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1 Introduction

The main goal of this paper is to forecast a collection of short time series. Examples are

the performance of start-up companies, developmental skills of small children, and revenues

and leverage of banks after significant regulatory changes. In these applications the key

difficulty lies in the efficient implementation of the forecast. Due to the short time span,

each time series taken by itself provides insufficient sample information to precisely estimate

unit-specific parameters. We will use the cross-sectional information in the sample to make

inference about the distribution of heterogeneous parameters. This distribution can then

serve as a prior for the unit-specific coefficients to sharpen posterior inference based on the

short time series.

More specifically, we consider a linear dynamic panel model in which the unobserved

individual heterogeneity, which we denote by the vector λi, interacts with some observed

predictors Wit−1:

Yit = λ′iWit−1 + ρ′Xit−1 + α′Zit−1 + Uit, i = 1, . . . , N, t = 1, . . . , T. (1)

Xit−1 is a vector of predetermined variables that may include lags of Yit, Zit−1 is a vector of

strictly exogenous covariates, and Uit is an unpredictable shock. Throughout this paper we

adopt a correlated random effects approach in which the λis are treated as random variables

that are possibly correlated with some of the predictors. An important special case is the

linear dynamic panel data model in which Wit−1 = 1, λi is a heterogeneous intercept, and

the sole predictor is the lagged dependent variable: Xit−1 = Yit−1.

We develop methods to generate point forecasts of YiT+1, assuming that the time di-

mension T is short relative to the number of predictors (WiT , XiT , ZiT ). The forecasts are

evaluated under a quadratic loss function. In this setting accurate estimates of the unit-

specific parameters λi facilitate accurate forecasts. Our paper builds on the dynamic panel

literature that has developed consistent estimators of the common parameters (α, ρ) and

focuses on the estimation of λi, which is essential for the prediction of Yit.

The benchmark for our prediction methods is the forecast that is based on the knowledge

of the common coefficients (α, ρ) and the distribution π(λi|·) of the heterogeneous coefficients

λi, but not the values λi themselves. This forecast is called oracle forecast. Because we are

interested in forecasts for the entire cross section of N units, a natural notion of risk is that

of compound risk, which is a (possibly weighted) cross-sectional average of expected losses.
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In a correlated random-effects setting, this averaging is done under the distribution π(λi|·),
which means that the compound risk associated with the forecasts of the N units is the

same as the integrated risk for the forecast of a particular unit i. It is well known, that the

integrated risk is minimized by the Bayes predictor that minimizes the posterior expected

loss conditional on time T information for unit i. Thus, the oracle replaces λi by its posterior

mean under the prior distribution π(λi|·).

The implementation of the oracle forecast is infeasible because in practice neither the

common coefficients (ρ, α) nor the distribution of the unit-specific coefficients π(λi|·) are

known. To approximate the oracle predictor, we first replace the unknown common param-

eters by a consistent (N −→ ∞, T is fixed) estimator. Second, rather than computing the

posterior mean of λi based on the likelihood function and the prior π(λi|·), we use a formula –

attributed to separate works of the astronomer Arthur Eddington and the statistician Mau-

rice Tweedie – that expresses the posterior mean of λi as a function of the cross-sectional

density of certain sufficient statistics. We estimate this density either parametrically or

non-parametrically from the cross-sectional information in the panel data set and plug the

density estimate into what is in the statistics literature commonly referred to as Tweedie’s

formula. This leads to an empirical Bayes estimate of λi and an empirical Bayes predictor of

YiT+1.1 The posterior mean predictor shrinks the estimates of the unit-specific coefficients

toward a common prior mean, which reduces its sampling variability.

Our paper makes three contributions. First, we show in the context of the basic dynamic

panel data model that an empirical Bayes predictor based on a consistent estimator of (ρ, α)

and a kernel estimator of the cross-sectional density of the relevant sufficient statistics can

asymptotically (N −→ ∞, T is fixed) achieve the same compound risk as the oracle pre-

dictor. Our main theorem provides a significant extension of the central result in Brown

and Greenshtein (2009) from a vector-of-means model to a panel data model with estimated

common coefficients. Importantly, the convergence result is uniform over families Π of cor-

related random effects distributions π(λi|yi0) that contain point masses, i.e., span parameter

homogeneity. As in Brown and Greenshtein (2009), we are able to show that the rate of

convergence to the oracle risk accelerates in the case of homogeneous λ coefficients. Sec-

ond, we provide a detailed Monte Carlo study that compares the performance of various

implementations, both non-parametric and parametric, of our predictor. Third, we use our

techniques to forecast pre-provision net-revenues (PPNRs) of a panel of banks.

1A fully Bayesian procedure would place a prior distribution on π(λi|·) and then integrate over the
unknown density rather than replacing it with a plug-in estimate.
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Our empirical Bayes predictor can be compared to two easily implementable benchmark

predictors whose implicit assumptions about the distribution of the λi’s correspond to spe-

cial cases of our π(λi|·). The first predictor, which we call plug-in predictor, is obtained by

estimating λi conditional on (ρ̂, α̂) by maximum likelihood for each unit i. This predictor

can be viewed as an approximation to the empirical Bayes predictor if π(λi|·) is very unin-

formative relative to the likelihood function associated with unit i. The second predictor,

which we call pooled-OLS predictor, assumes homogeneity, i.e., λi = λ for all i, and is based

on a joint maximum likelihood estimate of (ρ, α, λ). It approximates the empirical Bayes

estimator if π(λi|·) is very concentrated relative to unit i’s likelihood.

Asymptotically, the plug-in predictor and the pooled-OLS predictor are suboptimal be-

cause they do not converge to the oracle predictor. However, in finite samples at least one of

them, depending on the amount of heterogeneity in the data, may work quite well because

they do not rely on (potentially noisy) density estimates. In our Monte Carlo simulations and

in the empirical analysis we document that in practice the empirical Bayes predictor dom-

inates, either weakly or strictly, both the plug-in predictor and the pooled-OLS predictor.

While our theoretical results are based on a kernel implementation of the empirical Bayes

predictor, in the Monte Carlo simulation and the empirical application we also consider fi-

nite mixture and nonparametric maximum likelihood estimates of the density of sufficient

statistics required for the evaluation of Tweedie’s formula.

In our empirical application we forecast PPNRs of bank holding companies. The stress

tests that have become mandatory under the Dodd-Frank Act require banks to establish

how revenues vary in stressed macroeconomic and financial scenarios. We capture the effect

of macroeconomic conditions on bank performance by including the unemployment rate,

an interest rate, and an interest rate spread in the vector Wit−1 in (1). Our analysis con-

sists of two steps. We first document the superior forecast accuracy of the empirical Bayes

predictor developed in this paper under the actual economic conditions, meaning that we

set the aggregate covariates to their observed values. In a second step, we replace the ob-

served values of the macroeconomic covariates by counterfactual values that reflect severely

adverse macroeconomic conditions. According to our estimates, the effect of stressed macroe-

conomic conditions on bank revenues is heterogeneous, but typically small relative to the

cross-sectional dispersion of revenues across holding companies.

Our paper is related to several strands of the literature. For α = ρ = 0 and Wit = 1

the problem analyzed in this paper reduces to the problem of estimating a vector of means,

which is a classic problem in the statistic literature. In this context, Tweedie’s formula has
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been used, for instance, by Robbins (1951) and more recently by Brown and Greenshtein

(2009) and Efron (2011) in a “big data” application. Throughout this paper we are adopting

an empirical Bayes approach, that uses cross-sectional information to estimate aspects of the

prior distribution of the correlated random effects and then conditions on these estimates.

Empirical Bayes methods also have a long history in the statistics literature going back to

Robbins (1956) (see Robert (1994) for a textbook treatment).

We use compound decision theory as in Robbins (1964), Brown and Greenshtein (2009),

Jiang and Zhang (2009) to state our optimality result. Because our setup nests the linear

dynamic panel data model, we utilize results on the consistent estimation of ρ in dynamic

panel data models with fixed effects when T is small, e.g., Anderson and Hsiao (1981),

Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998), Alvarez

and Arellano (2003). Fully Bayesian approaches to the analysis of dynamic panel data models

have been developed in Chamberlain and Hirano (1999), Hirano (2002), Lancaster (2002).

The papers that are most closely related to ours are Gu and Koenker (2016, 2017). They

also consider a linear panel data model and use Tweedie’s formula to construct an approxima-

tion to the posterior mean of the heterogeneous regression coefficients. However, their main

object of interest is the estimation of the heterogeneous coefficients, and not out-of-sample

forecasting. Their papers implement the empirical Bayes predictor based on a nonparametric

maximum likelihood estimator, following Kiefer and Wolfowitz (1956), of the cross-sectional

distribution of the sufficient statistics, but do not provide any theoretical optimality result.

A key contribution of our work is to establish a rate at which the regret associated with the

empirical Bayes predictor vis-a-vis the oracle predictor vanishes uniformly across families

of correlated random-effects distributions Π that include point masses. Moreover, we also

provide novel Monte Carlo and empirical evidence on the performance of the empirical Bayes

procedures.

Liu (2018) develops a fully Bayesian (as opposed to empirical Bayes) approach to gener-

ate panel data forecasts. She uses Dirichlet process mixtures (random effects) and mixtures

of Gaussian linear regressions (correlated random effects) to construct a prior for the distri-

bution of the heterogeneous coefficients, which then is updated in view of the observed panel

data. While the fully Bayesian approach is more suitable for density forecasting and can be

more easily extended to nonlinear panel data models (see Liu, Moon, and Schorfheide (2018)

for an extension to a panel Tobit model), it is also a lot more computationally intensive.

Moreover, it is much more difficult to establish convergence rates. Liu (2018) shows that her
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posterior predictive density converges strongly to the oracle’s predictive density, but does

not establish uniform bounds on the regret associated with the Bayes predictor.

There is an earlier panel forecast literature (e.g., see the survey article by Baltagi (2008)

and its references) that is based on the best linear unbiased prediction (BLUP) proposed by

Goldberger (1962). Compared to the BLUP-based forecasts, our forecasts based on Tweedie’s

formula have several advantages. First, it is known that the estimator of the unobserved

individual heterogeneity parameter based on the BLUP method corresponds to the Bayes

estimator based on a Gaussian prior (see, for example, Robinson (1991)), while our estimator

based on Tweedie’s formula is consistent with much more general prior distributions. Second,

the BLUP method finds the forecast that minimizes the expected quadratic loss in the class

of linear (in (Yi0, ..., YiT )′) and unbiased forecasts. Therefore, it is not necessarily optimal in

our framework that constructs the optimal forecast without restricting the class of forecasts.

Third, the existing panel forecasts based on the BLUP were developed for panel regressions

with random effects and do not apply to correlated random effects settings.

Finally, there is a literature on “top-down” stress testing, which relies on publicly avail-

able bank-level income and capital data. Some authors, e.g. Covas, Rump, and Zakrajsek

(2014), use time series quantile regression techniques to analyze revenue and balance sheet

data for the relatively small set of bank holding companies with consolidated assets of more

than 50 billion dollars. There are slightly more than 30 of these companies and they are

subject to the Comprehensive Capital Analysis and Review conducted by the Federal Re-

serve Board of Governors. Because of mergers and acquisitions a lot of care is required to

construct sufficiently long synthetic data sets that are amenable to time series analysis.

Closer to our work are the studies by Hirtle, Kovner, Vickery, and Bhanot (2016) and

Kapinos and Mitnik (2016), which analyze PPNR components for a broader panel of banks.

The former paper considers, among other techniques, pooled OLS estimation of models for

bank income components and then uses the models to compute predictions under stressed

macroeconomic conditions. The latter paper compares a standard fixed effect approach, a

bank-by-bank time series approach, and fixed effects with optimal grouping in terms of out-

of-sample forecasts, and finds that the bank-by-bank time-series approach does not perform

well while the grouping approach provides better performance, which parallels our findings

that the empirical Bayes methods usually outperform pooled OLS and plug-in predictors.

The remainder of the paper is organized as follows. Section 2 specifies the forecasting

problem in the context of the basic dynamic panel data model. We introduce the compound
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decision problem, present the oracle forecast and its implementation through Tweedie’s for-

mula, and discuss the practical implementation. Section 3 establishes the ratio optimality of

the empirical Bayes predictor and contains the main theoretical result of the paper. Monte

Carlo simulation results are presented in Section 4. Section 5 discusses extensions to a more

general linear panel data model with covariates and presents identification results for the

homogeneous parameters and the correlated random effects distribution. The empirical ap-

plication is presented in Section 6 and Section 7 concludes. Technical derivations, proofs, and

the description of the data set used in the empirical analysis are relegated to the Appendix.

