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1 Introduction

The integrability problem, which consists in characterizing demand systems that can be ratio-

nalized and derived from utility functions, has long been a central issue in economic theory.

Its earliest contributions date from Antonelli (1886), with applications to various fields, includ-

ing micro and macroeconomics, econometrics, industrial organization and international trade.

Theorists have provided broad sufficient and necessary conditions for demand patterns to be

integrable, notably Hurwicz and Uzawa (1971), who provide conditions based on the Slutsky

substitution matrix, which must be symmetric and negative semi-definite for all prices and

income levels.

While very general, the Hurwicz and Uzawa (1971) integrability conditions lack practicality.

Perhaps a consequence is that applied theorists and practitioners have often focused on less

general cases to ensure both tractability and rationality. In particular, one often focuses on

directly-separable, indirectly-separable or quasi-linear preferences. An attractive feature of

these preferences is that demand depends only on a few variables, namely consumer income, a

good’s own price, and a single aggregator (scalar) that is itself a function of the vector of prices

and income. Such an aggregator can be, for instance, a price index (e.g. with constant elasticity

of substitution preferences) or the marginal utility of money (directly-separable preferences).

These preferences, however, have properties that may be undesirable and too restrictive in terms

of income and price effects. For instance, quasi-linear preferences suppress income effects, while

direct separability implies that income elasticities and price elasticities are proportional across

goods (“Pigou’s law”), a testable prediction that has been rejected by Deaton (1974).

In this paper, we characterize more general demand systems that retain a key practical

property of these widely-used demand systems: the existence of a single price aggregator, a

feature that is very useful to welfare analysis and models of monopolistic and oligopolistic

competition. Following Pollak (1972), we refer to such a demand systems as “generalized

separable” whereby demand satisfies:

qi = qi(pi/w,Λ) (1)

for each good i, where w refers to consumer income (total outlays), pi the price of good i, and Λ

is a scalar (aggregator) function of all prices and income. Without providing a complete proof,

Gorman (1972, 1995) indicates that such demand system can take either of two main forms1 if

1There are other cases that can be ruled out under additional restrictions on price sensitivity.
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we impose the Slutsky matrix to be symmetric:

qi =
Di(F (Λ)pi/w)

H(Λ)
or: qi = Ai(Λ)(pi/w)−σ(Λ) (2)

where, in both cases, Λ is a scalar that is adjusted so that the budget constraint is satisfied, and

can thus be defined as an implicit function of prices and income. As little is known about these

demand systems, they have not been used in the applied literature in spite of their usefulness.2

The objectives of this paper are twofold. First, I provide conditions under which demand

with generalized separability have to take these two forms (i.e. a formal statement of Gorman’s

claims mentioned above). These functional forms however do not imply that these demand

systems are well defined and integrable, as shown with counter-examples in each case. The

second and main contribution is to show that any demand function that takes the form in

equation (2) can be integrated under weak restrictions. These restrictions ensure that the Slut-

sky substitution matrix not only is symmetric but also negative semi-definite, or equivalently,

a quasi-concave and well-defined utility function.

In the first case, where demand satisfies qi = Di(F (Λ)pi/w)/H(Λ), integrability is guaran-

teed if Di is monotonically decreasing in pi, and demand qi is decreasing in Λ. We will refer

to this case as a “generalized Gorman-Pollak” demand system, which generalizes the demand

systems mentioned above. It corresponds to directly-additive utility when H(Λ) is constant

and indirectly-additive utility when F (Λ) is constant. This also generalizes the results of Mat-

suyama and Ushchev (2017), who focus on homothetic demand where F (Λ) = 1/H(Λ) = Λ.

Income and price elasticities both depend on the functional form chosen for Di, which can

be very flexible; demand and price shifters H(Λ) and F (Λ) also influence income effects and

depend flexibly on the price aggregator.

In the second case, with common price elasticities across goods and qi = Ai(Λ)(pi/w)−σ(Λ),

integrability requires that the demand shifters Ai(Λ) increase quickly enough in Λ to ensure

that the associated utility is well defined. In that case, there is a one-to-one mapping between Λ

and utility. Notice that the price elasticity σ(Λ) does not have to remain constant or monotonic

across indifference curves; it can increase or decrease with Λ, i.e. indifference curves can become

flatter or more convex as income goes up, as long as they do not cross. We will refer to that

case as “generalized non-homothetic CES”. This second case features Allen-Uzawa substitution

elasticities that do not vary across goods but may vary with the demand aggregator Λ, and

generalizes implicitly-additive utility functions previously defined by (Comin et al., 2015) who

impose a constant elasticity of substitution σ(Λ) = σ. Relative to Gorman-Pollak demand, this

2There are a few recent exceptions, including Bertoletti and Etro (2017a) for the first case, Comin et al.
(2015) and Matsuyama (2015) for the second case with homogeneous σ(Λ) = σ.
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case allows for more flexible income patterns, but less flexible price effects.3

The demand systems in both cases yield various applications. They are particularly useful

in the case of monopolistic competition. In the limit where firms have small market shares,

they choose their price by taking as given other prices and quantities. It is then practical to

have a single industry-wide indicator Λ that uniquely determines the locus of the demand curve

for a good with respect to its own price.4

With the first type of demand system, the generalized Gorman-Pollak form, the price aggre-

gator Λ can be interpreted as an index of tightness of the budget constraint,5 or alternatively

as an index of the toughness of competition in a model with firms. It may shift downward

or upward along demand curves as income and competition grows, with flexible implications

for markups. These demand functions encompass most examples from Mrázová and Neary

(2013), e.g. bi-power and inverse bi-power demand functions, or Weyl and Fabinger (2013),

e.g. Bulow-Pfleiderer demand. With iso-elastic functions H and Di, they coincide with the

self-dual addilog demand systems (Houthakker, 1965) and extend the constant relative income

elasticities (CRIE) used for instance in Fieler (2011) and Caron et al. (2014). The general-

ized Gorman-Pollak form can also generate choke prices (as demand Di for a good i goes to

zero) which can be expressed as a simple function of income and the price aggregator, with a

functional form that is again more flexible than commonly used in macroeconomics and inter-

national trade. In particular, this form can be used to generalize the results of Bertoletti and

Etro (2017b) and Bertoletti et al. (2016) in which the choke price is proportional to income.

Applications of the second type of demand, with generalized non-homothetic CES, remain

very tractable and empirically relevant, because they allow for heterogeneous price elasticities

across the income distribution. Several studies (such as Handbury, 2013 and Faber and Fally,

2017) based on expenditure surveys and scanner data have shown that price elasticities vary

significantly with income. Handbury (2013) and Faber and Fally (2017) model income effects in

the elasticity of substitution by relying on a numeraire good. With generalized non-homothetic

CES, we can instead generate such relationship between income and the elasticity of substitution

through utility, without relying on a numeraire, while retaining a common elasticity σ(Λ) across

goods for a given income level.

The paper is also related to a vast literature studying functional forms restrictions of utility

3Note that implicitly-additive utility depends on a single aggregator only in the case where the Allen-Uzawa
elasticity of substitution is common across goods. In other cases, such as Kimball (1995), two aggregators are
needed. See also Preckel et al. (2005) for another form of implicitly additive utility and generalization of CES
preferences.

4Bertoletti and Etro (2017a) recent work formalizes this insight and covers this demand system as an example.
5Aggregator Λ is implicitly determined by the budget constraint and its role is very similar to the Lagrange

multiplier under directly-separable preferences.
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and demand systems. Ligon (2016) focuses on cases where the aggregator Λ corresponds to

the Lagrange multiplier associated with the budget constraint, and shows that Λ−separability

implies directly-additive utility with even more specific functional forms. Nocke and Schutz

(2017) study the (“quasi-”) integrability of quasi-linear demand systems, i.e. without income

effects. Atkin et al. (2018) examine quasi-separable preferences (following Gorman, 1970, 1995)

and applications to welfare estimation using Engel curves. The discussion on the existence of

aggregators also mirrors the restrictions associated with the rank of a demand system (Gorman,

1981; Lewbel, 1991, 2010; LaFrance and Pope, 2006; Lewbel and Pendakur, 2009). The rank

of a demand system corresponds to the number of vectors and homothetic price aggregators

needed to recover Engel curves (see Lewbel, 1991). Here, the single aggregator Λ is generally not

homogeneous of degree one in prices (it also depends on income) and the two demand systems

studied here do not have restrictions in terms of rank. Finally, Blackorby et al. (1978) study

functional forms implied by various definitions of separability, and find that the same functional

structure as with generalized non-homothetic CES is obtained when imposing stronger forms

of separability that imply equality among Allen-Uzawa elasticities of substitution.

The remainder of the paper proceeds as follows. Section 2 examines the functional forms

imposed by generalized separability. Section 3 provides sufficient conditions to ensure integra-

bility for each type of demand. Section 4 discusses key properties of these demand systems.

Section 5 concludes by discussing various applications.

2 Functional Forms under Generalized Separability

Additively-separable utility allows us to obtain demand as a simple function of a good’s own

price pi and a single aggregator, the Lagrange multiplier. While practical, both direct and indi-

rect separability put strong constraints on the structure of demand, such as a tight relationship

between price elasticity and income elasticity, with for instance the adverse consequence that

preferences with constant elasticity of substitution (CES) are the only directly-separable and

indirectly-separable preferences that are homothetic.

In an attempt to generalize the concept of separability, Gorman (1972) and Pollak (1972)

define generalized separability as demand that would take the form:

qi = qi(pi/w,Λ) (3)

where qi refers to demand for good i (quantity) and Λ is implicitly defined by the budget

constraint: ∑
piqi = piqi(pi/w,Λ) = w
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i.e. such that total expenditures equal a fixed revenue w. Note that, generally, Λ is not a

Lagrange multiplier, except for the case where demand can be derived from a directly-additive

separable utility (Ligon 2016).

In an unpublished note by Gorman (printed in Gorman, 1995) mentioned by Pollak (1972),

Gorman indicates that a demand system defined as above needs to take specific forms in order

to satisfy Slutsky’s symmetry condition. With a few additional restrictions, this result can be

formulated as follows:6

Proposition 1 If demand satisfies the following conditions:

i) generalized separability (equation 3);

ii) there are at least four goods,

iii) holding Λ constant, (pi/w)qi(pi/w,Λ) is not constant over the range of prices pi

Then demand can be written as either:

case 1: qi(pi/w,Λ) =
Di(F (Λ)pi/w)

H(Λ)
for all goods i and all pi, w,Λ

case 2: qi(pi/w,Λ) = Ai(Λ)(pi/w)−σ(Λ) for all goods i and all pi, w,Λ

+ case 2’: qi(pi/w,Λ) = AiΛ
ρ(pi/w)−σ for all but one good i

or a combination of cases 2 and 2’ depending on Λ. In all cases, Λ is implicitly defined such

that budget constraint is satisfied, i.e. such that
∑

i qi(pi/w,Λ)pi = w.

The proof of Proposition 1 is rather tedious. A key step is to show that the symmetry of

the Slutsky matrix implies, with a few exceptions, that either the cross-elasticity of demand

w.r.t to the normalized price pi/w and Λ is constant across all goods (this corresponds to case

2 above) or that the ratio of elasticities εΛi−εΛi
εyi−εyi is identical across all pairs of goods (conditional

on Λ), where εΛi denotes the demand elasticity of good i w.r.t Λ and εyi w.r.t own normalized

prices pi/w. Solving differential equations implied by these constraints, we can then show that

the functional forms above are the only possible demand functions. Symmetry of the Slutsky

matrix is the only constraint that is imposed on substitution patterns, and the negative semi-

definiteness is not yet guaranteed.

