1,∆t+n−1,∆

l
t+n−1)

= Qt(rt+n|∆t+n,∆
l
t+n, rt+n−1,∆t+n−1,∆

l
t+n−1)

×Qt(∆t+n|∆l
t+n, rt+n−1,∆t+n−1,∆

l
t+n−1)

×Qt(∆
l
t+n|rt+n−1,∆t+n−1,∆

l
t+n−1)

= Q(rt+n|rt+n−1,∆t+n−1)Q(∆t+n|∆t+n−1,∆
l
t+n−1)Q(∆l

t+n|∆l
t+n−1). (3.9)

The last equal sign is based on the assumptions in (2.2), (2.4), and (2.5), and the assumption

that the three variables are conditionally independent. The three terms in (3.9) are specified

in (2.2), (2.4), and (2.5).

3.4.2 Forward rates in the new model

With the results in Section 3.4.1, the pricing formula in (3.5) becomes

fnt ≈
∑
rt+n

(
rt+n + σQn g

(
an + b′nXt − rt+n

σQn

))
Qt(rt+n), (3.10)

where Q(rt+n) is specified in (3.7). Derivations for the new pricing formula are in Appendix

A.1.

The forward rate in (3.10) differs from (3.5) due to the time-varying lower bound. The

new pricing formula (3.10) prices in the uncertainty associated with the future dynamics of

the lower bound. The forward rate is calculated as an average of forward rates given rt+n,

weighted by the risk-neutral probability distribution of rt+n. If rt+n were a constant, (3.10)

would become (3.5).

The regime-switching dynamics of (rdt ,∆t,∆
l
t) preserve the analytical approximation for

the pricing formula. Having an analytical approximation is crucial for the model to be

tractable and have better numerical behavior. Dynamic term structure models are often
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criticized for being difficult to estimate. For example, in the class of GATSMs, which is a

special case of our model when rt → −∞ and has analytical bond prices, a literature has

been dedicated to improving the model’s performance.4 If we had to compute bond prices

numerically, the model would behave even worse.

4 Estimation

4.1 Data and estimation details

Data We model OIS rates on EONIA, and data is from Bloomberg. Our sample is monthly

from July 2005 to June 2017. We date the ELB period when the deposit rate is less than or

equal to zero starting from July 2012.

Spread The deposit rate is the floor for EONIA. In our model, they are the same for the

ELB sample. However, in the data, the former is always lower than the latter. To capture

this difference, we introduce a spread. The deposit rate is measured overnight. However, the

overnight EONIA rate is very volatile due to some month-end effects. Therefore, we define

the spread as the difference between the one-week EONIA-based OIS rate and the overnight

deposit rate: spt = rweek
t − rdt . Figure 4 plots the time-series dynamics of the one-week OIS

rate and the overnight deposit rate in the top panel and their difference at the bottom to

demonstrate a non-zero and time-varying spread.

We assume the spread spt follows an AR(1) under the risk-neutral measure:

spt = µQsp + ρQspspt−1 + eQt , e
Q
t ∼ N(0, σ2

sp). (4.1)

4See Joslin et al. (2011), Christensen et al. (2011), Hamilton and Wu (2012b), Adrian et al. (2012), Creal
and Wu (2015), and de Los Rios (2015).
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Figure 4: Spread
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Notes: Top panel: time-series dynamics of the one-week OIS rate in blue solid line and deposit rate in
red dashed line; bottom panel: the spread defined as the difference between the two lines in the top panel.
X-axis: time. Y-axis: interest rates in percentage points. Sample spans from July 2012 to June 2017.

This modifies the pricing formula in (3.10) to

fnt ≈
∑
rt+n

Qt(rt+n)

(
rt+n + cn + dnspt + σ̃Qn g

(
an + b′nXt − rt+n − cn − dnspt

σ̃Qn

))
,(4.2)

where cn = (
∑n−1

j=0 (ρQsp)
j)µQsp, dn = (ρQsp)

n, (σ̃Qn )2 = (σQn )2 + (
∑n−1

j=0 (ρQsp)
2j)σ2

sp. See Appendix

A.2 for the derivation.

Combine (3.1) and (3.2), and add a spread,

rt =


rdt − (1− γt)αQ1,∆t

× 0.1 + spt, for ELB

st, otherwise.

(4.3)
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Forward rates We use OIS yields with the following maturities: three and six months, and

one, two, three, five, six, seven, eight, nine, and ten years, and transform them into forward

rates. We transform yields into forward rates fnmt, defined as the return of a forward contract

carrying a bond from t+ n to t+ n+m, as follows:

fnmt =
1

m
[(n+m)yn+m,t − nynt].