2 The Basic Dynamic Panel Data Model

We consider a panel with observations for cross-sectional units i = 1, . . . , N in periods

t = 1, . . . , T . The goal is to generate a point forecast for each unit i for period t = T + h.

For now, we set h = 1 and assume that the observations Yit are generated from a basic

dynamic panel data model with homoskedastic Gaussian innovations:

Yit = λi + ρYit−1 + Uit, Uit ∼ iidN(0, σ2), (λi, Yi0) ∼ iid π(λ, y0). (2)

This model is a restricted version of (1), where Wit−1 = 1, Xit−1 = Yit−1, and α = 0. Thus,

λi is a unit-specific (heterogeneous) intercept. We combine the homogeneous parameters

into the vector

θ = (ρ, σ2).

The purpose of investigating the simple model is to develop a full econometric theory of

optimal forecasting.

In Section 2.1 we define the loss function under which the forecasts are evaluated and

specify how we take expectations to construct our measure of risk. We construct an infeasible

benchmark forecast in Section 2.2. This so-called oracle forecast is based on the posterior

mean of λi under the prior π(λ, y0). The posterior mean can be conveniently evaluated using

Tweedie’s formula, which is discussed in Section 2.3. Finally, Section 2.4 describes how the

infeasible oracle forecast can be turned into a feasible forecast by replacing unknown objects

with estimates based on the cross-sectional information contained in the panel. Later in

Section 5, we discuss extensions to the more general forecasting model (1), which is more

relevant to empirical applications.
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2.1 Compound Risk

The unit-specific forecasts Ŷi,T+1 are evaluated under the conventional quadratic loss function

and the forecast error losses are summed over the units i to obtain the compound loss

LN(Ŷ N
T+1, Y

N
T+1) =

N∑
i=1

(ŶiT+1 − YiT+1)2, (3)

where Y N
T+1 = (Y1T+1, . . . , YNT+1). We define the compound risk by taking expectations over

(indicated by superscripts) the observed trajectories YN = (Y 0:T
1 , . . . , Y 0:T

N ) with Y 0:T
i =

(Yi0, Yi1, . . . , YiT ), the unobserved heterogeneous coefficients λN = (λ1, . . . , λN), and future

shocks UN
T+1 = (U1T+1, . . . , UNT+1):

RN(Ŷ N
T+1) = EY

N ,λN ,UNT+1

θ,π

[
LN(Ŷ N

T+1, Y
N
T+1)

]
. (4)

We use the subscripts to indicate that the expectation is conditional on the homogeneous

parameter θ and the correlated random effects distribution π. Upper case variables, e.g., Yit,

are generally used to denote random variables, and lower case variables, e.g., yit, to denote

their realizations.

2.2 Oracle Forecast

In order to develop an optimality theory for the panel data forecasts, we begin by character-

izing an infeasible benchmark forecast, which is called the oracle forecast. In the compound

decision theory it is assumed that the oracle knows the distribution of the heterogeneous

coefficients π(λi, hi), but it does not know the specific λi for unit i. In addition, the oracle

knows θ and has observed the trajectories YN .

Conditional on θ, the compound risk takes the form of an integrated risk that can be

expressed as

RN(Ŷ N
T+1) = EYNθ,π

[
Eλ

N ,UNT+1

θ,π,YN [LN(Ŷ N
T+1, Y

N
T+1)]

]
. (5)

The inner expectation can be interpreted as posterior risk, which is obtained by conditioning

on the observations YN and integrating over the heterogeneous parameter λN and the shocks

UN
T+1. The outer expectation averages over the possible trajectories YN . It is well known that

the integrated risk is minimized by choosing the forecast that minimizes the posterior risk
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(with the understanding that we are conditioning on (θ, π) throughout) for each realization

YN .

Using the independence across i, the posterior risk can be written as follows:

Eλ
N ,UNT+1

θ,π,YN [LN(Ŷ N
T+1, Y

N
T+1)] =

N∑
i=1

{(
ŶiT+1 − Eλi,UiT+1

θ,π,Yi [YiT+1]
)2

+ Vλi,UiT+1

θ,π,Yi [YiT+1]

}
, (6)

where Vλi,UiT+1

θ,π,Yi [·] is the posterior predictive variance of YiT+1. The decomposition of the risk

into a squared bias term and the posterior variance of YiT+1 implies that the optimal predictor

is the mean of the posterior predictive distribution. Because UiT+1 is mean-independent of

λi and Yi, we obtain

Ŷ opt
iT+1 = Eλi,UiT+1

θ,π,Yi [YiT+1] = Eλiθ,π,Yi [λi] + ρYiT . (7)

The compound risk associated with the oracle forecast is

Ropt
N = EYNθ

[
N∑
i=1

{
Vλi
θ,π,Yi [λi] + σ2

}]
. (8)

According to (8), the compound oracle risk has two components. The first component re-

flects uncertainty with respect to the heterogeneous coefficient λi and the second component

captures uncertainty about the error term UiT+1. Unfortunately, the direct implementation

of the oracle forecast is infeasible because neither the parameter vector θ nor the correlated

random effect distribution (or prior) π(·) are known. Thus, the oracle risk Ropt
N provides a

lower bound for the risk that is attainable in practice.

2.3 Tweedie’s Formula

The posterior mean Eλiθ,Yi [λi] that appears in (7) can be evaluated using a formula which

is named after the statistician Maurice Tweedie (though it had been previously derived by

the astronomer Arthur Eddington). This formula is convenient for our purposes, because it

expresses the posterior mean not as a function of the in practice unknown correlated random

effects density π(λi, yi0) but instead in terms of the marginal distribution of a sufficient

statistic, which can be estimated from the cross-sectional information.

The contribution of unit i to the likelihood function associated with the basic dynamic
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panel data model in (2) is given by

p(y1:T
i |yi0, λi, θ) ∝ exp

{
− 1

σ2

T∑
t=1

(yit − ρyit−1 − λi)2

}
∝ exp

{
− T
σ2

(
λ̂i(ρ)− λi

)2
}
, (9)

where ∝ denotes proportionality and the sufficient statistic λ̂i(ρ) is

λ̂i(ρ) =
1

T

T∑
t=1

(Yit − ρYit−1). (10)

Using Bayes Theorem, the posterior distribution of λi can be expressed as

p(λi|y0:T
i , θ) = p(λi|λ̂i, yi0, θ) =

p(λ̂i|λi, yi0, θ)π(λi|yi0)

exp
{

ln p(λ̂i|yi0)
} , (11)

where p(λ̂i|λi, yi0, θ) is proportional to the right-hand side of (9).

To obtain a representation for the posterior mean, we now differentiate the equation∫
p(λi|λ̂i, yi0, θ)dλ = 1 with respect to λ̂i. Exchanging the order of integration and differen-

tiation and using the properties of the exponential function, we obtain

0 =
1

σ2

∫
(λi − λ̂i)p(λi|λ̂i, yi0, θ)dλi −

∂

∂λ̂i
ln p(λ̂i|yi0, θ)

=
1

σ2

(
Eλiθ,π,Yi [λi]− λ̂i

)
− ∂

∂λ̂i
ln p(λ̂i|yi0, θ).

Solving this equation for the posterior mean yields Tweedie’s formula:2

Eλiθ,π,Yi [λi] = λ̂i(ρ) +
σ2

T

∂

∂λ̂i(ρ)
ln p(λ̂i(ρ), Yi0). (12)

Tweedie’s formula was used by Robbins (1951) to estimate a vector of means λN for

the model Yi|λi ∼ N(λi, 1), λi ∼ π(·), i = 1, . . . , N . Recently, it was extended by Efron

(2011) to the family of exponential distributions, allowing for an unknown finite-dimensional

parameter θ. The posterior mean takes the form of the sum of the sufficient statistic λ̂i(θ) and

a correction term that captures the effect of the prior distribution of λi on the posterior. The

correction term is expressed as a function of the marginal density of the sufficient statistic

2We replaced the conditional log density ln p(λ̂i(ρ), Yi0) by the joint log density ln p(λ̂i(ρ), Yi0) because
the two differ only by a constant which drops out after the differentiation.
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λ̂i(θ) conditional on Yi0 and θ. Thus, to evaluate the posterior mean, it is not necessary to

explicitly solve a deconvolution problem that separates the prior density π(λi|yi0) from the

distribution of the error terms Uit.

2.4 Implementation

We approximate the oracle forecast using an empirical Bayes approach that replaces the

unknown objects θ and p(λ̂i(ρ), Yi0) in (12) by estimates that exploit the cross-sectional in-

formation. A key requirement for an estimator of the homogeneous parameter θ is that it is

consistent. In our basic dynamic panel data model, consistency can be achieved by various

types of generalized method of moments (GMM) estimators, e.g., Arellano and Bond (1991),

Arellano and Bover (1995), or Blundell and Bond (1998), or by a quasi-maximum-likelihood

estimator (QMLE) that integrates out the heterogeneous λi’s under the misspecified corre-

lated random effects distribution λi|Yi0 ∼ N(φ0 + φ1Yi0,Ω).3 The density p(λ̂i(ρ), Yi0) could

be estimated using kernel methods, a mixture approximation, or nonparametric maximum

likelihood. In the next section, we provide an optimality result for the kernel estimator and

we illustrate the performance of other estimators in a Monte Carlo study in Section 4.

3 Ratio Optimality

We now will prove that the predictor Ŷ N
T+1 that is constructed by replacing θ with a consistent

estimator θ̂ and by replacing p(λ̂i(ρ), Yi0) with a kernel density estimator achieves ε0-ratio

optimality uniformly for priors π ∈ Π. That is, for any ε0 > 0

lim sup
N→∞

sup
π∈Π

RN(Ŷ N
T+1; π)−Ropt

N (π)

NEYNθ,π
[
Vλi
θ,π,Yi [λi]

]
+N ε0

≤ 0. (13)

The convergence is uniform with respect to the correlated random effects distributions π

in some set Π that we will characterize in more detail below. The uniformity holds in the

neighborhood of point masses for which the prior and posterior variances of λi are zero.

Thus, the convergence statement covers the case of λi being homogeneous across i.

First, consider the numerator in (13). The autoregressive coefficient in basic dynamic

panel model can be
√
N -consistently estimated, which suggests that

∑N
i=1(ρ̂ − ρ)2Y 2

iT =

3This estimator is described in more detail in Section 4 and its consistency is proved in the Online
Appendix.
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Op(1). Thus, whether a predictor ŶiT+1 attains ratio optimality crucially depends on the

rate at which the discrepancy between Eλiθ,π,Yi [λi] and Êλiθ,π,Yi [λi] vanishes, where the latter is

a function of a nonparametric estimate of p(λ̂i(ρ), Yi0). Second, note that the denominator of

the ratio in (13) is strictly positive due to the N ε0 term and divergent. The rate of divergence

depends on the posterior variance of λi. If the posterior variance is strictly greater than zero,

then the denominator is of order O(N). Because the posterior is based on a finite number of

observations T , the posterior variance is zero only if the prior density π(λ) is a point mass.

In this case the definition of ratio optimality requires that the regret vanishes at a faster

rate, because the rate of the numerator drops from O(N) to N ε0 .4

The proof of the ratio-optimality result presented below in Theorem 3.7 below is a signif-

icant generalization of the proof in Brown and Greenshtein (2009), allowing for the presence

of estimated parameters in the sufficient statistic λ̂(·) and uniformity with respect to the

correlated random effect density π(·), which is allowed to have a unbounded support. The

remainder of this section is organized as follows. The kernel estimator of p(λ̂i(ρ), Yi0) and

the resulting formula for the predictor ŶiT+1 are presented in Section 3.1. In Section 3.2

we provide high-level assumptions that lead to the main theorem. In Section 3.3 we show

that the high-level conditions are satisfied if π(·) belongs to a collection of finite-mixtures of

Gaussian random variables with bounded means and variances.

