
NBER WORKING PAPER SERIES

DEDUCTION DILEMMAS:
THE TAIWAN ASSIGNMENT MECHANISM

Umut M. Dur
Parag A. Pathak

Fei Song
Tayfun Sönmez

Working Paper 25024
http://www.nber.org/papers/w25024

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2018

We are grateful to Ming-Jen Lin for superb comments and help understanding recent reforms in 
Taiwan.  Glenn Ellison, Indira Puri, Joseph Shayani, Alex Wolitzky, and seminar participants at 
MIT provided helpful feedback.  Pathak and Sonmez acknowledge support of National Science 
Foundation grant SES-1426566. Sonmez also acknowledges support from the Goldman Sachs 
Gives via Dalinc Ariburnu - Goldman Sachs Faculty Research Fund. The views expressed herein 
are those of the authors and do not necessarily reflect the views of the National Bureau of 
Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2018 by Umut M. Dur, Parag A. Pathak, Fei Song, and Tayfun Sönmez. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Deduction Dilemmas: The Taiwan Assignment Mechanism
Umut M. Dur, Parag A. Pathak, Fei Song, and Tayfun Sönmez
NBER Working Paper No. 25024
September 2018
JEL No. D47,I20

ABSTRACT

This paper analyzes the properties of the Taiwan mechanism, used for high school placement 
nationwide starting in 2014. In the Taiwan mechanism, points are deducted from an applicant's 
score with larger penalties for lower ranked choices. Deduction makes the mechanism a new 
hybrid between the well-known Boston and deferred acceptance mechanisms.  Our analysis sheds 
light on why Taiwan's new mechanism has led to massive nationwide demonstrations and why it 
nonetheless still remains in use.

Umut M. Dur
North Carolina State University
College of Management
umutdur@gmail.com

Parag A. Pathak
Department of Economics, E52-426
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
ppathak@mit.edu

Fei Song
MIT
77 Massachusetts Avenue
50 Memorial Drive
Cambridge, MA 02139-4307
fsong@mit.edu

Tayfun Sönmez
Boston College 
Department of Economics 
140 Comm. Ave. 
Chestnut Hill, MA, 02467 
tayfun.sonmez@bc.edu



Contents

1 Introduction 3

2 Model 5

2.1 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Taiwan Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Comparing Incentives Across Mechanisms . . . . . . . . . . . . . . . . . . . 9

3 Equilibrium Analysis 14

3.1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Becoming Sophisticated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Changing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Conclusion 19

A Beyond Taiwan: Heterogeneous Priorities 23

2



1 Introduction

In June 2014, more than five hundred parents and teachers marched down Ketagalan Boule-

vard in Taipei the capital city of Taiwan. The protestors were marching against a new

mechanism used to assign students to senior high schools. Fiercely protesting parents held

placards stating, “fill out the preference form for us,” while others complained that the ad-

missions process was akin to “gambling” (I-chia 2014). Due to this pressure and calls for

his resignation, education Minister Chiang Wei-Ling subsequently issued a formal public

apology for the new high school admissions system (CNA 2014a).

What are the protestors complaining about, and why is there so much turmoil associated

with Taiwan’s new high school assignment mechanism? This paper investigates this question

by studying the properties of Taiwan’s new assignment mechanism, a brand-new assignment

mechanism (to our knowledge), which represents a generalization of widely-studied mech-

anisms based on the student-proposing deferred acceptance algorithm and the Boston or

immediate acceptance mechanism.

Taiwan, like many other countries and regions, has recently launched a series of reforms

to standardize and centralize its secondary school system. At the turn of the century, rising

Taiwanese high schoolers took an admissions exam consisting of five subjects, with a total

score of 700 points. Students submitted their ranking over schools, and those with a higher

score chose first. For the next decade, an essay component was added to the admissions

exam. Local districts were free to use other performance measures aside from exams (such

as Chinese and English, music or sports) and to choose how to convert these measures to a

total score.

In 2014, the Senior-High School Education Act established a Comprehensive Assessment

Program for Junior High School students. This act changed how each of the five subjects

on the admissions exam were scored, placing them into discrete categories: excellent, basic

(pass), and needs more work (not pass). To separate high performing students, excellent

was further split into A, A+, and A++. During 2014, more than 200,000 pupils took the

Comprehensive Assessment Exam and applied to schools in their district of residence.

Aside from changing the admissions criteria, Taiwanese authorities also changed the

assignment mechanism, introducing a deduction system. Loosely speaking, in Taiwan’s

deduction system, a students priority is reduced based on the order in which preferences are

ranked. Table 1 lists the schedule of points employed in 2014 across the largest districts in

Taiwan. For instance, in Jibei, the largest district with over 60,000 applicants, a student’s

score at her second choice is reduced by 1, the score at her third choice is reduced by 2, and

so on. In Yunlin district, no points are deducted for the first four choices, and 2 points are
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deducted from choices five through eight.1 The deduction system has now been in place for

the last five years, from 2014-2018.

There are many signs that the deduction system is one of the major reason for nationwide

protests. For instance, an article in the China Post states (Wei 2014):

It is outrageous that the students have to have points deducted from their scores because they

fill out the wrong slots; it is because of this that many students with A+ in all subjects

eventually have to go to the same school with those who have achieved lower scores.

Despite calls to move towards different system where “students can choose the school they

want according to their results,” senior Taiwanese leadership has decided to retain the de-

duction system and has only slightly modified the extent to which points are deducted from

choices.

While economists have studied the properties of other school choice mechanisms, the

deduction system represents a brand new class of matching mechanisms, which we term the

Taiwan mechanism. Our goal in this paper is to analyze the properties of the Taiwan

mechanism to provide insights into the developments in Taiwan.

To our knowledge, the only other paper to study the new system in Taiwan is Hsu (2014),

who investigates properties of the new scoring system. Balinski and Sönmez (1999) and

Abdulkadiroğlu and Sönmez (2003) initiated the formal research on the mechanism design

approach to school choice. This paper is most closely related to Ergin and Sönmez (2006) and

Pathak and Sönmez (2008). Both papers consider the equilibrium of the preference revelation

game induced by the Boston mechanism under different assumptions on player sophistication.