6Gorman’s sketch of proof had many shortcuts, as he himself noted: “Throughout this paper I have talked
as if my claims were definitely proven. Of course this is not so: my arguments are far from rigorous” (Gorman,
1995). Here I impose somewhat stronger assumptions on the form of demand and price effects in order to avoid
a few inelegant cases. In particular, the assumption that expenditure shares are not just a function of Λ allows
me to avoid what Gorman calls “the abnormal case”.
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Since the third case is relatively interesting and elegant (CES for all but one good), the

remainder of the paper focuses on cases 1 and 2, setting aside case 2’. Note that there may

be alternative functional forms under generalized separability if we allow for price-insensitive

expenditures shares, which Gorman calls “abnormal” goods. Assumption iii) allows us to

exclude such cases.

Finally, note that functional forms are unique up to a constant term and a monotonic

transformation of Λ:

Proposition 2 Uniqueness of functional forms, except for the CES case:

Case 1: H(Λ) and F (Λ) are uniquely determined by demand patterns, up to a constant

term and a strictly-monotonic transformation of Λ

Case 2: Ai(Λ) and σ(Λ) are uniquely defined by demand patterns, up to a strictly-

monotonic transformation of Λ

To prove this result, in case 1), note that price effect depend tightly on εDi (see sections 3.2

and 3.3), hence price elasticities can be used to determine Di. One can then identify functions

F and H by examining variations in εDi depending on income (except in the CES case).7 In

case 2), σ corresponds to price elasticities and Ai(Λ) can be determined by examining income

expansion path. Note that for any function H, F , Ai and σ, one would obtain the same demand

patterns after the change in variable Λ′ = g(Λ) with any one-to-one mapping g.

In the first case, note that we can express the inverse demand system as:

pi/w = (1/F (z)) D−1
i (H(z)qi) (4)

where z is implicitly defined as described in equation (8) as function of the vector of con-

sumption. When F (z)H(z) is constant and preferences are homothetic, this aggregator z is

homogeneous of degree one in quantities qi. This inverse demand formulation highlights the

symmetric role of H vs. F . While H is the demand shifter in the direct demand function

(equation 4), now F is the demand shifter in the inverse demand function.

7Price and income elasticities depend on the ratio of εF and εH which is uniquely determined once we know
these elasticities. Taking a strictly monotonic transformation of Λ does not change this ratio and yields the same
consumption patterns (assuming that this new aggregator is also such that the budget constraint is satisfied).
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3 Integrability

3.1 Integrability of Generalized Gorman-Pollak Demand

Let us now examine the reciprocal of Proposition 1. Under which conditions are these de-

mand systems integrable, i.e. can be derived from a rational utility-maximizing consumption

behavior? These functional forms, imposed by the symmetry of the Slutsky matrix, do not

necessarily correspond to rational consumer behavior (see counter-examples in Appendix B).

However it turns out that only weak additional conditions are sufficient to guarantee that the

demand systems described in Proposition 1 are integrable.

Suppose that demand is given by:

qi =
Di(F (Λ)pi/w)

H(Λ)
(5)

where Λ is implicitly determined by the budget constraint
∑

i piDi(F (Λ)pi/w)/H(Λ) = w,

which can be rewritten:

H(Λ) =
∑
i

(pi/w)Di(F (Λ)pi/w) (6)

Let us denote by εDi = ∂ logDi
∂ log x

the elasticity of Di in its argument, and εH = ∂ logH
∂ log Λ

and

εF = ∂ logF
∂ log Λ

the elasticity of H and F in Λ.

To ensure integrability, we impose the following sufficient regularity restrictions:

Regularity assumptions [A1] on functions Di and H:

i) Di is differentiable, εDi < 0 unless Di = 0

ii) H and F are differentiable and εF εDi < εH for all i, Λ and pi/w

iii) For any set of normalized prices pi/w, equation (6) admits a solution in Λ.

Note that instead of [A1] ii) we could assume that εF εDi−εH has the same sign for all i, Λ and

pi/w. Assuming that this difference is negative is without loss of generality as we can always

make the change in variable Λ′ = 1/Λ to invert its sign for all goods and prices. Assumptions i)

and ii) imply that the solution in Λ to equation (6) is always unique, but they are also needed

to show that utility is quasi-concave and that the Slutsky substitution matrix is negative semi-

definite. However, condition ii) on elasticities does not ensure that there exists a Λ to satisfy

the budget constraint, so we need to also impose condition iii). Note also that condition iii)

could be implied by stricter conditions on elasticities (see Appendix C for practical examples).
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Under these conditions, we obtain:

Proposition 3 If H and Di satisfy the regularity conditions [A1], the demand described in

equations (5) and (6) is integrable, i.e. can be derived from a utility function.

I provide two alternative proofs in Appendix. First, we can reconstruct a utility function that

depends on an implicitly-defined aggregator.8 We can show that demand can be derived from

the maximization of:

U(q) =
∑
i

∫ x=H(z)qi

x=xi0

D−1
i (x)dx −

∫ z

z0

H ′(z)F (z)dz (7)

for arbitrary z0, x0i ≥ 0 and where z is itself a function of the consumption vector x implicitly

defined by:

F (z) =
∑
i

qiD
−1
i (H(z)qi) (8)

As a slight abuse of notation, we define D−1
i (0) = ai if Di(y) = 0 for all y ≥ ai (which yields a

choke price) and D−1
i (x) = 0 for all x ≥ bi if Di(0) = bi. Regularity conditions [A1] are needed

to ensure that equation (8) always has a unique solution in z and that the utility function

is quasi-concave. Note that equation (8) can be seen as a first-order condition such that the

derivative of the expression above for U has a zero derivative in z, and such that:

∂U

∂qi
= D−1

i (H(z)qi) (9)

The two aggregators Λ (function of prices and income) and z (function of quantities q) coincide

for the optimal consumption basket.9

An alternative proof of Proposition 3 checks that the Slutsky substitution matrix is negative

semi-definite under these restrictions, so that we can apply the integrability theorem of Hurwitz

and Uzawa (1971). Thanks to Proposition 1, we already know that it is symmetric but this

does not ensure semi-definite negativity. As one could expect, the conditions ensuring the semi-

definite negativity of the Slutsky matrix are the same as those providing the quasi-concavity

of the utility function above.

8This utility representation was pointed out by Gorman (1987) with a more restrictive formulation and
no formal proof that such utility function is well defined and quasi-concave. Gorman formulated this as a
maximization: U = maxz {

∑
i ui(zqi)− Φ(z)} but this approach omits very useful cases (e.g. cases with

0 < β < 1 in applications 3, 4, 9 and 10 in Section 4) where the second order condition of this maximization is
not satisfied yet the utility function remains quasi-concave with z implicitly defined by equation 8.

9But note that z is defined as a function of the vector of quantities while Λ is a function of the vector of
prices and income.
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Next, an important concern is whether the set of conditions [A1] can be relaxed, but I argue

here that all are needed. First, the demand system would clearly not be well defined if it does

not have a solution in equation (6), so condition iii) is unavoidable. It is possible to impose

more simple conditions to ensure existence, but such condition would be less general. Second,

restriction ii) is the simplest and more direct way to insure that the equation defining the price

aggregator has a unique solution. It is required for good i for a given level of prices when a

good i has a sufficiently large expenditure share. In Appendix B, I provide an example with two

goods where restrictions i) and iii) are met but the Slutsky matrix is no longer negative semi-

definite when εF εDi− εH does not have the same sign for the two goods. Finally, restriction i)

ensures that we have a negative effect of prices on demand when the expenditure share of a good

is small (a positive price effect would not be rational for small expenditure shares). Inverting

Di is also needed in equations (8) and (7) to retrieve utility.

The case F (Λ) = 1/H(Λ) coincides with Matsuyama and Ushchev (2017) for homothetic

preferences. With the change in variable: F (Λ) = 1/H(Λ) = wΛ′ (where Λ′ is again implicitly

determined by the budget constraint), a demand system such that qi = Λ′wDi(Λ
′pi) can be

rationalized as long as εDi + 1 has the same sign for all goods (which is equivalent to A1-ii). If

εDi + 1 is negative, we define Λ′ instead by w/Λ′ = F (Λ) = 1/H(Λ).

In general, Proposition 3 does not require F (Λ) to be monotonic in Λ. If F ′(Λ) > 0, an

increase in Λ (tightness of the budget constraint) leads to a downward shift in the partial

demand curve Di. When F ′(Λ) < 0, we would instead have an upward shift in Di, which

needs to be compensated by a large enough decrease in the demand shifter H(Λ). If F (Λ) can

be inverted (which is satisfied for most applications provided in Section 4), note that we can

reformulate demand as:

qi = H̃(Λw)Di(Λpi) s.t.: H̃(Λw)
∑
i

piDi(Λpi) = w (10)

with the change in variable: Λ′ = F (Λ)/w and the transformation 1/H̃(·) = H(F−1(·)). In

this case, condition [A1] ii) and iii) are automatically satisfied if there exists ε > 0 such that

εH̃ + εDi < −ε for all pi, w and Λ.

3.2 Integrability of Generalized Non-Homothetic CES

Now, consider the second case of Proposition 1. Let us assume that demand is given by:

piqi = w (Gi(Λ) pi/w)1−σ(Λ) (11)

10



where Λ is an implicit function of the vector of normalized prices pi/w such that the budget

constraint is satisfied: ∑
i

(Gi(Λ)pi/w)1−σ(Λ) = 1 (12)

To ensure integrability, we impose the following sufficient regularity restriction [A2]:

Regularity assumptions [A2] For each Λ, we have σ(Λ) 6= 1 and either one of the following

two conditions:

i) σ(Λ) is weakly increasing in Λ and Gi(Λ) is strictly increasing in Λ

ii) σ(Λ) is decreasing in Λ and, for each Λ0, there exists αi > 0 such that
∑

i αi = 1 and

such that Gi(Λ)α
1

σ(Λ)−1

i is strictly increasing in Λ in a neighborhood of Λ0

When both σ(Λ) and Gi(Λ) are all differentiable, condition ii) can be rewritten after solving

for the minimum αi that would satisfy this monotonicity condition. Condition ii) is formally

equivalent to imposing:10 ∑
i

exp

(
(σ(Λ)− 1)2G′i(Λ)

σ′(Λ)Gi(Λ)

)
< 1 (13)

See Appendix for the proof of equivalence.

We obtain the following proposition for generalized non-homothetic CES:

Proposition 4 Suppose that demand can be written as in equation (11) where Gi and σ are

continuous and where Λ is implicitly defined by (12). This demand system is integrable if

conditions [A2] are satisfied. Under [A2], demand can be derived from a utility function that is

implicitly defined by: ∑
i

(qi/Gi(U))
σ(U)−1
σ(U) = 1 (14)

which has a unique solution in U , with Λ = U for the demand qi described above.

The constant elasticity case σ(Λ) = σ corresponds to implicitly additive utility as in (Comin

et al., 2015). This is not equivalent to the standard CES since, even in that case, non-trivial

10In general, note that condition ii) need not hold for any set of αi’s, it is sufficient that it holds for a single
set of αi’s. In particular, using αi = 1/N (where N denotes the number of goods), a sufficient condition is that

Gi(Λ)N
1

1−σ(Λ) strictly increases in Λ.
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income effects through the demand shifter Gi(Λ) allow for very flexible Engel curves. The main

contribution of this proposition is to generalize to variable elasticity of substitution.

The proof of Proposition 4 mainly consists in showing that Λ is well-defined, i.e. that

the budget constraint has a unique solution in Λ, and that utility is also uniquely defined by

equation 14. As the more general case allows for varying curvature of indifference curves, one

needs to ensure in particular that these indifference curves do not cross.

The proof proceeds as follows. First we show in a lemma that
[∑

i αix
ρ
i

] 1
ρ

is monotonically

increasing in ρ if
∑

i αi = 1 (a consequence of Jensen’s inequality). This allows us to obtain

comparative statics in the exponent in equations (14) and (12). We can then show that the

solutions to these equations are unique, for a given set of income and prices, or quantities.