3.1 Kernel Estimation and Truncation

To facilitate the theoretical analysis, we use a leave-one-out kernel density estimator of the

form:

p̂(−i)(λ̂i(ρ), yi0) =
1

N − 1

∑
j 6=i

1

BN

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
1

BN

φ

(
Yj0 − yi0
BN

)
, (14)

where φ(·) is the pdf of a N(0, 1) and BN is the kernel bandwidth. Using the fact that the

observations are cross-sectionally independent and conditionally normally distributed one

4If it were known that the λi’s are in fact homogeneous and the model is estimated with a common
intercept, then

√
N(λ̂− λ) = Op(1) and the regret in the numerator would be O(1). Thus, the convergence

result could also be achieved by standardizing with sequences that diverge at a rate slower than N ε0 .
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can directly compute the expected value of the leave-one-out estimator:

EY(−i)

θ,π,Yi [p̂
(−i)(λ̂i, yi0)] =

∫
1√

σ2/T +B2
N

φ

(
λ̂i − λi√
σ2/T +B2

N

)
(15)

×
[∫

1

BN

φ

(
yi0 − ỹi0
BN

)
p(ỹi0|λi)dỹi0

]
p(λi)dλi.

Taking expectations of the kernel estimator leads to a variance adjustment for the conditional

distribution of λ̂i|λi (σ2/T + B2
N instead of σ2/T ) and the density of Yi0|λi is replaced by a

convolution. We define:

π∗(λ, y0) =

∫
1

BN

φ

(
y0 − ỹ0

BN

)
π(λ, ỹ0)dỹ0 (16)

p∗(λ̂, y0; π) =

∫
1√

σ2/T +B2
N

φ

(
λ̂− λ√

σ2/T +B2
N

)
π∗(λ, y0)dλ,

such that we can write

EY(−i)

θ,π,Yi [p̂
(−i)(λ̂i, yi0)] = p∗(λ̂i, yi0; π). (17)

In view of the variance adjustment for the distribution of λ̂i|λi induced by taking expec-

tations of the kernel estimator, we replace the scale factor σ2/T in the Tweedie correction

term in (12) by σ̂2/T +B2
N . Moreover, we truncate the absolute value of the posterior mean

approximation from above. For C > 0 and for any x ∈ R, define [x]C = sgn(x) min{|x|, C}.
The resulting predictor is

ŶiT+1 =

[
λ̂i(ρ) +

(
σ̂2

T
+B2

N

)
∂

∂λ̂i(ρ)
ln p̂−i(λ̂i(ρ), Yi0)

]CN
+ ρ̂YiT , (18)

where CN −→∞ slowly.

3.2 Main Theorem

Let Π be a collection of joint densities π(λ, y). The theoretical analysis relies heavily on

slowly diverging sequences. To state the assumptions and prove the main theorem, the

following definitions will be convenient:

Definition 3.1
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(i) AN(π) = ou.π(N ε), for some ε > 0, if there exists a sequence ηN −→ 0 that does not
depend on π ∈ Π such that N−εAN(π) ≤ ηN .

(ii) AN = o(N+) if for every ε > 0 there exists a sequence ηN(ε) −→ 0 such that
N−εAN(π) ≤ ηN(ε).

(iii) AN(π) = ou.π(N+) (sub-polynomial) if for every ε > 0 there exists a sequence ηN(ε) −→
0 that does not depend on π ∈ Π such that N−εAN(π) ≤ ηN(ε).

Our first assumption controls the tails of the marginal distributions of λ and the initial

condition Y0.5 We essentially assume that λ and Y0 are subexponential random variables

with finite fourth moments. The assumed tail probability and moment bounds are uniform

for π ∈ Π.

Assumption 3.2 (Correlated Random Effects Distribution, Part 1) There exist pos-
itive constants M1 <∞, M2 <∞, M3 <∞, and M4 <∞ such that for every π ∈ Π:

(i)
∫
|λ|≥C π(λ)dλ ≤M1 exp(−M2(C −M3)) and

∫
λ4π(λ)dλ ≤M4.

(ii)
∫
|y0|≥C π(y0)dy0 ≤M1 exp(−M2(C −M3)) and

∫
y4

0π(y0)dy0 ≤M4.

The proof of the main theorem relies on truncations. Assumption 3.3 imposes a lower

bound and an upper bound on the diverging truncation sequences CN and C ′N . These

bounds on the truncation sequences constrain the rate at which the bandwidth BN of the

kernel density estimator has to shrink to zero. For technical reasons, the bandwidth cannot

shrink as quickly as in typical density estimation problems.6

Assumption 3.3 (Trimming and Bandwidth)

(i) The truncation sequence CN satisfies CN = o(N+) and CN ≥ 2(lnN)/M2.

(ii) The truncation sequence C ′N satisfies C ′N = CN +
√

(2σ2 lnN)/T .

(ii) The bandwidth sequence BN is bounded by BN ≤ BN ≤ B̄N , where 1/B2
N = o(N+),

B̄N(CN + C ′N) = o(1) and the bounds do not depend on the observed data or π ∈ Π.

5To simplify the notation we write π(λ) and π(y0) to denote the marginals of π(λ, y0).
6In a nutshell, we need to control the behavior of p̂(λ̂i, Yi0) and its derivative uniformly, which, in certain

steps of the proof, requires us to consider bounds of the form M/B2
N , where M is a generic constant. If

the bandwidth shrinks too fast, the bounds diverge too quickly to ensure that it suffices to standardize the
regret in Theorem 3.7 by N ε if the λi coefficients are identical for each cross-sectional unit.
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We also need to impose a restriction on the conditional distribution of Y0 given λ. First,

we assume that the conditional density is bounded. Second, we regularize the shape of

the conditional density π(y0|λ) by assuming that the density of as a function of y0 should

be uniformly “smooth” such that its convolution with the Kernel density remains close (in

relative terms) to the original density. This assumption is required because we use a single

bandwidth (independent of y0) when estimating the density p(λ̂(ρ), y0) for the Tweedie

correction term. Thus, we rule out, for instance, that π(y0|λ) is a point mass. However, it

is important to note that we do allow the marginal distribution π(λ) to be a point mass (or

discrete).

Assumption 3.4 (Correlated Random Effects Distribution, Part 2)

(i) There exists an M <∞ such that π(y0|λ) ≤M for all π ∈ Π.

(ii) For given sequences CN , C ′N , and BN satisfying Assumption 3.3, the conditional dis-
tribution π(y0|λ) satisfies

sup
|y0|≤C′N ,|λ|≤CN ,π∈Π

∣∣∣∣∣∣
1
BN

∫
φ
(
ỹ0−y0
BN

)
π(ỹ0|λ)dỹ0

π(y0|λ)
− 1

∣∣∣∣∣∣ = o(1).

Next, we impose some restrictions on the sampling distributions of the posterior means.

To do so, define the posterior mean function as

m(λ̂, y0; π) = λ̂+
(
σ2/T

) ∂ ln p(λ̂, y0; π)

∂λ̂
, (19)

where the joint sampling distribution of the sufficient statistic and the initial condition is

given by

p(λ̂, y0; π) =

∫
1√
σ2/T

φ

(
λ̂− λ√
σ2/T

)
π(y0, λ)dλ.

In order to be precise about the uniformity requirements for π ∈ Π, we now included the

prior density π as a conditioning argument in the functions m(·) and p(·). Moreover, we

denote the posterior mean function under the ∗-distribution defined in (17) as

m∗(λ̂, y0; π,BN) = λ̂+
(
σ2/T +B2

N

) ∂ ln p∗(λ̂, y0; π,BN)

∂λ̂
. (20)

While the sampling distribution of (λ̂i, Yi0) is tightly linked to the prior π(λ, y0) and the

distribution of the sufficient statistic λ̂|λ ∼ N(λ, σ2/T ), we find it convenient to postulate
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some high-level conditions, that we will verify for collections of finite mixtures of multivariate

Normals (FNMN) in Section 3.3.

Assumption 3.5 (Posterior Mean Functions) For a given sequence CN satisfying As-
sumption 3.3, the posterior mean functions satisfy:

(i) N

∫ ∫
m(λ̂, y0; π)2 I

{
|m(λ̂, y0; π)| ≥ CN

}
p(λ̂, y0; π) dλ̂dy0 = ou.π(N+),

(ii) N

∫ ∫
m∗(λ̂, y0; π,BN)2 I

{
|m∗(λ̂, y0; π,BN)| ≥ CN

}
p(λ̂, y0; π) dλ̂dy0 = ou.π(N+),

(iii) N

∫ ∫
m(λ̂, y0; π)2 I

{
|m(λ̂, y0; π)| ≥ CN

}
p∗(λ̂, y0; π∗, BN) dλ̂dy0 = ou.π(N+).

Finally, we impose moment restrictions on the sampling distribution of the estimators of

the homogeneous parameters ρ̂, and σ̂2.

Assumption 3.6 (Estimators of ρ and σ2) The estimators ρ̂ and σ̂2 have the follow-

ing properties: (i) EYNθ,π
[
|
√
N(ρ̂ − ρ)|4

]
= ou,π(N+), (ii) EYNθ,π

[
σ̂4
]

= ou.π(N+), and (iii)

EYNθ,π
[
|
√
N(σ̂2 − σ2)|2

]
= ou.π(N+).

An example of an estimator ρ̂ that satisfies Assumption (3.6)(i) is the truncated instru-

mental variable (IV) estimator

ρ̂IV =

( N∑
i=1

T∑
t=2

Yit−2∆Yit−1,

)−1
MN (

N∑
i=1

T∑
t=2

Yit−2∆Yit

)
,

where MN is a sequence that slowly diverges to infinity. Define the residuals Ûit = Yit −
−λ̂(ρ̂IV )− ρ̂IV Ŷit−1. Then, the sample variance of the Ûit’s is an estimator of σ2 that satisfies

Assumption (3.6).

We are now in a position to present the main result, which states that the regret as-

sociated with the vector of predictors Ŷ N
T+1, standardized by the posterior variance of the

heterogeneous parameters λi, converges to zero as the cross-sectional dimension N of the

sample becomes large.

Theorem 3.7 Suppose that Assumptions 3.2 to 3.6 are satisfied. Then, in the basic dynamic

panel model (2), the predictor ŶiT+1 defined in (18) achieves ε0-ratio optimality uniformly in

π ∈ Π, that is, for every ε0 > 0

lim sup
N→∞

sup
π∈Π

RN(Ŷ N
T+1; π)−Ropt

N (π)

NEYNθ,π
[
Vλi
θ,π,Yi [λi]

]
+N ε0

≤ 0. (21)
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3.3 Two Examples of Π

We now provide two specific examples of classes of distributions Π that satisfy Assump-

tions 3.2, 3.4, and 3.5.

Multivariate Normal Distributions. To simplify the notation we write y instead of y0.

We define the class Π of correlated random effects densities as

Π =
{
π(λ, y) = π(λ)π(y|λ)

∣∣ π(λ) ∈ Πλ, π(y|λ) ∈ Πy|λ
}

(22)

where

Πλ :
{
N(µλ, σ

2
λ)
∣∣ |µλ| ≤Mµλ , 0 ≤ σ2

λ ≤Mσ2
λ

}
Πy|λ :

{
N(α0 + α1λ, σ

2
y|λ)

∣∣ |α0| ≤Mα0 , |α1| ≤Mα1 , 0 < δσ2
y|λ
≤ σ2

y|λ ≤Mσ2
y|λ

}
We interpret σ2

λ = 0 as a point mass and impose upper bounds on the mean and the variance

of λ. To obtain joint normality of (λ, y) the conditional mean function for y|λ is linear in λ

and the conditional variance is constant. We bound the absolute values of the conditional

mean parameters α0 and α1 as well as the conditional variance from above. The lower bound

δσ2
y|λ

rules out a point-mass prior for y|λ. Let Π = Πλ ⊗ Πy|λ.

Finite Mixtures of Multivariate Normals. This class of distribution is able to ap-

proximate a wide variety of distributions with exponential tails as the number of mixture

components, K, increases. Formal approximation results are provided, for instance, in Norets

and Pelenis (2012). Let K <∞ be the maximum number of mixture components and define:

Π
(K)
mix =

{
πmix(λ, y) =

K∑
k=1

ωkπk(λ, y)

∣∣∣∣ πk ∈ Π ∀k, 0 ≤ ωk ≤ 1,
K∑
k=1

ωk = 1

}
, (23)

where the class Π is defined in (22).

Theorem 3.8 Assumptions 3.2, 3.4, and 3.5 are satisfied by (i) Π in (22) and (ii) Π
(K)
mix in

(23).
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4 Monte Carlo Simulations

We now conduct three Monte Carlo experiments to illustrate the performance of the empirical

Bayes predictor. We begin by describing the various predictors that we compare in the

experiments.

Oracle Forecast. The oracle knows the parameters θ = (ρ, γ) as well as the correlated

random effects distribution π(λi, Yi0|ξ). However, the oracle does not know the specific λi

values. Its forecast is given by (7).