The forward rates we model include f3,3,t, f6,6,t, f12,12,t, f24,12,t, f60,12,t, f84,12,t, and f108,12,t.

fnmt relates to the forward rate in (4.2) with

fnmt =
1

m
(fnt + fn+1,t + ...+ fn+m−1,t). (4.4)

There are a couple of advantages of modeling forwards rates over yields. First, forward

rates require summing over fewer terms per (4.4). Second, forward rates do not involve the

“max” operator, which is included in yields of any maturity. Having the “max” operator is

problematic for any gradient-based numerical optimizer.

State space form The state variables Xt, ∆t, and ∆l
t are latent, whereas rdt and spt are

observed. Our SRTSM is a nonlinear state-space model. The transition equations include

(3.4), and the P version of (2.2), (2.4), (2.5), and (4.1), where we assume the same process

under the physical dynamics P and risk-neutral dynamics Q but with different parameters.

The difference between them captures the risk premium.

Adding measurement errors to (4.3) and (4.4), the measurement equations are

rot = rt + ηt (4.5)

f o
nmt = fnmt + ηnmt, (4.6)

where the “o” superscript stands for observed data, and the measurement errors are i.i.d.
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normal: ηt, ηnmt ∼ N(0, ω2).

Normalization The collection of parameters we estimate consists of four subsets: (1)

parameters related to rdt ,∆t, and ∆l
t, including α1,∆t=0, α1,∆t=1, α00,∆l

t=0, α11,∆l
t=0, α00,∆l

t=1,

α11,∆l
t=1, αl

00, αl
11 and αQ1,∆t=0, αQ1,∆t=1, αQ

00,∆l
t=0

, αQ
11,∆l

t=0
, αQ

00,∆l
t=1

, αQ
11,∆l

t=1
, αl,Q

00 , αl,Q
11 . (2)

parameters describing the dynamics of spt, including (µsp, µ
Q
sp, ρsp, ρ

Q
sp, σsp); (3) parameters

related to Xt, including (µ, µQ, ρ, ρQ,Σ, δ0, δ1); and (4) the parameter for pricing error: ω.

For identification, we impose αQ1,∆t=1 > αQ1,∆t=0 and αQ
00,∆l

t=0
> αQ

00,∆l
t=1

. The identifying

restrictions on the group (3) are similar to Hamilton and Wu (2014): (i) δ1 = [1, 1, 1]′,

(ii)µQ = 0, (iii) ρQ is diagonal with eigenvalues in descending order, and (iv) Σ is lower

triangular.

Estimation We estimate the model by maximum likelihood with the algorithm for regime-

switching state space models of Kim (1994) and the extended Kalman filter. The details are

in Appendix B. In practice, we impose rdt∈{0,−0.1, −0.2, −0.3, −0.4,..., −1}, and therefore

Q(rdt+1 = rdt − 0.1|rdt = −1,∆t) = 0.

We report maximum likelihood estimates and robust standard errors (see Hamilton

(1994)) in Table 1. The eigenvalues of ρ, ρQ indicate the factors Xt are highly persistent

under both measures. This finding is consistent with the term structure literature. Both

α1,∆t=0 and αQ1,∆t=0 are zero, which means that when ∆t = 0, agents do not expect the

deposit rate to change in the next period. When ∆t = 1, the probability of the ECB cutting

the deposit rate is much higher: α1,∆t=1 = 1 under the physical measure, and αQ1,∆t=1 = 0.75

under the risk-neutral measure. The difference between the two measures reflects the risk

premium. The ∆t = 0 state is very persistent, with the probability of staying in this state(
α00,∆l

t
, αQ

00,∆l
t

)
being 95% or 100% when ∆l

t = 0. The numbers are lower when ∆l
t = 1, and

they are 89% or 82% . By contrast, the ∆t = 1 state is much less persistent. The spread

spt follows a persistent autoregressive process under both measures. Other parameters are

comparable to what we see in the literature.
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Table 1: Maximum likelihood estimates
α1,∆t=0 0.0000 αQ1,∆t=0 0.0000

(0.0000) (0.0000)

α1,∆t=1 1.0000 αQ1,∆t=1 0.7510
(0.0000) (0.1777)

α00,∆l
t=0 0.9464 αQ

00,∆l
t=0

1.0000

(0.0344) (0.0000)

α11,∆l
t=0 0.0002 αQ

11,∆l
t=0

0.0012

(0.0005) (0.0023)

α00,∆l
t=1 0.8857 αQ

00,∆l
t=1

0.8232

(0.0770) (0.0587)

α11,∆l
t=1 0.0000 αQ

11,∆l
t=1

0.7516

(0.0001) (0.1726)

αl
00 0.9735 αl,Q

00 1.0000
(0.0265) (0.0000)

αl
11 0.9013 αl,Q

11 0.8815
(0.0331) (0.0429)

1200µsp 0.0114 1200µQsp 0.0084
(0.0000) (0.0049)

ρsp 0.8674 ρQsp 0.9361
(0.0000) (0.0407)

1200σsp 0.0786
(0.0045)