Once we have uniqueness, it is easy to verify the quasi-concavity of the utility function (as in

Comin et al., 2015). The last step is to check that this utility maximum problem does yield

the demand system described above.

Again, as for Proposition 3, a potential concern is whether restrictions [A2] are necessary.

When neither condition i) or ii) is satisfied, neither the demand system described above nor the

utility in Proposition 3 is well defined. Counter-examples in the Appendix further illustrate

the role of each condition, showing that equations (12) and (14) admit multiple solutions in Λ

and U if conditions i) and ii) are not satisfied. Incidentally, this shows that monotonicity in

demand shifters Gi(Λ) is not sufficient.11

One should also point out why we need different conditions depending on whether σ(Λ)

decreases or increases with Λ. In the first case, where σ(Λ) increases with Λ, indifference

curves become flatter as we move away from the origin (with increases in income and Λ). In

that case, indifference curves are most likely to cross around the intercepts (when only one

good is consumed). Monotonicity in Gi(Λ) is then sufficient to ensure that indifference curves

do not cross. In the second case, where the elasticity of substitution σ(Λ) decreases with Λ, the

indifference curves are more curved as we move away from the origin. In this case, indifference

curves are most likely to be close to each other and intersect in the middle.

11We can also have σ(Λ) = 1 for a discrete number of limit cases.
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4 Properties: Welfare, price and income effects

4.1 Generalized Gorman-Pollak

Price elasticities. In this case, the price elasticity of Marshallian demand is:

∂ log qi
∂ log pj

= εDi .1(i=j) −
Wj(1 + εDj)(εH − εF εDi)

εH − εF ε̄D

where Wj is the expenditure share of good j and 1(i=j) is a dummy equal to one when i = j.

Given our restriction εH > εF εDi, the cross-price elasticity (i 6= j) is positive if and only if

εDj < −1. The own-price elasticity is always negative, which rules out Giffen goods.

The own price elasticity is mainly determined by the shape of function Di when that good

has a negligible market share:
∂ log qi
∂ log pi

≈ εDi

Since we impose very few constraints on εDi the patterns of price elasticities can be very flexible.

Shifters and choke prices. For applications to oligopolistic and monopolistic competition,

a key determinant of the toughness of competition is the position along demand curves. Here

this is reflected in the price shifter F (Λ)/w as well as the demand shifter H(Λ). Either one is

constant with directly or indirectly-separable preferences.

The demand system can be accommodated to yield choke prices (also called reservation

prices), i.e. a price threshold p∗i such that Di(F (Λ)pi/w) = 0 for all pi ≥ p∗i , which arises as

soon as Di(y) = 0 for large enough y’s.12

Of particular interest is how choke prices depend on income. Income is irrelevant with

homothetic preferences, but this prediction contradicts substantial evidence (e.g. Hummels

and Klenow 2007) showing that richer consumer buy a greater variety of goods and that richer

countries import a larger variety of products. A special case corresponds to indirectly-additive

preferences (H is constant). In this case, choke prices are linear in income, as documented by

Bertoletti et al (2017). In the general case, the choke price depends on both income and the

toughness of competition, captured by Λ:

p∗i =
aiw

F (Λ)

12Choke prices are particularly useful in international trade to explain why less efficient firms are less likely
to export to a specific market (without having to rely on export fixed costs) and to obtain gravity equations as
shown in Melitz and Ottaviano (2008) and Arkolakis et al (2015) among others.
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where ai = min{D−1
i (0)} is the level above which demand is null.

Income effects. The income elasticity of good i is:

∂ log qi
∂ logw

= 1 +
(εH + εF )(ε̄D − εDi)

εH − εF ε̄D
(15)

Using this expression, one can see that homotheticity implies that either εH = −εF or εDi = ε̄D

for all i.

As pointed out by Pigou (1910) and Deaton (1974), own-price elasticities and income elas-

ticities are tightly linked when demand is derived from a directly-additive utility (which corre-

sponds to the case where εH = 0). Here we obtain: ∂ log qi
∂ logw

= εDi
ε̄D

with directly separable utility.

With εH 6= 0, the relationship between income elasticity and price elasticity is muted and we

obtain a demand system that is more in line with Deaton (1974) empirical results. Note that
∂ log qi
∂ logw

−1 has the same sign as ε̄D−εDi when εF +εH > 0, and flipped otherwise. This property

can seem attractive, as empirical evidence indicates that price-elastic goods are not necessarily

more income elastic.

Homotheticity. This demand system is homothetic if and only if H(Λ)F (Λ) is constant or

if it is CES. This corresponds to the case studied by Matsuyama and Ushchev (2017). In this

case, without loss of generality we can assume that F (z) = 1/H(z) = z. We obtain that a

utility representation given by:

U(q) = log(z) +
∑
i

∫ x=qi/z

x=xi0

D−1
i (x)dx (16)

where z is such that
∑

i(qi/z)D−1
i (qi/z) = 1, and xi0 are constant terms.

Indirect utility. Here we draw from Pollak (1972) to show that indirect utility can be ex-

pressed as:

V (p, w) = Ṽ (p, w,Λ) =
∑
i

∫ yi0

(pi/w)F (Λ)

Di(y)dy +

∫ Λ

Λ0

F ′(l)H(l)dl (17)

where Λ = Λ(p, w) is implicitly defined as above, and where yi0 and Λ0 are constant terms.

Conveniently, we can verify that ∂Ṽ
∂Λ

= 0, hence we obtain simple expressions for marginal

(indirect) utility from income and price changes. Taking the derivative w.r.t income, one can
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interpret the product of the two shifters as the marginal utility of income:

∂V (p, w)

∂w
=

F (Λ)H(Λ)

w
(18)

This expression can also be useful to compute equivalent and compensating variations, implic-

itly defined such that V (p′, w − CV ) = V (p, w) and V (p, w + EV ) = V (p′, w′).

Additivity When are these preferences directly or indirectly additive? Recall that prefer-

ences are directly additive if utility can be written as U(q) = f(
∑

i ui(qi)) where f and {ui}
are scalar functions. Preferences are indirectly additive if indirect utility can be written as

V (p, w) = g(
∑

i vi(pi/w)) where g and {vi} are scalar functions.

From equation (7), we can conclude that utility is directly-additive if and only if H is

constant or demand is CES. From equation (17) for indirect utility, we can see that we have

indirect additivity if and only if F is constant or demand is CES.

4.2 Generalized Non-Homothetic CES

Price effects. In the second case, when demand corresponds to equation (11), price effects

are more simple. The price elasticity of the Hicksian demand corresponds to σ(Λ), since we

can also interpret Λ as utility (Proposition 3).

Income effects. In the second case, demand corresponding to equation (11) yields even more

flexible income effects. Changes in Gi(Λ) in Λ need not be related to changes in σ(Λ). Starting

with the special case where σ(Λ) = σ is constant, which corresponds to Hanoch (1975), the

effect of income on Λ is such that:
∂ log Λ

∂ logw
=

1− σ
ε̄G

(19)

where ε̄G is an average of elasticities εGi =
ΛG′i(Λ)

Gi(Λ)
weighted by expenditures shares. We obtain

the income elasticity:
∂ log qi
∂ logw

= σ + (1− σ)

(
εGi
ε̄G

)
(20)

Good i is income-elastic if σ < 1 and εGi > ε̄G or if σ > 1 and εGi < ε̄G. In the more general

case where σ(Λ) is not constant, function Gi plays a similar role and dictates income effects.

Moreover, depending on how income affects Λ (with depends on both the sign of σ′(Λ) and

whether σ(Λ) is smaller than unity), one can have σ increase or decrease with income.

One constraint, however, links the price elasticity and the income elasticity. Both in the

cases where σ(Λ) is fixed or increasing in Λ, the price elasticity imposes a lower bound on

15



income elasticities of demand:13

∂ log qi
∂ logw

> σ(Λ) if σ(Λ) < 1

∂ log qi
∂ logw

< σ(Λ) if σ(Λ) > 1

Homotheticity. The demand system in (11) is homothetic only in the CES case, as one can

see for instance in expression (20).

5 Concluding remarks

Economists have often focused on demand systems where prices are conveniently summarized by

a single aggregator, and where demand depends solely on such an aggregator, total expenditures

and a good’s own price (“generalized separability”, following the terminology of Pollak 1972).

Here I show that such a demand system can take only one of two forms when price effects are not

trivial. This result was already known by Pollak (1972) and Gorman (1972) but not formally

demonstrated and is not well known today in spite of its usefulness. Furthermore, I show that

these two types of demand systems are integrable (i.e. can be derived from well-behaved utility

functions) under fairly mild regularity restrictions that guarantee the semi-definite negativity

of the Slutsky substitution matrix (and quasi-concavity of utility).

The first case of demand allows for very flexible price effects but more restricted income

effects. This is particularly useful in industrial organization where income effects are not the

main focus. The second case of demand allows for very flexible income effects (highly flexible

Engel curves) but more restricted price effects. Allen-Uzawa substitution elasticities have to

be constant across goods to ensure the symmetry of the Slutsky matrix, but here I show that

they may vary (increase or decrease) with utility and thus vary indirectly with income.

There can be numerous applications and uses of such demand systems, spanning different

fields. I provide additional examples in Appendix C. I describe cases of Gorman-Pollak forms

where functions H and F are iso-elastic, which provides simple generalizations of directly-

separable and indirectly-separable preferences, and cases where functions Di are iso-elastic,

which coincide with self-dual addilog demand systems (Houthakker 1965). Other examples

described in the appendix generalize demand systems featured in Mazrova and Neary (2013),

such as cases where functions Di take a bi-power form, and the use of non-homothetic CES.

13When σ(Λ) decreases in Λ, the income elasticity exceeds σ(Λ) if and only if exp
(

(σ(Λ)−1)2G′i(Λ)
σ′(Λ)Gi(Λ)

)
< Wi.

This need not be satisfied, even if inequality (13) is imposed.
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Appendix A – Proofs of Propositions 1, 3 and 4

Proof of Proposition 1

Consider the demand system:
qi = (w/pi).Wi(pi/w,Λ) (21)

where Wi denotes expenditure shares as a function of normalized prices pi/w (demand is homogeneous
of degree zero in prices and income) and Λ (by assumption), and where Λ is implicitly determined by
the budget constraint: ∑

i

Wi(pi/w,Λ) = 1 (22)

We denote normalized prices by yi ≡ pi/w such that qi = (1/yi).Wi(yi,Λ) and with Λ an implicit
function of the vector of yi such that:

∑
jWj(yj ,Λ) = 1.