Empirical Bayes Estimators. All empirical Bayes estimators used in this section are

based on the QMLE of θ.7 The QMLE is derived from the possibly misspecified distribution

λi|(Yi0, ξ) ∼ N(φ0 + φ1Yi0,Ω), where ξ = (φ0, φ1,Ω). We denote the density as πQ(λi|Yi0, ξ)
and define

(
θ̂QMLE, ξ̂QMLE

)
= argmaxθ,ξ

N∏
i=1

∫
p(y1:T

i |yi0, λi, θ)πQ(λi|Yi0, ξ)dλi. (24)

We show in the Online Appendix that the QMLE in our Monte Carlo designs is consistent

under misspecification of πQ(·). To implement Tweedie’s formula (see (12) for the basic

model) we consider the following three estimates of p(λ̂i(ρ), Yi0):

Kernel-based Tweedie Correction. We use the kernel estimator (14) for which we developed

the asymptotic theory in Section 3. In Experiment 1 we consider a random-effects design

which implies that we need to estimate a one-dimensional density p(λ̂i(ρ̂)). In the other

experiments we consider correlated random-effects designs which require a bivariate density

estimation. Prior to the density estimation we standardize the sequences λ̂i(ρ̂) and Yi0,

i = 1, . . . , N , which is equivalent to scaling the bandwidths BN used in (14) by the standard

deviations of the two series. For the standardized series, we set the bandwidth to BN = bB∗N ,

where b ∈ B and B is a finite grid for the scaling constant. The baseline value for the

bandwidth as well as lower and upper bounds for b are given by

B∗N =

(
4

d+ 2

)1/(d+4)

max

{
1

N1/(d+4)
,

1

(lnN)1.01

}
, b ≤ b ≤ b̄. (25)

Here d corresponds to the dimension of the density that is being estimated and is either one

or two. The scaling constant in front of the max operator as well as the first rate inside the

7Results based on GMM estimators can be found in the working paper version Liu, Moon, and Schorfheide
(2017).
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max operator correspond to Silverman (1986)’s rule-of-thumb bandwidth choice. The second

rate in the max operator is consistent with Assumption 3.3. We report forecast evaluation

statistics for various choices of b as well as a b̂ that is generated by minimizing the average

forecast error loss for b ∈ B when predicting the last set of observations in the estimation

sample, YiT , based on Yi0, . . . , YiT−1.8 By setting BN = bB∗N and B̄N = b̄B∗N we can deduce

that the kernel-estimator with data-driven bandwidth scaling still satisfies Assumption 3.3.

Finite Mixtures of Multivariate Normals. We also consider mixtures of normal distributions

to approximate p(λ̂i(ρ̂), Yi0):

pmix
(
λ̂i, Yi0

∣∣{ωk, µk,Σk}Kk=1

)
=

K∑
k=1

ωkpN(λ̂i, Yi0|µk,Σk), ωk ≥ 0,
K∑
k=1

ωK = 1,

where pN(·) is the density of a N(µk,Σk) random variables. The mixture probabilities as

well as the means and covariance matrices are estimated by maximizing the log likelihood

function using an EM algorithm. The Tweedie corrections are then computed conditional

on the estimates (ω̂k, µ̂k, Σ̂k). We report forecast evaluation statistics for various choices

of K as well as a K̂ that is generated by minimizing the average forecast error loss for

1 ≤ K ≤ K̄ when predicting the last set of observations in the estimation sample, YiT , based

on Yi0, . . . , YiT−1.

Nonparametric MLE Tweedie Correction. Gu and Koenker (2016) proposed to estimate the

density of the sufficient statistic by nonparametric MLE. We only report results for this

estimator in Experiment 1 where it can be implemented using the GLmix function of the

REBayes package provided by Gu and Koenker (2016). In the random-effects setup, the

estimator is constructed as follows. Specify bounds for the domain of λi and partition it into

K bins. We adopt their default setting, where the number of bins is K = 300. Let λk be

the right endpoint of bin k and ∆k its width. Moreover, let ω̃k be the probability associated

with the k’th bin and define ωk = ω̃k∆k. Then

pNP
(
λ̂i
∣∣{ωk}Kk=1

)
=

K∑
k=1

ωkpN(λ̂i|λk, σ2/T ), ωk ≥ 0,
K∑
k=1

ωk = 1.

The bin probabilities are estimated by maximizing the log likelihood function. Unlike in

the mixture of normals case, here the means and the variances of the normal distributions

are fixed and only the probabilities ωk are estimated. The Tweedie corrections are then

8To do so, we also re-estimate the homogeneous parameter θ based on the reduced sample Yi0, . . . , YiT−1.
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computed conditional on the estimates ω̂k.

Alternative Predictors. In addition to the empirical Bayes predictors we consider several

alternative procedures.

QMLE Plug-In Predictor. This predictor takes the form ŶiT+1 = λ̂i(ρ̂QMLE)+ ρ̂QMLEYiT and

does not use the Tweedie correction.

Pooled-OLS Predictor. Ignoring the heterogeneity in the λi’s and imposing that λi = λ for

all i, we can define

(ρ̂P , λ̂P ) = argminρ,λ
1

NT

N∑
i=1

T∑
t=1

(
Yit − ρYit−1 − λ

)2
. (26)

The resulting predictor is ŶiT+1 = λ̂P + ρ̂PYiT .

Loss-Function-Based Predictor. We construct an estimator of (ρ, λN) based on the objective

function:

ρ̂L = argminρ
1

NT

N∑
i=1

T∑
t=1

(
Yit − ρYit−1 − λ̂i(ρ)

)2
, λ̂i(ρ) =

1

T

T∑
t=1

(
Yit − ρYit−1

)
. (27)

This estimator minimizes the loss function under which the forecasts are evaluated in sam-

ple. It is well-known that due to the incidental parameter problem, the estimator ρ̂L is

inconsistent under large-N and fixed-T asymptotics. The resulting predictor is ŶiT+1 =

λ̂i(ρ̂L) + ρ̂LYiT .

First-Difference Predictor. In the panel data literature it is common to difference-out id-

iosyncratic intercepts, which suggests predicting ∆YiT+1 based on ∆YiT . We evaluate the

first-difference predictor at the QMLE estimator of ρ to obtain Ŷ FD
iT+1(ρ̂QMLE).

Compound Risk. We generalize our definition of compound risk by introducing a selection

rule that lets us focus on forecasts for a specific group of individuals. Let

Di = Di(YN) ∈ {0, 1}, i = 1, . . . , N, (28)

where Di(YN) is a measurable function of the observations YN . For instance, suppose that

Di(YN) = I{YiT ∈ A} for A ⊂ R. In this case, the selection is homogeneous across i and,

for individual i, depends only on its own sample. Alternatively, suppose that units are

selected based on the ranking of an index, e.g., the empirical quantile of YiT . In this case,

the selection dummy Di depends on (Y1T , ..., YNT ) and thereby also on the data for the other
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Table 1: Monte Carlo Design 1

Law of Motion: Yit = λi + ρYit−1 + Uit where Uit ∼ iidN(0, γ2). ρ = 0.8, γ = 1
Initial Observations: Yi0 ∼ N(0, 1)
Random effects: λi|Yi0 ∼ Gamma(2, b), various choices of b
Sample Size: N = 1, 000, T = 4
Number of Monte Carlo Repetitions: Nsim = 1, 000

N − 1 individuals. The compound loss of interest is the average of the individual losses

weighted by the selection dummies:

LN(Ŷ N
T+1, Y

N
T+1) =

N∑
i=1

Di(YN)(ŶiT+1 − YiT+1)2.

Because the selection rule is a function of the observed trajectories YN and the optimal

predictor (7) is a Bayes predictor that conditions on YN , the presence of the selection rule

does not change the optimal forecast. Thus, the theory developed in Section 3 has a straight-

forward extension to the case Di(YN) 6= 1.

4.1 Experiment 1: Gamma-Distributed Random Effects

The first Monte Carlo experiment is based on the basic dynamic panel data model in (2).

The design of the experiment is summarized in Table 1. We assume that the λi’s follow

a Gamma(2, b) distribution and are uncorrelated with the initial condition Yi0 (random

effects). The Gamma distribution has exponential tails and satisfies the tail bound condition

in Assumption 3.2. We set ρ = 0.8, σ2 = 1, and choose the parameter b to generate various

values for V[λi]. Each panel consists of N = 1, 000 cross-sectional units and the number of

time periods is T = 4. Generally, the smaller T relative to the number of right-hand-side

variables with heterogeneous coefficients, the larger the gain from using a prior distribution

to compute posterior mean estimates of the λi’s. The subsequent results are based on

Nsim = 1, 000 Monte Carlo repetitions.

In Table 2 we report the regret associated with each predictor relative to the posterior

variance of λi, averaged over all trajectories YN , as specified in Theorem 3.7 (setting ε0 = 0.1

which leads to N ε0 ≈ 2). For the oracle predictor the regret is by definition zero and we

tabulate the risk Ropt
N instead (in parentheses). The columns titled “All” correspond to

Di(YN) = 1. Using the 95% quantile of the population distribution of YiT , we define the
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Table 2: Experiment 1: Relative Regrets under Gamma Random Effects

V[λi] = 1 V[λi] = 0.1 V[λi] = .002 V[λi] = 0
Predictor All Top All Top All Top All Top
Oracle Predictor (1177) (57.6) (1067) (57.7) (1002) (49.3) (1000) (49.1)

Empirical Bayes, θ̂QMLE

Kernel b = b̂ 0.04 0.20 0.12 0.42 2.30 1.37 4.61 1.48
Kernel b = 1.0 0.09 1.34 0.38 3.14 5.87 5.09 11.8 5.61
Kernel b = 1.5 0.05 0.25 0.12 0.54 2.08 1.24 4.21 1.35
Kernel b = 2.0 0.07 0.08 0.14 0.25 2.93 1.46 5.91 1.57
Kernel b = 3.0 0.13 0.03 0.38 0.51 8.30 4.11 16.7 4.41

Mixture K = K̂ 0.04 0.12 0.05 0.25 0.32 0.18 0.64 0.20
Mixture K = 1 0.13 0.53 0.07 0.41 0.18 0.10 0.37 0.10
Mixture K = 3 0.04 0.11 0.05 0.16 0.59 0.32 1.03 0.32
Mixture K = 5 0.03 0.09 0.05 0.15 0.68 0.38 1.33 0.39
NP MLE 0.03 0.16 0.04 0.16 0.36 0.30 0.70 0.31

Plug-in Predictor, θ̂QMLE 0.42 0.45 2.73 6.14 61.6 30.7 123 32.9
Loss-Function Based 0.53 1.21 3.18 3.18 64.9 8.47 129 8.68
Pooled OLS 1.84 0.73 0.17 0.84 0.14 0.07 0.27 0.07
First Differences 4.67 4.46 13.8 18.4 249 74.6 496 79.6

Notes: The design of the experiment is summarized in Table 1. The regret is standardized by the average
posterior variance of λi and we set ε0 = 0.1; see Theorem 3.7. For the oracle predictor we report the
compound risk (in parentheses) instead of the regret.

cut-off the top 5% group. Because the cut-offs are computed from the population distribution

of YiT , for unit i the selection rules only depends on YiT and not on YjT with j 6= i. The

corresponding columns are labeled “Top.”

We report results for different choices of V[λi], starting from V[λi] = 1 on the left and

ending with V[λi] = 0 (λi = λ for all i). When the variance of λi is reduced to zero, the oracle

risk decreases because there is less uncertainty. At the same time, the relative regret increases

because the numerator in the relative regret in Theorem 3.7 drops from approximately 200 for

V[λi] = 1 to approximately 2 for V[λi] = 0. As expected from the theoretical analysis, if the

λi’s exhibit (strong) heterogeneity, the empirical Bayes predictors attain a lower regret than

the alternative predictors. The plug-in predictor, the loss-function based predictor, and the

first-differences predictor are consistently dominated by the best empirical Bayes predictors.