1200µ -0.0272 -1.2246 0.9167 1200µQ 0 0 0
(0.1385) (1.2907) (1.2592)

ρ 0.9932 0.0265 0.0228 ρQ 0.9964 0 0
(0.0250) (0.0177) (0.0181) (0.0005)
-0.1136 0.4675 -0.4494 0 0.9293 0
(0.2628) (1.3064) (1.3295) (0.0032)
0.0581 0.3983 1.3133 0 0 0.9257

(0.2547) (1.2818) (1.3047) (0.0034)
|eig(ρ)| 0.9875 0.8939 0.8939
δ0 7.6098

(0.5368)
1200Σ 0.5961 0 0

(0.0511)
-12.5099 10.4538 0
(0.8773) (0.2589)
11.8193 -10.3705 0.1715
(0.8712) (0.2415) (0.0264)

1200ω 0.0235
(0.0000)

Notes: Maximum likelihood estimates with quasi-maximum likelihood standard errors in parentheses. Sam-
ple: July 2005 to June 2017.
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Figure 5: Filtered probabilities for different states
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5 Markets’ information on the NIRP

In this section, we extract the market’s expectations on the NIRP from the yield curve using

our SRTSM. We first filter out the probabilities for different policy states over time. Then

we extract the model implied probability of a rate cut, and compare it with some survey

data. Finally, we illustrate superior information contained in our model that is not available

in survey.

First, Figure 5 plots the filtered probability for each policy state. Blue is the dominant

state: it covers most of the space from December 2012 to September 2015 and from December

2016 to the end of the sample, which constitutes 70% of the ELB period. In this state, the

yield curve is basically flat (see the blue line in the right panel of Figure 3). The remainder

of the sample is mainly in yellow and purple. The probability of the purple state peaked

twice in November 2015 and February 2016, which are the months before the ECB lowered

the deposit rate to -0.3% and -0.4%, respectively. The purple area corresponds to the purple

line in the right panel of Figure 3, and the yield curve is downward sloping. The yellow
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state corresponds to the yellow line in Figure 3, where the yield curve is initially flat, and

then slope downwards. This state indicates agents do not expect the central bank to cut

rates in the next month. However, they do expect future policy actions. The yellow area

dominates between July and November in 2012, and from March to November in 2016. The

least prominent state is in red, which implies agents expect the central bank to make an

immediate cut, but they also think this cut is the last one in the history. This scenario

appears less plausible.

Figure 6: Probability of rate cut
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Notes: Red crosses: time t− 1 probability of rate cut for month t from our model: Pt−1(rdt = rdt−1 − 0.1) =
α1,∆t−1=0 × Pt−1(∆t−1 = 0) + α1,∆t−1=1 × Pt−1(∆t−1 = 1). Black circles: Bloomberg survey expectation,
measured as the fraction of respondents that expect a cut. Blue bars: the four rate cuts in June 2014,
September 2014, December 2015, and March 2016. X-axis: time. Y-axis: probability.

Next, we compute the one-month ahead probability of a cut on the policy rate from our

model and compare it with the Bloomberg survey which is conducted one week before the

central bank’s scheduled meetings. Figure 6 plots the four actual cuts in blue vertical bars

together with our model predictions in red crosses and the Bloomberg survey expectations

in black dots. On June 5, 2014, the ECB cuts the rate from 0 to -0.1% for the first time.

In May, our model predicts this event with more than 50% probability. As a comparison,

over 90% of the respondents of the Blomberg survey expected the cut. The second cut in
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September 2014 was a surprise to both economists and the market. The next two cuts from

-0.2% to -0.3%, and then subsequently to -0.4%, were largely anticipated. For the rest of the

meetings, market participants do not price in much probability of an immediate cut. This

exercise confirms market participants’ expectations are consistent with economists’ views.

Figure 7: Expected deposit facility rate

-6 -5 -4 -3 -2 -1 0
-0.1

-0.05

0
t = 2014 Jun

E
t-h

(r
t
d)

E
t-h
Q (r

t
d)

r
t-h
d

-6 -5 -4 -3 -2 -1 0
-0.2

-0.1

0
t = 2014 Sep

-6 -5 -4 -3 -2 -1 0
-0.3

-0.25

-0.2
t = 2015 Dec

-6 -5 -4 -3 -2 -1 0
-0.4

-0.3

-0.2
t = 2016 Mar

Notes: Blue lines with crosses are Et−h(rdt ); red lines with circles are EQt−h(rdt ); yellow dashed lines are rdt−h.
t = June 2014 (top left), September 2014 (top right), December 2015 (bottom left), and March 2016 (bottom
right). X-axis: −h, Y-axis: annualized interest rates in percentage points.

The Bloomberg survey is conducted one week before each meeting. The yield curve,

however, contains richer information and further into the future. In Figure 7, we further

inspect for how long the market has anticipated some of the developments. It plots the

market’s expectations h months before the four event dates for h = 0, 1, 2, ..., 6. The blue

lines with crosses are the physical expectations Et−h(rdt ), the red lines with circles are the

risk-neutral expectations EQt−h(rdt ), and the then deposit rates rdt−h are in yellow dashed lines.