For i 6= j, the Slutsky substitution coefficient is:

sij =
∂qi
∂pj

+ qj
∂qi
∂w

=
w

pi

∂Wi

∂Λ

[
∂Λ

∂pj
+ qj

∂Λ

∂w

]
− qj

w

∂Wi

∂yi
− qjqi

w

=
∂ logWi

∂ log Λ

[
qi
pj

∂ log Λ

∂ log pj
+
qiqj
w

∂ log Λ

∂ logw

]
− qjqi

w

∂ logWi

∂ log yi
− qjqi

w

=
qiεΛi
pj

∂ log Λ

∂ log pj
+
qiqjεΛi
w

∂ log Λ

∂ logw
− qjqiεyi

w
− qjqi

w

where we denote:

εyi ≡
∂ logWi

∂ log yi
and εΛi ≡

∂ logWi

∂ log Λ

To compute the derivatives of Λ in w and pi, we differentiate (22) w.r.t w, which gives:

∂Λ

∂w

[∑
i

∂Wi

∂Λ

]
−

[∑
i

pi
w2

∂Wi

∂yi

]
= 0

⇐⇒ ∂ log Λ

∂ logw

[∑
i

WiεΛi

]
−

[∑
i

Wiεyi

]
= 0

We obtain:
∂ log Λ

∂ logw
=

∑
iWiεyi∑
iWiεΛi

=
εy
εΛ

where εy and εΛ denotes the expenditure-weighted averages of εyi and εΛi.
Similarly, differentiating (22) w.r.t price pj , we get:

∂Λ

∂pj

[∑
i

∂Wi

∂Λ

]
+

1

w

∂Wj

∂yj
= 0

20



⇐⇒ ∂ log Λ

∂ log pj

[∑
i

WiεΛi

]
+ Wjεyj = 0

which gives:
∂ log Λ

∂ log pj
= −Wjεyj

εΛ

Incorporating the expressions for the derivatives of Λ, the Slutsky coefficients become:

sij = − qiεΛi
pj

Wjεyj
εΛ

+
qiqjεΛi
w

εy
εΛ
− qjqiεyi

w
− qjqi

w

= − qiqjεΛi
w

εyj
εΛ

+
qiqjεΛi
w

εy
εΛ
− qjqiεyi

w
− qjqi

w

=
qiqj
wεΛ

[−εyjεΛi + εΛiεy − εyiεΛ − εΛ]

Rearranging, one can see that the Slutsky substitution matrix is symmetrical if and only if, for all
i 6= j:

εyiεΛj − εΛjεy + εyjεΛ = εyjεΛi − εΛiεy + εyiεΛ

Subtracting εyjεΛj on both sides, rearranging and factorizing, this can be rewritten:

(εyj − εy)(εΛj − εΛi) = (εyj − εyi)(εΛj − εΛ)

This holds for any pair of goods i and j. Picking any three goods i, j, k from the consumption basket,
we have:

(εyj − εy)(εΛj − εΛi) = (εyj − εyi)(εΛj − εΛ)

(εyi − εy)(εΛi − εΛk) = (εyi − εyk)(εΛi − εΛ)

(εyk − εy)(εΛk − εΛj) = (εyk − εyj)(εΛk − εΛ)

Adding up, the average terms εy and εΛ disappear and we obtain:

εΛiεyj + εΛkεyi + εΛjεyk = εΛjεyi + εΛiεyk + εΛkεyj

Subtracting εΛjεyj on both sides and factorizing, we obtain:

(εΛi − εΛj)(εyj − εyk) = (εΛj − εΛk)(εyi − εyj) (23)

Let us denote by Y(Λ) the set of feasible y (vector of normalized prices for which the aggregator takes
a value Λ):

Y(Λ) =

{
y ; s.t.

∑
i

Wi(yi,Λ) = 1

}
and denote by Yi(Λ) its projection onto the i axis, i.e. the set of feasible yi for a given Λ.

For a given Λ, to satisfy equation (23) for any triplet of goods, three cases arise naturally:
- case 1A: εyj = εyi for all goods, for each y ∈ Y(Λ).
- case 1B: εyj = εyi for all but one good i0, for all y ∈ Y(Λ).
- case 2: there exists three goods i 6= j 6= k such that εyi 6= εyj 6= εyk for some y ∈ Y(Λ).
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Case 1A is easier to consider. Recall that, in general, εyj is a function of yj and Λ. The goal is to
show that

• Wi(yi,Λ) = Ai(Λ)y
ε(Λ)
i for all yi ∈ Yi(Λ) for some functions Ai(Λ) and ε(Λ).

• Yi(Λ) =
{
yi ; Ai(Λ)y

ε(Λ)
i < 1

}
Suppose that y∗ ∈ Y(Λ), i.e. such that

∑
Wi(y

∗
i ,Λ) = 1 and denote ε(Λ) = εyj(yj ,Λ). Also suppose

for now that ε(Λ) is strictly positive (the same proof applies to the other case after a simple change
in variable). Define Ai(Λ) such that Wi(y

∗
i ,Λ) = Ai(Λ)y∗i

ε(Λ).
Denote by (yi, yi) the maximum interval included in Yi(Λ) containing y∗i and such that, for each

yi ∈ (yi, yi), there exists ỹ ∈ Y(Λ), with ỹj ∈ (yj , yj) in each of its argument, with ỹi = yi, and such

that Wj(ỹj ,Λ) = Aj(Λ)(ỹj)
ε(Λ).

By contradiction, suppose that this is not the case: suppose that for a good i = I we have
yI > 0. We need to show that it is then possible to construct a new vector y′ such that Wj(y

′
j ,Λ) =

Aj(Λ)(y′j)
ε(Λ) and

∑
j Aj(Λ)(y′j)

ε(Λ) = 1, and such that y′I < yI .

Since we deal with bounded intervals, we can construct a series y(n) that satisfies these four
conditions:

i) Wj(y
(n)
j ,Λ) = Aj(Λ)(y

(n)
j )ε(Λ);

ii)
∑

jWj(y
(n)
j ,Λ) = 1;

iii) each term converge to a finite (possibly zero) value denoted y∞j ;

iv) and such that y
(n)
I converges to yI > 0.

By continuity (with the abuse of notation Wi(0,Λ) = 0 in the limit case), we must have Wj(y
∞
j ,Λ) =

Aj(Λ)(y∞j )ε(Λ) and
∑

jWj(y
∞
j ,Λ) = 1. Denote by K0 the set of goods k such that y∞k = 0. If K0 is

empty, pick a good k 6= I. Since yI > 0, we know that such a good k satisfies yk < 1/Ak. Next, since
yI > 0 and yk < 1/Ak for k ∈ K0, and since the derivative of WI is non-zero at yI , we can find small
enough but positive νI > 0 and νk > 0 (for k ∈ K0) such that:

WI(y
∞
I − νI ,Λ) +

∑
k∈K0

Wk(y
∞
k + νk,Λ) +

∑
j /∈K0,k 6=I

Wj(y
∞
j ,Λ) = 1

Moreover, given that the derivative of Wi is strictly positive on each interval (y∞I − νI , y
∞
I ) and

(y∞k , y
∞
k +νk), we can construct a continuum of other vectors y on such intervals that satisfy the same

condition as above. For all these vectors, the elasticity νyj must be kept constant so we must have:
Wj(y

∞
j ,Λ) = Aj(Λ)(y∞j )ε(Λ). This contradicts the assumption that yI > 0 and proves that yi = 0 for

all i.
Conversely, one can show that yi = 1/Ai otherwise one can construct a new vector y′ such as y∞

with a ith argument strictly above yi if yi < 1/Ai.
Here we have imposed ε(Λ) > 0. The same arguments can be applied to the case with ε(Λ) < 0

with the change in variable y′i = 1/yi.

Case 1B Here we assume that all but one good i0 has a common elasticity ε(Λ). Applying the

same arguments as in the previous case, we obtain that Wj(yj ,Λ) = Aj(Λ)y
ε(Λ)
j for all yj such that

Ai(Λ)y
ε(Λ)
i < 1 − si0 where si0 is the minimum expenditure share of good i0 for which its elasticity

differs from other goods.
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On these intervals, we have:

εΛj(yj ,Λ)− εΛk(yk,Λ) =

(
εΛi0 − εΛj
εyi0 − εyj

)
(εyj − εyk) = 0

which holds for any two goods j, k 6= i0, we obtain that they also share the same elasticity with respect
to Λ: εΛj(yj ,Λ) = εΛk(yk,Λ) = ρ(Λ). Hence these elasticities do not depend on yi or yk. This implies
that both ε and ρ are constant, and that for any good k 6= i on these intervals we must have:

Wk(yk,Λ) = AkΛ
ρyεk k 6= i0

Case 2 is more involved. Pick any three goods i, j, k from the consumption basket. From equation (23),
we have:

(εΛi − εΛj)(εyj − εyk) = (εΛj − εΛk)(εyi − εyj)

In this case, there exists at least three goods i 6= j 6= k such that εyj 6= εyi 6= εyk for some y ∈ Y(Λ).
For these goods, we obtain:

εΛi − εΛj
εyi − εyj

=
εΛj − εΛk
εyj − εyk

(24)

εΛi − εΛj
εyi − εyj

=
εΛk − εΛi
εyk − εyi

(25)

Notice that the left-hand side of both equations potentially depend on yi and yj but the right-hand
side of equation (24) does not depend on yi and the right-hand side of equation (25) does not depend
on yj . Since there are at least four goods (by assumption) and the expenditure share of these other
goods vary with prices for a given Λ, we obtain that equations (24) and (25) hold for a neighborhood
of yi, yj and yk (these can vary over that neighborhood while holding Λ constant).

Denote by f(Λ) =
εΛi−εΛj
εyi−εyj the left-hand side of equations (24) and (25).

Picking any good h instead of k, equation (23) also applies and yields:

εΛj(yj ,Λ)− εΛk(yh,Λ) = f(Λ) (εyj(yj ,Λ)− εyh(yh,Λ)) (26)

Given that there are at least four goods, this should hold over a non-trivial range of yh (same argument
as above). Taking the derivative w.r.t. yh, we get:

∂εΛh
∂ log yh

= f(Λ)
∂εyh
∂ log yh

(27)

Given the symmetry of the cross-derivative (we assume that demand is twice differentiable), this can
be rewritten:

∂εyh
∂ log Λ

= f(Λ)
∂εyh
∂ log yh

(28)

By continuity, the conditions required for this equation hold over a neighborhood of Λ. Take reference

Λ0 and consider the function: M(y,Λ) = εyh(y,Λ) − εyh(yF (Λ),Λ0) where F (Λ) = exp
(∫ Λ

Λ0
f(t)dtt

)
.

Note that F (Λ0) = 1 hence M(y,Λ0) = 0. For other Λ, we obtain:

∂M

∂ log Λ
=

∂εyh(y,Λ)

∂ log Λ
− ∂ logF

∂ log Λ

∂εyh(yF (Λ),Λ0)

∂ log yh
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=
∂εyh(y,Λ)

∂ log Λ
− f(Λ)

∂εyh(yF (Λ),Λ0)

∂ log yh
= 0

Hence, M(y,Λ) = 0 over the neighborhood where equation (28) holds. This implies:

εyh(yh,Λ) = εyk(yhF (Λ),Λ0)

Now, for a given reference point y∗ and Λ0, let us construct Di as:

Dh(yh) = Wi(y
∗
h,Λ0) exp

[∫ yh

y∗h

εyh(y,Λ0)dy

]

Integrating over y from a reference point y∗ in the region where this equality holds, we obtain that
demand can be written as:

Wh(yh,Λ) = Wh(y∗h,Λ) exp

[∫ yh

y∗h

εyh(y,Λ)
dy

y

]

= Wh(y∗h,Λ) exp

[∫ yh

y∗h

εyh(yF (Λ),Λ0)
dy

y

]

= Wh(y∗h,Λ) exp

[∫ yhF (Λ)

y∗hF (Λ)
εyh(y,Λ0)

dy

y

]

= Wh(y∗h,Λ) .
Dh(yhF (Λ))

Dh(y∗hF (Λ))

= Hh(Λ)Dh(yhF (Λ))

where Hh is a function of Λ defined as:

Hh(Λ) ≡
Dh(y∗hF (Λ))

Wh(y∗h,Λ)

for which, by definition of Dh, we have: Hh(Λ0) =
Dh(y∗hF (Λ0))

Wh(y∗h,Λ0) =
Dh(y∗h)

Wh(y∗h,Λ0) = 1.

Examining elasticities w.r.t. prices and Λ, we can then show that Hh is in fact identical across
goods. To check this, with Wh(yh,Λ) = Dh(yhF (Λ))/Hi(Λ), we have:

εyh = εDh

where εDh denotes the elasticity of Dh, while the elasticity in Λ is:

εΛh = f(Λ) εDh − εHh

where εHh denotes the elasticity of Hh in Λ. Thanks for condition (26), we obtain that for any two
goods h and k:

εHk − εHh = εΛh − εΛk − f(Λ) (εDh − εDk)
= εΛh − εΛk − f(Λ) (εyh − εyk)
= 0
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This implies that Hh(Λ) and Hk(Λ) remain proportional for any two goods k and h. Given that
Hh(Λ0) = Hk(Λ0) = 1, Hh must be identical across all goods h.