Not surprisingly, the pooled OLS predictor beats the best empirical Bayes predictor when

the λi’s are essentially homogeneous, i.e., V[λi] = .002 and V[λi] = 0. The estimate of ρ

obtained under pooled OLS is generally larger (closer to unity) than ρ̂QMLE. If we condition
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the pooled OLS estimate of λ on ρ̂QMLE, the regret increases noticeably.9

The empirical Bayes estimators in Table 2 differ with respect to the estimation of the

density required to calculate the Tweedie correction. We begin with the fixed-bandwidth

kernel estimators, which are covered by our theoretical results. If the squared forecast error

losses are averaged across all units, then a scaling of B∗N defined in (25) by approximately

1.5 minimizes the relative regret ex post. The ex ante selection of this scaling constant based

on the pseudo-out-of-sample forecast of YiT works very well. We determine b̂ by minimizing

the regret over the interval [1, 3] using a grid-spacing of 0.1. The regret obtained by setting

b = b̂ is very close to the regret with the ex-post optimal b. If the expected loss is computed

for the top-5% group, then it is preferable to use a larger bandwidth scaling than b = 1.5,

because it provides a better estimate of the thin right tail of the density p(λ̂i). Note that we

could have re-computed b̂ by minimizing the time T prediction risk for the top-5% group,

but we did not do so for this table.

The mixture approximation of p(λ̂i) leads to a Tweedie correction that tends to generate

more accurate forecasts than the kernel-based correction, in particular for small V[λi]. The

selection of the number of mixture components, K, based on the period T forecast errors

also works well. For large values of V[λi] when the distribution of λ̂i has a long right tail,

we select a large value of K, whereas for small values V[λi] when the distribution of λ̂i is

approximately normal, we select a small value of K. Finally, the nonparametric MLE of

p(λ̂i) proposed by Gu and Koenker (2016) performs about as well as the mixture estimator

in this experiment.

To shed some more light on the performance differentials among the various Tweedie

corrections, we plot forecast errors as a function of λ̂i in Figure 1 and overlay the density

of λ̂i. The plots are generated as follows. We have a total of 106 forecasts across the

1,000 repetitions of the Monte Carlo experiment. We group the λ̂i’s into 500 bins such that

each bin contains 2,000 observations. For each bin, we compute the average squared forecast

error, which leads to 500 pairs of bin location and forecast performance. Unlike Table 2 which

focuses on regrets, the figure reports mean-squared errors. While the regret differentials, say,

between the kernel-based correction versus the mixture-based on NP-MLE correction appear

to be large, overall, in terms of MSE, the forecast performance of the various estimators is

very similar. For instance, for V[λi] = 1 the average MSEs for kernel b = b̂, mixture K = K̂,

and NP MLE are 1.185, 1.184, and 1.183, respectively.

9For the values of V[λi] reported in Table 2 the relative regrets for “All” units are 4.6, 0.49, 0.24, and
0.42, respectively.
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Figure 1: Squared Forecast Error Loss as a Function of λ̂i

Prior Variance V[λi] = 1

Kernel b = b̂ Mixture K = K̂ NP MLE

Prior Variance V[λi] = 0

Kernel b = b̂ Mixture K = K̂ NP MLE

Notes: Each dot corresponds to a λ̂i bin and the average squared-forecast error for observations assigned to

that bin (scale on the left). The panels also show density estimates of the empirical distribution of λ̂i(ρ)

based on Nsim ·N = 106 simulations of λ̂i(ρ) (scale on the right). The Monte Carlo design is described in
Table 1.

For V[λi] = 1, the further λ̂ is in the tails of its distribution, the larger the MSEs.

This is the result of two effects. First, the Tweedie correction is less precisely estimated

in the tails, because there are fewer realizations of λ̂i. Second, as we will show below, the

population Tweedie correction in the right tail of the λ̂i distribution is essentially flat. Thus,

there is less shrinkage and the posterior mean has a higher sampling variance. The visual

inspection of the plots indicates that differences between MSEs arise mostly in the tails of

the λ̂i distribution. Here, the kernel-based methods produce less accurate density estimates,

which translate into a few MSE outliers and thereby slightly larger average prediction errors.

In Figure 2 we plot the Tweedie corrections (σ2/T )∂ ln p(λ̂i|θ)/∂λ̂i for the oracle forecast
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Figure 2: Tweedie Corrections

Prior Variance V[λi] = 1

Kernel b = b̂ Mixture K = K̂ NP MLE

Prior Variance V[λi] = 0

Kernel b = b̂ Mixture K = K̂ NP MLE

Notes: Solid (black) lines depict oracle Tweedie correction based on p(λ̂i|yi0, θ) (scale on the left). Grey
“hairs” depict estimates from the Monte Carlo repetitions. The panels also show density estimates of the

empirical distribution of λ̂i(ρ) based on Nsim ·N = 106 simulations of λ̂i(ρ) (scale on the right). The Monte
Carlo design is described in Table 1.

and the various empirical Bayes predictors. Each hairline corresponds to an estimate from

a particular Monte Carlo repetition. We again overlay the density of λ̂i to indicate the

likelihood of the various λ̂i values on the x-axis. For V[λi] = 1 the oracle correction is L-

shaped. In the left tail of the λ̂i distribution there is a lot of shrinkage to the prior mean and

the correction is approximately linear with a large slop. In the right tail, the correction is

essentially flat, meaning that for large values of λ̂i (outliers) the optimal shrinkage is small in

relative terms. For V[λi] = 0 the p(λ̂i|θ) density is Normal and the oracle Tweedie correction

is linear.

For V[λi] = 1 all estimators do a fairly good job in approximating the optimal correction
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for values λ̂i < 5, i.e., in the center of the λ̂i distribution. In the right tail for λ̂i > 5, however,

the kernel-based correction appears to be fairly unstable and highly variable across Monte

Carlo repetitions. If the λi’s are homogeneous and the distribution of λ̂i is Normal, then

all procedures generate a good approximation of the optimal correction for −1 ≤ λ̂i ≤ 1.

Unfortunately, outside of this range the estimates of the Tweedie correction become less

accurate. Our simulations suggest that forecasting “winners” and “losers” remains difficult.

While the Bayes correction induces shrinkage that off-sets the selection bias inherent in λ̂i,

i.e., λ̂i over-estimates (under-estimates) the “true” λi for λi’s in the top (bottom) quantile of

the cross-sectional distribution, estimating the optimal amount of this shrinkage is difficult

because the density estimates may be based on a small number of tail observations.

4.2 Experiment 2: Non-Gaussian Correlated Random Effects

We now change the Monte Carlo design by replacing the Gaussian random effects specifica-

tion with a non-Gaussian specification in which the heterogeneous coefficient λi is correlated

with the initial condition Yi0. The Monte Carlo design is summarized in Table 3. Start-

ing point is a joint normal distribution for (λi, Yi0), factorized into a marginal distribution

π∗(λi) and a conditional distribution π∗(Yi0|λi). According to this joint normal distribution

λi ∼ N(µ
λ
, V λ) and Yi0|λi corresponds to the stationary distribution of Yit associated with

its autoregressive law of motion. The implied marginal distribution for Yi0 is used as π(Yi0)

in the Monte Carlo design, whereas we replace π∗(λi|Yi0) by a mixture π(λi|Yi0), indexed by

a parameter δ. For δ = 0 the mixture reduces to π∗(λi|Yi0), whereas for large values of δ the

density becomes multi-modal and looks like a pair of scissors.

The risks associated with the oracle predictions and the relative regrets of the feasible

predictors are summarized in Table 4, which has the same format as Table 2 with two

exceptions. First, we dropped the nonparametric MLE, because its performance was similar

to the mixture estimator and in the software provided by Gu and Koenker (2016) it is

implemented for a random-effects but not for a correlated random-effects second. Second,

we changed the domain of the scaling constant b of the kernel bandwidth to the interval

[0.1,1.9] with a spacing of 0.1.

The results are qualitatively similar to Experiment 1. The plug-in predictors, the predic-

tors obtained from the loss-function-based estimator, and the first difference predictors are

clearly dominated by the empirical Bayes predictors. The empirical Bayes predictors also

beat the pooled OLS predictor by a significant margin for δ = 0.1 and δ = 0.3. At first glance
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Table 3: Monte Carlo Design 2

Law of Motion: Yit = λi + ρYit−1 + Uit where Uit ∼ iidN(0, γ2); ρ = 0.8, γ = 1

Initial Observation: Yi0 ∼ N
(
µ
λ

1−ρ , VY +
V λ

(1−ρ)2

)
, VY = γ2/(1− ρ2); µ

λ
= 1, V λ = 1

Correlated Random Effects:

λi|Yi0 ∼
{
N
(
φ+(Yi0),Ω

)
with probability pλ

N
(
φ−(Yi0),Ω

)
with probability 1− pλ

,

φ+(Yi0) = φ0 + δ + (φ1 + δ)Yi0,
φ−(Yi0) = φ0 − δ + (φ1 − δ)Yi0,

Ω =
[

1
(1−ρ)2

V −1
Y + V −1

λ

]−1

, φ0 = ΩV −1
λ µ

λ
, φ1 = 1

1−ρΩV −1
Y ,

pλ = 1/2, δ ∈ {0.05, 0.1, 0.3}
Sample Size: N = 1, 000, T = 4
Number of Monte Carlo Repetitions: Nsim = 1, 000

The plots depict contours of the density π(λi, Yi0) for δ = 0.05, δ = 0.1, and δ = 0.3.

the good performance of pooled OLS for δ = 0.05 is surprising in view of the heterogeneity in

λi implied by the Monte Carlo design. It turns out that under pooled OLS λ̂ is close to zero

and ρ̂ is approximately one. Thus, the predictor essentially generates no-change forecasts

that perform quite well.

For δ = 0.05 and δ = 0.1 the optimal bandwidth scaling b is close to one, which is picked

up by our bandwidth selection procedure based on pseudo-out-of-sample forecasts for period

t = T . For δ = 0.3 the optimal scaling is approximately 0.5. This is qualitatively plausible,

because the scissor-shape density of (λ̂i, Yi0) has a relatively large overall variance, which

translates into a large baseline bandwidth, but at the same time it has sharp peaks in the

modal regions which require a small bandwidth. As in Experiment 1, kernel estimation of

the Tweedie correction does generally not work as well as the mixture estimation, in part

because the latter is more stable in the tails of the (λ̂i, Yi0) distribution and in part because

the density of p(λ̂i, Yi0) is in fact a mixture of normal distributions.
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Table 4: Experiment 2: Relative Regrets under Correlated Random Effects

δ = 0.05 δ = 0.1 δ = 0.3
Predictor All Top All Top All Top
Oracle Predictor (1110) (55.6) (1122) (53.1) (1093) (52.9)

Empirical Bayes, θ̂QMLE

Kernel b = b̂ 0.22 0.44 0.22 0.78 0.43 0.94
Kernel b = 0.5 1.46 6.94 0.78 5.41 0.42 1.10
Kernel b = 1.0 0.22 0.42 0.25 0.74 0.93 1.15
Kernel b = 1.5 0.37 0.35 0.43 0.97 1.25 1.44

Mixture K = K̂ 0.06 0.16 0.05 0.16 0.06 0.10
Mixture K = 1 0.15 0.56 0.52 1.52 1.53 1.64
Mixture K = 3 0.06 0.15 0.06 0.18 0.40 0.08
Mixture K = 5 0.25 0.39 0.54 1.66 0.46 0.15

Plug-in Predictor, θ̂QMLE 1.28 1.13 1.03 2.05 1.63 1.91
Loss-Function Based 1.50 1.93 1.33 4.00 1.78 2.48
Pooled OLS 0.20 0.59 0.78 2.73 4.98 3.37
First Differences 7.92 5.99 7.04 9.47 9.48 9.39

Notes: The design of the experiment is summarized in Table 3. The regret is standardized by the average
posterior variance of λi and we set ε0 = 0.1; see Theorem 3.7. For the oracle predictor we report the
compound risk (in parentheses) instead of the regret.

4.3 Experiment 3: Misspecified Likelihood Function

In the third experiment, summarized in Table 5, we consider a misspecification of the Gaus-

sian likelihood function by replacing the Normal distribution in the DGP with two mixtures.

We consider a scale mixture that generates excess kurtosis and a location mixture that

generates skewness. The innovation distributions are normalized such that E[Uit] = 0 and

V[Uit] = 1. For (λi, Yi0) we use the correlated random effects distribution of Experiment 2

with δ = 0.1.

The oracle risks and the relative regrets are summarized in Table 6. Columns 2 and 3 refer

to the case of normally distributed innovations and reproduce columns 4 and 5 of Table 4.