The difference between the blue or red and the yellow lines captures an anticipated rate cut.

For now, we focus on the risk-neutral expectations (in red), because the yield curve pins them

down more accurately. We will return to the difference between the physical and risk-neutral

expectations in Subsection 6.2.
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Consistent with Figure 6, the June 2014 and December 2015 cuts were anticipated one

month ahead, whereas the September 2014 cut was completely unanticipated. The most

interesting case is March 2016. Under the risk-neutral expectation, a cut to -0.4% was

expected 4 months before, when the actual rate was -0.2%. Then agents revised up their

expectations for the next two months. Eventually, when h = 1, agents fully priced in the

-0.4% for the next month.

6 NIRP’s impact on the yield curve

6.1 Policy analyses

Assessing the impact of the NIRP is of great interest to both academia and policy makers,

and is one main goal of the paper. Different from the existing literature5, we focus on the

NIRP’s passthrough to interest rates, which operates as the main channel for monetary

policy to affect the macroeconomy.

We are interested in the the following question: what would have happened if the ECB

had not cut the deposit rate or provided any forward guidance to markets? Specifically, we

examine how the yield curve would have behaved if the deposit rate was unchanged from the

previous month and both ∆ and ∆l were at state 0 on the four days when the ECB lowered

the deposit rate by 10 basis points.

We plot the results of the experiment in Figure 8. The upper panels plot counterfactual

(in blue circles) and observed (in purple lines) yield curves, while the lower panels plot their

differences in blue circles. For all four dates, the short end of the yield curve would have

been 10 basis points higher if it were not for the expansionary policy. However, the NIRP

had different impacts in the medium run. For June and September 2014, the differences

between the counterfactual and observed yield curves are downward sloping, whereas those

5Much of the existing literature has focused on whether and how much the NIRP has affected banks’
profitability; see, for example, Borio et al. (2015), Jobst and Lin (2016), and Cœuré (2016).
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Figure 8: Policy analyses
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Notes: Upper panel: counterfactual and observed yield curves; lower panel: differences between counterfac-
tual and observed yield curves. Blue circles: counterfactual without negative interest rate policy; red dashed
lines: counterfactual without rate cuts; yellow crosses: counterfactual without forward guidance; purple
lines: observed yield curves as fitted by our model. X-axis: maturity. Y-axis: annualized interest rates in
percentage points.

for December 2015 and March 2016 have a humped shape.

To better understand this difference, we perform further experiments to decompose the

impact of a rate cut from that of forward guidance. First, we assume that the deposit rate

did not change, and plot it in red dashed lines. If the deposit rate were not cut, short-term

interest rates would have been about 10 basis points higher. Long-term interest rates would

also have been higher but by less amount. That is because the deposit rate is less relevant

for longer horizons, where the probability for the lower bound to bind becomes smaller.

In the second experiment, we assume that both ∆ and ∆l were 0, and plot it in yellow

crosses. Forward guidance did not have any impact on the first two dates, implying markets

did not price in any future cuts. In contrast, on the last two dates, forward guidance had

a sizable impact, mainly in the middle section. Specifically, markets expect further easing,

lowering the two-year rate by about 10 basis points.

The NIRP has a broader impact on the yield curve than just the four event dates. Figure 9
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Figure 9: Policy analyses - time series
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provides a complete picture of the NIRP over the entire ELB period. We plot the difference

between counterfactual and observed interest rates over time for short, medium, and long

maturities. The top, middle, and bottom panels correspond to counterfactuals where the

policy rate were not cut, forward guidance were absent, and both. From the top panels,

the impact of rate cut shows up only on the four dates studied in Figure 8, and it is more

prominent on the short end. Intuitively, forward guidance lowered the yield curve the month

before the first, third and fourth cuts. For the first one, it disappeared on the month of the

actual cut. However, for the last two event dates, forward guidance prevailed even when and

after the cut was realized, and it continued to put downward pressure on yields till late 2016.

Forward guidance also lowered the yield curve at the beginning of the sample in 2013. Across

different maturities, forward guidance has the most influence on medium-term interest rates,

2-year rate for example. The NIRP constitutes both rate cut and forward guidance.

6.2 Risk premium

In Figure 7, there is a wedge between the physical (in blue) and risk-neutral (in red) expec-

tations of the deposit rate, which introduces a risk premium. Most of the time, risk-neutral

expectations are above or very close to physical expectations, reflecting a positive or near

zero risk premium. The intuition for this result is that risk-averse agents put more weight

on the bad state of the economy in the risk-neutral measure. Typically, agents associate a

rate cut with an expansionary monetary policy, which they expect to stimulate the economy.