Hence, demand in case 1 can be written for any good h as:

Wh(yh,Λ) = Dh(yhF (Λ)) /H(Λ)

Combinations of cases: Locally, for a given Λ and around it, one must be in one of these three
cases. A remaining question is whether demand can be a mixture of these three cases as Λ varies.
To finish the proof of Proposition 1, we show that we cannot combine case 2 with cases 1A and 1B.
Hence the functional form of case 2 needs to hold globally across all Λ’s, while we can potentially have
a combination of 1A and 1B across Λ.

Combination of cases 2+1A Here we show that we cannot have a combination of cases 1A and 2
globally. First, note that for a given Λ, case 1 and 2 are mutually exclusive by definition. Hence, if
we have a mixture of cases 1 and 2, it must occurs along different Λ’s. By contradiction, suppose that
there exists Λ∗ such that, at least locally,

Wi(yi,Λ) = Di(F (Λ)yi) /H(Λ) if Λ < Λ∗

Wi(yi,Λ) = Ai(Λ)y
1−σ(Λ)
i if Λ > Λ∗

By continuity, at the limit where Λ = Λ∗, we must have:

∂ logDi(F (Λ∗)y)

∂ log y
= 1− σ(Λ∗)

Since it must hold for any i and any y, it implies that F ∗(y) = 0 and that 1 − σ(Λ∗) = 0, which
contradicts our assumption that Wi(yi,Λ) is not locally constant across yi for any given Λ.

Combinations of cases 1+2B Here we show that we cannot have a combination of cases 1B and
2 globally, using the same arguments as above. Note again that for a given Λ, case 1B and 2 are
mutually exclusive by definition. Hence, if we have a mixture of cases 1B and 2, it must occurs along
different Λ’s.

By contradiction, suppose that there exists Λ∗ such that, at least locally, such that for all but one
good we have:

Wi(yi,Λ) = Di(F (Λ)yk)/H(Λ) if Λ < Λ∗

Wi(yi,Λ) = Λ−ρAiy
1−σ
i if Λ > Λ∗

Again, by continuity, at the limit where Λ = Λ∗, we must have:

∂ logDi(F (Λ∗)y)

∂ log y
= 1− σ

Since it must hold for any i and any y, it implies that either demand is CES or F ∗(y) = 0 and that
1−σ(Λ∗) = 0. This contradicts the assumption that Wi(yi,Λ) is not locally constant across yi for any
given Λ.
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Proof of Proposition 3

Define Ũ(q, z) as:

Ũ(q, z) =
∑
i

ui(H(z)qi) −
∫ z

z0

F (z)H ′(z)dz

where:

ui(qi) =

∫ qi

q=0
D−1
i (x)dx

and u′i = D−1
i . Recall that Di is strictly decreasing unless Di = 0. As noted in the text, as an

abuse of notation, we define D−1
i (0) = ai if Di(y) = 0 for all y ≥ ai (which yields a choke price) and

D−1
i (x) = 0 for all x ≥ bi if Di(0) = bi.

In turn, we want to define z as an implicit function of q such that:

F (z) =
∑
i

qiu
′
i(H(z)qi) (29)

We proceed in three steps. First we show that equation (29) admits a solution z(q) for each q and
that this solution is unique. Second we show that utility defined as U(q) = Ũ(q, z(q)) is well-behaved
and quasi-concave. Finally, we show that maximizing U leads to the demand function in the text, and
that the single aggregator Λ is also well defined.

Step 1: Implicit function z(q). Here we show that for any vector q of consumption, there is a
z such that equation (29) holds.

With restrictions [A1] iii), we have assumed that for each good i and each yi, there is a Λ such
that Di(F (Λ)yi)/H(Λ) is arbitrarily small. Take yi = 1/(Nqi) where N denotes the number of goods.
For each i, there is a z such that:

Di(F (z)/(Nqi))/H(z) < qi

Since the left-hand side decreases with z (this is implied by restriction [A1]-ii), we can take the
maximum z of all zi’s such that it holds for all goods i with a common z. This inequality is equivalent
to:

Di(F (z)/(Nqi)) < H(z)qi

⇔ F (z)/(Nqi)) > u′i(H(z)qi)

⇔ F (z)/N > qiu
′
i(H(z)qi)

Going from the first to second inequality above is guaranteed by the assumption that Di decreases
strictly. Adding across all goods (given that qiu

′
i is positive for all goods), we obtain that for each

vector q there exists a z such that:

F (z) >
∑
i

qiu
′
i(H(z)qi)

Next, with restrictions [A1] iii), we have also assumed that there is at least one good i such that, for
each yi, there is a Λ such that yiDi(F (Λ)yi)/H(Λ) is larger than 1. Taking yi = 1/qi, there is a z = Λ
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such that:

(1/qi)Di(F (z)/qi)/H(z) > 1

⇔ Di(F (z)/qi) > H(z)qi

⇔ F (z)/(Nqi)) < u′i(H(z)qi)

⇔ F (z) < qiu
′
i(H(z)qi)

Hence, summing across goods, we also have:

F (z) <
∑
i

qiu
′
i(H(z)qi)

We have shown that for each q there is a z such that F (z) >
∑

i qiu
′
i(H(z)qi) and a z such that

F (z) <
∑

i qiu
′
i(H(z)qi). By continuity, we conclude that equation (29) has a solution.

Then, using part ii) of restrictions [A1], we can see that Di(F (Λ)yi)/H(Λ) strictly decreases
with Λ. This implies that qiu

′
i(H(z)qi) also strictly decreases with z, and that the right-hand side

of equation (29),
∑

i qiu
′
i(H(z)qi), decreases faster (or increases slower) than the left-hand side of

equation (29), F (z). Hence the solution to equation (29) is unique.

Step 2: Quasi-concavity. The second step is to show that utility defined as U(q) = Ũ(q, z(q))
is quasi-concave. First, we need to get the first and second derivatives.

Derivatives in z. Here we consider the properties of z = z(q), the solution of equation (29).
Taking the derivative of equation (29), we get:

∂z

∂qi

[
F ′ −H ′

∑
i

q2
i u
′′
i

]
= u′i +Hqiu

′′
i

and thus:
∂z

∂qi
=
u′i +Hqiu

′′
i

∆

with ∆ ≡ F ′ −H ′
∑

i q
2
i u
′′
i .

Showing that ∆ is positive. Note that
u′i

u′′i Hqi
= εDi and thus:

∆ = F ′ −H ′
∑
i

q2
i u
′′
i

= (F/z)

(
εF − εH

∑
iHq

2
i u
′′
i∑

i qiu
′
i

)
= (F/z)

(
εF − εH

∑
i qiu

′
i(1/εDi)∑
i qiu

′
i

)
We can see that, if εDi < 0 and εF εDi < εH for all i, then εF − εH (1/εDi) > 0 for all i and we always
have ∆ > 0.

This implies that the derivatives of z are always well defined, and knowing ∆ > 0 will be useful
below.
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Derivatives in U. First derivatives:

∂U

∂qi
= H u′i(Hqi) +

∂z

∂qi

[
H ′
∑
i

qiu
′
i(Hqi)−H ′F

]
= H u′i(Hqi)

Second derivatives:

∂2U

∂q2
i

=
∂z

∂qi
(u′i +Hqiu

′′
i )H

′ + H2 u′′i

∂2U

∂qi∂qj
=

∂z

∂qj
(u′i +Hqiu

′′
i )H

′

and thus, incorporating the derivatives in z:

∂2U

∂q2
i

= (u′i +Hqiu
′′
i )

2H ′/∆ + H2 u′′i

∂2U

∂qi∂qj
= (u′i +Hqiu

′′
i ) (u′j +Hqju

′′
j )H

′ /∆

Negative semi-definiteness. To show that utility is quasi-convex, we need to show that the
bordered Hessian is negative semi-definite, i.e we need to show:

∑
i,j

titj
∂2U

∂qi∂qj
=

(∑
i

ti (u′i +Hqiu
′′
i )

)2

H ′ /∆ +
∑
i

t2i H
2 u′′i < 0

for any ti such that: ∑
i

ti
∂U

∂qi
=
∑
i

tiHu
′
i = 0

The objective function above is homogeneous of degree 2. We can renormalize the sum
∑

i ti(u
′
i +

Hqiu
′′
i ) up to any constant without loss of generalization.

First step is to find the optimal vector of ti’s that maximizes the left-hand side of the inequality
above. It is equivalent to consider the maximization:

max

{∑
i

t2i u
′′
i

}

under the constraint:
∑

i ti(u
′
i +Hqiu

′′
i ) = constant and

∑
i tiu

′
i = 0.

This leads to ti proportional to:

ti ∼
u′i
Hu′′i

+ µqi

(and second-order condition is fine, objective function is concave since u′′i < 0 for all i). Given that

we must have 0 =
∑

i tiu
′
i =

∑
i
u′2i
Hu′′i

+ µ
∑

i qiu
′
i, µ must be:

µ = −

∑
i
u′2i
Hu′′i∑
i qiu

′
i
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= −

∑
i qiu

′
i

u′i
qiHu′′i∑

i qiu
′
i

= −
∑

i qiu
′
i εDi∑

i qiu
′
i

= −ε̄D

where εDi =
u′i

qiHu′′i
and ε̄D is its weighted average.

Next, using the optimal ti =
u′i
Hu′′i
− ε̄Dqi = qiεDi − qiε̄D, a sufficient and necessary condition for

negative semi-definiteness is:(∑
i

(qiεDi − qiε̄D)(u′i + qiHu
′′
i )

)2

H ′ /∆ + H2
∑
i

(qiεDi − qiε̄D)2 u′′i < 0

Since ∆ > 0, this condition can be rewritten:(∑
i

(qiεDi − qiε̄D)(u′i + qiHu
′′
i )

)2

H ′ < − H2 ∆
∑
i

(qiεDi − qiε̄D)2 u′′i

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < − H2 ∆
∑
i

(qiεDi − qiε̄D)2 u′′i

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < − H ∆

(
−ε̄D

∑
i

qiu
′
i + ε̄2

DH
∑
i

q2
i u
′′
i

)

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < ε̄D H ∆

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)

Note that
(∑

i qiu
′
i − ε̄DH

∑
i q

2
i u
′′
i

)
is negative (unless all price elasticities εDi are identical):

∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i < 0 ⇐⇒

∑
i qiu

′
i∑

i qiu
′
i

1
(−εDi)

<

∑
i qiu

′
i(−εDi)∑
i qiu

′
i

(In the second inequality, the left hand side corresponds to a harmonic average while the right-hand-
side corresponds to an arithmetic average of a positive variable −εDi > 0).

Hence, using
∑

i qiu
′
i−ε̄DH

∑
i q

2
i u
′′
i < 0 and also that ∆ ≡ F ′−H ′

∑
i q

2
i u
′′
i the previous inequality

is equivalent to:

⇔ H ′

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)
> ε̄D H ∆

⇔ H ′

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)
> ε̄D H

(
F ′ −H ′

∑
i

q2
i u
′′
i

)
⇔ H ′

∑
i

qiu
′
i > ε̄D H F ′
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Given that F =
∑

i qiu
′
i, this gives:

⇔ H ′ F > ε̄D H F ′

⇔ ε̄DεF < εH

This holds, given that εDiεF < εH is assumed in part ii) of restrictions [A1] for each good i.