The remaining columns contain the results for scale and location mixture innovations. The

QMLE estimator of θ remains consistent under the likelihood misspecification. However, the

(non-parametric) Tweedie correction no longer delivers a valid approximation of the posterior

mean. Accordingly, the regrets under mixture innovations are generally higher than under

the normal innovations. However, in comparison to the other four predictors (plug-in, loss-

function based, pooled OLS, and first differences) the empirical Bayes predictors continue to

perform very well and attain relative regrets that are more than 50% smaller than the regrets
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Table 5: Monte Carlo Design 3

Law of Motion: Yit = λi + ρYit−1 + Uit, ρ = 0.8, E[Uit] = 0, V[Uit] = 1

Scale Mixture: Uit ∼ iid

{
N(0, γ2

+) with probability pu
N(0, γ2

−) with probability 1− pu
,

γ2
+ = 4, γ2

− = 1/4, pu = (1− γ2
−)/(γ2

+ − γ2
−) = 1/5

Location Mixture: Uit ∼ iid

{
N(µ+, γ

2) with probability pu
N(µ−, γ

2) with probability 1− pu
,

µ− = −1/4, µ+ = 2, pu = |µ−|
/

(|µ−|+ µ+
u ) = 1/9,

γ2 = 1− puµ2
+ − (1− pu)µ2

− = 1/2
Initial Observations: same as Design 2
Correlated Random Effects: same as Design 2 (δ = 0.1)
Sample Size: N = 1, 000, T = 4
Number of Monte Carlo Repetitions: Nsim = 1, 000

The plot overlays a N(0, 1) density (black, dotted), the scale mixture
(teal, solid), and the location mixture (orange, dashed).

associated with the best competitors. As in Experiments 1 and 2, the kernel approximation

of the Tweedie correction tends to perform not quite as well as the mixture approximation.

5 Extensions

In this section we discuss three extensions: multi-step forecasts (Section 5.1), Tweedie’s

formula for the general linear model in (1) (Section 5.2), and the identifiability of the

correlated random effects distribution π(·) in the general linear model.

5.1 Multi-Step Forecasting

While this paper focuses on single-step forecasting, we briefly discuss in the context of the

basic dynamic panel data model how the framework can be extended to multi-step forecasts.
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Table 6: Experiment 3: Relative Regrets under Misspecified Likelihood Function

Normal Scale Mixture Location Mixture
Predictor All Top All Top All Top
Oracle Predictor (1121) (53.1) (1075.6) (48.9) (1101) (45.6)

Empirical Bayes, θ̂QMLE

Kernel b = b̂ 0.22 0.78 1.34 1.43 0.67 1.22
Kernel b = 0.5 0.78 5.41 2.76 8.47 1.52 7.04
Kernel b = 1.0 0.25 0.74 1.37 1.37 0.71 1.15
Kernel b = 1.5 0.43 0.97 1.77 1.72 0.98 1.45

Mixture K = K̂ 0.05 0.16 1.00 0.50 0.40 0.30
Mixture K = 1 0.52 1.52 1.99 2.43 1.10 1.96
Mixture K = 3 0.06 0.18 1.15 0.72 0.42 0.31
Mixture K = 5 0.54 1.66 2.46 1.81 0.59 0.72

Plug-in Predictor, θ̂QMLE 1.03 2.05 3.16 3.35 1.92 2.87
Loss-Function Based 1.33 4.00 3.79 5.67 2.36 4.69
Pooled OLS 0.78 2.73 2.56 4.02 1.50 3.24
First Differences 7.04 9.47 16.8 15.6 11.4 13.7

Notes: The design of the experiment is summarized in Table 5. The regret is standardized by the average
posterior variance of λi and we set ε0 = 0.1; Theorem 3.7. For the oracle predictor we report the compound
risk (in parentheses) instead of the regret.

We can express

YiT+h =

(
h−1∑
s=0

ρs

)
λi + ρhYiT +

h−1∑
s=0

ρsUiT+h−s.

Under the assumption that the oracle knows ρ and π(λi, Yi0) we can express the oracle

forecast as

Ŷ opt
iT+h =

(
h−1∑
s=0

ρs

)
Eλiθ,Yi [λi] + ρhYiT .

As in the case of the one-step-ahead forecasts, the posterior mean Eλiθ,Yi [λi] can be replaced

by an approximation based on Tweedie’s formula and the ρ’s can be replaced by consistent

estimates. A model with additional covariates would require external multi-step forecasts of

the covariates, or the specification in (1) would have to be modified such that all exogenous

regressors appear with an h-period lag.

5.2 Tweedie’s Formula (Generalization)

The general model (1) distinguishes three types of regressors. First, the kw × 1 vector Wit

interacts with the heterogeneous coefficients λi. In addition to a constant, we allow Wit
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to also include deterministic time effects such as seasonality, time trends and/or strictly

exogenous variables observed at time t. To distinguish deterministic time effects w1,t+1 from

cross-sectionally varying and strictly exogenous variables W2,it, we partition the vector into

Wit = (w1,t+1,W2,it).
10 The dimensions of the two components are kw1 and kw2 , respectively.

Second, Xit is a kx × 1 vector of predetermined predictors with homogeneous coefficients.

Because the predictorsXit may include lags of Yit+1, we collect all the predetermined variables

other than the lagged dependent variable into the subvector X2,it. Third, Zit is a kz-vector

of strictly exogenous regressors, also with common coefficients.

Collect the exogenous conditioning variables in Hi = (Xi0,W
0:T
2,i , Z

0:T
i ). To introduce

heteroskedasticity, we allow the error terms to conditionally heteroskedastic in the cross

section and across time:

Uit = σtVit = ς(Hi, γt)Vit, Vit | (Y 1:t−1
i , X1:t−1

i , Hi, λi) ∼ N(0, 1), (29)

where ς(·) is a parametric function indexed by the (time-varying) finite-dimensional parame-

ter γt. We allow ς(·) to be dependent on the initial condition of the predetermined predictors,

Xi0, and other exogenous variables. Because the time dimension T is assumed to be small,

the dependence through Xi0 can generate a persistent ARCH effect. We stack the γ′ts into

the vector γ = [γ′1, . . . , γ
′
T ]. Note that even in the homoskedastic case σt = σ, the distribu-

tion of Yit given the regressors is non-normal because the distribution of the λi parameters

is fully flexible.

Let θ = [α′, ρ′, γ′]′, ỹt(θ) = yt − ρ′xt−1 − α′zt−1, and Σ(θ, h) = diag
(
σ2

1, . . . , σ
2
T

)
(the i

subscripts are dropped to simplify the notation). Moreover, let ỹ(θ) and w be the matrices

with rows ỹt(θ) and w′t−1, t = 1, ..., T . To generalize Tweedie’s formula, we re-define the

sufficient statistic λ̂ as follows:

λ̂(θ) =
(
w′Σ−1(θ, h)w

)−1
w′Σ−1(θ, h)ỹ(θ). (30)

Using the same calculations as in Section 2.3, it can be shown that the posterior mean of λi

has the representation

Eλθ,π,Y [λ] = λ̂(θ) +

(
W 0:T−1′Σ−1(θ,H)W 0:T−1

)−1
∂

∂λ̂(·)
ln p
(
λ̂(·), H|θ

)
. (31)

10Because Wit is a predictor for Yit+1 we use a t+ 1 subscript for the deterministic trend component w1.
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The optimal forecast is given by

Ŷ opt
iT+1(θ) =

(
Eλiθ,π,Yi [λi]

)′
WiT+1 + ρ′XiT + α′ZiT . (32)

The existing panel data model literature has developed numerous estimators for the homo-

geneous parameters that could be used to generate a θ̂ for the general model (1). In principle

one can proceed with the estimation of the Tweedie correction as for the basic model. How-

ever, the larger the set of conditioning variables Hi the more difficult it becomes to estimate

p(λ̂i(θ,Hi), Hi|θ) precisely.

5.3 Identification

Our forecasts rely on an implicit estimation of the correlated random effects distribution π(·)
to obtain approximations of the unit-specific posterior distributions. Thus, an interesting and

important question is whether this distribution is in fact identifiable based on the information

contained in a panel data set with fixed time dimension T and increasing cross-sectional

dimension N −→∞. For the special case of point forecasting under a quadratic loss function

considered in this paper, there is a short-cut to the identification argument. Provided that the

vector of homogeneous parameters θ is identifiable, it is possible to identify the cross-sectional

distribution of the sufficient statistic λ̂(θ). This, through Tweedie’s formula, also identifies

the posterior mean Eλθ,π,Y [λ] and leads to a unique Bayes predictor. In the remainder of this

section, show that under the subsequent assumptions both θ and π(·) are identifiable from

the panel data set. As a consequence, not just the posterior mean, but the entire posterior

distribution of λ is identifiable. This result is useful, for instance, for density forecasting

applications as in Liu (2018).

Assumption 5.1

(i) (Y 1:T+1
i , X1:T

i , Hi, λi) are independent across i.

(ii) (λi, Hi) are iid with joint density

π(λ, h) = π(λ|h)π(h).

(iii) For t = 1, . . . , T , the distribution of X2,it conditional on (Y 1:t
i , X1:t−1

i , Hi) does not
depend on the heterogeneous parameters λi and the homogeneous parameter θ.

(iv) The marginal distribution of (W 0:T
2,i , Z

0:T
i ) does not depend on θ.
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(v) Uit = ς(Hi, γt)Vit, where Vit has density ϕ(v) and is iid across i and t with E[Vit] = 0
and V[Vit] = 1 for t = 1, . . . , T + 1. The vector (Vi1, . . . , ViT ) is independent of Hi. γt
is an unknown finite-dimensional parameter vector γt.

We dropped the deterministic trend regressors w1,t from the notation for now. Assump-

tion 5.1(i) states that conditionally on the predictors, the Yit+1s are cross-sectionally in-

dependent. Thus, we assume that all the spatial correlation in the dependent variables is

due to the observed predictors. Assumption 5.1(ii) formalizes the correlated random effects

assumption. The subsequent Assumptions 5.1(iii) and (iv) imply that λi may affect Xit

only indirectly through Y 1:t
i – an assumption that is clearly satisfied in the dynamic panel

data model (2) – and that the strictly exogenous predictors do not depend on θ. Assump-

tion 5.1(v) reproduces (29), but without restricting Vit to be normally distributed which is

not necessary to obtain the identification result.

The identification can be established in three steps. First, the identification of the ho-

mogeneous regression coefficients (ρ, α) follows from a standard argument used in the in-

strumental variable (IV) estimation of dynamic panel data models, e.g., Arellano and Bover

(1995). Second, the variance parameters γ can be identified from a moment condition that is

obtained after projecting Yi−Xiρ−Ziα onto Wi. The identification of π(λi|hi) can be estab-

lished using a characteristic function argument similar to that in Arellano and Bonhomme

(2012). For the general model (1) we make the following additional assumptions:

Assumption 5.2
(i) The parameter vectors α and ρ are identified for fixed T from the cross-sectional dis-

tribution of the observables.

(ii) For each t = 1, . . . , T and almost all hi ς
2(hi, γ̃t) = ς2(hi, γt) implies γ̃t = γt. Moreover,

ς2(hi, γt) > 0.

(iii) The characteristic functions for λi|(Hi = hi) and Vi are non-vanishing almost every-
where.

(iv) Wi = [Wi0, ...,WiT−1]′ has full rank kw.

Because the identification of α and ρ in panel data models with fixed or random effects is

well established, we make the high-level Assumption 5.2(i) that the homogeneous parameters

are identifiable.11 Assumption 5.2(ii) enables us to identify the volatility parameters γ, and

(iii) and (iv) deliver the identifiability of the distribution of heterogeneous coefficients. The

following theorem proved in the Online Appendix summarizes the identification result.

11Textbook / handbook chapter treatments can be found in, for instance, Baltagi (1995), Arellano and
Honoré (2001), Arellano (2003) and Hsiao (2014).
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Theorem 5.3 Suppose that Assumptions 5.1 and 5.2 are satisfied. Then the parameters α,
ρ, and γ as well as the correlated random effects distribution π(λi|hi) and the distribution
of Vit in model (1) are identified for fixed T from the cross-sectional distribution of the
observables.

6 Empirical Application

We will now use the previously-developed predictors to forecast PPNRs of bank holding com-

panies (BHC). The stress tests that have become mandatory under the 2010 Dodd-Frank Act

require banks to establish how PPNRs vary in stressed macroeconomic and financial scenar-

ios. A first step toward building and estimating models that provide trustworthy projections

of PPNRs and other bank-balance-sheet variables under hypothetical stress scenarios, is to

develop models that generate reliable forecasts under the observed macroeconomic and fi-

nancial conditions. Because of changes in the regulatory environment in the aftermath of

the financial crisis as well as frequent mergers in the banking industry our large N small T

panel-data-forecasting framework is particularly attractive for stress-test applications.