Since preference-driven priority mechanisms are a generalization of the Boston mechanism,

the results contained in this paper can be seen as a generalization of those earlier papers.

Motivated by Chinese college admissions, Chen and Kesten (2017) introduce application-

rejection mechanisms with a parameter governing the permanency-execution period. Since

it is possible to map a particular schedule of deduction points to the permanency-execution

period, the results in this paper are related. Finally, there is a large literature on student

assignment mechanisms. We refer interested readers to Pathak (2016) for a recent survey

of the school choice literature and Sönmez and Ünver (2011) for a broader survey of the

matching literature.

In the next section, after introducing the model and formal definitions, we examine the

incentive properties of Taiwan mechanisms, showing that they can be compared in terms of

manipulation based on a natural ordering on their deduction points. In Section 3, we analyze

the equilibrium of the preference revelation game induced by the Taiwan mechanism. With

1In some public documents, the deduction is described in terms of added points, where more points are

added for higher ranked choices.
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this characterization in hand, we turn to comparisons between the Taiwan mechanism and

a mechanism based on the deferred acceptance algorithm. We briefly examine extensions of

our result to the more general case when all schools do not have the same priorities. Finally,

the last section concludes.

2 Model

2.1 Primitives

The ingredients of a school choice problem are a finite set of students and schools, each

with a maximum capacity. Each student has a strict preference over all schools as well as

remaining unassigned. Each student has priority score at each school.

Formally, a school choice problem consists of:

1. a set of students I = {i1, ..., in},

2. a set of schools S = {s1, ..., sm},

3. a capacity vector q = (qs1 , ..., qsm),

4. a list of strict student preferences PI = (Pi1 , ..., Pin), and

5. a list of strict school priority score profiles π = (πs1 , ..., πsm), where πs is school s’s

priority scores over I.

For any student i, Pi is a strict preference relation over S ∪ {∅} where ∅ denote being

unassigned option and sPi∅ means student i considers school s as acceptable.2 For any

student i, let Ri denote the “at least as good as” relation induced by Pi. We denote the rank

of school s under preference relation Pi with rs(Pi), i.e., rs(Pi) = |{s′ ∈ S ∪ {∅}|s′Pis}|+ 1.

For any school s, the function πs : {i1, . . . , in} → R is the priority score profile at school s

where πs(i) > πs(j) means that at school s, student i has higher priority than student j. We

denote the priority order of school s over students implied by πs with �πs , i.e. i �πs j if and

only if πs(i) > πs(j). Let πmax be the maximum score possible.

We fix the set of students, the set of schools and the capacity vector throughout the

paper; hence the pair (P, π) denotes a school choice problem (or simply a problem). The

outcome of a school choice problem is a matching. Formally a matching µ : I → S ∪ {∅} is

a function such that |µ−1(s)| ≤ qs for any school s ∈ S.

We refer to µ(i) as the assignment of student i under matching µ. With slight abuse of

notation, we use µ(s) instead of µ−1(s) in the rest of the paper.

2In the rest of the paper, we consider ∅ as a “null” school such that q∅ = |I|.
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A matching µ is Pareto efficient if there does not exist another matching ν such that

ν(i)Riµ(i) for all i ∈ I and ν(j)Pjµ(j) for some j ∈ I. A matching µ is individually

rational if there is no student i such that ∅Piµ(i). A matching µ is non-wasteful if there

is no student-school pair (i, s) such that sPiµ(i) and |µ(s)| < qs. A matching µ is fair if

there is no student-school pair (i, s) such that sPiµ(i) and πs(i) > πs(j) for some j ∈ µ(s).

A matching µ is stable if it is individually rational, non-wasteful, and fair. A matching

is student-optimal stable if it is the best stable matching for students.

A mechanism, denoted by ϕ, is a systematic procedure that selects a matching for

each problem. We let ϕ(P, π) denote the matching selected by mechanism ϕ in problem

(P, π) and ϕ(P, π)(i) denote the corresponding match of student i, and ϕ(P, π)(s) denote

the corresponding set of students assigned to school s. We say a mechanism ϕ satisfies a

given property if ϕ(P, π) satisfies that property for any (P, π). For instance, a mechanism is

stable if ϕ(P, π) is stable for any (P, π).

We say a mechanism ϕ is vulnerable to manipulation in (P, π) if there exists i and

P ′i such that

ϕ(P ′i , P−i, π)(i)Piϕ(P, π)(i),

where P−i = (Pj)j 6=i. A mechanism ϕ is strategy-proof if there is no problem (P, π),

student i and a preference order P ′i such that

ϕ(P ′i , P−i, π)(i)Piϕ(P, π)(i).

In other words, a strategy-proof mechanism is not vulnerable to manipulation in any problem.

2.2 Taiwan Mechanisms

In this paper, we are interested in a new class of mechanisms which includes celebrated

student-proposing deferred acceptance mechanism and the Boston or immediate acceptance

mechanism. We call this class of mechanisms as Taiwan Mechanisms. To define a Taiwan

mechanism, we first give the description of the two well-known member of this class of

mechanisms.

For any given (P, π), the student-proposing deferred acceptance (DA) mechanism selects

its outcome through the following algorithm:

Step 1: Each student i applies to her best choice, possibly ∅, according to Pi. Each school

s tentatively accepts the best qs students among all applicants according to πs and

rejects the rest.

...
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Step k: Each student i applies to her best choice which has not rejected her yet, possibly ∅,
according to Pi. Each school s tentatively accepts the best qs students among all

applicants according to πs and rejects the rest.

The algorithm terminates when there are no more rejections and students are assigned

to the choices they have applied in the last step.

For any given (P, π), the Boston mechanism (BM) selects its outcome through the fol-

lowing algorithm:

Step 1: Each student i applies to her best choice, possibly ∅, according to Pi. Each school

s permanently accepts the best qs students among all applicants according to πs and

rejects the rest. Each accepted student and her assigned seat are removed.

...

Step k: Each remaining student i applies to her kth choice, possibly ∅, according to Pi. Each

school s permanently accepts the best students among all applicants according to πs

up to the number of its remaining seats and rejects the rest. Each accepted student

and her assigned seat are removed.

The algorithm terminates when there are no more rejections.