Step 3: Marshallian demand and price aggregator. Maximizing U(q) under the budget
constraint

∑
i piqi = w leads to:

∂U

∂qi
= H(z)u′i(H(z)qi) = µpi

where µ henceforth denotes the Lagrange multiplier associated with the budget constraint. Summing
across goods, we can see that µ is such that:

µ =
1

w

∑
i

µpiqi =
1

w

∑
H qi u

′
i(Hqi) =

H(z)F (z)

w

(note that it only depends on quantities and prices through z). Using H(z)u′i(H(z)qi) = µpi, we
obtain:

u′i(H(z)qi) =
µpi
H(z)

=
F (z)pi
w

and thus, given the definition of u′i:

H(z)qi = Di(µpi/H(z)) = Di(F (z)pi/w)

and:
qi = Di(F (z)pi/w)/H(z)

The final step is to show that z can be written as z = Λ where Λ is implicitly defined as a function of
all normalized prices pi/w.

To see this, notice that qi must satisfy the budget constraint:

w =
∑
i

qipi =
∑
i

piDi(F (z)pi/w)/H(z)

which can be rewritten:
H(z) =

∑
i

(pi/w)Di(F (z)pi/w)

This equation in z has a unique solution, which we denote Λ and is a function of all pi/w:

- To prove uniqueness, we use restriction [A1] part ii) which implies that Di(F (z)pi/w)/H(z) is
strictly decreasing in z. Hence the right-hand side of the equation above decreases strictly faster
with z (or increases strictly slower) than the left-hand side.

- To prove existence (for a given set of prices and income), we use restriction [A1] part iii) which
assumes that Di(F (z)pi/w)/H(z) can be arbitrarily small and that there is at least one good
for which Di(F (z)pi/w)/H(z) is larger for unity for some z. By continuity, there must be at
least one solution Λ = z to the equation H(z) =

∑
i(pi/w)Di(F (z)pi/w).
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Alternative proof of Proposition 3 using the Slutsky Matrix

An alternative proof of proposition 3 is to show that the Slutsky matrix is symmetric and negative
semi-definite, and then apply Hurwicz and Uzawa (1971) theorem. We have already proved symmetry
in Proposition 1 but semi-definitiveness is yet to be checked. Consider the demand system:

qi = Di(F (Λ)pi/w) /H(Λ) (30)

where Λ is implicitly determined by the budget constraint
∑

i piDi(Λpi/w) /H(Λ) = w, which can be
rewritten: ∑

i

(pi/w)Di(F (Λ)pi/w) /H(Λ) = 1 (31)

Slutsky substitution coefficients. For i 6= j, the Slutsky term is:

sij =
∂qi
∂pj

+ qj
∂qi
∂w

=
∂qi
∂Λ

[
∂Λ

∂pj
+ qj

∂Λ

∂w

]
− qiqj

εDi
w

where ε̄D =
∑

i(piqi/w)εDi and εDi = ∂ logDi
∂ log x . The first term is:

∂qi
∂Λ

=
qi(εF εDi − εH)

Λ

Then, we get the derivative of Λ w.r.t. pj and w. From:∑
i

(pi/w)Di(F (Λ)pi/w) /H(Λ) = 1 (32)

we get:
∂ log Λ

∂ log pj
= −(pjqj/w)

1 + εDj
εF ε̄D − εH

∂ log Λ

∂ logw
=

1 + ε̄D
εF ε̄D − εH

Hence we obtain:

sij =
qi(εF εDi − εH)

Λ
. Λ

[
−(qj/w)

1 + εDj
εF ε̄− εH

+ (qj/w)
1 + ε̄D

εF ε̄D − εH

]
− qiqj

εDi
w

=
qiqj
w

.
(εF εDi − εH)(ε̄− εDj)

εF ε̄D − εH
− qiqj

εDi
w

= − qiqj
w

.
εF (εDi − ε̄D)(εDj − ε̄D)

εF ε̄D − εH
− qiqj

εDj + εDi − ε̄
w

which is symmetric in i and j.
When εF 6= 0, denote θi = εH − εF εDi, which is positive by assumption, and θ̄ =

∑
i(piqi/w)θi its
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weighted average across goods. It is more convenient to write the Slutsky substitution coefficient as:

sij =
qiqj
w

.
(θi − θ̄)(θj − θ̄)

εF θ̄
+

qiqj
εFw

(
θj + θi − θ̄ − εH

)
=

qiqj
w

.
θi θj

εF θ̄
− qiqj

w

εH
εF

In turn, the diagonal coefficients of the Slutsky matrix are:

sii =
qiεDi
pi

− q2
i

w
.
θ2
i

εF θ̄
− q2

i

w

εH
εF

= −qi(θi − εH)

piεF
− q2

i

w
.
θ2
i

εF θ̄
− q2

i

w

εH
εF

Is the Slutsky matrix negative semi-definite? Denote wi = piqi/w expenditure shares, we
obtain:

sij . pipj/w =
wiwjθiθj
εF
∑

k wkθk
− wiwj

εH
εF

sii . p
2
i /w = −wi(θi − εH)

εF
+

w2
i θ

2
i

εF
∑

k wkθk
− w2

i

εH
εF

In order to show that the Slutsky matrix is negative semi-definite, we need to show that for any
vector x we have: ∑

ij

sijxixj ≤ 0

Normalizing the x’s by pi/
√
w, this is equivalent to showing the following inequality:

−
∑
i

wi

(
θi − εH
εF

)
x2
i +

∑
i,j

wixiwjxjθiθj∑
iwiθi

−
∑
i,j

wiwjxixj

(
εH
εF

)
≤ 0

⇐⇒ −
∑

iwiθi
εF

[∑
iwiθix

2
i∑

iwiθi
−

(
∑

iwiθixi)
2

(
∑

iwiθi)
2

]
+

εH
εF

[∑
i

wix
2
i −

(∑
i

wixi

)2
]
≤ 0

⇐⇒ − 1

εF

[∑
iwiθix

2
i∑

iwiθi
−

(
∑

iwiθixi)
2

(
∑

iwiθi)
2

]
+

εH
εF
∑

iwiθi

[∑
i

wix
2
i −

(∑
i

wixi

)2
]
≤ 0

The terms in brackets can be interpreted as variances and are positive. We need to distinguish three
cases depending on the sign of εH and εF :

• First, if εF > 0 and εH ≤ 0 (and θi > 0), each term of the sum is negative, the sum is negative
and the Slutsky matrix is semi-definite negative.

• If εF > 0 and εH > 0, note that θi = εH − εF εDi is then larger than εH given that εDi is
assumed to be negative. With εF > 0, the inequality above is then equivalent to:

⇐⇒

[∑
iwiθix

2
i∑

iwiθi
−

(
∑

iwiθixi)
2

(
∑

iwiθi)
2

]
− εH∑

iwiθi

[∑
i

wix
2
i −

(∑
i

wixi

)2
]
≥ 0
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The proof then relies on Lemma 5, an auxiliary result from Matsuyama and Uchshev (2017).
In this case, denote ai = θiwi∑

j wjθj
, bi = wi and γ = εH∑

i wiθi
. Since θi > εH for each i, we have

ai > γbi for each i. We obtain the result that we want by applying Lemma 5, which implies the
inequality above.

• Finally, if εF < 0, note that εH > θi and εH > 0 given that εDi is negative by assumption, and
given that θi = εH − εF εDi is positive by assumption. With εF < 0, the inequality above is
then equivalent to:

⇐⇒

[∑
i

wix
2
i −

(∑
i

wixi

)2
]
−
∑

iwiθi
εH

[∑
iwiθix

2
i∑

iwiθi
−

(
∑

iwiθixi)
2

(
∑

iwiθi)
2

]
≥ 0

The proof again relies on Lemma 5. In this case, denote ai = wi, bi = θiwi∑
j wjθj

, and γ =
∑
i wiθi
εH

.

Since θi < εH for each i, we obtain again that ai > γbi for these new ai and bi. Lemma 5 then
implies the inequality above.

This finishes the proof that the Slutsky matrix is negative semi-definite when εF 6= 0.

What happens when εF = 0? When εF = 0, then εH > 0 by assumption, and we have instead:

∂qi
∂Λ

= −qiεH
Λ

;
∂ log Λ

∂ log pj
= (pjqj/w)

1 + εDj
εH

;
∂ log Λ

∂ logw
= − 1 + ε̄

εH

Hence we obtain:

sij =
qiεH

Λ
. Λ

[
−(qj/w)

1 + εDj
εH

+ (qj/w)
1 + ε̄

εH

]
− qiqj

εDi
w

and thus the Slutsky substitution coefficients are:

sij = − qiqj
εDj + εDi − ε̄

w

sii =
qiεDi
pi

− q2
i

2εDi − ε̄
w

Is the Slutsky matrix negative semi-definite in the special case where εF = 0? As before, we need:∑
i

wix
2
i εDi −

∑
i,j

wiwjxixj(εDj + εDi − ε̄) ≤ 0

where wi denotes the consumption share in good i.
This statement is successively equivalent to:

⇐⇒
∑
i

wix
2
i εDi − 2

∑
i,j

wiwjxixjεDj + ε̄(
∑
i

wixi)
2 ≤ 0

⇐⇒
∑
i

wix
2
i εDi − 2(

∑
i

wixi)(
∑
i

wixiεDj) + (
∑
i

wiεDj)(
∑
i

wixi)
2 ≤ 0

⇐⇒
∑

iwix
2
i εDi∑

iwiεDj
−

2(
∑

iwixi)(
∑

iwixiεDj)∑
iwiεDj

+ (
∑
i

wixi)
2 ≥ 0
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⇐⇒

∑
iwiεDi

(
x2
i + (

∑
j wjxj)

2
)

∑
iwiεDj

≥
2(
∑

iwixi)(
∑

iwixiεDj)∑
iwiεDj

⇐⇒

∑
iwiεDi

(
xi − (

∑
j wjxj)

)2∑
iwiεDj

+
2
∑

iwiεDixi(
∑

j wjxj)∑
iwiεDj

≥
2(
∑

iwixi)(
∑

iwixiεDj)∑
iwiεDj

⇐⇒

∑
iwiεDi

(
xi − (

∑
j wjxj)

)2∑
iwiεDj

≥ 0

which is satisfied if all the εDj are negative.

Lemma 5 (Matsuyama Ushchev, 2017) Suppose that ai > γbi > 0 for all i ∈ {1, ..., N} where γ is a
positive scalar and

∑
i ai =

∑
i bi = 1. Define A = diag{a1, ..., an} − aaT and B = diag{b1, ..., bn} −

bbT , two (positive semi-definite) matrices. We obtain that the matrix M:

M = A− γB

is positive semi-definite.

Proof of Lemma 5: This lemma is from Matsuyama and Ushchev (2017) which I report here again
for convenience (see last part of the proof of Proposition 1 of Matsuyama and Ushchev 2017).

One needs to show that, for each vector t of the RN+ with components ti ≥ 0, i ∈ {1, ..., N}:

tTA t− γ . tTB t ≥ 0

Denote Ta and Tb the random variables such that: Prob{Ta = ti} = ai and Prob{Tb = ti} = bi. Since∑
i ai =

∑
i bi = 1, one can write each term above as a variance:

tTA t =
∑
i

ait
2
i −

(∑
i

aiti

)2

= V ar(Ta)

tTB t =
∑
i

bit
2
i −

(∑
i

biti

)2

= V ar(Tb)

Note that V ar(Tb) > 0 unless ti = tj for all i, j, in which case we also have V ar(Ta) = 0 and thus
tTA t− γ . tTB t = 0. Since V ar(Tb) is homogeneous of degree two and strictly positive aside from the
case above, we can focus on t’s such that tTB t = 1. Under this assumption, we need to show that:

tTA t ≥ γ

Consider the maximization:
max
t
tTA t s.t. tTB t = 1

The maximum is attained when At∗i = Λ∗Bt∗ where Λ∗ is the minimum value of the objective function,
which can also be written:

ai

(
t∗i − E[T ∗a ]

)
= Λ∗bi

(
t∗i − E[T ∗b ]

)
(33)
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where E[Tx] refers to the expectation of Tx.
The goal is to show that Λ∗ > γ. To prove this claim by contradiction, suppose that Λ∗ < γ.