Hence, we see higher risk-neutral expectations than their physical counterparts.

One prominent and interesting exception happened four months before March 2016, when

the difference between the risk-neutral and physical expectations was negative and reached

almost -10 basis points. In this case, economic agents might have taken a potential cut

in March 2016 as a sign of a weak economy, and hence put more weight into this “bad”

economic state.

A related concept is the term premium, which is one of the focal points for the term
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Figure 10: 10-year term premium
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Notes: Blue solid line: 10-year term premium from our main model; red dashed line: the regime-switching
portion of term premium. X-axis: time; Y-axis: interest rates in percentage points. Sample spans from July
2005 to June 2017.

structure literature.6 We plot the time series of the 10-year yield term premium for the Euro

area from our model in Figure 10. The overall term premium is in the blue solid line, and

that associated with the time variation of the deposit rate in the red dashed line. The red

line is positive and in the order of magnitude of 0.1%, which is consistent with what we find

in Figure 7.

The overall term premium has trended down since 2009. At the ELB, we observe some

negative term premia. This observation can mainly be attributed to the QE programs,

which purchase longer-term government bonds and reduce yields through the term premium

channel.7

7 Model comparison

Table 2 compares our model with several alternatives in terms of log likelihood values and

measurement errors. The first column is our main model specification. The second column

is our model without the ∆l
t state. Columns 3 to 5 are benchmark SRTSMs in the literature,

6See, for example, Duffee (2002), Wright (2011), Bauer et al. (2012, 2014), and Creal and Wu (2016).
7This channel has been discussed in Gagnon et al. (2011), Krishnamurthy and Vissing-Jorgensen (2011),

Hamilton and Wu (2012a), Wu and Zhang (2017), and Wu and Zhang (2018).
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Table 2: Model comparison

Mmain M∆t MS−TV MS−0 MS−.4 MG

full sample log likelihood 935.48 911.94 709.55 279.12 663.46 603.32

(n,m) Measurement errors of fnmt

(0,1) 3.62 4.11 8.01 14.32 4.13 5.50
(3,3) 6.20 6.51 6.39 16.04 6.61 7.38
(6,6) 5.83 6.66 6.72 16.70 6.39 9.06
(12,12) 6.24 6.48 6.81 16.21 6.96 5.91
(24,12) 8.75 8.92 9.33 15.14 10.63 11.10
(60,12) 8.25 8.47 8.24 9.34 8.29 8.44
(84,12) 5.05 4.94 4.96 6.18 5.63 5.79
(108,12) 8.17 8.20 8.13 9.01 9.22 8.77

ELB (n,m) Measurement errors of fnmt

(0,1) 1.42 1.35 10.67 20.89 3.55 3.98
(3,3) 3.64 3.93 3.97 22.44 5.00 4.41
(6,6) 3.87 4.83 5.08 23.52 4.57 6.56
(12,12) 3.40 4.38 5.52 22.66 5.54 1.91
(24,12) 4.59 4.89 6.67 18.71 10.05 9.69
(60,12) 8.92 9.17 8.97 11.24 8.71 9.16
(84,12) 4.32 4.74 4.81 6.55 5.22 6.82
(108,12) 6.92 7.10 7.39 8.36 9.23 9.29

Notes: Top panel: full sample from July 2005 to June 2017; bottom panel: ELB sample from July 2012
to June 2017. First column: our main model Mmain; second column: M∆t

without ∆l
t; third column:

benchmark shadow rate model MS−TV with myopic agents and time-varying lower bound equal to the
deposit rate; fourth column: benchmark shadow rate model MS−0 with a constant lower bound at zero;
fifth column: benchmark shadow rate model MS−.4 with a constant lower bound at -0.4%; sixth column:
benchmark GATSM. Measurement errors are in basis points, and computed as the root-mean-square errors
between observed and model-implied short rates and forward rates. Forward rate fnmt is the forward contract
from t+n to t+n+m. We highlight the smallest measurement errors, and the highest log likelihood value.
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Figure 11: Fitted yield curves
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benchmark model MBM−0 with a constant lower bound at zero; green dashed line: benchmark model
MBM−.4 with a constant lower bound at -0.4%; light blue dotted line: GATSM MG. X-axis: maturity; Y-
axis: interest rates in percentage points. Top left panel: February 2006; top right panel: July 2013; bottom
left: February 2016; bottom right: July 2016.

and the corresponding lower bounds are specified as the current deposit rate, 0, and -0.4%,

respectively. Note, agents are not forward looking in terms of the lower bound in these

existing SRTSMs. The last column is the GATSM. See details in Appendix C.

Our main model has the highest likelihood value, and provides the best overall fit to the

forward curve with smaller measurement errors. All the evidence points to the conclusion

that the data favor our main model over these alternative model specifications.