A Taiwan mechanism can be implemented by deducting points and then applying DA

to the resulting problem. More formally, we first define a deduction rule denoted by

λ = (λ1, λ2, ..., λ|S|+1) ∈ R|S|+1
+ such that λ1 = 0 and λk ≤ λk+1 for any k ∈ {1, 2, ..., |S|}.3

We denote Taiwan mechanism associated with deduction rule λ by TMλ. For a given

problem (P, π), the outcome of TMλ is simply DA(P, π̂λ) where for each student-school pair

(i, s),

π̂λs (i) = πs(i)− λrs(Pi).

When deduction points are zero, the associated Taiwan mechanism produces the same out-

come as DA. When deduction points are very large, the associated Taiwan mechanism pro-

duces the same outcome as BM. That is, for any (P, π), if λ1 = (0, 0..., 0), then

TMλ1

(P, π) = DA(P, π)

and if λ2 = (0, πmax, 2πmax, ..., |S|πmax), then

TMλ2

(P, π) = BM(P, π).

3For any two deduction rules λ and λ′, λ > λ′ if λk ≥ λ′k for all k ∈ {1, 2, ..., |S| + 1} and λk′ > λ′k′ for

some k′ ∈ {1, 2, ..., |S|+ 1}.
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The fact that the Taiwan mechanism can be implemented as DA with different inputs

means that it inherits some properties of DA. Since DA mechanism is non-wasteful and indi-

vidually rational, for any λ and (P, π), TMλ(P, π) is non-wasteful and individually rational.

Through the choice of a deduction rule, it is possible for the class of Taiwan mechanisms

to produce the same outcome as a large number of other mechanisms. Aside from DA and

BM, the First Preference First (FPF) mechanisms used in England described by Pathak

and Sönmez (2013) are in the class of Taiwan mechanism where the deduction schedule is

allowed to depend on the school. FPF mechanisms were outlawed in more than 150 Local

Education Agencies by English Parliament in 2007. Since the Chinese Parallel mechanisms

described by Chen and Kesten (2017) span the DA and BM extremes, they can also be

represented as a Taiwan mechanism. In particular, a deduction schedule would be related to

the permanency-execution period in the Chinese parallel mechanism. If the choices within an

execution period all have the same deduction points, and the deduction points in an earlier

block are all sufficiently larger than those in a later block, then such a deduction schedule

produces the same outcome as the Chinese Parallel mechanism.

We make the following two assumptions throughout the rest of the analysis. Since we

are motivated primarily by policy developments in Taiwan, we assume that all schools share

the same strict priority score profiles.

Assumption 1. For all s, s′ ∈ S πs = πs′.

In Taiwan, student priority score is determined by a combination of measures including

test scores in Comprehensive Assessment Program for Junior High School Students and it

applies to all schools. Examples of deduction rules are shown in Table 1. Appendix A

examines whether our results generalize for situations other than Taiwan, where priorities

may differ by school. We also assume that there is no ties in the deducted priority scores.

Assumption 2. For any preference profile P , there is no ties in the deducted priority after

applying the deducted rule λ to the problem (P, π). That is, for ∀P, s ∈ S, π̂λs (i) = π̂λs (j)

implies that i = j.

To understand the properties of Taiwan Mechanisms, we start with the following example:

Example 1. Suppose that there are four schools, S = {a, b, c, d}, each with one seat, and

four students, i1, i2, i3, and i4. The original priority scores of students for each school s ∈ S
is: πs(i1) = 100, πs(i2) = 50, πs(i3) = 11 and πs(i4) = 0. The preferences of students are as

follows:

Pi1 : a b c d ∅
Pi2 : a b c d ∅
Pi3 : b c d a ∅
Pi4 : c a d b ∅

.
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We consider two different deduction rule: λ1 = (0, 41, 45, 51, 51) and λ2 = (0, 110, 220, 330, 330).

The corresponding adjusted priority orders for π, π̂λ
1

and π̂λ
2

are:

π π̂λ
1

π̂λ
2

a: i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i4 i3

b: i1 i2 i3 i4 i1 i3 i2 i4 i3 i1 i2 i4

c: i1 i2 i3 i4 i1 i2 i4 i3 i4 i3 i1 i2

d: i1 i2 i3 i4 i1 i2 i3 i4 i3 i4 i1 i2

.

The table orders applicants at schools from left to right, so that, e.g., πa(i1) > πa(i2) >

πa(i3) > πa(i4).

Under problem (P, π), the matching produced by DA is:(
i1 i2 i3 i4

a b c d

)
.

The matching produced by the Taiwan mechanism with deduction λ1, i.e. TMλ1
, is:(

i1 i2 i3 i4

a c b d

)
.

The matching produced by BM is: (
i1 i2 i3 i4

a d b c

)
.

This last matching is identical to that produced by the Taiwan mechanism with deduction

λ2, i.e. TMλ2
.

2.3 Comparing Incentives Across Mechanisms

We have observed that in the limit when deduction points are very large, the Taiwan mecha-

nism reduces to BM and when deduction points are all zero, it reduces to a serial dictatorship

(equivalently DA). A serial dictatorship is a strategy-proof mechanism, while BM is highly

manipulable. Does this comparison extend to intermediate values of the deduction rule?

Since BM is a highly manipulable mechanism, it is natural to expect that as we increase

the deduction (and approach BM), the mechanism becomes more manipulable. To formalize

this idea, we use the criteria to compare incentives across mechanisms developed by Pathak

and Sönmez (2013). Recall that mechanism ϕ is vulnerable to manipulation in (P, π) if there

is at least a student i who gets strictly better allocation by altering her report.
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Definition. Mechanism ψ is more manipulable than ϕ if

(i) in any (P, π) such that ϕ is vulnerable to manipulation ψ is also vulnerable to manip-

ulation, and

(ii) there exists some (P, π) such that ψ is vulnerable to manipulation but ϕ is not.

If only (i) is satisfied, then we say that ψ is at least as manipulable as ϕ.

Returning to Example 1, we consider a new deduction rule: λ3 = (0, 9, 20, 30, 30). Note

that λ3
k < λ1

k for each k > 1. Then the adjusted priority orders induced by π, π̂λ
3
, and π̂λ

1

are:

π π̂λ
3

π̂λ
1

a: i1 i2 i3 i4 i1 i2 i4 i3 i1 i2 i3 i4

b: i1 i2 i3 i4 i1 i2 i3 i4 i1 i3 i2 i4

c: i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i4 i3

d: i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i3 i4

.