Given that ai > γbi, we also have ai > Λ∗bi.
If E[Ta] ≤ E[Tb], we can see that:

max ti − E[Ta] ≥ max ti − E[Tb] > 0

hence equation (33) cannot hold for i = arg max tj .
If E[Ta] > E[Tb], we can see that:

min ti − E[Ta] < min ti − E[Tb] < 0

hence, again, equation (33) cannot hold for i = arg min tj . This yields a contradiction and concludes
the proof of Lemma 5.
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Proof of Proposition 4

Suppose that demand can be written:

qi = Gi(Λ)1−σ(Λ) (pi/w)−σ(Λ)

with Λ implicitly defined by
∑

i[Gi(Λ)pi/w]1−σ(Λ) = 1.
The goal is to to show that these equations:[∑

i

(Gi(Λ) pi/w)1−σ(Λ)

] 1
1−σ(Λ)

= 1 (34)

[∑
i

(Gi(U)/qi)
1−σ(U)
σ(U)

] σ(U)
1−σ(U)

= 1 (35)

have a unique solution in Λ and U respectively. To do so, we show that the left-hand side of each of
these equations strictly increase in Λ and U around the solution, showing that the left-hand side can
be equal to unity only once.

We distinguish two cases, depending on whether elasticity σ(Λ) increases with Λ. If the first case
we assume that Gi(Λ) strictly increases with Λ. In the second case, we impose condition ii).

1) In the first case, suppose that σ(Λ) increases with Λ and that Gi(Λ) strictly increases with Λ.
The equation above in Λ is equivalent to:∑

i

(Gi(Λ) pi/w)1−σ(Λ) = 1

If σ(Λ) ∈ (0, 1), each term Gi(Λ) pi/w in the summation increases in Λ and has to be smaller than
unity. Hence, if 1 − σ(Λ) decreases with Λ, the left-hand side of this expression is strictly increasing
with Λ. The same holds if we raise the whole expression on the left-hand side to the power 1

1−σ(Λ) .

If σ(Λ) > 1, each term Gi(Λ) pi/w in the summation increases in Λ and has to be larger than unity.
Hence, if 1− σ(Λ) decreases with Λ (i.e. becomes more positive), the left-hand side of this expression
is strictly decreasing in Λ. The inverse holds if we raise the whole expression on the left-hand side to
the power 1

1−σ(Λ) < 0.
Now consider the equation: ∑

i

(
Gi(U)/qi

) 1−σ(U)
σ(U)

= 1

If σ(Λ) ∈ (0, 1), the exponent 1−σ(U)
σ(U) is positive and decreases with U . The term within parenthesis

increases in U . Moreover, each summation term has to be smaller than unity. Hence, as U increases,
each summation term increases (strictly) with U . The same holds if we raise the whole expression on

the left-hand side to the power σ(U)
1−σ(U) .

If σ(Λ) > 1, the exponent 1−σ(U)
σ(U) is negative and decreases with U . The term within parenthesis

increases in U . Moreover, each summation term has to be larger than unity. Hence, as U increases,
each summation term decreases (strictly) with U . If we raise the whole expression on the left-hand

side to the power σ(U)
1−σ(U) , we obtain a strictly increasing function of U .
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2) In the second case, we assume that σ(Λ) decreases with Λ and that, around each solution Λ0 of

equation (34), there exists a set of αi such that
∑

i αi = 1 and such that Gi(Λ)α
− 1

1−σ(Λ)

i increases in
Λ.

Define Ki(Λ) = Gi(Λ)α
− 1

1−σ(Λ)

i The left-hand side of equation (34) can then be rewritten:[∑
i

αi(Ki(Λ) pi/w)1−σ(Λ)

] 1
1−σ(Λ)

To show that it strictly increases in Λ, we use Lemma 6 discussed in the next appendix section. We
obtain that the left-hand side of the above equation decreases with σ, which itself decreases with Λ.
Moreover, the term Ki(Λ) strictly increases in Λ, by assumption, hence the whole left term strictly
increases with Λ.

We can again use the same approach to show that the left-hand side of (35) increases strictly with
U . This is equivalent to showing that the following expression strictly increases in U :[∑

i

αi

(
Ki(U)/qi

) 1−σ(U)
σ(U)

] σ(U)
1−σ(U)

Each exponent 1−σ(U)
σ(U) increases in U and each term Ki(U) strictly increases with U . With Lemma 6

again, we obtain that the whole term strictly increases with U .

Hence, in both cases, Λ and U are well defined by equations (34) and (35) which admit no more
than one solution. This implicitly defines utility U as a function of qi. It is straightforward to see that
such utility function is quasi-concave in q: indifference curves have the same shape as CES indifference
curves, holding σ = σ(U) constant.

Consumption quantities q chosen to maximize U would satisfy the following first-order conditions:

(σ(U)− 1)

qiσ(U)

( qi
Gi(U)

)σ(U)−1
σ(U)

= µpi

where µ is a constant term (combination of the Lagrange multiplier associated with the equation in U

and the budget constraint multiplier). To satisfy the budget constraint, (σ(U)−1)µ
σ(U) has to equal 1/w.

In other words,
(

qi
Gi(U)

)σ(U)−1
σ(U)

corresponds to the budget share of good i in consumption baskets:

( qi
Gi(U)

)σ(U)−1
σ(U)

=
(σ(U)− 1)µ

σ(U)
piqi =

piqi
w

This leads to the demand qi:
qi = Gi(U)1−σ(U) (pi/w)−σ(U)

which is the same expression as above, with Λ corresponding to utility. Moreover, we can see that

utility U is such that
∑

i

(
qi

Gi(U)

)σ(U)−1
σ(U)

= 1 which, using the demand for qi just above, can be written
as: ∑

i

[Gi(U)pi/w]1−σ(U) = 1
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which is the same equation as the one determining Λ, which proves that Λ = U .

Proof of equivalence between condition ii) and inequality (13)

We mention in the text that condition ii) of Proposition 4 is equivalent to inequality (13) when both
σ and Gi are differentiable.

Taking the derivative of the log of Gi(Λ)α
− 1

1−σ(Λ)

i with respect to Λ, we find that it is positive if
and only if:

G′i(Λ)

Gi(Λ)
− (logαi) .

∂

∂Λ

(
1

1− σ(Λ)

)
> 0

Hence, for each good i, the minimum αi such that it is positive is:

α∗i = exp

(
(σ(Λ)− 1)2G′i(Λ)

σ′(Λ)Gi(Λ)

)
One can see that inequality

∑
i α
∗
i < 1 corresponds to inequality (13) in the text.

Note: one can also verify that this condition is equivalent to imposing that Gi(Λ) and σ(Λ) are
such that: [∑

i

(Gi(Λ) pi/w)1−σ(Λ)

] 1
1−σ(Λ)

increases for any set of pi/w.
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Lemma 6 For any given set of xi ≥ 0 and αi ≥ 0 such that
∑

i αi = 1, the following expression is
monotonically increasing in ρ ∈ (−∞,+∞): [∑

i

αix
ρ
i

] 1
ρ

Proof of Lemma 6: First, consider two values ρ < ρ′ < 0 and consider the mapping m(x) = x
ρ′
ρ

which is convex in x. Jensen’s inequality implies that:

m
(∑

i

αiyi

)
≤
∑
i

αim(yi)

and thus: (∑
i

αiyi

) 1
ρ ≤

(∑
i

αiy
ρ′
ρ

i

) 1
ρ′

Choosing yi = [xi]
ρ, we obtain: [∑

i

αix
ρ
i

] 1
ρ ≤

[∑
i

αix
ρ′

i

] 1
ρ′

Second, consider two values ρ′ > ρ > 0 and consider again the mapping m(x) = x
ρ′
ρ which is now

concave in x. Jensen’s inequality for concave functions implies:

m
(∑

i

αiyi

)
≥
∑
i

αim(yi)

and thus, taking to the exponent 1/ρ < 0, we have:(∑
i

αiyi

) 1
ρ ≤

(∑
i

αiy
ρ′
ρ

i

) 1
ρ′

Choosing yi = [xi]
ρ, we obtain: [∑

i

αix
ρ
i

] 1
ρ ≤

[∑
i

αix
ρ′

i

] 1
ρ′

Note that these terms are well defined when ρ converges to zero (on both sides):

lim
ρ→0

[∑
i

αix
ρ
i

] 1
ρ

=
∏
i

xαii

hence the findings above also apply to ρ = 0. This proves Lemma 6.
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Appendix B – Counter-examples

First case with homogeneous demand shifters

Here I show that we can find a case where conditions ii) fails and where the Slutsky substitution
matrix is not semi-definite negative, thus proving that condition ii) cannot be entirely waived.

Suppose that F (Λ) = Λ (no problem arises when F is locally constant) and that we have two
goods 1 and 2, where εD1 < εH while εD2 > εH for the other good, i.e. εH ∈ (εD1, εD2). In particular,
to fix ideas, supposed that all elasticities are constant, with εH = εD2+εD1

2 ≡ −κ < 0 and denote
δ ≡ εD2 − εH = εH − εD1 > 0. Denote by the expenditure share of product 1 as 1−ε

2 and the
expenditure share of good 2 as 1+ε

2 such that ε̄D − εH = εδ. While elasticities are constant, we can
still adjust the demand shifter for each good to obtain the desired market shares (hence ε can be
chosen independently from the elasticities).

The off-diagonal coefficients of the Slutsky substitution matrix are then:

s12p1p2/w = −a1a2(εD1 − εH)(εD2 − εH)

ε̄D − εH
+ a1a2εH = −(1− ε2)δ2

4εδ
− (1− ε2)κ

4

where ai denotes the expenditure share of good i. The diagonal coefficients are:

s11p
2
1/w = a1εD1 −

a2
1(εD1 − εH)2

ε̄D − εH
+ a2

1εH = −(1− ε)(κ+ δ)

2
+

(1− ε)2δ2

4εδ
− (1− ε)2κ

4

s22p
2
2/w = a2εD2 −

a2
2(εD2 − εH)2

ε̄D − εH
+ a2

2εH = −(1 + ε)(κ− δ)
2

+
(1 + ε)2δ2

4εδ
− (1 + ε)2κ

4

One can see that the substitution coefficients become very large as ε approach zero (because some
of the terms have ε in the denominator). Moreover, if we denote by Σ the matrix with coefficients
sijpipj/w, we obtain:

lim
ε→0+

4εΣ =

(
+δ −δ
−δ +δ

)
This matrix is semi-definite positive: xT 4εΣx = δ2(x1 − x2)2 ≥ 0. By continuity, when ε is small
enough, the substitution matrix with coefficient sij is semi-definite positive, which is not consistent
with a rational demand system.

Second case with iso-elastic substitution

In this case, I provide counter-examples to show that neither Λ or U are well defined if the assumptions
of Proposition 4 are not satisfied.

• First, suppose that σ(Λ) increases in Λ. In this case, the elasticity of substitution increases
with income and issues are more likely to arise when consumption is concentrated in one or few
goods.

When Gi(Λ) is not monotonic in Λ for a good i, the budget constraint can be written:

Gi(Λ)pi/w = 1

when the consumption of all other goods become negligible, i.e. when (pj/w)1−σ(Λ) = 0. If
there exists Λ1 6= Λ2 such that Gi(Λ1) = Gi(Λ2), one can see that the equation above has at
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least two solutions when pi/w = 1/Gi(Λ1).