Figure 11 provides some visual evidence by comparing the observed data in red dots with

yield curves implied by various models. When the ELB was not binding (see the top left

panel), all models fit the data similarly well. When the yield curve has a flat short end at the

beginning of the ELB (see the top right panel), our main model and M∆t provide a better
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fit than other models. In theory, the existing shadow rate models MS−TV , MS−0, and MS−.4

should be able to fit this pattern. But in practice, because they ignore the spread between

the deposit rate and EONIA, discrepancies appear at the very short end. The GATSM is

expected to perform poorly in this case, which is what motivates the entire literature on the

SRTSM. Not able to fit the flat short end of the yield curve makes the GATSM one of the

worst models; see Table 2.

In the bottom panels, none of the SRTSMs existing in the literature are able to generate a

downward sloping short end to mimic the data when the NIRP is in play. Intuitively, agents

in these models are myopic, and do not expect further development of the policy rate. Both

our main model and M∆t are able to generate a downward slope through agents’ expectations

that the future deposit rate might further decrease. However, M∆t is not flexible enough to

match the data for both February and August 2016. Our main model, which is motivated

by various shapes of the yield curve in Figure 1, fits all the dates well.

8 Conclusion

We have proposed a new shadow rate term structure model that captures the NIRP in the

Euro area. We model the discrete movement of the deposit rate with a simple and intuitive

regime-switching model. To capture various shapes in the short end of the yield curve, we

introduce two latent state variables: one for the immediate monetary policy stance, and the

other for future stance in longer horizons. We illustrate that the two do not always coincide,

and therefore, it is useful to have both of the indicators. Compared to alternative models,

including several SRTSMs proposed in the literature, and the GATSM, our new model fits

the data the best.

We use our model to extract the market’s expectations on the NIRP. Overall, expectations

of financial market participants from our model agree with economists’ expectations of the

Bloomberg survey. Our model has the advantage over the Bloomberg survey because we can
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extract the market’s expectations further into the future, whereas the Bloomberg surveys

are collected only one week before meetings for monetary policy. We find the June 2014

and December 2015 cuts were expected the month before, and the September 2014 cut was

entirely unanticipated. Most interestingly, the March 2016 cut was expected 4 months before

the actual cut.

We then evaluate the NIRP’s impact on the yield curve with counterfactual policy anal-

yses. The NIRP lowered the short end of the yield curve by 10 basis points on all four days

when ECB lowered the deposit rate. The impact decreased with maturity for the first two

dates. It featured a humped shape for the last two dates. Specifically, the biggest changes

happened for interest rates with maturities around 2 years, which would have been around

20 basis points higher if it were not for the NIRP actions.

We also measure the risk premium associated with the NIRP. We find most of the time,

this risk premium is positive or close to zero, which means agents typically associate a rate

cut with an expansionary monetary policy. One exception is four months before the March

2016 cut, when the difference between the risk-neutral and physical expectations was almost

-10 basis points. Our interpretation is that agents took a potential cut in March 2016 as a

sign of weak economic outlook. Relatedly, the NIRP also drives a small but positive term

premium on the 10-year yield.
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Appendix A Deriving pricing formula

As shown in Wu and Xia (2016), the forward rate is

fnt ≈ E
Q
t [rt+n]− 1

2

(
VarQt

[ n∑
j=1

rt+j

]
−VarQt

[ n−1∑
j=1

rt+j

])
. (A.1)

Appendix A.1 Model with rt+n
Wu and Xia (2016) show (A.1) can be further approximated:

fnt ≈ E
Q
t [max(st+n, rt+n)]−Qt(st+n ≥ rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])
.

The right-hand side equals

∑
rt+n

−Qt(st+n ≥ rt+n|rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])

+EQt [max(st+n, rt+n|rt+n)]
]
Qt(rt+n).

According to Wu and Xia (2016), the expression inside the sum conditioning on the lower bound
equals

rt+n + σQn g

(
an + b′nXt − rt+n

σQn

)
.

Hence, we obtain (3.10).

Appendix A.2 Model with rt+n and spt+n

First,

Qt(st+n − spt+n) ∼ N
(
ān + b′nXt − cn − dnspt, (σ̃Qn )2

)
,

where ān ≡ δ0 + δ′1

(∑n−1
j=0

(
ρQ
)j)

µQ. The first term on the right-hand side of (A.1) is

E
Q
t [rt+n] = E

Q
t [max(rt+n + spt+n, st+n)]

= E
Q
t [max(rt+n, st+n − spt+n) + spt+n]

=
∑
rt+n

Qt(rt+n)EQt [max(rt+n, st+n − spt+n)|rt+n] + EQt (spt+n)

=
∑
rt+n

Qt(rt+n)

(
rt+n + σ̃Qn g

(
ān + b′nXt − cn − dnspt − rt+n

σ̃Qn

))
+ cn + dnspt,
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where the derivation for the last equal sign follows Wu and Xia (2016).
The second term of (A.1) is