The outcome of the Taiwan Mechanism with deduction λ1, i.e. TMλ1
(P, π) = DA(P, π̂λ

1
),

is: (
i1 i2 i3 i4

a c b d

)
.

If student i2 instead reports b as the top choice, then i2 obtains a better outcome than under

truth-telling. She has a higher score than i3 and i4 under π̂λ
1

b when she ranks b as top choice.

Under TMλ1
, student i1 never applies to school b. Therefore, at school b, student i2 is not

rejected and is assigned to the more preferred school b when she ranks b as top choice.

On the other hand, TMλ3
produces:(

i1 i2 i3 i4

a b c d

)
,

which is the same as DA(P, π). One can easily see that no student can manipulate TMλ3

in (P, π).

This example illustrates how manipulation possibilities increase as we increase deduction

points in the TM class. Our first proposition shows the pattern is more general than this

specific example.

Proposition 1. Under Assumptions 1 and 2, if λ1 > λ2, then TM with deduction rule λ1,

i.e. TMλ1
, is more manipulable than TM with deduction rule λ2, i.e. TMλ2

.
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Proof. We first show that there exists at least one (P, π) such that no student can manipulate

TMλ2
but some student can manipulate TMλ1

. Suppose λ1
k = λ2

k for all k < k̄ and λ1
k̄
> λ2

k̄
.

Let S = {s1, ..., sk̄, ...}, I = {i1, ..., ik̄, ...}, and qs = 1 for all s ∈ S. Student ik has the

kth highest score under π. Student ik prefers school sk as top choice for all k < k̄ and

student ik prefers ∅ as top choice for all k > k̄ + 1. Preference of ik̄ is: skPik̄sk+1 for

all k ≥ 1. School sk̄ is the only acceptable school for ik̄+1. Let πs(ik̄) − λ1
k̄
< πs(ik̄+1) <

πs(ik̄)−λ2
k̄
. Then, TMλ1

(P, π)(i) = TMλ2
(P, π)(i) for all i ∈ I \{ik̄, ik̄+1}, TMλ2

(P, π)(ik̄) =

TMλ1
(P, π)(ik̄+1) = sk̄. Then, student ik̄ can manipulate TMλ1

by ranking sk̄ as top choice

but no student can manipulate TMλ2
.

Next, we show that TMλ1
is at least as manipulable as TMλ2

. We present two observa-

tions and three lemmas that we use in the proof.

Observation 1. For any (P, π), λ and i ∈ I, if sPis
′ then π̂λs (i) ≥ π̂λs′(i).

Observation 1 follows from the fact that λk ≤ λk−1 for any λ.

Observation 2. For any (P, π), there exists a unique stable matching which is the outcome of

the serial dictatorship (SD) mechanism under π and P .4 Hence, the unique stable matching

is also Pareto efficient.

Observation 2 follows from the fact that πs = πs′ for any s, s′ ∈ S. With slight abuse of

notation, we use π(i) instead of πs(i) in the rest of the proof.

Lemma 1. For an arbitrary (P, π), let µ be the unique stable matching and ν be another

matching such that ν 6= µ. Then, there exists a student i such that µ(i)Piν(i) and µ(j) = ν(j)

for any student j with π(j) > π(i).

Proof. By Observation 2, µ is Pareto efficient and µ = SD(P, π). Since µ is Pareto efficient,

ν 6= µ implies that there exists a student i′ such that µ(i′)Pi′ν(i′). Without loss of generality,

let i be the student with the highest priority score under π who prefers µ to ν. On the

contrary, suppose there exists a student j with π(j) > π(i) and µ(j) 6= ν(j). Without loss of

generality, let j be such a student with the highest priority score under π. Then, ν(j)Pjµ(j).

However, this contradicts with the fact that µ is the outcome of the SD mechanism and i is

the student with highest score who prefers µ to ν.

We consider sequential version of the DA mechanism introduced by McVitie and Wilson

(1970) in which students apply according to a predetermined order χ one at a time and in

each step the student who has the highest rank in χ among the ones whose offer has not

been tentatively accepted applies.

4Notice that, under Assumptions 1 and 2, DA(P, π) = SD(P, π).
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Lemma 2. For arbitrary (P, π), λ, and χ consider any step k of the sequential DA mecha-

nism under (P, π̂λ) such that there is only one student i who has not been tentatively accepted

by some school in S ∪{∅}. If school s that i applies to in step k tentatively accepts her offer,

then i is assigned to s when the sequential DA terminates.

Proof. Let tk̄ = π̂λs̄ (̄i) such that student ī applies in step k̄ of sequential DA to school s̄.

In step k of sequential DA, student i is tentatively accepted by school s if either the

number of tentatively accepted students in step k − 1 by s is less than qs or there exists a

student j who is tentatively accepted in step k− 1 by s and π̂λs (i) > π̂λs (j). If the prior case

holds, then the mechanism terminates and the desired result follows. If the later case holds,

by Observation 1 and the fact that in each future step at most one student is not tentatively

assigned tk′ < π̂λs (i) for any k′ > k. Therefore, i will not be rejected by s.

Lemma 3. For arbitrary (P, π) and λ, let µ = DA(P, π) = SD(P, π) and ν = TMλ(P, π) =

DA(P, π̂λ). If µ 6= ν, then there exists a student who can manipulate TMλ in (P, π).

Proof. First, we define an axiom, known as population monotonicity, that we use throughout

the proof.5 A mechanism ϕ is population monotonic if for any (I, S, q, P, π) after removal

of any student i the assignment of all remaining students are (weakly) improved, i.e. ϕ(I \
{i}, S, q, P−i, π|(I \ {i}))(j)Rjϕ(I, S, q, P, π)(j) for all j ∈ I \ {i} where π|(I \ {i}) is the

restriction of π on students in I \ {i}.
By Lemma 1, there exists a student i such that µ(i)Piν(i) and µ(j) = ν(j) for any

student j with π(j) > π(i). Since TM is non-wasteful, there exists a student k such that

ν(k) = µ(i) and π(i) > π(k) ≥ π̂λµ(i)(k). Under (P, π̂λ), we consider sequential DA for an

order χ such that student i is the last student under χ. First note that, when it is i’s

turn all seats at µ(i) are tentatively filled. Otherwise, i would be matched to µ(i) or better

school under ν. By the population monotonicity of (sequential) DA mechanism, when it is

i’s turn to apply there exists at least one student j′ who is tentatively accepted by µ(i) and

π(i) > π̂λµ(i)(k) ≥ π̂λµ(i)(j
′). This follows from the fact that under the tentative matching

attained just before i’s turn student k is assigned to weakly better school than ν(k) = µ(i)

and when the sequential DA terminates it selects matching ν. Hence, Lemma 2 implies that

student i can get µ(i) by ranking it as top choice.