We generate a collection of panel data sets in which PPNR as a fraction of consolidated

assets (the ratio is scaled by 400 to obtain annualized percentages) is the dependent variable.

The data sets are based on the FR Y-9C consolidated financial statements for bank holding

companies for the years 2002 to 2014, which are available through the website of the Federal

Reserve Bank of Chicago. The time period t in our analysis is one quarter.

We construct rolling samples that consist of T + 2 observations, where T is the size of

the estimation sample and varies between T = 4 and T = 10 quarters. The additional two

observations in each rolling sample are used, respectively, to initialize the lag in the first

period of the estimation sample and to compute the error of the one-step-ahead forecast.

For instance, with data from 2002:Q1 to 2014:Q4 we can construct M = 45 samples of

size T = 6 with forecast origins running from τ = 2003:Q3 to τ = 2014:Q3. Each rolling

sample is indexed by the pair (τ, T ). The cross-sectional dimension N varies from sample to

sample and ranges from 613 to 920. Further details about the data as well as a description

of our procedure to create balanced panels and eliminate outliers are provided in the Ap-

pendix. We discuss the accuracy of baseline forecasts for various model specifications and

predictors in Section 6.1 and compare the baseline predictions to predictions under stressed

macroeconomic and financial conditions in Section 6.2.
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6.1 Baseline Forecast Results

The forecast evaluation criterion is the mean-squared error (MSE) computed across institu-

tions:

MSE(Ŷ N
τ+1) =

1
Nτ

∑Nτ
i=1Di(Yiτ )

(
Yiτ+1 − Ŷiτ+1

)2

1
Nτ

∑Nτ
i=1 Di(Yiτ )

. (33)

For the empirical analysis we consider four predictors in total. The first two predictors are

empirical Bayes predictors based on θ̂QMLE. The Tweedie corrections are generated either

using a kernel estimator with b = b̂ or a mixture estimator with K = K̂. The third predictor

is the plug-in predictor that, conditional on θ̂QMLE estimates the heterogeneous coefficients

for each unit separately, without using prior information. The fourth predictor assumes that

all coefficients are homogeneous and is based on pooled OLS. The predictors were described

in detail in Section 4.

We consider three model specifications. The first model is the basic dynamic panel data

model in (2) that was also used in the Monte Carlo experiments in Section 4. The second

and third specification include additional covariates that reflect aggregate macroeconomic

and financial conditions, which we will use subsequently to generate counterfactual forecasts

under stress scenarios. We assume that the banks’ exposure to the aggregate condition is

heterogeneous and include these predictors into the vector Wit−1, using the notation in (1).

When analyzing stress scenarios, one is typically interested in the effect of stressed economic

conditions on the current performance of the banking sector. For this reason, we are changing

the timing convention slightly and include the time t macroeconomic and financial variables

into the vector Wit−1.

We estimate the following two models with covariates: (i) a model that only includes the

unemployment rate as an additional predictor; (ii) a model that includes the unemployment

rate, the federal funds rate, and an interest rate spread.12 Because these predictors are not

bank-specific, the effect of the predictors on PPNRs has to be identified from time-series

variation, which is challenging given the short time-dimension of our panels. In this subsec-

tion, we generate forecasts using the actual values of the aggregate predictors (which we can

evaluate based on the actual PPNR realizations for the forecast period). In Section 6.2, we

12All three series are obtained from the FRED database maintained by the Federal Reserve Bank of St.
Louis: Unemployment is UNRATE, the effective federal funds rate is EFFR, and the spread between the
federal funds rate and the 10-year treasury bill is T10YFF. We use temporal averaging to convert high-
frequency observations into quarterly observations.
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compare these forecasts to predictions under a stressed scenario, in which we use hypothetical

values for the covariates.

Figure 3 depicts MSE differentials relative to the MSE of the plug-in predictor:

∆(Ŷ N
τ+1) =

MSE(Ŷ N
τ+1)−MSE(plug-in)

MSE(plug-in)
,

where MSE(Ŷ N
τ+1) is defined in (33) and for now we set the selection operator Di(Yiτ ) = 1,

meaning we are averaging over all banks. If ∆(Ŷ N
τ+1) < 0, then the predictor Ŷ N

τ+1 is more

accurate than the plug-in predictor. The three columns correspond to the three different

forecast models under consideration and the four rows correspond to the sample sizes T = 4,

T = 6, T = 8, and T = 10, respectively. In the x-dimension, the MSE differentials are not

arranged in chronological order by τ . Instead, we sort the samples based on the magnitude

of the MSE differential for the pooled OLS predictor.

The plug-in predictor (the zero lines in Figure 3) and the pooled-OLS predictor (black

dotted lines) provide natural benchmarks for the assessment of the empirical Bayes pre-

dictors. The former is optimal if the heterogeneous coefficients are essentially “uniformly”

distributed in Rkw , whereas the latter is optimal in the absence of heterogeneity. The plug-in

predictor dominates the pooled-OLS predictor whenever the number of heterogeneous coeffi-

cients is small relative to the time series dimension, which is the case for the basic model. For

the unemployment model with T = 4 and the model with three covariates the pooled OLS

predictor is more accurate than the plug-in predictor. For the model with unemployment

only, the ranking is sample dependent.

The empirical Bayes procedure works generally well, in that it is adaptive: for most

samples the empirical Bayes predictor is at least as accurate as the better of the plug-in

and the pooled-OLS predictor. The unemployment-rate model provides a nice illustration

of this adaptivity. In panels (2,2), (3,2), and (4,2) the fraction of samples in which the

plug-in predictor dominates the pooled-OLS predictor ranges from 1/3 to 1/2. In all of

these samples the MSE differential for the empirical Bayes predictor is close to zero or below

zero. In the remaining samples the MSE differential of the empirical Bayes predictor tends

to be smaller than the MSE differential associated with pooled OLS, highlighting that the

shrinkage induced by the estimated correlated random effects distribution improves on the

two benchmark procedures.

For the basic panel data model, we report results for two versions of the empirical Bayes
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Figure 3: Percentage Change in MSE Relative to Plug-in Predictor, All Banks

Basic w/ UR w/ UR, FFR, Spread
T = 4

T = 6

T = 8

T = 10

Notes: Benchmark is the plug-in predictor. y-axis shows percentage changes in MSE, whereby a negative
value is an improvement compared to the plug-in predictor. Time periods are sorted such that the relative
MSE of pooled OLS is monotonically increasing. Comparison to: (i) empirical Bayes predictor with kernel

estimator (b = b̂), dashed orange; (ii) empirical Bayes predictor with mixture estimator (K = K̂), solid teal;
(iii) pooled OLS, dotted black.
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Figure 4: Percentage Change in MSE Relative to Plug-in Predictor, T = 6

Basic w/ UR w/ UR, FFR, Spread
All

yiτ ≤ 0

Notes: Benchmark is the plug-in predictor. y-axis shows percentage changes in MSE, whereby a negative
value is an improvement compared to the plug-in predictor. x-axis shows forecast origin. Comparison to:
(i) empirical Bayes predictor with mixture estimator (K = K̂), solid teal; (iii) pooled OLS, dotted black.

predictor: one is based on the kernel estimation of the Tweedie correction term with b = b̂

and the other one is based on the mixture estimation with K = K̂. Here the dimension

of the density that needs to be estimated to construct the correction is equal to two and

the kernel and mixture estimation perform approximately equally well. For the models with

covariates, a higher-dimensional density needs to be estimated, and the mixture estimation

approach works generally better. In fact, for some of the samples the kernel estimates were

quite erratic, which is why in columns 2 and 3 of Figure 3 we only report results for the

mixture-based predictor.

In Figure 4 we focus on results for the samples of length T = 6. We now arrange the

samples in chronological order. The first row of Figure 4 contains the same MSE differentials

as the second row of Figure 3. For the basic panel data model (see Panel (1,1)), the relative

performance of the pooled OLS predictor deteriorated over time, whereas the empirical Bayes

predictor mimicked the performance of the plug-in predictor over time. For forecast origins
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from 2007:Q3 to 2009:Q2 shrinkage toward a common coefficient improved the forecasts quite

substantially compared to the plug-in predictor. In subsequent periods the relative gain from

shrinkage toward homogeneity oscillates over time.

For the models with covariates (see Panels (1,2) and (1,3)) there is no gain from shrinkage

in 2007:Q3, but strong gains around 2008. In subsequent periods the relative performance

of the empirical Bayes and pooled-OLS predictors oscillate, but MSE differentials remain

negative. The second row of Figure 4 shows MSE differentials for banks that were generating

losses at the forecast origin. The pattern for the relative performance of the predictors

appears to be quite similar to the full sample.

Figure 5 examines the bank-specific squared forecast error loss differentials (subtracting

the squared forecast error associated with the plug-in predictor) for the unemployment model.

Each dot corresponds to a bank. We standardize the squared forecast error loss differentials

by the MSE of the plug-in predictor, i.e., we are plotting

1

MSE(plug-in)

[(
Yiτ+1 − Ŷiτ+1

)2 −
(
Yiτ+1 − Ŷiτ+1(plug-in)

)2
]
.

Thus, averaging the dots leads to the MSE differentials in Figure 4. The two zero lines and

the 45-degree line partition each panel into six segments. Dots to the left of the vertical zero

line correspond to banks for which the pooled OLS forecast is more accurate (lower squared

forecast error) than the plug-in predictor. Dots below the horizontal zero line are associated

with banks for which the empirical Bayes forecast is more accurate than the forecast from

the plug-in predictor. Finally, dots below the 45-degree line correspond to institutions for

which the empirical Bayes forecast is more accurate than the pooled OLS forecast.

We focus on three different time periods. In 2007:Q1 the MSE of the pooled OLS predictor

is 38% larger than that of the plug-in predictor, whereas the empirical Bayes predictor is only

slightly worse, an 8% MSE increase, than the plug-in predictor. In 2009:Q1, the pooled OLS

and empirical Bayes predictors perform equally well, and generate a 40% MSE reduction

relative to the plug-in predictor. Finally, in 2012:Q1, the empirical Bayes predictor performs

better than both the pooled OLS and the plug-in predictor. The top row of Figure 5 shows

squared forecast error differentials for all banks, whereas the bottom figure zooms in on

differentials between -5 and 5.

The visual impression from the panels is consistent with the MSE ranking of the predic-

tors. For instance, in the left panels there are more banks above the horizontal zero line (410

vs. 317) and to the right of the vertical zero line (470 vs. 257). Moreover, there are more
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Figure 5: Squared Forecast Error Differentials Relative To Plug-in Predictor, Model w/ UR,
T = 6

2007:Q1 – All 2009:Q1 – All 2012:Q1 - All
Emp. Bayes: 0.08 Emp. Bayes: -0.40 Emp. Bayes: -0.24

Pooled OLS: 0.38 Pooled OLS: -0.39 Pooled OLS: -0.10

2007:Q1 – Zoom 2009:Q1 – Zoom 2012:Q1 - Zoom

Notes: Figure depicts scatter plots of scaled squared forecast error differentials for pooled OLS and empirical
Bayes with mixture estimator (K = K̂) relative to the plug-in predictor. The differentials are divided by the
average MSE (across all units) of the plug-in predictor. Cross-sectional averaging of the dots yields the values
(%) that are listed below the plots and depicted in panels (1,2) and (2,2) of Figure 4 for the corresponding
time periods. Negative values are improvements compared to the plug-in predictor. Teal dots indicate banks
for which yiτ ≤ 0. The thin solid lines correspond to zero lines and the 45-degree line, respectively.

banks below the 45-degree line than above (440 vs. 287). The panels in the center column

of the figure indicate that the good performance of the empirical Bayes and pooled OLS pre-

dictors is driven in part by some banks for which the plug-in predictor performs very poorly.

The corresponding squared forecast error differentials line up along the 45-degree line. It is

important to note that the empirical Bayes predictor and the pooled-OLS predictor, despite

the similarity in average performance, are not based on the same prediction function. The

estimated autoregressive coefficient for the pooled-OLS predictor is much larger than the

QMLE estimate of ρ that is used for the empirical Bayes predictor.
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6.2 Forecasts Under Stressed Macroeconomic Conditions

We proceed by comparing the baseline forecasts from the previous subsection to predictions

under a stressed scenario, in which we use hypothetical values for the predictors. When ana-

lyzing stress scenarios, one is typically interested in the effect of stressed economic conditions

on the current performance of the banking sector. This is why we used the convention that

the vector Wit−1 includes time t macroeconomic and financial variables. Our subsequent

analysis assumes that in the short run there is no feedback from disaggregate BCH revenues

to aggregate conditions. While this assumption is inconsistent with the notion that the

performance of the banking sector affects macroeconomic outcomes, elements of the Com-

prehensive Capital Analysis and Review (CCAR) conducted by the Federal Reserve Board

of Governors have this partial equilibrium flavor.