1

2

(
VarQt

[ n∑
j=1

rt+j

]
−VarQt

[ n−1∑
j=1

rt+j

])

≈ Qt(st+n − spt+n ≥ rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])

=
∑
rt+n

Qt(rt+n)Qt(st+n − spt+n ≥ rt+n|rt+n)× 1

2

(
VarQt

[ n∑
j=1

st+j

]
−VarQt

[ n−1∑
j=1

st+j

])

=
∑
rt+n

Qt(rt+n)Φ

(
ān + b′nXt − cn − dnspt − rt+n

σ̃Qn

)
× (ān − an),

where the first approximation sign and last equal sign follow Wu and Xia (2016).
Adding them together yields (4.2):

fnt ≈
∑
rt+n

Qt(rt+n)

(
rt+n + σ̃Qn g

(
an + b′nXt − cn − dnspt − rt+n

σ̃Qn

))
+ cn + dnspt

=
∑
rt+n

Qt(rt+n)

(
rt+n + cn + dnspt + σ̃Qn g

(
an + b′nXt − cn − dnspt − rt+n

σ̃Qn

))
,

where the approximation follows Wu and Xia (2016).

Appendix B Estimation

We adapt the algorithm of Kim (1994) to our model by incorporating the extended Kalman filter.
Stack the observation equation in (4.6) for all maturities together with (4.5):

F o
t = F (Xt, spt, r

d
t ,Ξt) + η̃t, where η̃t ∼ N(0, ω2I8).

Define Yt ≡ {F o
1:t, r

d
1:t, sp1:t}, and Ξt ≡ {∆t,∆

l
t}.

Step 1: Approximate the conditional distribution of Xt with Xt|Ξt,Yt ∼ N(X̂Ξt

t|t , P
Ξt

t|t ). We

initialize X̂s0

0|0 = (I3 − ρ)−1µ, vec(P s0

0|0) = (I9 − (ρ ⊗ ρ))−1vec(ΣΣ′), and P(s0) follows a discrete
uniform distribution.
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We apply the extended Kalman filter as follows:

X̂
Ξt+1,Ξt

t+1|t = µ+ ρX̂Ξt

t|t , (B.1)

P
Ξt+1,Ξt

t+1|t = ρPΞt

t|t ρ
′ + ΣΣ′, (B.2)

η̃
Ξt+1,Ξt

t+1|t = F o
t+1 − F (X̂

Ξt+1,Ξt

t+1|t , spt+1, r
d
t+1,Ξt+1), (B.3)

H
Ξt+1,Ξt

t+1|t =

 ∂F (Xt+1, spt+1, r
d
t+1,Ξt+1)

∂X ′t+1

∣∣∣∣∣
Xt+1=X̂

Ξt+1,Ξt
t+1|t

′ , (B.4)

K
Ξt+1,Ξt

t+1|t = P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t

(
(H

Ξt+1,Ξt

t+1|t )′P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t + ωI8

)−1
, (B.5)

X̂
Ξt+1,Ξt

t+1|t+1 = X̂
Ξt+1,Ξt

t+1|t +K
Ξt+1,Ξt

t+1|t η̃
Ξt+1,Ξt

t+1|t , (B.6)

P
Ξt+1,Ξt

t+1|t+1 =
(
I3 −KΞt+1,Ξt

t+1|t (H
Ξt+1,Ξt

t+1|t )′
)
P

Ξt+1,Ξt

t+1|t . (B.7)

Note we will write out X
Ξt+1

t+1|t+1 and P
Ξt+1

t+1|t+1 in terms of X
Ξt+1,Ξt

t+1|t+1 and P
Ξt+1,Ξt

t+1|t+1 in Step 3 to complete
the iteration. The likelihood for bond prices at t+ 1 is

P(F o
t+1|rdt+1, spt+1,Yt,Ξt+1,Ξt)

=
(

2π
∣∣∣(HΞt+1,Ξt

t+1|t )′P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t + ωI8

∣∣∣)−1/2

exp

(
−1

2
(η̃

Ξt+1,Ξt

t+1|t )′
∣∣∣(HΞt+1,Ξt

t+1|t )′P
Ξt+1,Ξt

t+1|t H
Ξt+1,Ξt

t+1|t + ωI8

∣∣∣−1
η̃

Ξt+1,Ξt

t+1|t

)
. (B.8)

Step 2: We compute the distribution P(Ξt+1, |Yt+1) as follows:

P(Ξt+1|Yt+1) =
∑
Ξt

P(Ξt+1,Ξt|Yt+1), (B.9)

where

P(Ξt+1,Ξt|Yt+1) =
P(F o

t+1, r
d
t+1, spt+1,Ξt+1,Ξt|Yt)

P(F o
t+1, r

d
t+1, spt+1|Yt)

=
P(F o

t+1, r
d
t+1, spt+1|Ξt+1,Ξt,Yt)P(Ξt+1,Ξt|Yt)
P(F o

t+1, r
d
t+1, spt+1|Yt)