Now we are ready to give our proof for Proposition 1. Let µ be the student optimal

stable matching, i.e. µ = SD(P, π) = DA(P, π), and ν1 and ν2 be the outcomes of TMλ1

and TMλ2
, respectively. By Lemma 3, if ν1 6= µ, then there exists a student j who can

manipulate TMλ1
. We need to consider two more cases.

5We also use population monotonicity in the proof of Proposition 3.
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Case 1: ν1 = ν2 = µ. Suppose i can get school s by manipulating TMλ2
. For both

(P, π̂λ
1
) and (P, π̂λ

2
), we consider the sequential DA mechanism for an order χ in which

i applies last. Let ν̄1 and ν̄2 be the tentative allocations obtained just before i’s turn

for (P, π̂λ
1
) and (P, π̂λ

2
), respectively. By the fact that ν1 = ν2 = µ and Lemma 2 and

Observation 1, ν̄1(s′) = ν̄2(s′) = µ(s′) and for all s′Piµ(i). Since i can get s by manipulating

TMλ2
, there exists a student ī ∈ ν̄2(s) such that π̂λ

2

s (̄i) < π(i). Then, by the fact that

λ1 > λ2, π̂λ
1

s (̄i) < π(i). Hence, Lemma 2 implies that i can get s by ranking it as top choice

under TMλ1
.

Case 2: ν2 6= ν1 = µ. By Proposition 2 (see Section 3.1), ν1 and ν2 are Pareto efficient

under preference profile P . Hence, there exists at least one student k who prefers ν2(k) to

ν1(k). Let Ī = {i ∈ I|ν2(i)Piν
1(i)} and k ∈ Ī have higher priority score than all other

students in Ī, i.e., π(k) > π(j) for each j ∈ Ī \ {k}. That is, ν1(i)Riν
2(i) for each i ∈ I

with π(i) > π(k). Since ν1 = µ = SD(P, π), there exists at least one student ī such that

π(̄i) > π(k), ν2(k) = ν1(̄i) and ν1(̄i)Pīν
2(̄i). Let s = ν2(k) = ν1(̄i). Then, by the stability

of ν2 under (P, π̂λ
2
), we have π(k) ≥ π̂λ

2

s (k) > π̂λ
2

s (̄i). Then, by the fact that λ1 > λ2,

π(k) > π̂λ
2

s (̄i) ≥ π̂λ
1

s (̄i). Then for (P, π̂λ
1
), we consider sequential DA mechanism for an

order χ in which k applies last. Let ν̄1 be the tentative allocation obtained just before k’s

turn for λ1. By the fact that ν1 = µ and Lemma 2, ν̄1(s′) = µ(s′) for all s′Pkµ(k). Hence,

Lemma 2 implies that k can get s by ranking it as top choice under TMλ1

.

Within the class of Taiwan mechanisms, BM involves very large deduction points. There-

fore, Proposition 1 implies the following corollary.

Corollary 1. BM is more manipulable than any other Taiwan mechanism.

Proposition 1 relates to a statement of a high school principal in Tapei, who remarked

(CNA 2014b):

as long as the deduction system exists, problems can not be solved.

That is, the greater the amount of deduction, the more manipulable the mechanism is,

with manipulation only completely eliminated by DA, which sets all deduction points to

zero.

There have been several changes to deduction schedules since the system was first launched

in 2014. Table 1 reports on these changes for 15 Taiwanese districts. In most cases, dis-

tricts have relaxed the deduction schedule from the first year. For instance, in Gaoxiong,

each choice has a weakly smaller deduction in 2014 than in 2015. The same applies when

we compare 2015 to the three years between 2016-2018. The two largest districts by num-

ber of applications, Jibei and Zhongtou, also changed their deduction schedules to reduce

13



the amount of deduction. Proposition 1 implies that each of these changes have made the

mechanism less manipulable. However, not all changes involves moves to less manipulable

mechanisms. For instance, in Jinmen, there were no deductions in 2014, while in 2015-2018

there were deductions for each choice after the first.

3 Equilibrium Analysis

3.1 Characterization

Proposition 1 compares the incentives generated by the mechanisms in TM class. We now

turn to analyzing the equilibrium properties of these mechanisms, by considering the Nash

equilibrium of the (simultaneous) preference revelation game induced by a Taiwan mecha-

nism, or hereafter the Taiwan game under complete information.

Following Pathak and Sönmez (2008), we assume there are two types of students. Many

families report confusion about the new Taiwanese mechanism, but some have spend con-

siderable effort learning about the rules of the mechanism. Let N and M denote the set of

sincere students and sophisticated students, respectively. For each i ∈ N , the strategy space

of student i is {Pi}, so i can only submit her true preference. We motivate this modeling

choice by the fact that some participants may not understand how deductions change their

incentives. In the case of BM, there is evidence of heterogeneous levels of sophistication (see,

e.g., Pathak (2016) for examples). For each j ∈ M, student j’s strategy space is all strict

preferences over schools including being unassigned option.

Similar to Pathak and Sönmez (2008), we define the augmented priority scores of sincere

and sophisticated students as follows.

Definition. Given a problem (P, π) and deduction rule λ, construct an augmented pri-

ority score list π̃ as:

(i) For each school s, adjust each sincere student i ∈ N priority score according to

π̃s(i) = πs(i)− λrs(Pi) (i.e., apply the deduction rule to sincere students for school s)

(ii) For each school s, keep each sophisticated student j ∈ M priority score unchanged

π̃s(j) = πs(j).