Results for one-quarter-ahead predictions of PPNRs are depicted in Figure 6. Each circle

in the graphs corresponds to a particular BHC. We indicate institutions with assets greater

than 50 billion dollars13 by teal circles, while the other BHCs appear as black circles. The

x-dimension is the forecast under actual macroeconomic conditions and the y-dimension

indicates the forecast under the stressed scenario. For the model with unemployment as

covariate we impose stress by increasing the unemployment rate by 5%. This corresponds to

the unemployment movement in the severely adverse macroeconomic scenario in the Federal

Reserve’s CCAR 2016. For the model with three covariates the stressed scenario consists of an

increase in the unemployment rate by 5% (as before) and an increase in nominal interest rates

and spreads by 5%. This scenario could be interpreted as an aggressive monetary tightening

that induced a sharp drop in macroeconomic activity. In each figure we also report the MSE

associated with the various forecasts conditional on the actual macroeconomic conditions.

The two zero lines and the 45-degree line partition each panel into six segments. Dots to

the right of the vertical zero line correspond to banks for which the predicted profits under

the actual macroeconomic conditions are positive. Dots above the horizontal zero line are

associated with banks for which predicted profits are positive under stressed macroeconomic

conditions. Finally, dots below the 45-degree line correspond to institutions that are ad-

versely affected by the stressed macroeconomic conditions: predicted revenues are smaller

than under the actual conditions.

The graphs in the top two rows of Figure 6 depict forecasts for 2009:Q1 made in the midst

of the Great Recession. For the majority of banks – 90% or more based on the empirical

13These are the BHCs that are subject to the CCAR requirements.
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Figure 6: Predictions under Actual and Stressed Scenarios, T = 10

Empirical Bayes Pooled OLS Plug-In

Predictions for τ + 1 = 2009:Q1, Model w/ UR
MSE = 0.25 MSE = 0.30 MSE = 0.81

Predictions for τ + 1 = 2009:Q1, Model w/ UR, FFR, Spread
MSE = 0.33 MSE = 0.81 MSE = 1.29

Predictions for τ + 1 = 2011:Q1, Model w/ UR
MSE = 0.22 MSE = 0.32 MSE = 0.23

Notes: Forecast origins are τ = 2008:Q4 (panels in rows 1 and 2) and τ = 2010:Q4 (panels in row 3). Each
dot corresponds to a BHC in our dataset. We indicate institutions with assets greater than 50 billion dollars
by teal circles. We plot point predictions of PPNR under the actual macroeconomic conditions and a stressed
scenario. Model w/ UR: unemployment rate is 5% higher than its actual level. Model w/ UR, FFR, Spread:
the unemployment rate, the federal funds rate, and spread are 5% higher than their actual level. We also
report actual MSEs.
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Bayes and pooled OLS predictors, and between 80% and 85% under the plug-in predictor

– the predicted PPNRs remain positive. The MSEs reported in the figure imply that the

predictions from the model with one covariate are more accurate than the prediction for the

model with three covariates. This result is not surprising, because in our sample we only

have 10 time periods to disentangle the marginal effects of unemployment, federal funds rate,

and spreads on bank revenues. For each of the two model specifications, empirical Bayes

predictor dominates the pooled-OLS predictor, which in turn attains a lower MSE than the

plug-in predictor.14 Thus, overall, the lowest MSE among the six predictors depicted in the

top two rows of the figure is attained by the empirical Bayes predictor based on the model

with unemployment.

The predictions for 2009:Q1 from the model with one covariate under stressed macroe-

conomic conditions obtained from pooled OLS and the plug-in predictor look markedly

different. The former essentially predicts no effects on bank revenues because the dots line

up along the 45-degree line. The latter predicts a response that is very heterogeneous across

institutions: 33% of the banks are predicted to be able to raise their revenues, whereas for

67% of the institutions the revenues are expected to fall relative to the baseline scenario.

Predicted losses are as large as 10% of the bank assets. According to the preferred (based

on the MSE under the baseline scenario) empirical Bayes predictor, 93% of the institutions

are expected to experience a drop in PPNRs by 1 to 2 percent of their assets.

The last row of Figure 6 shows predictions for 2011:Q1 made during the recovery, based

on the one-variable model. Unlike in the earlier sample, now the plug-in predictor generates

more accurate forecasts (lower MSE) than the pooled-OLS predictor. As before, the empirical

Bayes predictor beats both alternatives, albeit the plug-in predictor only by a small margin.

The actual-versus-stressed predictions from the empirical Bayes procedure line up along the

45-degree line. For 68% of the institutions predicted profits are lower under the stressed

scenario than under the benchmark scenario, but the drop in revenues is very small. Under

the plug-in predictor, there is more heterogeneity in the response of banks’ PPNRs, with

some banks revenues dropping by 1.5 percentage points, whereas other banks are predicted

to observe a modest increase in revenues. However, the baseline forecasts of this predictor

14The computation of the empirical Bayes predictor in this section is slightly different. After fitting mixture
models to p(λ̂|y0) we discovered that our data driven selection typically generates K̂ = 1, which means that

λ̂|y0 is multivariate normal. Rather than directly estimating a normal distribution with an unrestricted

variance-covariance matrix, we parameterize p(λ̂|y0) in terms of the coefficients of a Gaussian prior π(λ|y0),
imposing that the prior covariance matrix is diagonal. While in most periods the two approaches lead to the
same results, there are some periods in which the latter approach is numerically more stable.
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are less accurate than those from the empirical Bayes predictor, lending more credibility to

the latter.

Discussion. We view this analysis as a first step toward applying state-of-the-art panel data

forecasting techniques to stress tests. First, it is important to ensure that the empirical model

is able to accurately predict bank revenues and balance sheet characteristics under observed

macroeconomic conditions. Our analysis suggests that there are substantial performance

differences among various plausible estimators and predictors. Second, a key challenge is

to cope with the complexity of models that allow for heterogeneous coefficients in view of

the limited information in the sample. There is a strong temptation to over-parameterize

models that are used for stress tests. We use prior information to discipline the inference. In

our empirical Bayes procedure, this prior information is essentially extracted from the cross-

sectional variation in the data set. While we a priori allowed for heterogeneous responses, it

turned out a posteriori, trading-off model complexity and fit, that the estimated coefficients

exhibited very little heterogeneity. Third, our empirical results indicate that relative to the

cross-sectional dispersion of PPNRs, the effect of severely adverse scenarios on revenue point

predictions are very small. We leave it future research to explore richer empirical models

that focus on specific revenue and accounting components and consider a broader set of

covariates. Finally, it would be desirable to allow for a feedback from the performance of

the banking sector into the aggregate conditions.

7 Conclusion

The literature on panel data forecasting in settings in which the cross-sectional dimension

is large and the time-series dimension is small is very sparse. Our paper contributes to this

literature by developing an empirical Bayes predictor that uses the cross-sectional informa-

tion in the panel to construct a prior distribution that can be used to form a posterior mean

predictor for each cross-sectional unit. The shorter the time-series dimension and the smaller

the parameter heterogeneity, the more important this prior becomes for forecasting and the

larger the gains from using the posterior mean predictor instead of a plug-in predictor. We

consider a particular implementation of this idea for linear models with Gaussian innovations

that is based on Tweedie’s posterior mean formula. It can be implemented by estimating

the cross-sectional distribution of sufficient statistics for the heterogeneous coefficients in

the forecast model. We provide a theorem that establishes a ratio-optimality property for

a nonparametric kernel estimator of the Tweedie correction and consider implementations
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based on the estimation of mixtures of normals and nonparametric MLE in Monte Carlo

simulations. We illustrate in an application that our forecasting techniques work well in

practice and may be useful to execute bank stress tests.
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Arellano, M., and B. Honoré (2001): “Panel data models: some recent developments,”
Handbook of econometrics, 5, 3229–3296.

Baltagi, B. (1995): Econometric Analysis of Panel Data. John Wiley & Sons, New York.

Baltagi, B. H. (2008): “Forecasting with panel data,” Journal of Forecasting, 27(2), 153–
173.

Blundell, R., and S. Bond (1998): “Initial conditions and moment restrictions in dy-
namic panel data models,” Journal of econometrics, 87(1), 115–143.

Brown, L. D., and E. Greenshtein (2009): “Nonparametric empirical Bayes and com-
pound decision approaches to estimation of a high-dimensional vector of normal means,”
The Annals of Statistics, pp. 1685–1704.

Chamberlain, G., and K. Hirano (1999): “Predictive distributions based on longitudinal
earnings data,” Annales d’Economie et de Statistique, pp. 211–242.

Covas, F. B., B. Rump, and E. Zakrajsek (2014): “Stress-Testing U.S. Bank Holding
Companies: A Dynamic Panel Quantile Regression Approach,” International Journal of
Forecasting, 30(3), 691–713.

Efron, B. (2011): “Tweedie’s Formula and Selection Bias,” Journal of the American Sta-
tistical Association, 106(496), 1602–1614.



This Version: September 3, 2018 45

Goldberger, A. S. (1962): “Best linear unbiased prediction in the generalized linear
regression model,” Journal of the American Statistical Association, 57(298), 369–375.

Gu, J., and R. Koenker (2016): “Empirical Bayesball Remixed: Empirical Bayes Meth-
ods for Longitudinal Data,” Journal of Applied Economics (Forthcoming).

(2017): “Unobserved Heterogeneity in Income Dynamics: An Empirical Bayes
Perspective,” Journal of Business & Economic Statistics, 35(1), 1–16.

Hirano, K. (2002): “Semiparametric Bayesian inference in autoregressive panel data mod-
els,” Econometrica, 70(2), 781–799.

Hirtle, B., A. Kovner, J. Vickery, and M. Bhanot (2016): “Assessing Financial
Stability: The Capital and Loss Assessment under Stress Scenarios (CLASS) Model,”
Journal of Banking & Finance, 69, S35–S55.

Hsiao, C. (2014): Analysis of Panel Data. Cambridge University Press, Cambridge.

Jiang, W., and C.-H. Zhang (2009): “General Maximum Likelihood Empirical Bayes
Estimation of Normal Means,” The Annals of Statistics, 37(4), 1647–1684.

Kapinos, P., and O. A. Mitnik (2016): “A Top-down Approach to Stress-testing Banks,”
Journal of Financial Services Research, 49(2), 229–264.

Kiefer, J., and J. Wolfowitz (1956): “Consistency of the Maximum Likelihood Estima-
tor in the Presence of Infinitely Many Incidental Parameters,” The Annals of Mathematical
Statistics, 27(4), 887–906.

Lancaster, T. (2002): “Orthogonal parameters and panel data,” The Review of Economic
Studies, 69(3), 647–666.

Liu, L. (2018): “Density Forecasts in Panel Data Models: A Semiparametric Bayesian
Perspective,” arXiv preprint arXiv:1805.04178.

Liu, L., H. R. Moon, and F. Schorfheide (2017): “Forecasting With Dynamic Panel
Data Models,” Manuscript, arXiv, 1709.10193.

(2018): “Forecasting With a Panel Tobit Model,” Manuscript, University of Penn-
sylvania.

Norets, A., and J. Pelenis (2012): “Bayesian Modeling of Joint and Conditional Distri-
butions,” Journal of Econometrics, 168, 332–346.

Robbins, H. (1951): “Asymptocially Subminimax Solutions of Compound Decision Prob-
lems,” in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, vol. I. University of California Press, Berkeley and Los Angeles.

(1956): “An Empirical Bayes Approach to Statistics,” in Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability. University of California
Press, Berkeley and Los Angeles.



This Version: September 3, 2018 46

(1964): “The empirical Bayes approach to statistical decision problems,” The
Annals of Mathematical Statistics, pp. 1–20.

Robert, C. (1994): The Bayesian Choice. Springer Verlag, New York.

Robinson, G. K. (1991): “That BLUP is a good thing: the estimation of random effects,”
Statistical science, pp. 15–32.

Silverman, B. W. (1986): Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London.