=
P(F o

t+1, r
d
t+1, spt+1|Ξt+1,Ξt,Yt)P(Ξt+1,Ξt|Yt)∑

Ξt+1,Ξt
P(F o

t+1, r
d
t+1, spt+1|Ξt+1,Ξt,Yt)P(Ξt+1,Ξt|Yt)

. (B.10)

We compute P(Ξt+1,Ξt|Yt) as follows:

P(Ξt+1,Ξt|Yt) = P(Ξt+1|Ξt)P(Ξt|Yt)
= P(∆t|∆t−1,∆

l
t−1)P(∆l

t|∆l
t−1)P(Ξt|Yt), (B.11)
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where the first two terms are given by the P version of (2.4) and (2.5), respectively.
We compute P(F o

t+1, r
d
t+1, spt+1|Yt,Ξt+1,Ξt) in (B.10) as follows:

P(F o
t+1, r

d
t+1, spt+1|Yt,Ξt+1,Ξt) = P(F o

t+1|rdt+1, spt+1,Yt,Ξt+1,Ξt)

P(rdt+1|spt+1,Yt,Ξt+1,Ξt)P(spt+1|Yt,Ξt+1,Ξt). (B.12)

The first term in (B.12) is calculated in (B.8). Using (2.2), the second term is

P(rdt+1|spt+1,Yt,Ξt+1,Ξt) = P(rdt+1|rdt ,∆t) = 1{rdt+1=rdt }
× (1− α1,∆t) + 1{rdt+1=rdt−0.1%} × α1,∆t .

Using the P version of (4.1), the third term in (B.12) is

P(spt+1|Yt,Ξt+1,Ξt) = P(spt+1|spt) = (2πσ2
sp)
−1/2 exp

(
−(spt+1 − µsp − ρspspt)2

2σ2
sp

)
.

With (B.11) and (B.12), we can also calculate the log likelihood for period t+ 1

P(F o
t+1, r

d
t+1, spt+1|Yt) =

∑
Ξt+1,Ξt

P(F o
t+1, r

d
t+1, spt+1|Yt,Ξt+1,Ξt)P(Ξt+1,Ξt|Yt). (B.13)

Step 3: Finally, we can complete the recursion in (B.1) - (B.7) with

X̂
Ξt+1

t+1|t+1 =

∑
Ξt
P(Ξt+1,Ξt|Yt+1)X̂

Ξt+1,Ξt

t+1|t+1

P(Ξt+1|Yt+1)
,

P
Ξt+1

t+1|t+1 =

∑
Ξt
P(Ξt+1,Ξt|Yt+1)

(
P

Ξt+1,Ξt

t+1|t+1 + (X̂
Ξt+1

t+1|t+1 − X̂
Ξt+1,Ξt

t+1|t+1)(X̂
Ξt+1

t+1|t+1 − X̂
Ξt+1,Ξt

t+1|t+1)′
)

P(Ξt+1|Yt+1)
,

where X̂
Ξt+1,Ξt

t+1|t+1 and P
Ξt+1,Ξt

t+1|t+1 are calculated in (B.6) and (B.7), and P(Ξt+1|Yt+1) is from (B.9).

Log likelihood The log likelihood is
∑T−1

t=0 log
(
P(F o

t+1, r
d
t+1, spt+1|Yt)

)
. At the ELB, P(F o

t+1, r
d
t+1, spt+1|Yt)

is calculated in (B.13). Before the ELB, spt, r
d
t ,Ξt are all irrelevant, and P(F o

t+1, r
d
t+1, spt+1|Yt) =

P(F o
t+1|F o

t ), which is computed by (B.8) through the extended Kalman filter in (B.1) - (B.7) by
ignoring Ξt,Ξt+1.

Appendix C Alternative models

39



Table C.1: Model specifications

short description full description

Mmain main model The main model specified in Sections 2-3.

M∆t model with only ∆t Impose α00,∆l
t

= α00, α11,∆l
t

= α11, α
Q

00,∆l
t

=

αQ00, α
Q

11,∆l
t

= αQ11 on our main model.

MS−TV benchmark shadow rate
model with time-varying
lower bound and myopic
agents

rt = rdt for ELB. But agents are not forward look-
ing, and think the future lower bound would stay
where it is today. Also, spt = 0. This specification
is similar to Lemke and Vladu (2016), and Kortela
(2016).

MS−0 benchmark shadow rate
model with a constant
lower bound at 0

This model has a constant lower bound at 0, and
spt = 0. This is similar to Christensen and Rude-
busch (2014), Wu and Xia (2016), and Bauer and
Rudebusch (2016).

MS−.4 benchmark shadow rate
model with a constant
lower bound at -0.4%

This model is the same as the previous one, except
the lower bound is changed to -0.4%.

MG benchmark Gaussian affine
term structure model

In this model, rt = −∞.
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