By using Example 1, we illustrate that the unique Nash equilibrium outcome and the

unique stable matching under the augmented priority scores coincide.

Example 1 (cont). In Example 1 with deduction rule λ1, suppose student i1 and i3 are

sincere and student i2 and i4 are sophisticated. Students i1 and i3 each have only one strategy

14



corresponding to truth-telling: abcd and bcda, respectively.6 Independent of the strategies

played by the other students, i1 gets school a in any equilibrium outcome. Moreover, student

i2 gets school b when she ranks it as first choice and i3 gets school b when i2 does not rank

b as first choice. Hence, in any equilibrium i2 ranks b as top choice and gets it. Similarly,

when i2 ranks b as top choice, student i4 can get school c by only ranking it as top choice.

Hence, there is a unique Nash equilibrium outcome:(
i1 i2 i3 i4

a b d c

)
.

The augmented priority orders associated with π̃ are:

a: i1 i2 i4 i3

b: i1 i2 i3 i4

c: i1 i2 i4 i3

d: i2 i1 i4 i3

.

The only stable matching under (P, π̃) is(
i1 i2 i3 i4

a b d c

)
,

which is the same as the unique equilibrium outcome.

The observation that the Nash equilibrium outcome is related to the stable matching of

an augmented problem is more general than this example.

We first show that under problem (P, π̃) there exists a unique stable matching.

Proposition 2. Under Assumptions 1 and 2, for arbitrary (P, π), λ, M and N , let π̃ be

the augmented priority score list. Under (P, π̃) there exists a unique stable matching and it

is Pareto efficient.

Proof. By using a recursive procedure, under (P, π̃), we show that one can always find a

student who has the highest priority among the remaining students at her top choice among

the remaining schools and we remove that student and a seat from that school. This student

will be matched to her top choice among the remaining ones in any stable matching and

there will not exist a possible welfare improvement trade between the remaining students

and this student.

6For the sake of expositional simplicity, we do not include the strategies in which ∅ is not ranked as the

last choice.
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Let ik be the student who has the highest score in π among the students remaining in

Step k ≥ 1 of this procedure. We start with Step 1 in which all students and all seats are

available. By our construction, i1 has the highest priority at her top choice no matter she

is sophisticated or sincere. Moreover, she will be assigned to her top choice in any stable

matching, and therefore her welfare cannot be improved by trading with the other students.

We remove i1 and one seat from her top choice and consider the remaining students and

schools in Step 2.

Suppose our claim holds for the first k − 1 steps of this procedure. Now consider Step

k. If ik is a sophisticated student, then she has the highest priority among the remaining

students at all remaining schools. Hence, the claim holds. Suppose ik is a sincere student.

Let s1 be her top choice among the remaining schools. If the student with the highest

priority for s1 among the remaining ones prefers s1 most, then we are done. Otherwise, we

consider the student i1 6= ik with the highest priority at s1 among the remaining students

and her most preferred school among the remaining ones denoted by s2 6= s1. Note that,

ik cannot have higher priority than i1 at school s2. If the student with the highest priority

for s2 among the remaining ones prefers s2 most, then we are done. Otherwise, we consider

the student i2 /∈ {i1, ik} with the highest priority at s2 among the remaining students and

her most preferred school among the remaining ones denoted by s3 /∈ {s1, s2}. Note that,

ik and i1 cannot have higher priority than i2 at school s3. By finiteness, we will eventually

find a student i and school s such that i has the highest priority at s among the remaining

students and i prefers s most among the remaining schools. Hence, in any stable matching

i is assigned to s and there cannot be a welfare improving trade involving student i.

Next, we consider the preference revelation game under TMλ for any λ.

Proposition 3. Under Assumptions 1 and 2, for arbitrary (P, π), λ, M and N , let π̃ be

the augmented priority score list. Then, there exists a unique Nash equilibrium outcome of

this game and it is Pareto efficient and equivalent to DA(P, π̃).

Proof. By our construction of π̃, when each sophisticated student i ranks DA(P, π̃)(i) as

top choice and each sincere student j plays Pj, TM
λ selects DA(P, π̃) and no sophisticated

student can benefit from deviation. Hence, DA(P, π̃) is a Nash equilibrium outcome and by

Proposition 2 it is Pareto efficient.

Since under (P, π̃) there exists a unique stable matching (see Proposition 2), we will prove

that there cannot be a Nash equilibrium outcome which is not stable.

On the contrary, let Q be a Nash equilibrium profile and the outcome of TMλ under

this strategy profile is µ, i.e., TMλ(Q, π) = µ, and µ is not stable under (P, π̃). Note that,

TMλ(Q, π) = DA(Q, π̂λ) where π̂λ is the implied by (Q, π) and deduction rule λ.
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If matching µ is individually irrational, then there exists a student i who is assigned to

an unacceptable school, i.e. ∅Piµ(i). Since Qj = Pj for each j ∈ N and TMλ is individually

rational, i cannot be a sincere student. Then, individual rationality of TMλ implies that

ranking ∅ as top choice is a profitable deviation for i.

Suppose µ is wasteful or not fair. Then, there exists a school-student pair (s, i) such that

sPiµ(i) and either |µ−1(s)| < qs or π̃s(i) > π̃s(j) for some j ∈ µ−1(s). Under both cases, we

consider sequential version of DA under (Q, π̂λ) such that i applies last. We first suppose

the former case holds. Since Qj = Pj for each j ∈ N and TMλ is nonwasteful, i cannot be a

sincere student. Then population monotonicity of DA implies that i can profitably deviate

by ranking school s as top choice. Now, we consider the latter case. By our construction if

i ∈ N and π̃s(i) > π̃s(j) then π̂λs (i) > π̂λs (j). Hence, i cannot be a sincere student. If i is

a sophisticated student, then the fact that DA is population monotonic, the construction of

π̃, and the proof of Lemma 2 imply that i can profitably deviate by ranking school s as top

choice.

3.2 Becoming Sophisticated

Many families report confusion about the new Taiwanese mechanism, but some have spend

considerable effort on learning about the rules of the mechanism. In the context of our

example, a student who becomes sophisticated becomes (weakly) better off, as we show

next.

Example 1 (cont.) In Example 1, if i2 and i4 are sophisticated, under TMλ1
the unique

equilibrium outcome is (
i1 i2 i3 i4

a b d c

)
.