Conversely, utility is not well defined by the implicit equation provided in Proposition 4 when

Gi is not monotonic for a good. Suppose that q
σ(U)−1
σ(U)

j is zero (or close to zero) for other goods

j. In that case, we can see that
(

qi
Gi(U)

)σ(U)−1
σ(U)

= 1⇔ Gi(U) = qi has several solutions in U for

some qi if Gi is not monotonic, potentially violating the monotonicity of U w.r.t quantities.

We also need G′i to have the same sign for all goods. If it is not the case, we can obtain
situations where Λ and U are not well defined, or where U would decrease with quantities qi for
some goods.

• Counter-examples for the second case are more difficult to construct. Here we will assume here
that σ(Λ) and Gi(Λ) are differentiable. Let us examine what happens when inequality (13) is
not satisfied, i.e. when: ∑

i

exp

(
(σ(Λ)− 1)2G′i(Λ)

σ′(Λ)Gi(Λ)

)
> 1

for a given Λ = U0. In that case, we can show that it is possible to find a set of quantities qi
such that U0 is the solution of equation (14) but where implicit utility would depend negatively
on some of the quantities. This amounts to showing that the following expression:[∑

i

(
Gi(U)/qi

) 1−σ(U)
σ(U)

] σ(U)
1−σ(U)

decreases with U and for at least some of the qi’s.

Suppose that U0 is the solution of equation (14) for a given set of qi. We can always rearrange
the qi to match a given set of consumption shares while still having U0 as the solution of
equation (14) . In particular, choose q∗i such that U0 is still the solution of (14) and such that:

(
Gi(U0)/q∗i

) 1−σ(U0)
σ(U0)

=
1

A
exp

(
(σ(U0)− 1)2G′i(U0)

σ′(U0)Gi(U0)

)
where A ≡

∑
i exp

(
(σ(U0)−1)2G′i(U0)
σ′(U0)Gi(U0)

)
> 1, strictly larger than unity if condition ii) is not

satisfied. Consider the function:

f(U, q) =
[∑

i

(
Gi(U)/qi

) 1−σ(U)
σ(U)

] σ(U)
1−σ(U)

which corresponds to the left-hand side of equation (14). One can see that the derivative in U
at U = U0 and q = q∗ is negative:

fU (U0, q
∗) =

∑
i

G′i(U0)

Gi(U0)

(Gi(U0)

q∗i

) 1−σ(U0)
σ(U0)

+
σ′(U0)

(1−σ(U0))2

∑
i

(Gi(U0)

q∗i

) 1−σ(U0)
σ(U0)

log
(Gi(U0)

q∗i

) 1−σ(U0)
σ(U0)

=
σ′(U0)

(1−σ(U0))2
logA < 0

while the derivative fqi(U0, q
∗) in each qi is also negative. This leads to an implicit utility

function U of q that decreases with quantities.
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Appendix C – Practical cases and applications

For the second case, generalized non-homothetic CES, with uniform elasticity of substitution across
goods:

1. In various contexts, one has associated a lower elasticity of substitution for richer consumers
(in line with empirical evidence) while keeping the practicality of CES preferences. Proposition
4 case ii) allows us to do just that. Handbury (2016) and Faber and Fally (2017) assume that
the consumption of the outside good influences elasticities. Here, one can circumvent such
assumption by defining utility implicitly in a similar fashion as in Hanoch (1975) and Comin et
al (2015).

2. Comin et al (2015) provide an excellent application of the case with constant elasticity of
substitution σ that does not depend on income. In the calibration of their model, each industry
is associated with a distinct structural parameter driving income effect, while keeping constant
elasticities of substitution among industries. Here we show that it can be extended to elasticities
of substitution that can potentially change with real income. Moreover, these income effects
in substitution would not have to be tied (in terms of functional form) to income effects in
consumption shares across industries.

For instance, one application could be to rationalize the rise of profits and fixed costs relative to
variable costs. If σ decreases with utility (and thus income), growth would be associated with
larger markups and larger variable profits, and under free entry with larger shares of fixed costs
over total costs. If fixed costs are more intensive in capital, this would rationalize an increasing
share of capital in GDP.

3. While Comin et al (2015) focus on constant elasticity σ(Λ) = σ, an opposite case would be to
assume that all goods have the same shifters Gi(Λ) = G(Λ). Generalized non-homothetic CES
would still be non-homothetic in that case. Assuming that σ(Λ) is differentiable, integrability
is ensured if G(Λ) increases sufficiently fast:

G′(Λ)

G(Λ)
> max

{
0,− σ′(Λ)

(σ(Λ)− 1)2
logN

}
For the first case, generalized Gorman-Pollak form, with non-uniform elasticity of substitution:

4. A simple way to generalize both directly and indirectly-separable preferences, as well as homo-
thetic single-aggregator (HSA) preferences, is to consider iso-elastic functions H and F such
that demand can be written:

qi = ΛβDi(Λpi/w)

For instance, if we assume that the price elasticity of Di is always strictly larger than unity
(a common assumption under monopolistic competition to ensure finite markups), integrability
is ensured as long as β ≤ 1. Directly-separable preferences correspond to the special case
β = 0, indirectly-separable preferences correspond to the limit case β → −∞, and homothetic
single-aggregator to the special case β = 1.

5. Iso-elastic functions Di(x) = Aix
−σi , F (Λ) = Λ and H(Λ) = Λ−β with β < 1 lead to another

interesting case. It is equivalent to CES only if the σi’s are identical.

This corresponds to self-dual addilog preferences previously examined by Houthakker (1965),
Pollak (1972) and just recently by Bertoletti and Etro (2017a). With direct separability (when
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H is constant), we obtain preferences with “Constant Relative Income Elasticities” (Fieler 2011,
Caron et al., 2017, 2014). When β = 0 (CRIE). In the latter case with β = 0, income elasticities
are:

∂ log qi
∂ logw

=
σi
σ̄

(36)

where σ̄ is the expenditure-weighted average of σj . With β 6= 0, we obtain a generalization of
such preferences where income elasticities are given by:

∂ log qi
∂ logw

= 1 + (1− β)
(σi − σ̄
σ̄ − β

)
(37)

These demand systems are non-homothetic except for the case where β = 1 (which does not
necessarily imply CES) or when σj = σi for all i, j.

6. Augmented bi-power form, as in Mazrova and Neary (2013)

Consider the demand system, assuming σ > ν > 0:

qi(pi/w,Λ) = γ(Λ)[pi/w]−ν + δ(Λ)[pi/w]−σ

Under which conditions is that demand system integrable? Defining F (Λ) = [γ(Λ)/δ(Λ)]
1

σ−ν

and H(Λ) = δ(Λ)−1F (Λ)−σ = γ(Λ)−
σ

σ−ν δ(Λ)
ν

σ−ν , one can recover the form of demand
systems as in Mazrova and Neary (2013) by applying Proposition 3.

To apply Proposition 3, one would need qi to be decreasing in Λ, regardless of prices. Hence
a sufficient condition is that both δ(Λ) and γ(Λ) decrease with Λ. If those conditions are
not satisfied, we can see that Λ will not be well defined.14 Taking very low prices, we have
qi(pi/w,Λ) ≈ δ(Λ)[pi/w]−σ and we can see that the equation

∑
i δ(Λ)[pi/w]1−σ = 1 can

lead to multiple solutions in Λ if δ is not monotonic. Conversely, if we have very high prices,
qi(pi/w,Λ) ≈ γ(Λ)[pi/w]−ν , and the equation

∑
i γ(Λ)[pi/w]1−σ = 1 can lead to multiple

solutions in Λ if γ is not monotonic. Hence monotonicity in both γ(Λ) and δ(Λ) is required to
ensure that Λ is well defined.

7. The previous example builds on a symmetric case (symmetric across all goods). More generally,
one can also consider asymmetric bi-power forms. With Di(yi) = γiy

−νi
i + δiy

−σi
i , one can

obtain recoverable demand systems as long as F (Λ) and H(Λ) are common across all goods, i.e.
if demand takes the form:

qi(pi/w,Λ) = γiH(Λ)[F (Λ)pi/w]−νi + δiH(Λ)[F (Λ)pi/w]−σi

with ∂ logH
∂ log Λ < min{νi, σi} to ensure that Λ is well defined.

8. Similarly, one can consider inverse demand functions that are bi-power, with the same extensions
as above.

9. Mrazova et al. (2017) introduce CREMR demand (with constant revenue elasticity of marginal
revenue) where the own-price effects are such that the distribution of sales and productivity
belong to the same family (e.g. lognormal+lognormal, Pareto+Pareto, etc.). They rationalize
their demand system with a directly-additive utility function.

14If both δ and γ are instead increasing in Λ, we can just replace Λ by 1/Λ.
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Using our results, one can further generalize such demand system (though only in the supercon-
vex case where there is no restriction on minimum quantities) with more flexible income effects
while keeping the CREMR properties linked to price effects. If we specify:

D−1
i (x) =

βi
x

(x− γi)
σ−1
σ

with γi < 0, and H(z) such that εH ≥ −1, the following (inverse) demand systems is integrable:

pi(qi, z) = w/z D−1
i (H(z)qi)

where z is implicitly defined by the budget constraint
∑

i
piqi
w =1 (see Section 3), which can be

written:
z =

∑
i

βi(H(z)qi − γi)
σ−1
σ /H(z)

The directly additive case described in Mrazova et al. (2017) corresponds to the case where
H(z) is constant. The homothetic case corresponds to H(z) = 1/z.

10. Conditionally-linear demand:
qi = (αi − γiΛpi)/H(wΛ)

is integrable as long as Λpi ≤ αi
2βi

and εH > −1.

This generalizes Ottaviano et al. (2002), Melitz and Ottaviano (2008) and Mayer et al. (2014)
based on quasi-linear preferences. This conditionally-linear demand system nevertheless yields
very simple expressions for markups in monopolistic competition when Λ is taken as given (limit
case with many firms).

A practical case is to impose H(wΛ) = (wΛ)−β with β < 1, but even in this most simple case
there is no fully closed-form solution since utility (direct and indirect) still depends on functions
z and Λ that are implicitly defined.15 While z−βqi < αi and piΛ < αi/γi, utility and indirect
utility take the form:

U(q) =
βz1−β

1− β
+
∑
i

z−βqi(2αi − z−βqi)
2γi

V (p, w) =
(wΛ)1−β

1− β
−
∑
i

piΛ(2αi − γipiΛ)

2

where z and Λ are implicitly defined as the solutions of z =
∑

i qi(αi−z−βqi)/γi and
∑

i(wΛ)βpi(αi−
γiΛpi) = w respectively.

11. Counter-examples where demand depends on more than one aggregator: Kimball (1995) and

15Note that the conditions in Proposition 2 are not always satisfied if x ≤ αi
2γi

and the elasticity of H is close

to −1 (Di would have an elasticity below unity in absolute value). In a monopolistic competition framework,

a trick is to replace Di by α2

4γix
for x < α

2γi
. Such a function Di would satisfy the conditions of Proposition 1

as long as the elasticity of H remains between zero and unity. In equilibrium, none of the firms would set an
infinite markup, hence equilibrium prices are such that Λpi >

αi
2γi

and none of the firms would end up on the
non-linear portion of the demand curve.
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QMOR (Feenstra 2015). QMOR demand can be expressed as:

qi = αu

(
pi
e(p)

)r−1
[

1−
(
p∗

pi

)r/2]

which is a function of two aggregators: p∗ and e(p). Given that e(u)u = w, we also have:

piqi
w

= α

(
pi
e(p)

)r [
1−

(
p∗

pi

)r/2]

Note that the price elasticity can be expressed as a function of p∗ only.

Similarly, demand with Kimball preferences with an implicit aggregator depends in fact on two
aggregators (it also depend on the Lagrange multiplier associated with the budget constraint)
hence they are not a special case of the demand systems described here.
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