Student i3 gets her third choice. If i3 becomes sophisticated, then the augmented priority

orders associated with π̃ are:

a: i1 i2 i3 i4

b: i1 i2 i3 i4

c: i1 i2 i3 i4

d: i2 i1 i3 i4

The unique equilibrium outcome when i2, i3 and i4 are sophisticated is(
i1 i2 i3 i4

a b c d

)
.

Hence, by becoming sophisticated, i3 is better off.
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This example illustrates a more general phenomenon summarized by our next proposition.

Proposition 4. Under Assumptions 1 and 2, consider arbitrary (P, π), λ, M and N . If a

sincere student i ∈ N becomes sophisticated, then under the equilibrium outcome of TMλ, i

becomes (weakly) better off.

Proof. Suppose that π̃1 is the augmented priority score profile when i is sincere, and π̃2 is

the one when i becomes sophisticated. By definition, for all s ∈ S π̃1
s(j) = π̃2

s(j) for all

j 6= i and π̃1
s(i) ≤ π̃2

s(i). That is, i is improved under the associated priority orders when she

becomes sophisticated. By Proposition 3, under both cases the unique equilibrium outcome

is equivalent to DA(P, π̃1) and DA(P, π̃2), respectively. Since, DA respects improvement in

priorities (see Balinski and Sönmez (1999)), DA(P, π̃2)(i)RiDA(P, π̃1)(i).

When one sincere student becomes sophisticated, she obtains a weakly better assignment.

Does this imply that other sophisticated students obtain weakly worse assignments? The

answer turns out to be no, as the following example illustrates.

Example 2. We slightly modify Example 1 by changing the preferences of i2 and i4 as

follows: aPi2bPi2dPi2c and dPi4cPi4aPi4b. Suppose initially only i4 is sophisticated. Then,

under TMλ1
the unique equilibrium outcome is(

i1 i2 i3 i4

a d b c

)
.

Now consider the case where i2 becomes sophisticated. Then, under TMλ1
when i2 and i4

are sophisticated the unique equilibrium outcome is(
i1 i2 i3 i4

a b c d

)
.

Therefore, student i4 is better off after i2 becomes sophisticated. Note that, DA mechanism

also selects the same outcome when all students report their true preferences.

3.3 Changing Mechanisms

Given that the Taiwan mechanism is manipulable, it is natural to consider what the con-

sequences of adopting a non-manipulable mechanism. The most natural alternative in this

setting is DA, which is strategy-proof for students (Dubins and Freedman 1981, Roth 1982)

and increasingly in use (Pathak and Sönmez 2013, Pathak 2016). When schools share the

same priority, DA reduces to a serial dictatorship. In a serial dictatorship, we process appli-

cants in order and offer each applicant his or her most preferred school with seats remaining.
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Example 1 (cont.) In Example 1, student i3 is assigned a better school b under TMλ1

than school c under the serial dictatorship mechanism.

This result is related to comments made by Education Minister Chiang Wei-ling, who

remarked (Wei 2014):

no new policy would be carried out unless it would “benefit all students.”

Proposition 4 shows that sophisticated students may lobby against changing the mechanism

and that the Taiwanese mechanism favors sophisticated students, since deduction only ap-

plies to sincere students. Indeed, it is consistent with the reluctance of Taiwanese authorities

to abolish deduction rules in the face of massive condemnation and street protests.

However, it is not the case that all sophisticated students obtain a weakly better as-

signment under the Taiwan mechanism than under DA. This is a sharp contrast to earlier

comparisons between BM and DA in Pathak and Sönmez (2008). Example 2 shows that the

only sophisticated student i4 may actually prefer DA over the Taiwan mechanism.

4 Conclusion

A new nationwide system to assign children to high school in Taiwan generated widespread

turmoil and protests. In this paper, we have studied the incentive properties of this mech-

anism and characterized the equilibrium of the induced preference revelation game. Our

results show that any mechanism using deduction is manipulable, and that the scope for

manipulation increases with the size of deduction. The Taiwanese mechanism has a unique

equilibrium, which can be characterized in terms of a stable matching of an alternative econ-

omy. It is not possible to provide a strong comparison of the welfare of students in the

Taiwan mechanism compared to strategy-proof alternative.

Our analysis provides a rationale for the reluctance of Taiwanese authorities to move to

a strategy-proof alternative, illustrating a broader dynamic seen with manipulable mecha-

nisms used in school choice and elsewhere. Changes in market designs rarely involve Pareto

improvements for all participants, and these participants may stand in the way of mechanism

changes.
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District Year Applicants Deduction	Schedule Total	Score #	of	Options Max	#	of	Rankings School	X	Major
(1) (2) (3) (4) (5) (6)

Gaoxiong 2014 0,2,4,6,8,10,12 100 52 7
2015 0,0,0,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4 100 53 20

2016-2018 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2 100 53 30
Hualian 2014 0,4,8,12,16 100 45 5

2015-2018 0,0,0,2,2,2,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,16,16,16,18,18,18,	
20,20,20,20,20,20,20,20,20,20

100 47 40
Jiayi 2014 0,0,1,1,2,2,3,3,4,4,5,5,5,5,5 87 86 15

2015 0,0,0,2,2,2,4,4,4,6,6,6,8,8,8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10 82 88 30
2016-2018 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4 82 88 30

Jibei 2014 0,1,2,3,4,5,6,7,8,9,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12 90 139 30
2015 0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4 90 139 30

2016-2018 0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4 108 140 30
Jinmen 2014 no	deductions 46 12 12

2015 0,2,4,5,6,6,6,6,7,7,7,7 60 12 12
2016-2018 0,1,2,3,4,4,4,4,5,5,5,5 60 12 12

Penghu 2014 0,1,2,3,4,5,5,5,5,5,5,5,5,5 78 14 14
2015-2017 0,1,2,3,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 78 14 25

2018 0,1,2,3,4,5,5,5,5,5,5,5,5,5 78 14 14
Pingdong 2014 0,2,4,5,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 79 75 30

2015-2018 0,0,0,2,2,2,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 79 69 30
Taidong 2014 0,3,6,9,12,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15 100 38 30

2015-2018 0,3,6,9,12,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18 100 39 30
Tainan 2014 0,3,4,5,6 100 48 5

2015 0,2,3,4,5,10,…,10 100 47 n/a
2016-2018 0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,…,5 100 47 n/a

Taolian 2014 0,0,3,3,6,6,9,9,12,12,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15 100 34 30
2015-2016 0,0,0,3,3,3,6,6,6,9,9,9,12,12,12,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15 100 34 30
2017-2018 0,0,0,3,3,3,6,6,6,9,9,9,12,12,12,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14 100 35 30

Yilan 2014-2015 no	deductions 48 40 n/a
2016-2017 no	deductions 48 40 6

2018 no	deductions 48 40 unlimited
Yunlin 2014 0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6,9,9,9,9 90 68 20

2015 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4 90 71 30
2016-2018 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4 90 71 50

Zhanghua 2014 0,0,2,2,4,4,6,6,8,8,10,10,10,…,10 90 101 n/a
2015 0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11, 90 100 n/a

2016-2018 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 135 101 n/a

Zhongtou 2014 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 100 63 50
2015-2018 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 100 64 50

Zhumiao 2014 0,0,0,3,3,3,6,6,6,9,9,9,10,10,10 100 39 15
2015-2018 0,0,0,3,3,3,5,5,5,7,7,7,9,9,9 100 41 15
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A Beyond Taiwan: Heterogeneous Priorities

In this appendix, we examine two examples of deduction mechanisms without assumption

1 and show that Proposition 1 and 3 no longer apply. The first example we consider shows

that opportunities for manipulation need not increase with higher levels of deduction.

Example 3. There are five schools S = {a, b, c, d, e} and five students I = {i1, i2, i3, i4, i5}.
Let qs = 1 for all s ∈ S. The priority scores of students for schools are as follow: πa(i1) = 100,

πa(i3) = 98, πa(i4) = 97, πb(i2) = 99, πb(i3) = 98, πc(i3) = 87.5, πc(i4) = 86, πc(i5) = 100,

πd(i4) = 100, πd(i5) = 90, and πe(i3) = 100. The preference of students are as follows:

Pi1 : a ∅
Pi2 : b ∅
Pi3 : a b c e ∅
Pi4 : a c d ∅
Pi5 : d c ∅

.

We consider two deduction rules: λ = (0, 1, 2, 2, 2, 2) and λ′ = (0, 2, 7, 7, 7, 7). Given λ,

P and π, the implied priority scores profile πλ is: πλa (i1) = 100, πλa (i3) = 98, πλa (i4) = 97,

πλb (i2) = 99, πλb (i3) = 97, πλc (i3) = 85.5, πλc (i4) = 85, πλc (i5) = 99, πλd (i4) = 98, πλd (i5) = 90,

and πλe (i3) = 98. Given λ′, P and π, the implied priority scores profile πλ
′

is: πλ
′
a (i1) = 100,

πλ
′
a (i3) = 98, πλ

′
a (i4) = 97, πλ

′

b (i2) = 99, πλ
′

b (i3) = 96, πλ
′
c (i3) = 80.5, πλ

′
c (i4) = 84, πλ

′
c (i5) =

98, πλ
′

d (i4) = 93, πλ
′

d (i5) = 90, and πλ
′
e (i3) = 93.

In this example, there is an Ergin (2002) cycle under π̂λ and π and such a cycle does not

exist under π̂λ
′
.

In this problem, TMλ selects:

µ =

(
i1 i2 i3 i4 i5

a b e d c

)
.

In this problem, TMλ′ selects:

ν =

(
i1 i2 i3 i4 i5

a b e c d

)
.

Under TMλ, student i4 can manipulate her preferences by ranking c at the top and the

outcome is

ν =

(
i1 i2 i3 i4 i5

a b e c d

)
.

On the other hand, no student can benefit from manipulation under TMλ′ .
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Next, we show that under Taiwan mechanism, it is possible for there to be a unique Nash

equilibrium outcome in weakly undominated strategies, but that outcome is not stable under

augmented priorities. This example slightly modifies the previous one.

Example 4. There are five schools S = {a, b, c, d, e} and six students I = {i1, i2, i3, i4, i5, i6}.
Let qs = 1 for all s ∈ S. Suppose all students are strategic. The priority scores of students

for schools are as follow: πa(i1) = 100, πa(i3) = 99.5, πa(i4) = 97, πb(i2) = 99, πb(i3) = 98.5,

πc(i3) = 90, πc(i4) = 86, πc(i5) = 100, πd(i4) = 100, πd(i5) = 90, πe(i3) = 100, and

πe(i6) = 99.5. The preference of students are as follows:

Pi1 : a ∅
Pi2 : b ∅
Pi3 : a b c e ∅
Pi4 : a c d ∅
Pi5 : d c ∅
Pi6 : e ∅

.

We consider the following deduction rule: λ = (0, 1, 2, 2, 2, 2). Given λ, π and P , the

implied priority scores profile πλ is: πλa (i1) = 100, πλa (i3) = 99.5, πλa (i4) = 97, πλb (i2) = 99,

πλb (i3) = 97.5, πλc (i3) = 88, πλc (i4) = 85, πλc (i5) = 99, πλd (i4) = 98, πλd (i5) = 90, πλe (i3) = 98

and πλe (i6) = 99.5.

Note that, i1 and i2 can obtain their top choices by submitting their true preferences

and they may not be assigned to their top choices if they do not rank them as top choice.

Hence, in any weakly undominated strategy i1 and i2 rank their true top choice at the top.

Independent of the other students ranking, student i4 and i5 can get one of their top two

choices by submitting their true preferences.7 Moreover, submitting something else is weakly

dominated by their true preference profile.

Similarly, if i6 ranks an unacceptable school at the top she may be assigned to it and

ranking ∅ as top choice is weakly dominated by her true preference profile. That is, for all

students except i3 submitting true preference is weakly undominated strategy. For such a

strategy profile i3’s best response is ranking e as top choice. Otherwise she will be unassigned.

The corresponding equilibrium outcome is:

µ =

(
i1 i2 i3 i4 i5 i6

a b e c d ∅

)
.

7This holds when i1, i2, and i6 have priority scores lower than 70 for c and d and i3 has priority score

lower than 90 for d.
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